
Cumulative Scheduling with Calendars and
Overtime
Samuel Cloutier #

Université Laval, Québec, Canada

Claude-Guy Quimper # Ñ

Université Laval, Québec, Canada

Abstract
In project scheduling, calendar considerations can increase the duration of a task when its execution
overlaps with holidays. On the other hand, the use of overtime may decrease the task’s duration.
We introduce the CalendarOvertime constraint which verifies that a task follows a calendar with
overtime and holidays. We also introduce the CumulativeOvertime constraint, a variant of the
Cumulative constraint, that also reasons with the calendars when propagating according to the
resource consumption, the overtime, and the holidays. Experimental results of a RCPSP model on
the PSPLIB, BL, and PACK instances augmented with calendars and overtime show that the use of
the CalendarOvertime constraint offers a speedup greater than 2.9 on the instances optimally
solved and finds better solutions on more than 79% of the remaining instances when compared to a
decomposition of the constraint. We also show that the use of our CumulativeOvertime constraint
further improves these results.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; Theory of
computation → Constraint and logic programming

Keywords and phrases Constraint programming, Scheduling, Global constraints, Calendars, Over-
time, Cumulative constraint, Time-Tabling

Digital Object Identifier 10.4230/LIPIcs.CP.2024.7

Supplementary Material Software (Source Code and Instances): https://github.com/Samclou/
chuffed/releases/tag/Calendars-cp2024

1 Introduction

In project management, it is common to schedule a variety of tasks on a project timeline.
With multiple machines and workers, some tasks can easily be done in parallel. For example,
a furniture factory can build a table at the same time as a chair, as long as sufficient workers
and workspace are available. Cumulative scheduling allows the simultaneous execution of
tasks while limiting these executions in order not to overload the resources.

Scheduling problems (with release times and deadlines) are generally NP-hard [9]. Con-
straint programming is frequently used to solve these problems.

In practice, tasks can be suspended for some time periods. The factory can be closed at
night and during weekends. If every operation is stopped at these times, these time periods
can simply be ignored. If some tasks must be stopped at specific times while others do not
because, for example, the machines keep working at night, side constraints become necessary
to encode these suspensions and this may undermine the efficiency of the models.

The aim of this research is to design constraints that facilitate the modeling and solving
of scheduling problems where tasks must be interrupted according to a calendar, or may be
shortened by working overtime.

Section 2 provides background on the cumulative scheduling problem, the Time-Tabling
rule, and the generalizations with calendars. Section 3 presents the new constraints we
introduce. Section 4 describes how these constraints can be decomposed into elementary

© Samuel Cloutier and Claude-Guy Quimper;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:samuel.cloutier.11@ulaval.ca
https://orcid.org/0000-0002-3585-7405
mailto:claude-guy.quimper@ift.ulaval.ca
http://www2.ift.ulaval.ca/~quimper/
https://orcid.org/0000-0002-5899-0217
https://doi.org/10.4230/LIPIcs.CP.2024.7
https://github.com/Samclou/chuffed/releases/tag/Calendars-cp2024
https://github.com/Samclou/chuffed/releases/tag/Calendars-cp2024
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Cumulative Scheduling with Calendars and Overtime

constraints while Section 5 details the propagators of the new constraints. Section 6 describes
the methodology we used to test our new propagators. Section 7 evaluates the performances
of the new propagators and the decomposition.

2 Background

2.1 Cumulative Scheduling

The cumulative scheduling problem is often modeled with the Cumulative global con-
straint [1]. In what follows, lower-case symbols represent constants and indices while
upper-case ones represent variables. Symbols in bold represent arrays that we define using
list comprehension. Let I be the set of tasks and let pi, hi, and Si for i ∈ I be the task’s
processing time, usage of a resource, and starting time. Let S be [Si | i ∈ I], p be [pi | i ∈ I],
and h be [hi | i ∈ I]. The constraint Cumulative(S, p, h, hmax) asserts that for a resource
of capacity hmax that executes the tasks in I, for any integer time point t in the horizon (the
complete time interval considered, [0, tmax]),

∑
i∈I:t∈[Si,Si+pi) hi ≤ hmax. This means that

tasks running simultaneously cannot, at any time, consume more than the resource’s capacity.
The execution window of a task is considered to be [Si, Si + pi), with Si + pi being its ending
time. As such, Si takes integer values in [0, tmax − pi]. The Cumulative constraint uses
filtering algorithms to prune the variable domains during the search. Since enforcing bounds
consistency is NP-hard [17], one usually applies simple filtering rules that offer a weaker level
of consistency such as the Time-Tabling rule [2]. In a multi-resource problem, each resource
is associated with its own Cumulative constraint. A common objective is to minimize the
makespan, i.e., the completion time of the last task.

Lazy clause generation [18] is a technique that deduces new logical constraints, in the
form of a disjunction of literals representing domain states of the variables, from the failures
encountered during the search. It permits learning previous bad decisions and prune them
from the remaining search tree. Solvers that implement lazy clause generation, such as
Chuffed [8], have been shown to perform well on cumulative scheduling problems [20].

2.2 The Time-Tabling Rule

Let X and X respectively be the smallest and largest values a variable X can take. We note
dom(X) the set of all values variable X may take, i.e., its domain. The Time-Tabling rule [2]
filters the domains of the starting time variables subject to the Cumulative constraint. We
note the earliest starting time of task i as esti, its latest starting time as lsti, its earliest
completion time as ecti, and its latest completion time as lcti. These are defined as follows:

esti
def= Si (1)

lsti
def= Si (2)

ecti
def= Si + pi (3)

lcti
def= Si + pi (4)

If a task duration is a variable, these definitions use the lower bound of that variable
rather than pi. These four concepts bound the time points at which a task can be in execution.
A task must be in execution in the interval [lsti, ecti), called the compulsory part, if it is
non-empty.

S. Cloutier and C.-G. Quimper 7:3

The Time-tabling rule computes the compulsory part of each task and aggregates them
to create a consumption profile, i.e., a lower bound of the resource consumption at each time
point. The Time-Tabling check identifies a conflict when a point in this profile overloads
the resource. The Time-Tabling filtering algorithm makes sure that if a task overloads the
resource when executing at time t, then the task must either start after or finish before t [19].
Let f(Ω, t) be the consumption profile of a resource at time t given the tasks in the set Ω.

f(Ω, t) =
∑

{i∈Ω|t∈[lsti,ecti)}

hi (5)

The checking and filtering rules for the cumulative constraint can then be expressed as:

∃ t, f(I, t) > hmax =⇒ conflict (6)
ecti > t ∧ hmax < hi + f(I \ {i}, t) =⇒ S′

i > t (7)

Rule (7) can be adapted to filter Si. Propagators applying the Time-Tabling rule can have
a complexity as low as O(n), n being the number of tasks. However, there exist efficient
implementations with a complexity of O(n2) [10].

2.3 Augmentation With Calendars
It is possible that, at some specific times, some tasks must be paused while others remain
unaffected. We say that these special times are defined by a calendar. This notion is close
to preemption, but it is still in a non-preemptive context. A task can only be suspended
because of calendars and it must resume as soon as each calendar affecting the task permit
it. There are multiple ways to conceptualize calendars and many ways to solve the problem
have been studied.

2.3.1 Calendars Associated to Resources
One way to add calendars into the cumulative scheduling problem is to assign to each resource
an arbitrary array of Booleans indicating whether the resource is available or not at a specific
time. When a resource is unavailable, tasks cannot progress in their execution, which has
the effect of artificially lengthening their execution time.

Kreter et al. [12, 13, 14] use releasable resources that stop being consumed by tasks that
are paused. Their tasks may have an initial uninterruptible setup time. To deal with their
complex problem, Kreter et al. study various methods:

They use multiple binary linear model formulations and search methods that they compare
against each other [12].
They implement a new constraint, namely CumulativeCalendar, in a constraint solver
and compare its efficiency with various models using existing constraints [13].
They compare both previous methods on the resource investment problem, i.e., the problem
of minimizing the cost associated to the maximum consumption of each resources [14].

Kreter et al. [13, 14] show that the use of CumulativeCalendar constraints with a lazy
clause generation solver such as Chuffed is highly competitive to solve their problems.

2.3.2 Calendars Associated to Tasks
Boudreault et al. [6] directly assigns the calendars to the tasks, meaning that each task
follows its own calendar, rather than following one implied by those of the resources. This
might be wanted over the preceding option when some resources are plentiful enough that

CP 2024

7:4 Cumulative Scheduling with Calendars and Overtime

modeling them with a Cumulative constraint would be useless. However, if these omitted
resources have a calendar, they still need to affect the actual calendar of a task, which
justifies using this more general type of calendar. For Boudreault et al., the calendars are
not arbitrary as the composition of a working day is fixed and shared between all calendars:
the regular execution time starts at a given time in the morning and finishes at a given time
in the afternoon. Some tasks can execute during the weekend while other tasks cannot. The
calendars are periodic on weeks and do not allow exceptions even for holidays.

Boudreault et al. [6] allow overtime, i.e., a way to shorten the execution time of a task
while inducing an overtime cost. Working one time point worth of overtime on task i costs
wi. The amount of overtime is limited by its availability. Indeed, overtime is assigned to
specific time points in the calendar, during which a task can be interrupted or can continue
its execution if it is executed in overtime.

To solve their problem, Boudreault et al. [6] do not implement a new constraint in a
solver, they rather decompose the calendar constraints into elementary constraints available
in any constraint solver and use a meta-heuristic to reach better results.

2.3.3 Other Approaches
In CP Optimizer, tasks in scheduling problems are modeled through interval variables. These
variables possess a starting time and an ending time, but also a size, and a step function,
called intensity. The size of an interval variable can be interpreted as the work contained in
the interval, while the intensity gives the ratio of work that each time point provides. As
such, the behavior that tasks do not progress during holidays can directly be treated through
the intensity function by having an intensity of 0% during that time. If tasks are not allowed
to start or end during holidays, constraints forbidStart and forbidEnd directly model and
deal efficiently with this aspect [15].

Beldiceanu [4, 5] introduces a Calendar constraint to model this behavior. This
constraint maps, for each calendar, the real-time coordinate system to a virtual one where
there are no interruptions. These virtual time coordinates then permit the use of classic
propagators that normally cannot deal with calendars. The mapping deals with the problem
of changing the length of tasks and of making sure none starts nor ends during a holiday.

3 Calendar Constraints With Overtime

This section presents the new constraints we introduce. The next section presents how they
can be decomposed while the following section describes their filtering algorithms.

The constraints we introduce are motivated by the calendar constraints used by Boudr-
eault et al. [6]. We generalize the calendars they use by allowing arbitrary calendars, i.e.,
non-periodic calendars with sporadic holidays. Every task must follow a specific calendar.
The elapsed time of a task is the difference between its end time and its start time. Without
calendars, the elapsed time of a task is simply its processing time.

Given a horizon representing all the time points at which a task can be processed, our
calendars are arbitrary sequences of the symbols r, c, or o where the t-th symbol represents
the nature of the t-th time point, i.e., the t-th hour in our context. The symbol r indicates
that the time point is regular (the classic scheduling problem would correspond to a calendar
with only r’s). The symbol c indicates that the time point is closed, that is, tasks are
suspended when they are in process at that time. As for o, it indicates that the time point is
an overtime period that can behave as a regular or a closed time point whether it is worked
or not. The duration that a task is worked in overtime is the number of time points of type

S. Cloutier and C.-G. Quimper 7:5

o that behave as type r. The time point of the start and the one preceding the end of a task
must not be closed. If either of these points is an overtime period, the amount of worked
overtime must allow to work them. The time worked in the execution window of a task must
be exactly its processing time.

▶ Example 1. Let i be a task with processing time pi = 3 following the calendar coroorrc.
This task cannot start at time 0 since it is closed. It can execute at times 1, 2, and 3. It
could also execute at times 1, 2, and 4. In that case, it finishes later and is idle at time 3.
The task cannot start at time 1 while ending at time 7 because the regular times 2, 5, and 6
are mandatory, leaving no work to perform at time 1.

3.1 The CalendarOvertime Constraint
We define a new constraint to model calendars with overtime. The CalendarOvertime
constraint, for a starting time variable S, an elapsed time variable E (with dom(E)⊆ [p, tmax]),
an overtime variable O (with dom(O) ⊆ [0, p]), a processing time p, and a calendar Cal,
asserts that:

The first and last time points of the execution window [S, S + E) are not closed.
There are enough, but not too many, worked time points in the window to complete the
task of processing time p with the overtime prescribed by O.
There are enough overtime periods in [S, S + E) for the overtime prescribed by O.
The first and last time points in [S, S + E) can actually be worked if they are of type o.

In a more mathematical way, the CalendarOvertime constraint is defined as follows:

CalendarOvertime(S, E, O, p, Cal) def⇐⇒ Cal[S] ̸=c ∧ Cal[S + E − 1] ̸=c

∧O = p− |{t ∈ [S, S + E) | Cal[t] = r}|
∧O ≤ |{t ∈ [S, S + E) | Cal[t] = o}|
∧ |{t ∈ {S, S + E − 1} | Cal[t] = o}| ≤ O

This constraint does not deal with the concept of resource consumption. It simply maintains
consistency between the variables S, E, and O given a processing time p and a calendar Cal.

3.2 The CumulativeOvertime Constraint
Let E be [Ei | i ∈ I], O be [Oi | i ∈ I], and Cal be [Cali | i ∈ I]. We define the new
CumulativeOvertime constraint as follows:

CumulativeOvertime(S, E, O, p, Cal, h, hmax)
def⇐⇒ Cumulative(S, E, h, hmax)

∧
∧
i∈I

CalendarOvertime(Si, Ei, Oi, pi, Cali)

In words, we define the new CumulativeOvertime constraint as a conjunction of a
Cumulative constraint and the CalendarOvertime constraints associated to the tasks
consuming the resource. Importantly, we consider that tasks continue to use the resource
while they are suspended, be it because of unworked overtime or closed time. This last
aspect is reasonable if we consider that some resources may relate to small spaces where
moving machinery should be avoided, such as during ship refitting. In that case, releasing
the resource necessitates unwanted work that would overcomplicate the planning.

CP 2024

7:6 Cumulative Scheduling with Calendars and Overtime

Although the propagator for CalendarOvertime (described at Section 5.1) maintains
bounds consistency on S, E, and O given processing time p and calendar Cal, the bounds
found on E are often not sufficient to allow the Cumulative constraint to perform a good
propagation. This is because the Time-Tabling rule filtering the Cumulative constraint
only uses E in its reasoning and does not take into account the calendars.

▶ Example 2. Consider a task 1 of processing time p1 = 2 following the calendar rcrrcr
with dom(S1) = [0, 3] and dom(E1) = [2, 3]. Let task 2 follow the same calendar, with
p2 = 2, dom(S2) = [0, 2] and dom(E2) = [2, 3]. In this case, O1 = O2 = 0. It can be seen
that the domains of the variables of both tasks are bounds consistent with respect to the
CalendarOvertime constraints and that they do not induce any compulsory part. Let
both tasks consume 1 unit of a resource of capacity 1 (i.e., a disjunctive resource). Then,
the Time-Tabling rule is not able to deduce that S1 should be fixed to 3. Indeed, not only
does it fail to detect that task 2 must be executing at time 2 (meaning its compulsory part
in Figure 1a should not be empty), it also considers that task 1 could start at time 0 and
end at time 2 (excluded), leading to no propagation. Should the calendar considerations be
included in the rule, the propagation would be deduced, as visible in Figures 1b and 1c.

0 1 2 3 4 5
r c r r c r

| lst1|ect1

|lst2 ect2

(a) When not considering the
calendar, the time windows that
end the earliest or start the
latest have no intersection. The
profile is empty and no propaga-
tion is possible.

0 1 2 3 4 5
r c r r c r

| lst
′
1ect′1

|lst′2 |ect
′
2

(b) When taking the calendar
into account, the tasks execu-
tion windows become longer, al-
lowing the detection of compuls-
ory parts that would otherwise
be missed.

0 1 2 3 4 5
r c r r c r

S1

| |

×

(c) With this augmented pro-
file, calendar considerations can
again lengthen a task’s execu-
tion window and permit the
detection of propagations that
would be missed otherwise.

Figure 1 Comparison of the propagation done by the Time-tabling rule without and with
calendar considerations in the case described by Example 2. The meaning of ect′

i and lst′
i is defined

at section 5.1.

4 Decomposition of the New Constraints

To evaluate the usefulness of the new constraints defined in the previous section, we need to
compare them with their decomposition into elementary constraints.

4.1 Decomposition of the CalendarOvertime Constraint
Suppose we want to decompose the constraint CalendarOvertime(S, E, O, p, Cal). If Cal
is the trivial calendar, i.e., the calendar with only regular time points without closed time or
overtime, the constraint is trivially decomposed as follows:

E = p ∧O = 0 (8)

S. Cloutier and C.-G. Quimper 7:7

If Cal is not the trivial calendar, more work is necessary. Let the compiled calendars
Cc, Cr, and Co respectively count how many closed, regular, and overtime periods are
encountered in calendar Cal before a given time point in the horizon [0, tmax]. The number
of closed time points in the time interval [a, b) is simply given by Cc[b]−Cc[a]. These arrays
can be precomputed.

Cx[t] = |{j ∈ [0, t) | Cal[j] = x}| ∀x ∈ {c, r,o} (9)

The following variables are added to the decomposition: I, for the idle time i.e., the
number of time points in [S, S +E) that are not worked, as well as Nc, Nr, and No respectively
for the number of closed, regular, and overtime time points within the execution window
[S, S + E).

First, variables Nc, Nr, and No must count the time points of each type in the execution
window.

Nx = Cx[S + E]− Cx[S] ∀x ∈ {c, r,o} (10)

The number of regular time points in the execution window must be equal to the regular
time worked. There must be enough overtime periods in the execution window to work
the overtime prescribed by O. The idle time is not only the closed time points, but also
the unworked overtime periods. Since overtime periods appear directly in the calendar, the
elapsed time is simply the processing time plus the idle time. The overtime is nonnegative
and at most equal to the processing time.

Nr = p−O (11)
No ≥ O (12)
I = Nc + No −O (13)
E = p + I (14)
0 ≤ O ≤ p (15)

The starting time and the time preceding the ending time of a task must be able to be
worked, even if they are overtime periods. Let 1(x) be the function that returns 1 if x is true
and 0 otherwise.

Cal[S] ̸= c (16)
Cal[S + E − 1] ̸= c (17)
E > 1 =⇒ O ≥ 1(Cal[S] = o) + 1(Cal[S + E − 1] = o) (18)
E = 1 =⇒ O ≥ 1(Cal[S] = o) (19)

4.2 Decomposition of the CumulativeOvertime Constraint
A decomposition of the constraint CumulativeOvertime(S, E, O, p, Cal, h, hmax) can
simply consist of the constraint Cumulative(S, E, h, hmax) along with the decomposition of
CalendarOvertime(Si, Ei, Oi, pi, Cali) for each i ∈ I given by constraints (8) to (19).

5 Filtering Algorithms for the New Constraints

The strength of the new constraints over their decomposition, aside from the modeling
simplification they bring, is the stronger propagation they permit. This is possible thanks to
the filtering rules and algorithms presented in this section.

CP 2024

7:8 Cumulative Scheduling with Calendars and Overtime

5.1 Propagation of the CalendarOvertime Constraints
For each task i, let Vi(s, e, o) be a predicate satisfied if task i can start at time s for a
duration of e with overtime o given the calendar Cali.

Vi(s, e, o) def⇐⇒ s + e ≤ horizon ∧CalendarOvertime(s, e, o, pi, Cali) (20)

Since Cali affects task i, esti, lsti, ecti, and lcti are redefined as follows:

est′
i

def= min
{

s ∈
[
Si, Si

]
| ∃e ∈

[
Ei, Ei

]
,∃o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(21)

lst′
i

def= max
{

s ∈
[
Si, Si

]
| ∃e ∈

[
Ei, Ei

]
,∃o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(22)

ect′
i

def= min
{

s + e | s ∈
[
Si, Si

]
, e ∈

[
Ei, Ei

]
, o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(23)

lct′
i

def= max
{

s + e | s ∈
[
Si, Si

]
, e ∈

[
Ei, Ei

]
, o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(24)

We consider that min(∅) =∞ and max(∅) = −∞.
Using definition (21), the checking and filtering rules for Si in the CalendarOvertime

propagator are:

est′
i =∞ =⇒ conflict (25)

Si < est′
i =⇒ S′

i = est′
i (26)

The filtering algorithm for the constraint CalendarOvertime is based on four precom-
puted vectors: Let k ⊆ {r,o}, be the types of time points the vectors consider. Ck

i [t] is the
number of time points of type in k that come before time t in Cali, and Y k

i [j] is the index
of the j-th time point of type in k in Cali. With these vectors, we define helper functions
that execute in constant time. For simplicity’s sake, we only present sketches that ignore
boundary conditions at the beginning or the end of the scheduling horizon. The function
countk(a, b) := Ck

i [b] − Ck
i [a] returns the number of time points in the time window [a, b)

with a type in k. previousk(t) := Yi[Ck
i [t + 1]− 1] returns the latest time point with a type

in k that is not later than t. nextk(t) := Yi[Ck
i [t]] returns the earliest time point with type in

k that is not earlier than t. get_endk(t, ∆) := Yi[Ck
i [t] + ∆] returns the end of the smallest

time window beginning at t and containing ∆ time points with a type in k. Finally,

verify_head_tail(s, e) :=1(Cali[s] = o) + 1(e > 1)1(Cali[s + e− 1] = o)
≤ pi − count{r}(s, s + e)

is true if and only if the time worked regularly in [s, s + e) permits enough overtime to work
in overtime on the first and last time points.

This constraint requires a constant number of variables per task. Because the vectors
Ck

i and Y k
i must be precomputed, the space complexity of the filtering algorithm is linear

with respect to the horizon, and the initialization (performed once when instantiating the
model) is also linear. Algorithm 1 computes in constant time a candidate value for ect′

i, as
redefined by (23), given a fixed starting time s for a task i subject to a calendar. Algorithm 2
verifies the value given by Algorithm 1, and filters the lower bound of Si according to the
CalendarOvertime constraint. This algorithm iterates on dom(Si), computing a minimal
completion time for each candidate start time. The first start time leading to a finite
completion time is the new lower bound. Even though the running time complexity is in
O(|dom(Si)|), it is technically linear w.r.t. the number of filtered-out unclosed time points.
As such, the algorithm runs in constant time if it filters nothing and it runs in linear time if
it filters many values. The upper bound of Si and the other variables are processed similarly.

S. Cloutier and C.-G. Quimper 7:9

Algorithm 1 Computing ect′
i given calendar Cali, and Si = s.

1 Function compute_completion_time(i, s):
2 if Cali[s] = c then return ∞ ;

// The execution window contains at least pi unclosed periods.
3 end← get_end{r,o}(s, pi)
4 if end− s < Ei then

// The associated elapsed time must be at least Ei.
5 end← next{r,o}(s + Ei − 1) + 1
6 worked_regular_time← count{r}(s, end)
7 min_worked_regular_time← pi −Oi

8 if worked_regular_time < min_worked_regular_time then
// At least pi −Oi regular time must be worked.

9 end← get_end{r}(s, min_worked_regular_time)
10 if Cali[end− 1] = o ∧ not verify_head_tail(s, end) then
11 if next{r}(end− 1) + 1 ≤ horizon then

// Adding a regular time point fixes the tail problem.
12 end← next{r}(end− 1) + 1

/* The ending time is minimal. Constraints on Ei, Oi or head and
tail cannot be made right if they are not already. */

13 if end ≤ horizon ∧ end− s ≤ Ei ∧ pi − count{r}(s, end) ≥ Oi

∧verify_head_tail(s, end) then
14 return end
15 return ∞

Algorithm 2 iterates using naive unit leaps (see line 7). By analyzing the cause of why
Algorithm 1 returns infinity, these leaps can be extended. For example, if the current s is a
time point of type r and the failure is due to “end-s” at line 13 in Algorithm 1 being greater
than E by k, then the “+1” in the leap could be replaced by a “+k”. We have tested such
enhancements but found no improvement on the performance. As such, the simpler version
presented is the one used for the experimentations presented in Section 6.

5.1.1 Explaining the Propagation

In a solver with lazy clause generation, we explain propagations by rules (25) and (26) naively,
respectively by (27)→ False and (28)→ [[est′

i ≤ Si]].

[[Si ≤ Si]] ∧ [[Si ≤ Si]] ∧ [[Ei ≤ Ei]] ∧ [[Ei ≤ Ei]] ∧ [[Oi ≤ Oi]] ∧ [[Oi ≤ Oi]] (27)

[[Si ≤ Si]] ∧ [[Ei ≤ Ei]] ∧ [[Ei ≤ Ei]] ∧ [[Oi ≤ Oi]] ∧ [[Oi ≤ Oi]] (28)

Our previous attempts indicate that computing more general explanations is of little interest
for this propagator compared to using the naive ones.

CP 2024

7:10 Cumulative Scheduling with Calendars and Overtime

Algorithm 2 Filtering Si given a calendar.

Input: Variables Si, Ei, and Oi.
1 s← next{r,o}(Si)
2 while s ≤ Si do
3 end← compute_completion_time(i, s)

// We only need to verify that it is a valid value for ect′
i.

4 if end ̸=∞ then
5 Si ← s

6 return Success
7 s← next{r,o}(s + 1)
8 return Conflict

5.2 Propagation of the CumulativeOvertime Constraints

The basis of the CumulativeOvertime propagator is that of a Cumulative propagator
applying the classic Time-Tabling rule. The main difference is that it uses the definitions (21)
to (24), rather than (1) to (4), to compute the profile with (5) and apply the Time-Tabling
rules (6) and (7). Thus, f ′(Ω, t) =

∑
{i∈Ω|t∈[lst′

i
,ect′

i
)} hi and the new checking and filtering

rules are as follows:

∃ t, f ′(I, t) > hmax =⇒ conflict (29)
ect′

i > t ∧ hmax < hi + f ′(I \ {i}, t) =⇒ S′
i > t (30)

For that, the algorithm that enforces the Time-Tabling can compute the value ect′
i by

calling Algorithm 1 (and verifying the value returned) with increasing values of s ∈ dom(Si).
The first valid value returned is the ect′

i. The lst′
i is computed symmetrically. Most

propagators applying the Time-Tabling rule can be adapted for the CumulativeOvertime
propagator. Because of the computing time caused by the new definitions, the complexity of
the CumulativeOvertime propagator is that of its base Cumulative propagator multiplied
by the size of the largest domain of the starting time variables. Since we chose to adapt the
propagator by Schutt et al. [20] that has a complexity of O(n2), we obtain a propagator in
O(kn2), where k = maxi∈I |dom(Si)|. Under the assumption that this constraint is used
alongside CalendarOvertime constraints, the size of the scope of the constraint is the
same as for the Cumulative constraint (here linear in the number of tasks).

This global propagator is used in combination with the propagators for the Calen-
darOvertime constraints. This is done because filtering the calendar constraints solely
through this global propagator specialized for resource consumption would be inefficient.

5.2.1 Explaining the Propagation

In a solver using lazy clause generation, the propagation needs to be explained. First,
should the propagator fail to find a valid ect′

i at some point in its execution, it means
that the CalendarOvertime constraint cannot be satisfied. The CumulativeOvertime
propagator directly reports a conflict that it naively explains with (27). As such, the rest
of this section considers that est′

i, lst′
i, ect′

i, and lct′
i are valid. Let t ∈ [lst′

i, ect′
i) be a time

point in the calendar-corrected compulsory part of task i. The expression profile_expl is
used to construct the explanation.

S. Cloutier and C.-G. Quimper 7:11

profile_expl(i, t) def=


[[Si ≤ t]] ∧ [[t + 1− Ei ≤ Si]]

∧ [[Ei ≤ Ei]]
if t ∈

[
Si, Si + Ei

)
(27) otherwise

(31)

The expression profile_expl(i, t) depends on whether the redefinitions (21) to (24) are
necessary to detect t as part of the compulsory part of task i. If the original definitions
are sufficient, the explanation for t being in the compulsory part of task i is the same as
presented by Schutt et al. [20], but with a variable duration. Otherwise, the explanation
cannot be as general and we simply reuse the naive one presented previously.

Suppose that rule (29) finds a conflict at time t. We define Bt ⊆ I the set of tasks for
which t is in their corrected compulsory part, i.e., Bt = {i ∈ I | t ∈ [lst′

i, ect′
i)}. Let B∗

t ⊆ Bt

be a minimal set (in terms of number of elements) such that
∑

i∈B∗
t

hi > hmax. Let t+ be
the smallest ect′

i or lst′
i greater than t and let t− be the greatest ect′

i or lst′
i smaller than

t. This means that every time point in the interval [t−, t+] have the same set of tasks that
have a compulsory part overlapping it, i.e., Bt = Bt′ for all t′ ∈ [t−, t+]. As such, explaining
based on any point in this interval is valid. Then, the propagator explains the conflict by:∧

i∈B∗
t

profile_expl
(

i,

⌊
t− + t+

2

⌋)
→ False. (32)

This corresponds to saying that the conflict is caused by a minimal number of tasks all having
a compulsory part that includes the time point in the middle of the profile rectangle that
contains t. If the calendar corrections (the new definitions (21) to (24)) are never needed,
this explanation is the same as the pointwise explanation from Schutt et al.

For a task i and a time t ∈
[
Si, ect′

i

)
, we define task_expl(i, t) as follows:

task_expl(i, t) def=
{

[[t + 1− Ei ≤ Si]] ∧ [[Ei ≤ Ei]] if t ∈
[
Si, Si + Ei

)
(28) otherwise

. (33)

The logical expression task_expl(i, t) depends on whether calendar corrections are needed to
detect that task i, when starting at a time not earlier than time Si, is not finished by time t.
If so, we use a naive explanation like for the CalendarOvertime constraint. Otherwise,
we reuse the expression from Schutt et al. [20].

Suppose that rule (30) pushes Si to time t + 1 and that t is the earliest time for which
the rule applies. Let B∗

t ⊆ Bt \ {i} be a minimal set such that
∑

k∈B∗
t

hk > hmax−hi. Then,
the propagator instead filters Si to t∗ = min{ect′

i, t+} and explains it by:

task_expl(i, t∗ − 1) ∧
∧

k∈B∗
t

profile_expl (k, t∗ − 1)→ [[t∗ ≤ Si]]. (34)

Rule (30) is reapplied until it no longer filters. This cuts the propagation from rule (30)
into sub-propagations permitting, according to Schutt et al. [20], more general explanations.
If the calendar corrections are never needed, these explanations are the same as the ones
presented by Schutt et al.

6 Experimentation

To compare the value of our new propagators with the decomposition, we solve the following
RCPSP model augmented with calendars and overtime.

CP 2024

7:12 Cumulative Scheduling with Calendars and Overtime

6.1 Experimentation Model
The model has initial constraints on the time window of each task, task precedence constraints,
resources that tasks need, and calendars that tasks follow. Let R be the set of resources and
I a set of tasks. Each task i ∈ I has to start in a window [minStarti, maxStarti] and end
in a window [minEndi, maxEndi]. These windows encode release times and deadlines. Let
P ⊆ I × I contain the precedence relationships. For each (i, j) ∈ P, the task i must end
before the task j may start. The release times and deadlines provide the initial domains of
the variables through the propagation of the following constraints:

minStarti ≤ Si ≤ maxStarti ∀i ∈ I (35)
minEndi ≤ Si + Ei ≤ maxEndi ∀i ∈ I (36)

The following constraints enforce the precedence relationships:

Si + Ei ≤ Sj ∀(i, j) ∈ P (37)

Finally, CumulativeOvertime constraints prevent the overload of the resources.

CumulativeOvertime(S, E, O, p, Cal, hj , hmax
j) ∀j ∈ R (38)

We either minimize the makespan (39) or the overtime costs (40):

max
i∈I
{Si + Ei} (39)∑

i∈I
wiOi (40)

We optimize these objective functions separately, i.e., optimizing only one function or the
other. When minimizing the makespan, all overtime is forbidden. Otherwise, it would also
maximize the overtime, which makes little sense for an applied project, since it leads to cost
maximization.

By modifying how constraint (38) is implemented, we define three equivalent models:
The CumulativeOvertime model implements constraint (38) directly with our global
CumulativeOvertime constraint.
The CalendarOvertime model decomposes constraint (38) with a classic Cumulative
constraint, and a CalendarOvertime constraint for each task.
The decomposition model decomposes constraint (38) as described in section 4.2.

6.2 Experimentation Details
We implement1 the CalendarOvertime and CumulativeOvertime constraints in C++
in the solver Chuffed 0.13.02 [8], and write our models in MiniZinc [16]. To keep the
comparison with the CumulativeOvertime model fair, the propagator that filters the
Cumulative constraints in the CalendarOvertime and decomposition models only uses
the Time-Tabling check and filtering already implemented in Chuffed. We run all experiments
with a timeout of 10 minutes on a machine with a 32-core Intel Xeon 4110 CPU @ 2.10 GHz
and 32 Gb of memory. We run four executions simultaneously, which may affect the precision
of the runtimes.

1 Available at: https://github.com/Samclou/chuffed/releases/tag/Calendars-cp2024
2 Available at: https://github.com/chuffed/chuffed/releases/tag/0.13.0

https://github.com/Samclou/chuffed/releases/tag/Calendars-cp2024
https://github.com/chuffed/chuffed/releases/tag/0.13.0

S. Cloutier and C.-G. Quimper 7:13

We use the instances j30, j60, j90, and j120 from the PSPLIB [11] benchmark, the
instances bl20 and bl25 from the BL set [3], and the PACK [7] instances, all adapted with
randomly generated calendars where time points represent hours. The instances use calendars
similar to those of Boudreault et al. [6], where days have 8 regular hours, followed by 4 hours
of overtime. Some calendars have weekends off, and some do not have overtime. We add for
each day a 5% chance for it to be a holiday. There is a calendar where weekends and holidays
are composed of 12 overtime hours. These 2135 augmented instances and the models (as
well as the execution logs) are accessible in the code repository.

For makespan minimization, we extend the horizons from the original instances by a factor
of 5 to prevent the addition of closed hours from leading to trivial unsatisfiable instances. In
these executions, we forbid overtime. For overtime costs minimization, we must use a smaller
horizon to prevent having too many instances where the best value of 0 overtime is trivial to
find, but it should not be reduced so much that we get easy unsatisfiable instances. To fix the
horizon, we solve the instances twice to minimize the makespan: once by forbidding overtime
and a second time by allowing overtime. We fix the horizon to the mean makespan. This
gives a horizon for which there is always a solution, which is often not trivial and leaves room
to optimize the overtime costs. The computation time required to compute these horizons is
not taken into account in our results as they are used to construct the instances rather than
solving the problem.

7 Results

Comparisons are made between the decomposition and the CalendarOvertime models,
and between the CalendarOvertime and the CumulativeOvertime models.

7.1 Comparing the Decomposition and CalendarOvertime Models
Figure 2 shows graphs comparing the runtimes of our models on instances for which the solver
proved the optimality. Compared to the decomposition model, the CalendarOvertime
model represents an average speedup of 13.8 for makespan optimization and 2.9 for overtime
optimization, respectively, on these 1625 and 1373 instances.

This speedup for the makespan optimization is larger than the one for the overtime
optimization. We surmise that this important discrepancy is due to the size of the horizon in
the makespan optimization instances. Indeed, their horizon is often very high compared to
the optimal makespan or the horizon of the overtime optimization instances. It so happens
that the Element constraints present in the decomposition of the CalendarOvertime
constraint are susceptible to the size of the horizon. For example, in the solver used,
constraint (16) becomes a collection of clauses that may each be as long as the horizon while
constraint (10) is filtered by a propagator that is linear in the size of the horizon (as long as
S and E are not fixed). This leads to both weak and slow filtering which must degrade the
performances of the decomposition. We can see that the performances of the decomposition
model become more competitive in the context of overtime minimization, which uses a tighter
horizon.

Regarding the instances not solved optimally by both models, there are no instances
where the decomposition model is able to prove optimality or find a solution better than the
CalendarOvertime model. The CalendarOvertime model proves optimality on 17% of
the 510 makespan instances and 8% of 762 overtime instances. It finds better solutions in 81%
(79%) of makespan (overtime) instances. There are 21 instances for which the decomposition
model fails to find any solution while the CalendarOvertime model is able to.

CP 2024

7:14 Cumulative Scheduling with Calendars and Overtime

Figure 2 Comparison, between the decomposition and CalendarOvertime models, of the
runtime on the instances solved by both models (1st row) and the best solution found for the
remaining instances (2nd row) for makespan (1st column) and overtime (2nd column) minimization.
On the 2nd row, gray dots are instances solved by the CalendarOvertime model and black dots
are for when all models timeout.

7.2 Comparing the CalendarOvertime and CumulativeOvertime Models
Figure 3 shows that the CumulativeOvertime model has an average speedup of 1.14
over the CalendarOvertime model for makespan optimization and 1.24 for overtime
optimization, respectively, on the 1712 and 1436 instances solved optimally by both models.
When comparing the best solutions found on the remaining instances, we see that, for
makespan minimization, the CalendarOvertime model never proves optimality or finds a
better solution than the CumulativeOvertime model. The CumulativeOvertime model
proves optimality on respectively 1.6% and 1.4% of both these 423 makespan instances and
the 699 overtime instances. It finds better solutions in 31% (44%) of makespan (overtime)
instances. However, here, there are 5 overtime instances for which the CalendarOvertime
model finds a better solution, and 1 where it proves optimality.

Thus, the CalendarOvertime constraint is a notable enhancement over the decomposi-
tion and is further improved by the CumulativeOvertime constraint.

8 Conclusion

We propose two new constraints to solve the cumulative scheduling problem with calendars
and overtime. The CalendarOvertime constraint uses a precomputed substructure to
enforce bounds consistency on the Si, Ei, and Oi variables in O(|dom(Si)|). The Cumu-
lativeOvertime constraint adapts the Time-Tabling rule to take calendars into account.
Experiments on PSPLIB, BL, and PACK instances augmented with calendars show that
the models using the specialized propagators of the new constraints outperform a model
using a decomposition, the CumulativeOvertime constraints being a further enhancement
over the CalendarOvertime constraints. These new constraints could also help solve the
resource investment problem, the multi-mode resource-constraint project scheduling problem
or even disjunctive problems such as job shop when they are augmented with calendars and
overtime.

S. Cloutier and C.-G. Quimper 7:15

Figure 3 Comparison, between the CalendarOvertime and CumulativeOvertime models, of
the runtime on the instances solved by both models (1st row) and the best solution found for the
remaining instances (2nd row) for makespan (1st column) and overtime (2nd column) minimization.
On the 2nd row, gray dots are instances solved by the CalendarOvertime model and black dots
are for when all models timeout.

References
1 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve complex

scheduling and placement problems. Mathematical and Computer Modelling, 17(7):57–73,
1993. doi:10.1016/0895-7177(93)90068-A.

2 Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Springer, 2001.

3 Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Constraints, 5(1):119–
139, 2000. doi:10.1023/A:1009822502231.

4 Nicolas Beldiceanu. Global constraints as graph properties on structured network of elementary
constraints of the same type. SICS Technical report T2000-01, 2000.

5 Global constraint catalog: Calendar. https://sofdem.github.io/gccat/gccat/Ccalendar.
html#uid15664. Accessed: 2024-04-04.

6 Raphaël Boudreault, Vanessa Simard, Daniel Lafond, and Claude-Guy Quimper. A constraint
programming approach to ship refit project scheduling. In Proceedings of the 28th International
Conference on Principles and Practice of Constraint Programming (CP 2022), volume 235,
pages 10:1–10:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
LIPIcs.CP.2022.10.

7 Jacques Carlier and Emmanuel Néron. On linear lower bounds for the resource constrained
project scheduling problem. European Journal of Operational Research, 149(2):314–324, 2003.
doi:10.1016/S0377-2217(02)00763-4.

8 Geoffrey Chu. Improving Combinatorial Optimization. PhD thesis, The University of Mel-
bourne, 2011.

9 Michael R. Garey and David S. Johnson. Computers and intractability : a guide to the theory
of NP-Completeness. A Series of books in the mathematical sciences. W.H. Freeman, 1979.

10 Steven Gay, Renaud Hartert, and Pierre Schaus. Simple and scalable time-table filtering for
the cumulative constraint. In Proceedings of the 21st International Conference on Principles
and Practice of Constraint Programming (CP 2015), pages 149–157. Springer International
Publishing, 2015. doi:10.1007/978-3-319-23219-5_11.

CP 2024

https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1023/A:1009822502231
https://sofdem.github.io/gccat/gccat/Ccalendar.html#uid15664
https://sofdem.github.io/gccat/gccat/Ccalendar.html#uid15664
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://doi.org/10.1016/S0377-2217(02)00763-4
https://doi.org/10.1007/978-3-319-23219-5_11

7:16 Cumulative Scheduling with Calendars and Overtime

11 Rainer Kolisch and Arno Sprecher. Psplib - a project scheduling problem library: Or software
- orsep operations research software exchange program. European Journal of Operational
Research, 96(1):205–216, 1997. doi:10.1016/S0377-2217(96)00170-1.

12 Stefan Kreter, Julia Rieck, and Jürgen Zimmermann. Models and solution procedures for
the resource-constrained project scheduling problem with general temporal constraints and
calendars. European Journal of Operational Research, 251(2):387–403, 2016. doi:10.1016/j.
ejor.2015.11.021.

13 Stefan Kreter, Andreas Schutt, and Peter J Stuckey. Using constraint programming for solving
RCPSP/max-cal. Constraints, 22(3):432–462, 2017. doi:10.1007/s10601-016-9266-6.

14 Stefan Kreter, Andreas Schutt, Peter J. Stuckey, and Jürgen Zimmermann. Mixed-integer
linear programming and constraint programming formulations for solving resource availability
cost problems. European Journal of Operational Research, 266(2):472–486, 2018. doi:10.
1016/j.ejor.2017.10.014.

15 Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG CP optimizer for
scheduling. Constraints, 23(2):210–250, 2018. doi:10.1007/s10601-018-9281-x.

16 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In Proceedings of the 13th
International Conference on Principles and Practice of Constraint Programming (CP 2007),
pages 529–543. Springer Berlin Heidelberg, 2007. doi:10.1007/978-3-540-74970-7_38.

17 Wilhelmus Petronella Maria Nuijten. Time and resource constrained scheduling: a constraint
satisfaction approach. PhD thesis, Technische Universiteit Eindhoven, 1994.

18 Olga Ohrimenko, Peter J Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, 2009. doi:10.1007/s10601-008-9064-x.

19 Pierre Ouellet and Claude-Guy Quimper. Time-table extended-edge-finding for the cumulative
constraint. In Proceedings of the 19th International Conference on Principles and Practice
of Constraint Programming (CP 2013), pages 562–577. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-40627-0_42.

20 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Explaining the
cumulative propagator. Constraints, 16(3):250–282, 2011. doi:10.1007/s10601-010-9103-2.

https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/j.ejor.2015.11.021
https://doi.org/10.1016/j.ejor.2015.11.021
https://doi.org/10.1007/s10601-016-9266-6
https://doi.org/10.1016/j.ejor.2017.10.014
https://doi.org/10.1016/j.ejor.2017.10.014
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/978-3-642-40627-0_42
https://doi.org/10.1007/s10601-010-9103-2

	1 Introduction
	2 Background
	2.1 Cumulative Scheduling
	2.2 The Time-Tabling Rule
	2.3 Augmentation With Calendars
	2.3.1 Calendars Associated to Resources
	2.3.2 Calendars Associated to Tasks
	2.3.3 Other Approaches

	3 Calendar Constraints With Overtime
	3.1 The CalendarOvertime Constraint
	3.2 The CumulativeOvertime Constraint

	4 Decomposition of the New Constraints
	4.1 Decomposition of the CalendarOvertime Constraint
	4.2 Decomposition of the CumulativeOvertime Constraint

	5 Filtering Algorithms for the New Constraints
	5.1 Propagation of the CalendarOvertime Constraints
	5.1.1 Explaining the Propagation

	5.2 Propagation of the CumulativeOvertime Constraints
	5.2.1 Explaining the Propagation

	6 Experimentation
	6.1 Experimentation Model
	6.2 Experimentation Details

	7 Results
	7.1 Comparing the Decomposition and CalendarOvertime Models
	7.2 Comparing the CalendarOvertime and CumulativeOvertime Models

	8 Conclusion

