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Abstract
Following the successful use of Propositional Satisfiability (SAT) algorithms in Boolean optimization
(e.g., Maximum Satisfiability), several SAT-based algorithms have been proposed for Multi-Objective
Combinatorial Optimization (MOCO). However, these new algorithms either provide a small subset
of the Pareto front or follow a more exploratory search procedure and the solutions found are usually
distant from the Pareto front.

We extend the state of the art with a new SAT-based MOCO solver, Slide and Drill (Slide&Drill),
that hones an upper bound set of the exact solution. Moreover, we show that Slide&Drill neatly
complements proposed UNSAT-SAT algorithms for MOCO. These algorithms can work in tandem
over the same shared “blackboard” formula, in order to enable a faster convergence.

Experimental results in several sets of benchmark instances show that Slide&Drill can outper-
form other SAT-based algorithms for MOCO, in particular when paired with previously proposed
UNSAT-SAT algorithms.
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1 Introduction

In real-world problems it is common to have several objective functions to optimize [17, 19, 29].
For instance, when updating a system such as a Linux installation [13], one can try to maximize
the number of packages to be updated from the current version to the most recent one, while
at the same time minimizing the number of software packages from the current installation
to be removed in the update process. It is usually the case that the objective functions are
conflicting, i.e., decreasing one objective function results in having to increase the value of
another objective function. Hence, in Multi-Objective Combinatorial Optimization (MOCO),
the goal is to try to find all Pareto-optimal solutions, i.e., all solutions for which one cannot
improve the value of a function without worsening the value of another one. The set of all
Pareto-optimal solutions is known as the Pareto front.

Following the success of Propositional Satisfiability (SAT) algorithms in Boolean optimiza-
tion problems such as Maximum Satisfiability (MaxSAT) [2] or Pseudo-Boolean Optimization
(PBO) [24], several algorithms for MOCO have been proposed based on iterative calls to
a satisfiability solver [10, 22, 28, 26]. For instance, the Guided-Improvement Algorithm
(GIA) [22] starts with a feasible solution and iteratively checks if there is some other solution
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that is better on all objective functions. When the iterative process ends, the algorithm has
found a Pareto-optimal solution and new constraints are added so that only assignments that
improve on at least one objective function are feasible (i.e., solutions that are worse on all
objectives are blocked). More recently, the notion of P -minimal models [26] was introduced,
where this blocking is done using a propositional clause.

The issue with GIA and P -minimal algorithms is that the search process is focused on
iteratively improving upon one solution until a Pareto-optimal solution is found. Considering
that the set of solutions in the Pareto front can be large, in many instances, these algorithms
are only able to find a very small subset of the Pareto front within a given time limit.
Moreover, it can be the case that the Pareto-optimal solutions are skewed to optimize some
objective function and do not provide a broad representation of solutions in the Pareto front.

This paper proposes Slide&Drill, a new exact [9], generic algorithm for MOCO that
maintains an upper cover of the Pareto front, made of feasible of solutions. Slide&Drill
repeatedly selects a point from the cover to improve upon. This improvement starts with a
drill operation followed by a series of slide operations that generate another upper cover that
is closer to the Pareto front. Hence, at any point of time, one can obtain a diversified set of
solutions that approximate the Pareto front. Experimental results on representative sets of
MOCO instances show that Slide&Drill provides better approximations of the Pareto front
than previous SAT-based MOCO solvers since Slide&Drill is able to find a more diverse
set of solutions for the end user.

The paper is organized as follows. Section 2 formally defines the MOCO problem and
provides an overview of previous SAT-based MOCO algorithms. Section 3 defines lower
and upper bound sets. Section 4 introduces the new Slide&Drill algorithm for MOCO
based on iterative refinement of an upper bound set. Additionally, Section 4 also proves the
correctness of the Slide&Drill algorithm and shows how to pair it in tandem with other
MOCO algorithms. Section 5 explores different configurations of the Slide&Drill algorithm
and compares it against other state-of-the-art SAT-based MOCO solvers using three different
metrics. Finally, the paper concludes in Section 6.

2 Preliminaries

We start with the definitions that fall under SAT’s domain. Next, we introduce the definitions
specific to MOCO. Moreover, we briefly review previous approaches to solving MOCO.

2.1 Boolean Satisfiability
▶ Definition 1 (CNF Formula). Let V = {x1, . . . , xn} denote a set of n Boolean variables. A
literal is either a variable xi ∈ V or its negation x̄i. A clause is a disjunction of literals. A
formula in Conjunctive Normal Form (CNF) ϕ is a conjunction of clauses.

An assignment or model ν defines a truth value for all variables. Let ν(xi) denote the truth
value of variable xi and let ν(li) denote the truth value of a literal li. We have ν(li) = ⊤ if
li = xi and ν(xi) = ⊤, or if li = x̄i and ν(xi) = ⊥. Otherwise, we have ν(li) = ⊥. A clause c

is satisfied if at least one of its literals is true. An assignment ν is said to satisfy a formula ϕ

if it satisfies all its clauses. We extend the notation of assignments to define the truth value
of a clause c and a CNF formula ϕ as ν(c) and ν(ϕ), respectively. In the remainder of the
paper, we use the set notation for formulas (set of clauses, meaning its conjunction) and
clauses (set of literals, meaning its disjunction).
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▶ Definition 2 (Boolean Satisfiability (SAT)). Given a CNF formula ϕ, the Boolean Satis-
fiability (SAT) problem is to decide if there is any assignment ν to the variables in ϕ that
satisfies it or prove that no such assignment exists.

Let ϕ be a CNF formula and α a set of unitary clauses. A SAT solver call is denoted by
ϕ-SAT(α), and its value decides the satisfiability of ϕ ∪ α, i.e., it checks the satisfiability of ϕ

assuming all literals in α are true. Note that if α = ∅, then the solver checks the satisfiability
of ϕ. If the query is satisfiable, then the call returns a satisfiable model. Otherwise, it returns
a null value, written as ∅.

2.2 Single and Multi-Objective Combinatorial Optimization
▶ Definition 3 (Linear Pseudo-Boolean function and Pseudo-Boolean formulas). A linear1

pseudo-Boolean (PB) function f : { 0, 1 }n → N computes a weighted sum of its literals,

f(x) = f(x1 . . . xn) =
n∑

i=1
wili , wi ∈ N, xi ∈ V, li ∈ {xi, x̄i}. (1)

Pseudo-Boolean constraints generalize propositional clauses, and can be written as f(x) ▷◁ k,
▷◁ ∈ {≤,≥, =}. A PB formula is a conjunction of PB constraints.

▶ Definition 4 (Pseudo-Boolean Optimization (PBO)). Given a PB formula ϕ, an assignment
ν is said (ϕ-)feasible if it satisfies all constraints in ϕ. Given a PB formula ϕ and a
PB function f to minimize, the goal of Pseudo-Boolean Optimization (PBO) is to find an
assignment ν that satisfies ϕ and minimizes the value of f(x), where x ≡ (ν(x1), . . . , ν(xn)).

Next, we generalize PBO to the multi-objective case. Multi-objective optimization builds
upon a criterion of comparison (or order) of tuples of numbers. This paper uses the Pareto
order or dominance.

▶ Definition 5 (Pareto partial order (≺)). Let Y be some subset of Nn. For any y, y′ ∈ Y ,

y ⪯ y′ ⇐⇒ ∀i, yi ⩽ y′
i,

y ≺ y′ ⇐⇒ y ⪯ y′ ∧ y ̸= y′.

We say y dominates y′ iff y ⪯ y′. We say y strictly-dominates y′ iff y ≺ y′.

Given a tuple of objective functions sharing a common domain X, we can compare two
elements x, x′ ∈ X by comparing the corresponding tuples in the objective space. We use
the term multi-objective function to denote an array of functions.

▶ Definition 6 (Pareto Dominance (≺)). Let F : X → Y ⊆ Nn be a multi-objective function,
mapping the decision space X into the objective space Y . For any x, x′ ∈ X,

x ≺ x′ ⇐⇒ F (x) ≺ F (x′),
x ⪯ x′ ⇐⇒ F (x) ⪯ F (x′).

We say x dominates x′ iff x ⪯ x′. We say x strictly-dominates x′ iff x ≺ x′.

1 Note We will drop the linear qualifier hereafter, as we will only work with linear functions and constraints.

CP 2024
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As a consequence of this comparison criterion, different optimal solutions may be mapped
to different points in the objective space, which does not happen in the single objective
case. Therefore, the solution to the problem is actually a set, called Pareto front. These
solutions are optimal in the sense that for each, there is no other feasible solution that strictly
dominates them.

▶ Definition 7 (Pareto front). Given a a multi-objective function F : X → Y and a feasible
space Z ⊆ X, the Pareto front of Z is a subset P ⊆ Z containing all elements that are not
strictly-dominated,

P = {x ∈ Z :̸ ∃x′ ∈ Z : x′ ≺ x } .

Let the image front of Z, or simply front of Z, be the unique subset Y ⊆ Y that is the image
of P under F ,

Y ≡ frontZ F = {y ∈ Y : ∃x ∈ P : y = F (x) } .

Finally, let argument front of Z,denoted by arg frontZ , be any subset Z of the Pareto Front
P that is mapped under F into Y in a one-to-one fashion.

▶ Definition 8 (Multi-Objective Combinatorial Optimization (MOCO)). Let F : X → Y ⊆ Nn

be a multi-objective PB function, mapping the decision space X ⊆ { 0, 1 }n into the objective
space Y . Let Z ⊆ X be the image under ν 7→ x = ν(V ) ≡ (ν(x1), . . . , ν(xn)) of the feasible
space of a PB formula ϕ, with variables in V .

The goal of MOCO is to find a frontϕ F ≡ frontZ(ϕ) F , i.e., the complete set of non-
dominated objective points y ∈ Y whose preimage under F is ϕ-feasible. A MOCO instance
will be denoted by the triple ⟨ϕ, V, F ⟩.

A remark: most applications require the production of arg frontZ F , which is one of the
preimages under F of frontZ F . Our non-standard choice was made bearing in mind the
clarity of the discussion and of the algorithms’s presentation. In any case, the implementation
of the algorithms returns an arg frontZ(ϕ) F , as usual. The pseudo-code can be adapted to
do the same, but it will get significantly clobbered without adding much in the way of ideas.

▶ Example 9. Let ⟨ϕ, V, F ⟩ denote a MOCO instance defined over V = {x1, x2, x3}, with
two objective functions to minimize F = (f1, f2) where f1(x) = 2x1 + x2, f2(x) = 2x̄2 + 2x3
and ϕ = {x1 + x2 + x3 ≥ 2}. In this case, there are two Pareto-optimal solutions: ν1 =
{(x1, 0), (x2, 1), (x3, 1)} with costs (1, 2) and ν2 = {(x1, 1), (x2, 1), (x3, 0)} with costs (3, 0).
Note that ν1 provides a better value for f1, while ν2 is able to improve on f2. All other
satisfiable assignments to ϕ are dominated by either ν1(V ) or ν2(V ).

2.3 Encoding of Pseudo-Boolean Functions
In several SAT-based optimization algorithms, PB objective functions are encoded into
CNF [8, 24]. In MOCO, we are interested in blocking feasible solutions that are dominated by
some other feasible solution. In order to achieve this goal, one can use unary counter [3, 15, 16]
encodings.

▶ Definition 10 (Unary Counter). Let fi : { 0, 1 }n → N be a PB function and set V be an
ordered set of variables that parametrize the domain of fi,

V = {x1, . . . , xn } , fi(x) = fi(x1, . . . , xn) (2)
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Algorithm 1 P-Minimal Algorithm.

Input : ⟨ϕ, V, F ⟩ // MOCO instance
Output : frontϕ F // one img-front

1 (ϕ̃, O)← EncodeCNF(F, V ) // build unary counters
2 ϕ← ϕ ∪ ϕ̃

3 I ← ∅
4 ν′ ← ϕ-SAT(∅) // find first feasible model
5 while ν′ ̸= ∅ do
6 while ν′ ̸= ∅ do
7 x← ν′(V ), y ← F (x)
8 α←

{ {
ōi,yi+1

}
, 1 ⩽ i ⩽ m

}
9 c←

{
ōi,yi

, 1 ⩽ i ⩽ m
}

10 ϕ← ϕ ∪ { c } // block region dominated by y

11 ν′ ← ϕ-SAT(α) // look for y′ that dominates y

12 end
13 I ← I ∪ {y } // save optimal solution y

14 ν′ ← ϕ-SAT(∅) // find new non-dominated solution
15 end
16 return I

Consider the CNF formula ϕ̃ with variables V ∪ O, where V ∩ O = ∅ and O contains one
variable oi,k for each value k ∈ N : ∃x : k = fi(x). The elements of O are the order variables.
We call the tuple

〈
fi, V, O, ϕ̃

〉
an unary counter of fi iff all feasible models ν of ϕ̃ satisfy

fi(x) ⩾ k ⇔ oi,k, x = ν(V ). (3)

2.4 SAT-based algorithms for MOCO
One approach for solving MOCO is through Minimal Correction Subset (MCS) enumeration
since all Pareto-optimal solutions are MCSs of the MOCO formula [28]. After enumerating
the formula’s MCSs, one can filter out the non-optimal solutions. The main advantage of the
MCS enumeration is that it is not necessary to encode the objective functions into CNF since,
in some cases, the encoding of objective functions can dominate the size of the resulting CNF
formula [8].

Soh et al. [26] show that with a unary representation of the objective functions (see
section 2.3), it is possible to establish a one-to-one correspondence between the P -minimal
models and Pareto-optimal solutions of a MOCO instance.

Algorithm 1 illustrates the P-Minimal algorithm. It starts by finding any feasible solution
(line 4). Next, it iteratively improves that solution until a Pareto-optimal solution is found
(lines 6-12). Each time a new solution is found, all dominated solutions are blocked using
a single clause (line 10). Afterwards, the process repeats if there are other non-dominated
solutions (line 14). Otherwise, the algorithm ends and returns the Pareto front (line 16).

The P-Minimal algorithm can be seen as a particular case of the Guided-Improvement
Algorithm (GIA) [22]. The algorithm structure is the same, but P-Minimal uses a single
clause to block dominated solutions instead of a disjunction of PB constraints. Recently, new
UNSAT-SAT and Hitting Set-based algorithms have also been proposed [5] and can be seen
as a generalization of core-guided Maximum Satisfiability (MaxSAT) algorithms for MOCO.
Other adaptations of MaxSAT techniques have been proposed for MOCO [14, 12], including
preprocessing techniques [11].

CP 2024
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f1

f2 Point is
bounded;
part of upper bound;
part of lower bound.

Region

dominates vertex;
is dominated by vertex.

l′
1

l1

l2

l3

u1

u2

Figure 1 Bound sets (Definition 13) of some starred set Y . The points { l1, l2, l3 } form a lower
bound set L. Dropping l1 breaks coverage. This lower bound set is also thin, and adding l′

1 would
make it “thick”. The singleton set { l′

1 } is also a thin, lower bound set, not only of Y but also of L.
The points U = { u1, u2 } form a thin, upper bound set of Y . Note how it implies that U is an upper
set of L too. And, by the same token, of { l′

1 }. The set Y could be the image front of some MOCO
instance.

3 Upper and Lower Bound Sets

Given that the Pareto order is just a partial order in the mathematical sense, there is no
warrant to expect the existence of a least element of the feasible objective space. At the
same time, the Pareto order reduces to the canonical total order of the integers when there
is only one objective. The generalization of the order requires a generalization of the concept
of “bounds”. In particular, it is useful to deal in bound sets (Definition 13) that can contain
more than one element.

We consider two different comparison predicates over sets. Let A and B be any two sets
of points in the objective space. Then, 1) is A a lower/upper cover of B?, and 2) is A a
lower/upper bound set of B?

▶ Definition 11 (Lower and upper covers). Let A and B be subsets of some decision space X,
equipped with a multi-objective function F . Then, A covers B from below, or A is a lower
cover of B, iff every element of B is dominated by some element of A,

∀b ∈ B, ∃a ∈ A : a⪯ b.

A strictly covers B, or A is a strict lower-cover of B, iff

∀b ∈ B, ∃a ∈ A : a≺ b.

Also, we define an upper cover analogously. In particular, B is an upper cover of A iff for
every element of A there is some element of B that is dominated,

∀a ∈ A,∃b ∈ B : a⪯ b.

The strict version trivially follows.

▶ Definition 12 (Thin/thick sets). A set A is thin if it does not contain distinct comparable
elements,

¬∃a1, a2 ∈ A : a1 ̸= a2 ∧ a1 ⪯ a2 (4)

Otherwise, A is thick.
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▶ Definition 13 (Lower and upper bound sets). Let L, U and Z be subsets of some decision
space X2, equipped with a multi-objective function F . L ⊆ X is a (strictly) lower bound set
of Z ⊆ X iff L (strictly) covers Z from below and L is thin. If L is a lower bound set of Z,
we say L⪯ Z. If it is a strictly lower bound set, we say L≺ Z.

U ⊆ X is a (strictly) upper bound set of Z ⊆ X iff U (strictly) covers Z from above and
U is thin. If U is an upper bound set of Z, we say U ≻ Z. If it is a strictly upper bound set,
we say U ⪰ Z.

Figure 1 provides examples of lower and upper bound sets. Let the starred points
correspond to the optimal front in the objective space. Any optimal element in the front will
be dominated by at least one element of any lower bound set (e.g., {l1, l2, l3}). Similarly, any
element of the front dominates at least one element of the upper bound set (e.g., {u1, u2}).

Let umax be the maximal point, that is, the point whose coordinates are the largest values
of each objective. Then, the singleton set {umax } is clearly an upper bound set, although
not necessarily satisfiable. Analogously, the singleton set containing the origin is a lower
bound set.

By computing a satisfiable upper bound set, we get an approximated view of the real
front. If we improve this upper bound set slowly but surely, we will eventually stop, given a
sufficient amount of time. At that point, the upper bound set coincides with the front.

4 Slide&Drill, an Upper-Bound Set Improver

We propose a new algorithm for MOCO, named Slide&Drill (Algorithm 2). Like P-Minimal,
it is a SAT-UNSAT algorithm backed by a SAT oracle. By design, P-Minimal drills down the
objective space, following a “greedy” path to optimal solutions. In contrast, Slide&Drill
is a comprehensive algorithm that interleaves the drilling phase with a sliding one that
diversifies [25] the flushed-out solutions.

4.1 Algorithm Description
We will go over the details of Slide&Drill (Algorithm 2). There is an illustration of the
intuition behind the algorithm’s dynamic in Figure 2.

P-Minimal (Algorithm 1) attempts to get to optimal solutions quickly by always moving
to a dominator of the current point, and so it tries to go “down” towards the origin, so to
speak. It assumes good approximations of the sought-after front should, above all, contain
optimal solutions as soon as possible and that by diving in this fashion, it will flush them out
quicker. But that may not be the case for every problem and application domain. And even
if it is true that Pareto-optimal solutions can be found sooner, it may be more important
to have a broad, diverse approximation with solutions that are feasible but not necessarily
optimal.

In comparison, Slide&Drill moves less eagerly and more comprehensively in the direction
of the front. It interleaves two mechanisms, drill and slide, that communicate through a
waiting list of points and move the incumbent set down until it matches the exact front. The
union of the incumbent set and the waiting list will contain an upper bound set of the exact
result whenever a new drill is started.

2 Although we define bound sets as part of the decision space, we will use their image in the objective
space as a proxy throughout the description of the algorithms.

CP 2024
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Algorithm 2 Slide&Drill, Slide and Drill MOCO solver.

Input : ⟨ϕ, V, F ⟩ // MOCO instance
Output : frontϕ F // one img-front

1 (ϕ̃, O)← EncodeCNF(F, V ) // build unary counters
2 ϕ← ϕ ∪ ϕ̃

3 W ← {umax } // maximal point
4 I ← ∅
5 while W ̸= ∅ do // drill
6 ω ← ⟨select and remove⟩ (W )
7 α← {{ ōi,ωi+1 } : i ∈ 1 . . . m } // set up drill at ω

8 α′ ← ∅
9 ν ← ϕ-SAT(α)

10 while ν ̸= ∅ do // slide
11 x← ν(V ), y ← F (x)
12 ϕ← ϕ ∪

{ {
ōi,yi

: i ∈ 1 . . . m
} }

// block y dominated region
13 I ← I\

{
y′ ∈ I : y ⪯ y′ }

∪ {y } // update incumbent set
14 W ←W ∪ {y } // update waiting list
15 α′ ← α′ ∪

{ {
oi,yi

: i ∈ 1 . . . m
} }

// temp. focus non-dominating
16 ν ← ϕ-SAT(α ∪ α′)
17 end
18 end
19 return I

After the initialization and the encoding of the unary counters, the external drill loop
(line 5) hones the incumbent set I, as long as it is possible to do so. When we drill at site ω

(line 6), we look for points that dominate ω (i.e., solutions “below” ω). This is accomplished
by line 7 and the semantics of the unary counters. The first drill site is the maximal point
umax, (line 3), i.e., the point whose coordinates in the objective space are the maximal values
of the objective functions. The ⟨select and remove⟩ procedure fetches an element of W while
removing it and can be implemented using different strategies. When the waiting list is
depleted, the drill loop stops. At that point, the incumbent set I is the complete solution,
and the algorithm returns. The waiting list is expanded by the inner slide loop (lines 10-16).
The waiting list W takes in freshly found solutions that will eventually be used to start
another drill. Besides, the solutions are also placed into the incumbent set I that represents
the best approximation of the front so far. The incumbent set will be reported if the solver
cannot finish under the resource limits.

This slide loop is the main distinction between Slide&Drill and P-Minimal. Instead of
drilling until striking an optimal solution, as the P-Minimal algorithm does, we steer the
oracle so as to slide across the objective space, collecting solutions that do not dominate each
other. This is accomplished by building the auxiliary formula α′ while accruing the waiting
list. The formula α′ contains one clause per point found since the start of the last slide loop
(line 15) and blocks the region under the known solutions. As soon as the solver fails to find
an extra point the slide loop is complete and the implicit upper bound set contained in the
union of the waiting list and the incumbent set was made whole again. Figure 2 provides a
small example of the execution of the Slide&Drill algorithm.
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f1

f2

28

Point is
optimal;
feasible, not generated;
feasible, generated;
non-feasible.

AB

B

B

Figure 2 Illustration of a run of the Slide&Drill (Algorithm 2). Three upper bound sets are
produced, marked by A, B and the star. The first drill site is the maximal point. We drill and find
one of the elements marked with B. The remaining ones are generated by the slide loop. Note this
is our first satisfiable upper bound set. Assume the next drill site, chosen by ⟨select and remove⟩, is
B’s midpoint. As we drill again, either of the two optimal solution is found, and the slide generates
the other. The uppermost B point is chosen next, and the missing optimal solution is found during
the subsequent drill. There are 4 remaining drill sites to consider: the three optimal solutions and
the lowermost B point. Neither will produce new solutions, and the algorithm terminates after four
more “blank” drills. All B elements are dominated, and they are pushed out of I by the addition of
the optimal solutions. The shading levels vary as the number of upper bound sets that dominate
the region. The lighter tone is painted by A only, while the darker is painted by all three.

The waiting list can be backed by different containers. We consider both a stack (i.e.,
FIFO container) and a queue (i.e., LIFO container). Different containers result in different
implementations of ⟨select and remove⟩ (line 6), and hence a different concrete Slide&Drill.

If a stack is used the algorithm resembles P-Minimal, but it is not quite the same. It is
safer because it will perform a slide step, and hence diversify the incumbent set before
drilling further. If the computation results in timeout, the pool of solutions will differ
from what P-Minimal would have found. There is a trade-off between the number of
optimal points (probably larger with P-Minimal) and the diversity of the points obtained;
If a queue is used, the algorithm is substantially different from P-Minimal. We expect
less optimal solutions but more robust approximations. This is a more extreme approach
than the one resulting from using a stack. It will further tilt the scale in the favor of
diverse but suboptimal points.

4.2 Algorithm Properties
Let us prove Slide&Drill (Algorithm 2) is sound and complete (Lemma 17)

▶ Lemma 14. Any optimal point that dominates the drill site ω will dominate at least one
of the points generated by the associated slide loop (line 10).

Proof. Assume that Lemma 14 is not true. Then, there must exist an optimal point y that
dominates ω but fails to dominate any of the generated points. In that case, the temporary
constraints added at line 15 do not render y unsatisfiable, and because y is optimal, neither
do the permanent constraints added at line 12. And therefore, y must have been generated.
And that contradicts the assumption because y dominates itself. ◀

CP 2024
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▶ Lemma 15. At the start of the outer loop (line 5), the union of the optimal points in the
incumbent set I with the waiting list W contains an upper bound set of the front Y = frontZ F .

Proof. This is true for the first run because the waiting list contains the maximal point.
Assume Lemma 15 true at the start of iteration i, and let U be an upper bound set

contained in I ∩ Y ∪W . We want to prove that an upper bound set U ′ is contained in
I ′ ∩ Y ∪W ′, where I ′ and W ′ are the incumbent set and waiting list at the start of iteration
i + 1.

Let W ′ = W \ {ω } ∪∆W , where ∆W is the set accrued by the successive executions of
line 14. We will prove that C = U \ {ω } ∪∆W is an upper-cover of Y . All solutions y ∈ Y

that do not dominate ω are covered by elements in U . Solutions y that do dominate ω are
covered by elements in ∆W , by Lemma 14.

If the upper cover C is thin, then U ′ = C. Otherwise, for any pair of comparable elements
y ⪯ y′ ∈ C, drop y. The obtained set is a cover because any point dominating y dominates
y′ too. The remaining elements of C are incomparable and are collected into U ′ so that
U ′ ⊆ C.

To see that U ′ ⊆ I ′ ∩ Y ∪W ′,

U ′ ⊆ C = U \ {ω } ∪∆W =⇒ (5)
U ′ ⊆ (I ∩ Y ∪W ) \ {ω } ∪∆W =⇒ (6)
U ′ ⊆ (I ′ ∩ Y ∪W ) \ {ω } ∪∆W =⇒ (7)
U ′ ⊆ (I ′ ∩ Y ) \ {ω } ∪W \ {ω } ∪∆W =⇒ (8)
U ′ ⊆ (I ′ ∩ Y ) \ {ω } ∪W ′ = (I ′ ∩ Y ∪W ′) \ {ω } ⊆ I ′ ∩ Y ∪W ′, (9)

where Equation (7) follows because only dominated solutions can be removed from I, and
Equation (9) follows because ω does not belong to W ′. ◀

▶ Lemma 16. At the start of the outer loop (line 5), any point in I that does not belong to
W is optimal.

Proof. All points are added to both I and W . If some point ω does not belong to W , then
it must have been removed by line 6. After that, the query will return an empty model iff ω

is optimal because the restrictions in ϕ block only dominated regions, and the assumptions
focus the search over the region dominating ω. If ω is not optimal, the query at line 16 will
generate a point that dominates it, and that point will push off ω from I at line 13. ◀

▶ Proposition 17. Algorithm 2 is sound and complete.

Proof. Let us prove soundness first. If the algorithm returns, W is empty. By Lemma 15, I

contains an upper bound set. By Lemma 16, all its elements are optimal. Every element of
the front dominates at least one element of I. Assume y is optimal and is not part of I. It
must be dominated by some element of I, but an optimal point is dominated only by itself.
Hence, y cannot be absent from I.

Let us move on to show the algorithm is complete. The clauses added by line 12 block
at least one feasible model each, as they block the dominated region, including its defining
vertex. Because no blocking clause is ever dropped, the number of satisfiable queries is
bounded by the number of satisfiable models, which is finite.

After entering the slide loop at line 10, it will fail to return iff there is an infinite number
of satisfiable queries, which cannot happen, given the former argument.

Therefore, every operation occurring in the drill loop (line 5) ends successfully in a finite
amount of time. Therefore, the loop exits iff W becomes empty.
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Note that the waiting list receives new elements only at line 14. Based on the argument
above, the number of inserted elements must always be finite. Each iteration of the drill loop
takes one element out. Assume this loop never ends. Eventually, the number of removals
would catch up to the number of insertions, and the waiting list would be empty. But then,
the loop would end, which contradicts the hypothesis. ◀

4.3 Tandem Slide&Drill

Two different solvers working together will most likely produce better results than any of
them would by themselves.

Suppose we have two different approximated fronts A and B of a MOCO instance,
produced respectively by solvers a and b. Consider also the combined solution ÂB, built
from A∪B by weeding out any dominated point from the union. Most likely, A B̂ is a better
approximation of the front than any of the solutions A and B by themselves. And it cannot
be worse. Even more, had they shared the incrementally built approximations on the fly, the
workers would have guided each other and avoided regions of the objective space that were
already branded as dominated by some feasible solution produced by the other contributor.

Because Slide&Drill is a SAT-UNSAT solver, it makes sense to consider for its companion
an UNSAT-SAT solver. We chose a previously proposed UNSAT-SAT algorithm named
Core-Guided [5]. The workers (i.e., Slide&Drill and Core-Guided) will share a single,
incrementally built formula. Note that the unary counters representing the objective functions
are shared, as is the SAT oracle.

In order to synchronize their work, there is a conflict budget. The solvers will work in
turn: as soon as the assigned budget is fully depleted on SAT calls the current worker stops,
and the other contributor kicks in with a restored budget.

For the Slide&Drill algorithm, we simply reinsert the last drill site into the waiting list
and proceed. For the Core-Guided algorithm, we keep track of the current upper-fence and
bootstrap the next search session by setting the upper fence to the backed-up value.

5 Results and Analysis

5.1 Benchmark Sets and Experimental Setup

In order to evaluate our MOCO algorithms against other state-of-the-art MOCO solvers, we
consider two publicly available benchmark sets of MOCO instances that have already been
used in previous research works.

The Development Assurance Level (DAL) [4] benchmark set 3 is composed of 95 instances
encoding different levels of rigour in the development of a software or hardware component
of an aircraft. The development assurance level defines the assurance activities aimed at
eliminating design and coding errors that could affect the safety of an aircraft. The goal is
to allocate the smallest DAL to functions to decrease the development costs.

The Package Upgradeability (PU) benchmark set is composed of 687 instances from the
Mancoosi International Solver Competition [18]. Each instance encodes the upgradeability
of packages in an open-source system. The packup tool [13] was used to generate variants
containing between two and five objectives to optimize. This results in 3570 instances.

3 https://www.lifl.fr/LION9/challenge.html.
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All of the experiments were conducted on a computer with Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40GHz running Linux Debian 10.2. Each problem instance was executed for each
MOCO solver with a memory limit of 32 GB and a CPU timeout of 10 minutes (600 seconds)
imposed using the runsolver [23] tool.

5.2 Evaluated Algorithms
We evaluate our algorithms against several SAT-based MOCO solvers. The ParetoMCS al-
gorithm 4 is based on the enumeration of MCSs of the MOCO instance [28] and the P-Minimal
algorithm implements the SAT-UNSAT approach presented in Algorithm 1 [26]. Additionally,
the Core-Guided algorithm implements a complementary UNSAT-SAT approach [5].

The Slide&Drill algorithm implements our new approach proposed in Algorithm 2.
Furthermore, both the Slide&Drill and P-Minimal approaches are combined with the
Core-Guided algorithm, (as described in section 4.3).

All algorithms are implemented using the publicly available codebase 5 from the authors of
the Core-Guided algorithm [5]. Hence, all algorithms use the selection delimiter encoding [16]
to represent the objective functions. Furthermore, the underlying SAT solver is also the same
and used incrementally [7, 21, 1]. As a result, the observed differences in performance are
mainly from the algorithmic techniques employed and a more fair comparison is achieved.

5.3 Evaluation Metrics
Finding the Pareto front of MOCO instances is computationally harder than solving single-
objective optimization problems. In most cases, given an acceptable time limit, solvers can
only provide an approximation of the Pareto front.

Let A denote a set of algorithms and variants to be evaluated and let I denote the set of
instances. Let Yi,j denote the approximation of the Pareto front provided by algorithm Ai

(Ai ∈ A) for instance Ij (Ij ∈ I). Let Rj denote the reference set for instance Ij defined as
Rj = ∪Ai∈AYi,j , where only the incomparable elements are kept, i.e., all dominated solutions
are filtered out of Rj . Hence, the reference set Rj contains only the best solutions found by
any of the evaluated algorithms in A.

To evaluate the quality of the approximations provided by each tool, we use three different
metrics. The first metric is the Contribution indicator that measures the contribution of a
given algorithm to the reference set. Hence, the contribution indicator of algorithm Ai ∈ A
in a MOCO instance Ij is defined as |Yi,j∩Rj |

|Rj | . Clearly, larger values are preferable since the
metric is maximized when the algorithm is able to identify all solutions in the reference set.

The second metric is the Hypervolume (HV) indicator [31]. This indicator measures the
volume of the objective space between the set of nondominated solutions Yi,j and a given
reference point ur. The reference point depends on the benchmark. For a given instance Ij ,
the reference point is set to the largest possible objective values in the reference set Rj

6.
As in the previous indicator, larger values of HV are preferable since the volume of the
dominated objective space is maximized at the Pareto front.

Finally, the third metric is the Inverted Generational Distance (IGD) indicator [30, 6].
IGD measures the average Euclidean distance, in the objective space, between the reference
set Rj and the solution set Yi,j returned by the algorithm. In this case, smaller values of
IGD are preferable, meaning that the solution set Yi,j is closer to the reference set Rj .

4 https://gitlab.ow2.org/sat4j/moco
5 https://gitlab.inesc-id.pt/u001810/moco
6 If the reference set Rj is the Pareto front, then the reference point ur is the Nadir point [20].

https://gitlab.ow2.org/sat4j/moco
https://gitlab.inesc-id.pt/u001810/moco
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Figure 3 Comparison of the Contribution, IGD and HV results for each set of instances.
Slide&Drill variants only. Each series is sorted independently, smaller values first. Vertical scale is
logarithmical. Each series is labelled by the type of waiting list and the value of the conflict budget.

5.4 Slide and Drill Variants

The Slide&Drill algorithm (Algorithm 2) can be configured in different ways. In this section
we focus on the management of the waiting list and the SAT solver call. As mentioned in
section 4.1, the waiting list can be managed as a stack or as a queue and this results in
exploring the search space in different ways. Additionally, one can set the SAT solver call
with a limited budget of conflicts in order for Slide&Drill not to get “stuck”. Setting up
a conflict budget will not violate neither soundness nor completeness, since the site of the
unfinished drill goes back into the waiting list and all SAT calls are done in an incremental
fashion (i.e., the same SAT solver instance is always used and no learned clause is ever
removed).

Figure 3 shows the results of several variants of the Slide&Drill algorithm for the three
metrics defined in section 5.3 for both the DAL (left) and PU (right) benchmark sets. The
stack and queue variants denote that the waiting list is managed as a stack and queue,
respectively. Moreover, whenever the stack and queue variants are followed by a number C,
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Figure 4 Comparison of the Contribution, IGD and HV results for each set of instances. Each
series is sorted independently, smaller values first. Vertical scale is logarithmical.

then C denotes the conflict limit in the SAT call. Whenever the conflict limit is reached,
the SAT call ends and the Slide&Drill algorithm retrieves a new starting point from the
waiting list. Otherwise, no limit is imposed on the SAT call.

The experimental results in these benchmark sets show that the algorithm performs
better when a conflict limit is imposed. This occurs for all metrics in both benchmark sets.
The budgeted SAT call allows the algorithm to choose a new element of the waiting list,
allowing it to find a wider variety of solutions that better approximates the Pareto front.

We obtained mixed results regarding the waiting list’s management. While the stack
variants perform better for the DAL benchmark set, the queue variants perform better on
PU instances. This assay is based on the contribution metric, as the overall values for HV
and IGD are similar.

5.5 Comparison with Other MOCO Solvers
We compare the stack, 1000 variant of the Slide&Drill algorithm (stack strategy for
management of the waiting list and C = 1000 for the conflict limit on the SAT solver) against
other state-of-the-art MOCO solvers. We chose this variant of the Slide&Drill algorithm
since it seems to be the most balanced one, considering the results from the previous section.
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The results on DAL (left) and PU (right) benchmarks considering the three metrics are
available in Figure 4. For the DAL benchmarks, the new Slide&Drill algorithm is able
to outperform the ParetoMCS (PMCS), Core-Guided (unsat-sat) and P-Minimal (p-min)
algorithms on all metrics. The approximation of the Pareto front provided by Slide&Drill
on these instances is clearly better than the ones produced by all other algorithms. Due
to the newly proposed strategy, Slide&Drill is able to find a more diverse set of solutions
and, thus, a more accurate approximation of the Pareto front. Furthermore, even when
Slide&Drill and Core-Guided work in tandem (stack&unsat-sat), there are only very
slight improvements to the contribution metric.

On the PU benchmarks, the Slide&Drill (stack, 1000) algorithm is able to find
solutions close to the P-Minimal (p-min) algorithm considering both the HV and IGD metrics.
Moreover, it is able to outperform the Core-Guided (unsat-sat) algorithm. However, the
ParetoMCS (PMCS) is the best standalone algorithm in terms of HV and IGD. Nevertheless,
when Slide&Drill is paired with Core-Guided in tandem (stack&unsat-sat), then this
approach is clearly better on all metrics on the PU benchmark set. This is due to the high
complementarity of these algorithms when applied on the PU instances. Observe that the
P-Minimal, when paired with Core-Guided in tandem (p-min&unsat-sat), also improves
its performance. However, the tandem Slide&Drill and Core-Guided still performs better
on all metrics due to the higher diversification of solutions provided by our new Slide&Drill
algorithm.

6 Conclusions and Future Work

This paper introduces the Slide and Drill approach for solving MOCO problems. The
proposed Slide&Drill algorithm is a SAT-based algorithm with a strategy to diversify the
set of solutions found such that a better approximation of the Pareto front can be found.
Previously proposed algorithms either disregard the objective function representation (e.g.,
through the enumeration of MCS) or have too much focus on proving that a given solution
is Pareto-optimal, resulting in being able to identify only a small set of the Pareto front.

Experimental results on two representative sets of benchmarks show that the new
Slide&Drill algorithm outperforms previous SAT-based MOCO solvers on three differ-
ent metrics. Moreover, the performance of the Slide&Drill algorithm can be additionally
boosted when paired with a complementary Core-Guided approach. Hence, the newly
proposed algorithms further enhance the usage of SAT-based approaches for MOCO.

The Slide and Drill approach introduced in this paper can be configured using different
techniques to diversify the exploration of the search space. In this paper we exploit several
strategies to choose elements of a waiting list that correspond to areas of the search space still
to explore. In future work, we propose to manage the waiting list as a priority queue using a
performance metric such as the Hypervolume as the selection criterion. Although this criterion
has already been used in other algorithmic contexts [27], using it in a tandem algorithm with
both Slide&Drill and Core-Guided approaches poses new additional challenges.
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