
Deep Cooperation of Local Search and Unit
Propagation Techniques
Xiamin Chen #

Shanghai University of Finance and Economics, China

Zhendong Lei1 #

Huawei Taylor Lab, Shanghai, China

Pinyan Lu2 #

Shanghai University of Finance and Economics, Shanghai, China
Huawei Taylor Lab, Shanghai, China

Abstract
Local search (LS) is an efficient method for solving combinatorial optimization problems such as
MaxSAT and Pseudo Boolean Problems (PBO). However, due to a lack of reasoning power and
global information, LS methods get stuck at local optima easily. In contrast to the LS, Systematic
Search utilizes unit propagation and clause learning techniques with strong reasoning capabilities to
avoid falling into local optima. Nevertheless, the complete search is generally time-consuming to
obtain a global optimal solution. This work proposes a deep cooperation framework combining local
search and unit propagation to address their inherent disadvantages. First, we design a mechanism
to detect when LS gets stuck, and then a well-designed unit propagation procedure is called upon
to help escape the local optima. To the best of our knowledge, we are the first to integrate unit
propagation technique within LS to overcome local optima. Experiments based on a broad range
of benchmarks from MaxSAT Evaluations, PBO competitions, the Mixed Integer Programming
Library, and three real-life cases validate that our method significantly improves three state-of-the-art
MaxSAT and PBO local search solvers.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases PBO, Partial MaxSAT, LS, CDCL

Digital Object Identifier 10.4230/LIPIcs.CP.2024.6

Funding Pinyan Lu: National Key R&D Program of China (2023YFA1009500).

1 Introduction

The Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Optimization (PBO) are two
fundamental and important constraint optimization problems. The Maximum Satisfiability
problem (MaxSAT) is the optimization version of the Satisfiability problem (SAT). In general
MaxSAT problems, clauses are divided into hard and soft clauses, and each soft clause has
an associated weight. The goal of MaxSAT is to find an assignment that satisfies all hard
clauses and maximizes the total weight of satisfied soft clauses. PBO consists of a set of
pseudo-Boolean constraints and an objective function aiming to find a solution that satisfies
all pseudo-Boolean constraints while minimizing the objective function. With the continuous
improvements, MaxSAT and PBO solvers have broad applications in real-world problems
from operations research, economics, manufacturing, etc. [19, 35, 37].

1 X. Chen and Z. Lei - The authors are considered to have equal contributions
2 Corresponding author.

© Xiamin Chen, Zhendong Lei, and Pinyan Lu;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenxiamin@stu.sufe.edu.cn
https://orcid.org/0009-0006-8383-6015
mailto:leizhendong3@huawei.com
https://orcid.org/0009-0006-1238-9000
mailto:lu.pinyan@mail.shufe.edu.cn
https://orcid.org/0009-0005-0569-4122
https://doi.org/10.4230/LIPIcs.CP.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Deep Cooperation of Local Search and Unit Propagation Techniques

Existing practical algorithms for MaxSAT and PBO can be classified into two categories:
complete and incomplete methods. Local search is one of the most important incomplete
methods and has been shown to be effective for solving many combinatorial optimization
problems. Many advanced techniques have been proposed to enhance the performance of
local search algorithms for MaxSAT, such as variable selection heuristics [8], clause weighting
[11, 26], and Multi-armed Bandit soft clause selection [38]. Recently, local search algorithms
for PBO have also achieved breakthroughs by using well-designed scoring functions for
variable selection [12, 27]. Generally, local search algorithms converge quickly, enabling them
to find high-quality feasible solutions within a reasonable time. As a result, they are widely
employed for solving large instances, including real-world applications. However, local search
algorithms often get stuck in local optima easily due to their limited reasoning ability and
lack of global information.

On the contrary, complete algorithms adopt techniques that utilize global information
and powerful reasoning, such as unit propagation (UP) and conflict-driven clause learning
(CDCL) [34], to seek optimal solutions. Core-guided algorithms and branch-and-bound
algorithms are two commonly used complete methods for solving PBO [10, 16, 17, 18, 33, 36]
and MaxSAT [1, 2, 5, 6, 14, 15, 20, 23, 28, 31, 32] problems, where UP and CDCL play
critical roles in improving the performance of these solvers. However, these methods are
typically too time-consuming to solve some large-scale industrial instances.

Numerous research studies have been conducted to combine incomplete and complete
methods to develop effective solution approaches for the constraint optimization problems.
Some of these works utilize CDCL as the main solver, while LS is invoked to provide a search
heuristic [13, 22, 30], or to perform deep search at a branching node [3, 9, 24, 28]. Other
approaches use local search as the primary solver, with CDCL called upon for preprocessing
[21, 25, 29], building initial assignments [7], or solving sub-problems as black boxes [4].

In sharp contrast to these combined methods, our work proposes a new search framework,
in which local search acts as the main solver, and unit propagation techniques are used to help
local search algorithms escape from local optima. Specifically, we first design a mechanism
to detect when the local search algorithm is trapped in a local optimum. Upon detection,
unit propagation is invoked to change the current assignment. Since binary constraints are
common in MaxSAT and PBO instances, unit propagation will guide the solver into boarder
search spaces, thereby offer more chance to jump out of the local optimum. Finally, we
propose an acceptance criterion to determine whether to accept the propagated solution.

We have applied our new methods to improve the state-of-the-art MaxSAT solvers SATLike
and NuWLS, as well as PBO solvers LS-PBO and NuPBO. Validation was conducted across
it in MaxSAT Evaluations, PBO competitions, the Mixed Integer Programming Library,
and three real-life cases. Experimental results demonstrate that the combination of UP
technology significantly enhances the performance of local search algorithms.

2 Preliminary

2.1 Preliminaries Definitions and Notations
Given a set of n Boolean variables x1, x2, . . . , xn, a literal li is either a variable xi (which is
called a positive literal) or its negation xi = 1 − xi (which is called a negative literal). An
assignment α is a mapping that assigns each variable a value (0 or 1).

A clause Ci of length ki is a disjunction of ki literals (i.e., Ci = li1 ∨ li2 ∨ · · · ∨ liki
).

A conjunctive normal form (CNF) formula F = C1 ∧ C2 ∧ C3 · · · ∧ Cm is a conjunction of
clauses. Given an assignment α, a clause is satisfied by α if it contains at least one true
literal, and is falsified otherwise.



X. Chen, Z. Lei, and P. Lu 6:3

The Partial MaxSAT (PMS) problem is defined on a CNF formula, in which some clauses
are designated as hard clauses and the reminder as soft. The objective is to find an assignment
that satisfies all hard clauses and maximizes the total number of satisfied soft clauses. In
Weighted PMS (WPMS), each soft clause is assigned a positive integer weight, and the goal
is to satisfy all hard clauses while maximizing the total weight of satisfied soft clauses.

The Pseudo-Boolean Optimization (PBO) problem consists of a set of Pseudo-Boolean
(PB) constraints and an objective function. A normalized Pseudo-Boolean constraint is
represented as Ĉi :

∑
j aij · lij ≥ di, where aij , di ∈ Z+ and lij are literals. The objective

function is in the form
∑

j coj · loj . The goal of PBO is to find an assignment that satisfies
all PB constraints while minimizing the objective function.

Partial MaxSAT (PMS) can be considered as a specialization of PBO. Therefore, Partial
MaxSAT instances can be readily encoded into PBO instances. Given a PMS instance with
a set of hard clauses H = {C1 ∧ C2 ∧ · · · ∧ Cm}, where Ci = li1 ∨ li2 ∨ · · · ∨ liki and a set
of soft clauses S = {S1 ∧ S2 ∧ · · · ∧ Sn}, where Sj = (wj , lj1 ∨ lj2 ∨ · · · ∨ ljkj

) and wj is the
weight of the soft clause, the equivalent PBO format is constructed by transforming Ci’s into
constraints Ĉi : li1 + li2 + · · · + liki

≥ 1, and Sj ’s into Ĉj : lj1 + lj2 + · · · + ljkj
+ yj ≥ 1, where

yj are auxiliary variables representing satisfaction of soft clauses. The objective function is∑
j wjyj , which is weighted sum of auxiliary variables. Thus techniques used in PBO can be

effectively adapted to PMS instances. For clarity and consistency, thorough the reminder of
this paper, we discuss these concepts in the field of PBO.

2.2 Local Search and Unit Propagation
As shown in Algorithm 1, a local search solver maintains a complete assignment and keeps
track of the best solution found during the search. In each step, the local search algorithm
modifies the complete assignment locally (i.e., flips the value of a variable) to find a better
solution and it returns the best solution when the termination condition is reached (lines 3-16).

State-of-the-art LS solvers often employ clause-weighting techniques. A dynamic weight
is attached to each constraint to indicate its importance or difficulty. If an assignment α fails
to satisfy a constraint Ci :

∑
j aij lij ≥ di, the violation of Ci is defined as Violation(Ci) =

di − (
∑

j aij lij)|α, and the violation is 0 otherwise. In this way, the quality of an assignment
can be evaluated by Punishment, which is defined as the weighted sum of Violation of
all constraints. Specially, the objective function is treated as a never-satisfied constraint
Co :

∑
j coj loj ≥ M (where M is sufficiently large). In this way the objective is also counted

into Punishment. The change in Punishment before and after a variable flip is then defined
as the score of the corresponding variable.

In each step, if there exists a variable meeting the greedy heuristics, it is selected and
flipped to decrease the Punishment(lines 8-9). If no such variable exists, or in other words
the search get stuck, some local-optimum-escaping heuristics will be applied (lines 11-13).
Typically, these heuristics involve increasing the weights of unsatisfied hard constraints and
performing a random flip.

Unit propagation is the deduction of assignments over constraints. In the scope of
MaxSAT, a unit clause is a clause containing only one literal. Generalizing this concept,
a unit PB constraint is a constraint that cannot be satisfied unless one certain literal is
satisfied. Similarly, a constraint is binary, if it becomes unit after one literal is falsified.

▶ Example 1. 2x1 ≥ 1 and 3x1 + x2 + x3 ≥ 4 are unit constraints, since they are unsatisfied
unless x1 = 1.

CP 2024



6:4 Deep Cooperation of Local Search and Unit Propagation Techniques

Algorithm 1 Typical Local Search Algorithm.
Input: A given instance F , cutoff
Output: An assignment α of F and its cost

1: α := an initial complete assignment.
2: α∗ := ∅.
3: while elapsed time < cutoff do
4: if cost[α] < cost[α∗] then
5: α∗ := α. ▷ update best solution
6: end if
7: if meet greedy heuristics then
8: v := a variable is picked accordingly.
9: α := α with v flipped. ▷ greedy flips

10: else
11: update clause/constraint weights. ▷ weight adjustments
12: v := a variable is picked according to local-optima-escaping heuristics.
13: α := α with v flipped. ▷ random flips
14: end if
15: end while
16: Return (α∗, cost∗).

▶ Example 2. 2x1 + x2 + x3 ≥ 2 is a binary constraint, since fixing x1 = 1 leads to a unit
constraint implying x2 = x3 = 1.

Generalized unit propagation works as follows: First, the algorithm assumes a literal l

to be true, or in other words assigns a variable v a value of 0 or 1. Then, the algorithm
accesses all the constraints that involve v and substitutes v with its value. If any constraints
become unit, the value of another variable can be derived, and the derived variables will
be assigned. The algorithm applies this rule iteratively until no new variable assignments
can be derived or a conflict occurs, which means there exist some constraints that cannot
be satisfied under current assignment. If no conflict occurs, the derived literals form the
Implication of l, denoted as Imply(l).

▶ Example 3. Suppose there is a constraint x1 + x2 + x3 ≥ 2, then {x2, x3} ⊂ Imply(x1).

3 Main contribution

In this section, we present in detail how Systematic Search works and cooperates with
local search. While we focus on PBO problems in this section, the method can be easily
extended to PMS problems. The source code will be available at https://github.com/
SystematicSearch.

3.1 Deep Cooperation of Local Search and Unit Propagation
The main drawback of local search is that it converges to a sub-optimal solution quickly, but
the subsequent improvement is exceedingly challenging, because it easily gets trapped in a
local optimum. We ran NuWLS, one of the state-of-the-art local search solver for PMS, for
300 seconds to solve the MSE benchmarks, and summarized the scores at different cutoff
times in Figure 1 (benchmark and scoring will be introduced in Section 4). As shown in

https://github.com/SystematicSearch
https://github.com/SystematicSearch


X. Chen, Z. Lei, and P. Lu 6:5

Figure 1 Baseline behavior: scores at different cutoff time of NuWLS.

Figure 2 The horizontal direction represents the search direction, and the vertical direction
indicates the Punishment of each assignment. Moving in the curve simulates the flips of local search.

the figure, the score rushes to 90% of its peak value in less than 10 seconds, but the last
100 seconds contribute only 0.01 to the score. Therefore, our motivation is to spend these
seconds on addressing the trapping problem effectively.

To address this problem, we designed a new mechanism through deep cooperation of local
search and unit propagation. As illustrated in Figure 2, the general idea of our approach is
that, whenever the algorithm get stuck in a local optimum, a variable is picked and flipped
together with the unit propagation procedure of this variable. Then, a greedy heuristic
procedure is executed until the algorithm reaches another local optimum. If the new optimum
is worse than the original one, we backtrack to the original assignment (the dashed line route).
Otherwise, if the Punishment is reduced, we accept the new assignment (the solid line route).
The modified LS framework involves Systematic Search if the original LS solvers get stuck or
fail to improve the objectives, as described in Algorithm 2. Theoretically, this mechanism
can be extended to all kinds of local search algorithms as long as a proper stuck-detection
mechanism is designed.

CP 2024



6:6 Deep Cooperation of Local Search and Unit Propagation Techniques

Algorithm 2 Local Search Algorithm with Systematic Search.
Input: A given instance F , cutoff
Output: An assignment α of F and its cost

1: α := an initial complete assignment.
2: α∗ := ∅.
3: while elapsed time < cutoff do
4: if cost[α] < cost[α∗] then
5: α∗ := α. ▷ update best solution
6: end if
7: if meet Systematic Search invocation criteria then
8: candidates := PickCandidates(). ▷ see Section 3.3
9: for all v ∈ candidates do

10: α′ := FlipUP(v, α). ▷ see Section 3.4
11: if new assignment satisfy accept criteria then
12: α := α′ and Break. ▷ see Section 3.5
13: end if
14: end for
15: else
16: α : is modified by the original heuristic of the given algorithm.
17: end if
18: end while
19: Return (α∗, cost∗).

Our new local search scheme is illustrated in Algorithm 2 (lines 7-14). When the algorithm
meets the systematic search invocation criteria (more details can be found in Section 3.2),
which means it gets stuck in a local optimum, the algorithm will run the systematic search.
The first step is to pick a candidate starting variable (line 8). Then the algorithm flips
it, considers its assignment to be temporarily fixed, and performs the unit propagation
procedure for this variable (line 10). Finally the new assignment will be evaluated. If the
assignment is improved, we accept it and break (line 12). Otherwise, we backtrack to the last
local optimum and try the next candidate. A thorough description of candidate selection,
unit propagation, and acceptance criteria will be provided in the rest of this section.

3.2 Invocation of Hybrid Local Search
The hybrid method is involved when the best objective has not been updated for a long time,
indicating that the original algorithm could be stuck. Intuitively, there are two favorable
situations for invocation: when stuck in a local optimum, or right before restarting.

In the first situation, our new method is called every k times the algorithm reaches a
local optimum, where k is initialized to a relatively small integer kinit. After each call, if
the acceptance criteria are satisfied, indicating the method is effective, k will be reset to
kinit. If all candidates fail, k will be doubled until it reaches a preset upper bound kmax.
Theoretically, unit propagation does not need to be performed at every single local optimum
for the following reasons. Firstly, since backtracking means flipping some variables twice
without actual changes, frequent calls will cause a notable decrease of total valid flips, and
may narrow the overall search space in the end. This effect will be discussed in Section 4.
Secondly, updating weights plays a crucial role in balancing finding feasible solutions and
reducing the objective cost, so we still need a number of weight updates and random flips
(lines 11-13 in Algorithm 1). Finally, random flips is still one way to escape from some local
optima. By keeping both methods, we can combine their strengths.



X. Chen, Z. Lei, and P. Lu 6:7

Algorithm 3 PickCandidates.
Input: current local optimum assignment
Output: a set of variables
Params: #unsat constraints chosen n1, size of candidate n2.

1: candidates := ∅.
2: if current assignment is infeasible then
3: for c: up to n1 random unsatisfied constraint do
4: for l: all falsified literal in c do
5: x := the variable of l.
6: candidates := candidates ∪ {x}.
7: end for
8: end for
9: else

10: for l: up to n1 falsified literal in objective do
11: x := the variable of l.
12: candidates := candidates ∪ {x}.
13: end for
14: end if
15: candidates := top n2 elements with highest scores in candidates.
16: Return candidates.

The invocation in the second situation is based on the observation that feasible solutions
are not uniformly distributed in the domain but rather cluster together. It is highly possible
that a better solution lies near the best-found solution α̂, but the search might have chosen
a different direction there. In this case, a deep search around the α̂ helps to improve the
performance. To revisit that neighborhood, we flip to α̂, then call unit propagation to choose
a search direction to leave α̂, followed by final_steps steps of the original search method.
The restart will be delayed until all attempts are tried.

3.3 Picking Candidate Starting Variables
Our hybrid method begins with flipping one variable, followed by other propagated flips, so
the correctness of the first flip is important. Similar to local-optimum-escaping heuristics
in LS solvers, we filter some variables from unsatisfied constraints or falsified objective
literals, and rank them by score to form a candidate set. As shown in Algorithm 3, if the
local optimum is infeasible, (lines 2-8), at least one of falsified variable in each unsatisfied
constraint needs to be flipped, so PickCandidates will visit falsified constraints, caching the
falsified literals in candidates without duplication. Else, when the local optimum is feasible
(lines 9-13), to improve the objective, at least one of the falsified literals in the objective
function must be satisfied, so PickCandidates randomly picks among them. For the sake
of efficiency, PickCandidates visits at most n1 constraints and returns n2 variables.

3.4 Flipping Based on Unit Propagation
It is challenging to obtain propagated information within a very tight time limit. To
achieve efficient unit propagation, we propose a lightweight approach. Suppose we query for
UPList(x0). Instead of calling a complete unit propagation over the formula, the algorithm
checks every constraint containing the literal x0. For each of these constraints, the algorithm

CP 2024



6:8 Deep Cooperation of Local Search and Unit Propagation Techniques

Algorithm 4 FlipUP.
Input: a literal l, current assignment α

Output: local optimum assignment
1: U := UPList(l).
2: α := α with flip l → l. ▷ flip the candidate first
3: for all l′ ∈ U do
4: if current assignments falsify l′ then
5: α := α with flip l′ → l′. ▷ to be consist with UPList
6: end if
7: end for
8: while meet original greedy heuristics do
9: v := a variable is picked accordingly.

10: flip(v). ▷ follow the original greedy scheme
11: end while
12: Return α.

verifies if satisfying x0 turns the constraint into a unit constraint. If so, we record the
propagated literals in UPList(x0). Additionally, if time permits, we will run a breadth-first
search on the propagated variables to gather more information. Sometimes a conflict occurs,
such as when l and l appear simultaneously, or x0 ∈ UPList(x0). These cases indicate that
x0 is an infeasible assignment, so the algorithm returns UPList(x0) = {x0} to prompt not to
flip x0 → x0. Since the implications of literals are unrelated to current assignments, UPList
are cached to avoid redundant calculations.

▶ Example 4. Suppose a formula x1 + x2 ≥ 1, x1 + x3 ≥ 1, x2 + x3 + x4 ≥ 1, Imply(x1)
= {x2, x3, x4} but UPList(x1) = {x2, x3}, or UPList(x2) ∪ UPList(x3) after a breadth first
search.

The implementation of unit propagation is shown in Algorithm 4. First, the algorithm
queries the UPList and flips until all literals in the UPList are satisfied (lines 3-7). Then, the
search follows the original greedy heuristics and flips until a new local optimum is reached
(lines 8-11). Consequently, we extend a single flip into a multi-step search action, which will
strengthen the ability to escape from local optima.

The trick of getting the UPList works for several reasons. First of all, as an incomplete
solver, our UPList is not obligated to be strictly complete and can therefore save time.
Additionally, there will be greedy search steps after the propagation, providing another
opportunity to flip those omitted variables. Finally, binary clauses are common in PMS and
PBO instances, so the size of the derived UPList is large enough to move the search out of
the local optimum, fulfilling our purpose.

3.5 Acceptance Criteria
In the previous text, we discussed that the motivation of our new method is to jump to
another local optimum. If a correct candidate variable is chosen, we are supposed to get closer
to the global optimum. However, when the candidate is a mistake, we ought to stop searching
in that direction, go back, and try the next candidate (line 9 in Algorithm 2). We measure
each assignment by Punishment, which is consistent with the measure of greedy search and
the definition of a local optimum. If the Punishment decreases, we have successfully escaped
the local optimum, so no more candidates need to be tried. Otherwise, our method ends



X. Chen, Z. Lei, and P. Lu 6:9

up in a worse local optimum, the new assignment is discarded by flipping changed variables
again, followed by trying the next candidate. Finally, if all candidates fail to lead the search
to a better local optimum, it is possible that unit propagation does not work in this situation,
and the original local-optima-escaping heuristics will take place. In the next section, we will
exhibit the proportion of success and failure of our method in the experiments.

4 Experiment Results

In this section, we implement our hybrid method on four state-of-the-art solvers for PMS
and PBO problems, listed as follows:

LS-PBO: The state-of-the-art local search PBO solver, proposed by [27].
NuPBO: A recent PBO solver based on LS-PBO but using different scoring and weighting
schemes, proposed by [12].
SATLike3.0: The state-of-the-art local search MaxSAT solver and competition winner,
proposed by [7].
NuWLS: A recent MaxSAT solver based on SATLike3.0 but using different scoring and
weighting schemes, proposed by [11].

We validate our approach on a wide range of benchmarks, described as follows:
CRAFTED3: The crafted combinatorial problem set.
MIPLIB4: A set of 0-1 integer linear programming problems.
PB165: The OPT-SMALLINT-LIN benchmark from the latest 2016 pseudo-Boolean
competition.
Industry6: A combination of some real-world problems, including the seating arrange-
ment problem (SAP), the wireless sensor network optimization problem (WSNO), and
the minimum-width confidence band problem (MWCB) [27].
MSE19-MSE237: The benchmarks used in the MaxSAT Evaluations in the last five
years.

4.1 Experiment Settings
All competitor solvers are implemented in C++ and compiled with g++ with the make option
-O3. All the experiments are run on a workstation with an Intel Xeon Platinum 8380H CPU
@ 2.90GHz. Each instance is solved once with a cutoff time of 300 seconds. The parameters
of the planted local search solvers are kept the same as those used in [7, 11, 12, 27]. The
newly added parameters used in our experiments are n2 = 5, kinit = 10, kmax = 2560, and
final_steps = 10000. We will discuss the sensitivity of results to these parameters and
random seeds in Section 4.4.

We conclude the results in two dimensions, the number of winning instances and the
average score. Each experiment compares the original algorithm with its unit-propagation-
implemented version. For each instance, if the results are different, #win for the superior
algorithm is incremented by 1, and #lose for the inferior algorithm is also incremented by 1.
The score for each result follows the method used in MSE competitions. Specifically, within

3 https://zenodo.org/record/4036016
4 https://zenodo.org/record/3870965
5 http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
6 https://lcs.ios.ac.cn/~caisw/Resource/LS-PBO/benchmark/
7 https://maxsat-evaluations.github.io/2023/benchmarks.html

CP 2024

https://zenodo.org/record/4036016
https://zenodo.org/record/3870965
http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
https://lcs.ios.ac.cn/~caisw/Resource/LS-PBO/benchmark/
https://maxsat-evaluations.github.io/2023/benchmarks.html


6:10 Deep Cooperation of Local Search and Unit Propagation Techniques

each experiment set, let v∗ denote the best objective found by all competing algorithms. A
solver returning objective v receives a score of (1 + v∗)/(1 + v). This score is 1 if v = v∗, less
than 1 if it is not the best result, and equals 0 if no feasible solution is found. Given that v∗

is non-negative in the context of MaxSAT and PBO problems, scores range between 0 and 1.
We report the average score across all benchmarks in this section.

To analyze the performance of our method, we also record several other indices. accept(%)
represents the acceptance rate, calculated as the percentage of accepted local optima over
the total number of candidate attempts. dist denotes the average distance, or the Hamming
distance between two local optima before and after an accepted FlipUP action. step(%)
indicates the average number of valid step, which is the sum of greedy steps, random flips,
and the number of flips in accepted FlipUP actions, but excludes rejected propagations and
backtrack flips.

4.2 Experiment Results on MaxSAT Benchmarks
Results on SatLike3.0 and NuWLS are shown in Table 1 and 2 respectively. Both solvers
perform significantly better with the cooperation of unit propagation, evidenced by the
increase in the number of winning instances and the average scores across these benchmarks.
The progress of scores over time is depicted in Figure 3. For MSE19-22, the score increase
of original NuWLS slows down at around 0.72, whereas our approach delays this slowdown
until around 0.76. However, in MSE23, a distinct pattern emerges where efficiency becomes
more crucial. The distance between the solid curve and the dotted curve was narrowed to
nearly zero twice (around 50s and 200s) and then widened again (around 130s and 290s). We
attribute this pattern to the fact that some improvements at these timestamps are delayed
because the unit-propagation-implemented iterations are slower than the original ones.

Under the acceptance criteria, approximately 30 to 40 percent of propagation attempts
are accepted, resulting in the search jumps from current local minima to around 6 flips
away. In contrast, the rejected attempts are purely wastes of time. The average time
cost of our method, including calculating UPList and performing backtracking, amounts to
approximately 15 to 20 percent of the cutoff time. The results depicted in Figure 1 suggest
that this amount of time overhead has limited impact on the average score, but there are
still some instances to be sensitive to the effective running time. Particularly in MSE23, the
score curve showed steep improvements after 200 seconds, indicating that the solver finally
finds a feasible solution and turns the score from 0 to 1. In these cases, the unit propagation
integrated version ends up with no feasible solution, which explains for the score decrease in
MSE23 in Table 1.

Figure 3 Comparison of the score in different cutoff time, by NuWLS. The left and right plots
show MSE19 and MSE 23 respectively. The pattern of MSE20, MSE21 and MSE22 are so similar to
MSE19, so we omit these plots here to be concise.



X. Chen, Z. Lei, and P. Lu 6:11

Table 1 Experiment results of SatLike3.0.

benchmark #inst. #win. #lose. satlikess satlike accept(%) dist step(%)

MSE19 299 72 13 0.7108 0.6911 39 7.6 79
MSE20 262 59 13 0.6923 0.6845 41 8.4 80
MSE21 155 30 10 0.6155 0.6065 40 5.0 77
MSE22 179 39 9 0.6637 0.6459 42 4.9 82
MSE23 179 61 16 0.6193 0.6257 33 6.0 80

Table 2 Experiment results of NuWLS.

benchmark #inst. #win. #lose. nuwlsss nuwls accept(%) dist step(%)

MSE19 299 74 38 0.8322 0.7963 28 4.5 85
MSE20 262 75 30 0.8219 0.7882 30 5.0 86
MSE21 155 34 19 0.7991 0.7723 27 4.7 84
MSE22 179 46 25 0.8044 0.7856 28 4.0 86
MSE23 179 61 30 0.8158 0.8032 25 5.3 86

4.3 Experiment Results on PBO benchmarks
We have also applied our methods in PBO solvers LS-PBO and NuPBO, and summarized the
results in Table 3 and 4. The conclusion is consistent with that in the previous subsection:
in CRAFTED, MIPLIB, and PB16 benchmarks, both the number of winning cases and the
score are significantly improved. The only deterioration falls in the score of Industry problem
set by NuPBO, which can be explained by the step(%) metric in Table 4. Given that the
Industry set comprises larger-scale problems compared to other benchmarks, the original
solver usually cannot converge in 300 seconds, in other words the solution quality highly
depends on the number of flips. However, our new method achieves only performed 69% valid
flips compared to the original solver. As a result, despite unit propagation demonstrating
effectiveness by achieving more winning cases, the average score drops slightly.

4.4 Sensitivity analysis
Our algorithm shows stability across a wide range of parameter values. In each of the following
experiments, we vary one parameter while keeping the rest as specified in Section 4.1. For
each solver, we conduct 27 experiments (1 default, 6 for kmax, 4 for kmin, 3 for final_steps,
3 for n2, and 10 for random seeds) on all benchmarks in our study. We compute the scores
in comparison with the best value among these 27 outputs. For conciseness, we present the
average score of all benchmarks for each experiment in Table 5.

The first part of Table 5 shows the average scores and standard errors of experiments
with 10 different random seeds. The statistics demonstrate that the algorithm is robust
against randomness.

kmax and kmin control the frequency of UP calls. The results of varying these parameters
are shown in the second and third parts of Table 5. kmin corresponds to the highest frequency
of UP calls. As discussed in Section 3.2, a smaller kmin results in a more significant UP effect
but consumes more time. Conversely, a larger kmin reduces the frequency of UP calls, making
performance closer to the original solver. Setting kmin = ∞ means no UP is conducted,
making the algorithm identical to the original.

CP 2024



6:12 Deep Cooperation of Local Search and Unit Propagation Techniques

kmax corresponds to the lowest frequency of UP calls. This parameter is set to reduce
time waste when UP is ineffective during the search. We tested kmax from 10 (= kmin) to
10240 (extremely low frequency). The performance is not sensitive to this parameter.

The results of varying the number of UP candidates n2 are shown in the fourth part of
Table 5. A larger n2 increases the chances of finding a better UP but also increases the time
cost. We chose a balanced value of 5 for our paper.

The results of varying final_steps, the extra steps before restart (described in Section 3.2),
are shown in the last part of Table 5. Setting final_steps = 0 disables revisiting the best-
found solution, resulting in less intensified search and relatively lower scores. There is not
much difference when using other values.

4.5 Validation of Acceptance Criteria
In this part, we tested a variant that accepts all local optima after unit propagation. The
results of the SATLike3.0-based experiment are shown in Table 6, while the other solvers
support the same conclusion. Across all benchmarks, the acceptance rate is increased to
around 80% because only conflicting flips or candidates with an empty UPList were rejected.
As a result, approximately 10% more valid steps could be attempted before the cutoff time.
However, the number of deteriorated instances is significantly outweighed the number of
improved ones, and the score drops across four benchmarks at the same time. These results
demonstrate the necessity of our acceptance criteria. Moreover, it is worth noting that
the average propagated distance dist decreased compared to Table 2. As mentioned in the
previous text, solutions often cluster closely together. If the algorithm has no enforcement to
accept a better local optimum, it is allowed to visit these solutions in loops, which means it
is stuck.

5 Related Works

There have been many applications in combining Local Search and CDCL solvers. In this
section, we classify these works into two categories based on whether Local Search is the
master solver, and discuss some noticeable works from each category.

The first category use CDCL as the main solver, with local search methods often viewed
as a black box. In SAT problems, the solve ends if a feasible solution is found, prompting
some hybrid SAT solvers to use LS on branch nodes to accelerate solving. [30] calls LS at
every node in the CDCL search tree, and the solve succeeds if LS finds a solution at any
nodes. [9] branches until the length of the partial assignment exceeds a threshold, then it
is extended into a complete assignment and passes as the initial assignment to a LS solver.
Some other works also use LS to estimate the priority of branch variables ([13]), or to obtain
a upper bound of the optimization model ([28]).

The second category considers LS as the main body. [29] shows learnt clauses by CDCL
will be beneficial to LS solving. [21] uses implication graph to discover variable equivalency,
so the redundant variables will be substituted. The most related work is SatHys proposed
in [3], where the CDCL solver maintains a partial assignment Ip while LS conducts a search
with complete assignment Ic. If LS is stuck, a literal l is added to Ic and propagated. If
conflict occurs, CDCL learns a clause and backtracks. Finally Ic will be overwritten by Ip.
Our approach differs in two aspects. The major difference is that our unit propagation is
based on one literal instead of on Ip, which is a better adaption to optimization problems.
We notice that in SatHys, if an incorrect decision is made and added in Ip, it cannot
be cancelled unless it is backtracked or restarted. It works in SAT problems because the



X. Chen, Z. Lei, and P. Lu 6:13

Table 3 Experiment results of LS-PBO.

benchmark #inst. #win. #lose. lspboss lspbo accept(%) dist step(%)

CRAFTED 955 38 6 0.9093 0.9081 46 2.4 78
MIPLIB 291 76 36 0.7260 0.7042 32 5.4 88
PB16 1600 346 92 0.7653 0.7147 30 8.6 80
Industry 63 45 9 0.9835 0.9295 47 3.4 80

Table 4 Experiment results of NuPBO.

benchmark #inst. #win. #lose. nupboss nupbo accept(%) dist step(%)

CRAFTED 955 46 6 0.9171 0.9168 38 2.8 79
MIPLIB 291 95 34 0.8219 0.7932 27 8.9 82
PB16 1600 269 88 0.8293 0.8283 24 20.3 81
Industry 63 32 20 0.9456 0.9561 47 3.7 69

Table 5 Performance of our hybrid algorithm under different parameter settings.

(seeds) avg.score std.err

LS-PBO 0.8011 0.0015
NuPBO 0.8379 0.0007
SATLike 0.6503 0.0044
NuWLS 0.7835 0.0030

kmin = 5 10 20 40 80 ∞

LS-PBO 0.8145 0.8010 0.7984 0.7858 0.7823 0.7762
NuPBO 0.8356 0.8386 0.8381 0.8376 0.8382 0.8360
SATLike 0.6527 0.6493 0.6491 0.6491 0.6436 0.6405
NuWLS 0.7914 0.7867 0.7784 0.7763 0.7733 0.7626

kmax = 10 160 640 1280 2560 5120 10240

LS-PBO 0.8055 0.7997 0.7988 0.8049 0.8010 0.8017 0.8016
NuPBO 0.8326 0.8368 0.8353 0.8368 0.8386 0.8380 0.8370
SATLike 0.6459 0.6471 0.6493 0.6506 0.6496 0.6470 0.6471
NuWLS 0.7869 0.7823 0.7829 0.7861 0.7867 0.7902 0.7891

final_steps = 0 1000 10000 100000

LS-PBO 0.7978 0.8021 0.8010 0.8029
NuPBO 0.8358 0.8370 0.8386 0.8380
Satlike 0.6449 0.6473 0.6493 0.6470
NuWLS 0.7891 0.7922 0.7867 0.7899

n2 = 1 5 10 15

LS-PBO 0.7770 0.8010 0.8131 0.8155
NuPBO 0.8373 0.8386 0.8374 0.8402
Satlike 0.6490 0.6493 0.6490 0.6560
NuWLS 0.7733 0.7867 0.7867 0.7890

Table 6 Experiment results of SATLike3.0, comparing normal version satlikess with an all-accept
variant satlikeany. The last three columns of statistics are from satlikeany.

benchmark #inst. #win. #lose. satlikess satlikeany accept(%) dist step(%)

MSE19 299 65 17 0.7132 0.6962 83 6.0 106
MSE20 262 54 17 0.6920 0.6831 85 5.4 112
MSE21 155 28 11 0.6041 0.5761 86 3.2 113
MSE22 179 43 13 0.6508 0.6430 85 3.6 112
MSE23 179 48 22 0.6193 0.6210 79 3.5 104

CP 2024



6:14 Deep Cooperation of Local Search and Unit Propagation Techniques

cancelling situation (i.e. conflict occurs) is consistent with the target to find a feasible
assignment. But in optimization problems, the target is to optimize an objective, and poor
decisions (with respect to objective) may be kept in Ip and cause LS ending up in feasible
but bad solutions. Also, the adaption of our work allows the tricks described in section 3.4
to promise a light and efficient way of unit propagation. Another novelty of our work lies in
the backtrack mechanism, it gives LS the highest authority to judge propagated assignments
with LS Punishment, and reject unfavorable CDCL moves.

6 Conclusion

We propose a novel search framework which embeds unit propagation into local search
algorithms to help escaping local optima. Then, we introduce three innovative ideas to
enhance this new search framework. The first one is a mechanism to determine when to invoke
UP to change the current assignment obtained by the local search method, which helps the
algorithm jump out of local optima. The second one is the FlipUP algorithm to perform unit
propagation and heuristic search. Finally, we propose an acceptance mechanism to decide
whether to accept the propagated solution. Experiments conducted on benchmarks from
MaxSAT Evaluations, PBO competitions and realistic instances demonstrate that our method
can bring significant improvement in terms of the number of winning instances and average
scores across four state-of-the-art MaxSAT and PBO local search solvers. Consequently, we
believe that the cooperation of local search and unit propagation techniques represents a
promising research field which has great potential for exploration.

References
1 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms. Artif.

Intell., 196:77–105, 2013.
2 Carlos Ansótegui and Joel Gabàs. WPM3: an (in)complete algorithm for weighted partial

maxsat. Artif. Intell., 250:37–57, 2017.
3 Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Sais. Boosting local

search thanks to cdcl. In Christian G. Fermüller and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17,
Yogyakarta, Indonesia, October 10-15, 2010. Proceedings, volume 6397 of Lecture Notes in
Computer Science, pages 474–488. Springer, 2010.

4 Adrian Balint, Michael Henn, and Oliver Gableske. A novel approach to combine a sls-and a
dpll-solver for the satisfiability problem. In Theory and Applications of Satisfiability Testing-
SAT 2009: 12th International Conference, SAT 2009, Swansea, UK, June 30-July 3, 2009.
Proceedings 12, pages 284–297. Springer, 2009.

5 Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. Core-boosted linear search for incomplete
maxsat. In Louis-Martin Rousseau and Kostas Stergiou, editors, Proceedings CPAIOR 2019,,
volume 11494, pages 39–56, 2019.

6 Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. JSAT, 7(2-3):59–64, 2010.
7 Shaowei Cai and Zhendong Lei. Old techniques in new ways: Clause weighting, unit propagation

and hybridization for maximum satisfiability. Artif. Intell., 287:103354, 2020.
8 Shaowei Cai, Chuan Luo, John Thornton, and Kaile Su. Tailoring local search for partial

MaxSAT. In Proceedings of AAAI 2014, pages 2623–2629, 2014.
9 Shaowei Cai and Xindi Zhang. Deep cooperation of CDCL and local search for SAT (extended

abstract). In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages
5274–5278. ijcai.org, 2022.



X. Chen, Z. Lei, and P. Lu 6:15

10 Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver. IEEE Trans.
on CAD of Integrated Circuits and Systems, 24(3):305–317, 2005.

11 Yi Chu, Shaowei Cai, and Chuan Luo. Nuwls: Improving local search for (weighted) partial
maxsat by new weighting techniques. In Brian Williams, Yiling Chen, and Jennifer Neville,
editors, Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC,
USA, February 7-14, 2023, pages 3915–3923. AAAI Press, 2023.

12 Yi Chu, Shaowei Cai, Chuan Luo, Zhendong Lei, and Cong Peng. Towards more efficient
local search for pseudo-boolean optimization. In Roland H. C. Yap, editor, 29th International
Conference on Principles and Practice of Constraint Programming, CP 2023, August 27-
31, 2023, Toronto, Canada, volume 280 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023.

13 James M Crawford. Solving satisfiability problems using a combination of systematic and
local search. In Second DIMACS Challenge: cliques, coloring, and satisfiability. Citeseer, 1993.

14 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In Proceedings of CP 2011, pages 225–239, 2011.

15 Emir Demirovic and Peter J. Stuckey. Techniques inspired by local search for incomplete
maxsat and the linear algorithm: Varying resolution and solution-guided search. In Thomas
Schiex and Simon de Givry, editors, Proceedings of CP 2019, volume 11802, pages 177–194,
2019.

16 Jo Devriendt, Stephan Gocht, Emir Demirović, Peter Stuckey, and Jakob Nordström. Cutting
to the core of pseudo-Boolean optimization: Combining core-guided search with cutting planes
reasoning. In AAAI 2021,Accepted, 2021. URL: http://www.csc.kth.se/~jakobn/research/
CuttingToTheCore_AAAI.pdf.

17 Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals. Using combinatorial
benchmarks to probe the reasoning power of pseudo-Boolean solvers. In Olaf Beyersdorff and
Christoph M. Wintersteiger, editors, Proceedings of SAT 2018, pages 75–93, 2018.

18 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving.
In Jérôme Lang, editor, Proceedings of IJCAI 2018, pages 1291–1299, 2018.

19 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin Biere
and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing - SAT 2006,
9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume
4121 of Lecture Notes in Computer Science, pages 252–265. Springer, 2006.

20 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proceedings of
SAT 2006, pages 252–265, 2006.

21 Djamal Habet, Chu Min Li, Laure Devendeville, and Michel Vasquez. A hybrid approach for
sat. In International Conference on Principles and Practice of Constraint Programming, pages
172–184. Springer, 2002.

22 William S Havens and Bistra N Dilkina. A hybrid schema for systematic local search. In
Advances in Artificial Intelligence: 17th Conference of the Canadian Society for Computational
Studies of Intelligence, Canadian AI 2004, London, Ontario, Canada, May 17-19, 2004.
Proceedings 17, pages 248–260. Springer, 2004.

23 Saurabh Joshi, Prateek Kumar, Sukrut Rao, and Ruben Martins. Open-wbo-inc: Approxima-
tion strategies for incomplete weighted maxsat. J. Satisf. Boolean Model. Comput., 11(1):73–97,
2019.

24 Narendra Jussien and Olivier Lhomme. Local search with constraint propagation and conflict-
based heuristics. Artificial Intelligence, 139(1):21–45, 2002.

25 Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo. Maxpre: an extended
maxsat preprocessor. In International Conference on Theory and Applications of Satisfiability
Testing, pages 449–456. Springer, 2017.

CP 2024

http://www.csc.kth.se/~jakobn/research/CuttingToTheCore_AAAI.pdf
http://www.csc.kth.se/~jakobn/research/CuttingToTheCore_AAAI.pdf


6:16 Deep Cooperation of Local Search and Unit Propagation Techniques

26 Zhendong Lei and Shaowei Cai. Solving (weighted) partial maxsat by dynamic local search
for SAT. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages 1346–1352, 2018.

27 Zhendong Lei, Shaowei Cai, Chuan Luo, and Holger H. Hoos. Efficient local search for pseudo
boolean optimization. In Chu-Min Li and Felip Manyà, editors, Theory and Applications
of Satisfiability Testing - SAT 2021 - 24th International Conference, Barcelona, Spain, July
5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer Science, pages 332–348.
Springer, 2021.

28 Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun He. Combining
clause learning and branch and bound for maxsat. In Laurent D. Michel, editor, 27th
International Conference on Principles and Practice of Constraint Programming, CP 2021,
Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages
38:1–38:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

29 Jan-Hendrik Lorenz and Florian Wörz. On the effect of learned clauses on stochastic local
search. In Theory and Applications of Satisfiability Testing–SAT 2020: 23rd International
Conference, Alghero, Italy, July 3–10, 2020, Proceedings 23, pages 89–106. Springer, 2020.

30 Bertrand Mazure, Lakhdar Sais, and Éric Grégoire. Boosting complete techniques thanks to
local search methods. Annals of mathematics and artificial intelligence, 22:319–331, 1998.

31 Alexander Nadel. Anytime weighted maxsat with improved polarity selection and bit-vector
optimization. In Clark W. Barrett and Jin Yang, editors, Proceedings of FMCAD 2019, pages
193–202, 2019.

32 Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided MaxSAT
resolution. In Proceedings of AAAI 2014, pages 2717–2723, 2014.

33 Steven Prestwich. Randomised backtracking for linear pseudo-Boolean constraint problems.
In Proceedings of CPAIOR 2002, pages 7–20, 2002.

34 João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for
satisfiabilitysatlike. In Rob A. Rutenbar and Ralph H. J. M. Otten, editors, Proceedings of the
1996 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1996, San
Jose, CA, USA, November 10-14, 1996, pages 220–227. IEEE Computer Society / ACM, 1996.

35 Robert Wille, Hongyan Zhang, and Rolf Drechsler. ATPG for reversible circuits using
simulation, boolean satisfiability, and pseudo boolean optimization. In IEEE Computer Society
Annual Symposium on VLSI, ISVLSI 2011, 4-6 July 2011, Chennai, India, pages 120–125.
IEEE Computer Society, 2011.

36 Aolong Zha, Miyuki Koshimura, and Hiroshi Fujita. A hybrid encoding of pseudo-Boolean
constraints into CNF. In Proceedings of TAAI 2017, pages 9–12. IEEE Computer Society,
2017.

37 Yuhang Zhang, Richard I. Hartley, John Mashford, and Stewart Burn. Superpixels via pseudo-
boolean optimization. In Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu, and Luc Van
Gool, editors, IEEE International Conference on Computer Vision, ICCV 2011, Barcelona,
Spain, November 6-13, 2011, pages 1387–1394. IEEE Computer Society, 2011.

38 Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, Chu-Min Li, and Felip Manyà. Bandmaxsat:
A local search maxsat solver with multi-armed bandit. In Luc De Raedt, editor, Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022, pages 1901–1907. ijcai.org, 2022.


	1 Introduction
	2 Preliminary
	2.1 Preliminaries Definitions and Notations
	2.2 Local Search and Unit Propagation

	3 Main contribution
	3.1 Deep Cooperation of Local Search and Unit Propagation
	3.2 Invocation of Hybrid Local Search
	3.3 Picking Candidate Starting Variables
	3.4 Flipping Based on Unit Propagation
	3.5 Acceptance Criteria

	4 Experiment Results
	4.1 Experiment Settings
	4.2 Experiment Results on MaxSAT Benchmarks
	4.3 Experiment Results on PBO benchmarks
	4.4 Sensitivity analysis
	4.5 Validation of Acceptance Criteria

	5 Related Works
	6 Conclusion

