
30th International Conference on
Principles and Practice of
Constraint Programming

CP 2024, September 2–6, 2024, Girona, Spain

Edited by

Paul Shaw

LIPIcs – Vo l . 307 – CP 2024 www.dagstuh l .de/ l ip i c s

Editors

Paul Shaw
IBM, Biot, France
paul.shaw@fr.ibm.com

ACM Classification 2012
Theory of computation → Constraint and logic programming; Applied computing → Operations research;
Mathematics of computing → Combinatorial optimization; Computing methodologies → Planning
and scheduling; Computing methodologies → Theorem proving algorithms; Theory of computation →
Mathematical optimization

ISBN 978-3-95977-336-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-336-2.

Publication date
August, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CP.2024.0

ISBN 978-3-95977-336-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0009-0001-6654-0363
mailto:paul.shaw@fr.ibm.com
https://www.dagstuhl.de/dagpub/978-3-95977-336-2
https://www.dagstuhl.de/dagpub/978-3-95977-336-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CP.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-336-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CP 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Paul Shaw . 0:ix

List Of Authors
. 0:xi

Senior Program Committee
. 0:xv

Program Committee
. 0:xvii

Additional Reviews
. 0:xxi

Invited Talks

Solving Patience and Solitaire Games with Good Old Fashioned AI
Ian P. Gent . 1:1–1:1

Thinking Fast and Slow in AI: A Cognitive Architecture to Augment Both AI
and Human Reasoning

Francesca Rossi . 2:1–2:1

Regular Papers

The Complexity of Symmetry Breaking Beyond Lex-Leader
Markus Anders, Sofia Brenner, and Gaurav Rattan . 3:1–3:24

Certifying Without Loss of Generality Reasoning in Solution-Improving
Maximum Satisfiability

Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and
Dieter Vandesande . 4:1–4:28

ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization
Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai . 5:1–5:17

Deep Cooperation of Local Search and Unit Propagation Techniques
Xiamin Chen, Zhendong Lei, and Pinyan Lu . 6:1–6:16

Cumulative Scheduling with Calendars and Overtime
Samuel Cloutier and Claude-Guy Quimper . 7:1–7:16

Slide&Drill, a New Approach for Multi-Objective Combinatorial Optimization
João Cortes, Inês Lynce, and Vasco Manquinho . 8:1–8:17

Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic
Programming and Decision Diagram Algorithms

Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström,
Andy Oertel, and Konstantin Sidorov . 9:1–9:21

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Anytime Weighted Model Counting with Approximation Guarantees for
Probabilistic Inference

Alexandre Dubray, Pierre Schaus, and Siegfried Nijssen . 10:1–10:16

A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers
Maarten Flippo, Konstantin Sidorov, Imko Marijnissen, Jeff Smits, and
Emir Demirović . 11:1–11:20

Using Constraint Programming for Disjunctive Scheduling in Temporal AI
Planning

Adam Francis Green, J. Christopher Beck, and Amanda Coles 12:1–12:17

Improved Bounds of Integer Solution Counts via Volume and Extending to
Mixed-Integer Linear Constraints

Cunjing Ge and Armin Biere . 13:1–13:17

A CP/LS Heuristic Method for Maxmin and Minmax Location Problems with
Distance Constraints

Panteleimon Iosif, Nikolaos Ploskas, Kostas Stergiou, and
Dimosthenis C. Tsouros . 14:1–14:21

CSPs with Few Alien Constraints
Peter Jonsson, Victor Lagerkvist, and George Osipov . 15:1–15:17

A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design
Jihye Jung, Kevin Dalmeijer, and Pascal Van Hentenryck . 16:1–16:20

Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four
Artem Kaznatcheev and Melle van Marle . 17:1–17:16

Learning Effect and Compound Activities in High Multiplicity RCPSP:
Application to Satellite Production

Duc Anh Le, Stéphanie Roussel, Christophe Lecoutre, and Anouck Chan 18:1–18:25

An Efficient Local Search Solver for Mixed Integer Programming
Peng Lin, Mengchuan Zou, and Shaowei Cai . 19:1–19:19

Constraint Modelling with LLMs Using In-Context Learning
Kostis Michailidis, Dimos Tsouros, and Tias Guns . 20:1–20:27

Strengthening Relaxed Decision Diagrams for Maximum Independent Set
Problem: Novel Variable Ordering and Merge Heuristics

Mohsen Nafar and Michael Römer . 21:1–21:17

Learning Lagrangian Multipliers for the Travelling Salesman Problem
Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, and Louis-Martin
Rousseau . 22:1–22:18

Constraint Programming Model for Assembly Line Balancing and Scheduling
with Walking Workers and Parallel Stations

Xavier Pucel and Stéphanie Roussel . 23:1–23:21

Latency-Aware 2-Opt Monotonic Local Search for Distributed Constraint
Optimization

Ben Rachmut, Roie Zivan, and William Yeoh . 24:1–24:17

Contents 0:vii

Combining Constraint Programming Reasoning with Large Language Model
Predictions

Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron 25:1–25:18

Structure-Guided Local Improvement for Maximum Satisfiability
André Schidler and Stefan Szeider . 26:1–26:23

Efficient Implementation of the Global Cardinality Constraint with Costs
Margaux Schmied and Jean-Charles Régin . 27:1–27:18

CP for Bin Packing with Multi-Core and GPUs
Fabio Tardivo , Laurent Michel, and Enrico Pontelli . 28:1–28:19

Mutational Fuzz Testing for Constraint Modeling Systems
Wout Vanroose, Ignace Bleukx, Jo Devriendt, Dimos Tsouros, Hélène Verhaeghe,
and Tias Guns . 29:1–29:25

Learning Precedences for Scheduling Problems with Graph Neural Networks
Hélène Verhaeghe, Quentin Cappart, Gilles Pesant, and Claude-Guy Quimper 30:1–30:18

Inverting Step-Reduced SHA-1 and MD5 by Parameterized SAT Solvers
Oleg Zaikin . 31:1–31:19

Solving LBBD Master Problems with Constraint Programming and
Domain-Independent Dynamic Programming

Jiachen Zhang and J. Christopher Beck . 32:1–32:21

Ex-Ante Constraint Elicitation in Incomplete DCOPs
Roie Zivan, Shiraz Regev, and William Yeoh . 33:1–33:16

Short Papers

Minimizing Working-Group Conflicts in Conference Session Scheduling Through
Maximum Satisfiability

Sami Cherif, Heythem Sattoutah, Chu-Min Li, Corinne Lucet, and Laure
Brisoux-Devendeville . 34:1–34:11

On the Complexity of Integer Programming with Fixed-Coefficient Scaling
Jorke M. de Vlas . 35:1–35:9

Black-Box Value Heuristics for Solving Optimization Problems with Constraint
Programming

Augustin Delecluse and Pierre Schaus . 36:1–36:12

Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries
Markus Kirchweger and Stefan Szeider . 37:1–37:11

Frugal Algorithm Selection
Erdem Kuş, Özgür Akgün, Nguyen Dang, and Ian Miguel . 38:1–38:16

An Investigation of Generic Approaches to Large Neighbourhood Search
Filipe Souza, Diarmuid Grimes, and Barry O’Sullivan . 39:1–39:10

Encoding the Hamiltonian Cycle Problem into SAT Based on Vertex Elimination
Neng-Fa Zhou . 40:1–40:8

CP 2024

Preface

The year 2024 marks the 30th edition of the International Conference on Principles and
Practice of Constraint Programming. Whilst I did not attend the very first couple of
conferences (1995 in Cassis, and 1996 in Cambridge), I did go to Linz in 1997 and managed
to get a paper in the program in 1998 in Pisa: my CP journey had begun. This year, the
conference takes place in Girona, Spain, from the 2nd to the 6th of September. More details
can be found at https://cp2024.a4cp.org/index.html.

This year in Girona, the conference has 38 accepted papers (from 95 submissions),
2 invited talks and 3 tutorials over 5 days. As is customary, day zero of the conference
comprises a series of workshops and the doctoral program: a time for young researchers
to come together to exchange ideas. This year, four workshops are represented: The 26th
International Workshop on Configuration, the 23rd Workshop on Constraint Modelling
and Reformulation, the 7th Workshop on Progress Towards the Holy Grail, and the 1st
Workshop on Discrete Optimization with Soft Constraints. Special thanks go to Edward
Lam for chairing the Doctoral Program, and to Carlos Ansótegui for chairing the Workshops
Program.

The conference has three diverse tutorials: Domain-Independent Dynamic Programming
by Chris Beck and Ryo Kuroiwa, JuMP and Constraint Programming by Benoît Legat, and
Constraint Acquisition by Dimos Tsouros. I want to thank all the authors and presenters
for their willingness to contribute to the conference in this way, and to Pierre Schaus for
agreeing to be tutorial chair and bringing together these talks.

As usual, we also have a number of special tracks this year: Applications, CP and
Machine Learning, and CP and Quantum Computing. I’d like to thank Louis-Martin
Rousseau, Quentin Cappart and Philippe Codognet who did an excellent job of chairing
these tracks.

I would like to welcome Özgür Akgün to the role of DEI chair this year, a term that he
will hold for two years. He joins María Andreína Francisco Rodríguez who is in her second
year of her role as joint DEI chair.

A conference like CP relies on many people to make it a success. In terms of the program
itself, I would like to thank first of all everybody who contributed papers: submissions are
the essence of the conference. Then, of course, I would like to thank the program committee,
additional reviewers, and the senior program committee who made the final deliberations. I
found all the PC and SPC discussions to be very fair and professional. I came away from the
process with a really positive view of our community. Thank you for that.

I am very much looking forward to the two invited talks this year, both from previous
program chairs of CP. Ian Gent will speak about “Solving Patience and Solitaire Games with
Good Old-Fashioned AI”, and Francesca Rossi will discuss “Thinking Fast and Slow in AI:
A cognitive architecture to augment both AI and human reasoning”. Another special treat
will be a panel discussion between previous program chairs of CP. Many thanks to Eugene
Freuder for arranging this special 30th anniversary session.

Of course, the conference organization was fully dependent upon our excellent conference
chairs, Miquel Bofill and Mateu Villaret and our publicity chair, Jordi Coll. Their hard
work on the organization made my job so much simpler and allowed me to focus on the
program. I am writing this two months before the conference itself, but I am sure the venue
and organization on the week of the conference are going to be fabulous.

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://cp2024.a4cp.org/index.html
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

Finally, I wish to thank our generous sponsors: The Association for Constraint Pro-
gramming, the AI Journal, ScheduleOpt, Universitat de Girona, Generalitat de Catalunya,
Diputació de Girona, Mitsubishi Electric, IBM, Google, The Optimization Firm, Huawei,
Cosling, Potassco Solutions, Ajuntament de Girona, EurAI, Patronat Politècnica (Universitat
de Girona), Càtedra d’Informació i Computació (Universitat de Girona), Càtedra Lluís A.
Santaló d’Aplicacions de la Matemàtica (Universitat de Girona).

July 2024 Paul Shaw

List of Authors

Özgür Akgün (38)
School of Computer Science,
University of St Andrews, UK

Markus Anders (3)
TU Darmstadt, Germany

J. Christopher Beck (12, 32)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Jeremias Berg (4)
Department of Computer Science, HIIT,
Helsinki, Finland;
University of Helsinki, Finland

Armin Biere (13)
University of Freiburg, Germany

Ignace Bleukx (29)
DTAI, KU Leuven, Belgium

Bart Bogaerts (4)
Vrije Universiteit Brussel, Belgium

Alexandre Bonlarron (25)
Université Côte d’Azur, Inria,
Sophia Antipolis, France;
Université Côte d’Azur, I3S, CNRS,
Sophia Antipolis, France

Sofia Brenner (3)
TU Darmstadt, Germany

Laure Brisoux-Devendeville (34)
MIS UR 4290, Université de Picardie Jules
Verne, Amiens, France

Shaowei Cai (5, 19)
Key Laboratory of System Software (Chinese
Academy of Sciences) and State Key Laboratory
of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China;
School of Computer Science and Technology,
University of Chinese Academy of Sciences,
Beijing, China

Quentin Cappart (22, 30)
Polytechnique Montréal, Canada

Anouck Chan (18)
DTIS, ONERA, Université de Toulouse, France

Xiamin Chen (6)
Shanghai University of Finance and Economics,
China

Zhihan Chen (5)
Key Laboratory of System Software (Chinese
Academy of Sciences) and State Key Laboratory
of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China;
School of Computer Science and Technology,
University of Chinese Academy of Sciences,
Beijing, China

Sami Cherif (34)
MIS UR 4290, Université de Picardie Jules
Verne, Amiens, France

Samuel Cloutier (7)
Université Laval, Québec, Canada

Amanda Coles (12)
Department of Informatics, King’s College
London, UK

João Cortes (8)
INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Portugal

Kevin Dalmeijer (16)
H. Milton Stewart School of Ind. and Syst.
Engineering, Georgia Institute of Technology,
Atlanta, GA, USA

Nguyen Dang (38)
School of Computer Science,
University of St Andrews, UK

Elisabetta De Maria (25)
Université Côte d’Azur, I3S, CNRS,
Sophia Antipolis, France

Jorke M. de Vlas (35)
Linköping Universitet, Sweden

Augustin Delecluse (36)
TRAIL, ICTEAM, UCLouvain, Belgium

Emir Demirović (9, 11)
TU Delft, The Netherlands

Jo Devriendt (29)
DTAI, KU Leuven, Belgium

Bistra Dilkina (22)
Center for Artificial Intelligence in Society,
University of Southern California, Los Angeles,
CA, USA

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9519-938X
https://doi.org/10.4230/LIPIcs.CP.2024.38
https://doi.org/10.4230/LIPIcs.CP.2024.3
https://doi.org/10.4230/LIPIcs.CP.2024.12
https://doi.org/10.4230/LIPIcs.CP.2024.32
https://orcid.org/0000-0001-7660-8061
https://doi.org/10.4230/LIPIcs.CP.2024.4
https://orcid.org/0000-0001-7170-9242
https://doi.org/10.4230/LIPIcs.CP.2024.13
https://orcid.org/0000-0001-7810-8351
https://doi.org/10.4230/LIPIcs.CP.2024.29
https://orcid.org/0000-0003-3460-4251
https://doi.org/10.4230/LIPIcs.CP.2024.4
https://orcid.org/0000-0001-6116-2773
https://doi.org/10.4230/LIPIcs.CP.2024.25
https://orcid.org/0009-0006-8512-2569
https://doi.org/10.4230/LIPIcs.CP.2024.3
https://orcid.org/0009-0003-2618-0660
https://doi.org/10.4230/LIPIcs.CP.2024.34
https://orcid.org/0000-0003-1730-6922
https://doi.org/10.4230/LIPIcs.CP.2024.5
https://doi.org/10.4230/LIPIcs.CP.2024.19
https://orcid.org/0000-0002-8742-0774
https://doi.org/10.4230/LIPIcs.CP.2024.22
https://doi.org/10.4230/LIPIcs.CP.2024.30
https://orcid.org/0000-0003-0581-5287
https://doi.org/10.4230/LIPIcs.CP.2024.18
https://orcid.org/0009-0006-8383-6015
https://doi.org/10.4230/LIPIcs.CP.2024.6
https://orcid.org/0000-0001-5702-2508
https://doi.org/10.4230/LIPIcs.CP.2024.5
https://orcid.org/0000-0003-4646-9982
https://doi.org/10.4230/LIPIcs.CP.2024.34
https://orcid.org/0000-0002-3585-7405
https://doi.org/10.4230/LIPIcs.CP.2024.7
https://orcid.org/0000-0002-1838-8301
https://doi.org/10.4230/LIPIcs.CP.2024.12
https://orcid.org/0000-0003-4833-8054
https://doi.org/10.4230/LIPIcs.CP.2024.8
https://orcid.org/0000-0002-4304-7517
https://doi.org/10.4230/LIPIcs.CP.2024.16
https://orcid.org/0000-0002-2693-6953
https://doi.org/10.4230/LIPIcs.CP.2024.38
https://doi.org/10.4230/LIPIcs.CP.2024.25
https://doi.org/10.4230/LIPIcs.CP.2024.35
https://orcid.org/0000-0001-6285-6515
https://doi.org/10.4230/LIPIcs.CP.2024.36
https://orcid.org/0000-0003-1587-5582
https://doi.org/10.4230/LIPIcs.CP.2024.9
https://doi.org/10.4230/LIPIcs.CP.2024.11
https://orcid.org/0000-0002-6346-3665
https://doi.org/10.4230/LIPIcs.CP.2024.29
https://orcid.org/0000-0002-6784-473X
https://doi.org/10.4230/LIPIcs.CP.2024.22
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Authors

Alexandre Dubray (10)
Institute of Information and Communication
Technologies, Electonics and Applied
Mathematics (ICTEAM), UCLouvain, Belgium

Aaron Ferber (22)
Center for Artificial Intelligence in Society,
University of Southern California, Los Angeles,
CA, USA

Maarten Flippo (11)
Delft University of Technology, The Netherlands

Adam Francis Green (12)
Department of Informatics,
King’s College London, UK;
Tango Hospitality Inc., Toronto, Canada

Cunjing Ge (13)
National Key Laboratory for Novel Software
Technology, Nanjing University, China;
School of Artificial Intelligence, Nanjing
University, China

Ian P. Gent (1)
School of Computer Science,
University of St Andrews, UK

Diarmuid Grimes (39)
Munster Technological University, Cork, Ireland;
SFI Centre for Research Training in Artificial
Intelligence, Cork, Ireland

Tias Guns (20, 29)
DTAI, KU Leuven, Belgium

Hao Hu (5)
Key Laboratory of System Software (Chinese
Academy of Sciences) and State Key Laboratory
of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

Panteleimon Iosif (14)
University of Western Macedonia, Kozani,
Greece

Peter Jonsson (15)
Department of Computer and Information
Science, Linköping University, Sweden

Jihye Jung (16)
H. Milton Stewart School of Ind. and Syst.
Engineering, Georgia Institute of Technology,
Atlanta, GA, USA

Artem Kaznatcheev (17)
Department of Mathematics, and Department of
Information and Computing Sciences, Utrecht
University, The Netherlands

Markus Kirchweger (37)
Algorithms and Complexity Group, TU Wien,
Austria

Erdem Kuş (38)
School of Computer Science,
University of St Andrews, UK

Victor Lagerkvist (15)
Department of Computer and Information
Science, Linköping University, Sweden

Duc Anh Le (18)
DTIS, ONERA, Université de Toulouse, France

Christophe Lecoutre (18)
CRIL, Université d’Artois & CNRS, France

Zhendong Lei (6)
Huawei Taylor Lab, Shanghai, China

Chu-Min Li (34)
MIS UR 4290, Université de Picardie Jules
Verne, Amiens, France

Peng Lin (5, 19)
Key Laboratory of System Software (Chinese
Academy of Sciences) and State Key Laboratory
of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China;
School of Computer Science and Technology,
University of Chinese Academy of Sciences,
Beijing, China

Pinyan Lu (6)
Shanghai University of Finance and Economics,
Shanghai, China; Huawei Taylor Lab, Shanghai,
China

Corinne Lucet (34)
MIS UR 4290, Université de Picardie Jules
Verne, Amiens, France

Inês Lynce (8)
INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Portugal

Vasco Manquinho (8)
INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Portugal

Imko Marijnissen (11)
Delft University of Technology, The Netherlands

Ciaran McCreesh (9)
University of Glasgow, Scotland

Matthew J. McIlree (9)
University of Glasgow, Scotland

Kostis Michailidis (20)
DTAI, KU Leuven, Belgium

https://orcid.org/0000-0002-3302-870X
https://doi.org/10.4230/LIPIcs.CP.2024.10
https://orcid.org/0000-0002-7422-0044
https://doi.org/10.4230/LIPIcs.CP.2024.22
https://orcid.org/0009-0005-5333-2767
https://doi.org/10.4230/LIPIcs.CP.2024.11
https://orcid.org/0009-0006-9474-0676
https://doi.org/10.4230/LIPIcs.CP.2024.12
https://orcid.org/0000-0002-8249-1397
https://doi.org/10.4230/LIPIcs.CP.2024.13
https://orcid.org/0000-0002-5604-7006
https://doi.org/10.4230/LIPIcs.CP.2024.1
https://orcid.org/0000-0001-5551-6504
https://doi.org/10.4230/LIPIcs.CP.2024.39
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2024.20
https://doi.org/10.4230/LIPIcs.CP.2024.29
https://orcid.org/0000-0003-4103-3098
https://doi.org/10.4230/LIPIcs.CP.2024.5
https://orcid.org/0009-0001-4589-3346
https://doi.org/10.4230/LIPIcs.CP.2024.14
https://doi.org/10.4230/LIPIcs.CP.2024.15
https://orcid.org/0000-0002-5217-020X
https://doi.org/10.4230/LIPIcs.CP.2024.16
https://orcid.org/0000-0001-8063-2187
https://doi.org/10.4230/LIPIcs.CP.2024.17
https://orcid.org/0000-0002-1838-8344
https://doi.org/10.4230/LIPIcs.CP.2024.37
https://orcid.org/0000-0001-7775-5610
https://doi.org/10.4230/LIPIcs.CP.2024.38
https://doi.org/10.4230/LIPIcs.CP.2024.15
https://orcid.org/0009-0002-1028-4329
https://doi.org/10.4230/LIPIcs.CP.2024.18
https://orcid.org/0000-0002-2205-6545
https://doi.org/10.4230/LIPIcs.CP.2024.18
https://orcid.org/0009-0006-1238-9000
https://doi.org/10.4230/LIPIcs.CP.2024.6
https://orcid.org/0000-0002-6886-8434
https://doi.org/10.4230/LIPIcs.CP.2024.34
https://orcid.org/0009-0002-4183-5998
https://doi.org/10.4230/LIPIcs.CP.2024.5
https://doi.org/10.4230/LIPIcs.CP.2024.19
https://orcid.org/0009-0005-0569-4122
https://doi.org/10.4230/LIPIcs.CP.2024.6
https://orcid.org/0000-0002-8634-7237
https://doi.org/10.4230/LIPIcs.CP.2024.34
https://orcid.org/0000-0003-4868-415X
https://doi.org/10.4230/LIPIcs.CP.2024.8
https://orcid.org/0000-0002-4205-2189
https://doi.org/10.4230/LIPIcs.CP.2024.8
https://orcid.org/0009-0008-7086-920X
https://doi.org/10.4230/LIPIcs.CP.2024.11
https://orcid.org/0000-0002-6106-4871
https://doi.org/10.4230/LIPIcs.CP.2024.9
https://orcid.org/0009-0005-5042-0876
https://doi.org/10.4230/LIPIcs.CP.2024.9
https://orcid.org/0009-0000-2139-0106
https://doi.org/10.4230/LIPIcs.CP.2024.20

Authors 0:xiii

Laurent Michel (28)
Synchrony Chair in Cybersecurity, School of
Computing, University of Connecticut, Storrs,
CT, USA

Ian Miguel (38)
School of Computer Science,
University of St Andrews, UK

Mohsen Nafar (21)
Bielefeld University, Germany

Siegfried Nijssen (10)
Institute of Information and Communication
Technologies, Electonics and Applied
Mathematics (ICTEAM), UCLouvain, Belgium

Jakob Nordström (4, 9)
University of Copenhagen, Denmark;
Lund University, Sweden

Barry O’Sullivan (39)
Insight SFI Research Centre for Data Analytics,
National University of Ireland Galway, Ireland;
SFI Centre for Research Training in Artificial
Intelligence, Cork, Ireland; School of Computer
Science & IT, University College Cork, Ireland

Andy Oertel (4, 9)
Lund University, Sweden;
University of Copenhagen, Denmark

George Osipov (15)
Department of Computer and Information
Science, Linköping University, Sweden

Augustin Parjadis (22)
Polytechnique Montréal, Canada

Tobias Paxian (4)
University of Freiburg, Germany

Gilles Pesant (30)
Polytechnique Montréal, Canada

Nikolaos Ploskas (14)
University of Western Macedonia, Kozani,
Greece

Enrico Pontelli (28)
Department of Computer Science, New Mexico
State University, Las Cruces, NM, USA

Xavier Pucel (23)
ONERA, ONERA DTIS, Toulouse,
Université de Toulouse, France

Claude-Guy Quimper (7, 30)
Université Laval, Québec, Canada

Ben Rachmut (24)
Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Gaurav Rattan (3)
University of Twente, Enschede,
The Netherlands

Shiraz Regev (33)
Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Francesca Rossi (2)
IBM Research, Yorktown Heights, NY, USA

Louis-Martin Rousseau (22)
Polytechnique Montréal, Canada

Stéphanie Roussel (18, 23)
DTIS, ONERA, Université de Toulouse, France

Florian Régin (25)
Université Côte d’Azur, I3S, CNRS,
Sophia Antipolis, France

Jean-Charles Régin (27)
Université Côte d’Azur, CNRS, I3S,
Sophia Antipolis, France

Michael Römer (21)
Bielefeld University, Germany

Heythem Sattoutah (34)
MIS UR 4290, Université de Picardie Jules
Verne, Amiens, France

Pierre Schaus (10, 36)
Institute of Information and Communication
Technologies, Electonics and Applied
Mathematics (ICTEAM), UCLouvain, Belgium

André Schidler (26)
Algorithms and Complexity Group, TU Wien,
Austria

Margaux Schmied (27)
Université Côte d’Azur, CNRS, I3S,
Sophia Antipolis, France

Konstantin Sidorov (9, 11)
TU Delft, The Netherlands

Jeff Smits (11)
Delft University of Technology, The Netherlands

Filipe Souza (39)
Insight SFI Research Centre for Data Analytics,
National University of Ireland Galway, Ireland;
SFI Centre for Research Training in Artificial
Intelligence, Cork, Ireland; School of Computer
Science & IT, University College Cork, Ireland

CP 2024

https://orcid.org/0000-0001-7230-7130
https://doi.org/10.4230/LIPIcs.CP.2024.28
https://orcid.org/0000-0002-6930-2686
https://doi.org/10.4230/LIPIcs.CP.2024.38
https://orcid.org/0000-0002-0895-2837
https://doi.org/10.4230/LIPIcs.CP.2024.21
https://orcid.org/0000-0003-2678-1266
https://doi.org/10.4230/LIPIcs.CP.2024.10
https://orcid.org/0000-0002-2700-4285
https://doi.org/10.4230/LIPIcs.CP.2024.4
https://doi.org/10.4230/LIPIcs.CP.2024.9
https://orcid.org/0000-0002-0090-2085
https://doi.org/10.4230/LIPIcs.CP.2024.39
https://orcid.org/0000-0001-9783-6768
https://doi.org/10.4230/LIPIcs.CP.2024.4
https://doi.org/10.4230/LIPIcs.CP.2024.9
https://doi.org/10.4230/LIPIcs.CP.2024.15
https://doi.org/10.4230/LIPIcs.CP.2024.22
https://orcid.org/0009-0005-2044-1393
https://doi.org/10.4230/LIPIcs.CP.2024.4
https://orcid.org/0000-0001-9797-0780
https://doi.org/10.4230/LIPIcs.CP.2024.30
https://orcid.org/0000-0001-5876-9945
https://doi.org/10.4230/LIPIcs.CP.2024.14
https://orcid.org/0000-0002-7753-1737
https://doi.org/10.4230/LIPIcs.CP.2024.28
https://orcid.org/0000-0001-8747-0889
https://doi.org/10.4230/LIPIcs.CP.2024.23
https://orcid.org/0000-0002-5899-0217
https://doi.org/10.4230/LIPIcs.CP.2024.7
https://doi.org/10.4230/LIPIcs.CP.2024.30
https://orcid.org/0000-0002-3862-9387
https://doi.org/10.4230/LIPIcs.CP.2024.24
https://orcid.org/0000-0002-5095-860X
https://doi.org/10.4230/LIPIcs.CP.2024.3
https://doi.org/10.4230/LIPIcs.CP.2024.33
https://doi.org/10.4230/LIPIcs.CP.2024.2
https://orcid.org/0000-0001-6949-6014
https://doi.org/10.4230/LIPIcs.CP.2024.22
https://orcid.org/0000-0001-7033-555X
https://doi.org/10.4230/LIPIcs.CP.2024.18
https://doi.org/10.4230/LIPIcs.CP.2024.23
https://doi.org/10.4230/LIPIcs.CP.2024.25
https://orcid.org/0000-0001-6204-5894
https://doi.org/10.4230/LIPIcs.CP.2024.27
https://orcid.org/0000-0001-8369-7939
https://doi.org/10.4230/LIPIcs.CP.2024.21
https://orcid.org/0009-0004-0258-3446
https://doi.org/10.4230/LIPIcs.CP.2024.34
https://orcid.org/0000-0002-3153-8941
https://doi.org/10.4230/LIPIcs.CP.2024.10
https://doi.org/10.4230/LIPIcs.CP.2024.36
https://orcid.org/0000-0001-6790-7158
https://doi.org/10.4230/LIPIcs.CP.2024.26
https://orcid.org/0009-0002-0334-1612
https://doi.org/10.4230/LIPIcs.CP.2024.27
https://orcid.org/0009-0009-0655-4200
https://doi.org/10.4230/LIPIcs.CP.2024.9
https://doi.org/10.4230/LIPIcs.CP.2024.11
https://orcid.org/0000-0002-8053-8868
https://doi.org/10.4230/LIPIcs.CP.2024.11
https://orcid.org/0009-0008-3153-1898
https://doi.org/10.4230/LIPIcs.CP.2024.39

0:xiv Authors

Kostas Stergiou (14)
University of Western Macedonia, Kozani,
Greece

Stefan Szeider (26, 37)
Algorithms and Complexity Group, TU Wien,
Austria

Fabio Tardivo (28)
Department of Computer Science, New Mexico
State University, Las Cruces, NM, USA

Dimos Tsouros (20, 29)
DTAI, KU Leuven, Belgium

Dimosthenis C. Tsouros (14)
KU Leuven, Belgium

Pascal Van Hentenryck (16)
H. Milton Stewart School of Ind. and Syst.
Engineering, Georgia Institute of Technology,
Atlanta, GA, USA

Melle van Marle (17)
Department of Mathematics, and Department of
Information and Computing Sciences, Utrecht
University, The Netherlands

Dieter Vandesande (4)
Vrije Universiteit Brussel, Belgium

Wout Vanroose (29)
DTAI, KU Leuven, Belgium

Hélène Verhaeghe (29, 30)
DTAI, KU Leuven, Belgium

William Yeoh (24, 33)
Washington University in St. Louis, MO, USA

Oleg Zaikin (31)
ISDCT SB RAS, Irkutsk, Russia

Jiachen Zhang (32)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Neng-Fa Zhou (40)
CUNY Brooklyn College and the Graduate
Center, NY, USA

Roie Zivan (24, 33)
Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Mengchuan Zou (19)
Key Laboratory of System Software (Chinese
Academy of Sciences) and State Key Laboratory
of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

https://orcid.org/0000-0002-5702-9096
https://doi.org/10.4230/LIPIcs.CP.2024.14
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2024.26
https://doi.org/10.4230/LIPIcs.CP.2024.37
https://orcid.org/0000-0003-3328-2174
https://doi.org/10.4230/LIPIcs.CP.2024.28
https://orcid.org/0000-0002-3040-0959
https://doi.org/10.4230/LIPIcs.CP.2024.20
https://doi.org/10.4230/LIPIcs.CP.2024.29
https://orcid.org/0000-0002-3040-0959
https://doi.org/10.4230/LIPIcs.CP.2024.14
https://orcid.org/0000-0001-7085-9994
https://doi.org/10.4230/LIPIcs.CP.2024.16
https://doi.org/10.4230/LIPIcs.CP.2024.17
https://orcid.org/0000-0002-8150-3202
https://doi.org/10.4230/LIPIcs.CP.2024.4
https://orcid.org/0009-0004-8945-0442
https://doi.org/10.4230/LIPIcs.CP.2024.29
https://orcid.org/0000-0003-0233-4656
https://doi.org/10.4230/LIPIcs.CP.2024.29
https://doi.org/10.4230/LIPIcs.CP.2024.30
https://orcid.org/0000-0002-2617-870X
https://doi.org/10.4230/LIPIcs.CP.2024.24
https://doi.org/10.4230/LIPIcs.CP.2024.33
https://orcid.org/0000-0002-0145-5010
https://doi.org/10.4230/LIPIcs.CP.2024.31
https://orcid.org/0000-0002-3305-4983
https://doi.org/10.4230/LIPIcs.CP.2024.32
https://orcid.org/0000-0003-2507-7031
https://doi.org/10.4230/LIPIcs.CP.2024.40
https://orcid.org/0000-0002-1410-8368
https://doi.org/10.4230/LIPIcs.CP.2024.24
https://doi.org/10.4230/LIPIcs.CP.2024.33
https://orcid.org/0000-0001-6919-0533
https://doi.org/10.4230/LIPIcs.CP.2024.19

Senior Program Committee

Christian Artigues (LAAS-CNRS)
J. Christopher Beck (University of Toronto)
Nicolas Beldiceanu (IMT Atlantique (LS2N))
Armin Biere (University of Freiburg)
Quentin Cappart (Ecole Polytechnique de Montréal)
Philippe Codognet (JFLI - CNRS / Sorbonne University / University of Tokyo)
Pierre Flener (Uppsala University)
Tias Guns (KU Leuven)
Serdar Kadioglu (Brown University)
Michele Lombardi (DISI, University of Bologna)
Ines Lynce (INESC-ID/IST, Universidade de Lisboa)
Ciaran McCreesh (University of Glasgow)
Laurent Michel (University of Connecticut)
Gilles Pesant (Polytechnique Montréal)
Louis-Martin Rousseau (Polytechnique)
Domenico Salvagnin (University of Padova)
Helmut Simonis (Insight Centre for Data Analytics, School of Computer Science and
Information Technology, University College Cork)
Guido Tack (Monash University)
Willem-Jan Van Hoeve (Carnegie Mellon University)

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Özgür Akgün (University of St Andrews)
Alejandro Arbelaez (University College Cork)
Gilles Audemard (CRIL)
Nassim Belmecheri (SIMULA Research Laboratory)
Russell Bent (Los Alamos national Laboratory)
Jeremias Berg (University of Helsinki)
Ken Brown (University College Cork)
Silvia Butti (University of Oxford)
Shaowei Cai (Institute of Software, Chinese Academy of Sciences)
Clément Carbonnel (CNRS)
Dingding Chen (Chongqing University)
Berthe Y. Choueiry (University of Nebraska-Lincoln)
Andre Augusto Cire (University of Toronto)
Laura Climent (University College Cork (UCC))
Claudio Contardo (Concordia University)
Martin Cooper (IRIT - Universite Paul Sabatier)
Timothy Curry (University of Connecticut)
Nguyen Dang (St Andrews University)
Simon de Givry (INRA - MIAT)
Sophie Demassey (Mines Paris, Université PSL, Centre de Mathématiques Appliquées
(CMA))
Emir Demirović (Delft University of Technology)
Guillaume Derval (University of Liège)
Catherine Dubois (ENSIIE-Samovar)
Guillaume Escamocher (University College Cork, Ireland)
Joan Espasa Arxer (University of St Andrews)
Andrea Formisano (Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Uni-
versità di Udine)
Vijay Ganesh (Georgia Tech)
Maria Garcia De La Banda (Monash University)
Ian Gent (University of St Andrews)
Priyanka Golia (IIT Delhi)
Diarmuid Grimes (Munster Technological University)
Stefano Gualandi (Università degli studi di Pavia)
Djamal Habet (LIS UMR 7020, University of Aix-Marseille)
Marijn Heule (Carnegie Mellon University)
Amel Hidouri (LARODEC, High ISG, University of Tunis)
Ruth Hoffmann (University of St Andrews, School of Computer Science)
Alexey Ignatiev (Monash University)
Said Jabbour (CRIL CNRS - Univ. Artois)
Mikolas Janota (Czech Technical University in Prague)
Matti Järvisalo (University of Helsinki)
Christopher Jefferson (University of St. Andrews)
Anthony Karahalios (Carnegie Mellon University)
Daniela Kaufmann (TU Wien)

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xviii Program Committee

Philip Kilby (Data61 and the Australian National University)
Zeynep Kiziltan (University of Bologna)
T. K. Satish Kumar (University of Southern California)
Mikael Lagerkvist (zayenz.se)
Nadjib Lazaar (University of Montpellier)
Christophe Lecoutre (CRIL, Univ. Artois)
Jimmy Lee (The Chinese University of Hong Kong)
Antoine Legrain (Ecole Polytechnique Montreal)
Olivier Lhomme (IBM France)
Zhanshan Li (Jilin University)
Andrea Lodi (Cornell Tech)
Feifei Ma (Institute of Software, Chinese Academy of Sciences)
Arnaud Malapert (Université Côte d’Azur, CNRS, I3S, France)
Kuldeep Meel (University of Toronto)
Ian Miguel (University of St Andrews)
Nysret Musliu (TU Wien)
Peter Nightingale (University of York)
Barry O’Sullivan (University College Cork, Ireland)
Sebastian Ordyniak (The University of Leeds)
Cemalettin Ozturk (Raytheon Technologies, United Technologies Research Center Ireland)
Anastasia Paparrizou (CRIL-CNRS, University of Artois)
Justin Pearson (Uppsala University)
Guillaume Perez (University of Nice-Sophia Antipolis / I3S)
Laurent Perron (Google France)
Andreas Podelski (University of Freiburg)
Cédric Pralet (ONERA Toulouse)
Steve Prestwich (Insight Centre for Data Analytics)
Patrick Prosser (University of Glasgow)
Charles Prud’Homme (IMT Atlantique, LS2N)
Luis Quesada (Insight Centre for Data Analytics, University College Cork)
Claude-Guy Quimper (Laval University)
Philippe Refalo (IBM)
Jean-Charles Regin (University Nice-Sophia Antipolis / I3S / CNRS)
Emma Rollon (Universitat Politècnica de Catalunya)
Stefan Ropke (Technical University of Denmark)
Hana Rudovà (Masaryk University)
Thomas Schiex (INRAE)
Andreas Schutt (CSIRO)
Ilankaikone Senthooran (Monash University)
Mohamed Siala (INSA Toulouse & LAAS-CNRS)
Laurent Simon (Labri, Bordeaux Institute of Technology)
Christine Solnon (INSA Lyon)
Kostas Stergiou (University of Western Macedonia)
Peter J. Stuckey (Monash University)
Stefan Szeider (TU Wien)
Cyril Terrioux (LIS - UMR CNRS 7020 - Aix-Marseille Université)
Kevin Tierney (Bielefeld University)
Michael Trick (Carnegie Mellon University)

Program Committee 0:xix

Gilles Trombettoni (LIRMM, University of Montpellier)
Dimosthenis C. Tsouros (KU Leuven)
Felix Ulrich-Oltean (University of York)
Elise Vareilles (ISAE SUPAERO Toulouse, France)
Hélène Verhaeghe (KU Leuven)
Petr Vilím (Coenzyme Fr)
Ruiwei Wang (National University of Singapore)
Nic Wilson (Insight Centre for Data Analytics, School of Computer Science and IT,
University College Cork)
Felix Winter (TU Wien)
Armin Wolf (Fraunhofer)
Lebbah Yahia (University of Oran 1)
Roland Yap (National University of Singapore)
Neil Yorke-Smith (Delft University of Technology)
Tallys Yunes (University of Miami)
Allen Z. Zhong (Monash University)

CP 2024

Additional Reviews

Gennaro Auricchio (University of Padova)
Ignace Bleukx (KU Leuven)
Timothy van Bremen (National University of Singapore)
Jeffrey M. Dudek
Maarten Flippo (Delft University of Technology)
Marco Foschini (KU Leuven)
Jan Høula (University of Ostrava)
Javier Larossa (Universitat Politecnica de Catalunya)
Yong Lai (Jilin University)
Jacobus G. M. van der Linden (TU Delft)
António Morgado (Universidade de Lisboa)
Macarena Navarro (Carnegie Mellon University)
Keisuke Okumra (National Institute of Advanced Industrial Science and Technology /
University of Cambridge)
Tomás Peitl (TU Wien)
Nicolas Prcovic (University of Aix-Marseille)
Z̆aneta Semanĭsinová (TU Dresden)
Konstantin Sidorov (TU Delft)
Ramanujan M. Sridharan (University of Warwick)
Sebastian Vasquez (Carnegie Mellon University)
Jiong Yang

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Solving Patience and Solitaire Games with Good
Old Fashioned AI
Ian P. Gent #

School of Computer Science, University of St Andrews, UK

Abstract
While games like Chess, Checkers and Go have been the subject of extensive research in AI for
decades, there has been comparatively little study of single player card games. These games are
generally called “Patience” in British English and “Solitaire” in US English, and have been popular
for hundreds of years and remain so today. In fact, our ignorance of the winnability percentage of
just one such game – “Klondike” – has been described as “one of the embarrassments of applied
mathematics” by the distinguished statistician Persi Diaconis.

I will talk about “Solvitaire”, a program to solve patience games given a simple JSON description
of the rules of the game and the initial layout. We have used Solvitaire to determine the winnability
percentage of dozens different single-player card games with a 95% confidence interval of ± 0.1%
or better. For example, we now know the winnability of Klondike as 81.945% ± 0.084% (in the
“thoughtful” variant where the player knows the rank and suit of all cards), a 30-fold reduction in
confidence interval over the best previous result. The vast majority of results we obtained with
Solvitaire are either entirely new or represent significant improvements on previous knowledge.

Solvitaire is very much a “Good Old Fashioned AI” approach to solving patience games, without
using Machine Learning or Neural networks. It uses exhaustive depth-first search to explore all
possible ways that a game could possibly be won, ensuring that games reported unwinnable really
are so. This can involve searching extraordinary seach spaces with depths in the millions even
including cases where unwinnability is proven. Numerous techniques imported from AI search play
an important role in making this search practicable. Particularly important ones are: the use of a
transposition tables; the exploitation of symmetry in search; the use of dominances to force certain
moves to be made when it is safe to do so; and the use of streamliners. Solvitaire does have some
games it performs poorly on, where exhaustive search is unable to prove that no win is possible but
an alternative simple proof is in fact available. I will also talk about using constraint models do this,
leading to slight improvements in some variants of Klondike but dramatic improvements in others.

This talk will include personal anecdotes, explaining for example why it is dedicated to my
mother Margaret Gent (1923-2021) for her patience in teaching me to love the game of patience.

2012 ACM Subject Classification Computing methodologies → Discrete space search

Keywords and phrases AI Search, Solitaire and Patience Games

Digital Object Identifier 10.4230/LIPIcs.CP.2024.1

Category Invited Talk

Related Version The Winnability of Klondike Solitaire and Many Other Patience Games, by Charlie
Blake and Ian P. Gent: https://arxiv.org/abs/1906.12314

Acknowledgements I pay special thanks to my former students Charlie Blake and Jack Waller who
did much of the outstanding work this talk is based on. I thank all others who have helped me in
my work on patience, including Matt Birrell, Dawn Black, Laura Brewis, Arthur W. Cabral, Gal
Cohensius, Nguyen Dang, Shlomi Fish, Jordina Francès de Mas, Alan Frisch, Chris Jefferson, Michael
Keller, Donald Knuth, Dana Mackenzie, Mark Masten, Ian Miguel, Peter Nightingale, Theodore
Pringle, Bill Roscoe, András Salamon, Felix Ulrich-Oltean, Judith Underwood, and (posthumously)
Jan Wolter. I thank Paul Shaw for inviting me to give this talk.

© Ian P. Gent;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ian.gent@st-andrews.ac.uk
https://orcid.org/0000-0002-5604-7006
https://doi.org/10.4230/LIPIcs.CP.2024.1
https://arxiv.org/abs/1906.12314
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Thinking Fast and Slow in AI: A Cognitive
Architecture to Augment Both AI and Human
Reasoning
Francesca Rossi #

IBM Research, Yorktown Heights, NY, USA

Abstract
AI systems are very useful in practically every sector, but they also have several limitations, mostly
related to the lack of reasoning capabilities. According to the fast and slow thinking theory of
human decision making, we can say that data-driven AI, including generative AI, are providing fast
thinking capabilities, but they do not have slow thinking ones. Existing cognitive theories of human
decision making, such as the thinking fast and slow theory, can provide insights on how to advance
AI systems towards some of these capabilities. In this talk I will present a general architecture, called
SOFAI, that is based on fast/slow solvers and a meta-cognitive component that provides a centralized
governance of the solvers. I will describe two instances of this architecture, for constrained grid
navigation and planning, showing experimentally that SOFAI generates better decisions than each
of the individual solvers. Emerging behavior related to adaptability, skill learning, and cognitive
control are also showed in the analysis of SOFAI’s behavior. I will also describe how the thinking fast
and slow theory can help design a value-based human-machine collaborative decision environment.

2012 ACM Subject Classification Computing methodologies → Cognitive science

Keywords and phrases Artificial Intelligence, Meta-reasoning

Digital Object Identifier 10.4230/LIPIcs.CP.2024.2

Category Invited Talk

© Francesca Rossi;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francesca.rossi2@ibm.com
https://doi.org/10.4230/LIPIcs.CP.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The Complexity of Symmetry Breaking Beyond
Lex-Leader
Markus Anders #

TU Darmstadt, Germany

Sofia Brenner #

TU Darmstadt, Germany

Gaurav Rattan #

University of Twente, Enschede, The Netherlands

Abstract
Symmetry breaking is a widely popular approach to enhance solvers in constraint programming,
such as those for SAT or MIP. Symmetry breaking predicates (SBPs) typically impose an order on
variables and single out the lexicographic leader (lex-leader) in each orbit of assignments. Although
it is NP-hard to find complete lex-leader SBPs, incomplete lex-leader SBPs are widely used in
practice.

In this paper, we investigate the complexity of computing complete SBPs, lex-leader or otherwise,
for SAT. Our main result proves a natural barrier for efficiently computing SBPs: efficient certification
of graph non-isomorphism. Our results explain the difficulty of obtaining short SBPs for important
CP problems, such as matrix-models with row-column symmetries and graph generation problems.
Our results hold even when SBPs are allowed to introduce additional variables. We show polynomial
upper bounds for breaking certain symmetry groups, namely automorphism groups of trees and
wreath products of groups with efficient SBPs.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases symmetry breaking, boolean satisfiability, matrix models, graph isomorphism

Digital Object Identifier 10.4230/LIPIcs.CP.2024.3

Related Version Preprint: https://arxiv.org/abs/2407.04419

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(EngageS: grant agreement No. 820148).
Sofia Brenner : Received funding from the German Research Foundation DFG (SFB-TRR 195
“Symbolic Tools in Mathematics and their Application”).

1 Introduction

The search space of a constraint program can exhibit a large amount of symmetry. This
simple yet far-reaching observation forms the core principle behind the use of symmetry
based approaches in the realm of constraint programming [23, 44]. Such methods prune
the symmetric parts of the search space to save computational costs. Ideally, they ensure
that at most one solution exists per equivalence class of candidate solutions. Over the last
two decades, numerous methods have been proposed to exploit symmetries of constraint
programs. In particular, many approaches have been developed for Boolean satisfiability
solvers [14, 1, 13, 17, 27, 30, 16, 43, 38] as well as mixed integer programming [35, 39, 40].
Symmetry-based solving remains an active and fruitful area of interest, especially from a
practical perspective: for example, the defining feature of arguably one of the most successful
entries in the SAT competition 2023 was symmetry breaking [11, 10].

© Markus Anders, Sofia Brenner, and Gaurav Rattan;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 3; pp. 3:1–3:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anders@mathematik.tu-darmstadt.de
mailto:brenner@mathematik.tu-darmstadt.de
https://orcid.org/0009-0006-8512-2569
mailto:g.rattan@utwente.nl
https://orcid.org/0000-0002-5095-860X
https://doi.org/10.4230/LIPIcs.CP.2024.3
https://arxiv.org/abs/2407.04419
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 The Complexity of Symmetry Breaking Beyond Lex-Leader

How symmetries should be used best remains unclear. Approaches can be roughly divided
into two different categories: in dynamic and static approaches. In a dynamic approach,
symmetries are used during the execution of a solver [43, 18, 16, 38]. A typical example is
that the solver incorporates a branching rule that makes use of the symmetries directly [43].

The second approach is the static use of symmetries, which is the main focus of this paper.
Here, additional constraints, so-called symmetry breaking predicates (SBPs), are added to
a given problem instance. The notion of SBPs was first introduced in the seminal paper
of Crawford, Ginsberg, Luks and Roy [14]. Their goal was to generate polynomial-sized
SBPs for SAT formulas in conjunctive normal form (CNF). However, since their framework
is rooted in group theory, many results neatly generalize to other constraint languages.

The framework of Crawford et al., as well as the majority of the subsequent work in
this area, uses so-called lex-leader predicates to achieve complete symmetry breaking. Using
incomplete lex-leader predicates is arguably one of the most successful approaches to symmetry
breaking in practice [1, 17]. On a complexity-theoretic level, however, Crawford et al. proved
that computing a predicate true of only the lex-leader in each equivalence class of Boolean
assignments is NP-hard. Subsequent results showed that this even holds true for restricted
classes of groups [34], as well as orders similar to lex-leader [29, 46].

One may wonder whether there are other kinds of SBPs that are efficiently computable.
Here, other kinds of SBPs simply means that they do not make use of a lexicographic ordering
of the assignments. In principle, choosing any canonical representative among symmetric
assignments is permissible, lex-leader or otherwise. This question is motivated, for instance,
by the realm of graph isomorphism (GI). There, choosing the lex-leader is also known to be
NP-hard [7], and the best theoretical and practical approaches make use of other mechanisms.

Concerning practical symmetry breaking, only a few, though surprisingly different,
approaches of generating non-lex-leader SBPs have been explored. In [22], the global
cardinality constraint [42] is used in conjunction with lex-leader constraints to efficiently
handle (particular) wreath symmetry. In [13], SAT symmetry breaking constraints for graph
problems are produced similarly to the canonical labeling algorithm nauty [37]. In [25],
minimal SAT symmetry breaking constraints are generated for small groups.

In general, however, the complexity of SBPs remains largely unexplored, even for fairly
restricted kinds of symmetries. Perhaps the most glaring example is the problem of breaking
row-column symmetries, which arise in the so-called matrix models [20]. These models allow
the decision variables to be arranged in a matrix such that interchanging any two rows or any
two columns is a symmetry of the model. Matrix models arise in multiple areas of constraint
programming such as scheduling, combinatorial problems, and design [21]. Perhaps the most
well-known matrix model is the pigeonhole principle problem, for which it is NP-hard to
compute the lex-leader or similar assignments [14]. While the problem of devising SBPs for
such models has received much attention [20, 29, 23], the known results do not explain the
lack of compact SBPs for matrix models.

Our Results
The objective of this paper is to further investigate the exact complexity of computing static
symmetry breaking predicates. Given a group of symmetries on the variables of a formula,
how hard is it to generate a complete symmetry breaking predicate? The ultimate goal of
our work is to obtain a classification of symmetry groups, in terms of the complexity of
computing SBPs. Such a classification could help inform practitioners as to which cases can
be handled easily, and which ones are more challenging.

M. Anders, S. Brenner, and G. Rattan 3:3

In order to simplify the exposition, our setting of choice is that of Boolean satisfiability
testing (SAT). However, in the same vein as [14], our results are founded in a general group-
theoretic setting, so they should easily transfer to many branches of constraint programming:
we consider computing symmetry breaking predicates for a given permutation group, instead
of a particular SAT formula exhibiting such symmetry.

Our results can be divided into hardness results and upper bounds. The high-level idea
for the hardness results can be summarized as follows: We show that if symmetry breaking is
feasible for certain expressive groups, such as matrix groups or Johnson actions, then graph
isomorphism is in coNP. The containment GI ∈ co-NP is a major unresolved problem [31],
even for the restricted case of group isomorphism [5]. While GI ∈ co-NP seems to have no
other major complexity theoretic consequences and is seemingly not “implausible”, it still
poses a barrier to compact SBPs.

The idea of our reductions is to encode the input graphs as binary strings in a suitable
way, then guess a canonizing permutation, and use the symmetry-breaking constraint to
verify that the result is indeed the canonical form: By definition, the symmetry-breaking
constraint is true of precisely the canonical forms. The graphs are non-isomorphic exactly
when the canonical forms are different. As a strengthening, we show that this holds even
when the symmetry breaking constraint uses additional variables as their values can be
guessed as well.

We now explain our hardness results in greater detail.

Matrix Models. Our first result tackles the difficulty of breaking row-column symmetries in
matrix models. As mentioned above, this problem has received much attention in symmetry
breaking literature.

▶ Theorem 1. Suppose there exists a polynomial time algorithm for generating complete
symmetry breaking predicates for row-column symmetries. Then GI ∈ co-NP holds, i.e., graph
non-isomorphism admits a non-deterministic polynomial time algorithm.

Our theorem explains the difficulty of obtaining compact symmetry breaking predicates
for matrix models, in the sense that it would imply polynomial time algorithms for certifying
graph non-isomorphism. Section 3.1 contains a detailed description of our result.

Johnson Actions. We identify yet another class of groups for which symmetry breaking
is hard, namely the (k, t)-Johnson groups. These are symmetric groups Sym(k) acting on
t-subsets of [k] for fixed t < k. It is well-known that these actions form an important sub-case
of Babai’s quasi-polynomial algorithm for graph isomorphism [5].

▶ Theorem 2. Let t > 1 be a fixed positive integer. Suppose that we can generate complete
symmetry breaking predicates for all (k, t)-Johnson groups in polynomial time (in terms of
the domain size). Then GI ∈ coNP holds.

Section 4 contains a formal description of this result. In fact, it follows from Theorem 16,
which proves a stronger statement.

Certificates for Canonization. We strengthen our hardness results of Theorem 1 and
Theorem 2 as follows. We allow an algorithm to produce more expressive SBPs:
1. The SBP can be given as a Boolean circuit.
2. The SBP is allowed to introduce additional variables. Essentially, this gives the predicate

access to additional non-determinism. The SBP may introduce an arbitrary number of
additional variables, as long as the overall size is polynomial.

CP 2024

3:4 The Complexity of Symmetry Breaking Beyond Lex-Leader

Despite allowing more powerful SBPs, we conclude a stronger hardness implication: an
efficient algorithm for such predicates implies an efficiently verifiable graph canonical form
(see Theorem 13 and Theorem 15). Note that an efficient verifier for graph canonical forms
implies an efficient verifier for graph non-isomorphism (Lemma 12), but the converse is
unknown. For this result, we observe that SBPs for a permutation group G on the domain
[n] essentially solve a particular decision version of the string canonization problem w.r.t. G
on strings of length n. String canonization is a fundamental problem of interest in the graph
isomorphism community [7, 5, 6]. Section 3.2 contains a detailed description. Moreover,
we prove that the hardness results also hold for all subgroups of polynomial index (see
Lemma 18).

Quasi-Polynomial Upper Bound. Realizing that symmetry breaking reduces to string
canonization allows us to express an upper-bound on the size of circuit SBPs for general
permutation groups. The result is mainly of theoretical interest, but we believe that this
could have useful consequences in SBP heuristic design. The theorem immediately follows
from the quasi-polynomial time algorithm of Babai [6], see Section 3.2 for more details.

▶ Theorem 3. Given a permutation group G ≤ Sym(n), there is a quasi-polynomial time
(in n) algorithm producing a complete symmetry breaking circuit of quasi-polynomial size.

We complement these results concerning hard families by focusing on polynomial upper
bounds, i.e., the question for which families of groups symmetry breaking is easy:

Polynomial Upper Bounds. In Section 5, we examine how group-theoretic structure can
help to design SBPs. Our results show how we can assemble SBPs for a group from the
SBPs of its constituents, in context of natural operations such as disjoint direct products
and wreath products. This extends the results of [24], where the existence of lex-leader
constraints for constituents is assumed to assemble constraints for direct products and wreath
products. (The paper also treats cyclic, dihedral and alternating groups.)

The following theorem is the main consequence of our results in this section.

▶ Theorem 4. Assume that G ≤ Sym(n) is the automorphism group of a tree T . Then G

admits a complete symmetry breaking predicate of linear size. Given the tree T , it can be
computed in polynomial time.

Automorphism groups of trees are special cases of so-called wreath products. Such groups
naturally occur, for example, whenever models exhibit hierarchical structure. Intuitively, the
structure can be split into parts with the same symmetry group (the base group), which are
permuted by the so-called top group. Essentially, we combine symmetry breaking constraints
for the base group and the top group to a symmetry breaking constraint for the wreath
product by using the predicate for base group to make every part canonical, and the constraint
of the top group to fix an ordering of the parts. For the general case of wreath products the
problem is far more technical, but we obtain the following result (see Section 5 for details).

▶ Theorem 5. Let G ≤ Sym(n) and H ≤ Sym(m) be permutation groups. Assume that a
complete symmetry breaking circuit for G can be computed in polynomial time. Moreover,
suppose that for every partition P of [m], the partition stabilizer S of P in H and a complete
symmetry breaking circuit for S can be computed in polynomial time. Then there is a
complete symmetry breaking circuit for the wreath product W := G ≀H that can be computed
in polynomial time.

M. Anders, S. Brenner, and G. Rattan 3:5

quasi-polynomial circuit

“easy”

|G| ≤ poly(n)

automorphism
groups of trees

Sn, An

row-interchangeability

P

Slog n × Slog n

|G : H| ≤ poly(n),
where H hard

?

“hard”

row-column sym-
metry

proper Johnson

|H : G| ≤ poly(n),
where H hard

NP → GI ∈ coNP

Figure 1 Complexity of computing symmetry breaking predicates for the stated families of
groups in SAT. All groups can be handled in quasi-polynomial time using a circuit. The symbol G

refers to the permutation group of consideration. The parameter n refers to the domain size of the
permutation group, or, the number of variables of the formula. For “easy” families of groups, a
CNF predicate can be computed in polynomial time. For “hard” families of groups, the existence of
polynomial time symmetry breaking, even allowing the use of additional variables, implies that GI is
in coNP. Blue outlines indicate novel results proven in this paper.

In summary, Figure 1 provides a concise description of our progress towards a complexity
classification for the problem of generating SBPs for permutation groups.

2 Preliminaries

2.1 Boolean Circuits and Satisfiability
Boolean Circuits. A Boolean circuit ψ is a circuit consisting of input gates, one output
gate, and {AND,OR,NOT}-gates connecting them in the usual way. We refer to the input
gates as the variables Var(ψ). The size of a circuit refers to the number of gates.

An assignment of ψ is a function θ : V → {0, 1} where V ⊆ Var(ψ). The assignment
is complete whenever V = Var(ψ) and partial otherwise. A circuit is evaluated using an
assignment θ : V → {0, 1}, by replacing each input gate v ∈ V with θ(v), with the usual
meaning. The resulting circuit is ψ[θ]. Whenever θ is complete, the value of the output gate
can be determined in linear time, and hence either ψ[θ] = 0 or ψ[θ] = 1 holds.

If ψ[θ] = 1 we call θ a satisfying assignment, whereas if ψ[θ] = 0 we call θ a conflicting
assignment. A circuit ψ is satisfiable if and only if there exists a satisfying assignment to ψ.

Conjunctive Normal Form. In practice, a SAT instance ψ is typically given in conjunctive
normal form (CNF), which we denote with ψ = {{l1,1 ∨· · · ∨l1,k1}∧· · · ∧{lm,1 ∨· · · ∨lm,km}}.
Each element C ∈ ψ is called a clause, whereas a clause itself consists of a set of literals. A
literal is either a variable v or its negation v.

A symmetry, or automorphism, of ψ is a permutation of the variables φ : Var(ψ) → Var(ψ)
which maps ψ back to itself, i.e., ψφ ≡ ψ, where φ is applied element-wise to the variables in
each clause. The permutation group of all symmetries of ψ is Aut(ψ) ≤ Sym(Var(ψ)).

Another common way to define symmetries is to define them on the literals of the formula,
allowing the use of so-called negation symmetries (see [44]). In any case, symmetries can be
efficiently computed in practice using state-of-the-art symmetry detection tools [37, 28, 15, 2].

CP 2024

3:6 The Complexity of Symmetry Breaking Beyond Lex-Leader

2.2 Permutation Groups

We briefly introduce some notation and results for permutation groups. For further back-
ground material on permutation groups, we refer to [19]. Throughout, we use the notation
[n] := {1, . . . , n} for n ∈ Z>0 and set [0] := ∅.

Let Ω be a nonempty finite set. Let Sym(Ω) denote the symmetric group on Ω, i.e., the
group of permutations of Ω. A permutation group is a subgroup G of Sym(Ω), denoted by
G ≤ Sym(Ω). We also say that G acts on Ω. A permutation group is always specified by the
abstract isomorphism type of G (for instance, G could be cyclic of order 10), together with
the action of G on Ω. For g ∈ G and ω ∈ Ω, we write ωg for the image of ω under g and
ωG = {ωg : g ∈ G} for the orbit of ω under G. The support of G consists of those elements
in Ω that are moved (i.e., not fixed) by some element of G. For a partition P = (Ω1, . . . ,Ωr)
of Ω (i.e., Ω = Ω1 ∪̇ · · · ∪̇ Ωr), the partition stabilizer of P in G consists of all elements g ∈ G

that setwise stabilize Ω1, . . . ,Ωr, i.e. for all i ∈ [r], {ωg : ω ∈ Ωi} = Ωi. The index of a
subgroup H of G is |G : H| := |G|/|H |.

Two permutation groups G ≤ Sym(Ω) and H ≤ Sym(∆) are permutation isomorphic
if there exists a bijection λ : Ω → ∆ and a group isomorphism α : G → H such that
λ(ωg) = λ(ω)α(g) for all ω ∈ Ω and g ∈ G. Note that this notion is stronger than G and H

being isomorphic (as abstract groups) as the same abstract group can give rise to different
group actions. For instance, Sym(k) admits so-called Johnson actions on different domains:

Johnson Groups. Let k be a positive integer and t ∈ [k − 1]. A permutation π ∈ Sym(k)
induces a permutation π̂ on the domain

([k]
t

)
of t-subsets of [k], mapping a t-subset A to

Aπ̂ = {aπ : a ∈ A}. This way, Sym(k) becomes a permutation group S
(t)
k on a domain of

size
(

k
t

)
. The groups S(t)

k are called Johnson groups and the action is called a Johnson action.
We call a Johnson group proper if t ̸∈ {1, k − 1} holds.

Usually, the analogous action of the so-called alternating groups is also called a Johnson
action. Due to our results in Section 4.3, it suffices to only consider the symmetric groups.

Wreath products. Let G ≤ Sym(Ω) and H ≤ Sym(∆) be permutation groups. The
wreath product G ≀ H consists of the set G∆ × H, endowed with the multiplication rule(
(gδ)δ∈∆, h

)(
(g′

δ)δ∈∆, h
′) =

(
(gδg

′
δh−1)δ∈∆, hh

′). We call G the base group and H the top
group. The group G ≀H acts on Ω × ∆ by (ω, δ)((gδ)δ∈∆,h) = (ωg

δh , δh). This action is called
the imprimitive action of the wreath product.

2.3 Graph Isomorphism and String Canonization

Graphs. A finite, undirected graph Γ = (V,E) consists of a set of vertices V ⊆ N and
an edge relation E ⊆

(
V
2
)
. Unless stated otherwise, the set of vertices V is {1, . . . , n} and

m := |E| denotes the number of edges. We may refer to the set of vertices of Γ with V (Γ),
and to the set of edges with E(Γ). The adjacency matrix of Γ is the n× n-matrix A = (aij)
with aij = 1 if {i, j} ∈ E(Γ), and aij = 0 otherwise. Unless stated otherwise, we assume our
graphs are given as adjacency matrices.

A graph Γ is bipartite if V (Γ) = A ∪̇B can be partitioned into two independent sets
A = {a1, . . . , ak} and B = {b1, . . . , bℓ}. In this case, we may obtain an bipartite adjacency
matrix M = (mij) by setting mij = 1 if ai and bj are adjacent, and mij = 0 otherwise.

M. Anders, S. Brenner, and G. Rattan 3:7

Lexicographic ordering. For {0, 1}-strings θ, θ′ of the same length, we write θ ⪯lex θ
′ if θ

is smaller or equal to θ′ with respect to the lexicographic ordering. Likewise, we define a
lexicographic ordering of matrices with entries in {0, 1} of a fixed size by interpreting them
as strings, reading them row by row.

Relational Structures. As a generalization of graphs, we define a t-ary relational structure
R = (U,A), where U is a universe and A is a t-ary relation on U . A t-ary relational structure
is symmetric if for every t-tuple (u1, . . . , ut) ∈ A and for every σ ∈ Sym(t), it holds that
(uσ(1), . . . , uσ(t)) ∈ A.

Graph Isomorphism. Two graphs Γ1 = (V1, E1),Γ2 = (V2, E2) are said to be isomorphic,
whenever there exists a bijection φ : V1 → V2 such that φ(Γ1) = (V φ

1 , E
φ
1) = (V2, E2) = Γ2

holds. Here, V φ
1 and Eφ

1 means applying φ element-wise to each element in V1, and each
element of each tuple in E1, respectively. We call φ an isomorphism between Γ1 and Γ2. We
may write Γ1 ∼= Γ2 to denote isomorphism. A corresponding computational problem follows:

▶ Problem 6 (GI). Given two graphs Γ1,Γ2, does Γ1 ∼= Γ2 hold?

Regarding certification, it is easy to see that GI is in NP. On the other hand, graph
isomorphism is known to be in coAM, i.e., there are efficient randomized proofs for non-
isomorphism [9]. As mentioned in the introduction, whether graph isomorphism is in coNP
is a long-standing open problem [31].

Analogously, we may define isomorphism for t-ary relational structures R1 = (U1, A1)
and R2 = (U2, A2): R1 and R2 are isomorphic if there exists a bijection π : U1 → U2 such
that for every (u1, . . . , ut) ∈ A1, it holds that (uπ

1 , . . . , u
π
t) ∈ A2 and vice-versa.

String Canonization. We next define the string canonization problem [7, 32]. The string
canonization problem asks, given a permutation group G ≤ Sym(Ω) and a string σ : Ω → Σ on
a finite alphabet Σ, for a canonical representative of σG. In particular, it computes a function
F : G × ΣΩ → ΣΩ where G denotes the set of all permutation groups G ≤ Sym(Ω), and for all
σ1, σ2 ∈ ΣΩ it holds that (1) F (G, σ1) ∼=G σ1 and (2) if σ1 ∼=G σ2 then F (G, σ1) = F (G, σ2).
Here, ∼=G means that σ1 can be permuted to σ2 using an element of G. A corresponding
computational problem follows:

▶ Problem 7 (s-scanonF). Given a permutation group G ≤ Sym(Ω), a finite alphabet Σ
and a string σ ∈ ΣΩ, compute the canonical representative F (G, σ).

The graph isomorphism problem polynomial time reduces to s-scanon, but the converse is
unknown. However, there is an F such that there is a quasi-polynomial time algorithm which
solves the string canonization problem [6]. It turns out that the string canonization problem
is intimately related to symmetry breaking, which we discuss thoroughly in Section 3.2.

A crucial special case of string canonization is graph canonization. As the name suggests,
it computes canonical forms for graphs. Let f be a graph canonization function, i.e., for
graphs Γ,∆, it holds that (1) Γ ∼= ∆ iff f(Γ) = f(∆), and, (2) f(Γ) ∼= Γ. Here, the symbol ∼=
denotes the graph isomorphism relation. The corresponding computational problem follows:

▶ Problem 8 (s-gcanonf). Given a graph Γ, compute the canonical representative f(Γ)
within the isomorphism class of Γ.

Indeed, this problem is a special case of string canonization: G can be chosen as a Johnson
group of appropriate order and the strings encode the given graphs (see [6]).

CP 2024

3:8 The Complexity of Symmetry Breaking Beyond Lex-Leader

2.4 Notions of Symmetry Breaking
Next, we define our notions of symmetry breaking. Let ψ be a CNF formula. Typically,
symmetry breaking is defined specifically for the automorphism group Aut(ψ) of ψ. However,
it turns out that often, our symmetry breaking predicates only depend on the structure
of Aut(ψ) and its action on the set of variables Var(ψ). In particular, they do not depend
on the specific shape of the formula ψ. Hence, we define symmetry breaking only using an
arbitrary permutation group G ≤ Sym(Ω) and without referring to a precise formula ψ.

Symmetry Breaking Constraints. We begin with a discussion of complete symmetry
breaking. Indeed, we find that in the literature two different notions are in use.

The first of these notions is what we will refer to simply as complete symmetry breaking.
The idea is that a complete symmetry breaking constraint must ensure that in each orbit of
complete assignments, all but one canonical representative is conflicting [14].

Formally, we let θfull(Ω) := {θ | θ : Ω → {0, 1}} denote the set of all complete assignments
to Ω. We let G ≤ Sym(Ω) act on θfull(Ω) in the natural way. A Boolean circuit ψ with
Var(ψ) ⊆ Ω is called a complete symmetry breaking circuit for G, whenever for each orbit
O ⊆ θfull(Ω) under G, there is

a τ ∈ O such that ψ[τ] is satisfying,
for all τ ′ ∈ O with τ ̸= τ ′ the formula ψ[τ ′] is conflicting.

If ψ is restricted to be a CNF formula, we refer to ψ as a symmetry breaking predicate.
This notion is typically used in the context of general-purpose symmetry breaking, such as
for example in [14, 1, 17, 25]. We remark that in [25], this notion is referred to as an isolator.

The second notion in use in the literature is isomorph-free generation. It is usually
considered in the realm of dynamic symmetry breaking. However, a notion for predicates can
be defined: a predicate is supposed to ensure that in each orbit of partial assignments, all
but one canonical representative is conflicting. Intuitively, isomorph-free generation ensures
that no isomorphic branches are ever considered in the search. Isomorph-free generation
immediately also ensures complete symmetry breaking. It is typically used in the context
of generation tasks, such as in [36, 30], but it has also been considered for general-purpose
symmetry breaking [27].

The focus of this paper is on complete symmetry breaking and not on isomorph-free
generation.

Symmetry Breaking as a Computational Problem. We define a corresponding computa-
tional problem for symmetry breaking.

▶ Problem 9 (Symmetry Breaking). Given a permutation group G ≤ Sym(Ω), compute a
complete symmetry breaking circuit for G.

There are two variations of this problem that we discuss throughout the paper: the
first of which concerns the group G. Usually, G is the automorphism group of a given
CNF formula ψ, i.e., G = Aut(ψ). In this case, the problem might become easier, since
automorphism groups and a given formula may admit further structural arguments. However,
considering symmetry breaking for arbitrary permutation groups G opens up the possibility
of using symmetries beyond syntactic ones, even though it might be unclear how they could
be obtained. Furthermore, results are independent of the specific structure of SAT instances.

The second variation concerns the output: we may expect a CNF predicate, or a Boolean
circuit. Computing a CNF predicate may be harder, since circuits are more expressive. We
believe that all variations of the problem are of potential interest. Therefore, it seems best
to attempt to use the problem definition which yields the strongest possible statement.

M. Anders, S. Brenner, and G. Rattan 3:9

3 Row-Column Symmetries

In this section, we analyze the complexity of computing symmetry breaking predicates for
row-column symmetry. Section 3.1 describes the hardness of obtaining SBPs for breaking row-
column symmetries. In particular, we provide a proof of Theorem 1. Section 3.2 establishes
the connection between symmetry breaking and decision string canonization. Lastly, in
Section 3.3, we strengthen our results to work for circuit SBPs and SBPs with extra variables.

3.1 Hardness of Breaking Row-Column Symmetries
We begin with a formal definition of row-column symmetry.

Row-Column Symmetry. Let m,n be two positive integers, and Ω := [n] × [m]. The
row-column symmetry group G is defined to be the group Sym([n]) × Sym([m]), where
Sym([n]) naturally acts on the first component of Ω, and Sym([m]) on the second component.
Informally, we can view Ω as a matrix with n rows and m columns. The group G ≤ Sym(Ω)
then consists of all the possible row transpositions and all possible column transpositions,
along with their arbitrary compositions.

A matrix model is a constraint program whose decision variables can be arranged as
a matrix above such that its automorphism group is the row-column symmetry group for
this matrix arrangement. For such programs, it is typical to index their variable set by
Ω = {xij | i ∈ [n], j ∈ [m]}.

The following lemma states a one-to-one correspondence between assignments to a
matrix model and bipartite graphs. Let Γ(U, V) denote a bipartite graph with a designated
left-partition U and a right-partition V , where U and V are non-interchangeable.

▶ Lemma 10. There exists a one-to-one correspondence between the set of all Boolean
assignments to the variables {x11, . . . , xnm} of a matrix model and the set of all bipartite
graphs Γ([n], [m]) with designated left and right partitions.

Proof. Interpret the truth-value of xij as the indicator for whether there exists an edge
between i ∈ [n] and j ∈ [m]. ◀

We proceed with the proof of Theorem 1.

Proof of Theorem 1. We devise a polynomial time verifier for checking purported certificates
for non-isomorphism, assuming that we can compute a row-column symmetry breaking
predicate in polynomial time.

Bipartite Graphs Suffice. It will be more convenient for us to work with bipartite graphs
instead of general graphs, in the spirit of standard reductions in isomorphism literature [47].
To every graph Γ, we can always associate a bipartite graph bip(Γ), namely the vertex-edge
incidence graph as follows. The graph bip(Γ) has a designated left partition consisting of
V (Γ), a designated right partition consisting of E(Γ), and the edges of bip(Γ) are defined
by vertex-edge incidence. Moreover, bip(Γ) is a vertex-ordered graph: the left partition
inherits the ordering from the graph Γ, and the right partition E(Γ) is ordered according
to the ordering induced by the ordering of V (Γ). Observe that the mapping Γ 7→ bip(Γ) is
injective. Moreover, it is easy to verify that two graphs Γ and ∆ are isomorphic if and only
if the bipartite graphs bip(Γ) and bip(∆) are isomorphic via a bijection which maps the
left-partition (right-partition) of bip(Γ) to the left-partition (right-partition) of bip(∆).

Therefore, it suffices to verify non-isomorphism certificates for bipartite graphs.

CP 2024

3:10 The Complexity of Symmetry Breaking Beyond Lex-Leader

Certificate. Given two bipartite graphs Γ and ∆, our chosen certificate of non-isomorphism
is a pair of bijections (σ, π), where σ : V (Γ) → V (Γ) and π : V (∆) → V (∆).

Verifier. Given such a certificate (σ, π), our polynomial time verifier proceeds as follows:
1. Compute a symmetry breaking predicate δn,m(x11, . . . , xnm) in time poly(n,m).
2. Check if both Γσ and ∆π satisfy δn,m(x11, · · · , xnm), when viewed as Boolean assignments.

If both of them satisfy δn,m, continue; otherwise reject.
3. Check whether Γσ ̸= ∆π, otherwise reject.
4. Declare Γ and ∆ to be non-isomorphic.
It is easy to verify that all of the steps above are polynomial time computations.

Correctness of Verifier. It remains to be shown that (1) for every pair of non-isomorphic
graphs, there exists a polynomial sized certificate accepted by the verifier above, and (2) for
every pair of isomorphic graphs, the verifier always rejects any certificate.

For (1), let Γ and ∆ be two non-isomorphic graphs. Let Γ∗ be the unique satisfying
assignment of δn,m in the orbit of Γ (similarly define ∆∗) under row-column symmetries. Let
σ be an isomorphism from Γ to Γ∗ (similarly define π). Since Γ ̸∼= ∆, it must hold that Γ∗

and ∆∗ lie in different orbits, and hence Γ∗ ≠ ∆∗. Since the certificate satisfies all conditions
of the verifier, the verifier correctly certifies Γ and ∆ to be non-isomorphic.

For (2), suppose Γ and ∆ are isomorphic. Then they lie in the same orbit under the
action of row-column symmetry on the Boolean assignments to the matrix model. Given any
certificate (σ, π), the requirement of Γσ and ∆π having to satisfy δn,m implies that Γσ = ∆π.
But then such a certificate is rejected by the verifier in the third step. Hence, the verifier
correctly refuses to certify that Γ and ∆ are non-isomorphic. ◀

It is not clear whether the converse of Theorem 1 holds. In fact, even a P-time algorithm
for graph isomorphism may not be sufficient to yield symmetry breaking algorithms for
row-column symmetries. In what follows, we address this situation with a closer examination
of the complexity of symmetry breaking.

3.2 A Decision Version of String Canonization
We now introduce a decision variant of the string canonization problem, which only decides
whether a given string is the canonical string:

▶ Problem 11 (d-scanonF). Given a group G ≤ Sym(Ω), a finite alphabet Σ and a string
σ ∈ ΣΩ, decide whether σ = F (G, σ) holds, i.e., whether σ is the canonical representative
within its isomorphism class σG.

Let us consider a CNF formula ψ. We consider the case of the string canonization problem
where Σ = {0, 1} and the group G ≤ Sym(Var(ψ)) consists of symmetries of ψ. Note that
any two given assignments σ1 and σ2 of ψ can be interpreted as strings, and σ1 ∼=G σ2 holds
if and only if they are in the same orbit of G.

We observe that an algorithm for d-scanon accepts precisely one assignment per orbit
of G. But this just means that if we translate such an algorithm into a Boolean circuit, the
resulting circuit is a symmetry breaking circuit.

Clearly, d-scanonF polynomial time reduces to s-scanonF . Since s-scanon can be
solved using a quasi-polynomial time algorithm [6], Theorem 3 follows immediately.

Analogously, we may define a decision version of the graph canonization problem, denoted
as d-gcanonf . Recall that graph canonization is a special case of string canonization. In
the following, we prove that the decision canonization problem is tightly related to graph
isomorphism in terms of its non-deterministic complexity.

M. Anders, S. Brenner, and G. Rattan 3:11

▶ Lemma 12. Let f be a canonical form such that d-gcanonf is in NP. Then, GI ∈ coNP.

Proof. Assuming d-gcanon is in NP gives us access to a class of polynomial-sized certificates
and a polynomial time verifier for these certificates, such that the following hold. If a
given graph Γ is the canonical representative of its isomorphism class, then there must be a
certificate σ such that the verifier accepts (Γ, σ). If Γ is not the canonical representative,
then for all certificates σ the verifier rejects (Γ, σ).

Based on this, we provide a non-deterministic polynomial time algorithm for graph
non-isomorphism of two graphs Γ and ∆.

Certificate. The certificate consists of two permutations φ1 ∈ Sym(V (Γ)), φ2 ∈ Sym(V (∆)),
a certificate σ1 for decision canonization of Γ, as well as σ2 for decision canonization of ∆.

Verifier. Given two graphs Γ,∆ and certificate (φ1, φ2, σ1, σ2), the verifier proceeds as
follows. (Step 1) Run the decision canonization verifier for (Γφ1 , σ1) and (∆φ2 , σ2). If both
are accepted, proceed, otherwise reject. (Step 2) Accept if Γφ1 ̸= ∆φ2 , otherwise reject.

Correctness of Verifier. Note that whenever we reach Step 2 of the verifier, the procedure
guarantees that Γφ1 is a canonical form of Γ and ∆φ2 of ∆. Hence, Γ ∼= ∆ holds if and only
if Γφ1 = ∆φ2 holds. It immediately follows that the algorithm accepts if and only if Γ and ∆
are non-isomorphic. ◀

3.3 Hardness of Symmetry Breaking with Additional Variables
Consider the situation where one is allowed to use additional variables from a set Ω′ to write
down symmetry breaking constraints. In principle, this expands our domain Ω of variables
used to Ω ∪̇ Ω′. Since the introduction of new variables Ω′ changes the set of assignments, we
need to adjust our definition of complete symmetry breaking.

Symmetry Breaking with Additional Variables. A Boolean circuit ψ is called a complete
symmetry breaking circuit with additional variables for G ≤ Sym(Ω), whenever for each orbit
τ ⊆ σfull(Ω) under G, there is

a τ ′ ∈ τ such that ψ[τ ′] is satisfiable,
for all τ ′′ ∈ τ with τ ′ ̸= τ ′′ the circuit ψ[τ ′′] is unsatisfiable.

A point of contention in the above definition might be whether ψ[τ ′] should actually have
exactly one satisfying assignment. This would ensure that there is precisely one satisfying
assignment per orbit, while our definition only suffices to ensure a unique satisfying assignment
when restricted to the variables of ψ. In this paper, we stick to the above definition.

Using additional variables is typically not considered in the literature, most likely because
this might substantially alter the difficulty of the underlying instance. Introducing additional
variables is however intriguing: it gives the symmetry breaking predicates access to non-
determinism, and hence might enable substantially more powerful constraints.

Hardness with Additional Variables. We show hardness results for symmetry breaking
even if we are allowed to introduce new variables.

▶ Theorem 13. Suppose there exists a polynomial time algorithm for generating complete
symmetry breaking circuits with additional variables for row-column symmetries. Then, it
holds that d-gcanon ∈ NP and hence GI ∈ coNP.

CP 2024

3:12 The Complexity of Symmetry Breaking Beyond Lex-Leader

Proof sketch. It suffices to show that there exists a canonical form f such that d-gcanonf

∈ NP (see Lemma 12). Again, we encode the input graph as a bipartite graph as in the proof
of Theorem 1. The main argument follows by an inspection of the proof of Theorem 1: we
observe that a certificate can also guess an assignment to the additional variables introduced
by the SBP. We then simply verify that the adjacency matrix of the input graph and the
assignment to the additional variables is accepted by the symmetry breaking circuit. ◀

The formal details of the proof can be found in Appendix A.

4 Johnson Actions

Next, we consider the so-called Johnson groups. Johnson groups are groups which naturally
occur in problems encoding graph generation tasks [30]. We begin this section by describing
a correspondence between Johnson groups and symmetric relational structures. Then, we
provide a formal proof of Theorem 2. Lastly, we show how to derive SBPs for a group G,
given SBPs for a small index subgroup H ≤ G (Lemma 18).

4.1 Johnson Groups and Relational Structures
Johnson Families. Let k be a positive integer. For t ∈ [k− 1], let Xt

k be the set of variables
indexed by t-element subsets of [k]. In particular, we have |Xt

k| =
(

k
t

)
. For fixed t ≥ 1, we

call the group family S(t)
k ≤ Sym(Xt

k) the Johnson family of arity t.
Johnson groups form a subclass of the so-called groups of Cameron type. These groups

as well as their natural action can be recognized in polynomial time (see [8]).

Relational Structures and Johnson Groups. To a symmetric t-ary relational structure R,
we associate an assignment fR : Xt

k → {0, 1} with f(xS) = 1 for a t-subset S of [k] if S is a
hyperedge in R, and f(xS) = 0 otherwise. Conversely, given f : Xt

k → {0, 1}, we define a
symmetric t-ary relational structure Rf on the universe [k] whose relation is the set of all
tuples (a1, . . . , at) with f({a1, . . . , at}) = 1.

This defines a one-to-one correspondence between assignments of Xt
k and symmetric t-ary

relational structures. The following result formalizes the correspondence (see also [33]).

▶ Lemma 14. Let R and R′ be two symmetric t-ary relational structures on the universe
[k]. Then R and R′ are isomorphic if and only if the assignments fR and fR′ of the set Xt

k

lie in the same orbit under the action of the Johnson group S(t)
k ≤ Sym(Xt

k).

Proof. Suppose that R and R′ are isomorphic via a bijection π : [k] → [k]. Then, the induced
action π̂ on t-subsets of [k] defines an element of S(t)

k with fR′ = f π̂
R. Conversely, suppose

that fR′ = f π̂
R for some π̂ corresponding to the induced action of π : [k] → [k]. It is easy to

check that π is an isomorphism between R and R′. ◀

4.2 Johnson Families of Fixed Arity are Hard
In this section, we show that polynomial time symmetry breaking for Johnson families of
fixed arity t ≥ 2 implies GI ∈ coNP.

▶ Theorem 15. Suppose there exists a polynomial time algorithm for generating complete
symmetry breaking circuits with additional variables for the Johnson family of arity 2. Then,
d-gcanon ∈ NP and hence GI ∈ coNP.

M. Anders, S. Brenner, and G. Rattan 3:13

Proof. We again make use of Lemma 12, proving that polynomial time symmetry breaking
circuits with additional variables for Johnson groups give rise to a non-deterministic polyno-
mial time algorithm for decision graph canonization. Using similar arguments to Theorem 13,
this follows from Lemma 14 and the fact that for two relational structures R,R′ it holds that
R = R′ if and only if fR = fR′ . ◀

We generalize Theorem 15 to arbitrary arity.

▶ Theorem 16. Let t ≥ 2 be a fixed arity. Suppose there exists a polynomial time algorithm
for generating complete symmetry breaking circuits with additional variables for the Johnson
family of arity t. Then, d-gcanon ∈ NP and hence GI ∈ coNP.

Proof sketch. Lemma 12 ensures that it suffices to prove d-gcanon ∈ NP. By Lemma 14,
it suffices to solve d-gcanon in non-deterministic polynomial time using a non-deterministic
polynomial time oracle for decision canonization for uniform, symmetric t-ary relational
structures. This is achieved by defining an isomorphism-invariant encoding of graphs into
t-ary symmetric relational structures, essentially extending every graph edge to a t-ary
relation by adding t− 2 bogus vertices. ◀

The remaining reduction is standard and can be found in Appendix C.

▶ Remark 17. In contrast, observe that the Johnson family for t = 1 consists of the symmetric
groups Sym(n) in their natural action on n points. For these groups, complete symmetry
breaking can be achieved with a CNF predicate of linear size (see Section 5).

4.3 Subgroups of Small Index and Large Primitive Groups
In this section, we consider symmetry breaking for a permutation group G ≤ Sym(n) and a
subgroup H of G. Mostly, we are interested in the case that H has polynomial index in G.
We first show that a symmetry breaking constraint for H gives rise to symmetry breaking
constraint for G:

▶ Lemma 18. There exists a polynomial p such that the following holds: if there is a complete
symmetry breaking circuit for a group H ≤ Sym(n) which can be computed in time t, then
complete symmetry breaking circuit with additional variables for G ≤ Sym(n) with G ≥ H

can be computed in time t · p(n|G : H|).

Proof. Let ψ be a symmetry breaking circuit for H. We now devise a symmetry breaking
circuit for G. For simplicity, we fix a system of representatives R of the right cosets of H
in G, which can be computed in time polynomial in |G : H| (see [26]).

Certificate. The certificate σ = {(θr, hr) : r ∈ R} consists of assignments θr : Var(ψ) →
{0, 1} and an element hr ∈ H for every r ∈ R.

Verifier. Given an assignment θ : Var(ψ) → {0, 1} and a certificate σ = {(θr, hr) : r ∈ R},
we proceed as follows:
1. For all r ∈ R, verify that θhr

r = θr holds.
2. For all r ∈ R, verify that ψ[θr] is satisfying. Verify that ψ[θ] is satisfying.
3. For all r ∈ R, check whether θ ⪯lex θr holds. If this is the case, accept θ, otherwise reject.
Clearly, the runtime of this procedure is polynomial in t and |G : H|.

CP 2024

3:14 The Complexity of Symmetry Breaking Beyond Lex-Leader

Correctness of Verifier. Let ∆ be a G-orbit of assignments. Note that ∆ is a disjoint union
of H-orbits ∆1, . . . ,∆k. In each ∆i, there exists a unique assignment αi such that ψ[αi] is
satisfying. Let θ be the lexicographically minimal element in {α1, . . . , αk}. Note that we
have θG =

⋃
r∈R (rθ)H as every element of G can be decomposed as hr for h ∈ H and r ∈ R.

For r ∈ R, there exists ir ∈ [k] with (rθ)H = ∆ir
. Hence, there exists hr ∈ H with αhr

ir
= θr.

By construction, θ together with the certificate σ = {(αir , hr) : r ∈ R} is accepted by the
verifier.

Now suppose that θ, θ′ ∈ ∆ are accepted by the verifier, and let σθ = {(θr, hr) : r ∈ R} and
σθ′ = {(θ′

r, h
′
r) : r ∈ R} denote corresponding certificates. Due to the decomposition of θG

and since ψ[θr] and ψ[θ′
r] are satisfying for all r ∈ R, we have {α1, . . . , αk} = {θr : r ∈ R} =

{θ′
r : r ∈ R}. Since the verifier accepts both θ and θ′, they coincide with the lexicographically

minimal element in {α1, . . . , αk}, so θ = θ′ follows. ◀

It should be noted that while the above lemma gives a valid upper bound, the resulting SBP
is not practical: The SBP simply uses the additional variables to determine the representative
for all cosets, and then determines a minimal one among them. This requires trying out all
the symmetric choices, defeating the purpose of the SBP. However, the result can also be
read as a hardness result. For example, for the matrix models studied in Section 3, we can
restrict the group on each axis of the model as follows, while still being able to retrieve our
hardness result (see Theorem 13):

▶ Corollary 19. Consider a family of permutation groups Gm,n = Xm × Yn with Xm ≤
Sym(m) and Yn ≤ Sym(n), acting component-wise on [m] × [n]. Assume that | Sym(m) :
Xm| < poly(m) and | Sym(n) : Yn| < poly(n) holds. Then, efficient complete symmetry
breaking with additional variables for Gm,n implies GI ∈ coNP.

Our main interest in studying subgroups of small index is sparked by a result on the
structure of so-called large primitive groups, which forms an important building block of the
quasi-polynomial isomorphism test for general graphs [5]. Roughly speaking, every primitive
group G ≤ Sym(n) with |G| ≥ n1+log2 n contains a normal subgroup N with |G : N | ≤ n

exhibiting a natural Johnson action. If the converse of Lemma 18 holds, we can thus employ
our results on Johnson groups to study the complexity of symmetry breaking for large
primitive groups.

5 Upper Bounds

Complementing the results from the previous sections, we show that certain families of groups
can be efficiently handled. We begin by recalling three simple cases.

Groups of Polynomial Order. The first case pertains to groups where the order is polynomial
in the size of the original formula. For these groups, we can explicitly write a constraint that
breaks each element of the group [14]. The resulting constraint is complete and of polynomial
size in the formula.

Symmetric Groups. Symmetric groups in their natural action can be handled by imposing
an ordering on the assignments. For Sym(n), this can be achieved by the predicate ψn =
x1 ≤ x2 ≤ · · · ≤ xn.

A slight extension of symmetric groups are known and used in practice, namely row-
interchangeability subgroups [17, 40]. We say that a permutation group G ≤ Sym(Ω)
exhibits row-interchangeability if Ω can be arranged in an n × m-matrix X = (xij) such

M. Anders, S. Brenner, and G. Rattan 3:15

that G consists precisely of the permutations of the rows of X. This symmetry can be
broken by lexicographically ordering the rows in any assignment θ : X → {0, 1} (viewed as an
n×m-matrix). Formally, for i ∈ [n−1], let λk

i := (
∧

r∈[k−1](xir = x(i+1)r)) → (xik ≤ x(i+1)k).
Then λn,m :=

∧n−1
i=1

∧m
k=1 λ

k
i is a symmetry breaking predicate for G.

Disjoint direct decomposition. A direct product G = G1 × · · · × Gr of permutation
groups is called a disjoint direct decomposition if the subgroups G1, . . . , Gr have pairwise
disjoint supports. Disjoint direct products naturally arise and have been successfully used in
practice [17]. The finest disjoint direct decomposition can be computed in polynomial time
for general permutation groups [12], and in quasi-linear time for automorphism groups of
graphs [3]. For the sake of completeness, we argue that disjoint direct decompositions can be
exploited without giving up on complete symmetry breaking.

▶ Lemma 20. Let G ≤ Sym(Ω) be a permutation group with a disjoint direct product
decomposition G = G1 × · · · ×Gr. For i ∈ [r], let Ωi denote the support of Gi and assume
that a complete symmetry breaking predicate γi for Gi, viewed as a permutation group on Ωi,
is given. In particular, we require Var(γi) ⊆ Ωi. Then γ := γ1 ∧ · · · ∧ γr is a complete
symmetry breaking predicate for G.

Proof. Let F ⊆ Ω be the set of points fixed by G. Then Ω = Ω1 ∪̇ . . . ∪̇ Ωr ∪̇F . An
assignment θ : Ω → {0, 1} can be viewed as a tuple (θ1, . . . , θr, θF) of assignments defined on
Ω1, . . . ,Ωr, F , respectively, and we have θG = θ1

G1 × · · · × θr
Gr × {θF }. Hence θ satisfies γ if

and only if θi satisfies γi for every i ∈ [r]. Thus, γ is a complete symmetry breaking predicate
for G. ◀

The size of the constraint γ is linear in the size of the constraints γ1, . . . , γr.

Wreath Products. We now turn our attention to so-called wreath products. They naturally
occur as the automorphism groups of tree-like structures and can be detected as the induced
action on a block system [45]. Tree-like appendages are already detected and exploited by
practical symmetry detection algorithms [4], and thus these wreath products seem readily
available.

Indeed, certain cases of wreath products can be efficiently handled in symmetry breaking.
Specifically, we show that automorphism groups of trees can be taken care of (see Theorem 4).

Intuitively, a wreath symmetry occurs if the domain can be partitioned into equally-sized
parts with identical symmetries that can be permuted among each other. The corresponding
symmetry group is made of a group describing the possible permutations of the points within
a part, and a group describing the permutation of the parts. Formally, let G ≤ Sym(n) and
H ≤ Sym(m), and consider the imprimitive action of G ≀H on X := {xij : i ∈ [n], j ∈ [m]}.
Explicitly, it is given by x

((g1,...,gm),h)
ij = xgh(j)(i) h(j). For θ : X → {0, 1} and j ∈ [m], let

θj := θ|{x1j ,...,xnj} and write θ = (θ1, . . . , θm).

Wreath Products with CNF. Let us first focus on CNF predicates. Recall the predicate
λm,n from the beginning of this section. The following result shows that a symmetry breaking
predicate for a permutation group G can be “lifted” to a predicate for G ≀ Sym(m):

▶ Lemma 21. Assume that γ is a complete symmetry breaking predicate for G ≤ Sym(n) and
set γj := γ(x1j , . . . , xnj) for all j ∈ [m]. Then ν :=

∧
j∈[m] γj ∧ λm,n is a complete symmetry

breaking predicate for W := G ≀ Sym(m).

CP 2024

3:16 The Complexity of Symmetry Breaking Beyond Lex-Leader

Proof. Let θ : X → {0, 1} be an assignment. For every j ∈ [m], there exists gj ∈ G such
that θgj

j satisfies γ. Write θ′ := θ((g1,...,gm),1). There exists h ∈ Sym(m) with θ′
h−1(1) ⪯lex

· · · ⪯lex θ
′
h−1(m). Hence, the assignment θ′(1,h) ∈ θW satisfies ν.

On the other hand, consider assignments θ, θ′ : X → {0, 1} satisfying ν, and assume θ′ =
θ((g1,...,gm),h) for

(
(g1, . . . , gm), h

)
∈ W . For all j ∈ [m], this implies θ′

j = θ
gh−1(j)
h−1(j) ∈ θh−1(j)

G.
As θ′

j and θh−1(j) satisfy γ, they coincide, so we may choose g1 = · · · = gm = 1. Since θ and
θ′ satisfy λm,n, we have θ1 ⪯lex · · · ⪯lex θm and θ′

1 ⪯lex · · · ⪯lex θ
′
m. This yields θ′

j = θj for
all j ∈ [m], so θ = θ′ follows. ◀

▶ Remark 22. The size of the predicate ν given in Lemma 21 is in O(s(γ)m+ nm), where
s(γ) denotes the size of γ. Note that if s(γ) ∈ O(n) holds, then the size of ν is linear in the
domain size nm of the wreath product.

▶ Corollary 23. The predicate ν =
∧

j∈[m](x1j ≤ · · · ≤ xnj) ∧ λm,n is a complete symmetry
breaking predicate for Sym(n) ≀ Sym(m).

Combining the results for direct disjoint decompositions and wreath products, it readily
follows that automorphism groups of trees can be handled efficiently (see Theorem 4).

Proof of Theorem 4. The group G can be constructed by iterated disjoint direct decomposi-
tions and wreath products in which the top group is a full symmetric group [41]. Combining
Lemma 20 and Proposition 21 thus yields a symmetry breaking predicate for G. Inductively,
it follows from Remark 22 that the size of this predicate is linear. ◀

Wreath Products with Circuits. Using circuits and a few further assumptions, we treat
general wreath products W := G ≀H.

▶ Theorem 5. Let G ≤ Sym(n) and H ≤ Sym(m) be permutation groups. Assume that a
complete symmetry breaking circuit for G can be computed in polynomial time. Moreover,
suppose that for every partition P of [m], the partition stabilizer S of P in H and a complete
symmetry breaking circuit for S can be computed in polynomial time. Then there is a
complete symmetry breaking circuit for the wreath product W := G ≀H that can be computed
in polynomial time.

Proof sketch. It suffices to give a polynomial-time algorithm for symmetry breaking for W .
Let θ : X → {0, 1} be an assignment and write θ = (θ1, . . . , θm) as before. We obtain the
elements of θG≀H by applying elements of G to θ1, . . . , θm and permuting the resulting strings
using an element of H.

Based on this, the representative θ = (θ1, . . . , θm) of an orbit is chosen as follows: We
may require that all of θ1, . . . , θm are accepted by the symmetry breaking circuit for G. It
remains to fix a unique permutation of θ1, . . . , θm under an element of H . There, we proceed
in a way resembling the lexicographic ordering used in the proof of Lemma 21: We require
that the symmetry breaking circuit for H accepts the string s1 consisting of the first entries
of θ1, . . . , θm. There might still be multiple permutations of θ1, . . . , θm with the same string
of first entries. We thus proceed with the string of second entries s2, but only taking those
permutations in H into account that fix the string of first entries. Thus we require that the
symmetry breaking circuit for H ∩ S1 accepts s2, where S1 is the stabilizer of s1. The latter
can be expressed as a partition stabilizer. We continue this way up to the last position and
accept θ as the orbit representative if none of the intermediate verifications fails. ◀

M. Anders, S. Brenner, and G. Rattan 3:17

The full proof of this theorem is a mere formalization of this idea. A detailed description as
well as a discussion of correctness can be found in Appendix B. In general, it is unknown
whether partition stabilizers can be efficiently computed (see [26]). However, for H = Sym(m),
the stabilizer of P = (Ω1, . . . ,Ωr) is simply given by Sym(Ω1) × · · · × Sym(Ωr) ≤ Sym(n),
and hence readily computable. This also holds if the order of H is small. There, we obtain
the following consequence of the preceding result:

▶ Corollary 24. Let G ≤ Sym(n) and H ≤ Sym(m) be permutation groups. Assume that
a complete symmetry breaking circuit for G can be computed in polynomial time and that
|H| ∈ poly(n,m) holds. Then a complete symmetry breaking circuit for G ≀H can be computed
in polynomial time.

6 Conclusion and Future Work

We laid the foundation for a systematic study of the complexity of symmetry breaking. A
central tool in our investigation was the relation to the string canonization problem (see
Section 3). In particular, we showed that polynomial time symmetry breaking for the
row-column symmetry group, even with circuits and additional variables, implies GI ∈ coNP
(see Theorem 1). The same applies to proper Johnson actions (see Theorem 2). On the other
hand, we showed that symmetry breaking in polynomial time is possible for several families
of groups, including certain classes of wreath products (see Section 5).

Clearly, the dividing line between permutation groups that are “hard” instances for
symmetry breaking, and those which admit efficient symmetry breaking, needs to be further
explored. Among others, the following questions immediately arise:
1. Given a permutation group G and a subgroup H of polynomial index, does H admit

efficient symmetry breaking if G does (i.e., does the converse of Lemma 18 hold)?
2. How difficult are permutation groups of intermediate size, in particular groups of quasi-

polynomial order in the size of the domain?

A positive answer to Question 1 would not only contribute to further decomposition
results, but it is particularly relevant as large primitive permutation groups are known to
contain normal subgroups of small index exhibiting a Johnson action.

References
1 Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: efficient symmetry-breaking

for boolean satisfiability. In Proceedings of the 40th Design Automation Conference, DAC 2003,
Anaheim, CA, USA, June 2-6, 2003, pages 836–839. ACM, 2003. doi:10.1145/775832.776042.

2 Markus Anders and Pascal Schweitzer. Parallel computation of combinatorial symmetries. In
29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon,
Portugal (Virtual Conference), volume 204 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.6.

3 Markus Anders, Pascal Schweitzer, and Mate Soos. Algorithms transcending the sat-symmetry
interface. In 26th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume 271 of LIPIcs, pages 1:1–1:21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SAT.2023.1.

4 Markus Anders, Pascal Schweitzer, and Julian Stieß. Engineering a preprocessor for symmetry
detection. In 21st International Symposium on Experimental Algorithms, SEA 2023, July
24-26, 2023, Barcelona, Spain, volume 265 of LIPIcs, pages 1:1–1:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SEA.2023.1.

CP 2024

https://doi.org/10.1145/775832.776042
https://doi.org/10.4230/LIPIcs.ESA.2021.6
https://doi.org/10.4230/LIPICS.SAT.2023.1
https://doi.org/10.4230/LIPICS.SEA.2023.1

3:18 The Complexity of Symmetry Breaking Beyond Lex-Leader

5 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016. doi:10.1145/2897518.
2897542.

6 László Babai. Canonical form for graphs in quasipolynomial time: preliminary report. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1237–1246. ACM, 2019. doi:10.1145/
3313276.3316356.

7 László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, STOC ’83, pages 171–183, New York, NY,
USA, 1983. Association for Computing Machinery.

8 László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, pages 409–420. ACM, 1987. doi:10.1145/28395.28439.

9 László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254–276,
1988. doi:10.1016/0022-0000(88)90028-1.

10 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance
and symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539–1589,
2023. doi:10.1613/JAIR.1.14296.

11 Bart Bogaerts, Jakob Nordström, Andy Oertel, and Çağrı Uluç Yıldırımoğlu. BreakID-kissat
in SAT competition 2023 (system description). In Proceedings of SAT Competition 2023:
Solver, Benchmark and Proof Checker Descriptions, Department of Computer Science Series
of Publications B, Finland, 2023. Department of Computer Science, University of Helsinki.

12 Mun See Chang and Christopher Jefferson. Disjoint direct product decompositions of permu-
tation groups. J. Symb. Comput., 108:1–16, 2022. doi:10.1016/j.jsc.2021.04.003.

13 Michael Codish, Graeme Gange, Avraham Itzhakov, and Peter J. Stuckey. Breaking symmetries
in graphs: The nauty way. In Principles and Practice of Constraint Programming - 22nd
International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings,
volume 9892 of Lecture Notes in Computer Science, pages 157–172. Springer, 2016. doi:
10.1007/978-3-319-44953-1_11.

14 James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning (KR’96), Cambridge, Massachusetts,
USA, November 5-8, 1996, pages 148–159. Morgan Kaufmann, 1996.

15 Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting
structure in symmetry detection for CNF. In Proceedings of the 41th Design Automation
Conference, DAC 2004, San Diego, CA, USA, June 7-11, 2004, pages 530–534. ACM, 2004.
doi:10.1145/996566.996712.

16 Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning:
Effective dynamic symmetry handling for SAT. In Theory and Applications of Satisfiability
Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 -
September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer Science, pages
83–100. Springer, 2017. doi:10.1007/978-3-319-66263-3_6.

17 Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static
symmetry breaking for SAT. In Theory and Applications of Satisfiability Testing - SAT
2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume
9710 of Lecture Notes in Computer Science, pages 104–122. Springer, 2016. doi:10.1007/
978-3-319-40970-2_8.

18 Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher Mears. Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In IEEE 24th International

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/28395.28439
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1613/JAIR.1.14296
https://doi.org/10.1016/j.jsc.2021.04.003
https://doi.org/10.1007/978-3-319-44953-1_11
https://doi.org/10.1007/978-3-319-44953-1_11
https://doi.org/10.1145/996566.996712
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-319-40970-2_8

M. Anders, S. Brenner, and G. Rattan 3:19

Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9,
2012, pages 49–56. IEEE Computer Society, 2012. doi:10.1109/ICTAI.2012.16.

19 John D. Dixon and Brian Mortimer. Permutation Groups. Graduate Texts in Mathematics.
Springer New York, 1996. URL: https://books.google.de/books?id=4QDpFN6k61EC.

20 Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson,
and Toby Walsh. Breaking row and column symmetries in matrix models. In Principles and
Practice of Constraint Programming - CP 2002, 8th International Conference, CP 2002, Ithaca,
NY, USA, September 9-13, 2002, Proceedings, volume 2470 of Lecture Notes in Computer
Science, pages 462–476. Springer, 2002. doi:10.1007/3-540-46135-3_31.

21 Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kızıltan, Ian Miguel, and Toby Walsh.
Matrix modelling. Technical Report APES-36-2001, APES group (2001), 2001.

22 Pierre Flener, Justin Pearson, and Meinolf Sellmann. Static and dynamic structural symmetry
breaking. Ann. Math. Artif. Intell., 57(1):37–57, 2009. doi:10.1007/S10472-009-9172-3.

23 Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint programming.
In Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence,
pages 329–376. Elsevier, 2006. doi:10.1016/S1574-6526(06)80014-3.

24 Andrew Grayland, Chris Jefferson, Ian Miguel, and Colva M. Roney-Dougal. Minimal ordering
constraints for some families of variable symmetries. Annals of Mathematics and Artificial
Intelligence, 57:75–102, 2009.

25 Marijn J. H. Heule. Optimal symmetry breaking for graph problems. Math. Comput. Sci.,
13(4):533–548, 2019. doi:10.1007/S11786-019-00397-5.

26 D.F. Holt, B. Eick, and E.A. O’Brien. Handbook of Computational Group Theory. Discrete
Mathematics and Its Applications. CRC Press, 2005. URL: https://books.google.de/books?
id=i2UjAASZ33YC.

27 Tommi A. Junttila, Matti Karppa, Petteri Kaski, and Jukka Kohonen. An adaptive prefix-
assignment technique for symmetry reduction. J. Symb. Comput., 99:21–49, 2020. doi:
10.1016/J.JSC.2019.03.002.

28 Tommi A. Junttila and Petteri Kaski. Conflict propagation and component recursion for
canonical labeling. In Theory and Practice of Algorithms in (Computer) Systems - First
International ICST Conference, TAPAS 2011, Rome, Italy, April 18-20, 2011. Proceedings,
volume 6595 of Lecture Notes in Computer Science, pages 151–162. Springer, 2011. doi:
10.1007/978-3-642-19754-3_16.

29 George Katsirelos, Nina Narodytska, and Toby Walsh. On the complexity and completeness
of static constraints for breaking row and column symmetry. In Principles and Practice of
Constraint Programming - CP 2010 - 16th International Conference, CP 2010, St. Andrews,
Scotland, UK, September 6-10, 2010. Proceedings, volume 6308 of Lecture Notes in Computer
Science, pages 305–320. Springer, 2010. doi:10.1007/978-3-642-15396-9_26.

30 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation. In
27th International Conference on Principles and Practice of Constraint Programming, CP,
volume 210 of LIPIcs, pages 34:1–34:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.CP.2021.34.

31 Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Isomorphism Problem: Its
Structural Complexity. Progress in Theoretical Computer Science. Birkhäuser/Springer, 1993.
doi:10.1007/978-1-4612-0333-9.

32 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982. doi:10.1016/0022-0000(82)
90009-5.

33 Eugene M. Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In
Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson Leighton, editors, Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta,
Georgia, USA, pages 652–658. ACM, 1999. doi:10.1145/301250.301427.

CP 2024

https://doi.org/10.1109/ICTAI.2012.16
https://books.google.de/books?id=4QDpFN6k61EC
https://doi.org/10.1007/3-540-46135-3_31
https://doi.org/10.1007/S10472-009-9172-3
https://doi.org/10.1016/S1574-6526(06)80014-3
https://doi.org/10.1007/S11786-019-00397-5
https://books.google.de/books?id=i2UjAASZ33YC
https://books.google.de/books?id=i2UjAASZ33YC
https://doi.org/10.1016/J.JSC.2019.03.002
https://doi.org/10.1016/J.JSC.2019.03.002
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.1007/978-3-642-15396-9_26
https://doi.org/10.4230/LIPIcs.CP.2021.34
https://doi.org/10.1007/978-1-4612-0333-9
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1145/301250.301427

3:20 The Complexity of Symmetry Breaking Beyond Lex-Leader

34 Eugene M. Luks and Amitabha Roy. The complexity of symmetry-breaking formulas. Ann.
Math. Artif. Intell., 41(1):19–45, 2004. doi:10.1023/B:AMAI.0000018578.92398.10.

35 François Margot. Pruning by isomorphism in branch-and-cut. Math. Program., 94(1):71–90,
2002. doi:10.1007/S10107-002-0358-2.

36 Brendan D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306–324, 1998.
doi:10.1006/JAGM.1997.0898.

37 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

38 Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. Cdclsym: Introducing
effective symmetry breaking in SAT solving. In Tools and Algorithms for the Construction
and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part I, volume 10805 of Lecture Notes in Computer
Science, pages 99–114. Springer, 2018. doi:10.1007/978-3-319-89960-2_6.

39 James Ostrowski, Jeff T. Linderoth, Fabrizio Rossi, and Stefano Smriglio. Constraint orbital
branching. In Integer Programming and Combinatorial Optimization, 13th International
Conference, IPCO 2008, Bertinoro, Italy, May 26-28, 2008, Proceedings, volume 5035 of Lecture
Notes in Computer Science, pages 225–239. Springer, 2008. doi:10.1007/978-3-540-68891-4\
_16.

40 Marc E. Pfetsch and Thomas Rehn. A computational comparison of symmetry handling
methods for mixed integer programs. Math. Program. Comput., 11(1):37–93, 2019. doi:
10.1007/s12532-018-0140-y.

41 G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische
Verbindungen. Acta Mathematica, 68(none):145 – 254, 1937. doi:10.1007/BF02546665.

42 Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. In William J.
Clancey and Daniel S. Weld, editors, Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference,
AAAI 96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 1, pages 209–215. AAAI
Press / The MIT Press, 1996. URL: http://www.aaai.org/Library/AAAI/1996/aaai96-031.
php.

43 Ashish Sabharwal. Symchaff: exploiting symmetry in a structure-aware satisfiability solver.
Constraints An Int. J., 14(4):478–505, 2009. doi:10.1007/S10601-008-9060-1.

44 Karem A. Sakallah. Symmetry and satisfiability. In Handbook of Satisfiability - Second Edition,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 509–570. IOS Press,
2021. doi:10.3233/FAIA200996.

45 Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003. doi:10.1017/CBO9780511546549.

46 Toby Walsh. On the complexity of breaking symmetry. CoRR, abs/2005.08954, 2020. arXiv:
2005.08954.

47 Viktor N Zemlyachenko, Nickolay M Korneenko, and Regina I Tyshkevich. Graph isomorphism
problem. Journal of Soviet Mathematics, 29:1426–1481, 1985.

https://doi.org/10.1023/B:AMAI.0000018578.92398.10
https://doi.org/10.1007/S10107-002-0358-2
https://doi.org/10.1006/JAGM.1997.0898
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-540-68891-4_16
https://doi.org/10.1007/978-3-540-68891-4_16
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.1007/BF02546665
http://www.aaai.org/Library/AAAI/1996/aaai96-031.php
http://www.aaai.org/Library/AAAI/1996/aaai96-031.php
https://doi.org/10.1007/S10601-008-9060-1
https://doi.org/10.3233/FAIA200996
https://doi.org/10.1017/CBO9780511546549
https://arxiv.org/abs/2005.08954
https://arxiv.org/abs/2005.08954

M. Anders, S. Brenner, and G. Rattan 3:21

Appendix

A Proof of Theorem 13

Proof. It suffices to show that there exists a canonical form f such that d-gcanonf ∈ NP
(see Lemma 12).

Certificate. Given a graph Γ = (V,E), we consider the row-column symmetry group
with n = |V | rows and m = |E| columns. More precisely, we assume V = [n]. We let
δn,m(x11, . . . , xnm, y1, . . . , yp) denote the symmetry breaking circuit as computed by the
polynomial time algorithm for row-column symmetry. Obviously, p ∈ poly(m,n). Our
chosen certificate for decision canonization is σ, where σ is an assignment to the variables
V = Var(δn,m(x11, . . . , xnm, y1, . . . , yp)).

Bipartite Reordering. We observe a technicality of our reduction: d-gcanon expects as
input a graph, whereas our row-column symmetry breaking circuits essentially solve the
decision canonization for bipartite graphs. We proceed using the same encoding for graphs
into bipartite graphs as discussed previously (see proof of Theorem 1). The order of a graph
Γ is fully determined by the order of its vertices. However, observe that when only restricting
the order of the left partition, the corresponding bipartite graph bip(Γ) may still differ in the
order of the edges, i.e., in the order of the right partition. Indeed, the symmetry breaking
circuit may choose to accept any of these orderings of the right partition. We define the set
bip′(Γ) of bipartite graphs, where the left partition is ordered according to V (Γ), and all
potential reorderings of the right partition are contained. Note that

⋃
∆∈ΓSym(V (Γ)) bip′(∆)

covers all reorderings of the corresponding bipartite graphs.

Verifier. Given a certificate σ, our polynomial time verifier proceeds as follows:
1. For each column c in the matrix of xij variables, verify that the assignment has precisely

two true variables in the column c. Formally, there exist i, j ∈ [n] with i ̸= j such that
σ(xic) = 1 and σ(xjc) = 1, and for all k ∈ [n] with j ̸= k ̸= i it holds that σ(xic) = 0.

2. Check that Γ corresponds to the bipartite graph as given by the assignment σ: for each
edge {v1, v2} ∈ E, we verify that there exists a column c such that xv1c = 1 and xv2c = 1.

3. Check if σ satisfies δn,m(x11, · · · , xnm, y1, . . . , yp). If it satisfies δn,m, accept, otherwise
reject.

By assumption, δn,m(x11, . . . , xnm, y1, . . . , yp) can be computed in polynomial time. Clearly,
all the other steps can be computed in polynomial time as well.

Correctness of Verifier. We need to argue that for each isomorphism class of graphs
ΓSym(V (Γ)), there is precisely one ordered graph G accepted by the verifier.

First, assume towards a contradiction that there is a Γ such that for all φ ∈ Sym(V (Γ)),
and all certificates, Γφ is rejected by the verifier. Consider the corresponding bipartite graph
bip(Γ). By assumption, we know that for all orderings of the left partition, all orderings
of the right partition are rejected by the verifier. Hence, all orderings of bip(Γ) under
Sym([n]) × Sym([m]) are rejected by the symmetry breaking circuit. Hence, δn,m can not be
a correct symmetry breaking circuit, which is a contradiction.

Next, assume towards a contradiction that there are two distinct isomorphic graphs Γ ∼= ∆
which are both accepted by the verifier. Since δn,m is a correct symmetry breaking circuit,
this may only occur if there are corresponding bipartite graphs Γ∗ ∈ bip′(Γ),∆∗ ∈ bip′(∆)
such that Γ∗ = ∆∗. However, this would immediately imply Γ = ∆. ◀

CP 2024

3:22 The Complexity of Symmetry Breaking Beyond Lex-Leader

B Proof of Theorem 5

▶ Theorem 5. Let G ≤ Sym(n) and H ≤ Sym(m) be permutation groups. Assume that a
complete symmetry breaking circuit for G can be computed in polynomial time. Moreover,
suppose that for every partition P of [m], the partition stabilizer S of P in H and a complete
symmetry breaking circuit for S can be computed in polynomial time. Then there is a
complete symmetry breaking circuit for the wreath product W := G ≀H that can be computed
in polynomial time.

Proof. Since we may turn a polynomial time algorithm into a polynomial-sized circuit, it
suffices to give a polynomial-time algorithm for symmetry breaking for W .

Let ψG denote the symmetry breaking circuit for G, and for any partition stabilizer S in H ,
write ψS for the corresponding symmetry breaking circuit. For an assignment θ : X → {0, 1},
write θ = (θ1, . . . , θm) as before. For i ∈ [n], let ci(θ) be the string of length m consisting
of the i-th entries of θ1, . . . , θm. We define partitions P1, . . . , Pn of [m] as follows: let P1
denote the partition into the index sets of zero and one entries in c1(θ). For i ≥ 2, Pi is the
refinement of Pi−1 according to the zero-one-partition of ci(θ). For i ∈ [n], let Si denote the
partition stabilizer of Pi in H, and set S0 := H.

Description of Algorithm. Given an assignment θ = (θ1, . . . , θm), we define our algorithm
as follows:
1. If ψG[θi] is non-satisfying for some i ∈ [m], return false.
2. For i ∈ [n], compute the vectors ci(θ) as well as the partitions Pi and their stabilizers Si.
3. For i ∈ [n], check if ψSi−1 [ci(θ)] is satisfying. If this fails for some i ∈ [n], return false.

Otherwise, return true.

Correctness of Algorithm. By assumption, partition stabilizers in H as well as all the
necessary symmetry breaking circuits can be computed in polynomial time. The remaining
steps of the algorithm can clearly be computed in polynomial time.

Replacing the input assignment θ = (θ1, . . . , θm) by some element θ((g1,...,gm),1) ∈ θW , we
may assume that ψG[θ1], . . . , ψG[θm] are satisfying. By assumption, there exists h1 ∈ H such
that ψH [c1

(
θ(1,h1))] is satisfying. Moreover, there exists h2 ∈ S1 such that ψS1 [c2

(
θ(1,h2h1))]

is satisfying. Note that c1
(
θ(1,h2h1)) = c1

(
θ(1,h1)) holds due to h2 ∈ S1. Continuing, we

obtain an element θ′ := θ(1,hn−1···h1) ∈ θW for which the algorithm returns true.
On the other hand, suppose that θ = (θ1, . . . , θm) and θ′ = (θ′

1, . . . , θ
′
m) are assignments

in the same W -orbit accepted by the algorithm. Then ψG[θi] and ψG[θ′
i] are satisfying for

all i ∈ [m]. Since θ and θ′ lie in the same W -orbit, the strings θ1, . . . , θm and θ′
1, . . . , θ

′
m

coincide up to reordering. The ordering of the substrings is lexicographic with respect to a
successive application of H. This yields θ = θ′. ◀

C Proof of Theorem 16

▶ Theorem 16. Let t ≥ 2 be a fixed arity. Suppose there exists a polynomial time algorithm
for generating complete symmetry breaking circuits with additional variables for the Johnson
family of arity t. Then, d-gcanon ∈ NP and hence GI ∈ coNP.

Proof. Again, Lemma 12 ensures that it suffices to prove d-gcanon ∈ NP. From Lemma 14,
it follows that it suffices to solve d-gcanon in non-deterministic polynomial time using a
non-deterministic polynomial time oracle for decision canonization for uniform, symmetric
t-ary relational structures.

M. Anders, S. Brenner, and G. Rattan 3:23

Graph to t-ary Structure. Given a graph Γ = (V,E), we define a t-uniform relational
structure RΓ as follows. Let I ⊆ V be the set of isolated vertices. We have V (RΓ) = {ru : u ∈
V } ∪ {v1, . . . , vt−2, a, b}. Observe that we added t vertices, namely v1, . . . , vt−2, a, b. These
vertices will be called bogus vertices. We presume the order rv1 ≺ . . . ≺ rvn ≺ v1 ≺ . . . ≺
vt−2 ≺ a ≺ b for the symbols used in the construction. The hyperedges in RΓ are given by{

{ru, rw, v1, . . . , vt−2} : {u,w} ∈ E
}

∪
{

{ru, v1, . . . , vt−2, a} : u ∈ V \ I
}

∪
{

{v1, . . . , vt−2, a, b}
}
.

Observe that

degRΓ
(ru) = 0, u ∈ I

degRΓ
(ru) = degΓ(u) + 1, u ∈ V \ I

degRΓ
(vi) = |E| + |V \ I| + 1, i ∈ [t− 2]

degRΓ
(a) = |V \ I| + 1,

degRΓ
(b) = 1.

In particular, for u ∈ V \ I, we have 1 < degRΓ
(ru) ≤ |V \ I|.

Now let Γ and ∆ be graphs on n vertices. Without loss of generality, we may assume
that Γ and ∆ contain edges. We claim that Γ and ∆ are isomorphic precisely if RΓ and R∆
are isomorphic. Assume that there exists an isomorphism φ : RΓ → R∆. Denote the vertices
in RΓ and R∆ with an exponent Γ and ∆, respectively. By the above degree conditions,
we have φ(bΓ) = b∆ (here, the notation bΓ refers to node b of graph Γ). As bΓ is adjacent
to vΓ

1 , . . . , v
Γ
t−2, a

Γ (similarly in ∆), the degree conditions then imply φ(aΓ) = a∆. Now
the vertices vΓ

1 , . . . , v
Γ
t−2 are mapped bijectively to v∆

1 , . . . , v
∆
t−2. In particular, φ induces a

bijection between {rΓ
u : u ∈ V (Γ)} and {r∆

u : u ∈ V (∆)}. It is then easy to see that φ induces
an isomorphism between Γ and ∆.

On the other hand, if Γ and ∆ are isomorphic, RΓ ∼= R∆ follows from the fact that the
above construction is isomorphism-invariant: all additional bogus vertices universally appear
with all edges, as well as with all non-isolated vertices.

Furthermore, it is easy to see that if Γ ̸= ∆, then RΓ ̸= R∆ follows.

Certificate. Our certificate will consist of a permutation φ ∈ Sym(V (RΓ)), as well as a
certificate for decision canonization of t-ary structures σ.

Verifier. Our verifier proceeds as follows:
1. Using the decision canonization oracle for t-ary structures, continue if σ is a valid certificate

for Rφ
Γ , and reject otherwise.

2. If for all pairs of vertices v, v′ ∈ V (Γ) with v ≺ v′ it holds that φ(rv) ≺ φ(rv′), accept,
otherwise reject.

Correctness of Verifier. From the arguments above, we know that for all graphs ∆ in the
isomorphism class of Γ it holds that RΓ ∼= R∆. The oracle in Step 1 will accept precisely one
canonical t-ary structure Rφ

Γ in the isomorphism class of RΓ. In turn, the verifier accepts a
graph Γ, if and only if the order of the vertices is preserved in the canon Rφ

Γ (see Step 2).
We remark that there may also be different φ′ which map RΓ to the canon, which may not
preserve the order of V (Γ). Clearly, there is at least one graph Γ in each isomorphism class
that is accepted by the verifier.

CP 2024

3:24 The Complexity of Symmetry Breaking Beyond Lex-Leader

Assume there is another graph ∆ ̸= Γ with ∆ ∼= Γ which is also accepted by the verifier.
Since we know that R∆ ∼= RΓ holds, this means there is a φ′ ∈ Sym(V (R∆)) such that
Rφ′

∆ = Rφ
Γ holds. In particular, φ′ preserves the order of vertices in ∆. Recall that bogus

vertices can only ever be mapped to bogus vertices. Therefore, Rφ′

∆ = Rφ
Γ immediately implies

that the vertices of Γ and ∆ can be mapped, in order, onto each other, while preserving the
edge relation of the original graphs. In other words, ∆ = Γ holds, which is a contradiction to
the assumption that the verifier accepts ∆. ◀

Certifying Without Loss of Generality Reasoning in
Solution-Improving Maximum Satisfiability
Jeremias Berg #

Department of Computer Science, HIIT, Helsinki, Finland
University of Helsinki, Finland

Bart Bogaerts #

Vrije Universiteit Brussel, Belgium

Jakob Nordström #

University of Copenhagen, Denmark
Lund University, Sweden

Andy Oertel #

Lund University, Sweden
University of Copenhagen, Denmark

Tobias Paxian #

University of Freiburg, Germany

Dieter Vandesande #

Vrije Universiteit Brussel, Belgium

Abstract
Proof logging has long been the established method to certify correctness of Boolean satisfiability
(SAT) solvers, but has only recently been introduced for SAT-based optimization (MaxSAT). The
focus of this paper is solution-improving search (SIS), in which a SAT solver is iteratively queried for
increasingly better solutions until an optimal one is found. A challenging aspect of modern SIS solvers
is that they make use of complex “without loss of generality” arguments that are quite involved to
understand even at a human meta-level, let alone to express in a simple, machine-verifiable proof.

In this work, we develop pseudo-Boolean proof logging methods for solution-improving MaxSAT
solving, and use them to produce a certifying version of the state-of-the-art solver Pacose with
VeriPB proofs. Our experimental evaluation demonstrates that this approach works in practice.
We hope that this is yet another step towards general adoption of proof logging in MaxSAT solving.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Constraint and logic programming; Mathematics of computing → Combinatorial
optimization

Keywords and phrases proof logging, certifying algorithms, MaxSAT, solution-improving search,
SAT-UNSAT, maximum satisfiability, combinatorial optimization, certification, pseudo-Boolean

Digital Object Identifier 10.4230/LIPIcs.CP.2024.4

Supplementary Material Dataset (experimental data and source code): https://zenodo.org/
records/12591387 [8]

Funding Jeremias Berg: Research Council of Finland under grants 342145.
Jakob Nordström: Swedish Research Council grant 2016-00782 and Independent Research Fund
Denmark grant 9040-00389B.
Andy Oertel: Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.
Dieter Vandesande: Fonds Wetenschappelijk Onderzoek – Vlaanderen (project G070521N).

© Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and
Dieter Vandesande;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 4; pp. 4:1–4:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jeremias.berg@helsinki.fi
https://orcid.org/0000-0001-7660-8061
mailto:bart.bogaerts@ai.vub.ac.be
https://orcid.org/0000-0003-3460-4251
mailto:jn@di.ku.dk
https://orcid.org/0000-0002-2700-4285
mailto:andy.oertel@cs.lth.se
https://orcid.org/0000-0001-9783-6768
mailto:paxiant@informatik.uni-freiburg.de
https://orcid.org/0009-0005-2044-1393
mailto:dieter.vandesande@vub.be
https://orcid.org/0000-0002-8150-3202
https://doi.org/10.4230/LIPIcs.CP.2024.4
https://zenodo.org/records/12591387
https://zenodo.org/records/12591387
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

Acknowledgements We want to thank Florian Pollitt and Mathias Fleury for their assistance with
the CaDiCaL proof tracer and for fuzzing VeriPB within CaDiCaL. Their contributions were very
helpful to further improve the robustness of the VeriPB toolchain. We also wish to acknowledge
useful discussions with participants of the Dagstuhl workshop 23261 SAT Encodings and Beyond.
The computational experiments were enabled by resources provided by LUNARC at Lund University.

1 Introduction

Thanks to tremendous progress over the last decades on algorithms for combinatorial search
and optimization, today NP-hard problems are routinely solved in many practical applications.
Unfortunately, as these algorithms get more and more sophisticated, it also gets more and
more challenging to avoid errors sneaking in during algorithm design and implementation.
It is well-known that modern combinatorial solving algorithms in different paradigms can
sometimes produce “solutions” that violate hard constraints, claim that suboptimal solutions
are optimal, or declare that feasible problems lack solutions [9, 15,16,19,30,39].

Although there are many ways to address this problem, including software testing
techniques such as fuzzing [15, 50], and design of formally verified software [28], the most
promising approach appears to be the use of certifying algorithms [1, 48] with so-called proof
logging. What this means is the algorithm should not only produce an answer, but also a
proof that this answer is correct. Such proofs should follow simple rules, as specified by a
formal proof system, so that they can easily be verified by an independent proof checker. In
addition to guaranteeing correctness, proof logging brings many other advantages: it enables
advanced testing (since one can detect correct answers found for invalid reasons, and also
test instances for which the answer is not known), detailed debugging (since invalid proof
steps pinpoint where errors happened), auditability (since proofs can be stored and verified
independently of which algorithm was used), and performance analysis (since proofs can be
mined for insights on which reasoning steps were crucial for reaching the final conclusion).

Proof logging has been particularly successful in the domain of Boolean satisfiability
(SAT) solving [11], where a large variety of proof systems has seen the light of day [4,10,35,63].
Using proof logging has long been mandatory in the main track of the SAT competitions,
and it is hard to overestimate the impact this has had on improving overall correctness
and reliability of SAT solvers. This has stimulated the spread of proof logging into other
combinatorial solving paradigms, including SAT modulo theories (SMT) [7,57], automated
planning [25–27,56], and mixed integer linear programming [21,24].

1.1 Proof Logging for MaxSAT Solving

In view of the above discussion, it is interesting to compare the developments in other
combinatorial optimization paradigms to the state of affairs in maximum satisfiability
(MaxSAT), the optimization version of the SAT problem. Without loss of generality, MaxSAT
can be described as the problem of maximizing a linear objective O subject to satisfying a
Boolean formula F in conjunctive normal form (CNF). Although MaxSAT is arguably the
one optimization paradigm closest to SAT, and although several proof systems for formalizing
MaxSAT reasoning have been proposed [14,42,49,53–55], for a long time there has been no
practically feasible proof logging method for state-of-the-art MaxSAT solvers. This changed
only recently when pseudo-Boolean proof logging using VeriPB [12,34] was proposed for
MaxSAT [59,60], a proposal that was followed by the successful design and implementation
of VeriPB proof logging for modern core-guided MaxSAT solvers [9].

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:3

In this paper, we revisit proof logging work for solution-improving search (SIS) [59,60],
also referred to as model-improving search or linear SAT-UNSAT (LSU) search, and consider
state-of-the-art solving techniques. In the SIS approach – which is much simpler to explain
than, e.g., core-guided [29] or implicit hitting set [20] search – a SAT solver is repeatedly
called on the formula F , each time with an added solution-improving constraint asking for
increasingly better solutions with respect to the objective O, and the problem turns infeasible
when the last solution found was optimal. In the work by Vandesande et al. [59, 60], the
main technical challenge was to certify correctness of the CNF encodings of these solution-
improving constraints, which could then essentially be concatenated with the proof logging
generated by the SAT solver (modulo some non-trivial engineering).

At first sight, it seems that implementing pseudo-Boolean proof logging in a state-of-the-
art MaxSAT solver using solution-improving search would mostly be a matter of carefully
transferring already developed techniques [59,60], perhaps combining them with proof logging
ideas developed for other CNF encodings [31]. After all, the distinguishing feature of a
top-of-the-line SIS solver is the choice of CNF translation for reasoning about the objective
function, such as, in the case of Pacose, the polynomial watchdog (DPW) encoding [6]. Once
proof logging for such a CNF encoding is in place, it seems reasonable to expect that the
rest should be plain sailing.

It is all the more surprising, then, that it turns out nothing could be further from the truth.
To minimize the time the MaxSAT solver spends on generating PW encodings, an essential
step is to introduce completely unconstrained variables that can be used to perform different
comparisons with a single CNF encoding; this is referred to as the dynamic polynomial
watchdog encoding (DPW) [52]. Loosely speaking, if we know that the best possible objective
value lies in the range [lo, hi], then instead of generating repeated encodings O ≥ V to probe
different possible objective values V in this range, one can introduce free variables ti encoding
a tare sum T taking values between 0 and hi − lo and try to maximize the value T = T ∗ for
which one single DPW-encoded constraint O − T ≥ lo holds. Once the maximum T ∗ has
been found, it is clear that O = lo + T ∗ is the best possible objective value, since without loss
of generality T could be set to any value. But how can such a meta-argument be expressed
in simple propositional logic reasoning?

In what follows, we provide a brief, if still high-level, discussion of some of the challenges
that arise when trying to design simple proofs to certify such fairly complex “without loss of
generality” arguments, and then outline how such challenges can be overcome.

1.2 Solution-Improving “Without Loss of Generality” Reasoning
As already discussed above, the key aspect in which different solution-improving MaxSAT
solvers differ is how they encode the solution-improving constraints. In order to compute the
value of a linear expression L over 0–1 variables of interest, Pacose uses the polynomial
watchdog encoding to describe a Boolean circuit BC with output variables zk such that zk = 0
implies L ≥ 1 + k · 2P (for some fixed integer P). If we chose L to be the objective function O

that we are maximizing, this would allow to find the interval
[
1 + k∗ · 2P , (k∗ + 1) · 2P

]
in

which the optimal value lies by calling the SAT solver with the prechosen partial assign-
ment zk = 0 (referred to as an assumption) for increasing values of k until the solver returns
that there is no satisfying assignment. To determine the exact location of the optimum in
this interval, additional, completely unconstrained, variables ti, called tare variables, are
used to encode an integer T =

∑P −1
i=0 2iti in the range

[
0, 2P − 1

]
. The actual circuit in the

encoding uses the linear form L = O − T , so that zk = 0 means O − T ≥ 1 + k · 2P . By
making SAT solver calls with suitable assumptions on the unconstrained ti-variables, the
optimal value of the objective function can be computed.

CP 2024

4:4 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

Given the CNF encoding of a circuit BC
(
O − T ≥ 1 + k · 2P

)
evaluating the inequality

O − T ≥ 1 + k · 2P as outlined above, the solution-improving search proceeds in two phases:
(i) The coarse convergence phase identifies the largest k for which zk = 0 is possible.
(ii) The fine convergence phase then maximizes the tare variable sum T .

Let us discuss this process in slightly more detail, and explain why it presents challenges
from a proof logging point of view.

If during the coarse convergence phase a SAT solver call with assumption zk = 0 returns
a satisfying assignment α achieving objective value at least 1 + k · 2P , the solver stores
the information zk = 0 (in the form of a unit clause zk), which enforces that any future
solutions found have to be at least this good. The SAT solver is then called again with
zk′ = 0 for some k′ > k to probe whether a solution exists with value at least 1 + k′ · 2P .
Here it is relevant to note that fixing zk = 0 could remove assignments corresponding to
optimal solutions. For instance, if the optimal value is V = V ∗ + 1 + k · 2P , this value could
be achieved by an assignment α′ setting T = T ∗ > V ∗ + 1. For such an α′ we would have
O − T = −T ∗ + V ∗ + 1 + k · 2P ≤ k · 2P , which would violate zk = 0. However, since the
tare variables are unconstrained, in this case there would also exist another assignment α′′

achieving objective value V ∗ +k ·2P for which T = 0, and so it is safe to require that solutions
improving on α should satisfy zk = 0.

In the fine convergence phase the zk-variables are all fixed, and assumptions on the
tare variables are made in the SAT solver calls to determine the exact value of the optimal
solution. This again relies on reasoning without loss of generality, claiming that one can
always choose T ≥ s for any value 0 ≤ s < 2P . But now we are treading on dangerous
ground: clearly, we cannot assume both T = 0 and T ≥ s > 0 simultaneously! How can we
convince ourselves, and more importantly, how can we convince a proof checker, that our
derivations are consistent? At a meta-level, we can argue that since the tare variables are
completely unconstrained in the original encoding, we should be able to fix them to any
value we like at any given point in time. But how do we produce a simple, machine-verifiable
proof that this is sound? And are we even sure this is sound?

1.3 Discussion of Our Contribution
In this work, we show how pseudo-Boolean proof logging with VeriPB [12,34] can certify
correctness of the complex CNF encodings used in state-of-the-art solution-improving MaxSAT
solvers, as well as of the subtle without loss of generality reasoning applied on these encodings.
To give a sense of how this can be done, we need to give a high-level description how VeriPB
proofs work (referring the reader to later sections for the missing technical details).

A VeriPB proof maintains a set of core constraints C, initialized to the formula F ,
together with a set of derived constraints D inferred by the solver. The proof semantics
ensures that C and F have the same optimal value for O and that any solution to C
can be extended to D. A new constraint C can be derived “without loss of generality”
by the redundance-based strengthening rule, which requires the explicit specification of a
substitution ω (mapping variables to truth values or literals) together with explicit proofs

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {O↾ω ≥ O} (1)

that all consequences on the right (with the substitution ω applied to the constraints) follow
from previously derived constraints C ∪ D together with the negation ¬C of the constraint
to be inferred. This guarantees that if some assignment α satisfies everything so far but
violates C, the “patched” assignment α ◦ ω satisfies also C and does not worsen the objective.

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:5

To make our informal discussion simple and concrete, suppose that we have a CNF
encoding of a circuit BC(O−T ≥ lo) evaluating O−T ≥ lo, and that the solver has derived no
constraints but only has the input formula F . If we want to fix T = T ∗ using the redundance
rule (1), we would have to find a substitution ω such that F ∪ {BC(O − T ≥ lo)} ∪ {T ̸= T ∗}
implies

(
F ∪ {BC(O − T ≥ lo)} ∪ {T = T ∗}

)
↾ω. But it seems like this would force us to

prove that if we take any assignment satisfying the Boolean circuit and modify the value of
some of its inputs (the tares), the circuit would remain satisfied, and this is just not true. So
although the redundance-based strengthening rule is very strong, it is not clear how it can
be used to argue that the tare variables are unconstrained.

We get around this problem by first deriving a copy shadow circuit BC′ of the original
circuit, but substituting fixed values t∗

i for the tare variables, so that BC′(O − T ∗ ≥ lo)
evaluates O − T ∗ ≥ lo. We then let ω be the substitution setting ti = t∗

i for all i and
mapping all other variables x in BC to the corresponding shadow variables x′ in BC′, so that,
effectively, the shadow circuit computes the substitution needed. This turns our application
of the redundance rule (1) into

F ∪ {BC(O − T ≥ lo)} ∪ {BC′(O − T ∗ ≥ lo)} ∪ {T ̸= T ∗} (2a)
⊢

(
F ∪ {BC(O − T ≥ lo)} ∪ {BC′(O − T ∗ ≥ lo)} ∪ {T = T ∗}

)
↾ω ∪ {O↾ω ≥ O} (2b)

= F ∪ {BC′(O − T ∗ ≥ lo)} ∪ {BC′(O − T ∗ ≥ lo)} ∪ {T ∗ = T ∗} ∪ {O ≥ O} (2c)

(where the final line (2c) is simply the result of applying the substitution ω to (2b)). If we
study (2c) carefully, we see that all we need to prove about the circuit now is that the two
copies of the shadow circuit in the consequences are implied by the same shadow circuit in
the premises, and so (2c) follows trivially from the premises (2a).

This idea of using shadow circuits is crucial for certifying the correctness of assigning tare
variables without loss of generality. However, we need to get rid of the completely unrealistic
assumption that the solver would not have learned any constraints in D. This is a problem
in that the above argument fails when such learned constraints D ∈ D contain variables in
the BC-circuit, since then there is no way to prove D↾ω as required in (1).

Here a second idea discovered in recent VeriPB development turns out to be very helpful.
Very briefly, it can be shown that if in the proof we enforce the requirement that all new
constraints D derived by strengthening are immediately moved to the core set C, referred to
as strengthening-to-core, then the redundance rule (1) can be simplified to

C ∪ D ∪ {¬C} ⊢ (C ∪ {C})↾ω ∪ {O↾ω ≥ O}, (3)

omitting the proof obligations for the derived set D. This means that we can ignore the
problems arising from derived constraints when using shadow circuit reasoning.

We stress that this is only a brief and informal discussion that sweeps many technical
challenges under the rug. Perhaps one of the most annoying such challenges is that the tare
variables are sometimes fixed one at a time, and then a new shadow circuit is required for
every new fixing. It would be desirable to find better ways of dealing with this problem.

We have implemented our methods in the state-of-the-art solution-improving MaxSAT
solver Pacose [52] to make it output VeriPB proofs, and have performed an extensive
evaluation of how such proof logging works in practice. While there is certainly room for
performance improvements in both proof generation and proof checking, the significance of
our contribution is that we present practical methods to certify correctness for a solving
paradigm that has previously been beyond the reach of proof logging. We hope that our
work can serve as an impetus towards general adoption of proof logging for MaxSAT, and
can stimulate further research on how to make these proof logging techniques more efficient.

CP 2024

4:6 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

As a final remark, we note that an interesting aspect of recent progress in proof logging
is that it brings together all three software quality assurance methods discussed in the
opening paragraphs above. While proof logging does seem like the most viable approach
to certify correctness in combinatorial solving, extensive use of fuzzing techniques has been
instrumental in our work to debug both proof logging routines and the VeriPB proof checker.
This fuzzing, in turn, relies on the use of proof logging and on feedback from the proof
checker. Finally, although we do not address this aspect in the current paper, formally
verified proof checking backends as in [33, 37] are crucially needed to ensure that the verdict
of proof checkers for increasingly powerful proof logging systems can be trusted.

1.4 Outline of This Paper
After reviewing some preliminaries in Section 2, we discuss the dynamic polynomial watchdog
(DPW) encoding in Section 3. In Section 4 we describe how to design proof logging for solution-
improving solvers using the DPW encoding, including a discussion of possible variations of
our method (and of why simply using SAT proof logging for the final unsatisfiability call
does not work). We report results from an empirical evaluation in Section 5 and end with
some conclusions and a discussion of future research directions in Section 6.

2 Preliminaries

In this section, we review some pseudo-Boolean basics and then discuss MaxSAT in general
and solution-improving search in particular, referring the reader to [3,17,44] for more details.

2.1 Pseudo-Boolean Constraints and Proofs
We write x to denote a {0, 1}-valued Boolean variable, and write x as a shorthand for 1 − x,
using ℓ to denote such positive and negative literals, respectively. A (linear) pseudo-Boolean
(PB) constraint C is a 0–1 integer linear inequality

∑
i wiℓi ≥ A. Without loss of generality,

we will often assume our constraints to be normalized, meaning that all literal are over
distinct variables and the coefficients wi and the degree A are non-negative. A PB formula
is a conjunction of PB constraints.

A (disjunctive) clause is a PB constraint
∑

i ℓi ≥ 1 with all coefficients and degree equal
to 1. We sometimes refer to constraints ℓ ≥ 1 with a single literal as unit clauses ℓ. We
say that a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses. A
(linear) pseudo-Boolean term is a weighted sum

∑
i wiℓi of literals with integer coefficients.

A (partial) assignment α is a (partial) function from variables to {0, 1}; it is extended to
literals by respecting the meaning of negation. We write C↾α for the constraint obtained
from C by substituting all assigned variables x by α(x) (and simplifying). A constraint C is
satisfied under α if

∑
α(ℓi)=1 wi ≥ A, and a formula F is satisfied if all its constraints are.

We say that F implies C, denoted F |= C, if all assignments that satisfy F also satisfy C.
A pseudo-Boolean optimization (PBO) instance consists of a formula F and a linear

term O =
∑

i wiℓi (called the objective). An assignment α to the variables in F and O

that satisfies F is a solution to the instance, which is optimal if it maximizes the value
O↾α =

∑
i wiα(ℓi).1 For a PBO instance (F, O) the VeriPB proof system maintains a

1 Note that most of the PBO literature is formulated in terms of minimization, and this is also the
perspective of VeriPB, but reasoning in terms of maximization is in line with the papers on solution-
improving MaxSAT relevant for this work. We therefore adopt this perspective here, although the
actual VeriPB proofs will argue in terms of minimizing the negation of the objective as described here.

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:7

proof configuration of core and derived constraints (C, D), initialized to F and ∅, respectively.
The VeriPB proofs we consider are in the so-called strengthening-to-core mode, which
maintains the invariant that all constraints in the derived set D are implied by the core set C.
Constraints can be moved from D to C but not vice versa. New constraints can be derived
from C ∪ D and added to D using the cutting planes proof system [18] as follows:
Literal Axioms. For any literal ℓi, ℓi ≥ 0 is an axiom.
Linear Combination. Given two previously derived PB constraints C1 and C2, any positive

integer linear combination of these constraints can be inferred.
Division. Given the normalized PB constraint

∑
i wiℓi ≥ A and a positive integer c, the

constraint
∑

i⌈wi/c⌉ℓi ≥ ⌈A/c⌉ can be inferred.
Some additional VeriPB proof rules extending cutting planes are as listed below – we refer
to [12, 34, 36] for more details. For optimization problems we have rules for improvements of
or rewriting of the objective function:
Objective Improvement. Given a total assignment α that satisfies C ∪ D, one can add the

constraint O ≥ 1 + O↾α to C, which forces the search for strictly better solutions.
Objective Reformulation. The current objective O can be replaced by a new objective Onew

given explicit proofs from the core set C (using the VeriPB proof rules above) of the
constraints O − Onew ≥ 0 and Onew − O ≥ 0 (i.e., a proof that O = Onew holds).

Importantly, there are also rules for deriving non-implied constraints as long as the optimal
value of the objective is preserved. VeriPB has a generalization of the RAT rule [39] that
makes use of substitutions ω, mapping variables to truth values or literals (where we extend
the meaning of C↾ω to denote C with each x replaced by ω(x)):
Redundance-Based Strengthening. The constraint C can be inferred and added to C by

explicitly specifying a substitution ω and proofs C ∪D∪{¬C} ⊢ (C ∪ {C})↾ω ∪{O↾ω ≥ O}.
This assumes strengthening-to-core mode – otherwise derivations for all constraints in D↾ω

are also needed (but then C can be placed in D instead of C).
Intuitively, this rule shows that ω remaps any solution of C that does not satisfy C to a
solution of C that satisfies also C without worsening the objective value. A typical use case of
redundance-based strengthening is reification, which is the derivation of two pseudo-Boolean
constraints that encode ℓ ⇔ D for some PB constraint D and for some fresh literal ℓ.

Finally, VeriPB has rules for deleting constraint in a way that guarantees that no
spurious better-than-optimal solutions are introduced:
Deletion. A constraint D ∈ D in the derived set can be deleted at any time. If strengthening-

to-core mode is used, then deleting a constraint C ∈ C in the core set requires an explicit
proof that C is implied by C \ {C}. Otherwise, it is sufficient to show the weaker property
that C can be derived from C \ {C} by redundance-based strengthening.

2.2 MaxSAT, Incremental SAT Solving, and Solution-Improving Search

An instance of (weighted partial) Maximum Satisfiability (MaxSAT) consists of a CNF
formula F and a pseudo-Boolean objective O =

∑
i wiℓi to be maximized under satisfying

assignments to F , where we can assume without loss of generality that all literals in O are
over distinct variables and that the constants are positive. Viewing MaxSAT in terms of
an objective function and a CNF formula is equivalent to the more classical definition in
terms of hard and soft clauses, in the sense that maximizing the objective corresponds to
maximizing the total weight of satisfied soft clauses (see, e.g., [43] for more details).

CP 2024

4:8 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

The solution-improving search (SIS) algorithm we focus on in this work makes extensive
use of incremental SAT solving with assumptions [22]. Invoking a SAT solver on a CNF
formula F with a set of assumptions A, i.e., a partial assignment, returns either (i) SAT and
an extension of A that satisfies F or (ii) UNSAT if no such assignment exists.

Given a MaxSAT instance (F, O), solution-improving search (SIS) computes an optimal
solution by issuing a sequence of queries to a SAT solver asking for solutions of improving
quality until an optimal one is found. More precisely, during search SIS maintains the best
known solution α∗. In each iteration, the algorithm queries a SAT solver on the working
formula F ∧ AsCNF(O > O↾α∗), where AsCNF(O > O↾α∗) is a CNF formula that is satisfied
by an assignment α if and only if it is a better solution than α∗, i.e., if O↾α > O↾α∗ . If
the SAT solver returns SAT, a better solution has been obtained and the working formula
updated accordingly. Otherwise, if the SAT solver reports UNSAT, the best known solution
α∗ is determined to be optimal and the search is terminated.

The existing practical instantiations of SIS differ mainly in how the encoding of the formula
AsCNF(O > O↾α∗) is realized. Numerous CNF encodings of pseudo-Boolean constraints
have been proposed for this task [23, 38, 40, 45, 58]. For many instantiations of SIS the
main challenge for proof logging is to certify the clauses added when encoding the objective
constraint [59, 60], but as we will explain in the rest of this paper the so-called Dynamic
Polynomial Watchdog encoding requires much more subtle arguments.

3 The Dynamic Polynomial Watchdog Encoding for SIS

The polynomial watchdog (PW) encoding [6] is currently one of the best approaches for en-
coding pseudo-Boolean constraints in CNF, in terms of being compact while still propagating
well. Using it for solution-improving search requires some non-trivial alternations, however,
such as the addition of a dynamic constant. In this section we review this dynamic poly-
nomial watchdog (DPW) encoding to the extent required for MaxSAT solution-improving
search (SIS), referring the reader to [52] for more details.

3.1 Initialization
Given a linear pseudo-Boolean term L =

∑
i wiℓi, we define wmax to be the largest constant

appearing in L. Additionally, we let P := ⌊log2(wmax)⌋ be one smaller than the number of
bits in the binary representation of wmax and W :=

∑
i wi be the maximum value for L.

The polynomial watchdog encoding for L is a CNF formula PW(L) with c :=
⌈

W
2P

⌉
output

variables zk for k ∈ [0, c − 1] enforcing the implications zk ⇒ L ≥ 1 + k · 2P . In words, a
satisfying assignment α of PW(L) that sets α(zk) = 0 will also satisfy

∑
i wiα(ℓi) ≥ 1+k ·2P .

We describe the formula PW(L) in more detail in Section 4.1.

▶ Example 1. Consider a MaxSAT instance (F, O) and a working formula F w = F ∧ PW(O).
Assume we first invoke a SAT solver on F w under the assumption zk−1 = 0 and then a
second time under the assumption zk = 0, and that the solver reports SAT for the first
call and UNSAT for the second. At this point, we know that an optimal solution αopt has
value O↾αopt in the range

[
1 + (k − 1) · 2P , k · 2P

]
.

The PW encoding was proposed as a way of enforcing a fixed bound B on the term L by
considering a (static) constant T = B − (1 + k · 2P), where k is the largest integer for which
B ≥ 1 + k · 2P , and encoding PW(L − T) [6]. Then a solution that sets the kth output zk

of PW(L − T) to 0 will also satisfy
∑

i wiα(ℓi) − T ≥ 1 + k · 2P , which is equivalent to

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:9

∑
i wiα(ℓi) ≥ B. The dynamic polynomial watchdog (DPW) encoding [52] is an extension

of the PW encoding that allows dynamically changing the value of T , and therefore also
of B, so that the optimal value can be determined precisely with a single CNF encoding.

Consider a MaxSAT instance (F, O) and let P = ⌊log2(wmax)⌋ as described above.
Instantiations of SIS with DPW introduce a “dynamic constant” in the form of a tare term
T :=

∑P −1
i=0 2i · ti, for fresh variables ti not appearing anywhere else in the instance. The

SAT solver is instantiated with the working formula F ∧ PW(O − T). Now we can use the
output variables zk to determine the optimal value within an additive constant 2P , and then
assign the tare T to values in

[
0, 2P − 1

]
to determine the precise value in that range. These

are the coarse convergence and fine convergence phases mentioned in Section 1.2, which we
describe in more detail next.

3.2 Coarse Convergence Phase
During the initial coarse convergence phase, only assumptions over the output variables zk are
made. Whenever a solution α is found, a call to the SAT solver is made with the assumption
zk = 0 where k is the largest natural number such that O↾α ≥ 1 + (k − 1) · 2P . The
coarse convergence phase ends when the solver reports UNSAT. The following observation
summarizes the relevant conclusions of coarse convergence.

▶ Observation 2. Assume F is satisfiable and the SAT solver returns UNSAT under an
assumption zk∗ = 0 in the coarse convergence phase. Then (i) there is a solution α∗ to
F ∧PW(O−T) that assigns the tare variables so that (O − T)↾α∗ ≥ 1+(k∗ −1) ·2P holds, and
(ii) no solution β to F assigning also the tare variables can satisfy (O − T)↾β ≥ 1 + k∗ · 2P .

In words, coarse convergence provides bounds on the maximum value of O − T obtainable
by any solution of F . Importantly, as the tare term T is unconstrained by the formula F , its
value can without loss of generality be assumed to be 0 at this stage, resulting in bounds on
the objective value of optimal solutions as well. From now on, the algorithm commits to
only searching for solutions that have O − T in the specified interval, adding the unit clauses
zk∗−1 and zk∗ to the working formula before proceeding to the fine convergence phase. In
practice, whenever the SAT solver returns SAT after being called with assumption zk, the
unit clause zk is added immediately, allowing the SAT solver to simplify its clause database.

3.3 Fine Convergence Phase
During the fine convergence phase, assumptions for the tare variables are used to pinpoint the
precise optimal value. Let k∗ be the value for which the assumption zk∗ = 0 returned UNSAT
in coarse convergence, and o∗ = O↾α∗ the objective value of the currently best known solution
α∗. Then we define s := o∗ − (k∗ − 1) · 2P to be the smallest value of the tare that would force
an improved solution. The next call to the SAT solver assumes ti = 1 for all tare variables
for which the ith bit in the binary representation of s is 1. These assumptions enforce T ≥ s,
so any solution α to the working formula (which now includes the unit clause zk∗−1 ≥ 1)
that extends the assumptions will satisfy O↾α ≥ o∗ + 1.

The fine convergence phase continues in this manner until the SAT solver reports UNSAT,
at which point an optimal solution has been found. As the value of s is monotonically
increasing, we add unit clauses ti to the working formula whenever we have deduced that the
ith bit ti in the tare T can safely be set to 1 in any solution (and hence in any future SAT
call), which is the case when s − 1 ≥ 1 +

∑P −1
j=i 2i · tj holds. The fact that we have s − 1

rather than s in this last inequality is related to stratification, which we discuss next.

CP 2024

4:10 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

3.4 Stratification
Stratification is a technique for partitioning the indices of an objective O =

∑m
i=1 wiℓi into

two sets {H, L} in a way that allows computing the maximum values first of OH =
∑

i∈H wiℓi

and then of OL =
∑

i∈L wiℓi, and finally combining them to get the maximum value of O.
Specifically, stratification is applied when gcd{wi | i ∈ H} ≥

∑
i∈L wi, i.e., when the

greatest common divisor of the coefficients in OH is at least the sum of all coefficients in OL.
SIS with the DPW encoding and stratification will first run coarse and fine convergence
only on OH as described above. At the end of the fine convergence, the SAT solver returns
UNSAT after being invoked with assumptions that enforce TH ≥ s for the tare term TH

added to the DPW encoding of OH and some constant s. At this stage, the value of TH

will be fixed to s − 1 with unit clauses, effectively fixing OH to its maximum value. This
fixing of OH is consistent with the unit clauses learned in the previous section. After this
OL is optimized via coarse and fine convergence under the fixed value of OH . The solution
obtained at the end of the final fine convergence phase will be optimal with respect to the
original instance. For more details on stratification, we refer the reader to [2, 51].

▶ Example 3. Consider the objective O = 10x1 + 5x2 + 5x3 + 3x4 + 2x5 and the partition
H = {1, 2, 3} and L = {4, 5}. Since gcd{10, 5, 5} = 5 ≥ 3 + 2, changes of the objective
restricted to {x1, x2, x3} will dominate any contributions from 3x4 + 2x5. If a solution α

with OH↾α = 15 is found, we can without loss of generality assume OH ≥ 15, since for any
solution β with OH↾β < 15 we have O↾β ≤ O↾α. Notice that maximizing first OH and then OL

can remove some optimal solutions from the search space, but never all of them.

4 Certifying Solution-Improving MaxSAT with the DPW Encoding

We are now ready to describe how to do proof logging for solution-improving MaxSAT with
the dynamic polynomial watchdog encoding. In addition to certifying the correctness of
CNF encodings, as done in previous work on proof logging SIS for MaxSAT [59,60], we need
to certify the without loss of generality reasoning discussed in Section 3. This turns out to
require quite intricate proof logging methods.

We start with a brief discussion how to certify the DPW encoding. We then turn to proof
logging for the without loss of generality reasoning during the coarse and fine convergence
phases. Afterwards, we deal with proof logging for stratification. We defer a discussion of
minor additional heuristics used in state-of-the-art solvers to Appendix B. We note that for
all clauses learned by the SAT solver we can use standard VeriPB proof logging, and since
all such learned clauses are logically implied by the working formula it is safe to add them to
the derived set D. This means that we can ignore all constraints added to the database by
the SAT solver when we perform redundance-based strengthening steps.

4.1 Proof Logging for Clauses of the DPW Encoding
Figure 1 depicts the structure of the DPW encoding of the term 2x1 + 3x2 + 5x3 + 7x4. For
a term L in which the largest coefficient has P bits, the encoding introduces P totalizers [5]
(which are circuits that sort their inputs), and P − 1 mergers. The ith totalizer takes as
input all variables in L for which the corresponding coefficient has its ith bit equal to 1.

Proof logging for the DPW encoding boils down to taking care of the totalizer encodings
as described in [60]. At a high level, the proof for PW(O − T) derives a number of constraints
encoding implications y ⇒ Cy and y ⇐ Cy, where y are variables in the auxiliary variable
set Y and Cy are suitably chosen PB constraints over the variables in O − T . A concrete

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:11

T0 x2 x3 x4
T1 x1 x2 x4 x4x3

z0

20 21 22

21 22

2x1 =
3x2 =
5x3 =
7x4 =

20x2

20x3

20x4

+

+

21x1

21x2

21x4

22x3

22x4

+
+

Totalizer Totalizer Totalizer

Merger Merger
z1
z2
z3
z4

Figure 1 Illustration of the polynomial watchdog encoding.

example is the output variable zk for which the constraint Czk
is chosen as O − T ≤ k · 2P .

From these pseudo-Boolean definitions all clauses in the CNF encoding added to the solver
database can be derived with explicit VeriPB derivations. A technical point that is crucial
for the proof logging is that in this way we only need to add the PB definitions of new
variables to the core set C. The clauses actually used for the SAT solver calls are implied
from these definitions, and can therefore be placed in the derived set D.

4.2 Proofs Without Loss of Generality Using Shadow Circuits

The MaxSAT solving algorithm uses without loss of generality (wlog) reasoning when
(i) introducing fresh variables for encoding PW(O − T); (ii) adding unit clauses zk during
coarse convergence; (iii) learning unit clause over the tare variables ti during fine convergence;
and (iv) concluding that the optimal value has been found.

To see why unit clauses zk ≥ 1 require wlog reasoning, suppose in the coarse convergence
phase that the SAT solver returns a solution α when invoked with the assumption zk = 0,
indicating that (O − T)↾α ≥ 1 + k · 2P . The constraint zk ≥ 1 is not entailed by the
solution-improving constraint O ≥ O↾α, since some other (possibly optimal) solution β might
have O↾β ≥ O↾α but assign the tare variables so that (O − T)↾β < 1 + k · 2P ≤ (O − T)↾α

holds. However, since the tare variables are not constrained by the original formula F , any
solution to F could be extended to any fixed value for the tare T . Hence, in particular, we
can assume without loss of generality that T = 0, which in turn implies that zk ≥ 1.

The fine convergence phase makes use of the fact that the DPW encoding does not
constrain T , which takes values in the range

[
0, 2P − 1

]
. The unit clauses ti ≥ 1 learned

are not entailed, but can be deduced since the tare variables are unconstrained in the DPW
encoding. This requires a VeriPB proof that wlog T ≥ s − 1. When the SAT solver reports
UNSAT during fine convergence, it does so under the assumption that a specific set of tare
variables take value 1. If this yields UNSAT, then we can conclude that the current solution
is optimal (since we can wlog assume T to be equal to the value that led to UNSAT).

It is worth noticing that the without loss of generality arguments above are quite intricate
even at a human meta-level. The coarse convergence phase repeatedly claims to be able
to assume T = 0, after which the fine convergence phase picks an increasing sequence
0 < s1 < s2 < . . . and assumes T ≥ si − 1 wlog. Finally, a specific value T = si∗ is used to
argue about optimality. The meta-level argument for why this works is that no conclusions
are drawn from the assumptions made during coarse and fine convergence that invalidate
subsequent assumptions. The challenge is how to convince a mechanical proof checker of this.

CP 2024

4:12 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

Consider first proof logging for the coarse convergence phase, and suppose the solver
returns SAT when invoked with assumption zk. The only rule that would allow us to
derive zk ≥ 1 without loss of generality (from the argument that we can set T = 0 wlog)
is redundance-based strengthening, which requires specification of a witness substitution ω

that can be used to “patch” any assignment α in which zk ≥ 1 is violated. More formally,
our witness should guarantee that C ∪ D ∪ {¬(zk ≥ 1)} |=

(
C ∪ {zk ≥ 1}

)
↾ω ∪ {O ≤ O↾ω}.

A natural approach would be to choose a witness ω that maps (i) zk to 0, (ii) all original
variables to themselves, and (iii) T to 0. Such a witness would make (zk ≥ 1)↾ω trivially true
and would incur no proof obligations for the formula F or the objective O. However, setting
T = 0 will not work for the constraints C ∈ C defining variables in the DPW encoding. If
we fix T = 0, then we also need to update all auxiliary variables Y in the circuit evaluating
PW(O − T). But how this should be done depends on which assignment α we need to patch,
and the redundance rule has no mechanism for defining “conditional witnesses” ω = ω(α).

To determine how the witness should assign the auxiliary variables in PW(O − T), we
devise a new proof logging technique that we call shadow circuits. Corresponding to each
auxiliary variable y defined as the reification of a PB constraint Cy in the original circuit,
a shadow circuit for a fixed value v has a fresh variable yT =v defined by yT =v ⇔ Cy↾T 7→v.
In words, the defining constraints of yT =v and y are the same except that we fix the tare
variables ti so that T = v. The definitions of such shadow circuits are stored in the core
set C since they are derived using the redundance rule. Note that the shadow circuit only
“copies” the pseudo-Boolean definitions of the variables and not their clausal encodings.

Shadow circuits provide us with a mechanism to compute witnesses for the redundance
rule that allow us to assume the value of T and certify the without loss of generality reasoning.
During coarse convergence, each addition of a constraint zi ≥ 1 is logged with a witness
that maps all tare variables ti to 0 and other auxiliary variables y in PW(O − T) to their
counterparts yT =0 in the shadow circuit for T = 0. During fine convergence, the constraints
T ≥ s − 1 are derived using shadow circuits for s − 1, which allows adding unit constraints
over individual tare variables to the proof. Finally, for proving optimality a shadow circuit
for the final value s∗ for which the SAT solver returned UNSAT will be used to derive
contradiction.

The next proposition gives a more formal summary of the wlog proof logging performed
during the coarse convergence phase. The proof for this proposition, together with precise
descriptions of the other wlog proof logging steps, are given in Appendix A.

▶ Proposition 4. Suppose the VeriPB proof log contains derivations of reification con-
straints zk ⇔ O − T ≥ 1 + k · 2P and a shadow circuit for T = 0 as well as the constraint
O ≥ 1 + k · 2P . Then the constraint zk ≥ 1 can be derived using redundance-based strength-
ening with witness ω = {ti 7→ 0 | 0 ≤ i ≤ P − 1} ∪

{
y 7→ yT =0 | y ∈ Y

}
.

The constraint O ≥ 1 + k · 2P in Proposition 4 can be obtained by weakening the solution-
improving constraint O ≥ O↾α + 1 for the previously found solution α. If stratification is
used, deriving OH ≥ 1 + k · 2P requires more work (see Section 3.4 for details).

Our technique with shadow circuits and repeated without loss of generality arguments
selecting (different) values for the same variables in T heavily relies on that VeriPB proofs
in the strengthening-to-core mode maintain the guarantee that all constraints in the derived
set D are entailed by the core set C. In particular, what this means is that whenever we want
to apply redundance-based strengthening, fixing tare variables and using the corresponding
shadow circuit, we do not need to worry about reproving any clauses learned by the SAT
solver under the witness ω. It turns out that for all non-trivial proof obligations, the solution-
improving constraint O ≥ O↾α for the latest solution α obtained is helpful. This also makes it
easier to see why the entire pipeline is consistent. During coarse convergence, we never derive

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:13

T = 0, but instead derive zk = 0 for certain values of k using the fact that we could set T = 0
wlog. This constraint zk = 0 will be used by the solver for deriving several consequences.
Later, when we make the wlog argument that T ≥ s − 1 for some value s, this incurs the
obligation to reprove that zk = 0 holds! That is, the proof checker realizes that zk = 0 was
also derived wlog, and we need to prove that this is still consistent with the current wlog
assumption to justify that we can “change our mind” about the value of T .

The use of strengthening-to-core requires some extra care when dealing with constraint
deletions. SAT solvers use heuristics to aggressively erase clauses that are believed to no
longer be useful, and this is crucial for performance. Also, clauses in the input are removed
whenever some literal in the clause is deduced to be true. In strengthening-to-core mode, we
can still do unrestricted deletions of constraints in the derived set D, but a core constraint
C ∈ C can only be erased if the implication C \ {C} |= C can be shown to hold. For this
reason we did not implement deletion from the core set in our proof logging routines.

4.3 Stratification
For proof logging of stratification steps as in Section 3.4, we need to be able to convert
known facts about the whole objective O to statements about the split objectives OH and OL.
To certify a unit constraint added during coarse convergence or to derive the constraints
T ≥ s − 1 during fine convergence when maximizing OH , we need to derive OH ≥ OH↾α from
O ≥ O↾α + 1. We do this by weakening away all terms in OL – meaning that for every term
wiℓi in OL we add wiℓi ≥ 0 to cancel the term – to get OH ≥ O↾α + 1 − g, where g is the
greatest common divisor of the coefficients in OH . This clearly also entails OH ≥ OH↾α −g +1.
Dividing by g and rounding up yields 1

g OH ≥ OH↾α

g − 1 + 1, and multiplying this again by g

yields OH ≥ OH↾α.
By applying this reasoning, we can derive the constraint OH ≥ o∗

H right after finding
the optimal value o∗

H for OH . Moreover, after introducing a shadow circuit for T = s,
we can derive (local) optimality in the form of the constraint OH ≤ o∗

H . Hence, we can
reformulate the objective by replacing OH with the constant o∗

H , from which we can now
derive the constraint OL + o∗

H ≥ O↾α +1. Observe that this constraint coincides with the
solution-improving constraint for OL. Once the constraints OL ≥ o∗

L and OL ≤ o∗
L have been

derived in a similar way, the objective will be rewritten to a constant, for which proving
optimality boils down to logging a solution that has objective value o∗ = o∗

H + o∗
L.

4.4 Limiting the Use of Shadow Circuits
Our proof logging method makes repeated use of shadow circuits, which are copies of the
original circuit, and repeatedly deriving all constraints defining such circuits could potentially
incur serious overhead for proof generation in the solver. Let us discuss ways of limiting or
completely eliminating the use of shadow circuits and the downside of such approaches.

First, the shadow circuits are introduced each time the solver deduces a unit clause over
an output variable zk or tare variable ti. Instead of learning these unit clauses, we could do
all subsequent solver calls with those literals as assumptions. At the very end of the fine
convergence phase, we could then introduce a single shadow circuit to prove optimality (or,
in case of stratification, two shadow circuits: one to prove optimality and one to fix the value
of the tare variables). The disadvantage is that when variables used as assumptions, the
solver cannot use them to simplify its clause database; so while this would have a positive
effect on the time required to do the actual proof logging, it could have negative effects on
solving time. Appendix C.2 reports on an experimental evaluation of this approach.

CP 2024

4:14 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

Second, there is a way to completely eliminate shadow circuits. By the end of the
execution, the solver knows which value T = s resulted in the final UNSAT call in the fine
convergence. What we could do at this point is insert at the beginning of the proof constraints
saying that T = s holds (which at this point can easily be derived by redundance-based
strengthening). The rest of the proof will then be checked for a fixed value of T that happens
to be the value needed at the end. There are two important reasons why we prefer the shadow
circuit approach. The first reason is that it is not clear if and how this would work together
with stratification, where after a stratification level we want to fix T = s − 1. The second
reason is that fixing T in advance adds substantial new information that the solver did not
have available when constructing the proof. This means that we would not be verifying that
the reasoning the solver actually performed was correct, but only that its reasoning checks
out given advance information about the optimal solution. While this could still be used to
certify the correctness of the final answer, it would not provide any guarantees about the
process leading there. It has been shown repeatedly that proof logging can catch subtle bugs
in solvers that only report correct results but for the wrong reasons [9,24,32,41], but in order
for this to be possible the correctness of solver-generated proofs should only depend on what
the solver actually knows when the proof is being produced.

4.5 Discussion of an Even Simpler Approach and Why It Does Not Work
The proof logging techniques in this paper certify every single reasoning step in the solver.
An alternative, and seemingly much simpler, way to get proofs of correctness for any MaxSAT
solver would be to (i) compute an optimal solution by running the MaxSAT solver without
proof logging, (ii) check that this solution is feasible, (iii) encode a solution-improving
constraint into CNF, and (iv) call a SAT solver to generate a proof of unsatisfiability (and
hence of optimality of the solution) with standard SAT proof logging. However, there are
several serious issues with this approach that we would like to point out.

First, proofs of correctness are needed for the CNF encodings used in step (iii), and
such proofs cannot be done with SAT proof logging since it cannot reason about values of
objective functions. Second, it is not possible to just repeat the “final UNSAT call” of the
MaxSAT solver in step (iv). Even if the same SAT solver is used, in the original UNSAT call
this solver had access to all constraints learned in previous calls, and there is no guarantee
that the solver will learn these constraints again, or other equally good constraints, when it
is now run in a different way and with a different input. It is therefore impossible to know for
sure whether the final SAT solver invocation with the solution-improving constraint would
be faster or, more likely, slower, than the original solving process, and by how much. This
defeats the whole idea of generating proofs with a small and predictable overhead, since there
would be no way of knowing in advance whether “proof logging” for a previously claimed
result would succeed or not. Moreover, when a solution-improving MaxSAT solver makes
use of stratification (as discussed in Section 3.4), then optimality is not derived by a single
UNSAT call but by a combination of UNSAT calls at different levels. It is hard to see how
such a combination of calls could be replicated with the simple approach described above.

Third, an increasingly popular usage scenario for MaxSAT solvers is so-called anytime
solving, where the solver can be terminated at any point and then returns the best upper
and lower bounds on the objective computed so far. Proofs constructed as described in this
paper (as well as in other MaxSAT papers using VeriPB proof logging) will at all times
contain formal proofs of everything the solver knows about upper and lower bounds on the
objective. Whenever the solver is terminated, it can therefore just end the generated proof
at that point by printing a concluding line stating what upper and lower bounds have been
proven. This functionality would be lost in the alternative approach.

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:15

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

timelimit

memout

tim
elim

it

m
em

o
u
t

Pacose without proof logging (s)

P
a
c
o
se

w
it
h
p
ro
of

lo
gg

in
g
(s
)

unweighted
weighted

Figure 2 Proof logging overhead for Pa-
cose using the DPW encoding.

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

timelimit

memout

Pacose with proof logging (s)

V
e
r
iP

B
p
ro
of

ch
ec
k
in
g
(s
)

unweighted
weighted

Figure 3 Pacose vs. VeriPB running
time using DPW encoding.

Finally, even if this approach could be made to work efficiently – which, as explained
above, is not really the case, for several reasons – we would have the same problem as in
Section 4.4 that we would only certify the final result and not the solver reasoning process.

5 Experimental Evaluation

To evaluate our proof logging approach in practice, we implemented it in the state-of-the-art
solution-improving MaxSAT solver Pacose [52]. The source code for all software tools used,
as well as all experimental data, are available in [8]. During development, we extensively
checked the correctness of our implementation with a fuzzer [50] and minimized failed
instances with a delta debugger. This process accelerated the development, as we did
not need to create instances for special cases, and helped us fix unexpected and sporadic
bugs. The proofs emitted by Pacose were verified by the pseudo-Boolean proof checker
VeriPB [61], and our fuzzing also helped to debug the proof checker.

The experiments were performed on identical machines with an 11th Gen Intel(R)
Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory. Each benchmark ran
exclusively on a machine and the memory limit was set to 14 GB. The time limits were
set to 3 600 seconds for solving a MaxSAT instance with Pacose and to 36 000 seconds
for checking the proof with VeriPB. As our benchmark set we used the 558 weighted and
572 unweighted MaxSAT instances from the MaxSAT Evaluation 2023 [47].

Our implementation supports all techniques Pacose employed in the MaxSAT Evaluation
2023. This means that in addition to the dynamic polynomial watchdog encoding we also
implemented proof logging for the binary adder encoding [62] following the approach in [31,59]
as well as support for stratification as described in Section 3.4 and for the preprocessing
techniques in TrimMaxSAT [51]. Appendix B discusses TrimMaxSAT in detail and
Appendix C contains detailed experimental results for the default setup in which Pacose
employs heuristics to choose between different encodings. In this section, we focus on the
main novelty of this paper, namely proof logging for SIS with the DPW encoding.

To show the viability of enabling proof logging while solving, we analyse the overhead of
generating proofs. In Figure 2 we compare the running time of Pacose with and without
proof logging. With proof logging enabled 674 instances were solved within the resource
limits, which is 11 fewer instances than without proof logging. Out of the 11 instances that
were not solved with proof logging enabled, 9 instances failed due to the memory limit and
2 instances due to the time limit. For the solved instances, Pacose with proof logging was

CP 2024

4:16 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

on average 1.93× slower than without proof logging. About 90% of the solved instances were
solved at most 5.26× more slowly with proof logging enabled. This overhead for solving is to
some extent caused by our shadow circuits approach. While we demonstrate that shadow
circuits can be used to justify the without loss of generality reasoning in Pacose, it remains
to investigate whether there is a better approach. It is important to note, though, that the
average overhead of 1.93× is heavily biased by small instances: the cumulative solving time
of all 674 instances, with proof logging is only 1.32× the cumulative solving time without
proof logging. This suggests that proof logging overhead decreases for harder instances.

For proof logging to be maximally useful in practice, it is also desirable that it should be
possible to check generated proofs within a time limit that is some small constant factor of
the solving time for the instance. To evaluate the efficiency of proof checking, we compared
the running time of Pacose with proof logging enabled with the running time of VeriPB,
with results plotted in Figure 3. Out of the 674 instances solved by Pacose with proof
logging, 592 were successfully checked by VeriPB, but 53 instances failed due to the memory
limit and 29 instances due to the time limit. On average, checking the proof with VeriPB
was 22.5× slower than solving and generating the proof with Pacose. 90% of the proofs
were checked within 100× the running time of Pacose. These results for checking are in
line with what has been reported in other works on proof logging for MaxSAT [9,59]. While
there is certainly room for further improvements, this shows that proof logging and checking
is viable. It should also be emphasized that the only sources of problems for VeriPB were
the time and memory limits – other than that all proofs were successfully checked.

6 Conclusion

In this paper, we demonstrate how to design proof logging for solution-improving MaxSAT
solving using the dynamic polynomial watchdog encoding. This turns out to be surprisingly
challenging, mainly due to the heavy use of reasoning without loss of generality. To understand
the correctness of this reasoning at a human level is one thing, but convincing a proof checker
by producing machine-verifiable proofs is quite another. What we show is that by combining
the redundance-based strengthening rule and the strengthening-to-core mode in VeriPB,
together with a technique we call shadow circuits for having more expressive witnessing
capabilities, we are able to devise efficient pseudo-Boolean proof logging techniques.

We have implemented our approach in the state-of-the-art MaxSAT solver Pacose. Our
experimental evaluation shows that while enabling proof logging is feasible, it does incur a
non-negligible overhead in solving time. Moreover, the time needed to check the generated
proofs is several times larger than the time needed to generate them, suggesting that more
efficient algorithms and more optimized engineering are needed in VeriPB. This is not so
surprising, since the focus of VeriPB development so far has been on providing support for
certifying algorithms in combinatorial optimization paradigms previously beyond the reach
of proof logging, rather than on optimizing the proof checker code base.

The addition of Pacose to the collection of certifying MaxSAT solvers using VeriPB
proofs provides further support to the hypothesis that pseudo-Boolean proof logging hits
a sweet spot for MaxSAT solving, being rich enough to support a wide variety of solving
algorithms and complex reasoning tricks, but still being simple enough to support even
formally verified proof checking as in [13,33,37].

We believe that in the longer term VeriPB can have a strong positive impact on the
reliability and robustness of MaxSAT solvers. In the other direction, MaxSAT solving is
likely to provide excellent benchmarks and performance challenges to further improve pseudo-
Boolean proof logging and checking. Our suggestion for speeding up these developments is
to introduce a certifying track in the yearly MaxSAT Evaluation [46].

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:17

References

1 Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer.
An introduction to certifying algorithms. it - Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik, 53(6):287–293, December 2011.

2 Josep Argelich, Inês Lynce, and João P. Marques-Silva. On solving Boolean multilevel
optimization problems. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI ’09), pages 393–398, July 2009.

3 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiabiliy. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 24, pages 929–991.
IOS Press, 2nd edition, February 2021.

4 Seulkee Baek, Mario Carneiro, and Marijn J. H. Heule. A flexible proof format for SAT
solver-elaborator communication. In Proceedings of the 27th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS ’21), volume 12651 of
Lecture Notes in Computer Science, pages 59–75. Springer, March-April 2021.

5 Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardinality con-
straints. In Proceedings of the 9th International Conference on Principles and Practice of
Constraint Programming (CP ’03), volume 2833 of Lecture Notes in Computer Science, pages
108–122. Springer, September 2003.

6 Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encodings of pseudo-Boolean
constraints into CNF. In Proceedings of the 12th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’09), volume 5584 of Lecture Notes in Computer
Science, pages 181–194. Springer, June 2009.

7 Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Arjun Viswanathan, Scott Viteri, Yoni Zohar, Cesare
Tinelli, and Clark Barrett. Flexible proof production in an industrial-strength SMT solver. In
Proceedings of the 11th International Joint Conference on Automated Reasoning (IJCAR ’22),
volume 13385 of Lecture Notes in Computer Science, pages 15–35. Springer, August 2022.

8 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter
Vandesande. Experimental Repository for “Certifying Without Loss of Generality Reasoning
in Solution-Improving Maximum Satisfiability”, June 2024. doi:10.5281/zenodo.10826301.

9 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.
Certified core-guided MaxSAT solving. In Proceedings of the 29th International Conference on
Automated Deduction (CADE-29), volume 14132 of Lecture Notes in Computer Science, pages
1–22. Springer, July 2023.

10 Armin Biere. Tracecheck. http://fmv.jku.at/tracecheck/, 2006.
11 Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of

Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2nd edition, February 2021.

12 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance
and symmetry breaking for combinatorial optimisation. Journal of Artificial Intelligence
Research, 77:1539–1589, August 2023. Preliminary version in AAAI ’22.

13 Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. Documentation of VeriPB and CakePB for the SAT competition 2023.
Available at https://satcompetition.github.io/2023/checkers.html, March 2023.

14 Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Artificial
Intelligence, 171(8-9):606–618, June 2007. Extended version of paper in SAT ’06.

15 Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT solvers. In Proceedings
of the 7th International Workshop on Satisfiability Modulo Theories (SMT ’09), pages 1–5,
August 2009.

CP 2024

https://doi.org/10.5281/zenodo.10826301
http://fmv.jku.at/tracecheck/
https://satcompetition.github.io/2023/checkers.html

4:18 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

16 Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of
SAT and QBF solvers. In Proceedings of the 13th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in Computer
Science, pages 44–57. Springer, July 2010.

17 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

18 William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

19 William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-
bound approach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5(3):305–344, September 2013.

20 Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP solvers in MAXSAT. In
Proceedings of the 16th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’13), volume 7962 of Lecture Notes in Computer Science, pages 166–181. Springer,
July 2013.

21 Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christopher Hojny. A proof system
for certifying symmetry and optimality reasoning in integer programming. Technical Report
2311.03877, arXiv.org, November 2023.

22 Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. In Pro-
ceedings of the 1st International Workshop on Bounded Model Checking (BMC ’03), volume 89
of Electronic Notes in Theoretical Computer Science, pages 543–560, July 2003.

23 Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, March 2006.

24 Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed
integer programming. Mathematical Programming, 197(2):793–812, February 2023.

25 Salomé Eriksson and Malte Helmert. Certified unsolvability for SAT planning with property
directed reachability. In Proceedings of the 30th International Conference on Automated
Planning and Scheduling, pages 90–100, October 2020.

26 Salomé Eriksson, Gabriele Röger, and Malte Helmert. Unsolvability certificates for classical
planning. In Proceedings of the 27th International Conference on Automated Planning and
Scheduling (ICAPS ’17), pages 88–97, June 2017.

27 Salomé Eriksson, Gabriele Röger, and Malte Helmert. A proof system for unsolvable planning
tasks. In Proceedings of the 28th International Conference on Automated Planning and
Scheduling (ICAPS ’18), pages 65–73, June 2018.

28 Mathias Fleury. Formalization of Logical Calculi in Isabelle/HOL. PhD thesis, Universität
des Saarlandes, 2020. Available at https://publikationen.sulb.uni-saarland.de/handle/
20.500.11880/28722.

29 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proceedings of the
9th International Conference on Theory and Applications of Satisfiability Testing (SAT ’06),
volume 4121 of Lecture Notes in Computer Science, pages 252–265. Springer, August 2006.

30 Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints.
In Proceedings of the 25th International Conference on Principles and Practice of Constraint
Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582.
Springer, October 2019.

31 Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations
for pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’22), volume 236 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28722
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28722

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:19

32 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and
James Trimble. Certifying solvers for clique and maximum common (connected) subgraph
problems. In Proceedings of the 26th International Conference on Principles and Practice of
Constraint Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages
338–357. Springer, September 2020.

33 Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. End-to-end verification for subgraph solving. In Proceedings of the 368h
AAAI Conference on Artificial Intelligence (AAAI ’24), pages 8038–8047, February 2024.

34 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI ’21), pages 3768–3777, February 2021.

35 Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE ’03), pages 886–891, March 2003.

36 Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström. Certifying MIP-based
presolve reductions for 0–1 integer linear programs. In Proceedings of the 21st International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and Opera-
tions Research (CPAIOR ’24), volume 14742 of Lecture Notes in Computer Science, pages
310–328. Springer, May 2024.

37 Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O.
Myreen, and Jakob Nordström. Certified MaxSAT preprocessing. In Proceedings of the 12th
International Joint Conference on Automated Reasoning (IJCAR ’24), volume 14739 of Lecture
Notes in Computer Science, pages 396–418. Springer, July 2024.

38 Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for
pseudo-Boolean constraints. In Proceedings of the 21st International Conference on Principles
and Practice of Constraint Programming (CP ’15), volume 9255 of Lecture Notes in Computer
Science, pages 200–209. Springer, august-september 2015.

39 Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Proceedings of
the 6th International Joint Conference on Automated Reasoning (IJCAR ’12), volume 7364 of
Lecture Notes in Computer Science, pages 355–370. Springer, June 2012.

40 Michal Karpinski and Marek Piotrów. Encoding cardinality constraints using multiway merge
selection networks. Constraints, 24(3–4):234–251, October 2019.

41 Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorph-
ism problems faster through clique neighbourhood constraints. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI ’21), pages 1396–1402, August
2021.

42 Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. A
framework for certified Boolean branch-and-bound optimization. Journal of Automated
Reasoning, 46(1):81–102, January 2011.

43 Marcus Leivo, Jeremias Berg, and Matti Järvisalo. Preprocessing in incomplete MaxSAT
solving. In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI ’20),
volume 325 of Frontiers in Artificial Intelligence and Applications, pages 347–354, August-
September 2020.

44 Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In Armin Biere, Marijn
J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume
336 of Frontiers in Artificial Intelligence and Applications, chapter 23, pages 903–927. IOS
Press, 2nd edition, February 2021.

45 Norbert Manthey, Tobias Philipp, and Peter Steinke. A more compact translation of pseudo-
Boolean constraints into CNF such that generalized arc consistency is maintained. In Proceed-
ings of the 37th Annual German Conference on Artificial Intelligence (KI ’14), volume 8736
of Lecture Notes in Computer Science, pages 123–134. Springer, September 2014.

CP 2024

4:20 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

46 MaxSAT evaluations: Evaluating the state of the art in maximum satisfiability solver technology.
https://maxsat-evaluations.github.io/.

47 MaxSAT evaluation 2023. https://maxsat-evaluations.github.io/2023, July 2023.
48 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-

gorithms. Computer Science Review, 5(2):119–161, May 2011.
49 António Morgado and João P. Marques-Silva. On validating Boolean optimizers. In Proceedings

of the 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI ’12),
pages 924–926, November 2011.

50 Tobias Paxian and Armin Biere. Uncovering and classifying bugs in MaxSAT solvers through
fuzzing and delta debugging. In Proceedings of the 14th International Workshop on Pragmatics
of SAT, volume 3545 of CEUR Workshop Proceedings, pages 59–71. CEUR-WS.org, July 2023.

51 Tobias Paxian, Pascal Raiola, and Bernd Becker. On preprocessing for weighted MaxSAT.
In Proceedings of the 22nd International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI ’21), volume 12597 of Lecture Notes in Computer Science,
pages 556–577. Springer, January 2021.

52 Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial watchdog encoding for
solving weighted MaxSAT. In Proceedings of the 21st International Conference on Theory and
Applications of Satisfiability Testing (SAT ’18), volume 10929 of Lecture Notes in Computer
Science, pages 37–53. Springer, July 2018.

53 Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Towards bridging the gap between
SAT and Max-SAT refutations. In Proceedings of the 32nd IEEE International Conference on
Tools with Artificial Intelligence (ICTAI ’20), pages 137–144, November 2020.

54 Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. A proof builder for Max-SAT. In
Proceedings of the 24th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’21), volume 12831 of Lecture Notes in Computer Science, pages 488–498.
Springer, July 2021.

55 Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Proofs and certificates for Max-SAT.
Journal of Artificial Intelligence Research, 75:1373–1400, December 2022.

56 Gabriele Röger. Towards certified unsolvability in classical planning. In Proceedings of the
26th International Joint Conference on Artificial Intelligence (IJCAI ’17), pages 5141–5145,
August 2017.

57 Hans-Jörg Schurr, Mathias Fleury, Haniel Barbosa, and Pascal Fontaine. Alethe: Towards a
generic SMT proof format (extended abstract). In Proceedings of the 7th Workshop on Proof
eXchange for Theorem Proving (PxTP ’21, volume 336 of Electronic Proceedings in Theoretical
Computer Science, pages 49–54, July 2021.

58 Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In
Proceedings of the 11th International Conference on Principles and Practice of Constraint
Programming (CP ’05), volume 3709 of Lecture Notes in Computer Science, pages 827–831.
Springer, October 2005.

59 Dieter Vandesande. Towards certified MaxSAT solving: Certified MaxSAT solving with
SAT oracles and encodings of pseudo-Boolean constraints. Master’s thesis, Vrije Uni-
versiteit Brussel (VUB), 2023. URL: https://researchportal.vub.be/nl/studentTheses/
towards-certified-maxsat-solving.

60 Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT
solver. In Proceedings of the 16th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in Computer Science,
pages 429–442. Springer, September 2022.

61 VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/MIAOresearch/software/
VeriPB.

62 Joost P. Warners. A linear-time transformation of linear inequalities into conjunctive normal
form. Information Processing Letters, 68(2):63–69, October 1998.

https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/2023
https://researchportal.vub.be/nl/studentTheses/towards-certified-maxsat-solving
https://researchportal.vub.be/nl/studentTheses/towards-certified-maxsat-solving
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:21

63 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of
Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.

A Formalization of the Proof Logging of SIS with the DPW

In this appendix, we provide formal details on the claims made in the main body of the
paper. In the proofs, we follow the same notation. The formalization of the reasoning in the
coarse convergence is discussed in Section 4.2, here we discuss the other phases.

A.1 Coarse Convergence
Our first proposition formalizes the wlog performed during the coarse convergence phase.

▶ Proposition 5 (Proposition 4, restated). Assume the definition of zk has been derived and
a complete shadow circuit for T = 0 has been introduced. Furthermore assume the constraint

O ≥ 1 + k · 2P (4)

has been derived. The constraint zk ≥ 1 can be derived using redundance-based strengthening
with witness

ω = T 7→ 0, Y 7→ Y T =0.

The notation for the witness in this proposition is a shorthand for the mapping that sends
each variable ti to 0 and every introduced circuit variable y to the corresponding shadow
circuit variable yT =0.

Proof. To verify this is indeed possible, we need to show that from

C ∪ D ∪ {zk ≥ 1}

we can derive the following constraints:
zk↾ω≥ 1; in other words we need to show that zT =0

k ≥ 1 holds. Recall that zT =0
k is defined

by the reification

zT =0
k ⇔ O − 0 ≥ 1 + k · 2P .

Adding up one direction of this definition to (4), immediately yields that zT =0
k ≥ 1, as

desired.
C↾ω for each C ∈ C.

If C is a clause in the original input, C↾ω= C and this is trivial.
If C is a previously derived solution-improving constraint, also C↾ω= C (since ω does
not touch any variable in O.
If C is a previously derived constraint of the form zk′ ≥ 1 with k′ < k, this can either
be derived analogously to zk↾ω≥ 1 or directly from the fact that the definitions of zk

and z′
k immediately imply that zk = 0 implies that zk′ = 0 .

O↾ω≥ O; this is obvious since the variables in O are unaltered by ω. ◀

▶ Remark 6. Proposition 5 assumes the existence of a constraint (4). It can be seen that
this constraint is actually a (potentially weakened version of a) non-strict solution improving
constraint O ≥ O↾α where α is a previously found solution. During the coarse convergence
phase, this constraint can be obtained by weakening the solution-improving constraint.

CP 2024

4:22 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

At the end of the coarse convergence phase, also the unit clause zk∗ ≥ 1 is derived. This
requires no additional proof logging: this clause is obtained by running the SAT solver with
the assumption that zk∗ = 0 and failing. Whenever this is the case; we know that zk∗ ≥ 1 is
internally derived by standard conflict analysis; hence this constraint is added to D without
any additional effort.

A.2 Fine Convergence
As with the coarse convergence, the constraints derived during fine convergence that require
a justification in the proof are the unit clauses added to the solver. Proving this relies again
on redundance-based strengthening and a shadow circuit.

▶ Proposition 7. Assume zk∗−1 ≥ 1 has been derived. Let s be any number and assume a
complete shadow circuit for T = s−1 has been introduced. Furthermore assume the constraint

O ≥ s + (k∗ − 1) · 2P (5)

has been derived. The constraint T ≥ s−1 can be derived using redundance-based strengthening
with witness

ω = T 7→ s, Y 7→ Y T =s−1.

Proof. As in the proof of Proposition 4, this yields several proof obligations. The only
non-trivial ones are

Previously derived constraints of this form T ≥ s′ − 1, but they are trivially satisfied
under ω since s ≥ s′.
The unit clause zk∗−1 ≥ 1↾ω. In other words we need to show that zT =s−1

k∗−1 holds. Recall
that zT =s−1

k∗−1 is defined by the reification

zT =s−1
k∗−1 ⇔ O − (s − 1) ≥ 1 + (k∗ − 1) · 2P

which simplifies to

zT =s−1
k∗−1 ⇔ O − s ≥ (k∗ − 1) · 2P .

Now (5) tells us precisely that the right-hand side of this equivalence is satisfied, hence a
straightforward cutting planes derivation indeed allows us to conclude that zT =s

k∗−1 ≥ 1. ◀

▶ Remark 8. Just like Proposition 4, also Proposition 7 does not make use of the model-
improving constraint, but rather makes the assumption on O it uses explicit in (5). As before,
this turns out to be useful when applying Proposition 7 in the context of stratification.

Proposition 7 will be applied when a solution α is found taking

s := O↾α −(k∗ − 1) · 2P .

In this case, the solution-improving tells us that

O ≥ O↾α +1 = s + (k∗ − 1) · 2P + 1,

and (5) is indeed satisfied. Unit clauses are derived if for a certain j, s ≥ 2P − 2j + 1. In this
case, the derived constraint T ≥ s − 1 guarantees that T ≥ 2P − 2j , i.e., that all dominant
bits of T up to j must be equal to one. This follows using reverse unit propagation or a
straightforward cutting planes derivation.

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:23

A.3 Conclusion of Optimality
When the very last call to the SAT solver is unsatisfiable, we need to derive a contradiction
in the proof, to complete the proof that the previously best found solution is optimal. We
proceed as follows. First, we introduce a fresh variable, let us call it p using the reification

p ⇔ O ≥ o∗ + 1. (6)

Our goal will be to show that p is false, which then allows us to conclude that the objective
can no longer be improved, meaning we have indeed proven optimality. Recall that at this
point, we have s defined as s := o∗ − (k∗ − 1) · 2P . The crucial step in our proof is showing
that without loss of generality T can be set equal to s. We proceed as follows.

▶ Proposition 9. Assume zk∗−1 ≥ 1 and the definition of p have been derived. Furthermore
suppose that a shadow circuit for T = s has been introduced. Using redundance-based
strengthening with witness

ω = T 7→ s, Y 7→ Y T =s

we can derive the PB constraints representing

p ⇒ T = s, (7)

i.e., in normalised form, the constraints

s · p + T ≥ s, and (8)

(2P − s − 2) · p +
P −1∑
j=0

2j · T j ≥ (2P − 1) − s − 1. (9)

Proof. The proof for the two constraints is similar. The only proof goal where they differ is
showing that the constraint to-be-derived is satisfied under ω, but this is trivial since the
witness sets T equal to s by construction.

For all the other proof goals, we can make use the negation of the constraint to be derived
(the negation of (8) or of (9)). From this negation, we can directly derive p ≥ 1. Adding this
up to (one direction of (6) yields O ≥ o∗ + 1, i.e., that

O ≥ s + (k∗ − 1) · 2P + 1. (10)

In other words, the conditions of 7 are satisfied. All the other proof obligations are the same
as the ones in the proof of that proposition and hence, making use of (10), the proof proceeds
identically to the proof of Proposition 7. ◀

In words, Proposition 9 tells us is that if the objective is strictly improving on the previously
found best value, then we can set T equal to s without loss of generality. The SAT solver,
however, has in its last call that yielded UNSAT already derived a clause telling us that at
least one of the bits of T does not correspond to s. So we can now straightforwardly derive
that p ≥ 1 and hence that O ≤ o∗, which is what we needed for concluding optimality.

B Proof Logging of Additional Techniques Implemented in Pacose

We detail some of the additional search techniques implemented in and how we proof log
them. As a minor point, we note for completeness that in addition to the gcd-based criterion
described in Section 3.4, Pacose attempts to find more partitions of the objective during
stratification via exhaustive search, as illustrated by the following example:

CP 2024

4:24 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

▶ Example 10. Consider the objective O := 14x1 + 9x2 + 5x3 + 2x4 + 1x5 + 1x6 and
the partition H = {1, 2, 3} and L = {4, 5, 6}. According to the gcd-based criterion from
Section 3.4, this partition is not viable due to the gcd not aligning with any single divisor
that groups the weights cohesively. However, this partition still validly separates the weights
of x1 to x6 through an alternative method: Define LC as the set containing all possible
summed combinations of weights from L: LC := 5, 9, 14, 5 + 9, 5 + 14, 9 + 14, 5 + 9 + 14. To
validate this partitioning, ensure that the total weight WL from L is at most the difference
between any two sums in LC . This ensures that L forms a consistent grouping, as there is
no weight combination of L invalidating a prior result of solving H.

A more in-depth explanation together with a proof can be found in [51]. While certifying
the exhaustive search remains interesting future work, we note that it did not result in
additional partitions on any of the benchmarks in our evaluation, nor on the weighted
instances of the 2019 and 2020 MaxSAT Evaluation.

We would like to mention that a naive approach to certify the exhaustive search would be
to derive the desired constraint OH ≥ OH↾α from the weakened constraint OH ≥ O↾α −WL +1
using redundance-based strengthening with an empty witness. As OH ↾α is the sum of a
subset of the coefficients in OH and the distance between any two sums is at least WL, the
negation OH < OH↾α of the desired constraint can only be satisfied if the sum of true literals
in OH is at most OH↾α −WL. As O↾α≥ OH↾α, the weakened constraint can only be satisfied
if the sum of true literals in OH is at least OH↾α −WL + 1. Hence, there exists no assignment
to the variables in OH for which both constraints are satisfied. To show this we can iterate
through every possible assignment α of the variables in OH and derive the clause excluding
this assignment by reverse unit propagation. This step works, as reverse unit propagation
for this clause assigns all variables in OH , which will falsify either the negated constraint or
the weakened constraint by the arguments above. Resolving all the clauses will result in a
contradiction that proves that OH ≥ OH↾α is implied.

B.1 TrimMaxSAT
TrimMaxSAT [51] is a preprocessing technique applied before the main SIS algorithm in
order to decrease the number of literals in the objective that need to be encoded by the
DPW and to get a good initial value of the objective. TrimMaxSAT heuristically splits
the variables in the objective into partitions and queries the SAT solver for a solution that
assigns at least one of the literals in each partition to 1. If such an assignment is found, the
objective variables set to 1 are removed from consideration and the number of partitions
are decreased. If the partition size is 1 and the SAT solver reports UNSAT, all remaining
literals are fixed to 0 for the rest of the search. In other words TrimMaxSAT aims to find
objective literals whose negation is implied by the constraints in the formula and fix their
value, thus conceptually decreasing the size of the objective under consideration and–as a
consequence–also the size of the DPW encoding built over it.

In more detail, assume L contains the set of objective variables that have not been set to
1 in any solutions found so far during TrimMaxSAT. During an iteration of TrimMaxSAT,
L is partitioned into m subsets Li for i = 1, . . . , m. A new variable r is introduced and
the clauses r ⇒ (

∑
ℓ∈Li ℓ ≥ 1) for every i = 1, . . . , m are added to the SAT solver and the

proof via redundance-based strengthening to the core set. The SAT solver is then queried
under the assumption that r is true. If the result is SAT, the literals in L assigned to 1
in the obtained solution are removed from the set under consideration and the unit clause
r ≥ 1 is added to the solver such that the SAT solver can remove the clauses of the form

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:25

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

timelimit

memout

tim
elim

it

m
em

o
u
t

Pacose without proof logging (s)

P
a
c
o
se

w
it
h
p
ro
of

lo
gg

in
g
(s
)

unweighted
weighted

Figure 4 Proof logging overhead for Pa-
cose using the binary adder encoding.

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

timelimit

memout

Pacose with proof logging (s)

V
e
r
iP

B
p
ro
o
f
ch
ec
k
in
g
(s
)

unweighted
weighted

Figure 5 Pacose vs. VeriPB running
time using binary adder encoding.

r ⇒ (
∑

ℓ∈Li ℓ ≥ 1). This unit clause can be derived by redundance-based strengthening with
witness ω = r 7→ 0. If, on the other hand, the result is UNSAT, the unit clause r ≥ 1 is
added to the SAT solver and the SAT solver can simplify its clause database. This clause
is derived by standard cutting planes reasoning in the conflict analysis by the SAT solver
and is therefore added to the derived set in the proof. If in this case m = 1, we can also
conclude that all literals ℓ ∈ L are implied to be false. Hence, the solver learns the unit
clauses ℓ ≥ 1. In order to derive ℓ ≥ 1 for each ℓ ∈ Li, we first introduce the second part of
the reification r ⇐ (

∑
ℓ∈Li ℓ ≥ 1) using the redundance rule with witness r 7→ 1 and then

use cutting planes reasoning to derive that since r is false, all literals in Li must be false.
Interestingly, thanks to the use of strengthening-to-core, the unit clause r ≥ 1 derived earlier
does not interfere with the derivation of the second direction of the reification.

B.2 Hardening
Hardening refers to the addition of the unit clause li for an objective literal li if the currently
best known solution o∗ is larger than the sum of all weights in O excluding wi. In the
proof, the unit clause li can be derived easily from the solution-improving constraint and the
objective reformulation rule can be used to replace li by the constant wi in the objective.

C Additional Experimental Evaluation

In this appendix, we present some additional experimental analysis with data and plots to
give some further insights into proof logging for Pacose. In Section C.1, we present results
for the binary adder encoding that is also used in Pacose and how detail how well proof
logging performs for Pacose when it heuristically selects the encoding. We present data
for an additional approach that uses assumptions instead of unit clauses for fixing variables
in the coarse convergence in Section C.2. To better understand the proof logging overhead
in Pacose, we have a deeper look at some additional data for the proof logging process in
Section C.3.

C.1 Binary Adder Encoding and Encoding Selection Heuristic
Pacose also uses the binary adder encoding [62] instead of the DPW encoding. A comparison
between these two encodings is beyond the scope of this paper, but as we implemented
proof logging for both encodings, we can also have a look at the data for the binary adder

CP 2024

4:26 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

timelimit

memout

tim
elim

it

m
em

o
u
t

Pacose without proof logging (s)

P
a
c
o
se

w
it
h
p
ro
of

lo
gg

in
g
(s
)

unweighted
weighted

Figure 6 Proof logging overhead for Pa-
cose using heuristic encoding selection.

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

timelimit

memout

Pacose with proof logging (s)

V
e
r
iP

B
p
ro
o
f
ch
ec
k
in
g
(s
)

unweighted
weighted

Figure 7 Pacose vs. VeriPB running
time using heuristic encoding selection.

encoding. A comparison of solving with and without proof logging for this encoding can be
found in Figure 4. With proof logging for the binary adder encoding 722 instances could be
solved within the resource limits, which are 6 fewer instances than without proof logging.
This also demonstrates that the heuristic for selecting the encoding works, as the number of
solved instances for the heuristic is bigger than for any of the two encodings on their own.
In the mean, Pacose with proof logging is 1.63× slower than without proof logging. This
overhead is smaller than for the DPW encoding, which lead to the conclusion that more
work is required to certify the DPW encoding compared to the binary adder encoding.

Out of the 722 instances that were solved with the binary adder encoding, 658 instances
were successfully checked by VeriPB within the resource limits. In Figure 5, the running
time of Pacose is compared to that of VeriPB. In the mean, VeriPB is 21.1× slower than
Pacose for solving the instance with proof logging, which is similar to the DPW encoding.
This could mean that the bottleneck for checking the proofs is the implementation of the
checker.

Using the default settings, Pacose heuristically selects between the DPW and binary
adder encoding. A plot comparing Pacose with and without proof logging in the default
settings in Figure 6 and a plot comparing Pacose with proof logging with VeriPB for
checking the proof in Figure 7. With this heuristic activated, 698 instances are solved within
the resource limits with proof logging enabled and 707 instances without. Pacose with proof
logging is 1.83× slower in the mean than Pacose without proof logging. Checking the proof
with VeriPB is 21.8× slower than running Pacose with proof logging in the mean.

C.2 Coarse Convergence with Assumptions Instead of Unit Clauses
An alternative approach for representing the information that output variables of the DPW
encoding are fixed to a value in the coarse convergence is to use additional assumptions for
the SAT solver instead of unit clauses. As we need a shadow circuit to derive each unit
clause, we could reduce the number of shadow circuits by using assumptions. The idea is
that we add the variable fixing to the assumptions for all future calls to the SAT solver. This
approach is supported in Pacose, and we ran additional experiments using this approach.

The following data always use assumptions instead of unit clauses for fixing variables. In
Figure 8, Pacose with proof logging is compared to Pacose without proof logging. Using
assumptions Pacose with proof logging could solve 666 instances, which is 10 fewer instances
than without proof logging. Pacose with proof logging is 1.81× slower than without proof

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:27

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

timelimit

memout

tim
elim

it

m
em

o
u
t

Pacose without proof logging (s)

P
a
c
o
se

w
it
h
p
ro
of

lo
gg

in
g
(s
)

unweighted
weighted

Figure 8 Proof logging overhead for Pa-
cose using DPW encoding and assumptions.

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

timelimit

memout

Pacose with proof logging (s)

V
e
r
iP

B
p
ro
o
f
ch
ec
k
in
g
(s
)

unweighted
weighted

Figure 9 Pacose vs. VeriPB running
time using DPW encoding and assumptions.

10−2 10−1 100 101 102 103 104
103

104

105

106

107

108

109

1010

1011

Pacose without proof logging (s)

S
iz
e
of

g
en
er
a
te
d
p
ro
o
f
(b
y
te
)

1 3.16 10 31.62 100

Proof logging overhead (factor)

Figure 10 Solving time vs. proof size vs.
solving overhead for proof logging for the
DPW encoding.

10−2 10−1 100 101 102 103 104
103

104

105

106

107

108

109

1010

1011

Pacose without proof logging (s)

S
iz
e
of

g
en

er
at
ed

p
ro
of

(b
y
te
)

1 3.16 10 31.62 100

Proof logging overhead (factor)

Figure 11 Solving time vs. proof size vs.
solving overhead for proof logging for the
binary adder encoding.

logging in the mean. This is very similar to Pacose with the DPW encoding where the
variables are fixed by unit clauses and introducing shadow circuits. In the mean, the proof
checking is 22.2× slower than solving the instance with proof logging.

It can be concluded that this alternative approach of fixing variables by adding assumptions
is about as good as doing the fixing by unit clauses. Hence, it could be that introducing
additional shadow circuits for deriving the unit clauses does not slow down the solving a
lot, or it is a coincidence that the performance gains are countered by the additional work
required for keeping track of the assumptions.

C.3 Proof Logging Overhead Analysis

To get a better understanding of the 1.93× slowdown of Pacose with proof logging compared
to without proof logging, we investigate different causes for the extra running time with
proof logging. The idea for doing so is to get insights into how to improve the running time
of the solvers.

CP 2024

4:28 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

The expectation is that the proof size scales linearly with the running time of the solver.
It would be interesting to look into the instances where this is not the case and if there
is a correlation with the solving overhead. We can illustrate this by plotting the solving
time against the proof size and colour the marks depending on the overhead as it is done
in Figure 10 for the DPW encoding and in Figure 11 for the binary adder encoding. We
added a diagonal line representing linear scaling of proof size with running time for better
orientation, which is not related to the data at all. It can be seen that for the instances
that have a proof size that is significantly bigger than expected, the overhead also seems
to increase similarly. To confirm this observation, we compute the correlation of the proof
logging overhead and the proof size divided by the solving time. For the DPW encoding we
have a correlation of 0.92 and for the binary adder encoding we have a correlation of 0.88,
which shows that the two parameters are highly correlated. This mean that the slowdown is
due to proof being larger than expected for some instances.

We can conclude with some ideas to improve the performance of proof logging in Pacose.
First, the performance can be improved by engineering better data structures to handle the
proof logging to increase the speed for writing the proof. This idea only works if we have not
reached the maximum persistent disk write speed, which is not the case for our experiments.
Second, the proof could be done in a smarter way to reduce the size of the proof, where slow
parts of the proof logging could be identified by profiling. Considering that we also have a
1.63× slowdown for the binary adder encoding, the slowdown is not purely caused by the
shadow circuits, as they are not used for this encoding.

ParLS-PBO: A Parallel Local Search Solver for
Pseudo Boolean Optimization
Zhihan Chen #

Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,
China

Peng Lin #

Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,
China

Hao Hu #

Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Shaowei Cai1 # Ñ

Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,
China

Abstract
As a broadly applied technique in numerous optimization problems, recently, local search has been
employed to solve Pseudo-Boolean Optimization (PBO) problem. A representative local search solver
for PBO is LS-PBO. In this paper, firstly, we improve LS-PBO by a dynamic scoring mechanism,
which dynamically strikes a balance between score on hard constraints and score on the objective
function.

Moreover, on top of this improved LS-PBO, we develop the first parallel local search PBO solver.
The main idea is to share good solutions among different threads to guide the search, by maintaining
a pool of feasible solutions. For evaluating solutions when updating the pool, we propose a function
that considers both the solution quality and the diversity of the pool. Furthermore, we calculate
the polarity density in the pool to enhance the scoring function of local search. Our empirical
experiments show clear benefits of the proposed parallel approach, making it competitive with the
parallel version of the famous commercial solver Gurobi.

2012 ACM Subject Classification Computing methodologies → Parallel algorithms; Theory of
computation → Randomized local search

Keywords and phrases Pseudo-Boolean Optimization, Parallel Solving, Local Search, Scoring
Function, Solution Pool

Digital Object Identifier 10.4230/LIPIcs.CP.2024.5

Supplementary Material Software: https://github.com/shaowei-cai-group/ParLS-PBO.git
archived at swh:1:dir:7aa353d93bbe537f550a8c0e4bea165b7cc2f136

Funding This work is supported by National Key R&D Program of China (2023YFA1009500).

1 Corresponding author

© Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenzh@ios.ac.cn
https://orcid.org/0000-0001-5702-2508
mailto:linpeng@ios.ac.cn
https://orcid.org/0009-0002-4183-5998
mailto:huhao@ios.ac.cn
https://orcid.org/0000-0003-4103-3098
mailto:caisw@ios.ac.cn
https://lcs.ios.ac.cn/~caisw/
https://orcid.org/0000-0003-1730-6922
https://doi.org/10.4230/LIPIcs.CP.2024.5
https://github.com/shaowei-cai-group/ParLS-PBO.git
https://archive.softwareheritage.org/swh:1:dir:7aa353d93bbe537f550a8c0e4bea165b7cc2f136;origin=https://github.com/shaowei-cai-group/ParLS-PBO.git;visit=swh:1:snp:c2aa9c417224cf5f0b941f684bd7d7309047832b;anchor=swh:1:rev:1a22955007606d7e306ba4c56eee9260b8c24c00
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

1 Introduction

With the recent impressive progress in high-performance Boolean Satisfiability (SAT) and
Maximum Boolean Satisfiability (MaxSAT) solvers, increasing real-world problems are solved
with the Conjunctive Normal Form (CNF) encoding. However, in practice, CNF is ineffective
in dealing with cardinality constraints, resulting in its size growing dramatically [3]. As a rich
subject in various fields, Pseudo-Boolean Optimization (PBO) provides a better formalization
than CNF in expressive power, with the use of Linear Pseudo-Boolean (LPB) constraints.
Meanwhile, LPB constraints stay close to CNF and can benefit from advances in SAT
solving [33]. The PBO problem is to find an assignment satisfying all LPB constraints that
maximizes the objective function given.

Briefly, there are three categories of complete algorithms to solve the PBO problem. The
first one is the linear search, which extends the PB solver by adding a constraint enforcing
to find a better solution (in terms of the objective function value) when finding a solution
satisfying all constraints [2]. Several well-known PBO solvers are based on this idea, including
Sat4j [22], RoundingSAT [14], and HYBRID [12]. The second one is Branch-and-Bound,
which focuses on the techniques to estimate the lower bounds of the objective value, as the
search can be pruned whenever the lower bound is greater than or equal to the upper bound.
The symbolic techniques to determine the lower bounds include Maximum Hitting Set [11]
and Linear Programming Relaxation [26]. The third one is to call the SAT solvers after
encoding PB constraints into the CNF formula, such as MINISAT+ [13] and OpenWBO [31].
Moreover, mixed-integer programming (MIP) solvers can be directly applied to solve the
PBO problem, as PB constraints can be treated as 0-1 linear constraints, representative
solvers include SCIP [5] and Gurobi [17].

Complete algorithms often suffer from the scalability issue, which motivates the develop-
ment of incomplete algorithms. A typical incomplete approach is local search, which has been
successfully used in many problems, including SAT [25, 1, 6], MaxSAT [23, 9], etc. Neverthe-
less, the literature on local search algorithms to solve PBO problem is quite limited. The first
local search-based PBO solver was proposed in [24], called LS-PBO. This local search solver
introduced a constraint weighting scheme and a scoring function considering both hard and
soft constraints to select Boolean variables to flip. Later, LS-PBO was improved by using a
unit propagation-based method to produce better initial assignments [19], resulting in the
DeciLS-PBO solver. Very recently, on top of LS-PBO, Chu et. al. developed NuPBO [10],
which established the latest state-of-the-art local search based PBO solving. Additionally,
Iser et. al. proposed an oracle-based local search approach in the context of PBO [18], which
outperforms on various benchmark domains clearly the recent pure stochastic local search
approach.

Recently, with the evolution of multi-core processors, parallel solving received growing
interest. The SAT competition2 set up a parallel track from 2009, while Satisfiability Modulo
Theories (SMT) competition3 introduces parallel tracks in 2021. In short, parallel algorithms
contain two major directions. The first one is based on the concept of divide-and-conquer,
which divides the problem into several sub-problems, and each thread solves sub-problems. For
example, Treengeling [15] is a representative SAT solver of this kind. Meanwhile, commercial
solvers, such as CPLEX4 and Gurobi [17] also implement their parallel versions via this
approach. The other parallel approach is to integrate different solvers, including a solver with

2 http://www.satcompetition.org/
3 https://smt-comp.github.io/
4 http://www.cplex.com/

http://www.satcompetition.org/
https://smt-comp.github.io/
http://www.cplex.com/

Z. Chen, P. Lin, H. Hu, and S. Cai 5:3

different configurations, and each thread runs a solver. This approach is commonly known
as portfolio, which is simple but effective. The portfolio-based parallel SAT solvers, such as
PRS [8], P-mcomsps [16], and Pakis [36], dominate the parallel track of SAT competitions
in recent years. The parallel MaxSAT solvers [29, 30] based on the portfolio method also
demonstrate a strong ability to efficiently solve a large number of problem instances due to
the use of complementary search strategies and sharing learned clauses between threads.

In this paper, at first, we improve the typical LS-PBO solver by introducing a new
dynamic scoring mechanism, which can somehow avoid the local optimum situation even
after flipping thousands of variables. This leads to an improved algorithm called DLS-PBO.
Then, based on the DLS-PBO, we develop ParLS-PBO, to the best of our knowledge,
the first parallel local search-based PBO solver. Our parallel solver runs different local
search procedures in the worker threads and maintains a solution pool, which collects good
feasible solutions from the working threads and in turn can be used to guide the local search
procedures. During the search process, the solution pool is updated by adding new solutions
and removing solutions from it. To update the solution pool, we propose a function to
measure the feasible solutions found by local search, which considers both the objective value
of the solution and the diversity of the solutions in the pool.

The most important part of our parallel solver is how to use the solution pool to help
the local search. In this work, this is done in two ways. Firstly, the solutions in the pool
can be directly used to help local search when it stagnates for a long time. Specifically, in
such a situation, a local search process of a thread restarts from a good feasible solution
picked from the pool. Secondly, we calculate the polarity density (the proportions of being
1 and 0) for each variable once a solution is added into the solution pool. This polarity
density information is used to enhance the scoring function of local search when picking the
variable to flip in each step. The intuition is when a certain polarity (either 1 or 0) of a
variable occurs in most high-quality solutions, it brings preference to assign the variable to
that polarity.

We carry out experiments to evaluate our algorithms DLS-PBO and ParLS-PBO on
both real-world applications encoded benchmark and standard benchmarks, compared with
state-of-the-art solvers including LS-PBO [24], DeciLS-PBO [19], NuPBO [10], SCIP [5],
HYBRID [12], PBO-IHS [35], Gurobi [17]), and FiberSCIP [34]. Our results show that our
parallel solver has significantly better performance than all sequential solvers, and competes
well with the parallel versions of Gurobi. Furthermore, ParLS-PBO shows good scalability
up to 32 threads as its performance improves with the number of threads.

The remainder of this paper is structured as follows. Section 2 introduces preliminary
knowledge. Section 3 analyzes the weakness of LS-PBO and introduces an improved solver
DLS-PBO. Section 4 presents the proposed parallel solver ParLS-PBO. Experimental studies
are presented in Section 5. Finally, we give some concluding remarks in Section 6.

2 Preliminaries

2.1 Pseudo-Boolean Optimization

A Boolean variable xi can take only two values false and true, or equivalently {0, 1}. A literal
li is either a variable xi or its negation ¬xi. Given a set of n Boolean variables {x1, . . . , xn},
a linear pseudo-Boolean constraint (LPB constraint) is formed as follows:

n∑
i=1

ai · li ▷ b, ai, b ∈ Z, ▷ ∈ {=, ≤, <, ≥, >}

CP 2024

5:4 ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

where ai is the coefficient for literal li, b is called as the degree of the constraint, and ▷ is
one of the classical relational operators. With a given assignment or partial assignment, the
constraint is satisfied if its left and right terms satisfy the relational operator. Otherwise, it
is unsatisfied.

Moreover, replacing all literals xi (respectively ¬xi) with negative coefficients with 1−¬xi

(respectively 1 − xi), a LPB constraint can be normalized into the following form [33]:

n∑
i=1

ai · li ≥ b, ai, b ∈ N+
0

Given a conjunction of LPB constraints, Pseudo-Boolean Solving (PBS) problem is a
decision problem to find an assignment such that all constraints are satisfied. Pseudo-Boolean
Optimization (PBO) problem is an optimized version of the PBS problem, aiming to find an
assignment satisfying all constraints with the minimal value of a given objective function. In
this paper, we focus on the PBO problem consisting of a conjunction of LPB constraints and
a linear objective function. Therefore, a PBO instance subjecting to m LPB constraints has
the following form:

min
{x1,...,xn}

n∑
i=1

ci · li, ci ∈ Z

subject to:
m∧

j=1

n∑
i=1

aji · li ≥ bj , aji, bj ∈ N+
0

where ci is the objective coefficient for literal li.

2.2 A Review of LS-PBO Solver

LS-PBO is a representative local search solver for PBO, and serves as the basis of other local
search PBO solvers. Briefly, it contains two main ideas: a Constraint Weighting Scheme and
Scoring Functions for guiding the search process.

To solve a standard PBO instance, LS-PBO proposed a soft objective constraint:
∑n

i=1 ci ·
li < obj∗, where obj∗ indicates the objective value of the best solution in the current run,
and other constraints are set as hard. LS-PBO uses a weighting technique to increase the
weights of falsified constraints, so that the search process is biased toward satisfying them.
Specifically, it used dynamic weights (denoted as w(·)) to help the search avoid stuck in the
local optimum, while increasing the weights of hard constraints to find feasible solutions, and
the weight of objective constraint to find better solutions.

Besides, scoring functions are essential in local search algorithms to guide the search
process, which typically measures the benefits of flipping a Boolean variable. In LS-PBO,
the score of flipping a variable x (denoted as score(x)) was defined as follow:

score(x) = hscore(x) + oscore(x) (1)

where hscore(x) indicates the decrease of the total penalty of falsified hard constraints caused
by flipping x, and oscore(x) indicates the decrease of the penalty of the objective constraint
caused by flipping x. In detail, the penalty of falsifying a hard constraint hc was defined as
w(hc) · max (0, b −

∑n
i=1 ai · li), and the penalty for the objective constraint oc was defined

as w(oc) ·
∑n

i=1 ci · li.

Z. Chen, P. Lin, H. Hu, and S. Cai 5:5

3 Improving LS-PBO Solver with Dynamic Scoring Mechanism

As introduced in the preliminary, the score of a filliping variable x (score(x)) in LS-PBO is
presented as Equation 1. The algorithm selects the variable with the highest positive score,
indicating the biggest decrease in the penalty of hard constraints and objective constraint. A
drawback of LS-PBO is the lack of dynamic adjustments to the ratio of the soft and hard
constraints. If a feasible solution cannot be found within a certain period of time, the search
mechanism should adaptively prioritize finding feasible solutions, thereby increasing the ratio
attributed to the hard constraints. Conversely, if feasible solutions have been frequently
found recently, then it would be beneficial to increase the ratio of the soft constraints to
guide the search towards discovering better solutions.

To resolve this drawback, we introduce a new dynamic scoring function, denoted as
score∗(x), to adjust the significance of oscore(x) for every given K steps (K is a parameter),
which is defined as follows:

score∗(x) = hscore(x) + p · oscore(x) (2)

where p is a dynamic ratio initially set as 1. It would be decreased as p/inc (where inc > 1)
if no feasible solution is found during the recent K steps, to guide the search towards a
feasible solution. Otherwise, respectively, it would be increased as p · inc when a feasible
solution is found within the recent K steps, to guide the search process for a better solution.

▶ Example 1. Considering a PBO instance:

min
{x1,x2,x3}

10 · x1 + 20 · x2 + 30 · x3

subject to: 2 · x1 + 3 · x2 + 4 · x3 ≥ 5

and suppose current weights w(hc) and w(oc) are 2 and 1. For the given assignment
(x1 = 1, x2 = 0, x3 = 0), the corresponding hscore(·) and oscore(·) are as follows:

· x1 x2 x3

hscore(·) -4 6 6

oscore(·) 10 -20 -30

Consider the following two situations:
If feasible solutions are found frequently in recent period, the value of p will gradually
increase, guiding the search to lower the cost of the objective constraint. Suppose the
current value of p is 2, then score∗(x1) = 16, score∗(x2) = −34, score∗(x3) = −54. In
this case, x1 will be picked and flipped, resulting in a decrease of 10 in the cost of the
objective constraint. (even if it is not a feasible solution.)
If the algorithm has not visited feasible solutions for a period (K steps), the value of p

will gradually decrease, guiding the search to find feasible solutions. Suppose the current
value of p is 0.1. then score∗(x1) = −3, score∗(x2) = 4, score∗(x3) = 3. In this case, x2
will be picked and flipped, resulting in a feasible solution.

We denote the improved version of LS-PBO solver with dynamic scoring mechanism
as DLS-PBO.

CP 2024

5:6 ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

Figure 1 Architecture of the ParLS-PBO.

4 Parallel Local Search Solver for Pseudo-Boolean Optimization

In this section, we propose a parallel local search solver ParLS-PBO. The architecture
of ParLS-PBO is shown in Figure 1, which consists of two major contributions: Solution
Pool and Polarity Density Weight. We first describe the global framework of ParLS-PBO,
then we present the contributions in detail separately.

4.1 Framework of ParLS-PBO Solver

As a portfolio-based local search PBO solver, ParLS-PBO contains a master thread and
multiple worker threads. The master thread reads the input PBO instance, and then produces
different initial partial assignments via literal assume technique for worker threads; finally,
when the time limit is reached, it outputs the best solution returned from all worker threads.
In detail, supposing there are T worker threads, the master thread selects ⌈ T

2 ⌉ random
variables. Then, for each variable selected xi, it generates a positive literal xi and a negative
literal ¬xi. Therefore, it generates T (or T + 1 if T is odd) different assumed literals in total
for worker threads.

Each worker thread receives an assumed literal ℓ (either xi or ¬xi) and applies the unit
propagation [28] technique to simplify the formula. Note that a solution found by local search
for such a formula can be directly transformed to a solution for the original PBO instance, by
adding the assumed literal as the value for the corresponding variable, and adding the value
for reduced variables via unit propagation if any. Then the worker thread launches a local

Z. Chen, P. Lin, H. Hu, and S. Cai 5:7

search solver to solve the PBO instance. In default, the worker thread launches DLS-PBO.
To bridge different worker threads, we propose a Solution Pool to share high-quality feasible
solutions found from different worker threads. When the search process of a worker thread
is blocked in the local optimum after flipping a certain number of variables, it attempts to
restart with a high-quality feasible solution in the solution pool. Furthermore, we introduce
the concept of Polarity Density Weight with the intuition of preference of certain polarity of
a variable if it occurs in most high-quality solutions.

4.2 Maintaining the Solution Pool
The solution pool aims to collect good feasible solutions, preferring those with more differences.
To this end, we consider a mixed quality rating function rmix(·) by measuring two terms
together: the quality in objective value, and the diversity. For a feasible solution S, the
rating function rmix(S) w.r.t. a solution pool is defined as follows:

rmix(S) = rankobj(S) · p∗ + rankdiv(S) · (1 − p∗) (3)

where rankobj(·) and rankdiv(·) represent the ranking of S in the solution pool in objective
value and diversity value. Specifically, for the objective value, the solution with the minimal
objective value is considered as the best solution, hence its rankobj(·) value is 1. While for
the diversity value, the solution with the maximum diversity value is considered the best,
thus its rankdiv(·) value is 1. p∗ is a penalty parameter within [0, 1] to adjust the significance
of the objective value term and diversity term.

The difference between two solutions is measured as the sum of the number of different
polarities, and the diversity value of a solution S w.r.t. The solution pool is measured as the
sum of differences between S and all other solutions in the solution pool. Formally,

div(S) =
∑

S′∈P
Hamming(S, S′)

When a worker thread finds a new feasible solution S, if the solution pool is not full, then
just add it. Otherwise, S replaces the worst one (the solution with the biggest rmix(·) value).

We note that the rmix(S) function in this work resembles a previous population manage-
ment strategy [7]. We focus on the ranking rather than the value, which can be seen as a
normalization.

4.3 Using the Solution Pool to Guide the Search
In this subsection, we discussed how the solution pool guides each worker, including replacing
solutions with better solutions from the solution pool when a worker being trapped, and
utilizing the variable polarity preference in the solution pool to influence the selection of
variables to flip during the search process.

4.3.1 Solution Sharing Strategy
When a worker thread fails to find a better feasible solution for a while, which means that it
may be trapped in a local optimum, it selects a feasible solution with a smaller objective
value from the solution pool and replaces the current one.

In practice, each worker thread preserves the current best feasible solution (denoted as
S∗) as well as the corresponding objective value obj∗. When the search process fails to find
a better solution after R steps, it picks a solution from the solution pool as a new starting
point.

CP 2024

5:8 ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

To prevent excessive overlap of search spaces among various threads, we employ a
probability-based method to select solutions in the pool, rather than directly choosing the
best solution in the pool. Specifically, let {S1, . . . , Sk} denotes the set of feasible solutions in
the solution pool with objective values not bigger than obj∗ (the set will not be empty, as it
at least contains S∗), and ∆i denotes the difference between the objective value of Si and
obj∗. Then the probability of selecting Si is ∆i/

∑k
j=1 ∆j .

4.3.2 Polarity Density Weight

Besides using the solutions in the pool to guide the search process directly when it gets stuck,
we propose a deeper guiding method, which utilizes a piece of valuable hidden information in
the solution pool – the occurrence of polarities (0 or 1) of variables. To measure the effect
of this kind of information, we propose the concept of polarity density weight for a variable
x, denoted as wpd(x), which reflects the preference of certain polarity of x appearing in
high-quality solutions.

In detail, for a variable x, wpd(x) is initialized as 1. Once a high-quality feasible solution
S is added into the solution pool, wpd(x) will add (respectively, minus) a step value β

when positive (respectively, negative) polarity of x appears in S. In fact, via this updating
mechanism, the higher (respectively, lower) value in wpd(x) indicates the higher preference of
positive (respectively, negative) polarity for x in high-quality solutions. To limit the influence
of wpd(x) and avoid possible calculation problems in negative values, we restrict wpd(x) into
an interval of [1 − ϵ, 1 + ϵ], where ϵ scales the bound. Therefore, the wpd(x) is updated as
follows:

wpd(x) =
{

max(wpd(x) − β, 1 − ϵ), if x = 0 in S

min(wpd(x) + β, 1 + ϵ), if x = 1 in S
(4)

The polarity density weight is used to enhance the scoring function of picking a variable
to flip during the search process. The resulting enhanced scoring function, denoted as
score∗∗(x), is defined as follows:

score∗∗(x)=
{

score∗(x)·wpd(x), if x =0 in Scur

score∗(x)/wpd(x), if x =1 in Scur

(5)

where Scur is the current assignment maintained by the local search process.
The multiplication of polarity density weight influences the flip of a variable x from 0 to

1, as it increases the combined score if the preference of positive polarity exists (wpd(x) > 1)
to guide the search process to realise the flip. Respectively, in reverse, the division of polarity
density weight influences the flip from 1 to 0.

▶ Example 2. Continuing with Example 1, Suppose that most of the solutions that entered
the solution pool have the assignment (x1 = 1, x2 = 1, x3 = 0), resulting in wpd(x1) =
1.1, wpd(x2) = 1.1, wpd(x3) = 0.9.

For the given assignment (x1 = 1, x2 = 0, x3 = 0) and p = 1, the corresponding score∗(·)
can be calculated as: score∗(x1) = 6, score∗(x2) = −14, score∗(x3) = −24.

Then score∗∗(x1) = 6 ÷ 1.1, score∗∗(x2) = (−14) × 1.1, score∗∗(x3) = (−24) × 0.9.

Z. Chen, P. Lin, H. Hu, and S. Cai 5:9

5 Experiments

The experiments are organized as three parts. At first, we focus on comparing DLS-
PBO, ParLS-PBO with state-of-the-art solvers including commercial solvers. Secondly, we
analyze the effectiveness of the strategies to guide the search via the solution pool in ParLS-
PBO. Finally, we present the tendency in performance of ParLS-PBO with the increase
of the number of threads. Source code and detailed results are made publicly available on
GitHub5.

5.1 Benchmark
Real-World: Three real-world application problems, which are presented in the literat-
ure [24], including the Minimum-Width Confidence Band Problem [4]6 (24 instances),
the Seating Arrangements Problem [32] (21 instances), the Wireless Sensor Network
Optimization Problem [20, 21] (18 instances).
MIPLIB: All satisfiable 0-1 integer programs from the MIPLIB 2017 library and earlier
MIPLIB releases7, which contains 252 instances, provided in the literature [35].
PB16: The OPT-SMALL-INT benchmark from the most recent Pseudo-Boolean Com-
petition 20168. We filter out the duplicated instances that appear in both MIPLIB
and PB16, resulting in 1524 instances in the final. PB16 contains different problem
categories. We select those representatives (containing more than 30 instances) categories
for finer-grained experimental analysis.

5.2 Candidate Methods to Compare
In the sequential track, we compare DLS-PBO with 7 state-or-the-art sequential PBO solvers,
including 3 local search-based solvers: LS-PBO, DeciLS-PBO and NuPBO, 3 complete
non-commercial solvers: HYBRID, PBO-IHS , and SCIP and the commercial solver Gurobi
(both complete and heuristic versions).

In the parallel track, we compare ParLS-PBO with the academic solver FiberSCIP , and
the parallel version of the commercial solver Gurobi.

LS-PBO [24]: the state-of-the-art SLS algorithm for solving PBO9.
DeciLS-PBO [19]: a recent SLS algorithm based on LS-PBO10.
NuPBO [10]: a recent SLS algorithm based on LS-PBO, which established the latest
state-of-the-art local search based PBO solving11.
HYBRID [12]: a recent core-guided PBO solver building upon RoundingSAT [14]12.
PBO-IHS [35]: a recent IHS PBO solver building upon RoundingSAT13.
Gurobi [17]: one of the most powerful commercial MIP solvers. We use both its complete
and heuristic versions14.

5 https://github.com/shaowei-cai-group/ParLS-PBO.git
6 http://physionet.org/physiobank/database/mitdb/
7 https://zenodo.org/record/3870965
8 http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
9 https://lcs.ios.ac.cn/~caisw/Resource/LS-PBO/
10 https://github.com/jiangluyu1998/DeciLS-PBO (commit number: 3dce881)
11 https://github.com/filyouzicha/NuPBO (commit number: 821d901)
12 https://zenodo.org/record/4043124 (version 2)
13 https://bitbucket.org/coreo-group/pbo-ihs-solver (version 1.1)
14 https://www.gurobi.com/solutions/gurobi-optimizer (version 10.0.0)

CP 2024

https://github.com/shaowei-cai-group/ParLS-PBO.git
http://physionet.org/physiobank/database/mitdb/
https://zenodo.org/record/3870965
http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
https://lcs.ios.ac.cn/~caisw/Resource/LS-PBO/
https://github.com/jiangluyu1998/DeciLS-PBO
https://github.com/filyouzicha/NuPBO
https://zenodo.org/record/4043124
https://bitbucket.org/coreo-group/pbo-ihs-solver
https://www.gurobi.com/solutions/gurobi-optimizer

5:10 ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

SCIP [5]: one of the fastest non-commercial solvers for MIP (the latest version 8.0.1)15,
FiberSCIP [34]: a parallel non-commercial MIP solvers based on SCIP (the latest version
1.0.0)16.

We download the latest version of all candidate methods to compare from their published
links. In all experiments, we always use their default parameter settings.

5.3 Experimental Settings
DLS-PBO and ParLS-PBO are implemented in C++, and compiled with g++ (version 9.2.0)
using the option ’-O2’. All experiments are carried out on a cluster with two AMD EPYC
7763 CPUs @ 2.45Ghz of 128 physical cores and 1TB memory running the operating system
Ubuntu 20.04 LTS (64bit).

As with the previous research on PBO solvers [24, 19], we set the time limit for each run
as 300 and 3600 seconds. For each sequential randomized solver, we run 10 times for each
instance with different seeds from {0, 1, . . . , 9}, and select the median of the 10 runs as the
final result. Without making any additional claims, the number of CPU cores that can be
used for parallel solvers is set as 32.

For parameter tuning, we employed Sequential Model-based Algorithm Configuration
(SMAC) [27], conducting the tuning on 300 instances randomly selected from all the bench-
marks, with a time limit set to 300 seconds. The parameter values obtained after tuning are
listed in Table 117.

Table 1 The parameter settings of our solvers.

Parameter K R inc poolsize p∗ β ϵ

Value 566024 86295 1.15 18 0.58 0.03 0.144

Referring to the MaxSAT competition and previous research on PBO, we use 2 metrics
to evaluate the performance of each solver:

#win: the number of instances that a solver finds the best solution among all solutions
output by tested solvers (i.e., the number of winning instances).
avgsc∗ : Since 2017, in the incomplete track of recent MaxSAT Evaluations, the perform-
ance of various solvers is measured by competition scores. For an instance and a solver
given, the competition score sc is defined as (1 + costbest)/(1 + costs), where costbest

represents the objective value of the best solution found among all solvers, costs represents
the objective value of the solution found by the given solver. However, in PBO problem,
the objective value of a solution may be negative, leading to an incorrect calculation of
sc. To address this issue, we modify slightly the definition of competition score:

sc∗ =
1 + costbest +

∑
ci<0 |ci|

1 + costs +
∑

ci<0 |ci|

Adding all negative objective coefficients ensures the competition score of each instance
is normalized in [0, 1]. We use avgsc∗ to denote the average competition score of a solver.

15 https://www.scipopt.org/index.php#download (version 8.0.1)
16 https://ug.zib.de/index.php#download (version 1.0.0)
17 In fact, our solver is not sensitive to the parameter configurations. For example, a simple configuration

(K=100000, R=100000, inc=1.1, poolsize=10, β=0.1, ϵ=0.15) leads to a performance close to the one
in Table 1, with a gap of avgsc∗ less than 1%.

https://www.scipopt.org/index.php#download
https://ug.zib.de/index.php#download

Z. Chen, P. Lin, H. Hu, and S. Cai 5:11

We do not use average time as a metric because our primary focus is on the quality of
the solution. If the quality of the solutions found is different, then the comparison based on
run time would be misleading.

5.4 Performance Evaluations

5.4.1 The Sequential Track

We first compare DLS-PBO with LS-PBO, and the results are shown in Table 2. DLS-PBO
significantly improves LS-PBO in terms of both #win and avgsc∗ on all the benchmarks.

Further, we evaluate DLS-PBO with other PBO solvers, as well as integer programming
solvers. The results (Table 3) indicate that NuPBO performs best for the Real-world
benchmark, while Gurobi is the best on MIPLIB and PB16 benchmarks. DLS-PBO cannot
rival these two solvers, yet it is better than other PBO solvers. We note that the emphasis
of this work is to develop an effective parallel method for PBO solvers. We choose LS-PBO
as the baseline as it is the typical local search PBO solver (NuPBO is also developed on
top of it). We simply remedy its drawback to obtain DLS-PBO, and do not perform other
modifications. NuPBO was published very recently, and we believe our parallel method can
be applied to NuPBO as well.

5.4.2 The Parallel Track

The comparative results of our parallel solver ParLS-PBO with other parallel solvers are
shown in Table 4 (We only show #win due to the space limit). ParLS-PBO gives the best
performance on all categories of the Real-World benchmark, and 3 categories of the PB16
benchmark, including Kexu, Logic Synthesis, and Prime.

In terms of the Total instances, ParLS-PBO outperforms the non-commercial solver
FiberSCIP, and is competitive with the commercial solver Gurobi. Comparing Table 3 and
Table 4, it can be found that the gap between ParLS-PBO and Gurobi (32 threads) is
decreasing compared with the gap between DLS-PBO and Gurobi (1 thread), which indicates
the effectiveness of our solver in parallel solving.

We also observe that ParLS-PBO outperforms the best sequential PBO solver NuPBO
on all benchmarks (44 vs. 32, 171 vs. 156, and 1238 vs. 1002). Although this comparison is
unfair (and thus we do not report it in the table), it indicates that by parallelization, the
performance of PBO solvers can be significantly improved.

5.5 Effectiveness Analysis

This subsection evaluates the effectiveness of the key strategies of ParLS-PBO. In Table 5,
we compare ParLS-PBO with its 2 variants:

V1: to analyze the effectiveness of the solution-pool-based sharing, we modify ParLS-PBO
by disabling the sharing mechanism and making each thread solve separately.
V2: to analyze the effectiveness of the global score mechanism, we modify ParLS-PBO by
disabling the global score mechanism and using score∗(x) directly in the local search.

As shown in Table 5, ParLS-PBO outperforms other variations, confirming the effectiveness
of the strategies.

CP 2024

5:12 ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

Table 2 Evaluation between DLS-PBO and LS-PBO.

Benchmark #Ins
LS-PBO DLS-PBO

#win avgsc∗ #win avgsc∗

cutoff=300s
Real-World 63 25 0.976 48 0.996

miplib 252 118 0.777 182 0.836
PB16 1524 711 0.692 1124 0.776
Total 1839 854 0.713 1354 0.792

cutoff=3600s
Real-World 63 38 0.991 35 0.988

miplib 252 121 0.81 186 0.863
PB16 1524 829 0.753 1189 0.825
Total 1839 988 0.769 1410 0.836

Table 3 Performance evaluation between DLS-PBO and sequential SOTA solvers (The results
of DeciLS-PBO are not presented due to the space limit. In fact, DeciLS-PBO is dominated by
NuPBO and DLS-PBO).

Benchmark #Ins
SCIP HYBRID PBO-IHS NuPBO Gurobi(Comp.) Gurobi(Heur.) DLS-PBO

#win #win #win #win #win #win #win

avgsc∗ avgsc∗ avgsc∗ avgsc∗ avgsc∗ avgsc∗ avgsc∗

cutoff=300s

Real-World 63
0 3 2 46 4 4 29

0.126 0.109 0.266 0.972 0.289 0.292 0.977

MIPLIB 252
88 53 81 116 152 165 101

0.614 0.572 0.741 0.854 0.838 0.849 0.803

PB16 1524
810 663 882 980 1071 1072 842

0.687 0.624 0.804 0.813 0.84 0.84 0.741
cutoff=3600s

Real-World 63
0 11 5 43 11 9 27

0.171 0.494 0.401 0.997 0.34 0.38 0.974

MIPLIB 252
113 65 96 113 171 181 106

0.675 0.697 0.789 0.859 0.893 0.895 0.831

PB16 1524
906 729 939 1012 1138 1144 940

0.734 0.715 0.814 0.822 0.86 0.862 0.797

5.6 Scalability Analysis

In order to analyze the scalability of ParLS-PBO, we choose Gurobi (complete version) with
32 threads as the comparison baseline to test the performance gap between different threads
of ParLS-PBO. We report #win for threads set to {4, 8, 16, 32} compared to baseline. As
is shown in Figure 2, in each benchmark, #win is gradually increasing, which verifies the
scalability of ParLS-PBO.

Z. Chen, P. Lin, H. Hu, and S. Cai 5:13

Table 4 Performance evaluation between ParLS-PBO and parallel SOTA solvers.

Benchmark Category #ins
FiberSCIP Gurobi ParLS-PBO

Comp. Heur.
cutoff=300s

Real-World
MWCB 24 0 0 0 24
WSNO 18 0 4 4 18

SAP 21 0 0 0 21
Total 63 0 4 4 63

MIPLIB Total 252 113 190 180 129

PB16

Factor 192 186 186 186 172
Kexu 40 6 10 7 40

Logic synthesis 74 71 73 72 73
Market split 40 12 21 13 5

Mps 35 30 33 34 23
Numerical 34 13 18 21 8

Prime 156 123 128 129 131
Reduced mps 273 76 145 150 39

Total 1524 898 1147 1143 1100
cutoff=3600s

Real-World
MWCB 24 0 5 2 20
WSNO 18 0 10 10 18

SAP 21 0 0 0 21
Total 63 0 15 12 59

MIPLIB Total 252 129 184 193 140

PB16

Factor 192 186 186 186 182
Kexu 40 14 17 14 40

Logic synthesis 74 72 72 72 74
Market split 40 16 22 12 8

Mps 35 30 33 33 25
Numerical 34 13 19 25 8

Prime 156 127 130 131 132
Reduced mps 273 100 150 160 43

Total 1524 995 1198 1201 1107

6 Conclusions

We proposed two local search solvers for the PBO problem: DLS-PBO and ParLS-PBO.
DLS-PBO is an enhanced version of the LS-PBO solver, incorporating a dynamic scoring
mechanism. ParLS-PBO is a parallel solver with a solution pool collecting good solutions
from multiple threads. The solution pool guides the local search process by providing better
starting points and utilizing polarity information from high-quality solutions to improve
the scoring function. Experimental results show that our parallel solver has significantly
better performance than all sequential solvers and exhibits strong competitiveness against
the parallel versions of Gurobi.

The ideas of this work can be applied to other problems, particularly including SAT and
MaxSAT. It is also interesting to implement a distributed version of ParLS-PBO for cloud
computation.

CP 2024

5:14 ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

Table 5 Performance evaluation between ParLS-PBO and its variants.

Benchmark #Ins
V1 vs. ParLS-PBO V2 vs. ParLS-PBO

V1 ParLS-PBO V2 ParLS-PBO

#win avgsc∗ #win avgsc∗ #win avgsc∗ #win avgsc∗

cutoff=300s
Real-World 63 28 0.993 52 0.998 36 0.996 44 0.998

MIPLIB 252 137 0.857 199 0.868 166 0.871 185 0.870
PB16 1524 1095 0.835 1231 0.847 1168 0.841 1182 0.844

cutoff=3600s
Real-World 63 19 0.981 62 1.0 37 0.995 48 0.999

MIPLIB 252 145 0.870 203 0.897 181 0.897 180 0.893
PB16 1524 1111 0.840 1251 0.854 1191 0.852 1214 0.852

(a) Real-World. (b) MIPLIB.

(c) PB16. (d) Total.

Figure 2 Scalability Analysis (Time limit is set to 300).

Z. Chen, P. Lin, H. Hu, and S. Cai 5:15

References
1 Adrian Balint and Uwe Schöning. Choosing probability distributions for stochastic local

search and the role of make versus break. In Alessandro Cimatti and Roberto Sebastiani,
editors, Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International
Conference, Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture Notes in
Computer Science, pages 16–29. Springer, 2012. doi:10.1007/978-3-642-31612-8_3.

2 Peter Barth. A davis-putnam based enumeration algorithm for linear pseudo-boolean optimiz-
ation. Technical report, Max Plank Institute for Computer Science, 1995.

3 Belaid Benhamou, Lakhdar Sais, and Pierre Siegel. Two proof procedures for a cardinality
based language in propositional calculus. In Patrice Enjalbert, Ernst W. Mayr, and Klaus W.
Wagner, editors, STACS 94, 11th Annual Symposium on Theoretical Aspects of Computer
Science, Caen, France, February 24-26, 1994, Proceedings, volume 775 of Lecture Notes in
Computer Science, pages 71–82. Springer, 1994. doi:10.1007/3-540-57785-8_132.

4 Jeremias Berg, Emilia Oikarinen, Matti Järvisalo, and Kai Puolamäki. Minimum-width
confidence bands via constraint optimization. In International Conference on Principles and
Practice of Constraint Programming, pages 443–459. Springer, 2017.

5 Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al.
The scip optimization suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

6 Shaowei Cai, Chuan Luo, and Kaile Su. Ccanr: A configuration checking based local search
solver for non-random satisfiability. In Marijn Heule and Sean A. Weaver, editors, Theory and
Applications of Satisfiability Testing - SAT 2015 - 18th International Conference, Austin, TX,
USA, September 24-27, 2015, Proceedings, volume 9340 of Lecture Notes in Computer Science,
pages 1–8. Springer, 2015. doi:10.1007/978-3-319-24318-4_1.

7 Yuning Chen and Jin-Kao Hao. Memetic search for the generalized quadratic multiple knapsack
problem. IEEE Trans. Evol. Comput., 20(6):908–923, 2016. doi:10.1109/TEVC.2016.2546340.

8 Zhihan Chen, Xindi Zhang, Yuhang Qian, and Shaowei Cai. Prs: A new parallel/distributed
framework for sat. SAT COMPETITION 2023, page 39, 2023.

9 Yi Chu, Shaowei Cai, and Chuan Luo. Nuwls: Improving local search for (weighted) partial
maxsat by new weighting techniques. In Brian Williams, Yiling Chen, and Jennifer Neville,
editors, Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC,
USA, February 7-14, 2023, pages 3915–3923. AAAI Press, 2023. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/25505, doi:10.1609/AAAI.V37I4.25505.

10 Yi Chu, Shaowei Cai, Chuan Luo, Zhendong Lei, and Cong Peng. Towards more efficient
local search for pseudo-boolean optimization. In 29th International Conference on Principles
and Practice of Constraint Programming (CP 2023). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik, 2023.

11 Olivier Coudert and Jean Christophe Madre. New ideas for solving covering problems. In
Bryan Preas, editor, Proceedings of the 32st Conference on Design Automation, San Francisco,
California, USA, Moscone Center, June 12-16, 1995, pages 641–646. ACM Press, 1995.
doi:10.1145/217474.217603.

12 Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordström, and Peter J. Stuckey.
Cutting to the core of pseudo-boolean optimization: Combining core-guided search with
cutting planes reasoning. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pages 3750–3758. AAAI Press, 2021. URL: https:
//ojs.aaai.org/index.php/AAAI/article/view/16492, doi:10.1609/AAAI.V35I5.16492.

13 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

CP 2024

https://doi.org/10.1007/978-3-642-31612-8_3
https://doi.org/10.1007/3-540-57785-8_132
https://doi.org/10.1007/978-3-319-24318-4_1
https://doi.org/10.1109/TEVC.2016.2546340
https://ojs.aaai.org/index.php/AAAI/article/view/25505
https://ojs.aaai.org/index.php/AAAI/article/view/25505
https://doi.org/10.1609/AAAI.V37I4.25505
https://doi.org/10.1145/217474.217603
https://ojs.aaai.org/index.php/AAAI/article/view/16492
https://ojs.aaai.org/index.php/AAAI/article/view/16492
https://doi.org/10.1609/AAAI.V35I5.16492

5:16 ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

14 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-boolean solving.
In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1291–1299.
ijcai.org, 2018.

15 Armin Biere Katalin Fazekas Mathias Fleury and Maximilian Heisinger. Cadical, kissat,
paracooba, plingeling and treengeling entering the sat competition 2020. SAT COMPETITION,
2020:50, 2020.

16 Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon. Painless: A framework
for parallel SAT solving. In Serge Gaspers and Toby Walsh, editors, Theory and Applications of
Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia,
August 28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer
Science, pages 233–250. Springer, 2017. doi:10.1007/978-3-319-66263-3_15.

17 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.
18 Markus Iser, Jeremias Berg, and Matti Järvisalo. Oracle-based local search for pseudo-

boolean optimization. In Kobi Gal, Ann Nowé, Grzegorz J. Nalepa, Roy Fairstein, and Roxana
Radulescu, editors, ECAI 2023 - 26th European Conference on Artificial Intelligence, September
30 - October 4, 2023, Kraków, Poland - Including 12th Conference on Prestigious Applications
of Intelligent Systems (PAIS 2023), volume 372 of Frontiers in Artificial Intelligence and
Applications, pages 1124–1131. IOS Press, 2023. doi:10.3233/FAIA230387.

19 Luyu Jiang, Dantong Ouyang, Qi Zhang, and Liming Zhang. Decils-pbo: an effective
local search method for pseudo-boolean optimization. CoRR, abs/2301.12251, 2023. doi:
10.48550/arXiv.2301.12251.

20 Gergely Kovásznai, Balázs Erdélyi, and Csaba Biró. Investigations of graph properties in
terms of wireless sensor network optimization. In 2018 IEEE International Conference on
Future IoT Technologies (Future IoT), pages 1–8. IEEE, 2018.

21 Gergely Kovásznai, Krisztián Gajdár, and Laura Kovács. Portfolio sat and smt solving of
cardinality constraints in sensor network optimization. In 2019 21st International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pages 85–91. IEEE,
2019.

22 Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7(2-3):59–64, 2010.

23 Zhendong Lei and Shaowei Cai. Solving (weighted) partial maxsat by dynamic local search
for SAT. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages
1346–1352. ijcai.org, 2018. doi:10.24963/ijcai.2018/187.

24 Zhendong Lei, Shaowei Cai, Chuan Luo, and Holger H. Hoos. Efficient local search for pseudo
boolean optimization. In Chu-Min Li and Felip Manyà, editors, Theory and Applications
of Satisfiability Testing - SAT 2021 - 24th International Conference, Barcelona, Spain, July
5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer Science, pages 332–348.
Springer, 2021. doi:10.1007/978-3-030-80223-3_23.

25 Chu Min Li and Yu Li. Satisfying versus falsifying in local search for satisfiability - (poster
presentation). In Alessandro Cimatti and Roberto Sebastiani, editors, Theory and Applications
of Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20,
2012. Proceedings, volume 7317 of Lecture Notes in Computer Science, pages 477–478. Springer,
2012. doi:10.1007/978-3-642-31612-8_43.

26 Stan Y. Liao and Srinivas Devadas. Solving covering problems using lpr-based lower bounds.
In Ellen J. Yoffa, Giovanni De Micheli, and Jan M. Rabaey, editors, Proceedings of the 34st
Conference on Design Automation, Anaheim, California, USA, Anaheim Convention Center,
June 9-13, 1997, pages 117–120. ACM Press, 1997. doi:10.1145/266021.266046.

27 Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng,
Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian
optimization package for hyperparameter optimization. Journal of Machine Learning Research,
23(54):1–9, 2022.

https://doi.org/10.1007/978-3-319-66263-3_15
https://doi.org/10.3233/FAIA230387
https://doi.org/10.48550/arXiv.2301.12251
https://doi.org/10.48550/arXiv.2301.12251
https://doi.org/10.24963/ijcai.2018/187
https://doi.org/10.1007/978-3-030-80223-3_23
https://doi.org/10.1007/978-3-642-31612-8_43
https://doi.org/10.1145/266021.266046

Z. Chen, P. Lin, H. Hu, and S. Cai 5:17

28 Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning sat solvers.
In Handbook of satisfiability, pages 133–182. IOS Press, 2021.

29 Ruben Martins, Vasco Manquinho, and Inês Lynce. Exploiting cardinality encodings in parallel
maximum satisfiability. In 2011 IEEE 23rd International Conference on Tools with Artificial
Intelligence, pages 313–320. IEEE, 2011.

30 Ruben Martins, Vasco Manquinho, and Inês Lynce. Parallel search for maximum satisfiability.
AI Communications, 25(2):75–95, 2012.

31 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-wbo: A modular maxsat solver,.
In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT
2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer
Science, pages 438–445. Springer, 2014. doi:10.1007/978-3-319-09284-3_33.

32 Ruben Martins and Justine Sherry. Lisbon wedding: seating arrangements using maxsat.
MaxSAT Evaluation, pages 25–26, 2017.

33 Olivier Roussel and Vasco M. Manquinho. Pseudo-boolean and cardinality constraints. In
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satis-
fiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications,
pages 1087–1129. IOS Press, 2021. doi:10.3233/FAIA201012.

34 Yuji Shinano, Stefan Heinz, Stefan Vigerske, and Michael Winkler. Fiberscip - A shared
memory parallelization of SCIP. INFORMS J. Comput., 30(1):11–30, 2018. doi:10.1287/
ijoc.2017.0762.

35 Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Improvements to the implicit hitting set
approach to pseudo-boolean optimization. In Kuldeep S. Meel and Ofer Strichman, editors,
25th International Conference on Theory and Applications of Satisfiability Testing, SAT 2022,
August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 13:1–13:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.13.

36 Rodrigue Konan Tchinda and Clémentin Tayou Djamegni. Hkis, hcad, pakis and painless
exmaplelcmdistchronobt in the sc21. SAT COMPETITION, 2021:26, 2021.

CP 2024

https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.3233/FAIA201012
https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.4230/LIPIcs.SAT.2022.13

Deep Cooperation of Local Search and Unit
Propagation Techniques
Xiamin Chen #

Shanghai University of Finance and Economics, China

Zhendong Lei1 #

Huawei Taylor Lab, Shanghai, China

Pinyan Lu2 #

Shanghai University of Finance and Economics, Shanghai, China
Huawei Taylor Lab, Shanghai, China

Abstract
Local search (LS) is an efficient method for solving combinatorial optimization problems such as
MaxSAT and Pseudo Boolean Problems (PBO). However, due to a lack of reasoning power and
global information, LS methods get stuck at local optima easily. In contrast to the LS, Systematic
Search utilizes unit propagation and clause learning techniques with strong reasoning capabilities to
avoid falling into local optima. Nevertheless, the complete search is generally time-consuming to
obtain a global optimal solution. This work proposes a deep cooperation framework combining local
search and unit propagation to address their inherent disadvantages. First, we design a mechanism
to detect when LS gets stuck, and then a well-designed unit propagation procedure is called upon
to help escape the local optima. To the best of our knowledge, we are the first to integrate unit
propagation technique within LS to overcome local optima. Experiments based on a broad range
of benchmarks from MaxSAT Evaluations, PBO competitions, the Mixed Integer Programming
Library, and three real-life cases validate that our method significantly improves three state-of-the-art
MaxSAT and PBO local search solvers.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases PBO, Partial MaxSAT, LS, CDCL

Digital Object Identifier 10.4230/LIPIcs.CP.2024.6

Funding Pinyan Lu: National Key R&D Program of China (2023YFA1009500).

1 Introduction

The Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Optimization (PBO) are two
fundamental and important constraint optimization problems. The Maximum Satisfiability
problem (MaxSAT) is the optimization version of the Satisfiability problem (SAT). In general
MaxSAT problems, clauses are divided into hard and soft clauses, and each soft clause has
an associated weight. The goal of MaxSAT is to find an assignment that satisfies all hard
clauses and maximizes the total weight of satisfied soft clauses. PBO consists of a set of
pseudo-Boolean constraints and an objective function aiming to find a solution that satisfies
all pseudo-Boolean constraints while minimizing the objective function. With the continuous
improvements, MaxSAT and PBO solvers have broad applications in real-world problems
from operations research, economics, manufacturing, etc. [19, 35, 37].

1 X. Chen and Z. Lei - The authors are considered to have equal contributions
2 Corresponding author.

© Xiamin Chen, Zhendong Lei, and Pinyan Lu;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenxiamin@stu.sufe.edu.cn
https://orcid.org/0009-0006-8383-6015
mailto:leizhendong3@huawei.com
https://orcid.org/0009-0006-1238-9000
mailto:lu.pinyan@mail.shufe.edu.cn
https://orcid.org/0009-0005-0569-4122
https://doi.org/10.4230/LIPIcs.CP.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Deep Cooperation of Local Search and Unit Propagation Techniques

Existing practical algorithms for MaxSAT and PBO can be classified into two categories:
complete and incomplete methods. Local search is one of the most important incomplete
methods and has been shown to be effective for solving many combinatorial optimization
problems. Many advanced techniques have been proposed to enhance the performance of
local search algorithms for MaxSAT, such as variable selection heuristics [8], clause weighting
[11, 26], and Multi-armed Bandit soft clause selection [38]. Recently, local search algorithms
for PBO have also achieved breakthroughs by using well-designed scoring functions for
variable selection [12, 27]. Generally, local search algorithms converge quickly, enabling them
to find high-quality feasible solutions within a reasonable time. As a result, they are widely
employed for solving large instances, including real-world applications. However, local search
algorithms often get stuck in local optima easily due to their limited reasoning ability and
lack of global information.

On the contrary, complete algorithms adopt techniques that utilize global information
and powerful reasoning, such as unit propagation (UP) and conflict-driven clause learning
(CDCL) [34], to seek optimal solutions. Core-guided algorithms and branch-and-bound
algorithms are two commonly used complete methods for solving PBO [10, 16, 17, 18, 33, 36]
and MaxSAT [1, 2, 5, 6, 14, 15, 20, 23, 28, 31, 32] problems, where UP and CDCL play
critical roles in improving the performance of these solvers. However, these methods are
typically too time-consuming to solve some large-scale industrial instances.

Numerous research studies have been conducted to combine incomplete and complete
methods to develop effective solution approaches for the constraint optimization problems.
Some of these works utilize CDCL as the main solver, while LS is invoked to provide a search
heuristic [13, 22, 30], or to perform deep search at a branching node [3, 9, 24, 28]. Other
approaches use local search as the primary solver, with CDCL called upon for preprocessing
[21, 25, 29], building initial assignments [7], or solving sub-problems as black boxes [4].

In sharp contrast to these combined methods, our work proposes a new search framework,
in which local search acts as the main solver, and unit propagation techniques are used to help
local search algorithms escape from local optima. Specifically, we first design a mechanism
to detect when the local search algorithm is trapped in a local optimum. Upon detection,
unit propagation is invoked to change the current assignment. Since binary constraints are
common in MaxSAT and PBO instances, unit propagation will guide the solver into boarder
search spaces, thereby offer more chance to jump out of the local optimum. Finally, we
propose an acceptance criterion to determine whether to accept the propagated solution.

We have applied our new methods to improve the state-of-the-art MaxSAT solvers SATLike
and NuWLS, as well as PBO solvers LS-PBO and NuPBO. Validation was conducted across
it in MaxSAT Evaluations, PBO competitions, the Mixed Integer Programming Library,
and three real-life cases. Experimental results demonstrate that the combination of UP
technology significantly enhances the performance of local search algorithms.

2 Preliminary

2.1 Preliminaries Definitions and Notations
Given a set of n Boolean variables x1, x2, . . . , xn, a literal li is either a variable xi (which is
called a positive literal) or its negation xi = 1 − xi (which is called a negative literal). An
assignment α is a mapping that assigns each variable a value (0 or 1).

A clause Ci of length ki is a disjunction of ki literals (i.e., Ci = li1 ∨ li2 ∨ · · · ∨ liki
).

A conjunctive normal form (CNF) formula F = C1 ∧ C2 ∧ C3 · · · ∧ Cm is a conjunction of
clauses. Given an assignment α, a clause is satisfied by α if it contains at least one true
literal, and is falsified otherwise.

X. Chen, Z. Lei, and P. Lu 6:3

The Partial MaxSAT (PMS) problem is defined on a CNF formula, in which some clauses
are designated as hard clauses and the reminder as soft. The objective is to find an assignment
that satisfies all hard clauses and maximizes the total number of satisfied soft clauses. In
Weighted PMS (WPMS), each soft clause is assigned a positive integer weight, and the goal
is to satisfy all hard clauses while maximizing the total weight of satisfied soft clauses.

The Pseudo-Boolean Optimization (PBO) problem consists of a set of Pseudo-Boolean
(PB) constraints and an objective function. A normalized Pseudo-Boolean constraint is
represented as Ĉi :

∑
j aij · lij ≥ di, where aij , di ∈ Z+ and lij are literals. The objective

function is in the form
∑

j coj · loj . The goal of PBO is to find an assignment that satisfies
all PB constraints while minimizing the objective function.

Partial MaxSAT (PMS) can be considered as a specialization of PBO. Therefore, Partial
MaxSAT instances can be readily encoded into PBO instances. Given a PMS instance with
a set of hard clauses H = {C1 ∧ C2 ∧ · · · ∧ Cm}, where Ci = li1 ∨ li2 ∨ · · · ∨ liki and a set
of soft clauses S = {S1 ∧ S2 ∧ · · · ∧ Sn}, where Sj = (wj , lj1 ∨ lj2 ∨ · · · ∨ ljkj

) and wj is the
weight of the soft clause, the equivalent PBO format is constructed by transforming Ci’s into
constraints Ĉi : li1 + li2 + · · · + liki

≥ 1, and Sj ’s into Ĉj : lj1 + lj2 + · · · + ljkj
+ yj ≥ 1, where

yj are auxiliary variables representing satisfaction of soft clauses. The objective function is∑
j wjyj , which is weighted sum of auxiliary variables. Thus techniques used in PBO can be

effectively adapted to PMS instances. For clarity and consistency, thorough the reminder of
this paper, we discuss these concepts in the field of PBO.

2.2 Local Search and Unit Propagation
As shown in Algorithm 1, a local search solver maintains a complete assignment and keeps
track of the best solution found during the search. In each step, the local search algorithm
modifies the complete assignment locally (i.e., flips the value of a variable) to find a better
solution and it returns the best solution when the termination condition is reached (lines 3-16).

State-of-the-art LS solvers often employ clause-weighting techniques. A dynamic weight
is attached to each constraint to indicate its importance or difficulty. If an assignment α fails
to satisfy a constraint Ci :

∑
j aij lij ≥ di, the violation of Ci is defined as Violation(Ci) =

di − (
∑

j aij lij)|α, and the violation is 0 otherwise. In this way, the quality of an assignment
can be evaluated by Punishment, which is defined as the weighted sum of Violation of
all constraints. Specially, the objective function is treated as a never-satisfied constraint
Co :

∑
j coj loj ≥ M (where M is sufficiently large). In this way the objective is also counted

into Punishment. The change in Punishment before and after a variable flip is then defined
as the score of the corresponding variable.

In each step, if there exists a variable meeting the greedy heuristics, it is selected and
flipped to decrease the Punishment(lines 8-9). If no such variable exists, or in other words
the search get stuck, some local-optimum-escaping heuristics will be applied (lines 11-13).
Typically, these heuristics involve increasing the weights of unsatisfied hard constraints and
performing a random flip.

Unit propagation is the deduction of assignments over constraints. In the scope of
MaxSAT, a unit clause is a clause containing only one literal. Generalizing this concept,
a unit PB constraint is a constraint that cannot be satisfied unless one certain literal is
satisfied. Similarly, a constraint is binary, if it becomes unit after one literal is falsified.

▶ Example 1. 2x1 ≥ 1 and 3x1 + x2 + x3 ≥ 4 are unit constraints, since they are unsatisfied
unless x1 = 1.

CP 2024

6:4 Deep Cooperation of Local Search and Unit Propagation Techniques

Algorithm 1 Typical Local Search Algorithm.
Input: A given instance F , cutoff
Output: An assignment α of F and its cost

1: α := an initial complete assignment.
2: α∗ := ∅.
3: while elapsed time < cutoff do
4: if cost[α] < cost[α∗] then
5: α∗ := α. ▷ update best solution
6: end if
7: if meet greedy heuristics then
8: v := a variable is picked accordingly.
9: α := α with v flipped. ▷ greedy flips

10: else
11: update clause/constraint weights. ▷ weight adjustments
12: v := a variable is picked according to local-optima-escaping heuristics.
13: α := α with v flipped. ▷ random flips
14: end if
15: end while
16: Return (α∗, cost∗).

▶ Example 2. 2x1 + x2 + x3 ≥ 2 is a binary constraint, since fixing x1 = 1 leads to a unit
constraint implying x2 = x3 = 1.

Generalized unit propagation works as follows: First, the algorithm assumes a literal l

to be true, or in other words assigns a variable v a value of 0 or 1. Then, the algorithm
accesses all the constraints that involve v and substitutes v with its value. If any constraints
become unit, the value of another variable can be derived, and the derived variables will
be assigned. The algorithm applies this rule iteratively until no new variable assignments
can be derived or a conflict occurs, which means there exist some constraints that cannot
be satisfied under current assignment. If no conflict occurs, the derived literals form the
Implication of l, denoted as Imply(l).

▶ Example 3. Suppose there is a constraint x1 + x2 + x3 ≥ 2, then {x2, x3} ⊂ Imply(x1).

3 Main contribution

In this section, we present in detail how Systematic Search works and cooperates with
local search. While we focus on PBO problems in this section, the method can be easily
extended to PMS problems. The source code will be available at https://github.com/
SystematicSearch.

3.1 Deep Cooperation of Local Search and Unit Propagation
The main drawback of local search is that it converges to a sub-optimal solution quickly, but
the subsequent improvement is exceedingly challenging, because it easily gets trapped in a
local optimum. We ran NuWLS, one of the state-of-the-art local search solver for PMS, for
300 seconds to solve the MSE benchmarks, and summarized the scores at different cutoff
times in Figure 1 (benchmark and scoring will be introduced in Section 4). As shown in

https://github.com/SystematicSearch
https://github.com/SystematicSearch

X. Chen, Z. Lei, and P. Lu 6:5

Figure 1 Baseline behavior: scores at different cutoff time of NuWLS.

Figure 2 The horizontal direction represents the search direction, and the vertical direction
indicates the Punishment of each assignment. Moving in the curve simulates the flips of local search.

the figure, the score rushes to 90% of its peak value in less than 10 seconds, but the last
100 seconds contribute only 0.01 to the score. Therefore, our motivation is to spend these
seconds on addressing the trapping problem effectively.

To address this problem, we designed a new mechanism through deep cooperation of local
search and unit propagation. As illustrated in Figure 2, the general idea of our approach is
that, whenever the algorithm get stuck in a local optimum, a variable is picked and flipped
together with the unit propagation procedure of this variable. Then, a greedy heuristic
procedure is executed until the algorithm reaches another local optimum. If the new optimum
is worse than the original one, we backtrack to the original assignment (the dashed line route).
Otherwise, if the Punishment is reduced, we accept the new assignment (the solid line route).
The modified LS framework involves Systematic Search if the original LS solvers get stuck or
fail to improve the objectives, as described in Algorithm 2. Theoretically, this mechanism
can be extended to all kinds of local search algorithms as long as a proper stuck-detection
mechanism is designed.

CP 2024

6:6 Deep Cooperation of Local Search and Unit Propagation Techniques

Algorithm 2 Local Search Algorithm with Systematic Search.
Input: A given instance F , cutoff
Output: An assignment α of F and its cost

1: α := an initial complete assignment.
2: α∗ := ∅.
3: while elapsed time < cutoff do
4: if cost[α] < cost[α∗] then
5: α∗ := α. ▷ update best solution
6: end if
7: if meet Systematic Search invocation criteria then
8: candidates := PickCandidates(). ▷ see Section 3.3
9: for all v ∈ candidates do

10: α′ := FlipUP(v, α). ▷ see Section 3.4
11: if new assignment satisfy accept criteria then
12: α := α′ and Break. ▷ see Section 3.5
13: end if
14: end for
15: else
16: α : is modified by the original heuristic of the given algorithm.
17: end if
18: end while
19: Return (α∗, cost∗).

Our new local search scheme is illustrated in Algorithm 2 (lines 7-14). When the algorithm
meets the systematic search invocation criteria (more details can be found in Section 3.2),
which means it gets stuck in a local optimum, the algorithm will run the systematic search.
The first step is to pick a candidate starting variable (line 8). Then the algorithm flips
it, considers its assignment to be temporarily fixed, and performs the unit propagation
procedure for this variable (line 10). Finally the new assignment will be evaluated. If the
assignment is improved, we accept it and break (line 12). Otherwise, we backtrack to the last
local optimum and try the next candidate. A thorough description of candidate selection,
unit propagation, and acceptance criteria will be provided in the rest of this section.

3.2 Invocation of Hybrid Local Search
The hybrid method is involved when the best objective has not been updated for a long time,
indicating that the original algorithm could be stuck. Intuitively, there are two favorable
situations for invocation: when stuck in a local optimum, or right before restarting.

In the first situation, our new method is called every k times the algorithm reaches a
local optimum, where k is initialized to a relatively small integer kinit. After each call, if
the acceptance criteria are satisfied, indicating the method is effective, k will be reset to
kinit. If all candidates fail, k will be doubled until it reaches a preset upper bound kmax.
Theoretically, unit propagation does not need to be performed at every single local optimum
for the following reasons. Firstly, since backtracking means flipping some variables twice
without actual changes, frequent calls will cause a notable decrease of total valid flips, and
may narrow the overall search space in the end. This effect will be discussed in Section 4.
Secondly, updating weights plays a crucial role in balancing finding feasible solutions and
reducing the objective cost, so we still need a number of weight updates and random flips
(lines 11-13 in Algorithm 1). Finally, random flips is still one way to escape from some local
optima. By keeping both methods, we can combine their strengths.

X. Chen, Z. Lei, and P. Lu 6:7

Algorithm 3 PickCandidates.
Input: current local optimum assignment
Output: a set of variables
Params: #unsat constraints chosen n1, size of candidate n2.

1: candidates := ∅.
2: if current assignment is infeasible then
3: for c: up to n1 random unsatisfied constraint do
4: for l: all falsified literal in c do
5: x := the variable of l.
6: candidates := candidates ∪ {x}.
7: end for
8: end for
9: else

10: for l: up to n1 falsified literal in objective do
11: x := the variable of l.
12: candidates := candidates ∪ {x}.
13: end for
14: end if
15: candidates := top n2 elements with highest scores in candidates.
16: Return candidates.

The invocation in the second situation is based on the observation that feasible solutions
are not uniformly distributed in the domain but rather cluster together. It is highly possible
that a better solution lies near the best-found solution α̂, but the search might have chosen
a different direction there. In this case, a deep search around the α̂ helps to improve the
performance. To revisit that neighborhood, we flip to α̂, then call unit propagation to choose
a search direction to leave α̂, followed by final_steps steps of the original search method.
The restart will be delayed until all attempts are tried.

3.3 Picking Candidate Starting Variables
Our hybrid method begins with flipping one variable, followed by other propagated flips, so
the correctness of the first flip is important. Similar to local-optimum-escaping heuristics
in LS solvers, we filter some variables from unsatisfied constraints or falsified objective
literals, and rank them by score to form a candidate set. As shown in Algorithm 3, if the
local optimum is infeasible, (lines 2-8), at least one of falsified variable in each unsatisfied
constraint needs to be flipped, so PickCandidates will visit falsified constraints, caching the
falsified literals in candidates without duplication. Else, when the local optimum is feasible
(lines 9-13), to improve the objective, at least one of the falsified literals in the objective
function must be satisfied, so PickCandidates randomly picks among them. For the sake
of efficiency, PickCandidates visits at most n1 constraints and returns n2 variables.

3.4 Flipping Based on Unit Propagation
It is challenging to obtain propagated information within a very tight time limit. To
achieve efficient unit propagation, we propose a lightweight approach. Suppose we query for
UPList(x0). Instead of calling a complete unit propagation over the formula, the algorithm
checks every constraint containing the literal x0. For each of these constraints, the algorithm

CP 2024

6:8 Deep Cooperation of Local Search and Unit Propagation Techniques

Algorithm 4 FlipUP.
Input: a literal l, current assignment α

Output: local optimum assignment
1: U := UPList(l).
2: α := α with flip l → l. ▷ flip the candidate first
3: for all l′ ∈ U do
4: if current assignments falsify l′ then
5: α := α with flip l′ → l′. ▷ to be consist with UPList
6: end if
7: end for
8: while meet original greedy heuristics do
9: v := a variable is picked accordingly.

10: flip(v). ▷ follow the original greedy scheme
11: end while
12: Return α.

verifies if satisfying x0 turns the constraint into a unit constraint. If so, we record the
propagated literals in UPList(x0). Additionally, if time permits, we will run a breadth-first
search on the propagated variables to gather more information. Sometimes a conflict occurs,
such as when l and l appear simultaneously, or x0 ∈ UPList(x0). These cases indicate that
x0 is an infeasible assignment, so the algorithm returns UPList(x0) = {x0} to prompt not to
flip x0 → x0. Since the implications of literals are unrelated to current assignments, UPList
are cached to avoid redundant calculations.

▶ Example 4. Suppose a formula x1 + x2 ≥ 1, x1 + x3 ≥ 1, x2 + x3 + x4 ≥ 1, Imply(x1)
= {x2, x3, x4} but UPList(x1) = {x2, x3}, or UPList(x2) ∪ UPList(x3) after a breadth first
search.

The implementation of unit propagation is shown in Algorithm 4. First, the algorithm
queries the UPList and flips until all literals in the UPList are satisfied (lines 3-7). Then, the
search follows the original greedy heuristics and flips until a new local optimum is reached
(lines 8-11). Consequently, we extend a single flip into a multi-step search action, which will
strengthen the ability to escape from local optima.

The trick of getting the UPList works for several reasons. First of all, as an incomplete
solver, our UPList is not obligated to be strictly complete and can therefore save time.
Additionally, there will be greedy search steps after the propagation, providing another
opportunity to flip those omitted variables. Finally, binary clauses are common in PMS and
PBO instances, so the size of the derived UPList is large enough to move the search out of
the local optimum, fulfilling our purpose.

3.5 Acceptance Criteria
In the previous text, we discussed that the motivation of our new method is to jump to
another local optimum. If a correct candidate variable is chosen, we are supposed to get closer
to the global optimum. However, when the candidate is a mistake, we ought to stop searching
in that direction, go back, and try the next candidate (line 9 in Algorithm 2). We measure
each assignment by Punishment, which is consistent with the measure of greedy search and
the definition of a local optimum. If the Punishment decreases, we have successfully escaped
the local optimum, so no more candidates need to be tried. Otherwise, our method ends

X. Chen, Z. Lei, and P. Lu 6:9

up in a worse local optimum, the new assignment is discarded by flipping changed variables
again, followed by trying the next candidate. Finally, if all candidates fail to lead the search
to a better local optimum, it is possible that unit propagation does not work in this situation,
and the original local-optima-escaping heuristics will take place. In the next section, we will
exhibit the proportion of success and failure of our method in the experiments.

4 Experiment Results

In this section, we implement our hybrid method on four state-of-the-art solvers for PMS
and PBO problems, listed as follows:

LS-PBO: The state-of-the-art local search PBO solver, proposed by [27].
NuPBO: A recent PBO solver based on LS-PBO but using different scoring and weighting
schemes, proposed by [12].
SATLike3.0: The state-of-the-art local search MaxSAT solver and competition winner,
proposed by [7].
NuWLS: A recent MaxSAT solver based on SATLike3.0 but using different scoring and
weighting schemes, proposed by [11].

We validate our approach on a wide range of benchmarks, described as follows:
CRAFTED3: The crafted combinatorial problem set.
MIPLIB4: A set of 0-1 integer linear programming problems.
PB165: The OPT-SMALLINT-LIN benchmark from the latest 2016 pseudo-Boolean
competition.
Industry6: A combination of some real-world problems, including the seating arrange-
ment problem (SAP), the wireless sensor network optimization problem (WSNO), and
the minimum-width confidence band problem (MWCB) [27].
MSE19-MSE237: The benchmarks used in the MaxSAT Evaluations in the last five
years.

4.1 Experiment Settings
All competitor solvers are implemented in C++ and compiled with g++ with the make option
-O3. All the experiments are run on a workstation with an Intel Xeon Platinum 8380H CPU
@ 2.90GHz. Each instance is solved once with a cutoff time of 300 seconds. The parameters
of the planted local search solvers are kept the same as those used in [7, 11, 12, 27]. The
newly added parameters used in our experiments are n2 = 5, kinit = 10, kmax = 2560, and
final_steps = 10000. We will discuss the sensitivity of results to these parameters and
random seeds in Section 4.4.

We conclude the results in two dimensions, the number of winning instances and the
average score. Each experiment compares the original algorithm with its unit-propagation-
implemented version. For each instance, if the results are different, #win for the superior
algorithm is incremented by 1, and #lose for the inferior algorithm is also incremented by 1.
The score for each result follows the method used in MSE competitions. Specifically, within

3 https://zenodo.org/record/4036016
4 https://zenodo.org/record/3870965
5 http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
6 https://lcs.ios.ac.cn/~caisw/Resource/LS-PBO/benchmark/
7 https://maxsat-evaluations.github.io/2023/benchmarks.html

CP 2024

https://zenodo.org/record/4036016
https://zenodo.org/record/3870965
http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
https://lcs.ios.ac.cn/~caisw/Resource/LS-PBO/benchmark/
https://maxsat-evaluations.github.io/2023/benchmarks.html

6:10 Deep Cooperation of Local Search and Unit Propagation Techniques

each experiment set, let v∗ denote the best objective found by all competing algorithms. A
solver returning objective v receives a score of (1 + v∗)/(1 + v). This score is 1 if v = v∗, less
than 1 if it is not the best result, and equals 0 if no feasible solution is found. Given that v∗

is non-negative in the context of MaxSAT and PBO problems, scores range between 0 and 1.
We report the average score across all benchmarks in this section.

To analyze the performance of our method, we also record several other indices. accept(%)
represents the acceptance rate, calculated as the percentage of accepted local optima over
the total number of candidate attempts. dist denotes the average distance, or the Hamming
distance between two local optima before and after an accepted FlipUP action. step(%)
indicates the average number of valid step, which is the sum of greedy steps, random flips,
and the number of flips in accepted FlipUP actions, but excludes rejected propagations and
backtrack flips.

4.2 Experiment Results on MaxSAT Benchmarks
Results on SatLike3.0 and NuWLS are shown in Table 1 and 2 respectively. Both solvers
perform significantly better with the cooperation of unit propagation, evidenced by the
increase in the number of winning instances and the average scores across these benchmarks.
The progress of scores over time is depicted in Figure 3. For MSE19-22, the score increase
of original NuWLS slows down at around 0.72, whereas our approach delays this slowdown
until around 0.76. However, in MSE23, a distinct pattern emerges where efficiency becomes
more crucial. The distance between the solid curve and the dotted curve was narrowed to
nearly zero twice (around 50s and 200s) and then widened again (around 130s and 290s). We
attribute this pattern to the fact that some improvements at these timestamps are delayed
because the unit-propagation-implemented iterations are slower than the original ones.

Under the acceptance criteria, approximately 30 to 40 percent of propagation attempts
are accepted, resulting in the search jumps from current local minima to around 6 flips
away. In contrast, the rejected attempts are purely wastes of time. The average time
cost of our method, including calculating UPList and performing backtracking, amounts to
approximately 15 to 20 percent of the cutoff time. The results depicted in Figure 1 suggest
that this amount of time overhead has limited impact on the average score, but there are
still some instances to be sensitive to the effective running time. Particularly in MSE23, the
score curve showed steep improvements after 200 seconds, indicating that the solver finally
finds a feasible solution and turns the score from 0 to 1. In these cases, the unit propagation
integrated version ends up with no feasible solution, which explains for the score decrease in
MSE23 in Table 1.

Figure 3 Comparison of the score in different cutoff time, by NuWLS. The left and right plots
show MSE19 and MSE 23 respectively. The pattern of MSE20, MSE21 and MSE22 are so similar to
MSE19, so we omit these plots here to be concise.

X. Chen, Z. Lei, and P. Lu 6:11

Table 1 Experiment results of SatLike3.0.

benchmark #inst. #win. #lose. satlikess satlike accept(%) dist step(%)

MSE19 299 72 13 0.7108 0.6911 39 7.6 79
MSE20 262 59 13 0.6923 0.6845 41 8.4 80
MSE21 155 30 10 0.6155 0.6065 40 5.0 77
MSE22 179 39 9 0.6637 0.6459 42 4.9 82
MSE23 179 61 16 0.6193 0.6257 33 6.0 80

Table 2 Experiment results of NuWLS.

benchmark #inst. #win. #lose. nuwlsss nuwls accept(%) dist step(%)

MSE19 299 74 38 0.8322 0.7963 28 4.5 85
MSE20 262 75 30 0.8219 0.7882 30 5.0 86
MSE21 155 34 19 0.7991 0.7723 27 4.7 84
MSE22 179 46 25 0.8044 0.7856 28 4.0 86
MSE23 179 61 30 0.8158 0.8032 25 5.3 86

4.3 Experiment Results on PBO benchmarks
We have also applied our methods in PBO solvers LS-PBO and NuPBO, and summarized the
results in Table 3 and 4. The conclusion is consistent with that in the previous subsection:
in CRAFTED, MIPLIB, and PB16 benchmarks, both the number of winning cases and the
score are significantly improved. The only deterioration falls in the score of Industry problem
set by NuPBO, which can be explained by the step(%) metric in Table 4. Given that the
Industry set comprises larger-scale problems compared to other benchmarks, the original
solver usually cannot converge in 300 seconds, in other words the solution quality highly
depends on the number of flips. However, our new method achieves only performed 69% valid
flips compared to the original solver. As a result, despite unit propagation demonstrating
effectiveness by achieving more winning cases, the average score drops slightly.

4.4 Sensitivity analysis
Our algorithm shows stability across a wide range of parameter values. In each of the following
experiments, we vary one parameter while keeping the rest as specified in Section 4.1. For
each solver, we conduct 27 experiments (1 default, 6 for kmax, 4 for kmin, 3 for final_steps,
3 for n2, and 10 for random seeds) on all benchmarks in our study. We compute the scores
in comparison with the best value among these 27 outputs. For conciseness, we present the
average score of all benchmarks for each experiment in Table 5.

The first part of Table 5 shows the average scores and standard errors of experiments
with 10 different random seeds. The statistics demonstrate that the algorithm is robust
against randomness.

kmax and kmin control the frequency of UP calls. The results of varying these parameters
are shown in the second and third parts of Table 5. kmin corresponds to the highest frequency
of UP calls. As discussed in Section 3.2, a smaller kmin results in a more significant UP effect
but consumes more time. Conversely, a larger kmin reduces the frequency of UP calls, making
performance closer to the original solver. Setting kmin = ∞ means no UP is conducted,
making the algorithm identical to the original.

CP 2024

6:12 Deep Cooperation of Local Search and Unit Propagation Techniques

kmax corresponds to the lowest frequency of UP calls. This parameter is set to reduce
time waste when UP is ineffective during the search. We tested kmax from 10 (= kmin) to
10240 (extremely low frequency). The performance is not sensitive to this parameter.

The results of varying the number of UP candidates n2 are shown in the fourth part of
Table 5. A larger n2 increases the chances of finding a better UP but also increases the time
cost. We chose a balanced value of 5 for our paper.

The results of varying final_steps, the extra steps before restart (described in Section 3.2),
are shown in the last part of Table 5. Setting final_steps = 0 disables revisiting the best-
found solution, resulting in less intensified search and relatively lower scores. There is not
much difference when using other values.

4.5 Validation of Acceptance Criteria
In this part, we tested a variant that accepts all local optima after unit propagation. The
results of the SATLike3.0-based experiment are shown in Table 6, while the other solvers
support the same conclusion. Across all benchmarks, the acceptance rate is increased to
around 80% because only conflicting flips or candidates with an empty UPList were rejected.
As a result, approximately 10% more valid steps could be attempted before the cutoff time.
However, the number of deteriorated instances is significantly outweighed the number of
improved ones, and the score drops across four benchmarks at the same time. These results
demonstrate the necessity of our acceptance criteria. Moreover, it is worth noting that
the average propagated distance dist decreased compared to Table 2. As mentioned in the
previous text, solutions often cluster closely together. If the algorithm has no enforcement to
accept a better local optimum, it is allowed to visit these solutions in loops, which means it
is stuck.

5 Related Works

There have been many applications in combining Local Search and CDCL solvers. In this
section, we classify these works into two categories based on whether Local Search is the
master solver, and discuss some noticeable works from each category.

The first category use CDCL as the main solver, with local search methods often viewed
as a black box. In SAT problems, the solve ends if a feasible solution is found, prompting
some hybrid SAT solvers to use LS on branch nodes to accelerate solving. [30] calls LS at
every node in the CDCL search tree, and the solve succeeds if LS finds a solution at any
nodes. [9] branches until the length of the partial assignment exceeds a threshold, then it
is extended into a complete assignment and passes as the initial assignment to a LS solver.
Some other works also use LS to estimate the priority of branch variables ([13]), or to obtain
a upper bound of the optimization model ([28]).

The second category considers LS as the main body. [29] shows learnt clauses by CDCL
will be beneficial to LS solving. [21] uses implication graph to discover variable equivalency,
so the redundant variables will be substituted. The most related work is SatHys proposed
in [3], where the CDCL solver maintains a partial assignment Ip while LS conducts a search
with complete assignment Ic. If LS is stuck, a literal l is added to Ic and propagated. If
conflict occurs, CDCL learns a clause and backtracks. Finally Ic will be overwritten by Ip.
Our approach differs in two aspects. The major difference is that our unit propagation is
based on one literal instead of on Ip, which is a better adaption to optimization problems.
We notice that in SatHys, if an incorrect decision is made and added in Ip, it cannot
be cancelled unless it is backtracked or restarted. It works in SAT problems because the

X. Chen, Z. Lei, and P. Lu 6:13

Table 3 Experiment results of LS-PBO.

benchmark #inst. #win. #lose. lspboss lspbo accept(%) dist step(%)

CRAFTED 955 38 6 0.9093 0.9081 46 2.4 78
MIPLIB 291 76 36 0.7260 0.7042 32 5.4 88
PB16 1600 346 92 0.7653 0.7147 30 8.6 80
Industry 63 45 9 0.9835 0.9295 47 3.4 80

Table 4 Experiment results of NuPBO.

benchmark #inst. #win. #lose. nupboss nupbo accept(%) dist step(%)

CRAFTED 955 46 6 0.9171 0.9168 38 2.8 79
MIPLIB 291 95 34 0.8219 0.7932 27 8.9 82
PB16 1600 269 88 0.8293 0.8283 24 20.3 81
Industry 63 32 20 0.9456 0.9561 47 3.7 69

Table 5 Performance of our hybrid algorithm under different parameter settings.

(seeds) avg.score std.err

LS-PBO 0.8011 0.0015
NuPBO 0.8379 0.0007
SATLike 0.6503 0.0044
NuWLS 0.7835 0.0030

kmin = 5 10 20 40 80 ∞

LS-PBO 0.8145 0.8010 0.7984 0.7858 0.7823 0.7762
NuPBO 0.8356 0.8386 0.8381 0.8376 0.8382 0.8360
SATLike 0.6527 0.6493 0.6491 0.6491 0.6436 0.6405
NuWLS 0.7914 0.7867 0.7784 0.7763 0.7733 0.7626

kmax = 10 160 640 1280 2560 5120 10240

LS-PBO 0.8055 0.7997 0.7988 0.8049 0.8010 0.8017 0.8016
NuPBO 0.8326 0.8368 0.8353 0.8368 0.8386 0.8380 0.8370
SATLike 0.6459 0.6471 0.6493 0.6506 0.6496 0.6470 0.6471
NuWLS 0.7869 0.7823 0.7829 0.7861 0.7867 0.7902 0.7891

final_steps = 0 1000 10000 100000

LS-PBO 0.7978 0.8021 0.8010 0.8029
NuPBO 0.8358 0.8370 0.8386 0.8380
Satlike 0.6449 0.6473 0.6493 0.6470
NuWLS 0.7891 0.7922 0.7867 0.7899

n2 = 1 5 10 15

LS-PBO 0.7770 0.8010 0.8131 0.8155
NuPBO 0.8373 0.8386 0.8374 0.8402
Satlike 0.6490 0.6493 0.6490 0.6560
NuWLS 0.7733 0.7867 0.7867 0.7890

Table 6 Experiment results of SATLike3.0, comparing normal version satlikess with an all-accept
variant satlikeany. The last three columns of statistics are from satlikeany.

benchmark #inst. #win. #lose. satlikess satlikeany accept(%) dist step(%)

MSE19 299 65 17 0.7132 0.6962 83 6.0 106
MSE20 262 54 17 0.6920 0.6831 85 5.4 112
MSE21 155 28 11 0.6041 0.5761 86 3.2 113
MSE22 179 43 13 0.6508 0.6430 85 3.6 112
MSE23 179 48 22 0.6193 0.6210 79 3.5 104

CP 2024

6:14 Deep Cooperation of Local Search and Unit Propagation Techniques

cancelling situation (i.e. conflict occurs) is consistent with the target to find a feasible
assignment. But in optimization problems, the target is to optimize an objective, and poor
decisions (with respect to objective) may be kept in Ip and cause LS ending up in feasible
but bad solutions. Also, the adaption of our work allows the tricks described in section 3.4
to promise a light and efficient way of unit propagation. Another novelty of our work lies in
the backtrack mechanism, it gives LS the highest authority to judge propagated assignments
with LS Punishment, and reject unfavorable CDCL moves.

6 Conclusion

We propose a novel search framework which embeds unit propagation into local search
algorithms to help escaping local optima. Then, we introduce three innovative ideas to
enhance this new search framework. The first one is a mechanism to determine when to invoke
UP to change the current assignment obtained by the local search method, which helps the
algorithm jump out of local optima. The second one is the FlipUP algorithm to perform unit
propagation and heuristic search. Finally, we propose an acceptance mechanism to decide
whether to accept the propagated solution. Experiments conducted on benchmarks from
MaxSAT Evaluations, PBO competitions and realistic instances demonstrate that our method
can bring significant improvement in terms of the number of winning instances and average
scores across four state-of-the-art MaxSAT and PBO local search solvers. Consequently, we
believe that the cooperation of local search and unit propagation techniques represents a
promising research field which has great potential for exploration.

References
1 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms. Artif.

Intell., 196:77–105, 2013.
2 Carlos Ansótegui and Joel Gabàs. WPM3: an (in)complete algorithm for weighted partial

maxsat. Artif. Intell., 250:37–57, 2017.
3 Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Sais. Boosting local

search thanks to cdcl. In Christian G. Fermüller and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17,
Yogyakarta, Indonesia, October 10-15, 2010. Proceedings, volume 6397 of Lecture Notes in
Computer Science, pages 474–488. Springer, 2010.

4 Adrian Balint, Michael Henn, and Oliver Gableske. A novel approach to combine a sls-and a
dpll-solver for the satisfiability problem. In Theory and Applications of Satisfiability Testing-
SAT 2009: 12th International Conference, SAT 2009, Swansea, UK, June 30-July 3, 2009.
Proceedings 12, pages 284–297. Springer, 2009.

5 Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. Core-boosted linear search for incomplete
maxsat. In Louis-Martin Rousseau and Kostas Stergiou, editors, Proceedings CPAIOR 2019,,
volume 11494, pages 39–56, 2019.

6 Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. JSAT, 7(2-3):59–64, 2010.
7 Shaowei Cai and Zhendong Lei. Old techniques in new ways: Clause weighting, unit propagation

and hybridization for maximum satisfiability. Artif. Intell., 287:103354, 2020.
8 Shaowei Cai, Chuan Luo, John Thornton, and Kaile Su. Tailoring local search for partial

MaxSAT. In Proceedings of AAAI 2014, pages 2623–2629, 2014.
9 Shaowei Cai and Xindi Zhang. Deep cooperation of CDCL and local search for SAT (extended

abstract). In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages
5274–5278. ijcai.org, 2022.

X. Chen, Z. Lei, and P. Lu 6:15

10 Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver. IEEE Trans.
on CAD of Integrated Circuits and Systems, 24(3):305–317, 2005.

11 Yi Chu, Shaowei Cai, and Chuan Luo. Nuwls: Improving local search for (weighted) partial
maxsat by new weighting techniques. In Brian Williams, Yiling Chen, and Jennifer Neville,
editors, Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC,
USA, February 7-14, 2023, pages 3915–3923. AAAI Press, 2023.

12 Yi Chu, Shaowei Cai, Chuan Luo, Zhendong Lei, and Cong Peng. Towards more efficient
local search for pseudo-boolean optimization. In Roland H. C. Yap, editor, 29th International
Conference on Principles and Practice of Constraint Programming, CP 2023, August 27-
31, 2023, Toronto, Canada, volume 280 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023.

13 James M Crawford. Solving satisfiability problems using a combination of systematic and
local search. In Second DIMACS Challenge: cliques, coloring, and satisfiability. Citeseer, 1993.

14 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In Proceedings of CP 2011, pages 225–239, 2011.

15 Emir Demirovic and Peter J. Stuckey. Techniques inspired by local search for incomplete
maxsat and the linear algorithm: Varying resolution and solution-guided search. In Thomas
Schiex and Simon de Givry, editors, Proceedings of CP 2019, volume 11802, pages 177–194,
2019.

16 Jo Devriendt, Stephan Gocht, Emir Demirović, Peter Stuckey, and Jakob Nordström. Cutting
to the core of pseudo-Boolean optimization: Combining core-guided search with cutting planes
reasoning. In AAAI 2021,Accepted, 2021. URL: http://www.csc.kth.se/~jakobn/research/
CuttingToTheCore_AAAI.pdf.

17 Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals. Using combinatorial
benchmarks to probe the reasoning power of pseudo-Boolean solvers. In Olaf Beyersdorff and
Christoph M. Wintersteiger, editors, Proceedings of SAT 2018, pages 75–93, 2018.

18 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving.
In Jérôme Lang, editor, Proceedings of IJCAI 2018, pages 1291–1299, 2018.

19 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin Biere
and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing - SAT 2006,
9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume
4121 of Lecture Notes in Computer Science, pages 252–265. Springer, 2006.

20 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proceedings of
SAT 2006, pages 252–265, 2006.

21 Djamal Habet, Chu Min Li, Laure Devendeville, and Michel Vasquez. A hybrid approach for
sat. In International Conference on Principles and Practice of Constraint Programming, pages
172–184. Springer, 2002.

22 William S Havens and Bistra N Dilkina. A hybrid schema for systematic local search. In
Advances in Artificial Intelligence: 17th Conference of the Canadian Society for Computational
Studies of Intelligence, Canadian AI 2004, London, Ontario, Canada, May 17-19, 2004.
Proceedings 17, pages 248–260. Springer, 2004.

23 Saurabh Joshi, Prateek Kumar, Sukrut Rao, and Ruben Martins. Open-wbo-inc: Approxima-
tion strategies for incomplete weighted maxsat. J. Satisf. Boolean Model. Comput., 11(1):73–97,
2019.

24 Narendra Jussien and Olivier Lhomme. Local search with constraint propagation and conflict-
based heuristics. Artificial Intelligence, 139(1):21–45, 2002.

25 Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo. Maxpre: an extended
maxsat preprocessor. In International Conference on Theory and Applications of Satisfiability
Testing, pages 449–456. Springer, 2017.

CP 2024

http://www.csc.kth.se/~jakobn/research/CuttingToTheCore_AAAI.pdf
http://www.csc.kth.se/~jakobn/research/CuttingToTheCore_AAAI.pdf

6:16 Deep Cooperation of Local Search and Unit Propagation Techniques

26 Zhendong Lei and Shaowei Cai. Solving (weighted) partial maxsat by dynamic local search
for SAT. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages 1346–1352, 2018.

27 Zhendong Lei, Shaowei Cai, Chuan Luo, and Holger H. Hoos. Efficient local search for pseudo
boolean optimization. In Chu-Min Li and Felip Manyà, editors, Theory and Applications
of Satisfiability Testing - SAT 2021 - 24th International Conference, Barcelona, Spain, July
5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer Science, pages 332–348.
Springer, 2021.

28 Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun He. Combining
clause learning and branch and bound for maxsat. In Laurent D. Michel, editor, 27th
International Conference on Principles and Practice of Constraint Programming, CP 2021,
Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages
38:1–38:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

29 Jan-Hendrik Lorenz and Florian Wörz. On the effect of learned clauses on stochastic local
search. In Theory and Applications of Satisfiability Testing–SAT 2020: 23rd International
Conference, Alghero, Italy, July 3–10, 2020, Proceedings 23, pages 89–106. Springer, 2020.

30 Bertrand Mazure, Lakhdar Sais, and Éric Grégoire. Boosting complete techniques thanks to
local search methods. Annals of mathematics and artificial intelligence, 22:319–331, 1998.

31 Alexander Nadel. Anytime weighted maxsat with improved polarity selection and bit-vector
optimization. In Clark W. Barrett and Jin Yang, editors, Proceedings of FMCAD 2019, pages
193–202, 2019.

32 Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided MaxSAT
resolution. In Proceedings of AAAI 2014, pages 2717–2723, 2014.

33 Steven Prestwich. Randomised backtracking for linear pseudo-Boolean constraint problems.
In Proceedings of CPAIOR 2002, pages 7–20, 2002.

34 João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for
satisfiabilitysatlike. In Rob A. Rutenbar and Ralph H. J. M. Otten, editors, Proceedings of the
1996 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1996, San
Jose, CA, USA, November 10-14, 1996, pages 220–227. IEEE Computer Society / ACM, 1996.

35 Robert Wille, Hongyan Zhang, and Rolf Drechsler. ATPG for reversible circuits using
simulation, boolean satisfiability, and pseudo boolean optimization. In IEEE Computer Society
Annual Symposium on VLSI, ISVLSI 2011, 4-6 July 2011, Chennai, India, pages 120–125.
IEEE Computer Society, 2011.

36 Aolong Zha, Miyuki Koshimura, and Hiroshi Fujita. A hybrid encoding of pseudo-Boolean
constraints into CNF. In Proceedings of TAAI 2017, pages 9–12. IEEE Computer Society,
2017.

37 Yuhang Zhang, Richard I. Hartley, John Mashford, and Stewart Burn. Superpixels via pseudo-
boolean optimization. In Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu, and Luc Van
Gool, editors, IEEE International Conference on Computer Vision, ICCV 2011, Barcelona,
Spain, November 6-13, 2011, pages 1387–1394. IEEE Computer Society, 2011.

38 Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, Chu-Min Li, and Felip Manyà. Bandmaxsat:
A local search maxsat solver with multi-armed bandit. In Luc De Raedt, editor, Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022, pages 1901–1907. ijcai.org, 2022.

Cumulative Scheduling with Calendars and
Overtime
Samuel Cloutier #

Université Laval, Québec, Canada

Claude-Guy Quimper # Ñ

Université Laval, Québec, Canada

Abstract
In project scheduling, calendar considerations can increase the duration of a task when its execution
overlaps with holidays. On the other hand, the use of overtime may decrease the task’s duration.
We introduce the CalendarOvertime constraint which verifies that a task follows a calendar with
overtime and holidays. We also introduce the CumulativeOvertime constraint, a variant of the
Cumulative constraint, that also reasons with the calendars when propagating according to the
resource consumption, the overtime, and the holidays. Experimental results of a RCPSP model on
the PSPLIB, BL, and PACK instances augmented with calendars and overtime show that the use of
the CalendarOvertime constraint offers a speedup greater than 2.9 on the instances optimally
solved and finds better solutions on more than 79% of the remaining instances when compared to a
decomposition of the constraint. We also show that the use of our CumulativeOvertime constraint
further improves these results.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; Theory of
computation → Constraint and logic programming

Keywords and phrases Constraint programming, Scheduling, Global constraints, Calendars, Over-
time, Cumulative constraint, Time-Tabling

Digital Object Identifier 10.4230/LIPIcs.CP.2024.7

Supplementary Material Software (Source Code and Instances): https://github.com/Samclou/
chuffed/releases/tag/Calendars-cp2024

1 Introduction

In project management, it is common to schedule a variety of tasks on a project timeline.
With multiple machines and workers, some tasks can easily be done in parallel. For example,
a furniture factory can build a table at the same time as a chair, as long as sufficient workers
and workspace are available. Cumulative scheduling allows the simultaneous execution of
tasks while limiting these executions in order not to overload the resources.

Scheduling problems (with release times and deadlines) are generally NP-hard [9]. Con-
straint programming is frequently used to solve these problems.

In practice, tasks can be suspended for some time periods. The factory can be closed at
night and during weekends. If every operation is stopped at these times, these time periods
can simply be ignored. If some tasks must be stopped at specific times while others do not
because, for example, the machines keep working at night, side constraints become necessary
to encode these suspensions and this may undermine the efficiency of the models.

The aim of this research is to design constraints that facilitate the modeling and solving
of scheduling problems where tasks must be interrupted according to a calendar, or may be
shortened by working overtime.

Section 2 provides background on the cumulative scheduling problem, the Time-Tabling
rule, and the generalizations with calendars. Section 3 presents the new constraints we
introduce. Section 4 describes how these constraints can be decomposed into elementary

© Samuel Cloutier and Claude-Guy Quimper;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:samuel.cloutier.11@ulaval.ca
https://orcid.org/0000-0002-3585-7405
mailto:claude-guy.quimper@ift.ulaval.ca
http://www2.ift.ulaval.ca/~quimper/
https://orcid.org/0000-0002-5899-0217
https://doi.org/10.4230/LIPIcs.CP.2024.7
https://github.com/Samclou/chuffed/releases/tag/Calendars-cp2024
https://github.com/Samclou/chuffed/releases/tag/Calendars-cp2024
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Cumulative Scheduling with Calendars and Overtime

constraints while Section 5 details the propagators of the new constraints. Section 6 describes
the methodology we used to test our new propagators. Section 7 evaluates the performances
of the new propagators and the decomposition.

2 Background

2.1 Cumulative Scheduling

The cumulative scheduling problem is often modeled with the Cumulative global con-
straint [1]. In what follows, lower-case symbols represent constants and indices while
upper-case ones represent variables. Symbols in bold represent arrays that we define using
list comprehension. Let I be the set of tasks and let pi, hi, and Si for i ∈ I be the task’s
processing time, usage of a resource, and starting time. Let S be [Si | i ∈ I], p be [pi | i ∈ I],
and h be [hi | i ∈ I]. The constraint Cumulative(S, p, h, hmax) asserts that for a resource
of capacity hmax that executes the tasks in I, for any integer time point t in the horizon (the
complete time interval considered, [0, tmax]),

∑
i∈I:t∈[Si,Si+pi) hi ≤ hmax. This means that

tasks running simultaneously cannot, at any time, consume more than the resource’s capacity.
The execution window of a task is considered to be [Si, Si + pi), with Si + pi being its ending
time. As such, Si takes integer values in [0, tmax − pi]. The Cumulative constraint uses
filtering algorithms to prune the variable domains during the search. Since enforcing bounds
consistency is NP-hard [17], one usually applies simple filtering rules that offer a weaker level
of consistency such as the Time-Tabling rule [2]. In a multi-resource problem, each resource
is associated with its own Cumulative constraint. A common objective is to minimize the
makespan, i.e., the completion time of the last task.

Lazy clause generation [18] is a technique that deduces new logical constraints, in the
form of a disjunction of literals representing domain states of the variables, from the failures
encountered during the search. It permits learning previous bad decisions and prune them
from the remaining search tree. Solvers that implement lazy clause generation, such as
Chuffed [8], have been shown to perform well on cumulative scheduling problems [20].

2.2 The Time-Tabling Rule

Let X and X respectively be the smallest and largest values a variable X can take. We note
dom(X) the set of all values variable X may take, i.e., its domain. The Time-Tabling rule [2]
filters the domains of the starting time variables subject to the Cumulative constraint. We
note the earliest starting time of task i as esti, its latest starting time as lsti, its earliest
completion time as ecti, and its latest completion time as lcti. These are defined as follows:

esti
def= Si (1)

lsti
def= Si (2)

ecti
def= Si + pi (3)

lcti
def= Si + pi (4)

If a task duration is a variable, these definitions use the lower bound of that variable
rather than pi. These four concepts bound the time points at which a task can be in execution.
A task must be in execution in the interval [lsti, ecti), called the compulsory part, if it is
non-empty.

S. Cloutier and C.-G. Quimper 7:3

The Time-tabling rule computes the compulsory part of each task and aggregates them
to create a consumption profile, i.e., a lower bound of the resource consumption at each time
point. The Time-Tabling check identifies a conflict when a point in this profile overloads
the resource. The Time-Tabling filtering algorithm makes sure that if a task overloads the
resource when executing at time t, then the task must either start after or finish before t [19].
Let f(Ω, t) be the consumption profile of a resource at time t given the tasks in the set Ω.

f(Ω, t) =
∑

{i∈Ω|t∈[lsti,ecti)}

hi (5)

The checking and filtering rules for the cumulative constraint can then be expressed as:

∃ t, f(I, t) > hmax =⇒ conflict (6)
ecti > t ∧ hmax < hi + f(I \ {i}, t) =⇒ S′

i > t (7)

Rule (7) can be adapted to filter Si. Propagators applying the Time-Tabling rule can have
a complexity as low as O(n), n being the number of tasks. However, there exist efficient
implementations with a complexity of O(n2) [10].

2.3 Augmentation With Calendars
It is possible that, at some specific times, some tasks must be paused while others remain
unaffected. We say that these special times are defined by a calendar. This notion is close
to preemption, but it is still in a non-preemptive context. A task can only be suspended
because of calendars and it must resume as soon as each calendar affecting the task permit
it. There are multiple ways to conceptualize calendars and many ways to solve the problem
have been studied.

2.3.1 Calendars Associated to Resources
One way to add calendars into the cumulative scheduling problem is to assign to each resource
an arbitrary array of Booleans indicating whether the resource is available or not at a specific
time. When a resource is unavailable, tasks cannot progress in their execution, which has
the effect of artificially lengthening their execution time.

Kreter et al. [12, 13, 14] use releasable resources that stop being consumed by tasks that
are paused. Their tasks may have an initial uninterruptible setup time. To deal with their
complex problem, Kreter et al. study various methods:

They use multiple binary linear model formulations and search methods that they compare
against each other [12].
They implement a new constraint, namely CumulativeCalendar, in a constraint solver
and compare its efficiency with various models using existing constraints [13].
They compare both previous methods on the resource investment problem, i.e., the problem
of minimizing the cost associated to the maximum consumption of each resources [14].

Kreter et al. [13, 14] show that the use of CumulativeCalendar constraints with a lazy
clause generation solver such as Chuffed is highly competitive to solve their problems.

2.3.2 Calendars Associated to Tasks
Boudreault et al. [6] directly assigns the calendars to the tasks, meaning that each task
follows its own calendar, rather than following one implied by those of the resources. This
might be wanted over the preceding option when some resources are plentiful enough that

CP 2024

7:4 Cumulative Scheduling with Calendars and Overtime

modeling them with a Cumulative constraint would be useless. However, if these omitted
resources have a calendar, they still need to affect the actual calendar of a task, which
justifies using this more general type of calendar. For Boudreault et al., the calendars are
not arbitrary as the composition of a working day is fixed and shared between all calendars:
the regular execution time starts at a given time in the morning and finishes at a given time
in the afternoon. Some tasks can execute during the weekend while other tasks cannot. The
calendars are periodic on weeks and do not allow exceptions even for holidays.

Boudreault et al. [6] allow overtime, i.e., a way to shorten the execution time of a task
while inducing an overtime cost. Working one time point worth of overtime on task i costs
wi. The amount of overtime is limited by its availability. Indeed, overtime is assigned to
specific time points in the calendar, during which a task can be interrupted or can continue
its execution if it is executed in overtime.

To solve their problem, Boudreault et al. [6] do not implement a new constraint in a
solver, they rather decompose the calendar constraints into elementary constraints available
in any constraint solver and use a meta-heuristic to reach better results.

2.3.3 Other Approaches
In CP Optimizer, tasks in scheduling problems are modeled through interval variables. These
variables possess a starting time and an ending time, but also a size, and a step function,
called intensity. The size of an interval variable can be interpreted as the work contained in
the interval, while the intensity gives the ratio of work that each time point provides. As
such, the behavior that tasks do not progress during holidays can directly be treated through
the intensity function by having an intensity of 0% during that time. If tasks are not allowed
to start or end during holidays, constraints forbidStart and forbidEnd directly model and
deal efficiently with this aspect [15].

Beldiceanu [4, 5] introduces a Calendar constraint to model this behavior. This
constraint maps, for each calendar, the real-time coordinate system to a virtual one where
there are no interruptions. These virtual time coordinates then permit the use of classic
propagators that normally cannot deal with calendars. The mapping deals with the problem
of changing the length of tasks and of making sure none starts nor ends during a holiday.

3 Calendar Constraints With Overtime

This section presents the new constraints we introduce. The next section presents how they
can be decomposed while the following section describes their filtering algorithms.

The constraints we introduce are motivated by the calendar constraints used by Boudr-
eault et al. [6]. We generalize the calendars they use by allowing arbitrary calendars, i.e.,
non-periodic calendars with sporadic holidays. Every task must follow a specific calendar.
The elapsed time of a task is the difference between its end time and its start time. Without
calendars, the elapsed time of a task is simply its processing time.

Given a horizon representing all the time points at which a task can be processed, our
calendars are arbitrary sequences of the symbols r, c, or o where the t-th symbol represents
the nature of the t-th time point, i.e., the t-th hour in our context. The symbol r indicates
that the time point is regular (the classic scheduling problem would correspond to a calendar
with only r’s). The symbol c indicates that the time point is closed, that is, tasks are
suspended when they are in process at that time. As for o, it indicates that the time point is
an overtime period that can behave as a regular or a closed time point whether it is worked
or not. The duration that a task is worked in overtime is the number of time points of type

S. Cloutier and C.-G. Quimper 7:5

o that behave as type r. The time point of the start and the one preceding the end of a task
must not be closed. If either of these points is an overtime period, the amount of worked
overtime must allow to work them. The time worked in the execution window of a task must
be exactly its processing time.

▶ Example 1. Let i be a task with processing time pi = 3 following the calendar coroorrc.
This task cannot start at time 0 since it is closed. It can execute at times 1, 2, and 3. It
could also execute at times 1, 2, and 4. In that case, it finishes later and is idle at time 3.
The task cannot start at time 1 while ending at time 7 because the regular times 2, 5, and 6
are mandatory, leaving no work to perform at time 1.

3.1 The CalendarOvertime Constraint
We define a new constraint to model calendars with overtime. The CalendarOvertime
constraint, for a starting time variable S, an elapsed time variable E (with dom(E)⊆ [p, tmax]),
an overtime variable O (with dom(O) ⊆ [0, p]), a processing time p, and a calendar Cal,
asserts that:

The first and last time points of the execution window [S, S + E) are not closed.
There are enough, but not too many, worked time points in the window to complete the
task of processing time p with the overtime prescribed by O.
There are enough overtime periods in [S, S + E) for the overtime prescribed by O.
The first and last time points in [S, S + E) can actually be worked if they are of type o.

In a more mathematical way, the CalendarOvertime constraint is defined as follows:

CalendarOvertime(S, E, O, p, Cal) def⇐⇒ Cal[S] ̸=c ∧ Cal[S + E − 1] ̸=c

∧O = p− |{t ∈ [S, S + E) | Cal[t] = r}|
∧O ≤ |{t ∈ [S, S + E) | Cal[t] = o}|
∧ |{t ∈ {S, S + E − 1} | Cal[t] = o}| ≤ O

This constraint does not deal with the concept of resource consumption. It simply maintains
consistency between the variables S, E, and O given a processing time p and a calendar Cal.

3.2 The CumulativeOvertime Constraint
Let E be [Ei | i ∈ I], O be [Oi | i ∈ I], and Cal be [Cali | i ∈ I]. We define the new
CumulativeOvertime constraint as follows:

CumulativeOvertime(S, E, O, p, Cal, h, hmax)
def⇐⇒ Cumulative(S, E, h, hmax)

∧
∧
i∈I

CalendarOvertime(Si, Ei, Oi, pi, Cali)

In words, we define the new CumulativeOvertime constraint as a conjunction of a
Cumulative constraint and the CalendarOvertime constraints associated to the tasks
consuming the resource. Importantly, we consider that tasks continue to use the resource
while they are suspended, be it because of unworked overtime or closed time. This last
aspect is reasonable if we consider that some resources may relate to small spaces where
moving machinery should be avoided, such as during ship refitting. In that case, releasing
the resource necessitates unwanted work that would overcomplicate the planning.

CP 2024

7:6 Cumulative Scheduling with Calendars and Overtime

Although the propagator for CalendarOvertime (described at Section 5.1) maintains
bounds consistency on S, E, and O given processing time p and calendar Cal, the bounds
found on E are often not sufficient to allow the Cumulative constraint to perform a good
propagation. This is because the Time-Tabling rule filtering the Cumulative constraint
only uses E in its reasoning and does not take into account the calendars.

▶ Example 2. Consider a task 1 of processing time p1 = 2 following the calendar rcrrcr
with dom(S1) = [0, 3] and dom(E1) = [2, 3]. Let task 2 follow the same calendar, with
p2 = 2, dom(S2) = [0, 2] and dom(E2) = [2, 3]. In this case, O1 = O2 = 0. It can be seen
that the domains of the variables of both tasks are bounds consistent with respect to the
CalendarOvertime constraints and that they do not induce any compulsory part. Let
both tasks consume 1 unit of a resource of capacity 1 (i.e., a disjunctive resource). Then,
the Time-Tabling rule is not able to deduce that S1 should be fixed to 3. Indeed, not only
does it fail to detect that task 2 must be executing at time 2 (meaning its compulsory part
in Figure 1a should not be empty), it also considers that task 1 could start at time 0 and
end at time 2 (excluded), leading to no propagation. Should the calendar considerations be
included in the rule, the propagation would be deduced, as visible in Figures 1b and 1c.

0 1 2 3 4 5
r c r r c r

| lst1|ect1

|lst2 ect2

(a) When not considering the
calendar, the time windows that
end the earliest or start the
latest have no intersection. The
profile is empty and no propaga-
tion is possible.

0 1 2 3 4 5
r c r r c r

| lst
′
1ect′1

|lst′2 |ect
′
2

(b) When taking the calendar
into account, the tasks execu-
tion windows become longer, al-
lowing the detection of compuls-
ory parts that would otherwise
be missed.

0 1 2 3 4 5
r c r r c r

S1

| |

×

(c) With this augmented pro-
file, calendar considerations can
again lengthen a task’s execu-
tion window and permit the
detection of propagations that
would be missed otherwise.

Figure 1 Comparison of the propagation done by the Time-tabling rule without and with
calendar considerations in the case described by Example 2. The meaning of ect′

i and lst′
i is defined

at section 5.1.

4 Decomposition of the New Constraints

To evaluate the usefulness of the new constraints defined in the previous section, we need to
compare them with their decomposition into elementary constraints.

4.1 Decomposition of the CalendarOvertime Constraint
Suppose we want to decompose the constraint CalendarOvertime(S, E, O, p, Cal). If Cal
is the trivial calendar, i.e., the calendar with only regular time points without closed time or
overtime, the constraint is trivially decomposed as follows:

E = p ∧O = 0 (8)

S. Cloutier and C.-G. Quimper 7:7

If Cal is not the trivial calendar, more work is necessary. Let the compiled calendars
Cc, Cr, and Co respectively count how many closed, regular, and overtime periods are
encountered in calendar Cal before a given time point in the horizon [0, tmax]. The number
of closed time points in the time interval [a, b) is simply given by Cc[b]−Cc[a]. These arrays
can be precomputed.

Cx[t] = |{j ∈ [0, t) | Cal[j] = x}| ∀x ∈ {c, r,o} (9)

The following variables are added to the decomposition: I, for the idle time i.e., the
number of time points in [S, S +E) that are not worked, as well as Nc, Nr, and No respectively
for the number of closed, regular, and overtime time points within the execution window
[S, S + E).

First, variables Nc, Nr, and No must count the time points of each type in the execution
window.

Nx = Cx[S + E]− Cx[S] ∀x ∈ {c, r,o} (10)

The number of regular time points in the execution window must be equal to the regular
time worked. There must be enough overtime periods in the execution window to work
the overtime prescribed by O. The idle time is not only the closed time points, but also
the unworked overtime periods. Since overtime periods appear directly in the calendar, the
elapsed time is simply the processing time plus the idle time. The overtime is nonnegative
and at most equal to the processing time.

Nr = p−O (11)
No ≥ O (12)
I = Nc + No −O (13)
E = p + I (14)
0 ≤ O ≤ p (15)

The starting time and the time preceding the ending time of a task must be able to be
worked, even if they are overtime periods. Let 1(x) be the function that returns 1 if x is true
and 0 otherwise.

Cal[S] ̸= c (16)
Cal[S + E − 1] ̸= c (17)
E > 1 =⇒ O ≥ 1(Cal[S] = o) + 1(Cal[S + E − 1] = o) (18)
E = 1 =⇒ O ≥ 1(Cal[S] = o) (19)

4.2 Decomposition of the CumulativeOvertime Constraint
A decomposition of the constraint CumulativeOvertime(S, E, O, p, Cal, h, hmax) can
simply consist of the constraint Cumulative(S, E, h, hmax) along with the decomposition of
CalendarOvertime(Si, Ei, Oi, pi, Cali) for each i ∈ I given by constraints (8) to (19).

5 Filtering Algorithms for the New Constraints

The strength of the new constraints over their decomposition, aside from the modeling
simplification they bring, is the stronger propagation they permit. This is possible thanks to
the filtering rules and algorithms presented in this section.

CP 2024

7:8 Cumulative Scheduling with Calendars and Overtime

5.1 Propagation of the CalendarOvertime Constraints
For each task i, let Vi(s, e, o) be a predicate satisfied if task i can start at time s for a
duration of e with overtime o given the calendar Cali.

Vi(s, e, o) def⇐⇒ s + e ≤ horizon ∧CalendarOvertime(s, e, o, pi, Cali) (20)

Since Cali affects task i, esti, lsti, ecti, and lcti are redefined as follows:

est′
i

def= min
{

s ∈
[
Si, Si

]
| ∃e ∈

[
Ei, Ei

]
, ∃o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(21)

lst′
i

def= max
{

s ∈
[
Si, Si

]
| ∃e ∈

[
Ei, Ei

]
, ∃o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(22)

ect′
i

def= min
{

s + e | s ∈
[
Si, Si

]
, e ∈

[
Ei, Ei

]
, o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(23)

lct′
i

def= max
{

s + e | s ∈
[
Si, Si

]
, e ∈

[
Ei, Ei

]
, o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(24)

We consider that min(∅) =∞ and max(∅) = −∞.
Using definition (21), the checking and filtering rules for Si in the CalendarOvertime

propagator are:

est′
i =∞ =⇒ conflict (25)

Si < est′
i =⇒ S′

i = est′
i (26)

The filtering algorithm for the constraint CalendarOvertime is based on four precom-
puted vectors: Let k ⊆ {r,o}, be the types of time points the vectors consider. Ck

i [t] is the
number of time points of type in k that come before time t in Cali, and Y k

i [j] is the index
of the j-th time point of type in k in Cali. With these vectors, we define helper functions
that execute in constant time. For simplicity’s sake, we only present sketches that ignore
boundary conditions at the beginning or the end of the scheduling horizon. The function
countk(a, b) := Ck

i [b] − Ck
i [a] returns the number of time points in the time window [a, b)

with a type in k. previousk(t) := Yi[Ck
i [t + 1]− 1] returns the latest time point with a type

in k that is not later than t. nextk(t) := Yi[Ck
i [t]] returns the earliest time point with type in

k that is not earlier than t. get_endk(t, ∆) := Yi[Ck
i [t] + ∆] returns the end of the smallest

time window beginning at t and containing ∆ time points with a type in k. Finally,

verify_head_tail(s, e) :=1(Cali[s] = o) + 1(e > 1)1(Cali[s + e− 1] = o)
≤ pi − count{r}(s, s + e)

is true if and only if the time worked regularly in [s, s + e) permits enough overtime to work
in overtime on the first and last time points.

This constraint requires a constant number of variables per task. Because the vectors
Ck

i and Y k
i must be precomputed, the space complexity of the filtering algorithm is linear

with respect to the horizon, and the initialization (performed once when instantiating the
model) is also linear. Algorithm 1 computes in constant time a candidate value for ect′

i, as
redefined by (23), given a fixed starting time s for a task i subject to a calendar. Algorithm 2
verifies the value given by Algorithm 1, and filters the lower bound of Si according to the
CalendarOvertime constraint. This algorithm iterates on dom(Si), computing a minimal
completion time for each candidate start time. The first start time leading to a finite
completion time is the new lower bound. Even though the running time complexity is in
O(|dom(Si)|), it is technically linear w.r.t. the number of filtered-out unclosed time points.
As such, the algorithm runs in constant time if it filters nothing and it runs in linear time if
it filters many values. The upper bound of Si and the other variables are processed similarly.

S. Cloutier and C.-G. Quimper 7:9

Algorithm 1 Computing ect′
i given calendar Cali, and Si = s.

1 Function compute_completion_time(i, s):
2 if Cali[s] = c then return ∞ ;

// The execution window contains at least pi unclosed periods.
3 end← get_end{r,o}(s, pi)
4 if end− s < Ei then

// The associated elapsed time must be at least Ei.
5 end← next{r,o}(s + Ei − 1) + 1
6 worked_regular_time← count{r}(s, end)
7 min_worked_regular_time← pi −Oi

8 if worked_regular_time < min_worked_regular_time then
// At least pi −Oi regular time must be worked.

9 end← get_end{r}(s, min_worked_regular_time)
10 if Cali[end− 1] = o ∧ not verify_head_tail(s, end) then
11 if next{r}(end− 1) + 1 ≤ horizon then

// Adding a regular time point fixes the tail problem.
12 end← next{r}(end− 1) + 1

/* The ending time is minimal. Constraints on Ei, Oi or head and
tail cannot be made right if they are not already. */

13 if end ≤ horizon ∧ end− s ≤ Ei ∧ pi − count{r}(s, end) ≥ Oi

∧verify_head_tail(s, end) then
14 return end
15 return ∞

Algorithm 2 iterates using naive unit leaps (see line 7). By analyzing the cause of why
Algorithm 1 returns infinity, these leaps can be extended. For example, if the current s is a
time point of type r and the failure is due to “end-s” at line 13 in Algorithm 1 being greater
than E by k, then the “+1” in the leap could be replaced by a “+k”. We have tested such
enhancements but found no improvement on the performance. As such, the simpler version
presented is the one used for the experimentations presented in Section 6.

5.1.1 Explaining the Propagation

In a solver with lazy clause generation, we explain propagations by rules (25) and (26) naively,
respectively by (27)→ False and (28)→ [[est′

i ≤ Si]].

[[Si ≤ Si]] ∧ [[Si ≤ Si]] ∧ [[Ei ≤ Ei]] ∧ [[Ei ≤ Ei]] ∧ [[Oi ≤ Oi]] ∧ [[Oi ≤ Oi]] (27)

[[Si ≤ Si]] ∧ [[Ei ≤ Ei]] ∧ [[Ei ≤ Ei]] ∧ [[Oi ≤ Oi]] ∧ [[Oi ≤ Oi]] (28)

Our previous attempts indicate that computing more general explanations is of little interest
for this propagator compared to using the naive ones.

CP 2024

7:10 Cumulative Scheduling with Calendars and Overtime

Algorithm 2 Filtering Si given a calendar.

Input: Variables Si, Ei, and Oi.
1 s← next{r,o}(Si)
2 while s ≤ Si do
3 end← compute_completion_time(i, s)

// We only need to verify that it is a valid value for ect′
i.

4 if end ̸=∞ then
5 Si ← s

6 return Success
7 s← next{r,o}(s + 1)
8 return Conflict

5.2 Propagation of the CumulativeOvertime Constraints

The basis of the CumulativeOvertime propagator is that of a Cumulative propagator
applying the classic Time-Tabling rule. The main difference is that it uses the definitions (21)
to (24), rather than (1) to (4), to compute the profile with (5) and apply the Time-Tabling
rules (6) and (7). Thus, f ′(Ω, t) =

∑
{i∈Ω|t∈[lst′

i
,ect′

i
)} hi and the new checking and filtering

rules are as follows:

∃ t, f ′(I, t) > hmax =⇒ conflict (29)
ect′

i > t ∧ hmax < hi + f ′(I \ {i}, t) =⇒ S′
i > t (30)

For that, the algorithm that enforces the Time-Tabling can compute the value ect′
i by

calling Algorithm 1 (and verifying the value returned) with increasing values of s ∈ dom(Si).
The first valid value returned is the ect′

i. The lst′
i is computed symmetrically. Most

propagators applying the Time-Tabling rule can be adapted for the CumulativeOvertime
propagator. Because of the computing time caused by the new definitions, the complexity of
the CumulativeOvertime propagator is that of its base Cumulative propagator multiplied
by the size of the largest domain of the starting time variables. Since we chose to adapt the
propagator by Schutt et al. [20] that has a complexity of O(n2), we obtain a propagator in
O(kn2), where k = maxi∈I |dom(Si)|. Under the assumption that this constraint is used
alongside CalendarOvertime constraints, the size of the scope of the constraint is the
same as for the Cumulative constraint (here linear in the number of tasks).

This global propagator is used in combination with the propagators for the Calen-
darOvertime constraints. This is done because filtering the calendar constraints solely
through this global propagator specialized for resource consumption would be inefficient.

5.2.1 Explaining the Propagation

In a solver using lazy clause generation, the propagation needs to be explained. First,
should the propagator fail to find a valid ect′

i at some point in its execution, it means
that the CalendarOvertime constraint cannot be satisfied. The CumulativeOvertime
propagator directly reports a conflict that it naively explains with (27). As such, the rest
of this section considers that est′

i, lst′
i, ect′

i, and lct′
i are valid. Let t ∈ [lst′

i, ect′
i) be a time

point in the calendar-corrected compulsory part of task i. The expression profile_expl is
used to construct the explanation.

S. Cloutier and C.-G. Quimper 7:11

profile_expl(i, t) def=

[[Si ≤ t]] ∧ [[t + 1− Ei ≤ Si]]

∧ [[Ei ≤ Ei]]
if t ∈

[
Si, Si + Ei

)
(27) otherwise

(31)

The expression profile_expl(i, t) depends on whether the redefinitions (21) to (24) are
necessary to detect t as part of the compulsory part of task i. If the original definitions
are sufficient, the explanation for t being in the compulsory part of task i is the same as
presented by Schutt et al. [20], but with a variable duration. Otherwise, the explanation
cannot be as general and we simply reuse the naive one presented previously.

Suppose that rule (29) finds a conflict at time t. We define Bt ⊆ I the set of tasks for
which t is in their corrected compulsory part, i.e., Bt = {i ∈ I | t ∈ [lst′

i, ect′
i)}. Let B∗

t ⊆ Bt

be a minimal set (in terms of number of elements) such that
∑

i∈B∗
t

hi > hmax. Let t+ be
the smallest ect′

i or lst′
i greater than t and let t− be the greatest ect′

i or lst′
i smaller than

t. This means that every time point in the interval [t−, t+] have the same set of tasks that
have a compulsory part overlapping it, i.e., Bt = Bt′ for all t′ ∈ [t−, t+]. As such, explaining
based on any point in this interval is valid. Then, the propagator explains the conflict by:∧

i∈B∗
t

profile_expl
(

i,

⌊
t− + t+

2

⌋)
→ False. (32)

This corresponds to saying that the conflict is caused by a minimal number of tasks all having
a compulsory part that includes the time point in the middle of the profile rectangle that
contains t. If the calendar corrections (the new definitions (21) to (24)) are never needed,
this explanation is the same as the pointwise explanation from Schutt et al.

For a task i and a time t ∈
[
Si, ect′

i

)
, we define task_expl(i, t) as follows:

task_expl(i, t) def=
{

[[t + 1− Ei ≤ Si]] ∧ [[Ei ≤ Ei]] if t ∈
[
Si, Si + Ei

)
(28) otherwise

. (33)

The logical expression task_expl(i, t) depends on whether calendar corrections are needed to
detect that task i, when starting at a time not earlier than time Si, is not finished by time t.
If so, we use a naive explanation like for the CalendarOvertime constraint. Otherwise,
we reuse the expression from Schutt et al. [20].

Suppose that rule (30) pushes Si to time t + 1 and that t is the earliest time for which
the rule applies. Let B∗

t ⊆ Bt \ {i} be a minimal set such that
∑

k∈B∗
t

hk > hmax−hi. Then,
the propagator instead filters Si to t∗ = min{ect′

i, t+} and explains it by:

task_expl(i, t∗ − 1) ∧
∧

k∈B∗
t

profile_expl (k, t∗ − 1)→ [[t∗ ≤ Si]]. (34)

Rule (30) is reapplied until it no longer filters. This cuts the propagation from rule (30)
into sub-propagations permitting, according to Schutt et al. [20], more general explanations.
If the calendar corrections are never needed, these explanations are the same as the ones
presented by Schutt et al.

6 Experimentation

To compare the value of our new propagators with the decomposition, we solve the following
RCPSP model augmented with calendars and overtime.

CP 2024

7:12 Cumulative Scheduling with Calendars and Overtime

6.1 Experimentation Model
The model has initial constraints on the time window of each task, task precedence constraints,
resources that tasks need, and calendars that tasks follow. Let R be the set of resources and
I a set of tasks. Each task i ∈ I has to start in a window [minStarti, maxStarti] and end
in a window [minEndi, maxEndi]. These windows encode release times and deadlines. Let
P ⊆ I × I contain the precedence relationships. For each (i, j) ∈ P, the task i must end
before the task j may start. The release times and deadlines provide the initial domains of
the variables through the propagation of the following constraints:

minStarti ≤ Si ≤ maxStarti ∀i ∈ I (35)
minEndi ≤ Si + Ei ≤ maxEndi ∀i ∈ I (36)

The following constraints enforce the precedence relationships:

Si + Ei ≤ Sj ∀(i, j) ∈ P (37)

Finally, CumulativeOvertime constraints prevent the overload of the resources.

CumulativeOvertime(S, E, O, p, Cal, hj , hmax
j) ∀j ∈ R (38)

We either minimize the makespan (39) or the overtime costs (40):

max
i∈I
{Si + Ei} (39)∑

i∈I
wiOi (40)

We optimize these objective functions separately, i.e., optimizing only one function or the
other. When minimizing the makespan, all overtime is forbidden. Otherwise, it would also
maximize the overtime, which makes little sense for an applied project, since it leads to cost
maximization.

By modifying how constraint (38) is implemented, we define three equivalent models:
The CumulativeOvertime model implements constraint (38) directly with our global
CumulativeOvertime constraint.
The CalendarOvertime model decomposes constraint (38) with a classic Cumulative
constraint, and a CalendarOvertime constraint for each task.
The decomposition model decomposes constraint (38) as described in section 4.2.

6.2 Experimentation Details
We implement1 the CalendarOvertime and CumulativeOvertime constraints in C++
in the solver Chuffed 0.13.02 [8], and write our models in MiniZinc [16]. To keep the
comparison with the CumulativeOvertime model fair, the propagator that filters the
Cumulative constraints in the CalendarOvertime and decomposition models only uses
the Time-Tabling check and filtering already implemented in Chuffed. We run all experiments
with a timeout of 10 minutes on a machine with a 32-core Intel Xeon 4110 CPU @ 2.10 GHz
and 32 Gb of memory. We run four executions simultaneously, which may affect the precision
of the runtimes.

1 Available at: https://github.com/Samclou/chuffed/releases/tag/Calendars-cp2024
2 Available at: https://github.com/chuffed/chuffed/releases/tag/0.13.0

https://github.com/Samclou/chuffed/releases/tag/Calendars-cp2024
https://github.com/chuffed/chuffed/releases/tag/0.13.0

S. Cloutier and C.-G. Quimper 7:13

We use the instances j30, j60, j90, and j120 from the PSPLIB [11] benchmark, the
instances bl20 and bl25 from the BL set [3], and the PACK [7] instances, all adapted with
randomly generated calendars where time points represent hours. The instances use calendars
similar to those of Boudreault et al. [6], where days have 8 regular hours, followed by 4 hours
of overtime. Some calendars have weekends off, and some do not have overtime. We add for
each day a 5% chance for it to be a holiday. There is a calendar where weekends and holidays
are composed of 12 overtime hours. These 2135 augmented instances and the models (as
well as the execution logs) are accessible in the code repository.

For makespan minimization, we extend the horizons from the original instances by a factor
of 5 to prevent the addition of closed hours from leading to trivial unsatisfiable instances. In
these executions, we forbid overtime. For overtime costs minimization, we must use a smaller
horizon to prevent having too many instances where the best value of 0 overtime is trivial to
find, but it should not be reduced so much that we get easy unsatisfiable instances. To fix the
horizon, we solve the instances twice to minimize the makespan: once by forbidding overtime
and a second time by allowing overtime. We fix the horizon to the mean makespan. This
gives a horizon for which there is always a solution, which is often not trivial and leaves room
to optimize the overtime costs. The computation time required to compute these horizons is
not taken into account in our results as they are used to construct the instances rather than
solving the problem.

7 Results

Comparisons are made between the decomposition and the CalendarOvertime models,
and between the CalendarOvertime and the CumulativeOvertime models.

7.1 Comparing the Decomposition and CalendarOvertime Models
Figure 2 shows graphs comparing the runtimes of our models on instances for which the solver
proved the optimality. Compared to the decomposition model, the CalendarOvertime
model represents an average speedup of 13.8 for makespan optimization and 2.9 for overtime
optimization, respectively, on these 1625 and 1373 instances.

This speedup for the makespan optimization is larger than the one for the overtime
optimization. We surmise that this important discrepancy is due to the size of the horizon in
the makespan optimization instances. Indeed, their horizon is often very high compared to
the optimal makespan or the horizon of the overtime optimization instances. It so happens
that the Element constraints present in the decomposition of the CalendarOvertime
constraint are susceptible to the size of the horizon. For example, in the solver used,
constraint (16) becomes a collection of clauses that may each be as long as the horizon while
constraint (10) is filtered by a propagator that is linear in the size of the horizon (as long as
S and E are not fixed). This leads to both weak and slow filtering which must degrade the
performances of the decomposition. We can see that the performances of the decomposition
model become more competitive in the context of overtime minimization, which uses a tighter
horizon.

Regarding the instances not solved optimally by both models, there are no instances
where the decomposition model is able to prove optimality or find a solution better than the
CalendarOvertime model. The CalendarOvertime model proves optimality on 17% of
the 510 makespan instances and 8% of 762 overtime instances. It finds better solutions in 81%
(79%) of makespan (overtime) instances. There are 21 instances for which the decomposition
model fails to find any solution while the CalendarOvertime model is able to.

CP 2024

7:14 Cumulative Scheduling with Calendars and Overtime

Figure 2 Comparison, between the decomposition and CalendarOvertime models, of the
runtime on the instances solved by both models (1st row) and the best solution found for the
remaining instances (2nd row) for makespan (1st column) and overtime (2nd column) minimization.
On the 2nd row, gray dots are instances solved by the CalendarOvertime model and black dots
are for when all models timeout.

7.2 Comparing the CalendarOvertime and CumulativeOvertime Models
Figure 3 shows that the CumulativeOvertime model has an average speedup of 1.14
over the CalendarOvertime model for makespan optimization and 1.24 for overtime
optimization, respectively, on the 1712 and 1436 instances solved optimally by both models.
When comparing the best solutions found on the remaining instances, we see that, for
makespan minimization, the CalendarOvertime model never proves optimality or finds a
better solution than the CumulativeOvertime model. The CumulativeOvertime model
proves optimality on respectively 1.6% and 1.4% of both these 423 makespan instances and
the 699 overtime instances. It finds better solutions in 31% (44%) of makespan (overtime)
instances. However, here, there are 5 overtime instances for which the CalendarOvertime
model finds a better solution, and 1 where it proves optimality.

Thus, the CalendarOvertime constraint is a notable enhancement over the decomposi-
tion and is further improved by the CumulativeOvertime constraint.

8 Conclusion

We propose two new constraints to solve the cumulative scheduling problem with calendars
and overtime. The CalendarOvertime constraint uses a precomputed substructure to
enforce bounds consistency on the Si, Ei, and Oi variables in O(|dom(Si)|). The Cumu-
lativeOvertime constraint adapts the Time-Tabling rule to take calendars into account.
Experiments on PSPLIB, BL, and PACK instances augmented with calendars show that
the models using the specialized propagators of the new constraints outperform a model
using a decomposition, the CumulativeOvertime constraints being a further enhancement
over the CalendarOvertime constraints. These new constraints could also help solve the
resource investment problem, the multi-mode resource-constraint project scheduling problem
or even disjunctive problems such as job shop when they are augmented with calendars and
overtime.

S. Cloutier and C.-G. Quimper 7:15

Figure 3 Comparison, between the CalendarOvertime and CumulativeOvertime models, of
the runtime on the instances solved by both models (1st row) and the best solution found for the
remaining instances (2nd row) for makespan (1st column) and overtime (2nd column) minimization.
On the 2nd row, gray dots are instances solved by the CalendarOvertime model and black dots
are for when all models timeout.

References
1 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve complex

scheduling and placement problems. Mathematical and Computer Modelling, 17(7):57–73,
1993. doi:10.1016/0895-7177(93)90068-A.

2 Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Springer, 2001.

3 Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Constraints, 5(1):119–
139, 2000. doi:10.1023/A:1009822502231.

4 Nicolas Beldiceanu. Global constraints as graph properties on structured network of elementary
constraints of the same type. SICS Technical report T2000-01, 2000.

5 Global constraint catalog: Calendar. https://sofdem.github.io/gccat/gccat/Ccalendar.
html#uid15664. Accessed: 2024-04-04.

6 Raphaël Boudreault, Vanessa Simard, Daniel Lafond, and Claude-Guy Quimper. A constraint
programming approach to ship refit project scheduling. In Proceedings of the 28th International
Conference on Principles and Practice of Constraint Programming (CP 2022), volume 235,
pages 10:1–10:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
LIPIcs.CP.2022.10.

7 Jacques Carlier and Emmanuel Néron. On linear lower bounds for the resource constrained
project scheduling problem. European Journal of Operational Research, 149(2):314–324, 2003.
doi:10.1016/S0377-2217(02)00763-4.

8 Geoffrey Chu. Improving Combinatorial Optimization. PhD thesis, The University of Mel-
bourne, 2011.

9 Michael R. Garey and David S. Johnson. Computers and intractability : a guide to the theory
of NP-Completeness. A Series of books in the mathematical sciences. W.H. Freeman, 1979.

10 Steven Gay, Renaud Hartert, and Pierre Schaus. Simple and scalable time-table filtering for
the cumulative constraint. In Proceedings of the 21st International Conference on Principles
and Practice of Constraint Programming (CP 2015), pages 149–157. Springer International
Publishing, 2015. doi:10.1007/978-3-319-23219-5_11.

CP 2024

https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1023/A:1009822502231
https://sofdem.github.io/gccat/gccat/Ccalendar.html#uid15664
https://sofdem.github.io/gccat/gccat/Ccalendar.html#uid15664
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://doi.org/10.1016/S0377-2217(02)00763-4
https://doi.org/10.1007/978-3-319-23219-5_11

7:16 Cumulative Scheduling with Calendars and Overtime

11 Rainer Kolisch and Arno Sprecher. Psplib - a project scheduling problem library: Or software
- orsep operations research software exchange program. European Journal of Operational
Research, 96(1):205–216, 1997. doi:10.1016/S0377-2217(96)00170-1.

12 Stefan Kreter, Julia Rieck, and Jürgen Zimmermann. Models and solution procedures for
the resource-constrained project scheduling problem with general temporal constraints and
calendars. European Journal of Operational Research, 251(2):387–403, 2016. doi:10.1016/j.
ejor.2015.11.021.

13 Stefan Kreter, Andreas Schutt, and Peter J Stuckey. Using constraint programming for solving
RCPSP/max-cal. Constraints, 22(3):432–462, 2017. doi:10.1007/s10601-016-9266-6.

14 Stefan Kreter, Andreas Schutt, Peter J. Stuckey, and Jürgen Zimmermann. Mixed-integer
linear programming and constraint programming formulations for solving resource availability
cost problems. European Journal of Operational Research, 266(2):472–486, 2018. doi:10.
1016/j.ejor.2017.10.014.

15 Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG CP optimizer for
scheduling. Constraints, 23(2):210–250, 2018. doi:10.1007/s10601-018-9281-x.

16 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In Proceedings of the 13th
International Conference on Principles and Practice of Constraint Programming (CP 2007),
pages 529–543. Springer Berlin Heidelberg, 2007. doi:10.1007/978-3-540-74970-7_38.

17 Wilhelmus Petronella Maria Nuijten. Time and resource constrained scheduling: a constraint
satisfaction approach. PhD thesis, Technische Universiteit Eindhoven, 1994.

18 Olga Ohrimenko, Peter J Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, 2009. doi:10.1007/s10601-008-9064-x.

19 Pierre Ouellet and Claude-Guy Quimper. Time-table extended-edge-finding for the cumulative
constraint. In Proceedings of the 19th International Conference on Principles and Practice
of Constraint Programming (CP 2013), pages 562–577. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-40627-0_42.

20 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Explaining the
cumulative propagator. Constraints, 16(3):250–282, 2011. doi:10.1007/s10601-010-9103-2.

https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/j.ejor.2015.11.021
https://doi.org/10.1016/j.ejor.2015.11.021
https://doi.org/10.1007/s10601-016-9266-6
https://doi.org/10.1016/j.ejor.2017.10.014
https://doi.org/10.1016/j.ejor.2017.10.014
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/978-3-642-40627-0_42
https://doi.org/10.1007/s10601-010-9103-2

Slide&Drill, a New Approach for Multi-Objective
Combinatorial Optimization
João Cortes #

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Inês Lynce #

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Vasco Manquinho #

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract
Following the successful use of Propositional Satisfiability (SAT) algorithms in Boolean optimization
(e.g., Maximum Satisfiability), several SAT-based algorithms have been proposed for Multi-Objective
Combinatorial Optimization (MOCO). However, these new algorithms either provide a small subset
of the Pareto front or follow a more exploratory search procedure and the solutions found are usually
distant from the Pareto front.

We extend the state of the art with a new SAT-based MOCO solver, Slide and Drill (Slide&Drill),
that hones an upper bound set of the exact solution. Moreover, we show that Slide&Drill neatly
complements proposed UNSAT-SAT algorithms for MOCO. These algorithms can work in tandem
over the same shared “blackboard” formula, in order to enable a faster convergence.

Experimental results in several sets of benchmark instances show that Slide&Drill can outper-
form other SAT-based algorithms for MOCO, in particular when paired with previously proposed
UNSAT-SAT algorithms.

2012 ACM Subject Classification Computing methodologies → Optimization algorithms

Keywords and phrases Multi-Objective Combinatorial Optimization, Satisfiability Algorithms

Digital Object Identifier 10.4230/LIPIcs.CP.2024.8

Funding This work was supported by Portuguese national funds through FCT, under projects
UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/2020), PTDC/CCI-COM/2156/2021 (DOI: 10.54499/-
PTDC/CCI-COM/2156/2021) and 2022.03537.PTDC (DOI: 10.54499/2022.03537.PTDC).

1 Introduction

In real-world problems it is common to have several objective functions to optimize [17, 19, 29].
For instance, when updating a system such as a Linux installation [13], one can try to maximize
the number of packages to be updated from the current version to the most recent one, while
at the same time minimizing the number of software packages from the current installation
to be removed in the update process. It is usually the case that the objective functions are
conflicting, i.e., decreasing one objective function results in having to increase the value of
another objective function. Hence, in Multi-Objective Combinatorial Optimization (MOCO),
the goal is to try to find all Pareto-optimal solutions, i.e., all solutions for which one cannot
improve the value of a function without worsening the value of another one. The set of all
Pareto-optimal solutions is known as the Pareto front.

Following the success of Propositional Satisfiability (SAT) algorithms in Boolean optimiza-
tion problems such as Maximum Satisfiability (MaxSAT) [2] or Pseudo-Boolean Optimization
(PBO) [24], several algorithms for MOCO have been proposed based on iterative calls to
a satisfiability solver [10, 22, 28, 26]. For instance, the Guided-Improvement Algorithm
(GIA) [22] starts with a feasible solution and iteratively checks if there is some other solution

© João Cortes, Inês Lynce, and Vasco Manquinho;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joao.cortes@tecnico.ulisboa.pt
https://orcid.org/0000-0003-4833-8054
mailto:ines.lynce@tecnico.ulisboa.pt
https://orcid.org/0000-0003-4868-415X
mailto:vasco.manquinho@tecnico.ulisboa.pt
https://orcid.org/0000-0002-4205-2189
https://doi.org/10.4230/LIPIcs.CP.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Slide&Drill, a New Approach for MOCO

that is better on all objective functions. When the iterative process ends, the algorithm has
found a Pareto-optimal solution and new constraints are added so that only assignments that
improve on at least one objective function are feasible (i.e., solutions that are worse on all
objectives are blocked). More recently, the notion of P -minimal models [26] was introduced,
where this blocking is done using a propositional clause.

The issue with GIA and P -minimal algorithms is that the search process is focused on
iteratively improving upon one solution until a Pareto-optimal solution is found. Considering
that the set of solutions in the Pareto front can be large, in many instances, these algorithms
are only able to find a very small subset of the Pareto front within a given time limit.
Moreover, it can be the case that the Pareto-optimal solutions are skewed to optimize some
objective function and do not provide a broad representation of solutions in the Pareto front.

This paper proposes Slide&Drill, a new exact [9], generic algorithm for MOCO that
maintains an upper cover of the Pareto front, made of feasible of solutions. Slide&Drill
repeatedly selects a point from the cover to improve upon. This improvement starts with a
drill operation followed by a series of slide operations that generate another upper cover that
is closer to the Pareto front. Hence, at any point of time, one can obtain a diversified set of
solutions that approximate the Pareto front. Experimental results on representative sets of
MOCO instances show that Slide&Drill provides better approximations of the Pareto front
than previous SAT-based MOCO solvers since Slide&Drill is able to find a more diverse
set of solutions for the end user.

The paper is organized as follows. Section 2 formally defines the MOCO problem and
provides an overview of previous SAT-based MOCO algorithms. Section 3 defines lower
and upper bound sets. Section 4 introduces the new Slide&Drill algorithm for MOCO
based on iterative refinement of an upper bound set. Additionally, Section 4 also proves the
correctness of the Slide&Drill algorithm and shows how to pair it in tandem with other
MOCO algorithms. Section 5 explores different configurations of the Slide&Drill algorithm
and compares it against other state-of-the-art SAT-based MOCO solvers using three different
metrics. Finally, the paper concludes in Section 6.

2 Preliminaries

We start with the definitions that fall under SAT’s domain. Next, we introduce the definitions
specific to MOCO. Moreover, we briefly review previous approaches to solving MOCO.

2.1 Boolean Satisfiability
▶ Definition 1 (CNF Formula). Let V = {x1, . . . , xn} denote a set of n Boolean variables. A
literal is either a variable xi ∈ V or its negation x̄i. A clause is a disjunction of literals. A
formula in Conjunctive Normal Form (CNF) ϕ is a conjunction of clauses.

An assignment or model ν defines a truth value for all variables. Let ν(xi) denote the truth
value of variable xi and let ν(li) denote the truth value of a literal li. We have ν(li) = ⊤ if
li = xi and ν(xi) = ⊤, or if li = x̄i and ν(xi) = ⊥. Otherwise, we have ν(li) = ⊥. A clause c

is satisfied if at least one of its literals is true. An assignment ν is said to satisfy a formula ϕ

if it satisfies all its clauses. We extend the notation of assignments to define the truth value
of a clause c and a CNF formula ϕ as ν(c) and ν(ϕ), respectively. In the remainder of the
paper, we use the set notation for formulas (set of clauses, meaning its conjunction) and
clauses (set of literals, meaning its disjunction).

J. Cortes, I. Lynce, and V. Manquinho 8:3

▶ Definition 2 (Boolean Satisfiability (SAT)). Given a CNF formula ϕ, the Boolean Satis-
fiability (SAT) problem is to decide if there is any assignment ν to the variables in ϕ that
satisfies it or prove that no such assignment exists.

Let ϕ be a CNF formula and α a set of unitary clauses. A SAT solver call is denoted by
ϕ-SAT(α), and its value decides the satisfiability of ϕ ∪ α, i.e., it checks the satisfiability of ϕ

assuming all literals in α are true. Note that if α = ∅, then the solver checks the satisfiability
of ϕ. If the query is satisfiable, then the call returns a satisfiable model. Otherwise, it returns
a null value, written as ∅.

2.2 Single and Multi-Objective Combinatorial Optimization
▶ Definition 3 (Linear Pseudo-Boolean function and Pseudo-Boolean formulas). A linear1

pseudo-Boolean (PB) function f : { 0, 1 }n → N computes a weighted sum of its literals,

f(x) = f(x1 . . . xn) =
n∑

i=1
wili , wi ∈ N, xi ∈ V, li ∈ {xi, x̄i}. (1)

Pseudo-Boolean constraints generalize propositional clauses, and can be written as f(x) ▷◁ k,
▷◁ ∈ {≤,≥, =}. A PB formula is a conjunction of PB constraints.

▶ Definition 4 (Pseudo-Boolean Optimization (PBO)). Given a PB formula ϕ, an assignment
ν is said (ϕ-)feasible if it satisfies all constraints in ϕ. Given a PB formula ϕ and a
PB function f to minimize, the goal of Pseudo-Boolean Optimization (PBO) is to find an
assignment ν that satisfies ϕ and minimizes the value of f(x), where x ≡ (ν(x1), . . . , ν(xn)).

Next, we generalize PBO to the multi-objective case. Multi-objective optimization builds
upon a criterion of comparison (or order) of tuples of numbers. This paper uses the Pareto
order or dominance.

▶ Definition 5 (Pareto partial order (≺)). Let Y be some subset of Nn. For any y, y′ ∈ Y ,

y ⪯ y′ ⇐⇒ ∀i, yi ⩽ y′
i,

y ≺ y′ ⇐⇒ y ⪯ y′ ∧ y ̸= y′.

We say y dominates y′ iff y ⪯ y′. We say y strictly-dominates y′ iff y ≺ y′.

Given a tuple of objective functions sharing a common domain X, we can compare two
elements x, x′ ∈ X by comparing the corresponding tuples in the objective space. We use
the term multi-objective function to denote an array of functions.

▶ Definition 6 (Pareto Dominance (≺)). Let F : X → Y ⊆ Nn be a multi-objective function,
mapping the decision space X into the objective space Y . For any x, x′ ∈ X,

x ≺ x′ ⇐⇒ F (x) ≺ F (x′),
x ⪯ x′ ⇐⇒ F (x) ⪯ F (x′).

We say x dominates x′ iff x ⪯ x′. We say x strictly-dominates x′ iff x ≺ x′.

1 Note We will drop the linear qualifier hereafter, as we will only work with linear functions and constraints.

CP 2024

8:4 Slide&Drill, a New Approach for MOCO

As a consequence of this comparison criterion, different optimal solutions may be mapped
to different points in the objective space, which does not happen in the single objective
case. Therefore, the solution to the problem is actually a set, called Pareto front. These
solutions are optimal in the sense that for each, there is no other feasible solution that strictly
dominates them.

▶ Definition 7 (Pareto front). Given a a multi-objective function F : X → Y and a feasible
space Z ⊆ X, the Pareto front of Z is a subset P ⊆ Z containing all elements that are not
strictly-dominated,

P = {x ∈ Z :̸ ∃x′ ∈ Z : x′ ≺ x } .

Let the image front of Z, or simply front of Z, be the unique subset Y ⊆ Y that is the image
of P under F ,

Y ≡ frontZ F = {y ∈ Y : ∃x ∈ P : y = F (x) } .

Finally, let argument front of Z,denoted by arg frontZ , be any subset Z of the Pareto Front
P that is mapped under F into Y in a one-to-one fashion.

▶ Definition 8 (Multi-Objective Combinatorial Optimization (MOCO)). Let F : X → Y ⊆ Nn

be a multi-objective PB function, mapping the decision space X ⊆ { 0, 1 }n into the objective
space Y . Let Z ⊆ X be the image under ν 7→ x = ν(V) ≡ (ν(x1), . . . , ν(xn)) of the feasible
space of a PB formula ϕ, with variables in V .

The goal of MOCO is to find a frontϕ F ≡ frontZ(ϕ) F , i.e., the complete set of non-
dominated objective points y ∈ Y whose preimage under F is ϕ-feasible. A MOCO instance
will be denoted by the triple ⟨ϕ, V, F ⟩.

A remark: most applications require the production of arg frontZ F , which is one of the
preimages under F of frontZ F . Our non-standard choice was made bearing in mind the
clarity of the discussion and of the algorithms’s presentation. In any case, the implementation
of the algorithms returns an arg frontZ(ϕ) F , as usual. The pseudo-code can be adapted to
do the same, but it will get significantly clobbered without adding much in the way of ideas.

▶ Example 9. Let ⟨ϕ, V, F ⟩ denote a MOCO instance defined over V = {x1, x2, x3}, with
two objective functions to minimize F = (f1, f2) where f1(x) = 2x1 + x2, f2(x) = 2x̄2 + 2x3
and ϕ = {x1 + x2 + x3 ≥ 2}. In this case, there are two Pareto-optimal solutions: ν1 =
{(x1, 0), (x2, 1), (x3, 1)} with costs (1, 2) and ν2 = {(x1, 1), (x2, 1), (x3, 0)} with costs (3, 0).
Note that ν1 provides a better value for f1, while ν2 is able to improve on f2. All other
satisfiable assignments to ϕ are dominated by either ν1(V) or ν2(V).

2.3 Encoding of Pseudo-Boolean Functions
In several SAT-based optimization algorithms, PB objective functions are encoded into
CNF [8, 24]. In MOCO, we are interested in blocking feasible solutions that are dominated by
some other feasible solution. In order to achieve this goal, one can use unary counter [3, 15, 16]
encodings.

▶ Definition 10 (Unary Counter). Let fi : { 0, 1 }n → N be a PB function and set V be an
ordered set of variables that parametrize the domain of fi,

V = {x1, . . . , xn } , fi(x) = fi(x1, . . . , xn) (2)

J. Cortes, I. Lynce, and V. Manquinho 8:5

Algorithm 1 P-Minimal Algorithm.

Input : ⟨ϕ, V, F ⟩ // MOCO instance
Output : frontϕ F // one img-front

1 (ϕ̃, O)← EncodeCNF(F, V) // build unary counters
2 ϕ← ϕ ∪ ϕ̃

3 I ← ∅
4 ν′ ← ϕ-SAT(∅) // find first feasible model
5 while ν′ ̸= ∅ do
6 while ν′ ̸= ∅ do
7 x← ν′(V), y ← F (x)
8 α←

{ {
ōi,yi+1

}
, 1 ⩽ i ⩽ m

}
9 c←

{
ōi,yi

, 1 ⩽ i ⩽ m
}

10 ϕ← ϕ ∪ { c } // block region dominated by y

11 ν′ ← ϕ-SAT(α) // look for y′ that dominates y

12 end
13 I ← I ∪ {y } // save optimal solution y

14 ν′ ← ϕ-SAT(∅) // find new non-dominated solution
15 end
16 return I

Consider the CNF formula ϕ̃ with variables V ∪ O, where V ∩ O = ∅ and O contains one
variable oi,k for each value k ∈ N : ∃x : k = fi(x). The elements of O are the order variables.
We call the tuple

〈
fi, V, O, ϕ̃

〉
an unary counter of fi iff all feasible models ν of ϕ̃ satisfy

fi(x) ⩾ k ⇔ oi,k, x = ν(V). (3)

2.4 SAT-based algorithms for MOCO
One approach for solving MOCO is through Minimal Correction Subset (MCS) enumeration
since all Pareto-optimal solutions are MCSs of the MOCO formula [28]. After enumerating
the formula’s MCSs, one can filter out the non-optimal solutions. The main advantage of the
MCS enumeration is that it is not necessary to encode the objective functions into CNF since,
in some cases, the encoding of objective functions can dominate the size of the resulting CNF
formula [8].

Soh et al. [26] show that with a unary representation of the objective functions (see
section 2.3), it is possible to establish a one-to-one correspondence between the P -minimal
models and Pareto-optimal solutions of a MOCO instance.

Algorithm 1 illustrates the P-Minimal algorithm. It starts by finding any feasible solution
(line 4). Next, it iteratively improves that solution until a Pareto-optimal solution is found
(lines 6-12). Each time a new solution is found, all dominated solutions are blocked using
a single clause (line 10). Afterwards, the process repeats if there are other non-dominated
solutions (line 14). Otherwise, the algorithm ends and returns the Pareto front (line 16).

The P-Minimal algorithm can be seen as a particular case of the Guided-Improvement
Algorithm (GIA) [22]. The algorithm structure is the same, but P-Minimal uses a single
clause to block dominated solutions instead of a disjunction of PB constraints. Recently, new
UNSAT-SAT and Hitting Set-based algorithms have also been proposed [5] and can be seen
as a generalization of core-guided Maximum Satisfiability (MaxSAT) algorithms for MOCO.
Other adaptations of MaxSAT techniques have been proposed for MOCO [14, 12], including
preprocessing techniques [11].

CP 2024

8:6 Slide&Drill, a New Approach for MOCO

f1

f2 Point is
bounded;
part of upper bound;
part of lower bound.

Region

dominates vertex;
is dominated by vertex.

l′
1

l1

l2

l3

u1

u2

Figure 1 Bound sets (Definition 13) of some starred set Y . The points { l1, l2, l3 } form a lower
bound set L. Dropping l1 breaks coverage. This lower bound set is also thin, and adding l′

1 would
make it “thick”. The singleton set { l′

1 } is also a thin, lower bound set, not only of Y but also of L.
The points U = { u1, u2 } form a thin, upper bound set of Y . Note how it implies that U is an upper
set of L too. And, by the same token, of { l′

1 }. The set Y could be the image front of some MOCO
instance.

3 Upper and Lower Bound Sets

Given that the Pareto order is just a partial order in the mathematical sense, there is no
warrant to expect the existence of a least element of the feasible objective space. At the
same time, the Pareto order reduces to the canonical total order of the integers when there
is only one objective. The generalization of the order requires a generalization of the concept
of “bounds”. In particular, it is useful to deal in bound sets (Definition 13) that can contain
more than one element.

We consider two different comparison predicates over sets. Let A and B be any two sets
of points in the objective space. Then, 1) is A a lower/upper cover of B?, and 2) is A a
lower/upper bound set of B?

▶ Definition 11 (Lower and upper covers). Let A and B be subsets of some decision space X,
equipped with a multi-objective function F . Then, A covers B from below, or A is a lower
cover of B, iff every element of B is dominated by some element of A,

∀b ∈ B, ∃a ∈ A : a⪯ b.

A strictly covers B, or A is a strict lower-cover of B, iff

∀b ∈ B, ∃a ∈ A : a≺ b.

Also, we define an upper cover analogously. In particular, B is an upper cover of A iff for
every element of A there is some element of B that is dominated,

∀a ∈ A, ∃b ∈ B : a⪯ b.

The strict version trivially follows.

▶ Definition 12 (Thin/thick sets). A set A is thin if it does not contain distinct comparable
elements,

¬∃a1, a2 ∈ A : a1 ̸= a2 ∧ a1 ⪯ a2 (4)

Otherwise, A is thick.

J. Cortes, I. Lynce, and V. Manquinho 8:7

▶ Definition 13 (Lower and upper bound sets). Let L, U and Z be subsets of some decision
space X2, equipped with a multi-objective function F . L ⊆ X is a (strictly) lower bound set
of Z ⊆ X iff L (strictly) covers Z from below and L is thin. If L is a lower bound set of Z,
we say L⪯ Z. If it is a strictly lower bound set, we say L≺ Z.

U ⊆ X is a (strictly) upper bound set of Z ⊆ X iff U (strictly) covers Z from above and
U is thin. If U is an upper bound set of Z, we say U ≻ Z. If it is a strictly upper bound set,
we say U ⪰ Z.

Figure 1 provides examples of lower and upper bound sets. Let the starred points
correspond to the optimal front in the objective space. Any optimal element in the front will
be dominated by at least one element of any lower bound set (e.g., {l1, l2, l3}). Similarly, any
element of the front dominates at least one element of the upper bound set (e.g., {u1, u2}).

Let umax be the maximal point, that is, the point whose coordinates are the largest values
of each objective. Then, the singleton set {umax } is clearly an upper bound set, although
not necessarily satisfiable. Analogously, the singleton set containing the origin is a lower
bound set.

By computing a satisfiable upper bound set, we get an approximated view of the real
front. If we improve this upper bound set slowly but surely, we will eventually stop, given a
sufficient amount of time. At that point, the upper bound set coincides with the front.

4 Slide&Drill, an Upper-Bound Set Improver

We propose a new algorithm for MOCO, named Slide&Drill (Algorithm 2). Like P-Minimal,
it is a SAT-UNSAT algorithm backed by a SAT oracle. By design, P-Minimal drills down the
objective space, following a “greedy” path to optimal solutions. In contrast, Slide&Drill
is a comprehensive algorithm that interleaves the drilling phase with a sliding one that
diversifies [25] the flushed-out solutions.

4.1 Algorithm Description
We will go over the details of Slide&Drill (Algorithm 2). There is an illustration of the
intuition behind the algorithm’s dynamic in Figure 2.

P-Minimal (Algorithm 1) attempts to get to optimal solutions quickly by always moving
to a dominator of the current point, and so it tries to go “down” towards the origin, so to
speak. It assumes good approximations of the sought-after front should, above all, contain
optimal solutions as soon as possible and that by diving in this fashion, it will flush them out
quicker. But that may not be the case for every problem and application domain. And even
if it is true that Pareto-optimal solutions can be found sooner, it may be more important
to have a broad, diverse approximation with solutions that are feasible but not necessarily
optimal.

In comparison, Slide&Drill moves less eagerly and more comprehensively in the direction
of the front. It interleaves two mechanisms, drill and slide, that communicate through a
waiting list of points and move the incumbent set down until it matches the exact front. The
union of the incumbent set and the waiting list will contain an upper bound set of the exact
result whenever a new drill is started.

2 Although we define bound sets as part of the decision space, we will use their image in the objective
space as a proxy throughout the description of the algorithms.

CP 2024

8:8 Slide&Drill, a New Approach for MOCO

Algorithm 2 Slide&Drill, Slide and Drill MOCO solver.

Input : ⟨ϕ, V, F ⟩ // MOCO instance
Output : frontϕ F // one img-front

1 (ϕ̃, O)← EncodeCNF(F, V) // build unary counters
2 ϕ← ϕ ∪ ϕ̃

3 W ← {umax } // maximal point
4 I ← ∅
5 while W ̸= ∅ do // drill
6 ω ← ⟨select and remove⟩ (W)
7 α← {{ ōi,ωi+1 } : i ∈ 1 . . . m } // set up drill at ω

8 α′ ← ∅
9 ν ← ϕ-SAT(α)

10 while ν ̸= ∅ do // slide
11 x← ν(V), y ← F (x)
12 ϕ← ϕ ∪

{ {
ōi,yi

: i ∈ 1 . . . m
} }

// block y dominated region
13 I ← I\

{
y′ ∈ I : y ⪯ y′ }

∪ {y } // update incumbent set
14 W ←W ∪ {y } // update waiting list
15 α′ ← α′ ∪

{ {
oi,yi

: i ∈ 1 . . . m
} }

// temp. focus non-dominating
16 ν ← ϕ-SAT(α ∪ α′)
17 end
18 end
19 return I

After the initialization and the encoding of the unary counters, the external drill loop
(line 5) hones the incumbent set I, as long as it is possible to do so. When we drill at site ω

(line 6), we look for points that dominate ω (i.e., solutions “below” ω). This is accomplished
by line 7 and the semantics of the unary counters. The first drill site is the maximal point
umax, (line 3), i.e., the point whose coordinates in the objective space are the maximal values
of the objective functions. The ⟨select and remove⟩ procedure fetches an element of W while
removing it and can be implemented using different strategies. When the waiting list is
depleted, the drill loop stops. At that point, the incumbent set I is the complete solution,
and the algorithm returns. The waiting list is expanded by the inner slide loop (lines 10-16).
The waiting list W takes in freshly found solutions that will eventually be used to start
another drill. Besides, the solutions are also placed into the incumbent set I that represents
the best approximation of the front so far. The incumbent set will be reported if the solver
cannot finish under the resource limits.

This slide loop is the main distinction between Slide&Drill and P-Minimal. Instead of
drilling until striking an optimal solution, as the P-Minimal algorithm does, we steer the
oracle so as to slide across the objective space, collecting solutions that do not dominate each
other. This is accomplished by building the auxiliary formula α′ while accruing the waiting
list. The formula α′ contains one clause per point found since the start of the last slide loop
(line 15) and blocks the region under the known solutions. As soon as the solver fails to find
an extra point the slide loop is complete and the implicit upper bound set contained in the
union of the waiting list and the incumbent set was made whole again. Figure 2 provides a
small example of the execution of the Slide&Drill algorithm.

J. Cortes, I. Lynce, and V. Manquinho 8:9

f1

f2

28

Point is
optimal;
feasible, not generated;
feasible, generated;
non-feasible.

AB

B

B

Figure 2 Illustration of a run of the Slide&Drill (Algorithm 2). Three upper bound sets are
produced, marked by A, B and the star. The first drill site is the maximal point. We drill and find
one of the elements marked with B. The remaining ones are generated by the slide loop. Note this
is our first satisfiable upper bound set. Assume the next drill site, chosen by ⟨select and remove⟩, is
B’s midpoint. As we drill again, either of the two optimal solution is found, and the slide generates
the other. The uppermost B point is chosen next, and the missing optimal solution is found during
the subsequent drill. There are 4 remaining drill sites to consider: the three optimal solutions and
the lowermost B point. Neither will produce new solutions, and the algorithm terminates after four
more “blank” drills. All B elements are dominated, and they are pushed out of I by the addition of
the optimal solutions. The shading levels vary as the number of upper bound sets that dominate
the region. The lighter tone is painted by A only, while the darker is painted by all three.

The waiting list can be backed by different containers. We consider both a stack (i.e.,
FIFO container) and a queue (i.e., LIFO container). Different containers result in different
implementations of ⟨select and remove⟩ (line 6), and hence a different concrete Slide&Drill.

If a stack is used the algorithm resembles P-Minimal, but it is not quite the same. It is
safer because it will perform a slide step, and hence diversify the incumbent set before
drilling further. If the computation results in timeout, the pool of solutions will differ
from what P-Minimal would have found. There is a trade-off between the number of
optimal points (probably larger with P-Minimal) and the diversity of the points obtained;
If a queue is used, the algorithm is substantially different from P-Minimal. We expect
less optimal solutions but more robust approximations. This is a more extreme approach
than the one resulting from using a stack. It will further tilt the scale in the favor of
diverse but suboptimal points.

4.2 Algorithm Properties
Let us prove Slide&Drill (Algorithm 2) is sound and complete (Lemma 17)

▶ Lemma 14. Any optimal point that dominates the drill site ω will dominate at least one
of the points generated by the associated slide loop (line 10).

Proof. Assume that Lemma 14 is not true. Then, there must exist an optimal point y that
dominates ω but fails to dominate any of the generated points. In that case, the temporary
constraints added at line 15 do not render y unsatisfiable, and because y is optimal, neither
do the permanent constraints added at line 12. And therefore, y must have been generated.
And that contradicts the assumption because y dominates itself. ◀

CP 2024

8:10 Slide&Drill, a New Approach for MOCO

▶ Lemma 15. At the start of the outer loop (line 5), the union of the optimal points in the
incumbent set I with the waiting list W contains an upper bound set of the front Y = frontZ F .

Proof. This is true for the first run because the waiting list contains the maximal point.
Assume Lemma 15 true at the start of iteration i, and let U be an upper bound set

contained in I ∩ Y ∪W . We want to prove that an upper bound set U ′ is contained in
I ′ ∩ Y ∪W ′, where I ′ and W ′ are the incumbent set and waiting list at the start of iteration
i + 1.

Let W ′ = W \ {ω } ∪∆W , where ∆W is the set accrued by the successive executions of
line 14. We will prove that C = U \ {ω } ∪∆W is an upper-cover of Y . All solutions y ∈ Y

that do not dominate ω are covered by elements in U . Solutions y that do dominate ω are
covered by elements in ∆W , by Lemma 14.

If the upper cover C is thin, then U ′ = C. Otherwise, for any pair of comparable elements
y ⪯ y′ ∈ C, drop y. The obtained set is a cover because any point dominating y dominates
y′ too. The remaining elements of C are incomparable and are collected into U ′ so that
U ′ ⊆ C.

To see that U ′ ⊆ I ′ ∩ Y ∪W ′,

U ′ ⊆ C = U \ {ω } ∪∆W =⇒ (5)
U ′ ⊆ (I ∩ Y ∪W) \ {ω } ∪∆W =⇒ (6)
U ′ ⊆ (I ′ ∩ Y ∪W) \ {ω } ∪∆W =⇒ (7)
U ′ ⊆ (I ′ ∩ Y) \ {ω } ∪W \ {ω } ∪∆W =⇒ (8)
U ′ ⊆ (I ′ ∩ Y) \ {ω } ∪W ′ = (I ′ ∩ Y ∪W ′) \ {ω } ⊆ I ′ ∩ Y ∪W ′, (9)

where Equation (7) follows because only dominated solutions can be removed from I, and
Equation (9) follows because ω does not belong to W ′. ◀

▶ Lemma 16. At the start of the outer loop (line 5), any point in I that does not belong to
W is optimal.

Proof. All points are added to both I and W . If some point ω does not belong to W , then
it must have been removed by line 6. After that, the query will return an empty model iff ω

is optimal because the restrictions in ϕ block only dominated regions, and the assumptions
focus the search over the region dominating ω. If ω is not optimal, the query at line 16 will
generate a point that dominates it, and that point will push off ω from I at line 13. ◀

▶ Proposition 17. Algorithm 2 is sound and complete.

Proof. Let us prove soundness first. If the algorithm returns, W is empty. By Lemma 15, I

contains an upper bound set. By Lemma 16, all its elements are optimal. Every element of
the front dominates at least one element of I. Assume y is optimal and is not part of I. It
must be dominated by some element of I, but an optimal point is dominated only by itself.
Hence, y cannot be absent from I.

Let us move on to show the algorithm is complete. The clauses added by line 12 block
at least one feasible model each, as they block the dominated region, including its defining
vertex. Because no blocking clause is ever dropped, the number of satisfiable queries is
bounded by the number of satisfiable models, which is finite.

After entering the slide loop at line 10, it will fail to return iff there is an infinite number
of satisfiable queries, which cannot happen, given the former argument.

Therefore, every operation occurring in the drill loop (line 5) ends successfully in a finite
amount of time. Therefore, the loop exits iff W becomes empty.

J. Cortes, I. Lynce, and V. Manquinho 8:11

Note that the waiting list receives new elements only at line 14. Based on the argument
above, the number of inserted elements must always be finite. Each iteration of the drill loop
takes one element out. Assume this loop never ends. Eventually, the number of removals
would catch up to the number of insertions, and the waiting list would be empty. But then,
the loop would end, which contradicts the hypothesis. ◀

4.3 Tandem Slide&Drill

Two different solvers working together will most likely produce better results than any of
them would by themselves.

Suppose we have two different approximated fronts A and B of a MOCO instance,
produced respectively by solvers a and b. Consider also the combined solution ÂB, built
from A∪B by weeding out any dominated point from the union. Most likely, A B̂ is a better
approximation of the front than any of the solutions A and B by themselves. And it cannot
be worse. Even more, had they shared the incrementally built approximations on the fly, the
workers would have guided each other and avoided regions of the objective space that were
already branded as dominated by some feasible solution produced by the other contributor.

Because Slide&Drill is a SAT-UNSAT solver, it makes sense to consider for its companion
an UNSAT-SAT solver. We chose a previously proposed UNSAT-SAT algorithm named
Core-Guided [5]. The workers (i.e., Slide&Drill and Core-Guided) will share a single,
incrementally built formula. Note that the unary counters representing the objective functions
are shared, as is the SAT oracle.

In order to synchronize their work, there is a conflict budget. The solvers will work in
turn: as soon as the assigned budget is fully depleted on SAT calls the current worker stops,
and the other contributor kicks in with a restored budget.

For the Slide&Drill algorithm, we simply reinsert the last drill site into the waiting list
and proceed. For the Core-Guided algorithm, we keep track of the current upper-fence and
bootstrap the next search session by setting the upper fence to the backed-up value.

5 Results and Analysis

5.1 Benchmark Sets and Experimental Setup

In order to evaluate our MOCO algorithms against other state-of-the-art MOCO solvers, we
consider two publicly available benchmark sets of MOCO instances that have already been
used in previous research works.

The Development Assurance Level (DAL) [4] benchmark set 3 is composed of 95 instances
encoding different levels of rigour in the development of a software or hardware component
of an aircraft. The development assurance level defines the assurance activities aimed at
eliminating design and coding errors that could affect the safety of an aircraft. The goal is
to allocate the smallest DAL to functions to decrease the development costs.

The Package Upgradeability (PU) benchmark set is composed of 687 instances from the
Mancoosi International Solver Competition [18]. Each instance encodes the upgradeability
of packages in an open-source system. The packup tool [13] was used to generate variants
containing between two and five objectives to optimize. This results in 3570 instances.

3 https://www.lifl.fr/LION9/challenge.html.

CP 2024

https://www.lifl.fr/LION9/challenge.html

8:12 Slide&Drill, a New Approach for MOCO

All of the experiments were conducted on a computer with Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40GHz running Linux Debian 10.2. Each problem instance was executed for each
MOCO solver with a memory limit of 32 GB and a CPU timeout of 10 minutes (600 seconds)
imposed using the runsolver [23] tool.

5.2 Evaluated Algorithms
We evaluate our algorithms against several SAT-based MOCO solvers. The ParetoMCS al-
gorithm 4 is based on the enumeration of MCSs of the MOCO instance [28] and the P-Minimal
algorithm implements the SAT-UNSAT approach presented in Algorithm 1 [26]. Additionally,
the Core-Guided algorithm implements a complementary UNSAT-SAT approach [5].

The Slide&Drill algorithm implements our new approach proposed in Algorithm 2.
Furthermore, both the Slide&Drill and P-Minimal approaches are combined with the
Core-Guided algorithm, (as described in section 4.3).

All algorithms are implemented using the publicly available codebase 5 from the authors of
the Core-Guided algorithm [5]. Hence, all algorithms use the selection delimiter encoding [16]
to represent the objective functions. Furthermore, the underlying SAT solver is also the same
and used incrementally [7, 21, 1]. As a result, the observed differences in performance are
mainly from the algorithmic techniques employed and a more fair comparison is achieved.

5.3 Evaluation Metrics
Finding the Pareto front of MOCO instances is computationally harder than solving single-
objective optimization problems. In most cases, given an acceptable time limit, solvers can
only provide an approximation of the Pareto front.

Let A denote a set of algorithms and variants to be evaluated and let I denote the set of
instances. Let Yi,j denote the approximation of the Pareto front provided by algorithm Ai

(Ai ∈ A) for instance Ij (Ij ∈ I). Let Rj denote the reference set for instance Ij defined as
Rj = ∪Ai∈AYi,j , where only the incomparable elements are kept, i.e., all dominated solutions
are filtered out of Rj . Hence, the reference set Rj contains only the best solutions found by
any of the evaluated algorithms in A.

To evaluate the quality of the approximations provided by each tool, we use three different
metrics. The first metric is the Contribution indicator that measures the contribution of a
given algorithm to the reference set. Hence, the contribution indicator of algorithm Ai ∈ A
in a MOCO instance Ij is defined as |Yi,j∩Rj |

|Rj | . Clearly, larger values are preferable since the
metric is maximized when the algorithm is able to identify all solutions in the reference set.

The second metric is the Hypervolume (HV) indicator [31]. This indicator measures the
volume of the objective space between the set of nondominated solutions Yi,j and a given
reference point ur. The reference point depends on the benchmark. For a given instance Ij ,
the reference point is set to the largest possible objective values in the reference set Rj

6.
As in the previous indicator, larger values of HV are preferable since the volume of the
dominated objective space is maximized at the Pareto front.

Finally, the third metric is the Inverted Generational Distance (IGD) indicator [30, 6].
IGD measures the average Euclidean distance, in the objective space, between the reference
set Rj and the solution set Yi,j returned by the algorithm. In this case, smaller values of
IGD are preferable, meaning that the solution set Yi,j is closer to the reference set Rj .

4 https://gitlab.ow2.org/sat4j/moco
5 https://gitlab.inesc-id.pt/u001810/moco
6 If the reference set Rj is the Pareto front, then the reference point ur is the Nadir point [20].

https://gitlab.ow2.org/sat4j/moco
https://gitlab.inesc-id.pt/u001810/moco

J. Cortes, I. Lynce, and V. Manquinho 8:13

20 40 60 80
rank

0.001

0.010

0.100

1

Contribution

DAL

(a) Contribution metric on DAL instances.

2600 2800 3000 3200 3400
rank

0.001

0.010

0.100

1

Contribution

PU

queue,100

queue,1000

queue,10000

queue

stack,100

stack,1000

stack,10000

stack

(b) Contribution metric on PU instances.

20 40 60 80
rank

0.01

0.05

0.10

0.50

1

HV

DAL

(c) HV metric on DAL instances.

1000 1500 2000 2500 3000 3500
rank

10
-5

10
-4

0.001

0.010

0.100

1

HV

PU

queue,100

queue,1000

queue,10000

queue

stack,100

stack,1000

stack,10000

stack

(d) HV metric on PU instances.

60 70 80 90
rank

10
-4

0.001

0.010

0.100

1

IGD

DAL

(e) IGD metric on DAL instances.

1000 1500 2000 2500 3000 3500
rank

0.001

0.100

10

1000

IGD

PU

queue,100

queue,1000

queue,10000

queue

stack,100

stack,1000

stack,10000

stack

(f) IGD metric on PU instances.

Figure 3 Comparison of the Contribution, IGD and HV results for each set of instances.
Slide&Drill variants only. Each series is sorted independently, smaller values first. Vertical scale is
logarithmical. Each series is labelled by the type of waiting list and the value of the conflict budget.

5.4 Slide and Drill Variants

The Slide&Drill algorithm (Algorithm 2) can be configured in different ways. In this section
we focus on the management of the waiting list and the SAT solver call. As mentioned in
section 4.1, the waiting list can be managed as a stack or as a queue and this results in
exploring the search space in different ways. Additionally, one can set the SAT solver call
with a limited budget of conflicts in order for Slide&Drill not to get “stuck”. Setting up
a conflict budget will not violate neither soundness nor completeness, since the site of the
unfinished drill goes back into the waiting list and all SAT calls are done in an incremental
fashion (i.e., the same SAT solver instance is always used and no learned clause is ever
removed).

Figure 3 shows the results of several variants of the Slide&Drill algorithm for the three
metrics defined in section 5.3 for both the DAL (left) and PU (right) benchmark sets. The
stack and queue variants denote that the waiting list is managed as a stack and queue,
respectively. Moreover, whenever the stack and queue variants are followed by a number C,

CP 2024

8:14 Slide&Drill, a New Approach for MOCO

20 40 60 80
rank

0.001

0.010

0.100

1

Contribution

DAL

(a) Contribution metric on DAL instances.

1000 1500 2000 2500 3000 3500
rank

0.001

0.010

0.100

1

Contribution

PU

PMCS

p-min

unsat-sat

stack,1000

p-min&unsat-sat,1000

stack&unsat-sat,1000

(b) Contribution metric on PU instances.

20 40 60 80
rank

0.001

0.010

0.100

1

HV

DAL

(c) HV metric on DAL instances.

1000 1500 2000 2500 3000 3500
rank

10
-5

10
-4

0.001

0.010

0.100

1

HV

PU

PMCS

p-min

unsat-sat

stack,1000

p-min&unsat-sat,1000

stack&unsat-sat,1000

(d) HV metric on PU instances.

30 40 50 60 70 80 90
rank

10
-4

0.001

0.010

0.100

1

IGD

DAL

(e) IGD metric on DAL instances.

1500 2000 2500 3000 3500
rank

0.001

0.100

10

1000

IGD

PU

PMCS

p-min

unsat-sat

stack,1000

p-min&unsat-sat,1000

stack&unsat-sat,1000

(f) IGD metric on PU instances.

Figure 4 Comparison of the Contribution, IGD and HV results for each set of instances. Each
series is sorted independently, smaller values first. Vertical scale is logarithmical.

then C denotes the conflict limit in the SAT call. Whenever the conflict limit is reached,
the SAT call ends and the Slide&Drill algorithm retrieves a new starting point from the
waiting list. Otherwise, no limit is imposed on the SAT call.

The experimental results in these benchmark sets show that the algorithm performs
better when a conflict limit is imposed. This occurs for all metrics in both benchmark sets.
The budgeted SAT call allows the algorithm to choose a new element of the waiting list,
allowing it to find a wider variety of solutions that better approximates the Pareto front.

We obtained mixed results regarding the waiting list’s management. While the stack
variants perform better for the DAL benchmark set, the queue variants perform better on
PU instances. This assay is based on the contribution metric, as the overall values for HV
and IGD are similar.

5.5 Comparison with Other MOCO Solvers
We compare the stack, 1000 variant of the Slide&Drill algorithm (stack strategy for
management of the waiting list and C = 1000 for the conflict limit on the SAT solver) against
other state-of-the-art MOCO solvers. We chose this variant of the Slide&Drill algorithm
since it seems to be the most balanced one, considering the results from the previous section.

J. Cortes, I. Lynce, and V. Manquinho 8:15

The results on DAL (left) and PU (right) benchmarks considering the three metrics are
available in Figure 4. For the DAL benchmarks, the new Slide&Drill algorithm is able
to outperform the ParetoMCS (PMCS), Core-Guided (unsat-sat) and P-Minimal (p-min)
algorithms on all metrics. The approximation of the Pareto front provided by Slide&Drill
on these instances is clearly better than the ones produced by all other algorithms. Due
to the newly proposed strategy, Slide&Drill is able to find a more diverse set of solutions
and, thus, a more accurate approximation of the Pareto front. Furthermore, even when
Slide&Drill and Core-Guided work in tandem (stack&unsat-sat), there are only very
slight improvements to the contribution metric.

On the PU benchmarks, the Slide&Drill (stack, 1000) algorithm is able to find
solutions close to the P-Minimal (p-min) algorithm considering both the HV and IGD metrics.
Moreover, it is able to outperform the Core-Guided (unsat-sat) algorithm. However, the
ParetoMCS (PMCS) is the best standalone algorithm in terms of HV and IGD. Nevertheless,
when Slide&Drill is paired with Core-Guided in tandem (stack&unsat-sat), then this
approach is clearly better on all metrics on the PU benchmark set. This is due to the high
complementarity of these algorithms when applied on the PU instances. Observe that the
P-Minimal, when paired with Core-Guided in tandem (p-min&unsat-sat), also improves
its performance. However, the tandem Slide&Drill and Core-Guided still performs better
on all metrics due to the higher diversification of solutions provided by our new Slide&Drill
algorithm.

6 Conclusions and Future Work

This paper introduces the Slide and Drill approach for solving MOCO problems. The
proposed Slide&Drill algorithm is a SAT-based algorithm with a strategy to diversify the
set of solutions found such that a better approximation of the Pareto front can be found.
Previously proposed algorithms either disregard the objective function representation (e.g.,
through the enumeration of MCS) or have too much focus on proving that a given solution
is Pareto-optimal, resulting in being able to identify only a small set of the Pareto front.

Experimental results on two representative sets of benchmarks show that the new
Slide&Drill algorithm outperforms previous SAT-based MOCO solvers on three differ-
ent metrics. Moreover, the performance of the Slide&Drill algorithm can be additionally
boosted when paired with a complementary Core-Guided approach. Hence, the newly
proposed algorithms further enhance the usage of SAT-based approaches for MOCO.

The Slide and Drill approach introduced in this paper can be configured using different
techniques to diversify the exploration of the search space. In this paper we exploit several
strategies to choose elements of a waiting list that correspond to areas of the search space still
to explore. In future work, we propose to manage the waiting list as a priority queue using a
performance metric such as the Hypervolume as the selection criterion. Although this criterion
has already been used in other algorithmic contexts [27], using it in a tandem algorithm with
both Slide&Drill and Core-Guided approaches poses new additional challenges.

References
1 Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving glucose for incremental

SAT solving with assumptions: Application to MUS extraction. In Matti Järvisalo and
Allen Van Gelder, editors, 16th International Conference on Theory and Applications of
Satisfiability Testing, SAT 2013, Helsinki, Finland, July 8-12, 2013, volume 7962 of Lecture
Notes in Computer Science, pages 309–317. Springer, 2013. doi:10.1007/978-3-642-39071-5_
23.

CP 2024

https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-3-642-39071-5_23

8:16 Slide&Drill, a New Approach for MOCO

2 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiabiliy. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second
Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 929–991.
IOS Press, 2021. doi:10.3233/FAIA201008.

3 Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean cardinality con-
straints. In Francesca Rossi, editor, International Conference on Principles and Practice of
Constraint Programming (CP), volume 2833 of Lecture Notes in Computer Science, pages
108–122. Springer, 2003. doi:10.1007/978-3-540-45193-8_8.

4 Pierre Bieber, Remi Delmas, and Christel Seguin. Dalculus - theory and tool for development
assurance level allocation. In Francesco Flammini, Sandro Bologna, and Valeria Vittorini,
editors, Computer Safety, Reliability, and Security - 30th International Conference, SAFE-
COMP 2011, Naples, Italy, September 19-22, 2011. Proceedings, volume 6894 of Lecture Notes
in Computer Science, pages 43–56. Springer, 2011. doi:10.1007/978-3-642-24270-0_4.

5 João Cortes, Inês Lynce, and Vasco M. Manquinho. New core-guided and hitting set algorithms
for multi-objective combinatorial optimization. In Sriram Sankaranarayanan and Natasha
Sharygina, editors, Tools and Algorithms for the Construction and Analysis of Systems - 29th
International Conference, TACAS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings,
Part II, volume 13994 of Lecture Notes in Computer Science, pages 55–73. Springer, 2023.
doi:10.1007/978-3-031-30820-8_7.

6 Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part I: solving problems with
box constraints. IEEE Trans. Evol. Comput., 18(4):577–601, 2014. doi:10.1109/TEVC.2013.
2281535.

7 Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. In Ofer
Strichman and Armin Biere, editors, First International Workshop on Bounded Model Checking,
BMC@CAV 2003, Boulder, Colorado, USA, July 13, 2003, volume 89 of Electronic Notes in
Theoretical Computer Science, pages 543–560. Elsevier, 2003. doi:10.1016/S1571-0661(05)
82542-3.

8 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006. doi:10.3233/sat190014.

9 Matthias Ehrgott, Xavier Gandibleux, and Anthony Przybylski. Exact methods for multi-
objective combinatorial optimisation. In Salvatore Greco, Matthias Ehrgott, and José Rui
Figueira, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 817–850.
Springer New York, New York, NY, 2016. doi:10.1007/978-1-4939-3094-4_19.

10 Marco Gavanelli. An algorithm for multi-criteria optimization in csps. In European Conference
on Artificial Intelligence, pages 136–140. IOS Press, 2002.

11 Christoph Jabs, Jeremias Berg, Hannes Ihalainen, and Matti Järvisalo. Preprocessing in
sat-based multi-objective combinatorial optimization. In Roland H. C. Yap, editor, 29th
International Conference on Principles and Practice of Constraint Programming, CP 2023,
August 27-31, 2023, Toronto, Canada, volume 280 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.CP.2023.18.

12 Christoph Jabs, Jeremias Berg, Andreas Niskanen, and Matti Järvisalo. Maxsat-based bi-
objective boolean optimization. In International Conference on Theory and Applications of
Satisfiability Testing, volume 236 of LIPIcs, pages 12:1–12:23. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.12.

13 Mikolás Janota, Inês Lynce, Vasco M. Manquinho, and João Marques-Silva. Packup: Tools
for package upgradability solving. J. Satisf. Boolean Model. Comput., 8(1/2):89–94, 2012.
doi:10.3233/sat190090.

14 Mikolás Janota, António Morgado, José Fragoso Santos, and Vasco M. Manquinho. The seesaw
algorithm: Function optimization using implicit hitting sets. In International Conference on
Principles and Practice of Constraint Programming, volume 210 of LIPIcs, pages 31:1–31:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CP.2021.31.

https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-642-24270-0_4
https://doi.org/10.1007/978-3-031-30820-8_7
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.3233/sat190014
https://doi.org/10.1007/978-1-4939-3094-4_19
https://doi.org/10.4230/LIPICS.CP.2023.18
https://doi.org/10.4230/LIPIcs.SAT.2022.12
https://doi.org/10.3233/sat190090
https://doi.org/10.4230/LIPIcs.CP.2021.31

J. Cortes, I. Lynce, and V. Manquinho 8:17

15 Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding
for pseudo-boolean constraints. In International Conference Principles and Practice of
Constraint Programming, volume 9255 of LNCS, pages 200–209. Springer, 2015. doi:10.1007/
978-3-319-23219-5_15.

16 Michal Karpinski and Marek Piotrów. Encoding cardinality constraints using multiway merge
selection networks. Constraints, 24(3-4):234–251, 2019. doi:10.1007/s10601-019-09302-0.

17 Rui Li, Qinghua Zheng, Xiuqi Li, and Zheng Yan. Multi-objective optimization for rebalancing
virtual machine placement. Future Gener. Comput. Syst., 105:824–842, 2020. doi:10.1016/j.
future.2017.08.027.

18 Mancoosi international solver competition 2011. https://www.mancoosi.org/misc-2011/
index.html.

19 Rafael Marques, Luís M. S. Russo, and Nuno Roma. Flying tourist problem: Flight time
and cost minimization in complex routes. Expert Syst. Appl., 130:172–187, 2019. doi:
10.1016/j.eswa.2019.04.024.

20 Kaisa Miettinen. Nonlinear Multiobjective Optimization, volume 12. Springer Science &
Business Media, 2012.

21 Alexander Nadel and Vadim Ryvchin. Efficient SAT solving under assumptions. In Alessandro
Cimatti and Roberto Sebastiani, editors, 15th International Conference on Theory and
Applications of Satisfiability Testing - SAT 2012, Trento, Italy, June 17-20, 2012, volume
7317 of Lecture Notes in Computer Science, pages 242–255. Springer, 2012. doi:10.1007/
978-3-642-31612-8_19.

22 Derek Rayside, H.-Christian Estler, and Daniel Jackson. The guided improvement algorithm
for exact, general-purpose, many-objective combinatorial optimization. Technical Report
Technical Report MIT-CSAIL-TR-2009-033, MIT Massachusetts Institute of Technology, 2009.

23 Olivier Roussel. Controlling a Solver Execution with the runsolver Tool: System description.
Journal on Satisfiability, Boolean Modeling and Computation, 7(4):139–144, November 2011.
doi:10.3233/SAT190083.

24 Olivier Roussel and Vasco M. Manquinho. Pseudo-boolean and cardinality constraints. In
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 695–733. IOS Press, 2009. doi:10.3233/978-1-58603-929-5-695.

25 Pierre Schaus and Renaud Hartert. Multi-objective large neighborhood search. In Chris-
tian Schulte, editor, Principles and Practice of Constraint Programming - 19th Inter-
national Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,
volume 8124 of Lecture Notes in Computer Science, pages 611–627. Springer, 2013. doi:
10.1007/978-3-642-40627-0_46.

26 Takehide Soh, Mutsunori Banbara, Naoyuki Tamura, and Daniel Le Berre. Solving mul-
tiobjective discrete optimization problems with propositional minimal model generation. In
International Conference Principles and Practice of Constraint Programming, volume 10416 of
LNCS, pages 596–614. Springer, 2017. doi:10.1007/978-3-319-66158-2_38.

27 Satya Tamby and Daniel Vanderpooten. Enumeration of the nondominated set of multiobjective
discrete optimization problems. INFORMS J. Comput., 33(1):72–85, 2021. doi:10.1287/
IJOC.2020.0953.

28 Miguel Terra-Neves, Inês Lynce, and Vasco M. Manquinho. Introducing pareto minimal correc-
tion subsets. In International Conference on Theory and Applications of Satisfiability Testing,
volume 10491 of LNCS, pages 195–211. Springer, 2017. doi:10.1007/978-3-319-66263-3_13.

29 Yuan Yuan and Wolfgang Banzhaf. ARJA: automated repair of java programs via multi-
objective genetic programming. IEEE Trans. Software Eng., 46(10):1040–1067, 2020. doi:
10.1109/TSE.2018.2874648.

30 Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput., 11(6):712–731, 2007. doi:10.1109/TEVC.2007.
892759.

31 E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications.
PhD thesis, University of Zurich, Zürich, Switzerland, 1999.

CP 2024

https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1007/s10601-019-09302-0
https://doi.org/10.1016/j.future.2017.08.027
https://doi.org/10.1016/j.future.2017.08.027
https://www.mancoosi.org/misc-2011/index.html
https://www.mancoosi.org/misc-2011/index.html
https://doi.org/10.1016/j.eswa.2019.04.024
https://doi.org/10.1016/j.eswa.2019.04.024
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.3233/SAT190083
https://doi.org/10.3233/978-1-58603-929-5-695
https://doi.org/10.1007/978-3-642-40627-0_46
https://doi.org/10.1007/978-3-642-40627-0_46
https://doi.org/10.1007/978-3-319-66158-2_38
https://doi.org/10.1287/IJOC.2020.0953
https://doi.org/10.1287/IJOC.2020.0953
https://doi.org/10.1007/978-3-319-66263-3_13
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2007.892759

Pseudo-Boolean Reasoning About States and
Transitions to Certify Dynamic Programming and
Decision Diagram Algorithms
Emir Demirović #

TU Delft, The Netherlands

Ciaran McCreesh #

University of Glasgow, Scotland

Matthew J. McIlree #

University of Glasgow, Scotland

Jakob Nordström #

University of Copenhagen, Denmark
Lund University, Sweden

Andy Oertel #

Lund University, Sweden
University of Copenhagen, Denmark

Konstantin Sidorov #

TU Delft, The Netherlands

Abstract
Pseudo-Boolean proof logging has been used successfully to provide certificates of optimality from a
variety of constraint- and satisifability-style solvers that combine reasoning with a backtracking or
clause-learning search. Another paradigm, occurring in dynamic programming and decision diagram
solving, instead reasons about partial states and possible transitions between them. We describe a
framework for generating clean and efficient pseudo-Boolean proofs for these kinds of algorithm, and
use it to produce certifying algorithms for knapsack, longest path, and interval scheduling. Because
we use a common proof system, we can also reason about hybrid solving algorithms: we demonstrate
this by providing proof logging for a dynamic programming based knapsack propagator inside a
constraint programming solver.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Discrete optimization

Keywords and phrases Proof logging, dynamic programming, decision diagrams

Digital Object Identifier 10.4230/LIPIcs.CP.2024.9

Supplementary Material Software: https://doi.org/10.5281/zenodo.12574620

Funding Emir Demirović : part of the XAIT lab funded by the Delft AI Labs programme.
Ciaran McCreesh: supported by a Royal Academy of Engineering research fellowship, and by the
Engineering and Physical Sciences Research Council [grant number EP/X030032/1].
Jakob Nordström: supported by the Swedish Research Council grant 2016-00782 and the Independent
Research Fund Denmark grant 9040-00389B.
Andy Oertel: supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.
Konstantin Sidorov: part of the XAIT lab funded by the Delft AI Labs programme.

© Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström, Andy Oertel, and
Konstantin Sidorov;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.demirovic@tudelft.nl
https://orcid.org/0000-0003-1587-5582
mailto:ciaran.mccreesh@glasgow.ac.uk
https://orcid.org/0000-0002-6106-4871
mailto:m.mcilree.1@research.gla.ac.uk
https://orcid.org/0009-0005-5042-0876
mailto:jn@di.ku.dk
https://orcid.org/0000-0002-2700-4285
mailto:andy.oertel@cs.lth.se
https://orcid.org/0000-0001-9783-6768
mailto:k.sidorov@tudelft.nl
https://orcid.org/0009-0009-0655-4200
https://doi.org/10.4230/LIPIcs.CP.2024.9
https://doi.org/10.5281/zenodo.12574620
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Pseudo-Boolean Reasoning About States and Transitions

Acknowledgements Part of this work was carried out while taking part in the semester program
Satisfiability: Theory, Practice, and Beyond in 2021 at the Simons Institute for the Theory of
Computing at UC Berkeley, and in the extended reunion of this semester program in the spring of
2023. This work has also benefited greatly from discussions during the Dagstuhl Seminars 22411
Theory and Practice of SAT and Combinatorial Solving and 23261 SAT Encodings and Beyond.

1 Introduction

It is sometimes vital that combinatorial solving algorithm implementations can be trusted to
give correct answers. To this end, when claiming that a problem has no solution, Boolean
satisfiability (SAT) solvers do not just assert unsatisfiability, but also provide an independently
verifiable proof of this fact, in one of several standard formats such as DRAT [20, 19, 35],
LRAT [10], or VeriPB [13]. The proof can then be inspected by a formally verified proof
checker to assert its correctness. This means the algorithm is certifying [28]: while we still
cannot trust that the implementation is correct, this does guarantee that if it ever gives an
incorrect answer, then we can detect it.

Of the above proof formats, VeriPB is the most general-purpose: as well as supporting
advanced SAT-solving techniques such as parity reasoning [18], symmetry and dominance
breaking [4], and MaxSAT optimisation [1], it has also been used for subgraph-finding
algorithms [16, 14, 15] and for constraint programming with a variety of global constraints
[17, 29]. In these latter settings, a VeriPB proof resembles a description of a backtracking
search tree, interleaved with justifications of facts obtained from inference algorithms or
constraint propagation. However, the VeriPB proof format has no direct notion of a search
tree. Instead, its underlying proof system is powerful enough to express implicational
reasoning. In particular, constraints may be reified and dereified, and if some fact can be
derived, it can also be derived under a sequence of guesses with (almost) no additional
effort. This is in contrast to, e.g., the VIPR proof format [8], which was designed specifically
for mixed integer programming and which has explicit notions of assumptions and closing
branches that function independently from other proof rules. An advantage of a sufficiently
powerful proof system that does not have a direct notion of search is that techniques like
restarts [16] and autotabulation [17] can be encoded without needing additions to the proof
system.

However, there are non-search-based ways of solving hard problems. Both dynamic
programming and decision diagram algorithms can be viewed as working with partial states,
and transitions between those states [22, 3]. In this work, we show that VeriPB can also
be used for efficient proof logging for algorithms that work with states and transitions,
rather than search, regardless of whether the algorithm uses memoisation, a matrix, or a
layer-by-layer construction. This is primarily because the pseudo-Boolean constraints and
extended cutting planes proof system underlying VeriPB makes it very clean to work with
implications.

Using a common system, rather than inventing a new proof system for dynamic pro-
gramming proofs, has several benefits: it allows us to reason about hybrid or nested solving
strategies that use more than one kind of algorithm, it avoids the need to reinvent proof
logging for various kinds of constraint and dominance reasoning, and it gives us immediate
access to a suite of proof checking tools which would otherwise be expensive to recreate.
To illustrate this, we have implemented proof logging for a knapsack constraint inside a
constraint programming solver, whose propagator involves reasoning about paths through
a dynamic programming table or decision diagram to detect loss of support for values in
constraint programming variables [34].

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:3

2 Background

Before we can talk about proofs for dynamic programming problems, we give a brief overview
of the VeriPB proof system, and outline how it has been used to generate proofs for
backtracking search algorithms.

2.1 Pseudo-Boolean Preliminaries
Although designed to support many different kinds of solvers, the foundations of the VeriPB
proof system are Boolean variables and pseudo-Boolean constraints. Let xi be a set of
Boolean variables ranging over 0 (false) and 1 (true). We write xi to mean 1− xi (i.e. not
x), and refer to xi and xi as literals. A pseudo-Boolean (PB) constraint over literals ℓi is
an inequality in the form

∑
i ciℓi ▷◁ A, where ▷◁ is either ≥ or ≤ and ci and A are integer

constants. A PB constraint can always be rewritten in normalised form
∑

i ciℓi ≥ A with all
literals over distinct variables and all ci and A non-negative, and when describing the proof
system we will assume constraints are normalised. A PB optimisation problem is a set of PB
constraints, together with an objective

∑
i ciℓi to be minimised.

Let C =
∑

i ciℓi ≥ A be a PB constraint, and y and yj be distinct literals. We define C to
mean

∑
i ciℓi ≤ A−1; ∧jyj ⇒ C to mean

∑
j Kyj+

∑
i ciℓi ≥ A where K = A−

∑
i min(ci, 0);

and y ⇔ C to mean the pair of PB constraints y ⇒ C and y ⇒ C. It is easy to check that
the constraints defined in this way have the meaning suggested by the notation used. Note
how, unlike for Boolean formulae in conjunctive normal form (CNF), full reification of a
pseudo-Boolean constraint by a literal requires only a pair of constraints.

2.2 The VeriPB Proof System
In a VeriPB proof, we begin with a set of pseudo-Boolean constraints as input – these are
assumed, as axioms, and so they must accurately describe the high-level problem being
solved. A proof is then a sequence of pseudo-Boolean constraints, where each new constraint
follows either obviously or by explicit construction from the input and any other constraints
already derived, in such a way that at least one optimal solution is always preserved.

When proof steps consist of explicit constructions, they are given as a sequence of
cutting planes steps [7], as follows. For any literal ℓi, we may freely introduce a constraint
ℓi ≥ 0. Given two constraints

∑
i aiℓi ≥ A and

∑
i biℓi ≥ B, we may add them together to

derive
∑

i(ai + bi)ℓi ≥ A + B. We may also multiply by a positive integer constant c, to get∑
i caiℓi ≥ cA, or (assuming normalised form) divide to get

∑
i

⌈
ai

c

⌉
ℓi ≥

⌈
A
c

⌉
. Finally, we can

saturate, turning (again assuming normalised form)
∑

i aiℓi ≥ A into
∑

i min (ai, A) ℓi ≥ A.
A clausal constraint, or clause, is one of the form

∑
i ℓi ≥ 1. This corresponds naturally

to a Boolean clause in CNF. By resolution, we mean deriving
∑

i xi +
∑

j yj ≥ 1 from the
clauses r +

∑
i xi ≥ 1 and r +

∑
j yj ≥ 1; this may be achieved by adding the constraints and

then saturating [21]. In particular, resolution allows us to take the clauses r ⇒
∑

i xi ≥ 1
and r +

∑
j yj ≥ 1 and derive

∑
i xi +

∑
j yj ≥ 1. Proof steps such as this that involve

implications are generally straightforward in cutting planes: for example, if we have both
r ⇒

∑
i aixi ≥ A and s⇒ r, we may easily derive that s⇒

∑
i aixi ≥ A by multiplication

and then addition. As a special case of this, if we have established that the left hand side of
an implication must be true, then we can dereify the implication and derive its right hand
side unconditionally. Another useful fact, which we use repeatedly throughout this work, is
that if we have a process for deriving a constraint D from a set of constraints Ci, then we can
reuse this process to derive a reified version of D if we are given a set of reified constraints
C ′

i; we explain this in detail in the appendix.

CP 2024

9:4 Pseudo-Boolean Reasoning About States and Transitions

An alternative to cutting planes steps is to allow the proof verifier to add constraints
that are obvious enough that they do not require an explicit derivation. A constraint C

follows by reverse unit propagation (RUP) if adding C to the existing set of constraints
leads immediately to contradiction upon achieving integer bounds consistency for each
constraint individually [9]. Obviously such constraints are implied, and this condition can be
verified efficiently, so a RUP constraint may safely be added as a proof step. (The term unit
propagation is used due to the SAT origins of proof logging [12]; if all constraints are clauses,
integer bounds consistency and unit propagation are equivalent.) As with cutting planes
proofs, RUP proof procedures can trivially be modified to work subject to reifications.

The VeriPB proof system also has a non-implicational strengthening rule [4]. We do
not use the full generality of the rule in this paper, but will use it as an extension rule.
An extension variable z reifying an arbitrary PB constraint C is a variable which has not
previously been used, which is introduced in a proof alongside the pair of constraints z ⇔ C;
the strengthening rule can be used to introduce an extension variable in this way. We
will also use strengthening to implement fusion resolution: given r ⇒

∑
i aixi ≥ A and

r ⇒
∑

i aixi ≥ A′, strengthening lets us derive that
∑

i aixi ≥ min(A, A′).
A proof of unsatisfiability ends by deriving 0 ≥ 1. For an optimisation problem with

objective expression
∑

i ciℓi, a VeriPB proof will conclude by demonstrating that the objective
lies between two integer lower and upper bounds – for an exact solution, these will be the
same. To do this, a proof step may witness a solution by giving a partial assignment to
variables. The proof checker verifies that this assignment unit propagates to a complete
feasible assignment to all variables, and then introduces a new objective-improving constraint∑

i ciℓi ≤ A− 1 where A is the calculated objective value from the assignment.
Finally, we may also delete derived constraints, under certain conditions. This will lower

the amount of memory required to verify the proof, as well as potentially speeding up
verification of RUP and strengthening steps. For soundness reasons, there are restrictions on
when constraints may be deleted (e.g. to prevent us from deleting every constraint in the
input and then claiming an optimal solution with zero cost) [4], but for the techniques used
in this paper, the verifier will allow us to delete any constraint we introduce, as well as any
extension variable by deleting its two defining constraints.

2.3 A Framework for Proofs for Backtracking Search
For a very simple backtracking search algorithm, a proof could consist of a RUP statement
for every backtrack, asserting that at least one of the guessed assignments must be false.
Alternatively, if we are using conflict-driven clause learning (CDCL), a proof consists of a
RUP step for every learned clause in turn. This applies to proofs using either DRAT or
VeriPB. However, this is only possible if every fact used by the search algorithm follows
by integer bounds consistency on the PB representation of the problem (or, for DRAT ,
from unit propagation on the CNF representation). This would suffice, e.g. for conventional
DPLL or CDCL SAT solvers, but does not work if we have stronger propagation or inference
algorithms such as domain-consistent all-different. In this case, it is necessary to help the
proof checker by interleaving additional steps within the proof [17]. The nature of these
steps depends upon the inference being performed, and can involve additional RUP steps
or (in VeriPB proofs only) explicit cutting planes steps. The aim here is to ensure that
any fact “known” to the solving algorithm is also visible to the proof checker under unit
propagation. Crucially, using PB proofs does not mean that the solving algorithm is in any
way a PB solver, nor does it need to employ any cutting planes reasoning to be able to write
cutting planes proof steps. Instead, most solvers that write VeriPB proofs are conventional
algorithms that have subsequently been augmented with, effectively, template-based print
statements.

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:5

Although variations on this technique are suitable for various forms of backtracking search,
including with backjumping and restarts, this framework does not extend to being able to
cover dynamic programming algorithms, which have a very different notion of a search space.
The remainder of this paper explores a different framework, where the structure of VeriPB
proofs represent how dynamic programming algorithms run.

3 Proofs Involving States and Transitions

The key idea we will use for the proofs in this paper is to introduce an extension variable
for each entry in a dynamic programming matrix, or for each node in a memoised recursive
search tree or a top-down decision diagram construction. Each of these extension variables
will reify the conjunction of several other extension variables, representing different parts of
the state. We will then build up implication constraints between these extension variables
that reflect the way entries in the matrix are derived, the recursive call structure, or the edges
in the decision diagram. We will additionally build up a series of at-least-one constraints,
demonstrating that the structure we have created is complete. We finish by using the
at-least-one constraint over the final row of the matrix, or the final non-terminal layer of the
decision diagram, to prove the conclusion.

So far, this idea is not unique to VeriPB proofs. The DRAT proof system also has
an extension rule, and indeed Sinz and Biere [31], Jussila et al. [23] and Bryant [6] have
constructed DRAT proofs for binary decision diagram solvers using extension variables in a
similar but more restricted way. However, using VeriPB has many theoretical and practical
benefits when we look at more complex problems. For example, counting problems like
pigeonhole have direct proofs in VeriPB that scale trivially to arbitrarily large numbers of
pigeons, and do not require decision diagram structures for some semblance of efficiency.
Similarly, cutting planes allows us to work efficiently with reified integer linear inequalities
without requiring complex and inefficient adder and multiplier circuits. VeriPB also supports
optimisation problems, whereas the DRAT proof system only guarantees that satisfiable
instances cannot be made unsatisfiable, and would not be sound if used for optimisation
problems. Since we are looking to bring proof logging to a broader range of algorithms that
solve problems far beyond the reach of SAT solving, we will work exclusively with VeriPB.

3.1 Knapsack as a Dynamic Programming Problem
We will first illustrate how to create proofs for simple 0/1 knapsack problems. We are given
n items with weights wi and profits pi, and we want to maximise profit whilst not taking
items with a combined weight more than some constant W . For simplicity, we assume that
all weights and profits are non-negative integers. We can express this as the PB problem

xi ∈ {0, 1} i ∈ {1, . . . , n} (1)

minimise
n∑

i=1
−pixi (2)

subject to
n∑

i=1
wixi ≤W , (3)

recalling the convention that PB problems have an objective function to be minimised rather
than maximised. Note already that this PB representation is extremely straightforward, and
does not involve constructing adder and multiplier circuits as it would if we used a CNF
encoding.

CP 2024

9:6 Pseudo-Boolean Reasoning About States and Transitions

This problem has a recursive formulation. Letting P (i, w) be the maximum profit
obtainable after taking the first i items whilst having weight w still available to use, we have
the properties

P (0, w) = 0 (4)
P (i, w) = max{ (5)

P (i− 1, w), (6)
P (i− 1, w −wi) + pi if wi ≤ w}. (7)

Here, Equation (4) gives the initial condition that there is zero profit from taking no
items, regardless of weight; Equation (6) describes the option where we do not take item i;
Equation (7) describes the option where we do take item i if we are allowed to; and the max
operator in Equation (5) says that if we have two partial sums over the first i items both
using weight W − w then we need only consider the one which gives us the better profit.

This relation does not directly give us an algorithm. However, there are several stand-
ard ways of turning such a recurrence relationship into an algorithm, including dynamic
programming via a matrix built iteratively over weights; using recursion with memoisation;
or constructing a decision diagram layer by layer from the root downwards [22, 32]. From
an algorithm implementation perspective, the choice of methods can be very important;
however, for proof logging, the approach we describe works equally well for all three methods.
The important points are simply that
1. the algorithm somehow avoids calculating the same partial sums twice;
2. not all partial sums of weights and profits are necessarily calculated; and
3. there is some way of handling “dominated” states, such as the maximum operation in

Equation (5).
For ease of explanation, and because it allows the widest range of techniques to be demon-
strated, we will assume a layer-by-layer construction, starting by considering whether or not
we take the first item, and then building this up to decide what combination of the first two
items we will take, and then the first three items, and so on. Within layer i, we will consider
every possible partial sum of the first i weights that does not already exceed our bound
W , and associate that with the maximum possible partial sum of profits using exactly that
weight. We call this information a state, no matter whether it is implemented as a node in a
decision diagram, a memoised function call, or an entry in a matrix. We call partial sums of
either weights or profits partial states, and view the full state as being the conjunction of
partial weight and profit states.

The idea behind our VeriPB proof is that we will introduce an extension variable Si
w,p

for each state on layer i with partial sum of weights w and partial sum of profits p. For
convenience, we will also introduce these variables for states that will be ignored due to the
maximum rule. Recall that an extension variable is introduced by reifying a constraint; in
our case, this constraint will be

Si
w,p ⇔W i

w + P i
p ≥ 2 (8)

where W i
w and P i

p are themselves also extension variables,

W i
w ⇔

i∑
j=1

wjxj ≥ w and (9)

P i
p ⇔

i∑
j=1

pjxj ≤ p. (10)

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:7

In other words, Si
w,p is defined to be true if and only if the sum of the taken weights for the

first i items is at least w, and the sum of the taken profits for the first i items is at most p.
The reason for this choice of inequalities will become evident when we look at the maximum
rule.

Merely introducing extension variables tells us nothing about which states could actually
occur. The remainder of the proof consists of deriving implicational relationships between
extension variables (which correspond to edges in a decision diagram), and then in proving
that each layer is complete (that is, that we have an extension variable for every possible
state that has not been eliminated).

The first set of implications that we derive correspond to deciding not to take item xi.
We in turn derive

W i−1
w ∧ xi ⇒W i

w using a cutting planes addition rule, and then (11)
P i−1

p ∧ xi ⇒ P i
p similarly, and finally (12)

Si−1
w,p ∧ xi ⇒ Si

w,p follows by RUP. (13)

For the base case, the first part of the conjunction is trivially true and is instead omitted,
whilst for subsequent layers we will already have created the earlier extension variables, either
due to the algorithm’s layer-by-layer construction, or iteration, or recursion.

Next, suppose we cannot take item i due to the partial sum of weights exceeding W

(recalling that for simplicity, we are forbidding negative weights). If this is the case, we derive

W i−1
w ⇒ xi using cutting planes and RUP, and then (14)

Si−1
w,p ⇒ xi and (15)

Si−1
w,p ⇒ Si

w,p both follow by RUP. (16)

This cutting planes addition step is between the forward implication constraint defining W i−1
w ,

and the constraint giving the bound on W that is part of the input axiom. Because none of
the remaining weight coefficients are negative, a simple bounds consistency calculation shows
that if we have used too much weight already by layer i then there is no way of assigning the
remaining xi variables that will bring our weight sum back to be no more than W .

Finally, suppose we can take item i. Letting w′ = w + wi and p′ = p + pi be our new
weights and profits respectively, we instead derive

W i−1
w ∧ xi ⇒W i

w′ using cutting planes, and (17)
P i−1

p ∧ xi ⇒ P i
p′ similarly, then (18)

Si−1
w,p ∧ xi ⇒ Si

w′,p′ follows by RUP, as does (19)
Si−1

w,p ⇒ Si
w,p + Si

w′,p′ ≥ 1. (20)

Until this point, we have been ignoring the maximum rule. If we have two states on the
same layer with the same w, and one with profit p and another with profit p′ > p, we will
derive that

Si
w,p ⇒ Si

w,p′ . (21)

What this implication means is, “if there is an assignment to the first i xi variables where the
weight sums to at least w and the profit to no more than p, then there is an assignment where
the weight sums to at least w and the profit sums to no more than some larger profit p′”. This
is almost vacuous, and can easily be proved in cutting planes by unwrapping the conjunctions.

CP 2024

9:8 Pseudo-Boolean Reasoning About States and Transitions

In fact, in our proofs we can also do this for a distinct pair of states Si
w,p ⇒ Si

w′,p′ where
w′ ≤ w and p′ ≥ p; this can be detected efficiently in a layer-by-layer algorithm, but not so
easily with other approaches.

Now we have described the relationship between states on the same and subsequent layers.
The last part of the structure of our proof consists in deriving an at-least-one constraint over
the final layer, asserting that our diagram is complete. Again, we make use of an inductive
argument, by first deriving at-least-one constraints over the first layer, then the second layer,
and so on. This is a simple sequence of resolution steps: given∑

(w,p) on layer i−1

Si−1
w,p ≥ 1 (22)

we may resolve every variable on

Si−1
w,p ⇒ Si

w,p from Equation (16), or
Si−1

w,p ⇒ Si
w,p + Si

w′,p′ ≥ 1 from Equation (20)

to derive the desired∑
(w,p) on layer i

Si
w,p ≥ 1. (23)

This sets us up to provide a conclusion for our proof. Our algorithm execution will have
solved the problem at this point, so we know an optimal assignment with profit P ⋆ that
we can use to obtain a solution-improving constraint

∑
i−pixi ≤ −P ⋆ − 1. This in turn

contradicts each component of Equation (23), showing unsatisfiability.
To bring this together, we illustrate one way of implementing a proof-logging knapsack

solving algorithm in Algorithm 1. We stress, however, that the techniques we have described
are not in any way tied to this particular algorithm design. In particular, the same proof
framework can be used for matrix-based dynamic programming where each weight is con-
sidered in turn, as well as for recursion with memoisation. For a matrix, more states will be
created, both in the solving algorithm and in the proof, whilst for recursion the states will be
constructed in an order corresponding to the recursive search execution, rather than layer by
layer. Similarly, although we chose to apply (a more general version of) the maximum rule as
a single pass at the end of constructing each layer, we could instead derive the appropriate
implication whenever the maximum rule is used.

Until this point, we have not discussed deletions. To save memory, matrix and decision
diagram approaches to dynamic programming sometimes need only keep the current and
previous layers (or columns). We can do this in our proof too: when we start building layer
i ≥ 3, we can tell the proof verifier that we promise we will no longer need to access any
constraint and extension variable defined in layer i− 2, and so these constraints may now be
deleted. This will help the proof verifier use less memory, and can also speed up verification –
proof steps using RUP or that introduce extension variables are not, strictly speaking, of
constant complexity to verify in the worst case; we return to this in Section 4. With this
caveat aside, the proofs we have written are efficient, in that we write effectively only a
constant amount of data in the proof for each computation carried out by the algorithm.

3.2 A General Framework
In the same way that interleaving inference and backtrack constraints gives a general
framework for proof logging for backtracking search algorithms, we are now in a position to
describe how to generate proofs for dynamic programming and decision diagram algorithms.
For a given problem and solving algorithm, we need to be able to do seven things.

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:9

Algorithm 1 One way of solving the knapsack problem, with proof logging, using a layer-by-layer
decision diagram style construction.

S0 ← {S0
0,0}

for i← 1 . . . n do // i.e. for each layer in turn
for all Si

w,p ∈ Si−1 do // i.e. for each state in the previous layer
Extend W i

w ⇔
∑i

j=1 wjxj ≥ w, P i
p ⇔

∑i
j=1 pjxj ≤ p, and then

Si
w,p ⇔W i

w ∧ P i
p if they do not already exist

// Consider not taking item i

Si ← Si ∪ {Si
w,p}

Derive W i−1
w ∧ xi ⇒W i

w and P i−1
p ∧ xi ⇒ P i

p by cutting planes addition, then
Si−1

w,p ∧ xi ⇒ Si
w,p by RUP

// Now see whether we could take item i

if w + wi > W then // We cannot take item i

Derive W i−1
w ⇒ xi by addition, then Si−1 ⇒ xi and Si−1

w,p ⇒ Si
w,p by RUP

else // We could take item i

Let (w′, p′) = (w + wi, p + pi)
Extend W i

w′ ⇔
∑i

j=1 wjxj ≥ w′, P i
p′ ⇔

∑i
j=1 pjxj ≤ p′, and then

Si
w′,p′ ⇔W i

w′ ∧ P i
p′ if they do not already exist

Si ← Si ∪ {Si
w′,p′}

Derive W i−1
w ∧ xi ⇒W i

w′ and P i−1
p ∧ xi ⇒ P i

p′ by addition, then
Si−1

w,p ∧ xi ⇒ Si
w′,p′ and Si−1

w,p ⇒ Si
w,p ∨ Si

w′,p′ by RUP
for all Si

w,p ∈ Si that is dominated by some other Si
w′,p′ do

Derive Si
w,p ⇒ Si

w′,p′ by unwrapping
Si ← Si \ {Si

w,p}
Derive

∑
Si ≥ 1 by resolving on each variable in

∑
Si−1 ≥ 1

Delete every constraint created on layer Si−1

if Sn is empty then
Conclude infeasibility

else
Log how we obtain the state with the best profit
Derive that every Sn

w,p contradicts the solution-improving constraint
Conclude optimality

1. Represent the problem as a set of PB inequalities and a PB objective to minimise.
2. Generate an extension variable for each new state, as it is encountered (whether that state

is a node, a matrix entry, or a memoised recursive call). This is also done for infeasible
states.

3. Generate an implication constraint S′ ∧ c⇒ S linking each new state S to its predecessor
S′, showing that if we were in state S′ and we choose a given condition c, then we arrive
at this new state.

4. For any state S that is infeasible, generate a proof S ⇒ ⊥ that being in this state implies
contradiction. (In practice, this can sometimes be combined into the previous step instead,
as we did in Equation (16).)

5. For any state S that is dominated, subsumed, or similar by a better state S′, generate a
proof that S ⇒ S′.

6. Show that we have considered every feasible state on a layer, or generated a complete
column in a matrix, by creating an at-least-one constraint over the extension variables.

7. Derive a conclusion using the at-least-one constraint over the final layer or column.

CP 2024

9:10 Pseudo-Boolean Reasoning About States and Transitions

The first requirement is generally straightforward, since the representation only needs to
be correct, not useful for solving purposes. However, note that this means that our starting
point is a problem, not an algorithm or a recurrence relation for solving that problem: we
are certifying solutions that are found using dynamic programming, rather than specifically
certifying the execution of a dynamic program. Ideally, this representation step should
generally be carried out independently of how we then decide to go on and find a solution.

For the second requirement, we need to ask what kinds of state can be represented using
extension variables in a VeriPB proof. For knapsack, the states represented a conjunction of
pseudo-Boolean inequalities. However, this technique is much more general. For example,
Bergman et al. [2] give an example of a decision diagram solver where states represent sets of
vertices from a graph: these can be represented as conjunctions of Boolean variables, using a
pair of reified inequalities to express a reified equality constraint. Similarly, we can reuse
the encoding described by Gocht et al. [17] to represent anything that could be described in
constraint programming terms using integer variables. It is not so obvious how to represent
rational or real numbers in VeriPB, although in some circumstances these could be handled
by scaling.

For the third requirement, if our conditions and states correspond cleanly to sets of
Boolean variables then this is trivial: we are simply extending a set of inequalities by adding
in additional fixed variables. For the fourth requirement, this may also be trivial, or we may
need to reuse the constraint programming techniques of Gocht et al. [17] to show that a
given partial state is infeasible. The sixth requirement needs only that we can show that we
have indeed considered every possibility moving between layers or columns – for Boolean
variables, this is immediate, whilst for encoded integer variables we can make use of the
at-least-one constraint over each option. The seventh requirement comes down to showing
that, given an optimal full state S and a suboptimal full state S′, S′ does not beat S – this
should follow naturally from the objective function. For each of these requirements, we rely
heavily upon the ability to cleanly wrap and unwrap reified constraints, and to reason as if
reifications were not present using the technique described in Theorem 1 in the appendix.
It is worth stressing that these properties, and the resulting ease of producing this kind of
proof, are a specific characteristic of extended cutting planes, and they do not hold for many
other proof systems.

This leaves the fifth requirement, being able to reason about dominated states. This
potentially requires more creativity – and this should not be surprising, since alongside
tracking states, merging states is the other feature which distinguishes dynamic programming
style algorithms from backtracking search. Fortunately, the VeriPB proof system provides us
with a suite of tools for these scenarios. In many cases, fusion resolution under implications
(which, given s∧r ⇒

∑
i aixi ≥ A and s∧r ⇒

∑
i aixi ≥ A′ lets us infer that s⇒

∑
i aixi ≥

min(A, A′) by resolving away the r) is sufficient, but VeriPB’s strengthening rule also allows
sophisticated symmetry and dominance arguments [4].

At least so long as we are working with Booleans and integers, we have found this
framework to be powerful enough for a wide range of problems. For example, weighted
interval scheduling problems [25] have a natural recursive formulation using a maximum
operation and sums, and dynamic programming gives a polynomial time solving algorithm.
Proof logging for this problem is simpler than knapsack: the states are a simple sum, rather
than a conjunction of sums.

Or, suppose we want to find the longest path in a directed acyclic graph. This also has
a simple dynamic programming formulation, where nodes are visited in topological order.
The longest path ending at a given node is then calculated by looking at each predecessor

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:11

node and adding its longest path cost to the cost of its edge to our given node, and taking
the maximum of these costs. In this case, our proof would use the costs as state variables,
and rather than having two options at each transition, would be selecting between one
option per incoming edge on the node. Note also that the proof process implicitly checks the
correctness of the topological sort: if either the implementation were faulty, or the concept
mathematically flawed (e.g. if we tried to do this in a graph with cycles), then the proof
process would fail.

Of course, this does not mean that we can provide efficient proof logging for every dynamic
programming or decision diagram algorithm that might ever be invented, just as it would
not be reasonable to claim that efficient proof logging is definitely possible for every single
backtracking search algorithm – for example, we do not yet know whether it is practically
feasible to reason about real or floating point numbers in VeriPB. Nor does this automate
the process of adding proof logging to a solver. However, in the same way that the framework
of interleaving RUP backtracking steps with explicit derivations for reasoning has vastly
simplified adding proof logging to a wide range of search algorithms, we can say that these
techniques will vastly reduce the conceptual and implementation hurdles required to use
proof logging for state- and transition-based algorithms.

3.3 Knapsack as a Constraint
We return now to knapsack, but in a more general setting. As well as being an interesting
stand-alone problem, knapsack appears as a constraint in some constraint programming
toolkits. Trick [34] describes a propagator for a single 0/1 integer linear inequality where the
sum is a variable, whilst Fahle and Sellmann [11], Sellmann [30], Katriel et al. [24], Malitsky
et al. [27], and Malitsky et al. [26] work on exactly two integer linear equalities that sum
to two different variables, and do not restrict to 0/1 variables for the items. MiniZinc also
defines the constraint this way [33], whilst XCSP3 [5] allows for more than two inequalities.
In all cases, the multiplier vector(s) are integer constants – sometimes these are required to
be non-negative.

Propagators based upon Trick’s approach can achieve either bounds or domain consistency
on the sum variables, as well as domain consistency on the item variables. This is done by
building a decision diagram, and then, by working from the final layer and moving backwards,
deleting any nodes and edges that do not lead to a feasible state; what remains is a diagram
where every path from the first layer to the final layer corresponds to a solution to the
constraint. Once this is built, on some layers there may only be edges corresponding to the
layer’s item being accepted, or only edges corresponding to the layer’s item being rejected;
in this case, the associated item variable is forced.

Gocht et al. [17] described a framework for proof logging for constraint programming
solvers using VeriPB. This framework supports integer variables, and a number of global
constraints, including integer linear inequalities. To add a new constraint propagator to this
framework, we must have two things. Firstly, we must be able to express the semantics of
the constraint in PB form – this is trivial, because integer linear inequalities are already
supported. Secondly, we must have a way of justifying all reasoning that can be carried
out by its propagator. This will follow a similar pattern to proof logging for a standalone
knapsack solver, but with different states and a more complicated conclusion.

For a standalone knapsack solver, recall that our states Si
w,p represented that the partial

sum of the first i items has weight at least w, and profit at most p. For a constraint, we
instead want to track states that have weight exactly w, and profit exactly p. To do this, we
can introduce the four extension variables

CP 2024

9:12 Pseudo-Boolean Reasoning About States and Transitions

W↑i
w ⇔

i∑
j=1

wjxj ≥ w W↓i
w ⇔

i∑
j=1

wjxj ≤ w (24)

P↑i
p ⇔

i∑
j=1

pjxj ≥ p P↓i
p ⇔

i∑
j=1

pjxj ≤ p (25)

which allow us to define

Si
w,p ⇔W↑i

w + W↓i
w + P↑i

p + P↓i
p ≥ 4. (26)

When building the structure of the proof, there are five differences.
1. We must construct implications for all four partial states, rather than just two.
2. We must bear in mind that we might be inside a backtracking search, and so some of

the information we have about variables might be conditional. Fortunately this is not
a concern: recall that any RUP or cutting planes proof can trivially and efficiently be
extended to operate under assumptions.

3. We might be dealing with constraint programming variables whose domains are not
0/1. This means there may be more than two edges coming out of a state. To derive
the implications for partial sums, we follow Gocht et al.’s approach of introducing
direct variables as required, and then we use an additional cutting planes multiplication
operation. We must also take care when deriving the at-least-one constraint over each
layer, because this relies upon exhaustively branching. Again, this is dealt with by Gocht
et al.’s framework, which allows us to obtain an at-most-one constraint for any constraint
programming variable’s values.

4. We may now only merge states with exact matches on weights and profits. This is true
both algorithmically and in proof terms – reassuringly, if we were to forget this condition
when implementing the propagation algorithm, we would quickly find it impossible to
construct the appropriate implication steps in the proof.

5. We cannot delete intermediate layers as we go: we want to reason about the diagram as a
whole, so it stands to reason that the structure of the diagram must remain in the proof.
However, we can delete every intermediate constraint once the conclusions are derived.

Rather than establishing a proof of optimality, a knapsack propagator’s proof aims to
show lack of support for some variables’ values. By looking at the possible weights and
profits on the final layer of the decision diagram, we can recognise that either some bounds
or some specific values are unsupported by the constraint; we can derive these facts inside a
proof by resolving over the at-least-one constraint on the final layer. This gives us either
bounds or domain consistency on the sum variables, as we prefer.

The backwards pass, which shows lack of support on the item values, is also straightfor-
ward – since our propagation algorithm works backwards from the final layer, eliminating
infeasible nodes, it is sufficient to use RUP steps to show that the corresponding states must
be false. Once this has been done, eliminating values from item variables also follows by
RUP. This closely resembles the steps used by McIlree and McCreesh [29] to generate proofs
from propagations for the regular language membership constraint.

4 Implementations and Evaluation

Before presenting the results of our empirical evaluation, it is important to ask what the
purpose of such an evaluation should be. Rather than trying to implement the world’s fastest
dynamic programming algorithms or propagators, or even to tell you when to use these

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:13

0
100
200
300
400
500
600
700
800
900

1000

3600000 100000 200000 300000

V
er

ifi
ca

ti
on

ti
m

e
(s

)

Number of states + transitions

Original proof
y = 1/31830 x1.34

Kernel proof
y = 1/922 x1.01

10

50

100

150

200

250

N
um

be
r

of
it

em
s

in
in

st
an

ce

Figure 1 Verification times for knapsack problem instances with between 10 and 250 items (shown
using colour). The power law fit lines show the original proof and the rewritten kernel proof times,
plotted against the number of states plus transitions required to solve the instance.

techniques, the main aim of this paper is to demonstrate that if you choose to use these
techniques, then certifying correctness using pseudo-Boolean proof logging is viable. To
show this, we have implemented1 stand-alone solvers for three problems: knapsack, longest
path in a directed acyclic graph, and interval scheduling. For knapsack, we implemented
both top-down and matrix-based algorithms, whilst for the other two problems we used
only a matrix. With the aim of the paper in mind, our key measure of success from these
implementations is that we were able to add proof logging to each solver simply by adding
in statements to log information that was already present, without needing to extend or
change the underlying algorithm. To validate our implementations, we tested them on a
large number of randomly generated instances and were able to verify every proof produced.

Our proofs in each case are generated efficiently, having cost and length roughly linear in
the amount of work done by the solver. However, the constant factor slowdown needed to
write these proofs to disk is potentially large. Creating a new entry in a dynamic programming
table for a problem such as knapsack can be extremely fast, requiring only a few additions,
comparisons, and memory accesses. However, to justify an entry and the transition leading
to it, we need to write several lines of text to a file. For an efficiently implemented algorithm,
this can easily lead to more than an order of magnitude slowdown. This is much worse than
for, e.g. SAT solving, because a CDCL solver does much more computation per proof step
than a simple knapsack algorithm.

But what about proof verification time – is that also roughly linear in proof size? This
turns out to be a more complex question. When using only explicit cutting planes derivations,
we would expect the cost of verifying each proof step to depend only upon the number
of operations. However, verifying reverse unit propagation or strengthening steps requires
achieving bounds consistency over the active set of inequalities, which is not a constant-time
operation. In the top line of Figure 1 we show the verification times required for 1,200
randomly generated knapsack problem instances with between 10 and 250 items, with random
weights and profits both between 1 and 10, and a maximum weight of between 50 and 1000,
solved using the top-down approach. (These parameters were selected to give instances where
dynamic programming is a good choice of solving technique, so that we can measure the
scalability of proof verification: we are trying to challenge the proof verifier, not the solver.)

1 https://doi.org/10.5281/zenodo.12574620

CP 2024

https://doi.org/10.5281/zenodo.12574620

9:14 Pseudo-Boolean Reasoning About States and Transitions

We measure verification time as a function of the number of states plus transitions required
to solve each instance, since this is in effect “the amount of work” the solver took to solve an
instance. The fit line suggests that verification scales worse than linearly, but better than
quadratically.

Similarly to how DRAT proofs can be converted to LRAT proofs, VeriPB is able to rewrite
proofs into a simplified “kernel format” that does not require any propagations to verify:
reverse unit propagation steps are rewritten to cutting planes derivations, and strengthening
rule applications are also given explicit cutting planes subproofs for each proof goal [15].
Carrying out this simplification is not computationally more expensive than verifying the
proof, and introduces only a small additional slowdown for outputting the rewritten proof to
disk. In Figure 1 we also plot the time taken to verify these rewritten proofs, achieving the
lower line. Now, the power law fit line suggests that verification time scales extremely close
to linearly with proof size, with a verification rate of a little below a thousand states and
transitions per second (which we expect to vary considerably based upon hardware and disk
speeds). In principle, solvers could output these kernel proofs directly, avoiding the need for
proof rewriting if an important concern is the initial proof verification time; however, this
would require considerably more work from solver authors.

Finally, we have also implemented the knapsack constraint inside the Glasgow Constraint
Solver, using a top-down construction. Our implementation supports arbitrarily many
simultaneous inequalities, and is not restricted to 0/1 variables. It achieves domain consistency
on every variable. Again, we were able to do this without having to restrict or alter the
underlying propagation algorithm: VeriPB proofs are powerful enough to conveniently express
the reasoning we wanted to carry out, and we did not have to design an algorithm specifically
to make proof logging possible. To validate the implementation, we used the same system as
other constraints in the Glasgow Subgraph Solver, where curated and randomly generated
test data is combined with proof checking inside a continuous integration framework; we
have successfully verified thousands of proofs in this manner. In terms of performance, any
measurements are extremely sensitive to disk write speeds and to details of implementation,
to the extent that using shorter variable names inside proofs can have a significant effect
upon running times. However, to give indicative figures, verifying knapsack propagation
proofs is typically between twenty and fifty times more expensive than producing them; this
is somewhat more expensive than for some other propagators [17, 29], likely due to the large
number of extension variables used in the proofs.

5 Conclusion

We have shown that the VeriPB proof system supports convenient and efficient proofs for a
range of dynamic programming algorithms, and that it can do so regardless of whether the
algorithms use a matrix, recursion and memoisation, or a top-down construction, and even
when we are inside a dynamic programming propagator in a constraint programming toolkit.
We saw that the cutting planes proof system makes it both natural and efficient to reason
about reified linear inequalities, whilst extension variables give us the power to describe the
logical relationships between states.

The knapsack propagation example showed how different conclusions could be inferred,
depending upon how states were represented: when solving the knapsack problem directly,
we tracked less information, thus allowing more states to be merged, whilst for constraint
propagation our states were more expressive. This example could be extended further, e.g.
to relaxed and restricted decision diagrams, where we are allowed to violate some constraints

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:15

and only achieve a lower or upper bound rather than an exact solution. In such a setting, our
ability to compose proofs and to run proofs conditional upon assumptions or guesses would
be very helpful, since modern decision diagram based solvers can construct many decision
diagrams during the solving process.

An interesting open question is how to extend this work to cover problems where we
want to count solutions, rather than finding an optimal solution. Once a decision diagram
or dynamic programming matrix has been constructed, solution counts are often easily
accessible. However, this property does not immediately transfer through to proofs. In
the same way that DRAT proofs can only be used to reason “without loss of satisfaction”,
VeriPB proofs establish “without loss of optimality”. This means that solutions can be
removed, so long it can be shown that another equally-good-or-better solution exists (for
example, through symmetry or dominance breaking). We believe it is important to give
solver authors the ability to write proofs that correspond precisely to the real-world problem
being solved. As such, we would like to see an appropriate theoretical foundation that will
allow solvers to produce proofs either for optimality reasoning or for counting, with only
minimal changes that reflect the algorithmic differences needed in the two settings. We would
also be interested to know whether VeriPB can reasonably be used to work with rational or
real numbers, either by scaling or more advanced techniques.

References

1 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.
Certified core-guided MaxSAT solving. In Brigitte Pientka and Cesare Tinelli, editors,
Automated Deduction - CADE 29 - 29th International Conference on Automated Deduction,
Rome, Italy, July 1-4, 2023, Proceedings, volume 14132 of Lecture Notes in Computer Science,
pages 1–22. Springer, 2023. doi:10.1007/978-3-031-38499-8_1.

2 David Bergman, André A. Ciré, Ashish Sabharwal, Horst Samulowitz, Vijay A. Saraswat,
and Willem Jan van Hoeve. Parallel combinatorial optimization with decision diagrams. In
Helmut Simonis, editor, Integration of AI and OR Techniques in Constraint Programming -
11th International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings,
volume 8451 of Lecture Notes in Computer Science, pages 351–367. Springer, 2014. doi:
10.1007/978-3-319-07046-9_25.

3 David Bergman, André A. Ciré, Willem-Jan van Hoeve, and John N. Hooker. Decision
Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms.
Springer, 2016. doi:10.1007/978-3-319-42849-9.

4 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance
and symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539–1589,
2023. doi:10.1613/JAIR.1.14296.

5 Frédéric Boussemart, Christophe Lecoutre, and Cédric Piette. XCSP3: an integrated format
for benchmarking combinatorial constrained problems. CoRR, abs/1611.03398, 2016. arXiv:
1611.03398.

6 Randal E. Bryant. Tbuddy: A proof-generating BDD package. In Alberto Griggio and
Neha Rungta, editors, 22nd Formal Methods in Computer-Aided Design, FMCAD 2022,
Trento, Italy, October 17-21, 2022, pages 49–58. IEEE, 2022. doi:10.34727/2022/ISBN.
978-3-85448-053-2_10.

7 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

CP 2024

https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-319-07046-9_25
https://doi.org/10.1007/978-3-319-07046-9_25
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1613/JAIR.1.14296
https://arxiv.org/abs/1611.03398
https://arxiv.org/abs/1611.03398
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10

9:16 Pseudo-Boolean Reasoning About States and Transitions

8 Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Friedrich Eisenbrand and Jochen Könemann, editors, Integer Programming and
Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON,
Canada, June 26-28, 2017, Proceedings, volume 10328 of Lecture Notes in Computer Science,
pages 148–160. Springer, 2017. doi:10.1007/978-3-319-59250-3_13.

9 Chiu Wo Choi, Warwick Harvey, J. H. M. Lee, and Peter J. Stuckey. Finite domain bounds
consistency revisited. In AI 2006: Advances in Artificial Intelligence, 19th Australian Joint
Conference on Artificial Intelligence, Hobart, Australia, December 4-8, 2006, Proceedings, pages
49–58, 2006. doi:10.1007/11941439_9.

10 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-
Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden,
August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages
220–236. Springer, 2017. doi:10.1007/978-3-319-63046-5_14.

11 Torsten Fahle and Meinolf Sellmann. Cost based filtering for the constrained knapsack problem.
Ann. Oper. Res., 115(1-4):73–93, 2002. doi:10.1023/A:1021193019522.

12 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In International Sym-
posium on Artificial Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida, USA,
January 2-4, 2008, 2008. URL: http://isaim2008.unl.edu/PAPERS/TechnicalProgram/
ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf.

13 Stephan Gocht. Certifying Correctness for Combinatorial Algorithms: by Using Pseudo-
Boolean Reasoning. PhD thesis, Lund University, Sweden, 2022. URL: https://lup.lub.lu.
se/record/3550cb96-83d5-4fc7-9e62-190083a3c10a.

14 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and
James Trimble. Certifying solvers for clique and maximum common (connected) subgraph
problems. In Helmut Simonis, editor, Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,
Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
2020. doi:10.1007/978-3-030-58475-7_20.

15 Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. End-to-end verification for subgraph solving. In Michael J. Wooldridge,
Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial
Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 8038–8047. AAAI Press,
2024. doi:10.1609/AAAI.V38I8.28642.

16 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets
cutting planes: Solving with certified solutions. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
1134–1140. ijcai.org, 2020. doi:10.24963/ijcai.2020/158.

17 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Christine Solnon, editor, 28th International Conference on Principles and Practice
of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, volume
235 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPICS.CP.2022.25.

18 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
boolean proofs. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pages 3768–3777. AAAI Press, 2021. doi:10.1609/AAAI.V35I5.16494.

19 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 181–188. IEEE, 2013. URL: https://ieeexplore.ieee.org/
document/6679408/.

https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1007/11941439_9
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1023/A:1021193019522
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
https://lup.lub.lu.se/record/3550cb96-83d5-4fc7-9e62-190083a3c10a
https://lup.lub.lu.se/record/3550cb96-83d5-4fc7-9e62-190083a3c10a
https://doi.org/10.1007/978-3-030-58475-7_20
https://doi.org/10.1609/AAAI.V38I8.28642
https://doi.org/10.24963/ijcai.2020/158
https://doi.org/10.4230/LIPICS.CP.2022.25
https://doi.org/10.1609/AAAI.V35I5.16494
https://ieeexplore.ieee.org/document/6679408/
https://ieeexplore.ieee.org/document/6679408/

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:17

20 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with exten-
ded resolution. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.
Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer,
2013. doi:10.1007/978-3-642-38574-2_24.

21 John N. Hooker. Generalized resolution for 0-1 linear inequalities. Ann. Math. Artif. Intell.,
6(1-3):271–286, 1992. doi:10.1007/BF01531033.

22 John N. Hooker. Decision diagrams and dynamic programming. In Carla P. Gomes and
Meinolf Sellmann, editors, Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, 10th International Conference, CPAIOR 2013,
Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings, volume 7874 of Lecture Notes in
Computer Science, pages 94–110. Springer, 2013. doi:10.1007/978-3-642-38171-3_7.

23 Toni Jussila, Carsten Sinz, and Armin Biere. Extended resolution proofs for symbolic
SAT solving with quantification. In Armin Biere and Carla P. Gomes, editors, Theory and
Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA,
USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer Science,
pages 54–60. Springer, 2006. doi:10.1007/11814948_8.

24 Irit Katriel, Meinolf Sellmann, Eli Upfal, and Pascal Van Hentenryck. Propagating knapsack
constraints in sublinear time. In Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages 231–236.
AAAI Press, 2007. URL: http://www.aaai.org/Library/AAAI/2007/aaai07-035.php.

25 Antoon W.J. Kolen, Jan Karel Lenstra, Christos H. Papadimitriou, and Frits C.R. Spieksma.
Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543, 2007. doi:
10.1002/nav.20231.

26 Yuri Malitsky, Meinolf Sellmann, and Radoslaw Szymanek. Filtering bounded knapsack
constraints in expected sublinear time. In Maria Fox and David Poole, editors, Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia,
USA, July 11-15, 2010, pages 141–146. AAAI Press, 2010. doi:10.1609/AAAI.V24I1.7560.

27 Yuri Malitsky, Meinolf Sellmann, and Willem Jan van Hoeve. Length-lex bounds consistency
for knapsack constraints. In Peter J. Stuckey, editor, Principles and Practice of Constraint
Programming, 14th International Conference, CP 2008, Sydney, Australia, September 14-18,
2008. Proceedings, volume 5202 of Lecture Notes in Computer Science, pages 266–281. Springer,
2008. doi:10.1007/978-3-540-85958-1_18.

28 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-
gorithms. Comput. Sci. Rev., 5(2):119–161, 2011. doi:10.1016/J.COSREV.2010.09.009.

29 Matthew J. McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints.
In Roland H. C. Yap, editor, 29th International Conference on Principles and Practice of
Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada, volume 280 of
LIPIcs, pages 26:1–26:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.CP.2023.26.

30 Meinolf Sellmann. Approximated consistency for knapsack constraints. In Francesca Rossi,
editor, Principles and Practice of Constraint Programming - CP 2003, 9th International
Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Proceedings, volume
2833 of Lecture Notes in Computer Science, pages 679–693. Springer, 2003. doi:10.1007/
978-3-540-45193-8_46.

31 Carsten Sinz and Armin Biere. Extended resolution proofs for conjoining bdds. In Dima
Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science - Theory and
Applications, First International Symposium on Computer Science in Russia, CSR 2006, St.
Petersburg, Russia, June 8-12, 2006, Proceedings, volume 3967 of Lecture Notes in Computer
Science, pages 600–611. Springer, 2006. doi:10.1007/11753728_60.

32 Steven Skiena. The Algorithm Design Manual, Third Edition. Texts in Computer Science.
Springer, 2020. doi:10.1007/978-3-030-54256-6.

CP 2024

https://doi.org/10.1007/978-3-642-38574-2_24
https://doi.org/10.1007/BF01531033
https://doi.org/10.1007/978-3-642-38171-3_7
https://doi.org/10.1007/11814948_8
http://www.aaai.org/Library/AAAI/2007/aaai07-035.php
https://doi.org/10.1002/nav.20231
https://doi.org/10.1002/nav.20231
https://doi.org/10.1609/AAAI.V24I1.7560
https://doi.org/10.1007/978-3-540-85958-1_18
https://doi.org/10.1016/J.COSREV.2010.09.009
https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.1007/978-3-540-45193-8_46
https://doi.org/10.1007/978-3-540-45193-8_46
https://doi.org/10.1007/11753728_60
https://doi.org/10.1007/978-3-030-54256-6

9:18 Pseudo-Boolean Reasoning About States and Transitions

33 Peter J. Stuckey, Kim Marriott, and Guido Tack. The MiniZinc handbook section 4.2.1: Global
constraints, 2023. URL: https://www.minizinc.org/doc-2.5.3/en/lib-globals.html.

34 Michael A. Trick. A dynamic programming approach for consistency and propagation for
knapsack constraints. Ann. Oper. Res., 118(1-4):73–84, 2003. doi:10.1023/A:1021801522545.

35 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory
and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
2014. doi:10.1007/978-3-319-09284-3_31.

A Proofs Under Implications

In various pseudo-Boolean (PB) proof logging projects, it has been useful to rely on the
assumption that if we have an efficient proof procedure for deriving a constraint D from a
set of constraints F , then we can convert this into an efficient procedure for deriving R⇒ D

from the set of constraints {R ⇒ C : C ∈ F} for some conjunction of literals R. In this
appendix we formalise and generalise this property, showing that efficient cutting-planes
proofs can be “unrestricted” to construct analogous efficient proofs where the premises and
conclusion are subject to (potentially different) conditions using reification.

A.1 Notation
A (partial) assignment is a (partial) function from variables to {0, 1}; we extend an assign-
ment ρ from variables to literals in the natural way by respecting the meaning of negation,
and for literals ℓ over variables x not in the domain of ρ, denoted x ̸∈ dom(ρ), we use the
convention ρ(ℓ) = ℓ. For notational convenience, we can also view ρ as the set of literals
{ℓ : ρ(ℓ) = 1} assigned true by ρ. Applying ρ to a constraint C =

∑
i aiℓi ≥ K yields

C↾ρ
.=

∑
ℓi:ρ(ℓi)=ℓi

aiℓi ≥ K −
∑

ℓj∈ρ(ℓj)=1

aj (27)

substituting literals as specified by ρ. We extend this notation to applying assignments to F

in the natural way F↾ρ =
⋃

C∈F C↾ρ.
We will write Vars(C), Vars(F), Lits(C) and Lits(F) to denote the sets of variables or

literals appearing in a PB constraint C or formula F .

A.2 Constructing Proofs Under Implications
We can now state our main result in its general form.

▶ Theorem 1. Let F be a PB formula over n variables, ρ be a partial assignment, and suppose
that from F↾ρ we can derive a constraint D using a cutting planes and RUP derivation of
length L. Then we can construct a derivation of length O(n · L) from F of the constraint∧

ℓ∈ρ

ℓ⇒ D. (28)

In what follows, we assume all constraints are normalised. We will first show the following.

▶ Lemma 2. For any PB constraint C and partial assignment ρ, we can always derive∧
ℓ∈ρ ℓ⇒ C↾ρ from C using a cutting planes derivation of length O(|Vars(C)|).

https://www.minizinc.org/doc-2.5.3/en/lib-globals.html
https://doi.org/10.1023/A:1021801522545
https://doi.org/10.1007/978-3-319-09284-3_31

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:19

Proof. First, let us write C as∑
ℓi∈Lits(C) :

ρ(ℓi)=ℓ

aiℓi +
∑

ℓj∈Lits(C) :
ρ(ℓj)=1

bjℓj +
∑

ℓk∈Lits(C) :
ρ(ℓk)=ℓ

ckℓk ≥ K. (29)

Then, if we let B =
∑

ℓj∈Lits(C) :
ρ(ℓj)=1

bj , we note that C↾ρ is the constraint

∑
ℓi∈Lits(C) :

ρ(ℓi)=ℓ

aiℓi ≥ K −B (30)

and
∧

ℓ∈ρ ℓ⇒ C↾ρ is the constraint∑
ℓj∈Lits(C) :

ρ(ℓj)=1

(K −B)ℓj +
∑

ℓk∈Lits(C) :
ρ(ℓk)=0

(K −B)ℓk +
∑

ℓi∈Lits(C) :
ρ(ℓi)=ℓ

aiℓi ≥ K −B (31)

To derive Equation (31) from Equation (29) we can proceed as follows.
1. For all j, add the literal axioms amounting to bjℓj ≥ 0 to Equation (29) yielding∑

ℓk∈Lits(C) :
ρ(ℓk)=ℓ

ckℓk +
∑

ℓi∈Lits(C) :
ρ(ℓi)=ℓ

aiℓi ≥ K −B (32)

2. Saturate to ensure that for all k, ck ≤ K −B.
3. Add literal axioms ℓk ≥ 0 and ℓj ≥ 0 as needed to obtain Equation (31).
This amounts to at most one weakening step per variable appearing in C, along with one
saturation step, and hence has length O(|Vars(C)|). ◀

We are now able to prove the main result.

Proof. Let π = (D1, . . . , DL = D) be the derivation of D from F↾ρ, and denote by πs the
set {D1, . . . , Ds−1} of constraints prior to derivation step s. Each Ds is one of the following:

An axiom (constraint in F↾ρ).
A literal axiom.
The result of a cutting planes operation, with antecedents in πs.
A RUP constraint with respect to F↾ρ ∪ πs.

We will proceed by structural induction on π and show that for any Ds we can construct a
length O(n · s) derivation that

∧
ℓ∈ρ ℓ⇒ Ds from F .

For the base cases, we consider an axiom Da ∈ F↾ρ. We must have some constraint
C ∈ F such that C↾ρ = Da. Hence we can derive C as an axiom, and then by Lemma 2 we
can derive

∧
ℓ∈ρ ℓ⇒ C↾ρ, i.e.

∧
ℓ∈ρ ℓ⇒ Da, in O(|Vars(C)|) ⊆ O(n) steps. Note that if Da

is instead a literal axiom then
∧

ℓ∈ρ ℓ⇒ Da is also a literal axiom, because the reification
coefficients will all be zero.

Now assume for any non-axiom constraint Ds we have already constructed a derivation
of length O(n · (s − 1)) deriving all the constraints in π′

s =
{∧

ℓ∈ρ ℓ ⇒ Di : Di ∈ πs

}
. We

now consider different cases depending on how Ds was derived in π.

Case 1: Ds is the result of adding two constraints Di, Dj ∈ πs.
Then by assumption

∧
ℓ∈ρ ℓ⇒ Di, and

∧
ℓ∈ρ ℓ⇒ Dj have already been derived. If we let

Ki and Kj be the degrees of Di and Dj respectively, we can write these in the form∑
ℓ∈ρ

Kiℓ̄ + Di (33)

CP 2024

9:20 Pseudo-Boolean Reasoning About States and Transitions

and ∑
ℓ∈ρ

Kj ℓ̄ + Dj , (34)

and so adding these together yields∑
ℓ∈ρ

(Ki + Kj)ℓ̄ + Ds. (35)

If Ks is the degree of Ds, note that we must have Ks ≤ Ki + Kj , since cancellation of
matching literals when adding Di and Dj can only reduce the degree of their sum. Hence
if we apply saturation to Equation (35) we obtain

∑
ℓ∈ρ Ksℓ + Ds, i.e.

∧
ℓ∈ρ ℓ⇒ Ds, as

required.
Case 2: Ds is result of multiplying a constraint Di ∈ πs by a scalar λ.

Then by assumption
∧

ℓ∈ρ ℓ⇒ Di has already been derived, and again we can write this
as ∑

ℓ∈ρ

Kiℓ̄ + Di (36)

where Ki is the degree of Ki. If we multiply this by λ we obtain∑
ℓ∈ρ

λKiℓ̄ + λDi (37)

which is precisely
∧

ℓ∈ρ ℓ⇒ Ds, as required.
Case 3: Ds is the result of dividing a constraint Di ∈ πs by a scalar λ.

Then again by assumption
∧

ℓ∈ρ ℓ⇒ Di has already been derived, and this time we will
write this in full as∑

ℓ∈ρ

Kiℓ̄ +
∑

j

ajℓj ≥ Ki. (38)

If we divide this by λ we obtain∑
ℓ∈ρ

⌈(Ki/λ)⌉ℓ̄ +
∑

j

⌈aj/λ⌉ℓj ≥ ⌈(Ki/λ)⌉, (39)

which is precisely
∧

ℓ∈ρ ℓ⇒ Ds, as required.
Case 4: Ds is the result of applying saturation to a constraint Di ∈ πs.

Once again by assumption
∧

ℓ∈ρ ℓ⇒ Di has already been derived, and we can write this
in full as above in Equation (38). After applying saturation to this we obtain∑

ℓ∈ρ

min(Ki, Ki)ℓ̄ +
∑

j

min(aj , Ki)ℓj ≥ Ki. (40)

which is precisely
∧

ℓ∈ρ ℓ⇒ Ds, as required.
Case 5: Ds is the result of applying weakening (adding literal axioms) to a constraint

Di ∈ πs.
In this case we can view the added literal axioms as another degree-0 constraint Dj , which
we can always derive, and so the fact we can obtain

∧
ℓ∈ρ ℓ⇒ Ds follows immediately

from Case 1.

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:21

Case 6: Ds is a RUP constraint.
Write Ds =

∑
i aiℓi ≥ K and let A =

∑
i ai. Then

∧
ℓ∈ρ ℓ⇒ Ds is the constraint∑

ℓ∈ρ

Kℓ̄ +
∑

i

aiℓi ≥ K, (41)

and its negation is∑
ℓ∈ρ

Kℓ +
∑

i

aiℓi ≥ A + 1 + (|ρ| − 1)K. (42)

We can see that for Equation (42) to be satisfied, all the reification literals ℓ ∈ ρ must be
set to true. Recalling that all constraints in π′

s =
{∧

ℓ∈ρ ℓ⇒ Di : Di ∈ πs

}
are all assumed

to have been previously derived, we can see that performing unit propagation will reduce
constraints in F ∪ π′

s ∪ ¬(
∧

ℓ∈ρ ℓ⇒ D) to be precisely the constraints in F↾ρ ∪ πs ∪ ¬D.
Since by assumption deriving Ds from F↾ρ ∪ πs by RUP was a legitimate derivation step,
continued unit propagation on the constraint database must result in a contradiction.
Hence we can derive

∧
ℓ∈ρ ℓ⇒ D from F ∪ π′

s as a single RUP step.

In all of these cases, we only need a constant number (at most two) proof steps, to
derive

∧
ℓ∈ρ ℓ⇒ Ds, from what was assumed to already be derived, and so by starting from

the axioms and applying induction we can construct a derivation which includes all of the
constraints in π′

L =
{∧

ℓ∈ρ ℓ⇒ Di : Di ∈ π
}

and in particular our desired
∧

ℓ∈ρ ℓ⇒ DL.

Since each of the L constraints in π′
L requires at most O(n) intermediate derivation steps,

our constructed derivation has length at most O(n · L). ◀

With Theorem 1 established we easily obtain the following useful corollary.

▶ Corollary 3. Let F be a PB formula over n variables and let R be a set of literals over
distinct variables not appearing in F (i.e. for any ℓ ∈ R, ℓ /∈ R and ℓ /∈ Lits(F)). Then let
R(F) be a set of reified constraints {RC ⇒ C : C ∈ F}, where each reifying term RC is a
conjunction of literals in R.

Then, if we can derive a constraint D from F using a cutting planes and RUP derivation
of length L, we can construct a derivation of length O(L ·n) of the constraint

∧
C∈F RC ⇒ D

from R(F).

Proof. Take the partial assignment ρ setting ℓ = 1 for each ℓ ∈ R and apply Theorem 1. ◀

Finally, we conclude with a closer look at when the O(n ·L) worst case in Theorem 1 will
actually occur.

▶ Observation 4. In practice, we can often consider the length of the constructed derivation
in Theorem 1 to be O(L) rather than O(n · L). This is because the O(n) overhead occurs
only in the base case when transforming an axiom from the initial formula to the required
form by adding literal axioms (n in the worst case) and saturating as described in Lemma 2.
We can achieve the same transformation in O(1) steps when a syntactic implication rule is
implemented, as is the case for the VeriPB proof checker. This automatically checks that
literal axioms can be added to a previously derived constraint to obtain a specified constraint.

CP 2024

Anytime Weighted Model Counting with
Approximation Guarantees for Probabilistic
Inference
Alexandre Dubray #

Institute of Information and Communication Technologies, Electonics and Applied Mathematics
(ICTEAM), UCLouvain, Belgium

Pierre Schaus #

Institute of Information and Communication Technologies, Electonics and Applied Mathematics
(ICTEAM), UCLouvain, Belgium

Siegfried Nijssen #

Institute of Information and Communication Technologies, Electonics and Applied Mathematics
(ICTEAM), UCLouvain, Belgium

Abstract
Weighted model counting (WMC) plays a central role in probabilistic reasoning. Given that this
problem is #P −hard, harder instances can generally only be addressed using approximate techniques
based on sampling, which provide statistical convergence guarantees: the longer a sampling process
runs, the more accurate the WMC is likely to be. In this work, we propose a deterministic search-
based approach that can also be stopped at any time and provides hard lower- and upper-bound
guarantees on the true WMC. This approach uses a value heuristic that guides exploration first
towards models with a high weight and leverages Limited Discrepancy Search to make the bounds
converge faster. The validity, scalability, and convergence of our approach are tested and compared
with state-of-the-art baseline methods on the problem of computing marginal probabilities in
Bayesian networks and reliability estimation in probabilistic graphs.

2012 ACM Subject Classification Mathematics of computing → Probabilistic inference problems;
Theory of computation → Probabilistic computation; Mathematics of computing → Approximation

Keywords and phrases Projected Weighted Model Counting, Limited Discrepancy Search, Approx-
imate Method, Probabilistic Inference

Digital Object Identifier 10.4230/LIPIcs.CP.2024.10

Supplementary Material
Software (Source Code): https://github.com/aia-uclouvain/schlandals [8]

archived at swh:1:dir:3ffca0d07dbd88cffbbdfda6e3f0ae09a9e77ac0
Dataset: https://github.com/AlexandreDubray/bn-benchmarks

archived at swh:1:dir:e4644057447aa2f4b9579b41744a6dede462da6a
Dataset: https://github.com/AlexandreDubray/probabilistic-graph-benchmarks

archived at swh:1:dir:fc1586f609a54f32b09e4d71eda2eb6457f00d20

1 Introduction

Model counting, the problem of counting the number of satisfying assignments of a propos-
itional formula, is a canonical #P−hard problem with many applications. In particular,
(projected) weighted model counting ((P)WMC) has been extensively used for probabilistic
reasoning problems, such as computing the marginals in Bayesian Networks [4, 5, 20, 9]
or reliability estimation in probabilistic graphs [10, 9]. While model counters are becom-
ing increasingly efficient, computing an exact probability is not always possible for large
probabilistic models. Methods computing an approximation of the probability offer better

© Alexandre Dubray, Pierre Schaus, and Siegfried Nijssen;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexandre.dubray@uclouvain.be
https://orcid.org/0000-0002-3302-870X
mailto:pierre.schaus@uclouvain.be
https://orcid.org/0000-0002-3153-8941
mailto:siegfried.nijssen@uclouvain.be
https://orcid.org/0000-0003-2678-1266
https://doi.org/10.4230/LIPIcs.CP.2024.10
https://github.com/aia-uclouvain/schlandals
https://archive.softwareheritage.org/swh:1:dir:3ffca0d07dbd88cffbbdfda6e3f0ae09a9e77ac0;origin=https://github.com/aia-uclouvain/schlandals;visit=swh:1:snp:e0f5e782a682d1a3b8a76ae9766ace1757327710;anchor=swh:1:rev:1d4146530117a921b23b1ffb7703587af1a1bdb6
https://github.com/AlexandreDubray/bn-benchmarks
https://archive.softwareheritage.org/swh:1:dir:e4644057447aa2f4b9579b41744a6dede462da6a;origin=https://github.com/AlexandreDubray/bn-benchmarks;visit=swh:1:snp:b2870f9831eb6448f5c16a08c3951655adf28957;anchor=swh:1:rev:08be2bab93cd10ef58b573438495163e03ad2dd8
https://github.com/AlexandreDubray/probabilistic-graph-benchmarks
https://archive.softwareheritage.org/swh:1:dir:fc1586f609a54f32b09e4d71eda2eb6457f00d20;origin=https://github.com/AlexandreDubray/probabilistic-graph-benchmarks;visit=swh:1:snp:d3a4e9a7f5ef43eb23f027d5d2b72104e83fbdbd;anchor=swh:1:rev:9caa9820658078572349ce735aa6d0e0a31c86c0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Anytime WMC with Approximation Guarantees for Probabilistic Inference

scalability, but their guarantees are often statistical [3, 1, 12, 11, 13, 18]. Such methods
are often based on sampling, meaning they can be stopped anytime. Moreover, the more
the sampling process runs, the more accurate the estimated probability will likely be. For
example, model counters providing so-called (ε, δ)−guarantees return an approximation
whose relative error is bounded by a parameter ε with probability 1− δ [3, 1]. Some methods
offer weaker guarantees; they ensure that the probability of returning a wrong lower bound
on the probability decreases with the number of iterations [13, 18].

This work proposes a new search-based method for solving PWMC problems. It can be
stopped at any time and returns hard bounds on the true count. We show that a DPLL-style
model counter can maintain a lower and an upper bound on the true count at each search
tree node. This modified version of the classical DPLL-style algorithm can be stopped at
any time during its execution, providing deterministic guarantees on the true count. Then,
we observe that in the specific context of weighted model counting, Limited Discrepancy
Search [14] (LDS) offers advantages compared to classical depth-first-search methods. Based
on this observation, we propose a simple value-selection heuristic that favors the most likely
model and use it in an LDS-based search. Our final contribution is to link the lower and
upper bound on the true count to the well-known ε-guarantee. We show that bounds can be
used to compute an approximate probability that satisfies an ε requirement and to determine
the quality of an approximate model count returned by our algorithm when interrupted by a
time-out. Using this theoretical result and the LDS-based search, we provide the first anytime
method that can return, during its execution, approximate weighted counts with minimal
ε-guarantees. We implemented this method, named Schlandals-LDS-ε, in Schlandals [9],
a recently proposed projected weighted model counter specialized for probabilistic inference.
We compare our method against state-of-the-art solvers on two major probabilistic reasoning
tasks: computing marginal probabilities in Bayesian networks and reliability estimation in
probabilistic graphs. Our experiments show that Schlandals-LDS-ε performs better on both
tasks when looking at the number of solved instances and bound convergence, validating the
effectiveness of our bound calculation and LDS-based weighted model counting.

The rest of this paper is organized as follows. We review the technical background for
model counting and Schlandals in Section 2, followed by a review of the related work in
Section 3. In Section 4, we present Schlandals-LDS-ε We first introduce how to compute
bounds in Section 4.1 and then the search based on Limited Discrepancy Search in Section 4.2.
We show the link between the bounds and ε-guarantees in Section 4.3. We compare our
work with existing methods and evaluate the convergence of our bounds in Section 5 before
concluding in Section 6.

2 Technical Background

Let F be a boolean formula over a set of variables V . An interpretation I for a formula F is
a complete assignment to all variables in F , and a partial interpretation is an interpretation
on a subset of all the variables in F . We use I = {a = ⊤, b = ⊥} to denote an interpretation
in which a is true (⊤) and b is false (⊥). By F [I], we denote the evaluation of F under
I, using the standard way of interpreting logical formulas. If F [I] = ⊤, I is a model of
F . Let MF = {I ∈ {0, 1}|V| | F [I] = ⊤} be the set of models of F . The goal of a model
counter is to compute |MF |, the number of models of F . In weighted model counting,
each variable v ∈ V has two weights ω(v+) and ω(v−); the weight of an interpretation is
defined as ω(I) =

∏
v∈I|v=⊤ ω(v+)

∏
v∈I|v=⊥ ω(v−). A weighted model counter computes∑

I∈MF
ω(I), the weighted sum of F ’s models. Let P ⊆ V be a subset of the variables

A. Dubray, P. Schaus, and S. Nijssen 10:3

and πP : {0, 1}|V| 7→ {0, 1}|P| the function that keeps, from an assignment to all variables
of F , only the assignment to the variables in P. A projected model counter computes the
number of projected models, defined by |πP(MF)| = |{π(I) | I ∈ MF }|. For example, let
F = (a∨¬b)∧ (b∨c∨d)∧ (¬a∨d). This formula has 7 models, but if restricted to P = {a, b},
then it only has 3 models. The interpretations I1 = {a = ⊤, b = ⊤, c = ⊤, d = ⊤} and
I2 = {a = ⊤, b = ⊤, c = ⊥, d = ⊤} are both models of F but, when restricted on the variables
{a, b}, they are both equal: πP(I1) = πP(I2) = {a = ⊤, b = ⊤}. A projected weighted model
counter computes PWMC(F) =

∑
I∈πP (MF) ω(I). Notice that in such a case, a weight only

needs to be defined for an interpretation projected on the variables P.
An approximate model counter returns an ε-approximation (ε > 0) if, given a true count

c⋆, it returns a count ĉ and the following inequality holds:

c⋆

1 + ε
≤ ĉ ≤ c⋆(1 + ε), (1)

that is, the relative error of the approximation is bounded by a factor 1 + ε, and we say
that such model counters provide ε-guarantees. Approximate model counters providing
(ε, δ)-guarantees return an approximation that respects Equation (1) with a probability 1− δ.

Schlandals is a search-based projected weighted model counter specialized for probab-
ilistic inference problems [9]. Its input language has some specific features. It requires, in
particular, that the projected variables are partitioned into discrete probability distributions
D1, . . . , Dn.

▶ Example 1 (Example of an input for Schlandals). Below is an example of a formula F in
Schlandals, where all variables v are in P:

d1
2 ∧ d2

2 ⇒ d1
1 d1

1 ∧ d1
2 ⇒ d1

4 d1
1 ∧ d2

3 ∧ d3
3 ⇒ d2

5

d1
4 ⇒ d2

2 d1
1 ∧ d1

3 ⇒ d1
5 d1

1 ∧ d1
5 ⇒ d2

3

with distributions D1 = {d1
1, d2

1}, D2 = {d1
2, d2

2}, D3 = {d1
3, d2

3, d3
3}, D4 = {d1

4, d2
4}, and

D5 = {d1
5, d2

5}.

We denote by domF (Di) the domain of a distribution Di (i.e., the set of probabilistic
variables in its partition). For each variable v ∈ domF (Di), one weight P (v) needs to
be specified, in such a manner that

∑
v∈domF (Di) P (v) = 1. When determining which

interpretations are models in Schlandals, an implicit constraint is added: if an interpretation
I does not fix exactly one variable v ∈ domF (Di) to ⊤ in each distribution Di, then we have
F [I] = ⊥.

▶ Example 2. Continuing our example, an interpretation I setting d1
1 = ⊤ and d2

1 = ⊤
is not a model as two variables of the same distribution are set to ⊤. On the contrary,
I = {d2

1, d2
2, d1

3, d1
4, d1

5} is a model of the formula. The weight of this model is obtained by
calculating P (d2

1)×P (d2
2)×P (d1

3)×P (d1
4)×P (d1

5), reflecting the probabilities of the choices
made for each of the distributions in the interpretation. For conciseness, we describe a
partial interpretation I over the weighted variables by the choices (variables set to ⊤) in the
distributions.

The importance of the Schlandals language is that it allows several probabilistic inference
problems to be modeled in a concise manner, among which inference problems in Bayesian
Networks and probabilistic graphs; here, the ability to perform projected model counting is
critical for efficient encoding of inference problems on probabilistic graphs [27, 10]. The fact
that weighted variables are part of distributions ensures that weighted model counts always
correspond to probabilities.

CP 2024

10:4 Anytime WMC with Approximation Guarantees for Probabilistic Inference

Algorithm 1 PWMC as done in Schlandals [9].

1 Function PWMCr(F)
input : A boolean formula F with distributions DF

output : P [F] the weighted model count of F

2 if |DF | = 0 then return 1 // F is SAT, return 1. See [9]
3 if F in cache with value p then return p

4 P [F]← 0
5 Di ← choose_distribution() // For heuristics, see [9]
6 foreach v ∈ domF (Di) do
7 if TIMEOUT then break
8 if F [v] = ⊥ then continue // Applies propagation

// prop(F [v]) are the choices, for some distributions, forced by
propagation

9 p←
∏

v′∈prop(F [v]) P (v′)
10 C ← components of F [v] // Independent components
11 foreach Fc ∈ C do pc ← PWMCr(Fc)
12 P [F] += p×

∏
c pc

13 end
14 Adds F 7→ p in cache and return p

15 return PWMCr(F)

The Schlandals language, as presented in [9], also requires that all clauses are Horn.
This allows Schlandals to solve satisfaction problems involving only non-weighted variables
in polynomial time by means of propagation. While this restriction may seem limiting, it
was shown that many problems can be modeled even under this restriction; moreover, the
ideas presented below can also be extended to solvers for formulas without this restriction.

The Schlandals solver implements a variant of component caching DPLL search, presen-
ted in Algorithm 1. Given how a model’s weight is defined, Schlandals does not branch
like classical model counters. It starts from a formula F and selects a distribution not yet
assigned (line 5). The variable selection heuristic is replaced by a distribution selection
heuristic, and the value selection heuristic selects which variable in the distribution must
be set to true. Then, for each value of its domain (lines 6-13), it sets it to true, applies
propagation, and gets the residual formula F [v] (line 8). Here Schlandals performs tradi-
tional forms of propagation, such as unit propagation, but also a specific form of propagation
for Horn clauses. If a formula remains after propagation, it is decomposed into independent
components (line 9) that are solved independently (line 11). The counts of the independent
components are multiplied with each other and added to the count of the formula (line 12),
multiplied by the probability of the distributions assigned during propagation (computed at
line 9).

3 Related Work

Most other approximate model counters are sampling-based; these model counters provide
statistical guarantees at best. Hashing-based approximate model counters use special classes
of hash functions to sample partitions of the search space. They count the models in
these small parts and estimate the overall count from these parts. Usually, such solvers
provide (ε, δ)−guarantees: they return an approximation whose relative (to the true count)

A. Dubray, P. Schaus, and S. Nijssen 10:5

error is bounded by a factor ε, as specified by Equation (1), with a probability of 1 − δ.
ApproxMC [3, 24, 23] is one such solver, designed for unweighted (projected) model counting.
Based on the same idea, WeightMC [1] targets weighted model counting and sampling.

Another class of methods is that of the bounding counters. SampleCount [13] uses a
sampler to estimate which variables, after being assigned, divide the solution space in half.
When the formula is small enough, it counts exactly its number of models and multiplies the
result by a constant factor to obtain an estimated count. This procedure obtains a lower
bound with probabilistic guarantees when repeated multiple times. PartialKC [18] is another
sampling-based model counter based on partial compilation. Both of these approaches are
designed for unweighted model counting. Note that such sampling-based model counters can
usually be turned into anytime model counters by estimating model counts even before the
predefined approximation guarantee is ensured. In particular, the partial representations
produced by PartialKC can be used to compute lower and upper bounds on the true count.
However, given that PartialKC works on unweighted formulas, their computations differ
from ours. Moreover, PartialKC’s compilation process does not aim to fasten the bounds
convergence.

Model counting problems are related to several other problems. One such problem is
calculating the partition function, Z, of discrete stochastic graphical models, such as Markov
Random Fields, Markov Networks, or Cost Function Networks. An algorithm, called Z∗

ε ,
for calculating an estimate of Ẑ with Z

1+ε ≤ Ẑ ≤ Z guarantees was proposed by Viricel
et al. [26] and is implemented in the Toulbar2 [21] system. Also Z∗

ε calculates upper and
lower bounds on the final model count, pruning the search based on ε. However, there are
several differences between our algorithm and this algorithm: 1) our algorithm is defined
over a different form of model that includes projected variables; 2) our algorithm is any
time and operates such that an upper-bound on the final model count can be calculated
during the search; 3) our upper-bound calculation is optimized for the type of model we work
with: it relies on the fact that only variables have weights, integrates the bound calculation
with domain propagation, and can be integrated into any DPLL-style algorithm with little
overhead; 4) it does not have the behavior stated by Viricel et al. [26] that a larger ε can
lead to less pruning; 5) we combine our method with LDS. We will demonstrate the benefits
of our approach experimentally.

Finally, weighted model counting has been used as a probabilistic inference mechanism in
probabilistic programming languages such as Problog [7, 27]. In particular, anytime methods
have been developed specifically for Problog [28], where a TP-compilation incrementally
calculates model counts by combining SDD diagrams [6].

4 Anytime Projected Weighted Model Counting with Bounds

This section describes Schlandals-LDS-ε, our anytime search-based approach for computing
bounds on P [F]. First, we describe how a simple modification of a DPLL search can compute
bounds at each search tree node. Then, we present how Limited Discrepancy Search (LDS)
can be applied to weighted model counting. Finally, we show the relationship between the
computed bounds and ε-approximations, and we show that LDS-based search can be used to
compute approximate weighted model counts with deterministic guarantees.

4.1 Computing Bounds During the Search
Our lower and upper bounds are based on calculating which interpretations are (not) models,
accounting for how propagation reduces the domain of the distributions. Let F be the
(sub-)formula being solved and DF = {D1, . . . , Dn} the distributions in F . We denote by

CP 2024

10:6 Anytime WMC with Approximation Guarantees for Probabilistic Inference

domF (Di) = {d1
i , . . . , dki

i } the domain of Di. During the search propagation might have
previously removed some variables from domF (Di); hence,

∑
v∈domF (Di) P (v) ≤ 1 generally

for subformulas considered during the search.

Lower bound

Our lower bound is relatively simple and amounts to maintaining a sum for models seen till
a certain moment. Without loss of generality, let us assume that the solver decides to branch
on D1. We denote by F [v] the formula that remains from F after deciding that, for D1,
variable v ∈ domF (Di) is true, and after propagation has been performed. Let prop(F [v]) be
the set of probabilistic variables that are set to true during this propagation. Essentially
our algorithm calculates the probability P [F] recursively by exploring all possibilities for D1,
using:

P [F] =
∑

v∈domF (D1)

P [F [v]]×
∏

v′∈prop(F [v])

P (v′)

A lower bound is obtained by executing this sum over a subset of domF (D1); hence, we can
incrementally maintain a lower bound while considering the possibilities in domF (D1).

Upper bound

Maintaining an upper bound is conceptually more complex, but we propose an upper bound
that can be calculated with relatively little overhead in a DPLL-based solver. A first naïve
upper bound, which we will improve afterwards, is P (DF), defined as follows:

P (DF) =
∏

Di∈DF

 ∑
v∈domF (Di)

P (v)

 (2)

i.e., P (DF) represents the maximum probability that F can obtain if all remaining interpret-
ations are models. The intuition behind this formula is that an upper bound can be obtained
by calculating a weighted sum over the interpretations that are in the cartesian product
of the remaining domains of the remaining distributions. The product calculates this sum
efficiently. As illustrated in the following example, this upper bound can be tightened during
the search when the domains of the distributions are pruned by propagation.

▶ Example 3. Continuing Example 1, let us consider the case when, at the root, the solver
decides to branch on D4 and assigns d1

4 = ⊤. In that case, the clause d1
4 =⇒ d2

2 becomes
⊤ =⇒ d2

2, forcing d2
2 = ⊤. Since exactly one variable must be true in each distribution, we

have that d1
2 = ⊥. This means that no interpretation containing d1

4 = ⊤ and d1
2 = ⊤ can be a

model of F , and the upper bound for the formula F can be improved. Assuming that no other
variable is set to ⊥ during that propagation, the weight of the removed interpretations is
equal to P (d1

4)×P (d1
2), and the upper bound for F can be decreased to 1.0−P (d1

4)×P (d1
2).

This improved upper bound calculation is formalized in Algorithm 2, which is an adapta-
tion of Algorithm 1 to compute bounds on P [F]. Intuitively, this algorithm computes, for
any search tree node with sub-formula F ′, a sum of probabilities of models of F ′, denoted pin,
and a sum of probabilities of interpretations that are not models, denoted pout. From these
two values, the lower and upper bounds can be inferred. The structure of Algorithm 2 is the
same as Algorithm 1. The search stops when there are no more distributions in F (line 2) or

A. Dubray, P. Schaus, and S. Nijssen 10:7

Algorithm 2 PWMC with Bounds Computaton.

1 Function PWMC-Bounds(F)
input : A boolean formula F with distributions DF

output : The probability of the considered models (pin) and non-models (pout)
2 if |DF | = 0 then return (1, 0)
3 if F in cache with values (p′

in, p′
out) then return (p′

in, p′
out)

4 pin ← 0; pout ← 0
5 Di ← choose_distribution() // For heuristics, see [9]
6 foreach v ∈ domF (Di) do
7 if TIMEOUT then break
8 if F [v] = ⊥ then
9 pout += P (v)× P (DF \{Di}) // Uses Equation (2)

10 else
11 p←

∏
v′∈prop(F [v]) P (v′)

12 pout += P (v)× (P (DF \{Di})− P (DF [v])) // Uses Equation (2)
13 C ← components of F [v] // Independent components
14 foreach Fc ∈ C do
15 (pc

in, pc
out)← PWMC-Bounds(Fc)

16 end
17 pin += p×

∏
c pc

in

18 pout += p× (P (DF [v])−
∏

c(P (DFc
)− pc

out)) // Uses Equation (2)
19 end
20 end
21 Add F 7→ (pin, pout) in cache and return (pin, pout)
22 (pin, pout)← PWMC-Bounds(F , ε)
23 return (pin, 1− pout)

the formula is in the cache (line 3). Otherwise, it selects a distribution to branch on (line 5).
Then, it iterates over its domain (lines 6-20), applies Schlandals’ propagation (line 8), and
recursively explores the independent components (lines 13-16). Moreover, the computation
of pin, the sum of F models’ probability (line 17), is the same as the computation of P [F] in
Algorithm 1.

Hence, the main difference between Algorithm 2 and Algorithm 1 is the computation of
pout. When exploring sub-problems of F (i.e., branching for some value v of a distribution),
F [v], the formula obtained after applying Schlandals’ propagation, might turn out to be
unsatisfiable. Then, all interpretations containing v = ⊤ cannot be models of F , and pout

is increased (line 8). This rule also applies after propagation: propagation may remove
some variables from a distribution’s domain, making some interpretations non-models. The
probability of the interpretations setting one of these variables to ⊤ can be added to pout

(line 10). This computation is based on the difference in the maximum probability of the
distributions before (P (DF \ {Di})) and after the propagation (P (DF [V])). Finally, the
probabilities of the non-models of each independent component are combined and added to
pout (line 18). The intuition for this formula is that if one partial interpretation in one of the
components evaluates to false, then the whole interpretation evaluates to false regardless
of the partial interpretation in the other components. Hence, if Uc represents the random
event that the c-th component evaluates to ⊥ (with probability pc

out), we wish to compute
P (∨|C|

i=1Ui) = P (¬(∧|C|
i=1¬Ui)); this gives the indicated formula as for each component the

probability that it is satisfiable is given by P (DFc)− pc
out.

CP 2024

10:8 Anytime WMC with Approximation Guarantees for Probabilistic Inference

Figure 1 Example of iterative (from left to right) exploration of the search space with Limited
Discrepancy Search. At each iteration, d is the current discrepancy, starting from 0. The white
nodes represent newly explored nodes, while the grey ones represent nodes explored in previous
iterations.

4.2 Limited Discrepancy Search for Weighted Model Counting
Limited Discrepancy Search [14] is a search procedure initially designed to solve constraint
satisfaction problems in situations where it is reasonable to assume that a branching heuristic
will often be correct. An essential intuition behind LDS is that if a branching heuristic is
always correct, a solution can be found by following the leftmost branch of the search tree,
that is, the branch preferred by the heuristic. If the number of times the heuristic is wrong
is limited, and the lefthand branch of a node does not provide a solution, then the heuristic
should be incorrect less often in the righthand subtree. Limited Discrepancy Search builds
on this intuition; it iteratively explores the search space, deviating more and more from
the heuristic, as illustrated in Figure 1. Initially, it follows exactly the branching heuristic,
exploring the leftmost branch of the search tree. If no solution is found, it allows deviating
from the heuristic at one node per branch: the discrepancy is 1. This process continues,
incrementing the maximum number of discrepancies each time until a solution is found or the
whole search space is explored. This intuition naturally extends to optimization problems: a
good heuristic will guide the search toward a good solution and provide tight bounds. Hence,
large parts of the search space can be pruned in subsequent iterations of the LDS. However,
it is not obvious that counting problems benefit from such a search scheme; the whole search
space must be explored to calculate the exact model count.

However, we argue that LDS offers advantages compared to Algorithm 2 in the specific
setting of anytime weighted model counting, where the interest is to converge the bounds as
rapidly as possible. Indeed, the interpretations of a formula F are unlikely to have uniform
weights. If LDS’ assumptions are true, then the most likely interpretations can be found using
a small discrepancy, which is very fast for LDS, as it ignores large parts of the search space.
On the other hand, methods based on depth-first-search, as presented in Algorithm 1 must
explore the whole sub-tree, including unlikely interpretations, before switching to a more
promising part of the search space; moreover, when decomposing a formula in components,
DFS-based algorithms face the problem that they cannot raise the lower-bound before all
components have been considered. Hence, for the hardest problems, DFS-based methods
might even time out before exploring likely interpretations and considering all components.
Limited Discrepancy Search has the potential not to suffer from these problems, if the
branching heuristic is reasonable.

Algorithm 3 gives the modified procedure to perform an LDS-based DPLL search in
Schlandals. The structure of the algorithm is the same as Algorithm 2: a recursive procedure
(lines 1-18) explores the search space by selecting a distribution (line 5), exploring its values
(lines 6-17) and recursively solving the sub-problems (line 12-14) while maintaining the pin

and pout counts (lines 11,15-16). However, there are some key differences, which we will
describe next.

A. Dubray, P. Schaus, and S. Nijssen 10:9

Algorithm 3 PWMC with Bounds Computation and Limited Discrepancy Search.

1 Function Schlandals-LDS(F , d)
input : A boolean formula F with distributions DF and a discrepancy budget d

output : The probability of the considered models (pin) and non-models (pout)
2 if |DF | = 0 then return (1, 0)
3 if F in cache with values (pin, pout, d′) with d′ ≤ d or pin + pout = P (DF) then

return (pin, pout)
4 pin ← 0; pout ← 0
5 Di ← choose_distribution() // For heuristics, see [9]
6 for k ← 1 to min(d + 1, |domF (Di)|) do
7 if TIMEOUT then break
8 v ← k−th values of domF (Di) // Has the k−th highest weight
9 if F [v] = ⊥ then pout += P (v)×P (DF \{Di}); continue // Equation (2)

10 p←
∏

v′∈prop(F [v]) P (v′)
11 pout += P (v)× (P (DF \{Di})− P (DF [v]))
12 C ← components of F [v]
13 foreach Fc ∈ C do

// Discrepancy not decrement for first child
(pc

in, pc
out)← Schlandals-LDS(Fc, d− (k − 1))

14 end
15 pin += p×

∏
c pc

in

16 pout += p× (P (DF)−
∏

c(P (DFc
)− pc

out))
17 end
18 Add (pin, pout, d) in cache and return (pin, pout)
19 d← 0; lb← 0; ub← 0
20 while not TIMEOUT do
21 (pin, pout)← Schlandals-LDS(F , d)
22 lb← max(pin, lb), ub← min(1− pout, ub)
23 output (lb, ub)
24 d += 1
25 end
26 return (lb, ub)

First, when a formula is found in the cache (line 3), its result is not automatically returned.
Indeed, if a node in the search tree is only partially explored when first encountered, its
bounds are not tight, and pin + pout ̸= P (DF). Such a formula must still be explored, but
only if the discrepancy budget is higher than the one stored in the cache; otherwise, no new
interpretation can be found.

Then, when a distribution Di is selected for branching, the iteration on its domain (line 6)
differs from classical DPLL-search: it is limited by the discrepancy budget. Moreover, the
effectiveness of LDS heavily depends on the value selection heuristic. We propose a simple
heuristic that favors the most likely interpretation first. Let domF (Di) = {v1, . . . , vn} be the
domain of Di. Let us assume that the domain is iterated from v1 to vn; given a discrepancy
budget d, the values v1, . . . , vd are explored. We propose to order the values of the domain
such that P (v1) ≥ P (v2) ≥ . . . ≥ P (vn). The rationale behind this heuristic is the following.
The weight of an interpretation of F is computed as

∏
Di∈DF

P (v⊤
i) with v⊤

i being the
variable set to ⊤ for distribution Di. Hence, selecting the most likely variable first aims to
favor the most likely interpretations.

CP 2024

10:10 Anytime WMC with Approximation Guarantees for Probabilistic Inference

Finally, the outer loop calling the recursive function (lines 20-25) is specific to LDS. The
bounds are initialized (line 19), and while the time limit is not reached, an iteration of LDS
is done (line 21). The bounds are updated (line 22), output to the user (line 23), and the
discrepancy is incremented (line 24). Notice that the bounds are updated if they are better
than the previously found bounds. Indeed, if the time limit is reached, the last iteration of
LDS may explore only a small part of the search space, leading to worse bounds than in
the previous iteration. When the whole search space has been explored or the time limit is
reached, the bounds are returned to the user (line 26).

4.3 From Bounds to an Epsilon Guarantee
We have shown that it is possible to modify a DPLL-style search algorithm to compute a
lower and upper bound on the true probability. We now show a relationship between these
bounds and an ε-guarantee. Remember that a model counter computes an approximate
probability p̂ of p with ε-guarantee on its error if p

1+ε ≤ p̂ ≤ p(1 + ε).

▶ Theorem 4. Let F be a formula with true probability P [F], ε ≥ 0 an error factor. If Pl[F]
is a lower bound on P [F], Pu[F] an upper bound on F , and Pu[F] ≤ Pl[F]× (1 + ε)2 then
we have that

P [F]
1 + ε

≤
√

Pl[F]× Pu[F] ≤ P [F](1 + ε).

Proof. Let us first prove the left part of the inequality. By definition, we have that P [F] ≤
Pu[F] and, by assumption, Pu[F]

(1+ε)2 ≤ Pl[F], hence

P [F]2 ≤ Pu[F]2 ⇔ P [F]2

(1 + ε)2 ≤
Pu[F]2

(1 + ε)2 = Pu[F]Pu[F]
(1 + ε)2 ≤ Pl[F]× Pu[F]

⇔

√
P [F]2

(1 + ϵ)2 = P [F]
(1 + ε) ≤

√
Pl[F]× Pu[F]

We prove the second inequality in a similar manner.

P [F] ≥ Pl[F]⇔ P [F]2(1 + ε)2 ≥ Pl[F]2(1 + ε)2 = Pl[F]Pl[F](1 + ε)2 ≥ Pl[F]Pu[F]

⇔
√

P [F]2(1 + ε)2 = P [F](1 + ε) ≥
√

Pl[F]× Pu[F] ◀

This theorem tells us two things. First, if the bounds on a probability P [F] are close
enough, with respect to an allowed ε error factor, the search can be stopped before a time-out
is reached and we can return a probability that respects a required ε-guarantee. Second,
however, if a time-out is reached, we can also still estimate the quality of the model count
at that moment, with respect to an ε−guarantee: given a lower bound Pl[F] and an upper
bound Pu[F], Theorem (4) allows us to compute the minimum required ε that would stop the
search at that moment. Algorithm 4 shows an adaptation of the outer loop of Algorithm 3
to perform LDS with an optional error factor ε. The algorithm runs until the condition
of Theorem 4 is met or until the time limit is reached. At each iteration, it outputs an
approximate probability with the ε error factor that would stop the search at that moment.

We believe that this setting can be useful for instance in experiments where a large
number of probabilities need to be calculated; using our solver this can be done with a time
out limit on each query, while at the end of the experiment statistics can be calculated on
the approximation quality of the probabilities calculated in the experiment.

A. Dubray, P. Schaus, and S. Nijssen 10:11

Algorithm 4 Approximate PWMC with LDS.

1 d← 0; lb← 0; ub← 0
2 while not TIMEOUT and not ub ≤ lb(1 + ε)2 do
3 (pin, pout)← Schlandals-LDS(F , d)
4 lb← max(pin, lb), ub← min(1− pout, ub)

5 εd ←
√

ub
lb − 1

6 output (
√

lb× ub, εd)
7 d += 1
8 end
9 return (

√
lb× ub,

√
ub
lb − 1)

5 Experimental Results

In this section, we evaluate the effectiveness of our LDS-based1 search method against
state-of-the-art methods. All methods are evaluated on two axes: i) How many instances
they can solve and ii) how fast they converge toward the true probability. Moreover, we
evaluate the effectiveness of our value-selection heuristic.

We evaluate our methods against the following state-of-the-art methods. We com-
pare against PartialKC [18], a recently proposed anytime unweighted model counter2

and ApproxMC [3, 24, 23], which is a popular hashing-based model counter providing
(ε, δ)−guarantees. We omit WeightMC [1] in our experiments as the available code was
not updated recently and did not scale on our instances. We also compare our LDS search
against the TP-compilation algorithm of Problog[7, 28], which provides a lower and an
upper bound on the probability in an anytime fashion. Unfortunately, the upper bound is not
available to users, and there is no easy way to extract it3. The Toulbar2 [21] solver was also
run with the algorithm presented in [26]. Finally, using Theorem 4, we evaluate an anytime
version of Algorithm 2, which can be seen as the DFS alternative to our LDS-based search.
To do so, we ran Algorithm 2 with increasingly high timeouts, storing for each timeout the
returned bounds. In the rest of this section, we denote by DFS this approach, and by LDS
the approach presented in Algorithm 4. To better evaluate these approaches, we also ran
D4 [15, 16], GPMC [25] and ExactMC [17] on our benchmarks. All methods ran with a timeout
of 600 seconds and a memory limit of 15Gb when the option was available with the solver.
Except for parameters related to approximations, all methods have been executed with their
default parameters. We evaluated these methods on two problems: computing the marginals
in Bayesian networks without evidence and computing reachability queries in probabilistic
graphs.

The Bayesian networks have various sizes, ranging from a few parameters to tens of
thousands, and originated from the bnlearn R package [22]. For each network, we use one
query per value of the leaves: if a leaf node in the network has four values, we create four
instances that compute the marginal probability of each value. Overall, there are 2749

1 The source code is available at https://github.com/aia-uclouvain/schlandals.
2 At the time of the writing of this work, there exists a parameter in PartialKC to perform weighted

model counting. Unfortunately, the feature is not yet implemented
3 We checked this with the maintainers of the Problog implementation.

CP 2024

https://github.com/aia-uclouvain/schlandals

10:12 Anytime WMC with Approximation Guarantees for Probabilistic Inference

0 100 200 300 400 500 600
Runtime (s)

0.0

0.2

0.4

0.6

0.8
Pr

op
or

tio
n

of
 so

lv
ed

 in
st

an
ce

0 100 200 300 400 500 600
Runtime (s)

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n
of

 so
lv

ed
 in

st
an

ce

DFS (= 0.0)
DFS (= 0.8)
LDS (= 0.0)

LDS (= 0.01)
LDS (= 0.05)
Problog

ApproxMC (=0.8, =0.2)
D4
GPMC

ExactMC
PartialKC
Toulbar2

Figure 2 Proportion of solved instances over time, with a timeout of 600 seconds, for Bayesian
networks (left) and reliability estimation (right) problems.

instances4. For Schlandals, we use the encoding presented in [9], and for PartialKC and
ApproxMC, we use the encoding from [4]. Since these solvers work on unweighted formulas, we
transformed the weighted instances into unweighted ones using the approach proposed in [2],
which encodes the weight with additional variables and clauses. Then, the unweighted count
can be divided by a normalization factor to obtain the weighted model count. A precision
parameter can adjust the number of clauses and variables added at the cost of a less precise
weighted model count. We chose a precision of 10 so that the result after normalization is
similar to the true probability up to five decimals. However, using a lower precision did not
change the results significantly. For Toulbar2, we used the UAI format with, as evidence, the
pair node-value to query. Since Problog is not designed to work directly on CNF formulas,
implementing the various optimizations for encoding Bayesian networks is impossible. Hence,
we decided not to run it on these benchmarks as it would only scale to the easiest instances.

For the reachability queries, we took the graphs representing power grid networks in
Europe and the USA extracted by the GridKit tool [19, 29]. For each of these graphs,
sub-graphs were created by splitting the nodes and edges by country (for Europe) and state
(for the USA). Following the description in [10], we assign each edge a probability of 0.125
of being down. Finally, five queries are created for each sub-graph by taking random pairs
of nodes and computing their connection probability5. For Schlandals, we again used the
encoding presented in [9], which is based on the ones presented in [10] and used for the
other solvers. Unfortunately, PartialKC and Toulbar2 are not projected model counters and
cannot be launched on these instances. For ApproxMC, the instances were made unweighted
using the same approach as for the Bayesian networks but with a precision of 3.

Evaluation of Solving Instances

First, we analyze how many instances each method can solve. Here, we consider an instance
solved if it respects the approximation contract, if any, or finds the true probability. For
example, an instance with a probability of 0.5 would be solved by a solver returning 0.55

4 The scripts to generate the instances can be found at https://github.com/AlexandreDubray/
bn-benchmarks

5 The scripts to generate the instances can be found at https://github.com/AlexandreDubray/
probabilistic-graph-benchmarks

https://github.com/AlexandreDubray/bn-benchmarks
https://github.com/AlexandreDubray/bn-benchmarks
https://github.com/AlexandreDubray/probabilistic-graph-benchmarks
https://github.com/AlexandreDubray/probabilistic-graph-benchmarks

A. Dubray, P. Schaus, and S. Nijssen 10:13

0 100 200 300 400 500 600
Runtime (s)

0

1

2

3

4

5
p/

p*

100 101 102

Runtime (s) in log scale

0.0

0.5

1.0

1.5

2.0

2.5

p/
p*

DFS anytime (=0)
Easy instances

LDS (=0)
Hard instances

Problog ApproxMC PartialKC Toulbar2

Figure 3 Average convergence of the estimated probability (p̂) towards the true probability (p⋆) for
Bayesian networks (left) and reliability estimation (right) problems. For Schlandals, the estimated
probability is given by

√
lb × ub; the other methods directly output an estimated probability. The

continuous lines represent the average over all instances, the dotted lines are the average over the
easy instances (can be solved by Schlandals in less than 60 seconds), and the dashed lines are the
average over the hard instances.

when required to produce an ε-approximation with ε = 0.2. Figure 2 shows the proportion
of solved instances within the time limit for Bayesian networks (left) and reachability queries
(right). It can be seen that Schlandals performs the best regardless of the problem and
the type of solver (exact, approximate, or anytime). The unweighted model counters are
performing less well. Adding variables and clauses for the weights heavily impacts their
performance, particularly for large probabilistic models with thousands of weights. In our
experiments, on most instances, Toulbar2 was not able to improve its performance when
calculating an ε-approximation using the algorithm presented in [26]. Hence, this graph only
includes the result for ε = 0.

It can be seen that when solving the problems exactly (ε = 0), the LDS version of
Schlandals performs less well than its DFS version; this is to be expected as parts of the
search space are traversed multiple times. However, when a small error (ε) is acceptable, then
LDS performs roughly the same as DFS on Bayesian networks and surpasses it on reachability
queries (with ε = 0.01, the DFS does not solve more instances within the time limit, so we
did not include this curve in the graph). Even more striking, LDS can solve at least as many
instances, in the same amount of time, as DFS and produce probabilities under much stronger
guarantee requirements (ε = 0.05 instead of ε = 0.8). Although LDS has some overhead by
exploring some parts of the search space, and it can be seen when the whole search space
must be explored, when computing ε-approximation, it seems that it allows to converge
much faster towards the true probability. We confirm this intuition in the next section by
analyzing the convergence of the various methods.

Convergence of the Anytime Methods

Figure 3 shows the average convergence of the methods towards the true probability when
computing it exactly (i.e., with ε = 0). For the two versions of Schlandals, we use Theorem 4
and the bounds to produce an approximation. We modified the outer loop of ApproxMC
(see Algorithm 1 in [3]) to output the estimated probability at each iteration. While these
intermediate solutions have weaker guarantees, considering ApproxMC as an anytime model

CP 2024

10:14 Anytime WMC with Approximation Guarantees for Probabilistic Inference

0 100 200 300 400 500 600
Runtime (s)

0.2

0.4

0.6

0.8
Bo

un
ds

 c
on

ve
rg

en
ce

0 100 200 300 400 500 600
Runtime (s)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Bo
un

ds
 c

on
ve

rg
en

ce

DFS anytime lb LDS lb DFS anytime ub LDS ub

Figure 4 Lower and upper bound convergence towards the true probability p⋆ on Bayesian
networks (left) and reachability queries (right) for the two versions of Schlandals.

counter is possible. All other methods provide a lower bound on the probability during their
execution, which is used as a comparison in the figure. Figure 3 shows the average convergence
on all instances (solid lines), but also on easy (dotted lines) and hard instances (dashed
lines). We use a simple threshold to consider an instance difficult or not: if Schlandals can
solve the instance in less than a minute, we consider the instance as easy. For the Bayesian
networks, the true probability is known for each instance, but this is not true for reachability
queries. Hence, for the later problem, we only consider, in this graph, the instances for which
at least one solver can produce an exact solution. Such instances are mainly the easiest ones,
explaining why the methods converge faster than for Bayesian networks.

As previously noted, Schlandals is the best-performing method. Hence, its estimated
probability converges, on average, to the true probability. However, the gap between the
convergence of the easy and hard instances is much larger for the DFS version of Schlandals
than for any other method. Due to its depth-first nature, it stays in parts of the search
space containing small-weight interpretations. On the other hand, LDS suffers much less from
this problem, and the convergence gap between the easy and the hard instances is smaller.
Due to its inability to solve the hardest instances, Toulbar2 does not converge, on average,
toward the true probability. We hypothesize that it gets trapped in part of the search space
where it accumulates little probability mass before being timed out. Finally, due to their
poor scalability on weighted problems, PartialKC and ApproxMC converge poorly. Indeed,
they can not produce a first solution for many hard instances. Hence, the default lower
bound on these instances is 0, pulling their average convergence towards that value.

Finally, we evaluate if limited discrepancy search effectively allows finding likely models
first. To do so, we analyze how the lower and upper bounds converge toward the true
probability. If our search-based methods find the most likely model first, the bounds should
converge quickly towards the probability, then plateau until the final convergence or timeout.
To assess the convergence of a lower bound Pl[F], we use the metric Pl[F]/P [F] ∈ [0, 1]; when
no solution has been found, it is 0 and when all solutions have been found it is 1. For the
upper bound Pu[F], we use (1− Pu[F])/(1− P [F]), which exhibits the same characteristics.
Figure 4 shows, for both problems, the average convergence, using the metrics defined above,
for DFS and LDS. It can be seen that both methods quickly accumulate probability mass for
models and non-models of F , validating that our value-selection heuristic favors the most
likely models. Moreover, LDS performs significantly better than DFS, reaching an average of
more than 0.9 for both metrics in less than 100 seconds.

A. Dubray, P. Schaus, and S. Nijssen 10:15

6 Conclusion

In this work, we proposed a new method for performing (projected) weighted model counting
that can be stopped at any time during its execution. Unlike other anytime methods, the
proposed approach provides deterministic lower and upper bounds on the true count. We
have shown that the propagators of DPLL-style weighted model counters can be leveraged
to maintain such an upper bound during exploration. We proposed a simple heuristic that
favors exploring the highly weighted interpretations first, fastening the convergence of the
bounds. We enhanced this convergence further using Limited Discrepancy Search (LDS).
Finally, we have shown that these lower and upper bounds can be linked to the well-known
notion of ε-approximations; hence, the proposed method can be used seamlessly to perform
an interruptable computation for either the true weighted model count or an ε-approximation.
We implemented this method in the Schlandals solver, specialized for probabilistic inference,
and evaluated it against state-of-the-art methods on probabilistic reasoning tasks. Our
experiments show that Schlandals is the best-performing solver on the studied tasks and
that the LDS-based search outperforms classical DFS when computing ε-approximations.

The method presented in this work uses a simple strategy for the discrepancy, and more
work could be done to enhance the performance of the LDS-based search. Moreover, the
method presented here could be applied to other weighted model counters, including those
that support arbitrary CNF formulas, such as provided in model counting competitions;
moreover, an interesting research direction is to apply LDS to unweighted model counting.
In this case, our simple heuristic can not be applied since all interpretations have the same
weight, and another heuristic would be necessary.

References

1 Supratik Chakraborty, Daniel Fremont, Kuldeep Meel, Sanjit Seshia, and Moshe Vardi.
Distribution-aware sampling and weighted model counting for SAT. In AAAI, 2014.

2 Supratik Chakraborty, Dror Fried, Kuldeep S. Meel, and Moshe Y. Vardi. From Weighted to
Unweighted Model Counting. In IJCAI, 2015.

3 Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic improvements in
approximate counting for probabilistic inference: From linear to logarithmic SAT calls. In
IJCAI, 2016.

4 Mark Chavira and Adnan Darwiche. Encoding CNFs to empower component analysis. In
Theory and Applications of Satisfiability Testing-SAT 2006: 9th International Conference,
Seattle, WA, USA, August 12-15, 2006. Proceedings 9. Springer, 2006.

5 Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6-7), 2008.

6 Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases. In
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

7 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and
its application in link discovery. In IJCAI, volume 7. Hyderabad, 2007.

8 Alexandre Dubray. Schlandals. Software, version 1.0.3., swhId: swh:1:dir:3ffca0d07
dbd88cffbbdfda6e3f0ae09a9e77ac0 (visited on 2024-08-19). URL: https://github.com/
aia-uclouvain/schlandals.

9 Alexandre Dubray, Pierre Schaus, and Siegfried Nijssen. Probabilistic Infer-
ence by Projected Weighted Model Counting on Horn Clauses. In DROPS-
IDN/v2/Document/10.4230/LIPIcs.CP.2023.15. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.CP.2023.15.

CP 2024

https://archive.softwareheritage.org/swh:1:dir:3ffca0d07dbd88cffbbdfda6e3f0ae09a9e77ac0;origin=https://github.com/aia-uclouvain/schlandals;visit=swh:1:snp:e0f5e782a682d1a3b8a76ae9766ace1757327710;anchor=swh:1:rev:1d4146530117a921b23b1ffb7703587af1a1bdb6
https://archive.softwareheritage.org/swh:1:dir:3ffca0d07dbd88cffbbdfda6e3f0ae09a9e77ac0;origin=https://github.com/aia-uclouvain/schlandals;visit=swh:1:snp:e0f5e782a682d1a3b8a76ae9766ace1757327710;anchor=swh:1:rev:1d4146530117a921b23b1ffb7703587af1a1bdb6
https://github.com/aia-uclouvain/schlandals
https://github.com/aia-uclouvain/schlandals
https://doi.org/10.4230/LIPIcs.CP.2023.15

10:16 Anytime WMC with Approximation Guarantees for Probabilistic Inference

10 Leonardo Duenas-Osorio, Kuldeep Meel, Roger Paredes, and Moshe Vardi. Counting-based
reliability estimation for power-transmission grids. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

11 Vibhav Gogate and Rina Dechter. SampleSearch: Importance sampling in presence of
determinism. Artificial Intelligence, 175(2), 2011.

12 Vibhav Gogate and Rina Dechter. Importance sampling-based estimation over and/or search
spaces for graphical models. Artificial Intelligence, 184, 2012.

13 Carla P. Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Selman. From Sampling to
Model Counting. In IJCAI, volume 2007, 2007.

14 William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In IJCAI (1),
1995.

15 Jean-Marie Lagniez and Pierre Marquis. An Improved Decision-DNNF Compiler. In IJCAI,
volume 17, 2017.

16 Jean-Marie Lagniez and Pierre Marquis. A recursive algorithm for projected model counting.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, 2019.

17 Yong Lai, Kuldeep S. Meel, and Roland HC Yap. The power of literal equivalence in model
counting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, 2021.

18 Yong Lai, Kuldeep S. Meel, and Roland HC Yap. Fast Converging Anytime Model Counting.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, 2023.

19 Wided Medjroubi, Ulf Philipp Müller, Malte Scharf, Carsten Matke, and David Kleinhans.
Open data in power grid modelling: New approaches towards transparent grid models. Energy
Reports, 3, 2017.

20 Tian Sang, Paul Beame, and Henry Kautz. Solving Bayesian networks by weighted model
counting. In Proceedings of the Twentieth National Conference on Artificial Intelligence
(AAAI-05), volume 1. AAAI Press, 2005.

21 T. Schiex, S. de Givry, and M. Sanchez. Toulbar2—an open source weighted constraint
satisfaction solver. URL http://mulcyber. toulouse. inra. fr/projects/toulbar2, 2006.

22 Marco Scutari. Learning Bayesian networks with the bnlearn R package. arXiv preprint
arXiv:0908.3817, 2009. arXiv:0908.3817.

23 Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, Detached, and Lazy CNF-XOR
solving and its Applications to Counting and Sampling. In CCAV, 2020.

24 Mate Soos and Kuldeep S. Meel. BIRD: Engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, 2019.

25 Ryosuke Suzuki, Kenji Hashimoto, and Masahiko Sakai. Improvement of projected model-
counting solver with component decomposition using SAT solving in components. Technical
report, JSAI Technical Report, SIG-FPAI-506-07, 2017.

26 Clément Viricel, David Simoncini, Sophie Barbe, and Thomas Schiex. Guaranteed Weighted
Counting for Affinity Computation: Beyond Determinism and Structure. In Michel Rueher,
editor, CP, 2016.

27 Jonas Vlasselaer, Angelika Kimmig, Anton Dries, Wannes Meert, and Luc De Raedt. Knowledge
compilation and weighted model counting for inference in probabilistic logic programs. In
Proceedings of the First Workshop on Beyond NP. AAAI Press, 2016.

28 Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt.
Anytime inference in probabilistic logic programs with Tp-compilation. In IJCAI, 2015.

29 Bart Wiegmans. Gridkit: European And North-American Extracts, March 2016. doi:
10.5281/ZENODO.47317.

https://arxiv.org/abs/0908.3817
https://doi.org/10.5281/ZENODO.47317
https://doi.org/10.5281/ZENODO.47317

A Multi-Stage Proof Logging Framework to
Certify the Correctness of CP Solvers
Maarten Flippo #

Delft University of Technology, The Netherlands

Konstantin Sidorov #

Delft University of Technology, The Netherlands

Imko Marijnissen #

Delft University of Technology, The Netherlands

Jeff Smits #

Delft University of Technology, The Netherlands

Emir Demirović #

Delft University of Technology, The Netherlands

Abstract
Proof logging is used to increase trust in the optimality and unsatisfiability claims of solvers. However,
to this date, no constraint programming solver can practically produce proofs without significantly
impacting performance, which hinders mainstream adoption. We address this issue by introducing a
novel proof generation framework, together with a CP proof format and proof checker. Our approach
is to divide the proof generation into three steps. At runtime, we require the CP solver to only
produce a proof sketch, which we call a scaffold. After the solving is done, our proof processor trims
and expands the scaffold into a full CP proof, which is subsequently verified. Our framework is
agnostic to the solver and the verification approach. Through MiniZinc benchmarks, we demonstrate
that with our framework, the overhead of logging during solving is often less than 10%, significantly
lower than other approaches, and that our proof processing step can reduce the overall size of the
proof by orders of magnitude and by extension the proof checking time. Our results demonstrate
that proof logging has the potential to become an integral part of the CP community.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Theory
of computation → Logic and verification

Keywords and phrases proof logging, formal verification, constraint programming

Digital Object Identifier 10.4230/LIPIcs.CP.2024.11

Supplementary Material Software (Source code and evaluation): https://doi.org/10.5281/zenodo.
12567314

Funding Maarten Flippo and Jeff Smits: Supported by the project “Towards a Unification of
AI-Based Solving Paradigms for Combinatorial Optimisation” (OCENW.M.21.078) of the research
programme “Open Competition Domain Science - M” which is financed by the Dutch Research
Council (NWO).
Konstantin Sidorov: Supported by the TU Delft AI Labs program as part of the XAIT lab.
Imko Marijnissen: Supported by the NWO/OCW, as part of the Quantum Software Consortium
programme (project number 024.003.037 / 3368).

1 Introduction

Constraint Programming (CP) is a pivotal field recognized for its efficacy in addressing
intricate combinatorial challenges across diverse sectors. Central to its importance is the
model + solve paradigm, which allows practitioners to express problem constraints in a

© Maarten Flippo, Konstantin Sidorov, Imko Marijnissen, Jeff Smits, and Emir Demirović;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.l.flippo@tudelft.nl
https://orcid.org/0009-0005-5333-2767
mailto:k.sidorov@tudelft.nl
https://orcid.org/0009-0009-0655-4200
mailto:i.c.w.m.marijnissen@tudelft.nl
https://orcid.org/0009-0008-7086-920X
mailto:j.smits-1@tudelft.nl
https://orcid.org/0000-0002-8053-8868
mailto:e.demirovic@tudelft.nl
https://orcid.org/0000-0003-1587-5582
https://doi.org/10.4230/LIPIcs.CP.2024.11
https://doi.org/10.5281/zenodo.12567314
https://doi.org/10.5281/zenodo.12567314
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

declarative manner without having to reason about how the problem needs to be solved.
By combining modeling flexibility with powerful solving techniques, CP enables intuitive
problem formulation and effective optimisation strategies.

In a typical CP workflow, the solver is often treated as a black box. When a solver
reports a solution, it is easy to verify whether all constraints are satisfied. However, for
unsatisfiability and optimality claims, no such trivial verification can be done. How can we
be sure that a model has no solutions when that is the claim of a solver?

Unfortunately, bugs are common due to the complex nature of solvers, regardless of the
paradigm. For example, fuzz testing [41] revealed that virtually all solvers in the MaxSAT
Evaluation 2022 have bugs. Similar issues have been reported for SAT and SMT solvers [13].
A variety of techniques have been used to discover bugs in well-maintained CP solvers [4, 29].
Long-standing MIP solvers may report incorrect results due to numerical instabilities [18]. For
applications where correctness is crucial, e.g., chip design [1] and combinatorial actions [22],
a bug may undermine the entire process and result in legal and financial consequences.

The general approach to verifying claims of unsatisfiability or optimality is proof logging.
The proof can then be checked by a separate proof checker, possibly implemented in a formally
verified toolchain. As a result, when a checker accepts a proof as correct, the claim of the
solver may be trusted with high confidence.

Proof logging has proven immensely successful in the SAT community [47, 46, 19]. It has
enabled the closing of several open math problems [36, 34] and has become standardised
in the community, e.g., solvers in the SAT competition [6] must produce proofs in order to
participate. Aside from SAT solvers, SMT solvers can also commonly produce proofs [12, 8],
and in 2017 the MIP solver SCIP [2] gained the ability to produce machine-checkable proofs
for a subset of techniques [16].

Unfortunately, proof logging is far from standard in CP due to several challenges. First,
CP solvers consider heterogeneous constraints and reasoning capabilities, making it difficult
to select a suitable proof system. Second, as with proof logging for MIP and SMT solvers,
the overhead of proof logging may be significant. Third, when models are distributed through
standardized file formats, the internal representation of the solver could differ from those
models. As a result, none of the state-of-the-art CP solvers submitted to the MiniZinc
Challenge [44] and XCSP Competition [5] in 2023 supported proof logging in any form.

The current state of affairs is that proof logging is useful for CP and shows great
promise, however, its mainstream adoption is clearly out of reach for current methods. An
unpublished approach [27] suggests logging every nogood and propagation step, incurring a
three-fold slowdown with potentially prohibitive disk space requirements. Another recent
approach proposes to trace the solver using pseudo-Boolean reasoning [31], which leads to
high confidence in each individual step of the solver as well as the final claim. Unfortunately,
similar downsides hold, with slowdowns of (several) orders of magnitude, and even longer
proof checking. Furthermore, both approaches log with respect to the internal problem
representation of the solver, rather than a standardised input format.

We address the prohibitive runtime and space requirements for CP proof logging by
contributing a novel CP proof generation framework, together with a proof format and proof
checking facilities. Our approach has three steps. In the first step, the CP solver produces
a proof scaffold of unsatisfiability by only logging nogoods (learned clauses), which can
be understood as a compressed version of the final proof. Once the solving and scaffold
production is done, in the second step, our proof processor (a separate piece of software)
identifies nogoods in the scaffold that can be removed without invalidating the proof, and

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits, and E. Demirović 11:3

expands the trimmed scaffold into a full CP proof by adding only the necessary inference
steps based on the remaining nogoods. In the third step, the proof is verified using one of
the available proof-checking approaches. Our framework has several major advantages:

From the solver (developer) side, we only require generating a proof scaffold, which
introduces a minor overhead (5-10% runtime), requires little memory (scaffolds are at
most hundreds of megabytes, with most expanded proofs well below one GB – compared
to tens or hundreds of GBs of current approaches), and places virtually no burden on the
solver developer. All of these points are in stark contrast with previous approaches.
Our approach reduces the proof size by removing redundant nogoods before expanding
the proof, which in our experiments removes 20-90% of the nogoods. This is significant
given that verification runtime is a bottleneck, which is correlated with proof size.
The resulting proof is in our CP proof format, which, in the spirit of CP, embraces
the diversity of constraints and records the proof steps in CP terminology, rather than
encoding them into a different paradigm. This allows our approach to be agnostic to the
verification technology. In our implementation, we verify the proof using VeriPB [30].
The proof verification is done with respect to the input file, rather than the internal solver
representation, decoupling proof generation from verification. In our implementation, we
use FlatZinc as the input file, although XCSP and other formats may be used similarly.

We demonstrate the effectiveness of our framework by experimentally evaluating against
over 4000 instances from the MiniZinc benchmark repository. These are realistic problems
and many have been used in previous competitions. Furthermore, we discuss proof logging
FlatZinc components with pseudo-Boolean reasoning, and introduce a novel pseudo-Boolean
justification technique for the cumulative global constraint.

To summarise, we present a framework for certifying the output of CP solvers that is
1) efficient enough to be used on realistic problems with little overhead, 2) agnostic of the
solver, as the proof steps are given with respect to the input file rather than the internal
solver representation, and 3) generic in the sense of our CP proof format which enables using
any existing verification approach and reduces the verification time by proving shorter proofs.
We believe our results demonstrate that proof logging has the potential to become an integral
part of the CP community with a clear value in increasing the trustworthiness of our solvers.

The paper is organized as follows: Section 2 covers some preliminaries and Section 3
covers related work. In Section 4 we present our proof logging approach, and Section 5
presents an empirical evaluation of the approach. Finally, Section 6 gives our conclusion and
presents directions for future work.

2 Preliminaries

2.1 Constraint Satisfaction Problems
A constraint satisfaction problem (CSP) P = (X , C,D) is a triple where X = {x1, . . . , xn} is
a set of decision variables, D is the domain, which, for each variable xi ∈ X , denotes the set
of possible values for xi as D(xi). We consider all variables to be integer variables. Booleans
are modelled as integers with domain {0, 1}, where 1 is the true value, and 0 is the false value.
A constraint C(X) ∈ C is an n-ary relation between the variables X ⊆ X . Reified constraints
are of the form r ↔ C(X), where r ∈ X is a Boolean variable which is used to conditionally
enforce the constraint C(X). A specific constraint that is important to this work is the
clause, which is a disjunction of Boolean variables. An assignment A is a mapping from each
variable xi to a single value vi ∈ D(xi). If A satisfies all the constraints, then A is called

CP 2024

11:4 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

a solution. If there are no solutions to a CSP P, then P is called unsatisfiable. Otherwise,
if P has at least one solution, the problem is called satisfiable. A CSP can be extended to a
constraint optimisation problem (COP) by adding an objective function f : Zn 7→ Z which
maps any solution A to a cost f(A) such that a solution A1 is better than solution A2 iff
f(A1) < f(A2). A solution A is optimal if there does not exist a solution A′ with a lower
cost.

2.2 Constraint Programming
Constraint Programming (CP) is a paradigm used to solve CSPs and COPs. In a CP solver,
constraints are represented through propagators. A propagator is a function p : D 7→ D′

that removes values from the domain D which cannot be present in any solution. Fixpoint
propagation (FP) is the process of applying all propagators until fixpoint, i.e. until no more
values can be removed. Solvers recursively partition the domain in at least two subproblems
over which it calls fixpoint propagation. This process continues until a subproblem is found
where all variables have singleton domains, or the solver concludes no solution exists.

An atomic constraint is a predicate ⟨x ⋄ v⟩, where x is an integer variable, ⋄ ∈ {≤,≥, =, ̸=},
and v is a constant. During the search, CP solvers may learn nogoods, i.e., a conjunction of
atomic constraints that cannot be part of a feasible solution. In this work, we will use the
term learned clause to mean the negation of a nogood, following conventions from lazy clause
generation CP [25, 40] and CDCL-SAT solving [38]. The set of all clauses in the solver is
called the clause database. The propagation of nogoods/clauses to fixpoint is referred to
as Boolean constraint propagation (BCP). The notation C ⊨BCP l means that the atomic
constraint l is entailed by the set of clauses C and this implication is identified through BCP.

2.3 Proof Logging for Black-Box Solvers
In this work, we are primarily concerned with unsatisfiability claims, since a proof of
optimality can be understood as an unsatisfiability proof claiming that there is no solution
with a lower objective value than the optimal value. This applies directly to linear search
(branch-and-bound) commonly used in CP solvers, and a similar approach could be used
for other optimisation approaches such as core-guided search [26] and logic-based Benders
decomposition [21, 37] (known as implicit hitting sets in MaxSAT [20]).

Conceptually, a proof of unsatisfiability P = [S1, . . . , Sn] is a sequence of proof steps,
such that each step Si ∈ P is entailed by the model and all preceding steps Sj : 1 ≤ j < i.
Every step should be checkable in polynomial time of the number of steps preceding it. The
final step of the proof Sn = ⊥ is the trivial conclusion that the model is unsatisfiable. For
solvers, the proof is generally a log of the reasoning steps performed during the search. Note
that if a solver finds a solution to the model, it will still have logged its proof steps.

Given a model F and a proof of unsatisfiability P , a proof checker certifies that every
step in the log is a valid reasoning step. If all the proof steps are correct, then the proof is
valid and the model is confirmed to be unsatisfiable. Note that the checker merely asserts
the correctness of the proof, and does not provide any guarantees on how the proof was
generated. In this sense, an incorrect solver may still produce a correct proof, and as long as
the proof is correct, the checker will accept it and assert the claim.

2.4 Proof Logging for SAT
In propositional proofs of unsatisfiability produced by SAT solvers, every step in the proof is
a clause which is entailed by the conjunction of the clauses in the problem and the previous
clauses in the proof. The entailment has to be identified through reverse unit propagation

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits, and E. Demirović 11:5

(RUP) [33, 28], i.e. ¬c ∧ F ∧ C ⊨BCP ⊥ for a proof clause c, its predecessors in the proof C

and the original formula F . The last clause is the empty clause, which cannot be satisfied
and is therefore equivalent to ⊥. Proofs of this style are referred to as RUP proofs. They
have the advantage that it is not necessary to indicate what premises lead to the derivation
of the clause c. However, a disadvantage is that the runtime cost of checking every clause
grows as the number of clauses in the clause database grows.

As the SAT solver runs, it learns many RUP clauses using the CDCL solving framework [38]
and adds the clauses to its database. Occasionally, a portion of the learned clauses are deleted.
This deletion is often also logged in the proof, extending the RUP format to DRUP (Deletion
Reverse Unit Propagation) [35]. The checker can use the deletion information to remove the
clause from consideration, to reduce its memory usage and runtime cost. Note, DRUP has
been superseded by the modern DRAT [46] and LRAT [19] formats in SAT solvers.

Proof checkers for SAT proofs check the RUP property for every clause in the proof.
To do so, there are two possible directions the proof can be traversed: forward checking
or backward checking [33]. In forward checking, the proof is read in one clause at a time.
When reading clause Ci, the RUP property is checked and if it holds, Ci is added to the
clause database for the checker to use at clause Ci+1. Backward checking takes the opposite
approach. The entire proof is read into the checker and it starts by checking RUP on the
empty clause and moving toward the first clause in the proof. When checking clause Ci, it
is first removed from the clause database and then the RUP property is checked. All the
clauses from the proof that are used to conclude ⊥, are marked. Then, as the checker comes
across clauses that are not marked, they can be removed from the clause database without
checking the RUP property, as that clause did not contribute to the derivation of any clause
used to derive the empty clause. Essentially, a backward checking proof checker trims the
proof it is checking, only verifying proof steps that are used to derive other proof steps.

3 Related Work

Proof logging has been successfully developed for SAT solvers over the last 20 years, and is
now adopted by virtually all modern SAT solvers. The introduction of proof logging surfaced
many bugs in solver implementations, and the SAT competition, a yearly competition between
SAT solvers, requires solvers to be proof-producing. Early proofs were resolution-based
proofs [47], but since then the common proof systems are so-called clausal proofs [35, 46, 19].

SMT solvers like Z3 [10] and cvc5 [7] can also produce proofs. These systems are similar
to CP solvers in that they have an extremely large number of possible reasoning steps they
perform. For any new theory, the reasoning must be individually justified in the proof. The
proofs are prohibitively large since the solvers perform a vast amount of reasoning which
turns out to be irrelevant to derive unsatisfiability.

A third solving paradigm which has seen work in proof logging is the MIP paradigm.
VIPR [16] is a format for MIP proofs using cutting planes reasoning. It is implemented for
the SCIP [2] solver. When logging, SCIP has to run with exact arithmetic, which impacts
the performance already. On top of that, the large I/O overhead means that the impact of
logging the proof limits its applicability.

The first implementation of a proof-producing CP solver was done in the PCS/HaifaCSP
solver [45], which produced resolution proofs. For each propagation, the reasoning is explicitly
stated in terms of the premises and the conclusion in clausal form to perform the resolution
steps. It is unclear what the experimental impact is of this proof logging implementation.

CP 2024

11:6 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

Another promising approach implements proof logging into the Chuffed LCG solver [27].
The proof format can be seen as an extension of the DRUP format, with propagations
introduced as temporary clauses. The work is not published, and their experimental data
shows a threefold slowdown when proof logging is enabled with potentially large proof files.

A more recent approach to proof logging for CP is done in the Glasgow CP solver [31],
which encodes propagations and conflicts into pseudo-Boolean form. This is an elegant
approach that decouples the proof format from the capabilities of the CP solver, and new
propagators can be supported by devising an encoding of the filtering algorithms into pseudo-
Boolean form [24]. It does require the encoding into pseudo-Boolean form [14] to become
part of the trusted base of the application, as that component is not formally checked. The
key issue, however, is that it imposes a (several) orders-of-magnitude runtime overhead on
the solver, as encodings are created during the solving process, and since every propagation
is logged, the proof files easily exceed tens and hundreds of GB even for small problems
which result in even longer verification times. Although engineering efforts may bring down
the runtime, two main issues hinder scalability: 1) CP solvers spend most of their time in
the propagation engine, so adding additional work during propagation is likely to negatively
impact performance, and 2) only a portion of the work done by the solver is needed for the
proof of unsatisfiability. Our framework addresses these issues by removing logging during
propagation via scaffolds and expanding only the necessary part of the proof before checking.

Previous CP proof logging approaches show the value of proof logging CP solvers, however,
all have similar drawbacks with varying degrees: considerable overhead for the solver, large
file requirements to store the proofs, and the proof is done in terms of the internal solver
representation rather than a standardised input format.

Finally, ensuring the correctness of solvers has been investigated by correct-by-construction
methods [15] using Coq, an automated theorem prover. This removes the necessity of proof
checkers, however, the solver is not competitive with implementations in imperative languages,
as many of the implementation strategies are difficult to express in formalisms like Coq.

4 Our Contribution: A Multi-Stage Framework for CP Proof Logging

Our framework has three stages: proof scaffolding, proof processing, and proof verification.
Before diving into the details, we first show two illustrative examples.

▶ Example 1. On the left, an unsatisfiable CSP is given. The table on the right shows one
possible proof for why the CSP is unsatisfiable. Note that the there is another, shorter proof
that could have been found.

x, z ∈ {0, 1}, y ∈ {0, 1, 2}
c1 : 2x + y + 2z ≥ 2
c2 : 2x + y − 2z ≥ 0
c3 : 2x− y + 2z ≥ 0

c4 : 2x− y − 2z ≥ −2
c5 : −2x + y + 2z ≥ 2
c6 : −2x + y − 2z ≥ 0

Implied by Proof step
1 c3 ⟨x ≤ 0⟩ ∧ ⟨y ≥ 2⟩ → ⟨z ≥ 1⟩
2 c4 ⟨x ≤ 0⟩ ∧ ⟨y ≥ 2⟩ → ⟨z ≤ 0⟩
3 1, 2 ⟨x ≤ 0⟩ ∧ ⟨y ≥ 2⟩ → ⊥
4 c1 ⟨x ≤ 0⟩ ∧ ⟨y ≤ 1⟩ → ⟨z ≥ 1⟩
5 c2 ⟨x ≤ 0⟩ ∧ ⟨y ≤ 1⟩ → ⟨z ≤ 0⟩
6 3, 4, 5 ⟨x ≤ 0⟩ → ⊥
7 c5 ⟨x ≥ 1⟩ → ⟨z ≥ 1⟩
8 c6 ⟨x ≥ 1⟩ → ⟨z ≤ 0⟩
9 6, 7, 8 UNSAT

▶ Example 2. Let us consider the three-queens problem. The problem states that we have
to place three queens on a three-by-three chessboard, such that no two queens are in the
same row, column, or on the same (anti)diagonal. On the left is a model for the three-queens
problem, and on the right a proof for why it is unsatisfiable.

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits, and E. Demirović 11:7

q1, q2, q3 ∈ {1, 2, 3}
c1 : Distinct(q1, q2, q3)
c2 : Distinct(q1 + 1, q2 + 2, q3 + 3)
c3 : Distinct(q1 − 1, q2 − 2, q3 − 3)

Implied by Proof step
1 c1 ⟨q1 = 1⟩ → ⟨q2 ̸= 1⟩
2 c1 ⟨q1 = 1⟩ → ⟨q3 ̸= 1⟩
3 c2 ⟨q1 = 1⟩ → ⟨q2 ̸= 2⟩
4 c1 ⟨q2 = 3⟩ → ⟨q3 ̸= 3⟩
5 c3 ⟨q2 = 3⟩ → ⟨q3 ̸= 2⟩
6 1-5 ⟨q1 = 1⟩ → ⊥
7 c1 ⟨q1 = 2⟩ → ⟨q2 ̸= 2⟩
8 c2 ⟨q1 = 2⟩ → ⟨q2 ̸= 3⟩
9 c3 ⟨q1 = 2⟩ → ⟨q2 ̸= 1⟩

10 7-8 ⟨q1 = 2⟩ → ⊥
11 c1 ⟨q1 = 3⟩ → ⟨q2 ̸= 3⟩
12 c1 ⟨q1 = 3⟩ → ⟨q3 ̸= 3⟩
13 c2 ⟨q1 = 3⟩ → ⟨q2 ̸= 2⟩
14 c1 ⟨q2 = 1⟩ → ⟨q3 ̸= 1⟩
15 c3 ⟨q2 = 1⟩ → ⟨q3 ̸= 2⟩
16 6, 10-15 UNSAT

In Example 2 the solver can derive nogoods (steps 6 and 10) based on the propagations
it performs. In the example, these nogoods are all singleton, i.e. they contain one atomic
constraint. However, nogoods can contain an arbitrary number of atomic constraints, as
shown in Example 1.

We proceed with describing each of our stages, referring to these examples as appropriate.

4.1 Verification Flow

One of the main barriers to wider adoption of CP proof logging is the significant potential
overhead on the solver in terms of runtime and memory, and possibly the effort required from
the solver developer to enable proof logging. Our aim is to address both of these concerns.

Since proof production may have a significant overhead on the solving process, we aim to
log as few steps as possible during the search. As a CP solver can potentially log many proof
steps, especially when logging individual propagations, proofs can grow prohibitively large.
It may also be that the overhead of logging turns out to be wasted, for example when a
satisfaction problem turns out to be satisfiable or when the solver never concludes optimality
in an optimisation problem. We therefore aim to log as few steps as possible during the
solving phase to keep the runtime cost introduced by proof logging as low as possible.

Given this motivation, we split the proof production into multiple phases. Note that
while each phase may introduce bugs, a sound checker will only ever accept valid proofs, and
bugs due to unsound reasoning will be detected. A schematic overview of the following steps
in proof production is given in Figure 1.
1. Scaffolding The first step is to run the solver. During the solving process, the solver

produces a proof scaffold, which is a list of nogoods identified by the solver.
The proof scaffold of Example 2 would consist of two single-predicate nogoods, ⟨q1 ̸= 1⟩
(step 6) and ⟨q1 ̸= 2⟩ (step 10), and the unsatisfiability claim (step 16). For Example 1,
the proof scaffold would consist of proof steps 3, 6, and 9.
The requirement is that the i-th proof step can be recovered by contradiction in polynomial
time by the next stage considering the original problems and the first (i− 1) proof steps
(similar to RUP), i.e., negating the nogood leads to a conflict by propagation.

CP 2024

11:8 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

Scaffolding

Solver
(Pumpkin, Chuffed, etc.)

Model (FlatZinc)
Processing

Trimming
Inference

Introduction
Proof Scaffold

Verification

Proof CheckerCP Proof

Model (FlatZinc)

Model (FlatZinc)

Figure 1 Schematic overview of our multi-stage framework for CP proof logging.

2. Processing The proof scaffold is completed into a full proof by the proof processor. Here
we describe what the processing step provides to the framework, and Section 4.3 presents
the algorithm to achieve it. Conceptually, there are two transformations the processor
runs on the scaffold:
Trimming A proof scaffold will likely contain many nogoods that are unnecessary to derive

unsatisfiability. For SAT solvers, proof trimming is a vital part of proof checking [35],
and our experiments in Section 5 show the same holds for CP proofs. Given that the
next step can potentially introduce many steps to the proof, the key idea is that we
trim before inference introduction.
In the presented three-queens example, trimming would not remove any of the two
nogoods in the proof. However, the solver could also have derived the nogood ⟨q2 ̸= 1⟩,
meaning the proof scaffold would have been ⟨q1 ̸= 1⟩ , ⟨q2 ̸= 1⟩ , ⟨q1 ̸= 2⟩. Had this been
the case, then trimming would have removed the middle nogood since it is redundant
in proving unsatisfiability.

Inference Introduction For every nogood C in the trimmed proof scaffold, the necessary
inferences (i.e. propagations) relevant to concluding C are generated. The output of
the inference introduction stage is considered to be a full CP proof. It explains, in CP
terms, the reasoning steps required to prove unsatisfiability.
Note that this implies two points. First, the processor needs to be able to reason at
least as strongly as the solver to accept the proof scaffold as a valid proof. Second, the
processor is free to provide reasoning that is different from the reasoning used by the
solver used during runtime, as long as it reaches the same conclusion.
In Example 2 and Example 1, the introduced inferences are the proof steps which are
implied by constraints from the model, rather than any previous proof steps.

3. Verification After proof processing we get what we refer to as the full CP proof. It is
ready to be checked by a proof checker. Ideally the checker is formally verified, to leave
as little doubt in the conclusion as possible.

4.2 Proof Format
The proof format we propose reasons about the CP model in terms of atomic constraints
and nogoods over those atomic constraints. The format is valid for both the proof scaffold
and the full CP proof. A step in a valid CP proof in this format is one of the following:
Nogood 〈nogood id〉 〈clause〉 A clausal representation of a nogood, which satisfies the RUP

property. In a solver which derives nogoods using the CDCL [43] algorithm, all nogoods
satisfy the RUP property. A trivial nogood which can be logged by non-learning CP
solvers consists of current decision variable assignments when a conflict is detected. In
Example 2, steps 3 and 6 are nogoods.

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits, and E. Demirović 11:9

Deletion 〈nogood id〉 The nogood with the given id is no longer relevant for BCP, and
can be removed from consideration in the checker. This step is required to reduce the
memory usage and BCP runtime. In an LCG solver, as in SAT solving, it is common
to occasionally delete nogoods that are deemed unworthy by the solver to save space
and propagation time. Therefore, such nogoods cannot contribute to later propagations
(unless they are learned again), and therefore we can help a proof checker by indicating
the deletion.

Inference 〈name〉 〈premises〉 〈propagated atomic constraint〉 A lemma which is enforced
by a particular propagator in the solver. It states the premise that leads to the given
propagated atomic constraint. The inference may be used in checking the RUP property
of a nogood. For instance, in Example 2, step 1 is an inference given by constraint c3,
and it is used when checking the nogood in step 3.
The inference is required to satisfy an extension of the RUP property, i.e., asserting
the premises and the negation of the propagated atomic constraint leads to a conflict
by fixpoint propagation. Given this requirement, the “name” is not strictly necessary –
as in the scaffolding phase, this could be left freely to the processor to determine the
reason. Nevertheless, the name serves as a hint to simplify the verification step and in
our evaluation, the name was necessary to select the proper encoding for the inference.
Typically a CP solver performs many propagations during search. Keeping all inferences
in the proof in memory would slow down BCP when checking a nogood. Hence, we
specify that all inferences only apply to the first nogood following it. After checking that
nogood, the inferences are deleted from memory. This means the same inference may be
present multiple times in the proof file, but it avoids having to delete inferences explicitly.

Conclusion 〈conclusion〉 The final step of the proof. The value of 〈conclusion〉 can be one
of the following:

UNSAT when the conclusion is that the problem is unsatisfiable,
a literal corresponding to the atomic constraint ⟨objective ≥ v⟩, where v is the value
of the objective variable in the optimal solution.

Conceptually, this format extends the DRUP [33] format. The nogoods in the proof are
the RUP clauses which are checked identically to the RUP clauses in a DRUP SAT proof,
and the inferences are temporary problem clauses which are created by the propagators in
the CP solver. An interesting property of our approach is that for pure SAT problems, i.e.,
problems containing only clauses and Boolean variables, our approach resembles standard
SAT proof logging and introduces no overhead compared to SAT proof logging, contrary to
other CP proof logging approaches.

4.3 Proof Processor
Given a CP proof scaffold, the processing stage can now apply trimming and inference
introduction. The proof processor uses a backward checking approach [33] to implement
trimming and inference introduction in a single pass.

The pseudo-code for the proof processor is given in Algorithm 1. The proof is loaded, the
empty clause is marked as used, and the output proof P ′ is initialized to an empty sequence.
The proof processor then goes over the scaffold back to front. The last clause is popped
from the input proof sequence, and if it is marked, the RUP property is checked. Unmarked
clauses are skipped immediately. The Propagation(φ) procedure propagates all constraints
until the fixpoint. In case of no conflict, the implication graph is empty and the checker
cannot complete the proof scaffold, as the producer of the scaffold performed reasoning the

CP 2024

11:10 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

Algorithm 1 Proof Processing. F is a set of constraints, and P is the proof scaffold.

Require: The top-most element of P is ∅.
Ensure: P ′ is the full CP proof.

1: φ← F ∪ P

2: marked ← {peek(P)} ▷ peek: Get top-most element in P without popping
3: P ′ ← ∅
4: while |P | > 0 do
5: c← pop(P)
6: φ← φ \ {c}
7: if c ∈ marked then
8: P ′ ← push(P ′, c)
9: confl ← Propagation(φ ∧

∧
l∈c ¬l) ▷ Perform the RUP check.

10: if confl is empty then
11: return Fail
12: end if
13: nogoods, inferences ← Analyze(confl)
14: marked ← marked ∪ nogoods
15: P ′ ← P ′ concatenated with inferences
16: end if
17: end while
18: P ′ ← reverse(P ′)
19: return Success

processor cannot imitate. In case of a conflict, the RUP property for the nogood holds and
the Propagation(φ) procedure returns an implication graph describing the conflict. The
Analyze(G) procedure walks the implication graph backwards. Through this traversal,
the nogoods used to derive the conflict are marked, and the propagations performed by
propagators are introduced as inferences. Finally, after processing all the nogoods in the
scaffold, the output proof P ′ contains the full CP proof in reverse, so it is reversed.

4.4 Checking Proofs
Once we obtain the full CP proof, the final step is to check the proof with respect to the
model. A possible approach is implementing a formally verified proof checker with a theorem
prover. This approach was suggested in previous work [27] and would fit the framework well.
Another approach, which we adopted in our evaluation, is to encode the CP proofs to a
pseudo-Boolean format and check the proofs with VeriPB, following the Glasgow solver [31].

For this paper, the description of a CP model is given in the FlatZinc format. Therefore,
the models need to be encoded to a pseudo-Boolean formula. Then, every proof step in the
CP proof is encoded to an equivalent pseudo-Boolean justification.

4.4.1 FlatZinc Encoding
Encoding the FlatZinc model into a pseudo-Boolean formula entails encoding the variables,
the constraints, and, if present, the objective variable. Following the narrative from [31],
we encode the FlatZinc variables with a binary encoding. For example, if variable x has a
domain D(x) = [0..5], the binary encoding will have three Boolean variables a3a2a1, and the
binary expansion of x is 1× a1 + 2× a2 + 4× a3. Next, we focus on three types of constraints
in this work:

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits, and E. Demirović 11:11

Linear Inequalities A linear inequality is a constraint in the form
∑

wixi ≥ c, where wi, c ∈ Z
are integer constants and xi ∈ X are integer variables. These constraints are encoded as
described in [31].

Reified Linear Inequalities A reified version of the linear inequality constraint. We rewrite
constraints of the form r ↔

∑
wixi ≥ c as a big-M constraint in the pseudo-Boolean

model; more formally, this constraint is introduced as M¬r +
∑

wixi ≥ c and Mr −∑
wixi ≥ 1− c, where M is a suitably large integer constant. Encoding this constraint is

now the same as encoding a regular linear inequality. Additionally, any justification for an
inference implied by a reified linear inequality is rewritten to a linear bounds justification
over the big-M constraint.

Cumulative To encode the cumulative constraint [3] we used Equations 2–3 from Bofill et
al. [11].

Finally, if the FlatZinc model defines an objective variable O, the FlatZinc objective function
is given as the binary expansion of O.

4.4.2 Atomic Constraint Encoding
The pseudo-Boolean encoding of the proof starts by introducing the atomic constraints as
pseudo-Boolean variables. We achieve this by reifying the corresponding condition with
redundance-based strengthening [32]. For example, an atomic constraint ⟨x ≥ v⟩ is encoded
by introducing a new pseudo-Boolean variable (which we introduce with the same notation)
and deriving two big-M constraints M¬ ⟨x ≥ v⟩ + x ≥ v and M ⟨x ≥ v⟩ − x ≥ −v + 1 for
large enough values of M .

Given the semantics of integer variables and values, every proof implicitly includes the
constraints enforcing the consistency of the atomic constraints, including ∀x ∈ X , v ∈ Z :
⟨x ≥ v⟩ → ⟨x ≥ v + 1⟩ or ∀x ∈ X , v ∈ Z : ⟨x ≤ v⟩ → ⟨x ≤ v − 1⟩. Therefore, after declaring
the atomic constraints, we introduce the constraints above with VeriPB inferences. For
example, a condition ⟨x ≥ u⟩ → ⟨x ≥ v⟩ for constants u, v such that u ≥ v is introduced by
taking the half-reification definitions of form M¬ ⟨x ≥ u⟩+x ≥ u and M ⟨x ≥ v⟩−x ≥ −v+1,
adding them and dividing with rounding up by the big-M constant. The resulting condition
reads as ¬ ⟨x ≥ u⟩+ ⟨x ≥ v⟩ ≥ 1, which is precisely the desired implication.

4.4.3 Proof Encoding
After introducing the atomic literals, the encoder unpacks each CP proof step into valid
VeriPB statements. The nogood and deletion steps correspond to VeriPB RUP and deletion
steps respectively. Hence, we only discuss the encoding of the inference steps.

To support the constraints listed in Section 4.4.1 we have to justify two kinds of inferences:
linear bound reasoning for linear inequalities, as used in Example 1, and time-table [9]
reasoning for the cumulative constraint. As stated previously, reified linear inequalities are
rewritten to regular inequalities and the justification for reified linear inequality inferences is
regular linear bound reasoning. A pseudo-Boolean justification of inferences implied by linear
inequalities is described by [31]. Hence, we only describe the time-table justification here.

Let ⟨si ≥ v⟩ ∧ ⟨si ≤ v′⟩ → ⟨sj ≥ w⟩ be a time-table inference, where variables si and sj

model the start time of activities i and j, respectively. This inference states that the bounds
on variable si are such that activity j cannot be scheduled before time point w, because,
task i must consume a certain amount of resource in an interval ending at time point w − 1
and scheduling variable sj before w would guarantee to overload the resource.

CP 2024

11:12 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

The justification is done by contradiction, i.e., we assume activity j is scheduled before
time point w. From the encoding of the constraint, we have Boolean literals corresponding
to ⟨si ≤ t < si + pi⟩ for every time point t, where pi ∈ Z is the constant duration of activity
i. These literals indicate that task i is active at time point t. The premises of the inference
correspond to setting these literals to true for the time points within the bounds described by
the inference. The negation of the propagated atomic constraint also leads to these literals
becoming true in the time interval ending at time point w. Pseudo-Boolean propagation
then identifies the conflict in resource usage, so the inference is valid.

Finally, when the proof conclusion is the optimal objective value, the encoder will first
identify the lower bound ⟨x ≥ v⟩ on the objective variable x from the conclusion of the proof.
The constraint ¬ ⟨x ≥ v⟩ is then appended to the encoding of the FlatZinc model. The rest
of the proof is treated as proof of unsatisfiability for the amended model.

5 Evaluation

To show our method works on a standardised input format, we use MiniZinc [39] models.
We designed experiments to evaluate our framework in three aspects:

The overhead caused by logging the scaffold in terms of runtime. We aim to keep this low,
to increase the practical use of the framework. We show that logging takes most of the
time less than 10%, which is orders of magnitude lower compared to existing approaches.
The value of scaffolding, trimming, and expansion, compared to logging all proofs steps
as in other approaches. Processing the proof should not be prohibitively expensive in
runtime and disk space. We demonstrate that our approach is indeed computationally
inexpensive with notable reductions in proof size.
The time spent to verify the proofs. For proof logging to be adopted, verifying the proofs
should not take an unreasonable amount of time. Our current runtimes are promising, in
particular for optimisation problems.

We implemented our approach in our LCG CP solver Pumpkin1. We support most
FlatZinc primitives and the cumulative global constraint. The solver is competitive to
established solvers Gecode [42] and Chuffed [17] (see Figure 2) when using the globals
constraints that we support and decomposing others. This gives credibility to our results.

We use our solver within the proof processor. Note that while proofs may be potentially
produced with incorrect solvers, the final proof is verified with an external tool which gives
us high confidence in the results, e.g., the solver is not checking itself.

Our main focus is on proof production, nevertheless we also implemented our own checker
as a proof-of-concept. The checker is based on VeriPB, and certifies that the proof is correct
with respect to the FlatZinc file. Our checker implements a subset of FlatZinc primitives
and the cumulative with time-table filtering, as described in Section 4.4.

We considered all MiniZinc benchmarks comprising over 4000 instances, however depend-
ing on the experiment, we used a different subset (around 3000 instances). These are detailed
in the appropriate sections.

All the experiments were run on the DelftBlue [23] supercomputer. Each benchmark
used a single core of an Intel Xeon E5-6248R 24C 3.0GHz processor and 12GB of RAM. The
solver was given 10 minutes, and subsequent steps in the framework were only performed on
instances that did not time out. Any time measurements given are of CPU time.

1 Available at https://github.com/consol-lab/pumpkin. The version used for experiments is stored on
Zenodo (see title page).

https://github.com/consol-lab/pumpkin

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits, and E. Demirović 11:13

0 500 1000 1500 2000 2500
Instances

0

100

200

300

400

500

600

Ti
m

e
(s

)

Our Solver
Chuffed
Gecode

Figure 2 A cactus plot of Gecode, Chuffed
and our solver on instances of the MiniZinc
benchmarks. Only completely solved instances
are shown.

0 200 400 600 800 1000 1200 1400
Instances

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f t
im

e
sp

en
t l

og
gi

ng

Figure 3 Distribution of logging as a per-
centage of the solving time for all the instances
taking longer than 10 seconds.

5.1 Proof Logging Overhead
The solver was instrumented to measure the CPU time spent within the proof logging. Given
the capabilities of our solver, we considered 3923 MiniZinc benchmarks. Note that we reduced
the number of instances for the mrcpsp and rcpsp families by 80% by removing instances
randomly, since these instances had an overwhelming presence compared to other benchmark
families. The comparison with other solvers was done on this set of benchmarks as well.

Table 1 The time spent logging as a percentage of the total runtime. After discarding instances
solved under 10 seconds, 1462 instances remain.

Minimum Median Geometric Mean Mean Maximum
0.01% 5.70% 3.29% 9.33% 47.78%

We discarded easy problems from the evaluation which were solved within ten seconds,
leaving us with 1462 instances. Figure 3 shows the distribution of the overhead, and this
information is aggregated in Table 1. Logging takes, on average, less than 10% of the runtime.
This is a significant improvement compared to the orders of magnitude slowdown reported
by previous methods. Even the worst case only presents a 47.78% overhead, but that is
on an instance which finishes so quickly the I/O is the main bottleneck. We note that the
overhead can be notably reduced by using a better implementation when writing to the file,
e.g., we produce plain text files, whereas outputting in binary form would be more efficient.
Nevertheless the logging time even in the current form remains low.

Our experiments highlight the advantage of this approach, and the reason for logging
only the derived nogoods becomes clear. Every derived nogood typically requires many
propagations, and a slowdown by a multiple of what is presented here is inevitable when the
propagations are logged as well during solving.

5.2 Proof Processing
Aside from proof production, important metrics in this evaluation are the cost of proof
processing and the benefit in terms of proof size reduction. We focus on instances that we
support with our checker that we could completely solve with our solver, i.e., where the

CP 2024

11:14 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

solver concluded unsatisfiability or optimality. In total, we considered 3382 benchmarks and
generated a total of 1825 proofs from three models from the MiniZinc benchmark repository2:
RCPSP: an optimisation model using the cumulative global constraint and linear inequalities.

This model has 1784 instances which are solvable to optimality within 10 minutes.
2DPacking: an optimisation model with linear (in)equality constraints, with 10 instances

solvable to optimality within 10 minutes.
Market Split: a satisfaction model with only linear equality constraints, and has 20 instances

that are solved within 10 minutes and are unsatisfiable.

Figure 4a shows how many nogoods remain in the proof after trimming. The plot shows
only 574 proof scaffolds since the remaining 1251 instances are solved with an empty scaffold,
i.e., instances were determined unsatisfiable at the root level. It is notable that for 373
instances, from both RCPSP and 2DPacking, not a single nogood remains after trimming.
The final proof only consists of inferences, and the trimmer used the bound on the objective
to identify the required inferences and discarded all nogoods. This means that these instances
with an infeasible lower bound on the objective variable can be identified through propagation
alone, without any search. We note that these 373 instances had scaffolds ranging from a
single nogood to 987,272 nogoods.

On the market split instances, we see different behaviour. For these instances, trimming
did almost nothing. There is one instance for which 1% of the nogoods were removed, but
on all the other instances not a single nogood could be trimmed away. Based on the impact
of trimming on DRUP proofs for SAT solvers [35], we expected to see at least some impact.
We hypothesise this is not the case because the instances are relatively small, all solved
within 3 seconds. It is therefore easy to find the unsatisfiability, and the solver never ends
up exploring redundant parts of the search space.

Given the benefits of the explicit processing step in terms of proof size, we now discuss
the cost in terms of extra runtime. Figure 4b presents the time taken to process every
proof compared to the time it took to solve that instance. From the figure we can see that
processing time is between an order of magnitude quicker and an order of magnitude slower
than solving the model, however, most of these orders of magnitude differences are due to
very small runtimes. Out of the instances which take the longest to solve, all take less than
100% of the solving time to be processed. Since we are dealing with many instances which
are solved quickly, and given that noise in the timing data is more pronounced on shorter
time spans, we conclude that instances with long solving times give a good upper bound to
the processing time. This aligns with our expectations: we expect processing time to take
less time than solving for reasonably sized problems.

5.3 Proof Checking
As described in Section 4.4, we implemented an encoder for the proof so they can be checked
by VeriPB. This means we spend some time encoding the proofs. Depending on their size,
this encoding time is not negligible.

Encoding a proof is linear in the number of proof steps. Every step in the CP proof
can be encoded independently from the others, and encoding a single step is cheap. On
instances with only a few 100 propagations and few nogoods, the I/O required in the encoder
dominates the time. However, on instances which take longer than 2 seconds to solve, the
median encoding time is 77% of the solving time.

2 Available at https://github.com/MiniZinc/minizinc-benchmarks/tree/26bcd0a

https://github.com/MiniZinc/minizinc-benchmarks/tree/26bcd0a

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits, and E. Demirović 11:15

100 101 102 103 104 105 106

Nogoods in proof scaffold

100

101

102

103

104

105

No

go
od

s i
n

fu
ll

pr
oo

f

(a) Effect of trimming on the number of nogoods.
This does not include the 373 instances which had
no remaining nogoods after trimming.

10 2 10 1 100 101 102

Time for solving (s)

10 2

10 1

100

101

102

Ti
m

e
fo

r p
ro

ce
ss

in
g

(s
)

(b) The time taken to process the proof compared
to the time it took to produce the scaffold.

Figure 4 Experimental results on the processing of proofs.

The final step to fully certifying the solutions is to look at what VeriPB does with the
encoded proofs. Figure 5a plots, for every proof, how long it took to verify relative to the time
it took to produce the scaffold. For some instances, the checking time is orders of magnitude
slower than producing the proof. In particular, this is the case for the market split instances.
This is likely because for optimisation problems the solver performs upper-bounded linear
search, which means it starts out deriving nogoods as it finds improving solutions. Only
after the last solution does the solver start to conclude optimality, which means many of the
first nogoods can be removed. For satisfaction problems, this does not happen, and therefore
more nogoods from the scaffold are relevant, which means checking the proof takes longer
relative to the solving time compared to optimisation instances.

(a) Time taken to check an instance compared to
solving the instance with proof generation.

0 100 200 300 400 500 600 700 800
CPU Time (s)

2DPacking_Class6_40_1

rcpsp_J120_34_6

rcpsp_J90_26_7

rcpsp_J120_54_3

rcpsp_J60_14_4

Solving
Processing
Encoding
Checking

(b) Solving to checking for the five instances that
took the longest to solve. This excludes market
split instances because they are solved too quickly.

Figure 5 Experimental results on the checking of proofs.

To give an idea of the breakdown of the total time it takes for the proof to be accepted,
starting with the solving time, Figure 5b shows the time taken at each stage for the five
instances that took the longest to solve. We focus on the long instance since these instances
are likely to run into scalability issues with the other methods. We note that this excludes
any market split instances because they are all solved in less than 3 seconds, and at that

CP 2024

11:16 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

scale, the timing data is extremely noisy. However, precisely these instances highlight why
our method is practically usable. Four out of the five instances are solved in more than 150
seconds, and the rcpsp_J60_14_4 instance is solved in approximately 53 seconds. All of the
instances are optimisation problems, and again we can see that checking whether a claim is
really true can be extremely cheap compared to solving the problem.

6 Conclusion and Future Work

We have presented a framework to support proof logging in CP solvers, given a FlatZinc
model as an input. It addresses problems with large proof sizes and significant runtime
overhead by delaying as much of the proof construction for as long as possible: only until
the necessity of the proof becomes clear does one have to pay the price to obtain the proof.
The proof format itself is designed to be almost arbitrarily extensible, in acknowledgement
of the versatility of CP solvers and their propagation algorithms.

Through our framework, we can feasibly certify unsatisfiability and optimality claims in
practical settings, with minimal overhead compared to when the solver is not logging a proof.
This minimal overhead is not trivial to achieve. On optimisation models, solvers may derive
many facts which do not directly relate to proving optimality, which adversely affects proof
checking times. By removing the reasoning steps which are redundant for the optimality
claim, at least RCPSP and 2DPacking optimality proofs, can be checked quickly.

Future work includes expanding the number of supported constraints in the MiniZinc
library. These include robust implementations of the rest of the FlatZinc builtins and would
be followed by implementing MiniZinc globals other than cumulative. Supporting stronger
reasoning would likely drastically shorten the proofs which would benefit not just solving and
processing times, but also checking times. Furthermore, we would like to expand support to
other formalisms such as XCSP, engage with solver developers to further reduce practical
barriers, and include other techniques such as preprocessing in the proof format.

Another avenue to pursue is whether the design and implementation of a dedicated,
formally verified checker for the CP proof format can reduce the end-to-end overhead even
more, which was shown to be promising [27]. If the proof no longer needs to be encoded,
and the checker can implement CP-specific reasoning natively, we postulate the checking will
become cheaper and more accessible.

References
1 Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität

Berlin, October 2007.
2 Tobias Achterberg. SCIP: solving constraint integer programs. Math. Program. Comput.,

1(1):1–41, July 2009. doi:10.1007/s12532-008-0001-1.
3 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve complex

scheduling and placement problems. In Jean-Paul Delahaye, Philippe Devienne, Philippe
Mathieu, and Pascal Yim, editors, JFPL’92, 1ères Journées Francophones de Programmation
Logique, 25-27 Mai 1992, Lille, France, volume 17, page 51, 1992. doi:10.1016/0895-7177(93)
90068-A.

4 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Meta-
morphic testing of constraint solvers. In John N. Hooker, editor, Principles and Practice of
Constraint Programming - 24th International Conference, CP 2018, Lille, France, August
27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science, pages 727–736,
Cham, 2018. Springer. doi:10.1007/978-3-319-98334-9_46.

https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1007/978-3-319-98334-9_46

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits, and E. Demirović 11:17

5 Gilles Audemard, Christophe Lecoutre, and Emmanuel Lonca. Proceedings of the 2023 XCSP3
competition. CoRR, abs/2312.05877, 2023. doi:10.48550/arXiv.2312.05877.

6 Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors. Pro-
ceedings of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions.
Department of Computer Science Series of Publications B. Department of Computer Science,
University of Helsinki, Finland, 2023.

7 Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai
Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex
Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.
cvc5: A versatile and industrial-strength SMT solver. In Dana Fisman and Grigore Rosu,
editors, Tools and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I,
volume 13243 of Lecture Notes in Computer Science, pages 415–442, Cham, 2022. Springer.
doi:10.1007/978-3-030-99524-9_24.

8 Clark Barrett, Leonardo De Moura, and Pascal Fontaine. Proofs in satisfiability modulo
theories. All about proofs, Proofs for all, 55(1):23–44, 2015.

9 Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives constraint with
negative heights. In Pascal Van Hentenryck, editor, Principles and Practice of Constraint
Programming - CP 2002, pages 63–79, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
doi:10.1007/3-540-46135-3_5.

10 Nikolaj S. Bjørner, Clemens Eisenhofer, and Laura Kovács. Satisfiability modulo custom
theories in Z3. In Cezara Dragoi, Michael Emmi, and Jingbo Wang, editors, Verification, Model
Checking, and Abstract Interpretation - 24th International Conference, VMCAI 2023, Boston,
MA, USA, January 16-17, 2023, Proceedings, volume 13881 of Lecture Notes in Computer
Science, pages 91–105, Cham, 2023. Springer. doi:10.1007/978-3-031-24950-1_5.

11 Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. Compact mdds for pseudo-boolean
constraints with at-most-one relations in resource-constrained scheduling problems. In Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
pages 555–562, 2017. doi:10.24963/ijcai.2017/78.

12 Thomas Bouton, Diego Caminha Barbosa De Oliveira, David Déharbe, and Pascal Fontaine.
verit: An open, trustable and efficient smt-solver. In Renate A. Schmidt, editor, Automated
Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal,
Canada, August 2-7, 2009. Proceedings, volume 5663 of Lecture Notes in Computer Science,
pages 151–156, Berlin, Heidelberg, 2009. Springer. doi:10.1007/978-3-642-02959-2_12.

13 Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of
SAT and QBF solvers. In Ofer Strichman and Stefan Szeider, editors, Theory and Applications
of Satisfiability Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh,
UK, July 11-14, 2010. Proceedings, volume 6175 of Lecture Notes in Computer Science, pages
44–57, Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-14186-7_6.

14 Sam Buss and Jakob Nordström. Proof complexity and sat solving. Handbook of Satisfiability,
336:233–350, 2021. doi:10.3233/FAIA200990.

15 Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. A certified constraint solver over
finite domains. In Dimitra Giannakopoulou and Dominique Méry, editors, FM 2012: Formal
Methods - 18th International Symposium, Paris, France, August 27-31, 2012. Proceedings,
volume 7436 of Lecture Notes in Computer Science, pages 116–131, Berlin, Heidelberg, 2012.
Springer. doi:10.1007/978-3-642-32759-9_12.

16 Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Friedrich Eisenbrand and Jochen Könemann, editors, Integer Programming and
Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON,
Canada, June 26-28, 2017, Proceedings, volume 10328 of Lecture Notes in Computer Science,
pages 148–160, Cham, 2017. Springer. doi:10.1007/978-3-319-59250-3_13.

CP 2024

https://doi.org/10.48550/arXiv.2312.05877
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/3-540-46135-3_5
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.24963/ijcai.2017/78
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.3233/FAIA200990
https://doi.org/10.1007/978-3-642-32759-9_12
https://doi.org/10.1007/978-3-319-59250-3_13

11:18 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

17 Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and
Kathryn Francis. Chuffed, a lazy clause generation solver. URL: https://github.com/
chuffed/chuffed/.

18 William Cook, Thorsten Koch, Daniel E Steffy, and Kati Wolter. A hybrid branch-and-
bound approach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5(3):305–344, 2013. doi:10.1007/s12532-013-0055-6.

19 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-
Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden,
August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages
220–236, Cham, 2017. Springer. doi:10.1007/978-3-319-63046-5_14.

20 Jessica Davies and Fahiem Bacchus. Exploiting the power of mip solvers in maxsat. In
International Conference on Theory and Applications of Satisfiability Testing, pages 166–181.
Springer, 2013. doi:10.1007/978-3-642-39071-5_13.

21 Toby O. Davies, Graeme Gange, and Peter J. Stuckey. Automatic logic-based benders
decomposition with minizinc. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 787–793, 2017. doi:10.1609/aaai.v31i1.10654.

22 Sven De Vries and Rakesh V Vohra. Combinatorial auctions: A survey. INFORMS Journal
on computing, 15(3):284–309, 2003. doi:10.1287/ijoc.15.3.284.16077.

23 Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 1).
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

24 Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differ-
ences using pseudo-boolean reasoning. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, volume 34, pages
1486–1494. AAAI Press, April 2020. doi:10.1609/aaai.v34i02.5507.

25 Thibaut Feydy and Peter J Stuckey. Lazy clause generation reengineered. In International
Conference on Principles and Practice of Constraint Programming, pages 352–366. Springer,
2009. doi:10.1007/978-3-642-04244-7_29.

26 Graeme Gange, Jeremias Berg, Emir Demirović, and Peter J Stuckey. Core-guided and
core-boosted search for cp. In Integration of Constraint Programming, Artificial Intel-
ligence, and Operations Research: 17th International Conference, CPAIOR 2020, Vi-
enna, Austria, September 21–24, 2020, Proceedings 17, pages 205–221. Springer, 2020.
doi:10.1007/978-3-030-58942-4_14.

27 Graeme Gange, Geoffrey Chu, and Peter Stuckey. Certifying optimality in constraint program-
ming. unpublished, 2017. URL: https://github.com/gkgange/cert-cp.

28 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In International Sym-
posium on Artificial Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida, USA,
January 2-4, 2008, 2008. URL: http://isaim2008.unl.edu/PAPERS/TechnicalProgram/
ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf.

29 Xavier Gillard, Pierre Schaus, and Yves Deville. Solvercheck: Declarative testing of con-
straints. In Thomas Schiex and Simon de Givry, editors, Principles and Practice of Constraint
Programming - 25th International Conference, CP 2019, Stamford, CT, USA, September 30
- October 4, 2019, Proceedings, volume 11802 of Lecture Notes in Computer Science, pages
565–582, Cham, 2019. Springer. doi:10.1007/978-3-030-30048-7_33.

30 Stephan Gocht, Ciaran McCreesh, and Jakob Nordstrom. Veripb: The easy way to make your
combinatorial search algorithm trustworthy. From Constraint Programming to Trustworthy
AI, 2020.

31 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In DROPS-IDN/v2/document/10.4230/LIPIcs.CP.2022.25. Schloss-Dagstuhl - Leibniz
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CP.2022.25.

https://github.com/chuffed/chuffed/
https://github.com/chuffed/chuffed/
https://doi.org/10.1007/s12532-013-0055-6
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1609/aaai.v31i1.10654
https://doi.org/10.1287/ijoc.15.3.284.16077
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://doi.org/10.1609/aaai.v34i02.5507
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-030-58942-4_14
https://github.com/gkgange/cert-cp
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
https://doi.org/10.1007/978-3-030-30048-7_33
https://doi.org/10.4230/LIPIcs.CP.2022.25

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits, and E. Demirović 11:19

32 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
boolean proofs. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):3768–3777,
May 2021. doi:10.1609/aaai.v35i5.16494.

33 Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In 2003 Design, Automation and Test in Europe Conference and Exposition (DATE
2003), 3-7 March 2003, Munich, Germany, pages 10886–10891. IEEE Computer Society,
March 2003. doi:10.1109/DATE.2003.10008.

34 Marijn Heule. Schur number five. Proceedings of the AAAI Conference on Artificial Intelligence,
32(11), April 2018. doi:10.1609/aaai.v32i1.12209.

35 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 181–188. IEEE, October 2013. doi:10.1109/FMCAD.2013.6679408.

36 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in
Computer Science, pages 228–245, Cham, 2016. Springer. doi:10.1007/978-3-319-40970-2_
15.

37 John N Hooker and Greger Ottosson. Logic-based benders decomposition. Mathematical
Programming, 96(1):33–60, 2003. doi:10.1007/s10107-003-0375-9.

38 Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning sat solvers.
In Handbook of satisfiability, pages 133–182. ios Press, 2021. doi:10.3233/FAIA200987.

39 Nicholas Nethercote, Ralph Stuckey, Peter J. Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tac. Minizinc: Towards a standard cp modelling language. In Principles and
Practice of Constraint Programming – CP 2007, pages 529–543. Springer, 2007. doi:10.1007/
978-3-540-74970-7_38.

40 Olga Ohrimenko, Peter J Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14:357–391, 2009. doi:10.1007/s10601-008-9064-x.

41 Tobias Paxian and Armin Biere. Uncovering and classifying bugs in maxsat solvers through
fuzzing and delta debugging. In Matti Järvisalo and Daniel Le Berre, editors, Proceedings of
the 14th International Workshop on Pragmatics of SAT co-located with the 26th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2023), Alghero, Italy,
July 4, 2023, volume 3545 of CEUR Workshop Proceedings, pages 59–71. CEUR-WS.org, 2023.
URL: https://ceur-ws.org/Vol-3545/paper5.pdf.

42 Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode - generic constraint development
environment. URL: https://www.gecode.org/.

43 João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for satisfiability.
In Rob A. Rutenbar and Ralph H. J. M. Otten, editors, Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA, USA,
November 10-14, 1996, pages 220–227. IEEE Computer Society / ACM, November 1996.
doi:10.1109/ICCAD.1996.569607.

44 Guido Tack and Peter J. Stuckey. Minizinc challenge 2023. URL: https://www.minizinc.
org/challenge2023/results2023.html.

45 Michael Veksler and Ofer Strichman. A proof-producing CSP solver. In Maria Fox and David
Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, volume 24, pages 204–209. AAAI Press,
July 2010. doi:10.1609/aaai.v24i1.7543.

46 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. Drat-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory and
Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
volume 8561 of Lecture Notes in Computer Science, pages 422–429, Cham, 2014. Springer.
doi:10.1007/978-3-319-09284-3_31.

CP 2024

https://doi.org/10.1609/aaai.v35i5.16494
https://doi.org/10.1109/DATE.2003.10008
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1109/FMCAD.2013.6679408
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/s10107-003-0375-9
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s10601-008-9064-x
https://ceur-ws.org/Vol-3545/paper5.pdf
https://www.gecode.org/
https://doi.org/10.1109/ICCAD.1996.569607
https://www.minizinc.org/challenge2023/results2023.html
https://www.minizinc.org/challenge2023/results2023.html
https://doi.org/10.1609/aaai.v24i1.7543
https://doi.org/10.1007/978-3-319-09284-3_31

11:20 A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

47 Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In 2003 Design, Automation and
Test in Europe Conference and Exposition (DATE 2003), 3-7 March 2003, Munich, Germany,
pages 10880–10885. IEEE Computer Society, March 2003. doi:10.1109/DATE.2003.10014.

https://doi.org/10.1109/DATE.2003.10014

Using Constraint Programming for Disjunctive
Scheduling in Temporal AI Planning
Adam Francis Green #

Department of Informatics, King’s College London, UK
Tango Hospitality Inc., Toronto, Canada

J. Christopher Beck #

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

Amanda Coles #

Department of Informatics, King’s College London, UK

Abstract
We present a novel scheduling model that leverages Constraint Programming (CP) to enhance problem
solving performance in Temporal Planning. Building on the established strategy of decomposing
causal and temporal reasoning, our approach abstracts two common fact structures present in many
Temporal Planning problems – Semaphores and Envelopes – and performs temporal reasoning in a
CP-based scheduler. At each search node in a heuristic search for a temporal plan, we construct and
solve a Constraint Satisfaction Problem (CSP) and integrate feedback from the CP-based scheduler
to guide the causal planning search towards a solution. Through experimental analysis, we validate
the impact of these advances, demonstrating a significant reduction in both the number of states
searched and in search time alongside an increase in problem-solving coverage.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; The-
ory of computation → Constraint and logic programming; Computing methodologies → Search
methodologies

Keywords and phrases AI Planning, Temporal-Numeric Planning, Constraint Programming, Schedul-
ing

Digital Object Identifier 10.4230/LIPIcs.CP.2024.12

1 Introduction

Temporal AI Planning is an extension of classical AI planning that includes a representation of
the duration of actions and reasoning about numeric variables that change over time [9]. For
such a problem, a solution is a sequence of scheduled actions, called a plan, which transforms
the world to a desired goal state from an initial description of the world. Unlike scheduling
problems such as Job-Shop Scheduling [15], but similar to most planning problems, solutions
to temporal AI planning problems do not have a pre-defined set of actions to execute, but
rather actions must be both selected and scheduled by a planner.

Planners designed to handle temporal problems typically take one of two approaches.
Decision-epoch planners build a plan by adapting a classical planning approach where actions
are selected and applied to a state to generate a new state, when a new action is started
its effects are realised and the time of its end is added to a queue, stored in the state. The
planner can then decide to apply another action at the current time or advances time until
after the next action in the queue, in order to realise that action’s effects. Further actions
can then be applied at this time point, with the process repeated until all goals are achieved
and all executing actions have completed [7, 8]. In the decision-epoch approach, the planner
reasons about both the causal and the temporal aspects of the problem.

© Adam Francis Green, J. Christopher Beck, and Amanda Coles;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adam@tangohq.com
https://orcid.org/0009-0006-9474-0676
mailto:jcb@mie.utoronto.ca
mailto:amanda.coles@kcl.ac.uk
https://orcid.org/0000-0002-1838-8301
https://doi.org/10.4230/LIPIcs.CP.2024.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

Decomposition planners separate causal and temporal reasoning [11]. The planner
applies actions to states to generate an atemporal successor state, then checks the temporal
consistency of the partial plan for that state using a scheduler. If the resulting state is
numerically and temporally consistent, additional actions can be applied to extend the plan.
If the resulting state is not consistent, it is discarded and the planner explores the expansion
of other states. This alternation between planning and scheduling continues until a goal
state is achieved. Thus, the causal reasoning takes place in task planning, while the temporal
reasoning is done using a sub-solver model such as a Simple Temporal Network [11] or a
Linear Program [3].

Decomposition Temporal Planning lends itself to transferring other temporal and/or
combinatorial structures to the sub-solver, provided that it has the ability to model and
solve such structures. This paper presents two contributions to decomposition approaches in
temporal AI planning.
1. We show that, through the use of a constraint-based scheduler, additional temporal and

combinatorial reasoning can be transferred to the sub-solver by abstracting semaphore
and envelope fact structures, reducing the number of states that the planner needs to
explore.

2. We show how this transfer also enables an increase in the feedback from the scheduler
to the planner enabling the planning heuristic to identify dead-ends earlier and, thus,
substantially reducing the search effort.

Our experiments show that our approach leads to a significant reduction in states searched,
increased coverage, and improved solve times in a range of International Planning Competition
(IPC) benchmark domains. Moreover, because we use a preprocessing detection to identify
these semaphore and envelope fact structures, there is no negative impact of our approach
on domains where these structures do not exist. This paper demonstrates that CP can be a
powerful tool for a kind of combinatorial and temporal reasoning that is traditionally solved
inefficiently in the search, which is designed for causal reasoning in AI planners.

These contributions are different from previous applications of Constraint Programming
in Temporal Planning – such as CPT [18, 10] or EUROPA [1] – because previous approaches
have directly solved the temporal planning problem. Moreover, our approach can model
numeric resources and supports a temporal-numeric fragment of PDDL2.1 even though the
performance improvements we demonstrate are derived from the temporal aspect of the
problem.

2 Background

2.1 Temporal Planning
We consider the fragment of PDDL 2.1 [9] planning problems supported by COLIN and
POPF [3] and limit our attention to problems without continuous numeric effects, although
our work could be extended to support them.

We define a planning problem as a tuple ⟨F, V,A, I,G⟩. F is a finite set of facts. A fact
f ∈ F is a proposition which, if present in a given state s, indicates that the fact is true. V
is a finite set of numeric variables. I denotes the initial state. A state is a tuple ⟨Fs, ns⟩,
where Fs ⊆ F and ns is a set of assignments to the variables in V . ns[v] denotes the value of
variable v ∈ V in state s. A is a set of durative actions, representing operators that can be
applied to states. G is a set of conditions that must hold true following execution of any
valid solution plan.

A. Francis Green, J. C. Beck, and A. Coles 12:3

We begin by defining a condition ψ. Conditions can either be propositional (ψ ∈ F) or
numeric. Numeric conditions are defined as a tuple ψ = ⟨v op c⟩ such that op ∈ {≥,≤, <,>
,=} and c ∈ R. For a given state ⟨Fs, ns⟩, ψ is satisfied if it is a proposition where ψ ∈ Fs

or it is a numeric condition where ⟨ns[v] op c⟩ is true.
A durative action a ∈ A is defined as a tuple

⟨pre(a)⊢, eff(a)⊢, pre(a)↔, pre(a)⊣, eff(a)⊣, da⟩. pre(a)⊢ (pre(a)⊣) is a set of proposi-
tional and numeric conditions (preconditions) on the start (end) of the action a. pre(a)↔
are invariant conditions over the duration of action a that must be satisfied for all the time
the action is executing. Individually we denote these preconditions as pre(a)p

{⊢,⊣,↔} for
propositional conditions and pre(a)n

{⊢,⊣,↔} for numeric conditions. da is a pair ⟨dmin, dmax⟩
representing the minimum and maximum duration of the action a as positive real values.

eff(a)⊢ (eff(a)⊣) are effects that occur at the start (end) of the action a and consist of
a tuple ⟨eff+, eff−, effn⟩. eff+(eff−) is a set of propositions in F that are added to (deleted
from) a state s to create the subsequent state s′ (e.g. Fs′ = (Fs \ eff−) ∪ eff+).

effn is a set of numeric effects of the form ⟨v op c⟩, where op ∈ {+=,−=,=}, c ∈ R and
v ∈ V . Numeric effects using the operators += and −= use the value of v in s, to calculate
the value of v in the subsequent state s′. This is a commonly used restricted version of
PDDL 2.1 numeric planning.

The goal G is a set of propositional and numeric conditions. A state s |= G if s satisfies
the propositional and numeric conditions in G.

A plan π is a list of tuples of the form ⟨a, t, d⟩, with t representing the timestamp at
which action a is applied and d representing the duration of a where dmin ≤ d ≤ dmax. A
plan π is valid iff for all tuples ⟨a, t, d⟩ in π, pre(a)⊢ is satisfied at time t, pre(a)⊣ is satisfied
at time t+ d, pre(a)↔ is satisfied at all points in the interval (t, t+ d). π is a solution if it is
valid and the resulting state SG, when all actions have finished executing, satisfies G.

2.2 Constraint Satisfaction Problems

Formally, a Constraint Satisfaction Problem (CSP) is a tuple ⟨X,D,C⟩, where X is a set of
n variables, D is a set of n domains corresponding to the variables in X and ∀d ∈ D, d ⊂ Z.

C is a set of constraints. A constraint is an m-ary (m ≤ n) function c(v0, ..., vm) →
{true, false} where vi ∈ di and di ∈ D represents the domain of variable xi. A constraint can
be any mapping of an assignment for the variables in X to a truth value which indicates if
the constraint is satisfied or not.

A solution for a CSP ⟨X,D,C⟩ is a n-tuple V = ⟨v0, ..., vn⟩ representing an assignment
of the value vi to the variable xi ∈ X where vi ∈ di and ∀c ∈ C, c(V) = true.

In CP-based scheduling, interval variables represent an optional time window. The
domain of an interval variable is a set of the form {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e} where s (e)
represents the start (end) time of the interval. For an interval variable x, if x = ⊥ it is not
present in the solution to the problem.

A global constraint is a relation on an arbitrary number of variables, typically representing
frequently observed combinatorial structure such as a set of variables all requiring pairwise
different values. Explicit representation of such relations improves problem solving perform-
ance through the use of inference (or propagation) algorithms designed for the corresponding
structure [16].

We use three common global constraints: noOverlap (or disjunctive), alternative, and span.

CP 2024

12:4 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

▶ Definition 1. noOverlap(S, υ) is a global constraint over a set of interval variables S, and
numeric constant υ where for any two present intervals in S, xi and xj , start(xi) ≥ end(xj)+υ
or start(xj) ≥ end(xi) + υ holds.

▶ Definition 2. alternative(xa, S) is a global constraint over an interval variable xa, and a
set of interval variables S where xa ̸∈ S. xa is present in the solution, iff exactly one interval
x ∈ S is also present. When xa is present, start(xa) = start(x) ∧ end(xa) = end(x).

▶ Definition 3. span(xc, S) is a global constraint over an interval variable xc and a set of
interval variables S, xc ̸∈ S, that ensures that all present intervals in S are scheduled between
the start and end of xc and that interval xc starts with the start of the first present interval
in S and ends with the end of the last present interval in S. xc is absent iff all intervals in
S are absent.

2.3 Planning through Decomposition

Decomposition-based planners separate temporal reasoning from causal reasoning by relaxing
the problem to a causal representation and finding a solution to this representation using
search. In OPTIC, an A∗ search with the Metric Temporal Relaxed Planning Graph (TRPG)
[13, 6] heuristic is used to explore the state space. To reason about temporal planning,
OPTIC splits durative actions into snap actions.

▶ Definition 4. An action a of the form ⟨pre(a)⊢, eff(a)⊢, pre(a)↔, pre(a)⊣, eff(a)⊣, da⟩, can
be abstracted as a pair of snap actions ⟨a⊢, a⊣⟩: a tuple comprising ⟨pre(a)⊢, eff(a)⊢⟩
(⟨pre(a)⊣, eff(a)⊣⟩). Snap actions represent the instantaneous start and end preconditions and
effects of a durative action; the duration and invariant conditions must be tracked separately.

The search is modified to ensure that each start snap action has a corresponding end
action and that invariant conditions between start and end snap actions are satisfied [3].

The successor of a state s reached by applying the sequence of snap actions (partial plan)
πs are each generated by applying a new snap action a, resulting in a new state with partial
plan π′ (a appended to πs). From π′, OPTIC creates a scheduling problem τ as follows [4]:

A set of temporal constraints of the form min ≤ t(a′) − t(a) ≤ max where a, a′ ∈ π′ and
min and max are constants.

If the temporal constraint represents an ordering between two snap actions min = ϵ

and max = ∞. Ordering constraints ensure that (1) if an action has a precondition
on a fact p then it is ordered after the last adder of p (i.e., the last action that adds
p); (2) if an action adds p it is ordered after the last deletor of p and (3) if an action
deletes p it is ordered after the last adder and all conditioners on p since it was last
added (4) if an action contditions on or effects a variable v it is ordered after the last
action to condition on or effect v.
If the temporal constraint represents the duration between the start and corresponding
end snap action for duration action a, min = dmin and max = dmax where da =
⟨dmin, dmax⟩. Duration constraints ensure that the time between the start and end
snap actions in any valid solution for τ is consistent with duration bounds of the
durative action they represent.

In the presence of continuous or duration-dependent effects these are encoded in the
scheduling problem over the values of numeric variables (v in V) before or after each
snap action.

A. Francis Green, J. C. Beck, and A. Coles 12:5

In every state generated, a scheduling problem τ is constructed from the partial plan π′.
τ is solved using a sub-solver such as an STN-based solver, Linear Program (LP) or Mixed
Integer Program (MIP) which attempts to find a set of action timestamps that satisfy the
constraints.

If there is no feasible timestamp assignment, the state is temporally inconsistent and is
pruned. If an assignment is found and the state satisfies the goal, then the plan π constructed
from the timestamps is a solution. If the state is consistent but not a goal, then control
returns to the planner to continue its search.

3 Building a CP model from π′

We now construct a drop-in CP replacement for the STN/MIP scheduler currently used in
OPTIC, based on the temporal and numeric constraints described in Section 2.3. Consider a
partial plan π′ and a scheduling problem τ ; we construct a CSP ⟨X,D,C⟩ as follows.

Variables

For each start snap action a⊢ in π′ we add an interval variable xa = [s, e) to X regardless of
whether a⊣ exists in π′. s represents the timestamp of snap action a⊢, and e of a⊣, if a⊣ is
present. If a⊣ is not part of the plan π′, then we still represent the unclosed duration action
that corresponds to a⊢ with an interval and constrain its duration according to the duration
of the durative action it represents, however there will be no ordering constraints on a⊣ (and
consequently on e) because the planner has yet to reason about the addition of a⊣ to the
plan. This allows the scheduler to reason with xa as if it were a closed action, preserving the
duration. In any circumstance, even if the CP solver concludes that a schedule exists for a
plan π′ with an unclosed action, the plan is not valid and a final temporal consistency check
will occur once a complete plan is produced.

If V ̸= ∅ we add two integer variables xa,v and x′
a,v for each v ∈ V and each snap action

a ∈ π′. These variables represent the value of variable v before and after the application of
the snap action.

Temporal Constraints

For each temporal constraint in τ of the form min ≤ t(a′) − t(a) ≤ max, a constraint is
introduced according to whether the snap action a (a′) correspond to a start a⊢ (a′

⊢) or end
a⊣ (a′

⊣) snap action. Constraints are mapped accordingly as follows. If a and a′ are start snap
actions then min ≤ start(x′

a)−start(xa) ≤ max is introduced. If a and a′ are end snap actions
then min ≤ end(x′

a) − end(xa) ≤ max is introduced. In the case that a is a start snap action
and a′ is an end snap action (or vice versa) a constraint min ≤ end(x′

a) − start(xa) ≤ max
(min ≤ end(x′

a) − end(xa) ≤ max) is introduced.

Numeric Constraints

There are two types of numeric constraints which we model: conditions and effects. A
numeric condition as defined in the planning problem with the form ⟨v{≥,≤, <,>,=}c⟩
occurring in pre(a), is imposed on xa,v as it represents the value of the variable v before the
application of snap action a e.g. xa,v{≥,≤, <,>,=}c.

If a numeric effect exists in effn(a) of the form ⟨v{+=,−=,=}c⟩ then the resulting
constraint is x′

a,v = xa,v{+=,−=,=}c. If no numeric effect exists then x′
a,v = xa,v.

CP 2024

12:6 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

These constraints model discrete numeric effects within the scheduling problem. In
problems where there are no continuous or duration-dependent effects, these need not be
reasoned about in the scheduler (since, given the ordering constraints OPTIC generates, the
timestamps assigned to actions cannot affect the value of numeric variables), so an STN,
without any numeric constraints can be used to solve the scheduling problem. However, in
the presence of either of these, the numeric preconditions and effects must be modelled to
ensure temporal-numeric constraints are satisfied. The approach we take to modelling these
in our CSP model, mirrors that used in OPTIC. We limit ourselves to discrete effects, here
we will use these later in our feedback mechanism from the scheduler to the planner; but in
general the same constraints over these variables that are used in OPTIC’s MIP can be used
to represent continuous/duration dependent effects in a CSP.

In OPTIC, when constructing a scheduling problem τ , a total ordering is imposed between
snap actions which condition on or effect the same variable v (regardless of whether this is
necessary). We could in principle relax these constraints, but since our focus here is not
specifically on numeric planning we maintain them as is. The initial value of xa′,v, therefore,
is constrained to be equal to the final value of v in a (xa′,v = x′

a,v) as we know this would
have been the last time the value of the variable v changed. If a is the first snap action π′ to
condition or effect on v, then xa,v takes the value of v in the initial state (xa,v = nI [v]).

Domain

The domain da is defined for an interval variable xa as the interval [0, h] where h represents
the sum of the maximum duration of all actions in the plan π′, plus ϵ multiplied by the
number of actions in the plan. The horizon h is an upper bound as in the worst case each
action will be executed without overlap with any other.

The domain dv – which applies to all integer variables representing v – is an interval
[minv,maxv] defined by the sum of all positive numeric effects (+=) effects applied to the
initial value maxv, and the sum of all negative effects (−=) minv. In the event assignment
(= c where c is some constant) occurs, the interval is [c− minv, c+ maxv].

Temporal planning and CP scheduling problems have adopted different conventions for
representing the timing of events. As shown in the definition of an interval variable, in CP,
time intervals are considered to be open on the right, thus allowing one interval to end at
time t and another to begin at the same time even if they are constrained to not overlap. In
contrast, temporal planning uses ϵ as the smallest representable unit of time. Actions that
are constrained to not overlap must be separated by at least ϵ. To handle this mismatch, we
represent ϵ in the CP model as one unit of time and thus force an extra gap between actions,
consistent with the planning definition. Our CP scheduler does not affect OPTIC’s support
for self-overlapping actions, is equivalent to the current STN-based approach in OPTIC, and
as such does not impact the soundness or completeness to OPTIC.

4 Abstracting Semaphores and Envelopes

So far our temporal reasoning problem is identical to that solved by the STN solver in
OPTIC. In this section, we extend our temporal representation to take advantage of CP’s
greater expressivity and solving power.

Semaphore and envelope facts [11] are causal modelling patterns that, respectively, prevent
and require the concurrent execution of a set of actions. Because these are facts, and therefore
a causal consideration, they have been considered during causal reasoning, despite being a
temporal structure. We formally define semaphore and envelope facts as follows.

A. Francis Green, J. C. Beck, and A. Coles 12:7

▶ Definition 5. A semaphore fact f is a fact such that f ∈ I and ∀a ∈ A exactly one of
the following holds

a is a mutual exclusive action, that is, f is in and only in pre(a)p
⊢, eff(a)−

⊢ and eff(a)+
⊣ ,

or
a is an unrelated action, that is f is not in any precondition or effect of a.

Definition 5 ensures that all actions that condition on a semaphore fact delete it at the
start and add it at the end, ensuring actions that condition on a semaphore are mutually
exclusive (cannot execute in parallel). Requiring all other actions to be unrelated ensures
the semaphore fact serves only to enforce mutual exclusion and has no other function.

▶ Definition 6. An envelope fact f is fact such that f ̸∈ I and ∀a ∈ A exactly one of the
following holds

a is an envelope achiever, that is, f is only in eff(a)+
⊢ and eff(a)−

⊣ ,
a is an envelope conditioner, that is, f is in pre(a)p

↔ and optionally in pre(a)p
⊢ and/or

pre(a)p
⊣ and f is not in eff(a)⊢ and eff(a)⊣, or

a is an unrelated action, that is, f is not in any of the sets: pre(a)p
⊢, eff(a)⊢, pre(a)p

↔,
pre(a)p

⊣, or eff(a)⊣.

An envelope fact ensures that every envelope conditioner executes concurrently with some
envelope achiever. Definition 6 ensures that an envelope achiever adds the envelope fact
at its start and deletes the same fact at its end, thus creating a window where this fact is
available. The definition also states that an envelope conditioner has an invariant condition
and thus must execute concurrently with some envelope achiever. An unrelated action as
defined in Definition 6 means an action can only act as an achiever or conditioner on an
envelope fact and not use an envelope fact for any other purpose.

Definition 6’s requirement for all other actions to be unrelated ensures that (i) no other
actions adds the envelope fact, so all conditioners must occur within an achiever, (ii) no
other actions delete the envelope fact, thus it remains throughout the entire execution of an
envelope achiever, and (iii) no other actions condition on the envelope facts at only the start
or end and thus only need to be executed partially concurrently with an achiever.

Figure 1 Envelope fact g enforces concurrency with a work shift whilst semaphore fact f prevents
more than one work activity from happening at a time. A fact appearing above (below) an action
indicates it is a condition (effect) respectively. Position indicates whether the fact is a start, invariant,
or end condition or effect. ¬f denotes that f is being deleted (made false).

Figure 1 shows how a semaphore f and envelope g interact. The blue “work shift” action
is an envelope achiever of g, into which a number of work activities have to be scheduled.
These activities – preparing Chicken, Pasta and Noodle dishes – are mutually exclusive due
to semaphore fact f and are also envelope conditioners on g.

4.1 Abstracting Semaphore Facts
Current state-of-the-art decomposition planners search over all total ordering constraints
between durative actions ai and aj that condition on semaphore fact f .

CP 2024

12:8 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

Figure 2 For two mutually exclusive actions, two orderings exist that achieve the same state.

Figure 2 shows how the mutual exclusion of semaphore f creates two alternate plans
to explore to achieve the same state. If there are n actions required to achieve goal G that
condition on the semaphore fact f , there are n! orderings of those actions to be considered.
However in many cases, side effect constraints and other optimisations [5] can reduce the
search space.

To abstract a semaphore fact f , from a planning problem ⟨F, V,A, I,G⟩, we create a set
of actions mf = {a : a ∈ A, f ∈ pre(a)p

⊢}. We perform the following set operations ∀a ∈ mf :
pre(a)p

⊢ \ {f}, eff(a)−
⊢ \ {f}, and eff(a)+

⊣ \ {f}. Finally, we remove f from the initial state I.
For the scheduling problem corresponding to partial plan π′, a new mutual exclusion

constraint is added for the actions in π′ that appear in the set of actions mf .

▶ Definition 7. A mutual exclusion constraint is a noOverlap constraint of the form
noOverlap({xa ∈ X : a ∈ π′ ∧ a ∈ mf }, ϵ).

Following Definition 5, we demonstrated that the only purpose of a semaphore fact was to
ensure mutual exclusion between actions conditioning on it. A semaphore fact has no implied
ordering between actions that condition on it. Search in OPTIC imposes a total ordering
among such actions (due to ordering each conditioner after the most recent adder), with
different orderings considered by exploring different plans. We replace the total orderings
imposed at the planning level, with a mutual exclusion constraint imposed during scheduling.
The scheduler will consider any ordering of actions in the mutual exclusion constraint that
respects ordering constraints imposed by other facts (since these still remain as temporal
constraints). As a result, the substitution preserves soundness. By considering all sound
partial orderings, the substitution maintains completeness.

4.2 Abstracting Envelope Facts
An envelope achiever of fact g creates a time window that an envelope conditioner on g

must execute within. With multiple achiever and conditioner actions, a set of possible time
windows is defined and the planner must decide which envelopes each conditioner must
execute within.

In Figure 3 two achievers of g – “Work Shift 1” and “Work Shift 2” – exist and “Prepare
Chicken Dish” could be scheduled within either; resulting in two different assignments to
consider. The number of assignments grows exponentially with both the number of envelope
achievers n and the number of envelope conditioners m provided n > 1.

Assignment decisions are only important if envelope conditioners cannot be executed
concurrently. If all envelope conditioners can execute concurrently, an envelope achiever large
enough to execute concurrently with the longest conditioner can satisfy all conditioners.

A. Francis Green, J. C. Beck, and A. Coles 12:9

Figure 3 For two envelope achievers (work shift 1 and 2); prepare chicken could be assigned to
either.

To abstract an envelope fact g from a planning problem ⟨F, V,A, I,G⟩, we create two sets
of actions achieversg = {a : a ∈ A, g ∈ eff(a)+

⊢ } and conditionersg = {a : a ∈ A, g ∈ pre(a)p
↔}.

∀a ∈ achieversg, we perform eff(a)−
⊣ \ {g}. ∀a ∈ conditionersg we perform the following set

operations: pre(a)p
↔ \ {g}, pre(a)p

⊣ \ {g}, and pre(a)p
⊢ ∪ {g}.

To ensure that envelope conditioners are scheduled concurrently with an envelope achiever,
a new envelope constraint comprised of new variables and a set of constraints is added to the
scheduling problem for the partial plan π′.

▶ Definition 8. An envelope constraint for an envelope fact g, with sets of actions
achieversg and conditionersg and partial plan π′, comprises new interval variables xa,c, ∀a ∈
achieversg, ∀c ∈ conditionersg, and a dummy optional interval xa,dur for all a ∈ achieversg

and the following constraints:
∀c ∈ π that also appears in conditionersg, alternative(xc, {xa,c : a ∈ achieversg ∩π′}). xc

is the interval variable in X representing the conditioner action c. Exactly one achiever,
a, for each conditioner is assigned by enforcing the presence of one optional interval
variable xa,c.
∀a ∈ π′ that also appears in achieversg, span(xa, {xa,c : c ∈ conditionersg} ∪ {xa,dur}).
xa is the interval variable in X representing the achiever action a. This ensures that
each envelope conditioner executes concurrently with the envelope achiever assigned in
the alternative constraint.

The dummy optional interval xa,dur ensures that the conditioners on an envelope do not
have to be scheduled such that one starts exactly at the start of xa and one finishes exactly
at the end. The dummy action can be used to satisfy this condition imposed by the span
constraint, and thus we do not compromise completeness (as the planning model does not
necessarily imply this constraint).

Following Definition 6, we demonstrated that the only purpose of an envelope fact in
the domain was to ensure that all envelope conditioners execute entirely within envelope
achievers. An envelope fact does not imply an assignment of a specific conditioner to a
specific achiever.

In OPTIC, an assignment of a conditioner to an achiever is done during search. Search
first adds the start of an achiever (a⊢), then the start of the conditioner (c⊢), imposing an
ordering constraint in τ : t(a⊢) < t(c⊢). Search then adds the end of the conditioner (c⊣).
Finally, search adds the end of the achiever (a⊣), ordering the end of the achiever after the
end of the conditioner (t(c⊣) < t(a⊣)). The result of these constraints is a total ordering
(t(a⊢) < t(c⊢) < t(c⊣) < t(a⊣)).1

1 OPTIC may choose to add some other action or actions between the addition of these individual snap
actions. This is a simple example of how envelope concurrency is achieved.

CP 2024

12:10 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

In imposing these ordering constraints in the scheduling problem τ , search assigns a
conditioner to an achiever and enforces their concurrent execution using the same constraints.
Search in OPTIC considers a different assignment of an achiever to a conditioner, by
performing the same process described above, but using different achievers.

By abstracting an envelope fact, leaving only a start add effect for achievers and a start
precondition for conditioners, the only ordering constraint added by OPTIC to τ orders all
conditioners after the first achiever; an ordering implied in any valid envelope assignment
and execution. By using an alternative constraint, the scheduler can consider the assignment
of a conditioner to any achiever. Meanwhile, the span constraint ensures the concurrent
execution of a conditioner with the achiever it is assigned to.

Because we only abstract envelope facts, other constraints in τ are preserved (still
generated by OPTIC’s machinery). The assignment of a conditioner to an achiever will only
be considered by the CP Scheduler if that assignment respects all other constraints in τ . As
a result, this abstraction does not compromise soundness.

By allowing the CP Scheduler to consider different assignments of conditioners to achievers,
we ensure that, in one state, the scheduler considers all orderings that OPTIC considers over
a number of states. We therefore do not compromise completeness.

5 Improving Feedback to the Planner

The abstractions described in Section 4 and allow us to transfer some reasoning about
orderings of actions in the planner’s search to reasoning with powerful global constraints in a
CP sub-solver. These abstractions also allow us to enhance the communication between the
causal reasoning in task planning and the temporal reasoning in scheduling.

In delete-free relaxation heuristics [12], envelopes are a particular challenge [11] because
once an envelope fact g is achieved, there is no further value to the heuristic to achieve
g again. Without reasoning about how much time is required for envelope conditioners,
search has to blindly add achievers until sufficient time is available for the scheduler. Yet
if envelopes have limited time, it is critical that further achievers are added. The need for
multiple achievers is greatest when conditioners are mutually exclusive

In Section 4.2, when an envelope fact g was abstracted, the add effects in all achievers were
preserved and a start precondition was added to all conditioners on g. This transformation
forces search to add at least one achiever prior to adding any conditioners for envelope fact g.

To guide search, we now add a new subset of numeric variables to the set V for a planning
problem ⟨F, V,A, I,G⟩. These new numeric variables – Envelope Time Tracking variables –
create a producer-consumer relationship between envelope achievers and mutually exclusive
conditioners. Envelope Time Tracking variables are added for each semaphore fact f and
envelope fact g.

▶ Definition 9. A time tracking variable is a numeric variable vf,g ∈ V . The initial state
value of variable vf,g is 0 (nI [vf,g] = 0).

Each achiever a ∈ achieversg has a new start effect vf,g += dmax. Meanwhile each
conditioner c ∈ conditionersg ∩ mf has a new start condition vf,g ≥ dmin and a new start
effect vf,g −= dmin.

The variable vf,g increases by the maximum duration of each achiever of g added to π′.
The variable vf,g decreases by the minimum duration of each conditioner of g in mf added
to the partial plan π′. vf,g represents a trivial upper bound on the amount of free time
remaining in envelope achievers for envelope conditioners in mutual exclusion mf .

A. Francis Green, J. C. Beck, and A. Coles 12:11

The introduction of the precondition vf,g ≥ dmin means that, across all achievers, there
must exist enough free time to fully contain a conditioner before the search can add it.
Pruning based on the value of vf,g does not compromise completeness because it is an
overestimate and so we necessarily need to add another achiever before we can fit any further
conditioners.

Prioritising More Easily Schedulable States

If π′ is shown to be temporally consistent, the scheduler produces a plan π which includes a
valid schedule for all actions in the plan. We can use this schedule to identify when adding a
new action to the plan will likely lead to a trivially schedulable partial plan; and when we
might need to add another envelope achiever in order to find a solution.

For a given envelope achiever a in π we can compute the maximum free time, va
f,g, by

summing the available free time in a in the computed schedule.

▶ Definition 10. For an envelope achiever a, va
f,g = da −

∑
dc, ∀c ∈ conditionersg ∩ mf

where conditioner c is in the plan π and scheduled concurrently with a (i.e. in π, tc is in the
interval [ta, ta + da]).

Variable va
f,g allows us to determine the maximum free space within a single envelope

achiever a in a plan π. Figure 4 shows an example of the calculation in Definition 10, where
the maximum possible free space within the envelope a is 10 time units.

Figure 4 illustrates an envelope achiever a of envelope fact g to which several conditioners have
been assigned in a plan.

vπ
f,g is calculated for a plan π using Definition 10, a semaphore fact f and envelope fact g

as follows:

▶ Definition 11. For a plan π, a semaphore fact f , and an envelope fact g is vπ
f,g = max(va

f,g)
(Definition 10), ∀a ∈ achieversg, where a is in the plan π.

vπ
f,g gives us an estimate across the plan π of the longest conditioner we could schedule

within any achiever. Whilst this bound is a good estimate of the upper bound, it is not a
guaranteed maximum because it is possible that reassigning conditioners to different achievers
could increase the value of va

f,g for some achiever a. Thus, we cannot use vπ
f,g for pruning as

we do with vf,g. Instead we favour expanding states that are more likely to be schedulable:
any state generated by applying an action for which vπ

f,g ≤ dmin is added to a second open
list that is only expanded if the first open list becomes empty.

This manipulation guides search to favour adding conditioners whose duration fits within
an existing achiever or adding another achiever first; before attempting to add further
conditioners. Such a preference is useful in counteracting the heuristic blind spot discussed
earlier, in which there is no heuristic guidance to open new envelopes. Prioritisation of states
in this way does not compromise completeness because, whilst it would not be sound to
prune states based on vπ

f,g, the use of a second open list ensures that these states will be
explored eventually if required.

CP 2024

12:12 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

Table 1 Benchmark domains used.

IPC Domain No. of Problems Type
cafe 29 both

crew planning 29 both
driverlog (shift) 20 envelopes only

match 20 both
pipes (no tankage) 30 envelopes only

turn and open 20 envelopes only
satellites 30 both

TMS 20 both

This type of communication between the planner and scheduler is novel. Where previous
communication has been limited to constraints and inconsistencies, here the scheduler is
communicating temporal information that is incorporated into the planner’s search, opening
the possibility of the communication of other temporal search guidance.

6 Evaluation

To evaluate our transformations, we identify a wide variety of International Planning Com-
petition (IPC) domains from across a number of years that contain envelopes and (optionally)
semaphores. Table 1 shows the domains used. The use of our transformations and the CP
scheduler is automatically decided based on the presence of envelope and/or semaphore facts,
in a preprocessing step that takes < 0.001s, if none are detected the planner runs exactly as
before. Therefore performance on domains which do not contain envelopes or semaphore
facts is unaffected; thus we do not consider these in our evaluation.

We compare the performance of the CP Scheduling approach to the baseline standard
approach in OPTIC. The two configurations we tested are:

The base configuration is a version of OPTIC [2], a leading general-purpose temporal-
numeric planner. OPTIC uses an STN-based scheduler with a P-time complexity.2

The experimental configuration is the base configuration plus a CP scheduler that includes
our abstraction of semaphores and envelopes and the time tracking variables. The
CP scheduler is configured to return the first feasible solution found. The search and
memoization machinery of OPTIC is otherwise unchanged.

We experimented with a configuration that caches the scheduler solution to allow warm
starting in subsequent states. This was not successful because the memory overheads of
storing a CP solution in every state are too high, and the planner began to hit the memory
limit.

All problems were executed on an Intel i7-8650U 1.9GHz machine with 3GB of memory
and a search time limit of 30 minutes. We use IBM’s CP Optimizer 22.1.0 as our CP
sub-solver. Each plan is validated using VAL [14]. We note that all unsolved problems were
the result of search timeout, rather than memory limits.

2 OPTIC has both an STN and a MIP scheduler which it chooses based on the nature of the problem.
None of these problems have continuous numerics, so OPTIC defaults to the STN scheduler.

A. Francis Green, J. C. Beck, and A. Coles 12:13

The objective of this evaluation is to investigate whether the transformations reduce the
number of states explored, by replacing multiple planning states with a single state with a
less constrained partial order plan and increased search guidance through temporal feedback
from the scheduler. We go on to investigate whether planner performance is improved as a
result. Thus our evaluation focuses on comparing the two scheduling approaches within the
same planner.

Figure 5 Comparison of base and experimental configuration, by states, time and makespan.
Points on the far right/top axis indicate problems not solved by the base/experimental configuration
respectively.

6.1 Reduction in States Generated
The graph of states generated in Figure 5, shows that the experimental configuration reduces
the number of states generated across all domains. The shift of the disjunctive reasoning,
created by semaphore and envelope facts, from the planner to the scheduler means fewer
disjunctive decisions are made in planning search and consequently fewer states are generated.

Domains with a modest reductions in the number of states generated, such as the Match
domain and Cafe domain, are a result of the underlying envelope and semaphore structure.
In the Match domain, the goal is to mend a set of fuses in a power outage where matches
must be lit to provide light. Each mend fuse action is mutually exclusive, and any fuse can
be fixed whilst any match is lit. Each match can be used to repair at most two fuses, and the
goal is for all fuses to be fixed with the matches provided. Matches are symmetrical; therefore,

CP 2024

12:14 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

Table 2 No. of Problems solved by base and experimental configurations.

IPC Domain Problems Base Experimental
cafe 29 7 8
crew planning 29 7 8
driverlog 20 3 8
match 20 19 19
pipes 30 8 12
turn and open 20 8 8
satellites 30 7 13
TMS 20 1 2

reordering how matches are lit does not make a temporally inconsistent partial plan consistent,
so abstracting mutual exclusion is redundant. For the envelope assignment problem that
exists between matches and fuses, each match is equally capable of mending each fuse. Thus
the choice of assignment is also redundant. The only benefit of the transformations described
is in guiding search to add sufficient matches to mend all fuses.

Cafe has a similar structure to Match, with three distinctions. Firstly, Match consists
of one “temporal” resource being consumed: matches. In Cafe, there are two symmetrical
resources, Ovens and Cooks. Ovens and Cooks are not a consumable resource, i.e. they can
be reused to complete other actions. The final distinction is that the meals being prepared
have different durations, whereas each fuse takes the same amount of time to fix in Matches.
Despite these differences, they are otherwise very similar domains and therefore experience a
similar issue where searching symmetrical space yields similar generated state space to the
base configuration.

6.2 Coverage
Table 2 shows the coverage (number of problems solved) for the base and experimental
configurations. The experimental configuration performs as well or better than the baseline
for all domains, solving a superset of the instances that the baseline solves. In the Driverlog,
Satellites and Pipes domains the experimental configuration increased coverage dramatically.
Across the 198 problems we evaluated, coverage rose from 30.3% in the base configuration to
39.3% in the experimental configuration. Because these transformations are only applied in
domains where semaphores or envelopes exist, coverage in other domains is unaffected.

The improvements in coverage are a reflection of the reduction in states generated.
The Driverlog and Pipes domain, which experienced larger reductions on smaller problems,
increased coverage as their respective problem sets scaled.

6.3 Search Time
The graphs of states generated and search time in Figure 5 have a similar spread, with
a downward shift for points in the search time graph. To understand this shift, Table 3
presents the states generated per second. The experimental condition has an average 1.69
fold increase in time taken per state compared to the baseline.

The increased time per state is a result of the two types of scheduler used. The base
configuration solves a P-time scheduling problem each time a state is generated whereas
the experimental configuration solves an NP-complete scheduling problem. As a result of
the difference in complexity, it is to be expected that the CP solver takes longer per state.

A. Francis Green, J. C. Beck, and A. Coles 12:15

Table 3 States per second, and ratio (base/experimental). TMS excluded due to insufficient
data.

IPC Domain Base Experimental Ratio
Cafe 882 992 0.89
Crew Planning 747 759 0.98
Driverlog 891 204 4.37
Match 8696 5703 1.52
Pipes 1339 1224 1.09
Turn and Open 354 1184 0.3
Satellites 475 178 2.67
Average 1912 1464 1.69

A sufficiently large reduction in the number of states generated results in a reduction in
the search time, in spite of the increased overhead per state, as seen by the solutions that
timed-out for the base configuration.

In domains where the experimental configuration outperforms the base configuration in
states per second (Cafe, Crew Planning and Turn and Open), we attribute this to the heavily
constrained nature of the scheduling problems within these problems. This constraining
makes the search space for the CP solver significant smaller when compared to other problems.

6.4 IPC Benchmark Score
In the temporal track of the IPC, a benchmark score is used to compare planners [17]. For a
given problem, let T ∗ be the minimum search time in seconds required by any planner to
solve the problem. A planner that solves the problem in search time T (in seconds) gets a
score of 1

1+log10(T/T ∗) . If a configuration does not solve a problem, it receives a score of 0.
Search times of less than one second are rounded up.

Across the domains presented in this evaluation, the base configuration achieved a score
of 41.6, whilst the experimental configuration achieved one of 78.

To restate, these transformations and the CP scheduler are only applied in problems
where a semaphore or envelope fact is detected. Thus, these transformations represent a net
improvement on the IPC score of the base planner. The performance of OPTIC in all other
domains remains unaffected.

6.5 Makespan
Makespan is broadly equivalent across all mutually solved problems. This is primarily because
the envelope actions somewhat artificially determine the makespan of the plan, even if the
conditioner actions are scheduled more efficiently, so the scope for improving makespan is
limited in most of domains. The one exception is a slight reduction in makespan for the
experimental configuration in the Turn and Open domain. The difference can be attributed
to the reallocation of disjunctive reasoning to the CP scheduler.

States generated during search by the base configuration are more constrained and have
a stricter ordering than propositionally and numerically equivalent states generated by the
experimental configuration. A single state represents more partial-orderings of the relaxed
plan that achieves it in the experimental configuration. This can result in a reduction or
increase of the makespan depending on the solution that the CP scheduler finds to the
envelope allocation and mutual exclusion problems.

CP 2024

12:16 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

6.6 Evaluating Individual Abstractions
As part of our evaluation, we also evaluated abstractions individually. We saw no significant
performance improvements from abstracting envelopes or semaphores alone: our improve-
ments lean heavily on the interactions between envelopes and semaphores, in particular, the
constraining effect of envelopes relative to the consumptive effect of semaphores.

We also evaluated using the envelope and semaphore abstractions without the time
tracking variables defined in Section 5. Experimentally, we saw that the number of expanded
states is 93% of that of the base configuration compared to the experimental configuration’s
48%. The overall run-time was similarly impacted. When excluding Time Tracking Variables,
there was no increase in coverage or improvement in makespan compared to the base
configuration. These results suggest that the enhanced search guidance provided by the novel
communication from the sub-solver embodied in these variables is a key to the improved
performance that we observed.

7 Conclusion

By abstracting semaphores and envelopes, we remove two forms of disjunctive temporal
reasoning from the planning level that cause exponential state space growth in temporal-
numeric planning problems. Introducing new numeric variables to represent the available time
within envelope achievers and using these variables as a means to communicate remaining
envelope time to the planner further guides search and further reduces the state space.

The reductions in search space show that there are significant improvements to be
made in more complex decomposition approaches. This new abstraction and decomposition
demonstrates that a more expressive scheduler can improve coverage, reduce search space and
reduce search times. This work opens the door to further exploration of how planning decisions
are divided between task planning and CP-based scheduling and how an appropriate division,
further exploiting the strengths of the CP sub-solver, can be used to yield improvements in
coverage and speed.

References
1 Javier Barreiro, Matthew Boyce, Minh Binh Do, Jeremy D. Frank, Michael Iatauro, Tatiana

Kichkaylo, Paul Henry Morris, James C. Ong, Emilio Remolina, Tristan B. Smith, and
David E. Smith. Europa : A platform for ai planning, scheduling, constraint programming,
and optimization. In ICAPS 2012, 2012. URL: https://icaps12.icaps-conference.org/
demo/Barreiro_et_al_abs.pdf.

2 J. Benton, Amanda Jane Coles, and Andrew Coles. Temporal planning with preferences and
time-dependent continuous costs. In Lee McCluskey, Brian Charles Williams, José Reinaldo
Silva, and Blai Bonet, editors, Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-
19, 2012, ICAPS’12, pages 2–10. AAAI, 2012. URL: http://www.aaai.org/ocs/index.php/
ICAPS/ICAPS12/paper/view/4699.

3 Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long. Temporal planning in
domains with linear processes. In Craig Boutilier, editor, IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, pages 1671–1676, January 2009. URL: http://ijcai.org/Proceedings/
09/Papers/279.pdf.

4 Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long. Forward-chaining partial-order
planning. In Ronen I. Brafman, Hector Geffner, Jörg Hoffmann, and Henry A. Kautz, editors,
Proceedings of the 20th International Conference on Automated Planning and Scheduling,

https://icaps12.icaps-conference.org/demo/Barreiro_et_al_abs.pdf
https://icaps12.icaps-conference.org/demo/Barreiro_et_al_abs.pdf
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699
http://ijcai.org/Proceedings/09/Papers/279.pdf
http://ijcai.org/Proceedings/09/Papers/279.pdf

A. Francis Green, J. C. Beck, and A. Coles 12:17

ICAPS 2010, Toronto, Ontario, Canada, May 12-16, 2010, pages 42–49. AAAI, January 2010.
URL: http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1421.

5 Amanda Jane Coles and Andrew Ian Coles. Have I been here before? state memoization
in temporal planning. In Amanda Jane Coles, Andrew Coles, Stefan Edelkamp, Daniele
Magazzeni, and Scott Sanner, editors, Proceedings of the Twenty-Sixth International Conference
on Automated Planning and Scheduling, ICAPS 2016, London, UK, June 12-17, 2016, pages
97–105. AAAI Press, 2016. URL: http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/
paper/view/13187.

6 Andrew Coles, Maria Fox, Derek Long, and Amanda Smith. Planning with problems requiring
temporal coordination. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008, pages 892–897. AAAI Press, January 2008. URL: http://www.aaai.org/Library/
AAAI/2008/aaai08-142.php.

7 Minh Binh Do and Subbarao Kambhampati. Sapa: A multi-objective metric temporal planner.
J. Artif. Intell. Res., 20:155–194, 2003. doi:10.1613/jair.1156.

8 Patrick Eyerich, Robert Mattmüller, and Gabriele Röger. Using the context-enhanced additive
heuristic for temporal and numeric planning. In Alfonso Gerevini, Adele E. Howe, Amedeo
Cesta, and Ioannis Refanidis, editors, Proceedings of the 19th International Conference on
Automated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece, September 19-23,
2009. AAAI, January 2009. doi:10.1007/978-3-642-25116-0_6.

9 Maria Fox and Derek Long. PDDL2.1: an extension to PDDL for expressing temporal planning
domains. J. Artif. Intell. Res., 20:61–124, 2003. doi:10.1613/jair.1129.

10 Antonio Garrido, Marlene Arangú, and Eva Onaindia. A constraint programming formulation
for planning: from plan scheduling to plan generation. J. Sched., 12(3):227–256, June 2009.
doi:10.1007/s10951-008-0083-7.

11 Keith Halsey, Derek Long, and Maria Fox. CRIKEY - a temporal planner looking at the
integration of scheduling and planning. In Proceedings of the Workshop on Integration
Scheduling Into Planning at Thirteenth International Conference on Automated Planning and
Scheduling, January 2003.

12 Jörg Hoffmann. FF: the fast-forward planning system. AI Mag., 22(3):57–62, September 2001.
doi:10.1609/aimag.v22i3.1572.

13 Jörg Hoffmann. The metric-ff planning system: Translating ”ignoring delete lists” to numeric
state variables. J. Artif. Intell. Res., 20:291–341, 2003. doi:10.1613/jair.1144.

14 Richard Howey and Derek Long. Val’s progress: The automatic validation tool for PDDL2.1
used in the International Planning Competition. In Proceedings of the ICAPS 2003 workshop
on "The Competition: Impact, Organization, Evaluation, Benchmarks", November 2003.

15 Wen-Yang Ku and J Christopher Beck. Revisiting off-the-shelf mixed integer programming and
constraint programming models for job shop scheduling. Computers & Operations Research,
73:165–173, 2016.

16 Jean-Charles Régin. Global constraints: A survey. In Hybrid Optimization: The Ten Years of
CPAIOR, pages 63–134, New York, 2011. Springer.

17 Mauro Vallati, Lukás Chrpa, Marek Grzes, Thomas Leo McCluskey, Mark Roberts, and
Scott Sanner. The 2014 international planning competition: Progress and trends. AI Mag.,
36(3):90–98, September 2015. doi:10.1609/aimag.v36i3.2571.

18 Vincent Vidal and Hector Geffner. Branching and pruning: An optimal temporal POCL
planner based on constraint programming. Artif. Intell., 170(3):298–335, March 2006. doi:
10.1016/j.artint.2005.08.004.

CP 2024

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1421
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13187
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13187
http://www.aaai.org/Library/AAAI/2008/aaai08-142.php
http://www.aaai.org/Library/AAAI/2008/aaai08-142.php
https://doi.org/10.1613/jair.1156
https://doi.org/10.1007/978-3-642-25116-0_6
https://doi.org/10.1613/jair.1129
https://doi.org/10.1007/s10951-008-0083-7
https://doi.org/10.1609/aimag.v22i3.1572
https://doi.org/10.1613/jair.1144
https://doi.org/10.1609/aimag.v36i3.2571
https://doi.org/10.1016/j.artint.2005.08.004
https://doi.org/10.1016/j.artint.2005.08.004

Improved Bounds of Integer Solution Counts via
Volume and Extending to Mixed-Integer Linear
Constraints
Cunjing Ge #

National Key Laboratory for Novel Software Technology, Nanjing University, China
School of Artificial Intelligence, Nanjing University, China

Armin Biere # Ñ

University of Freiburg, Germany

Abstract
Solution counting and solution space integration over linear constraints are important problems
with many applications. Previous works addressed either only counting integer points in polytopes
(integer counting) with integer variables or alternatively only computing the volume of polytopes
(solution space integration) on variables over the reals, including approximating the integer count
via a polytope’s volume. We are not aware of a non-trivial algorithm which addresses the mixed
case, where linear constraints are over mixed integer and real variables. In this paper, we propose a
new randomized algorithm to approximate guarantees (bounds) of integer solution counts. Then we
present upper and lower bounds for solution space integration over mixed-integer linear constraints.
Thus, proposed algorithms can be extended to mixed-integer cases as well. The experiments show
that approximations are often very close to exact results in practice, and bounds approximated by
our algorithm are often tight and useful.

2012 ACM Subject Classification Theory of computation → Automated reasoning

Keywords and phrases Integer Solution Counting, Mixed-Integer Linear Constraints, #SMT(LA)
Problems, Volume of Polytopes

Digital Object Identifier 10.4230/LIPIcs.CP.2024.13

Supplementary Material Software: https://github.com/bearben/mixintcount/
archived at swh:1:dir:9101f2a1faa2381bc4779dff649915a21ff3cbae

Funding Cunjing Ge: Cunjing Ge is supported by the National Natural Science Foundation of China
(62202218), and is sponsored by CCF-Huawei Populus Grove Fund (CCF-HuaweiFM202309).

1 Introduction

As one of the most fundamental types of constraints, linear constraints (LCs) have been
studied thoroughly in many areas. Counting solutions over LCs has also many applications,
such as counting-based search [27, 32], simple temporal planning [16] and probabilistic pro-
gram analysis [14, 23]. Moreover, it can be incorporated into DPLL (T)-based #SMT (LA)
counters [12] as a core subroutine.

Since a set of LCs corresponds to a convex polytope, counting integer solutions over LCs
is equivalent to counting integer points inside the polytope. For real solutions, the counting
problem is turned into computing the polytope’s volume, which is defined by the Lebesgue
measure. Naturally, we may be interested in the solution counting problem over mixed-integer
variables. In this paper, we will show that it is a problem of computing the integration of
solution space, and then study the methods for approximating such integrations. We will
call such a problem solution space integration for short.

© Cunjing Ge and Armin Biere;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gecunjing@nju.edu.cn
https://orcid.org/0000-0002-8249-1397
mailto:biere@cs.uni-freiburg.de
https://cca.informatik.uni-freiburg.de/biere/
https://orcid.org/0000-0001-7170-9242
https://doi.org/10.4230/LIPIcs.CP.2024.13
https://github.com/bearben/mixintcount/
https://archive.softwareheritage.org/swh:1:dir:9101f2a1faa2381bc4779dff649915a21ff3cbae;origin=https://github.com/bearben/MixIntCount;visit=swh:1:snp:434313bf638d7d39dc259beb47b5be9f23677a24;anchor=swh:1:rev:9da35b7fafd1145925331b9518dff0ff6881ee51
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Improved Bounds of Integer Solution Counts via Volume

Solution counting problems over LCs were proved to be #P-hard [29]. Barvinok [1, 2]
introduced an algorithm for integer counting. Based on it, tools LattE [18] and barvinok [30]
were implemented, which are still state-of-the-art. For volume of polytopes, tool Vinci [5] is an
implementation and combination of several volume computation algorithms. The Multiphase
Monte-Carlo algorithm [9, 21] is a polynomial time volume approximation algorithm for
convex bodies. The tool Polyvest [10] is a scalable implementation of the Multiphase Monte-
Carlo algorithm over polytopes. A more recent work [11] studied the relation between the
count of inner integer points and the volume of a polytope. They proposed an algorithm called
Vol2Lat to approximate integer counts via volume. This work inspired us to investigate
the relationship among solution space integration, a polytope’s volume and inner integer
points count. For example, let us consider the following simplified formula F extracted from
a scheduling problem:

(2a + 0.3b ≤ t) ∧ (1 ≤ a ≤ 32) ∧ (1 ≤ b ≤ 32) ∧ (0 < t < 50),

where a and b are the numbers of scheduled tasks A and B, the coefficient 2 and 0.3 are the time
cost of two tasks, t is the time limit, which is a real variable. The solution space integration
of F is 14204.5. Therefore, when we uniformly pick an assignment (a0, b0, t0) satisfying the
range constraints, the probability that (a0, b0, t0) satisfies F is 14204.5/(32 ∗ 32 ∗ 49) ≈ 0.283.
Assuming a, b, t ∈ R, the volume of its solution space is 14418.9. Assuming a, b, t ∈ Z,
the integer solution count is 15261. From experiments (see Section 5), we observe that
the values of volume and integer count are usually close to the solution space integration.
Naturally, given a set of mixed-integer LCs, we would like to investigate whether solution
space integrations can be approximated via the volume or the integer lattice count of the
corresponding polytope. The contributions of this paper are the following:

We propose a new randomized algorithm to approximate bounds of integer solution counts
of a set of linear constraints via a polytope’s volume. It returns upper and lower bounds
of integer solution counts with respect to a given confidence.
We introduce and prove bounds for the solution space integration, volume and integer
solution count on a set of LCs with mixed-integer, pure real and pure integer variables
respectively. The bounds show when the three values are close to each other in theory.
Thus, our new algorithm can be directly extended to approximate bounds of solution
space integration on mixed-integer cases.
Experiments show that our approach is promising over mixed-integer cases and also
outperforms the existing bound approximation algorithm Vol2Lat, including instances
generated from program analysis.

2 Background

2.1 Notations and Preliminaries
A Linear Constraint (LC) can be written in the form

∑n
i=1 aixi op b, where xis are numeric

variables, ais and b are real coefficients, and op ∈ {<,≤, >,≥, =}. From a geometric point
of view, a LC is an n-dimensional halfspace, and a finite set of LCs is a polytope. Thus a set
of LCs F corresponds to a polytope P which is in the form of

P = {x⃗ ∈ Rn : Ax⃗ ≤ b⃗}.

Naturally, Zn represents the set of all integer lattices (points with all integer coordinates).
Thus integer models of the linear constraints can be represented by {x⃗ ∈ Zn : Ax⃗ ≤ b⃗}. It is
the same as the integer points inside the corresponding polytope, i.e.,

{x⃗ ∈ Zn : Ax⃗ ≤ b⃗} = P ∩ Zn.

C. Ge and A. Biere 13:3

Now we consider Mixed-Integer Linear Constraints (MILC) whose variables include not
only reals but also integers. We know that changing the sequence of variables of x⃗ will not
affect the size of the solution space of a set of LCs, such as, exchanging two variables xi, xj

and their coefficients ai, aj . So without loss of generality, a set of MILCs F can be written
in the form Ax⃗ = A1x⃗I + A2x⃗R ≤ b⃗, where A = [A1A2], x⃗ = [x⃗I x⃗R] and x⃗I , x⃗R are subsets
of integer and real variables of x⃗ respectively.

▶ Definition 1. Given a set of MILCs F , which corresponds to a polytope P .
Let vol(P) denote the volume of P , i.e., vol(P) =

∫
x⃗∈P

1 dx⃗.
Let lat(P) denote the count of integer lattices in P , i.e., lat(P) = |P ∩ Zn|.
Let nI = |x⃗I | and nR = |x⃗R|. Obviously, n = nI + nR.
Let M(F) = {x⃗ = [x⃗I x⃗R] ∈ ZnI ×RnR : A1x⃗I + A2x⃗R ≤ b⃗} = P ∩ ZnI ×RnR denote the
solution space of F .
Let MI(F) ⊂ ZnI and MR(F) ⊂ RnR denote the projection from M(F) to variables
over x⃗I and x⃗R respectively.
Given an integer assignment α⃗I over x⃗I . Let F{x⃗I = α⃗I} denote the remaining constraints
of F by assigning α⃗I to x⃗I , i.e., F{x⃗I = α⃗I} = A1α⃗I + A2x⃗R ≤ b⃗.
Let integral(F) denote the integral on M(F). In detail,

integral(F) =
∑

α⃗I ∈MI(F)

∫
x⃗∈M(F {x⃗I =α⃗I })

1 dx⃗ (1)

=
∑

α⃗I ∈MI(F)

integral(F{x⃗I = α⃗I}). (2)

Note that M(F{x⃗I = α⃗I}) is essentially a polytope in nR-dimensional space. Let Pα⃗I

represent the corresponding polytope of F{x⃗I = α⃗I}. We have integral(F{x⃗I = α⃗I}) =
vol(Pα⃗I

). Consider an assignment β⃗I on x⃗I s.t. β⃗I ̸∈ MI(F), then vol(Pβ⃗I
) must be zero,

otherwise, ∃β⃗R ∈ M(F{x⃗I = β⃗I}) and [β⃗I β⃗R] would be a solution of F which contradicts
with β⃗I ̸∈ MI(F). Therefore, Equation (2) is equivalent with

integral(F) =
∑

α⃗I ∈S

vol(Pα⃗I
), ∀MI(F) ⊆ S ⊂ ZnI . (3)

It also indicates that α⃗Is can be enumerated in a looser space S than MI(F).

Figure 1 An example over two variables x and y, where x is an integer variable and y is a real
variable. The integration integral(F) is the sum of lengths of black lines parallel to y-axis. The
count lat(P) = 40 is the number of dots on those black lines. C(P) is the set of orange and gray
squares, C(B(P)) is the set of orange squares, and thus the set of gray squares can be represented
by C(P) \ C(B(P)). union(C(P)) is the union space of orange and grey squares.

CP 2024

13:4 Improved Bounds of Integer Solution Counts via Volume

▶ Definition 2. An integer-cube is a unit-cube whose center is an integer point. Given an
integer point α⃗ and a polytope P .

Let cube(α⃗) denote the integer-cube centered at α⃗, i.e.,

cube(α⃗) = {x⃗ ∈ Rn : αi −
1
2 ≤ xi ≤ αi + 1

2 , i = 1, . . . , n}.

Let C(P) represent the set of all integer-cubes which intersect with P .
Let C(B(P)) represent the set of all integer-cubes which intersects with B(P), where B(P)
is the boundary (facets) of P .
Let union(C) denote the union

⋃
κ∈C κ, where C is a set of integer-cubes.

Note that each integer-cube corresponds to a unique integer point and its volume is 1.
Therefore, the integer-cube is introduced for bridging the gap between the volume and the
integer count. Figure 1 is an example of integer-cubes, C(P), C(B(P)), etc.

2.2 Approximating Lattice Counts via Polytope’s Volume
Ge et al. [11] observed that the lattice count and the volume of a given polytope are often
close. They also pointed out that there exist cases in which lattice counts and volume
are greatly different. For example, a very ‘thin’ rectangle whose sides are parallel to the
coordinates and the short side lies in interval (0, 1). Then there is no integer point in it, but
its volume can be arbitrarily large as the long side stretches. Therefore, they focused on the
distance between the count and the volume, and further proposed a method to approximate
the count by the volume. The following theorems are their main results.

▶ Lemma 3. Both vol(P), lat(P) are in the interval [|C(P)| − |C(B(P))|, |C(P)|].

▶ Theorem 4. |vol(P)− lat(P)| ≤ |C(B(P))|.

▶ Theorem 5. |C(B(P))| ≤ 2
∑n

i=1
∏

i̸=j(Mj(P)−mj(P)), where Mi(P) = ⌊max{xi|
x⃗ ∈ P}+ 1⌋ and mi(P) = ⌈min{xi|x⃗ ∈ P} − 1⌉.

Take Figure 1 as the example. We observe that each gray square contains exactly
one integer point in the polytope while orange squares maybe not, so it suggests that the
differences between vol(P), lat(P) and |C(P)| are related to those orange squares, i.e.,
|C(B(P))|. It is the intuition behind the proof of Lemma 3. Based on Lemma 3, it is easy to
obtain Theorem 4 that the difference between vol(P) and lat(P) is bounded by |C(B(P))|.
Then by Theorem 5, a looser bound 2

∑n
i=1

∏
i̸=j(Mj(P)−mj(P)) is proved which is easier

to be computed in practice. As a result, the count of lattices in a given polytope P can be
approximated via its volume vol(P), i.e.,

|vol(P)− lat(P)| ≤ 2
n∑

i=1

∏
i̸=j

(Mj(P)−mj(P)).

However, according to experimental results in [11], the bound 2
∑n

i=1
∏

i̸=j(Mj(P)−mj(P))
may be very loose, which prevents some applications. Naturally, we are interested in
improving the above bounds. In this paper, we first propose a new method to approximate
|C(B(P))| which is usually much tighter in experiments. Then we extend Theorem 4 to
mixed-integer cases to approximate integral(F) by vol(P), where P is the corresponding
polytope of F .

C. Ge and A. Biere 13:5

2.3 Sampling in Polytopes
The classical algorithm [4, 22, 20, 19, 8, 12] for sampling real points in a polytope P is
presented in Algorithm 1. It first calls a rounding method, such as the Shallow-β-Cut Ellipsoid
method [15], to find an affine transformation T , s.t., ball(0, 1) ⊂ T (P) ⊂ ball(0, 2n), where
ball(0, r) is a radius r ball centered at origin. Then it employs a hit-and-run random walk
method to generate real points in T (P). It finally returns sample points in P by applying
the inverse transformation T −1. Intuitively, T transforms a very “thin” polytope into a
well-bounded one. Thus, random walks will mix (converge to limiting distribution) faster on
the new polytope T (P). In addition, it guarantees that T (P) contains the origin, which will
be used as the start point for the random walks.

Algorithm 1 Real Points Sampling Algorithm.

1 Function Sampling_Real(P , x⃗0, w)
2 T ← Ellipsoid(P);
3 x⃗← T (x⃗0);
4 while w > 0 do
5 x⃗← Hit-and-run(T (P), x⃗);
6 w ← w − 1;
7 return T −1(x⃗);

The Hit-and-run random walk method was first introduced in [4], where its limiting
distribution was proved to be uniform. It was employed and improved for approximating a
polytope’s volume by [22, 20]. A variation called Coordinate Directions Hit-and-run is found
more efficient by experiments [8, 12]. Thus, we also adopt this variation in our paper, which
consists of the following steps:
Step 1. Given a point x⃗0 ∈ P , it first selects a line L uniformly over n coordinate directions

(parallel to the axes) which passes through the point x⃗0.
Step 2. It then chooses the next point x⃗1 uniformly on the segment of L in P .
Step 3. Repeat above steps w times, x⃗w is finally obtained and adopted.
Earlier works [20] proved that Hit-and-run method mixes in w = O(n2) steps for a random
initial point and O(n3) steps for a fixed initial point. However, further numerical studies [19,
12] reported that w = n is sufficient for nearly uniformly sampling in polytopes with dozens
of dimensions.

3 Our Approach

In this section, we first introduce our new algorithms for approximating lat(P) via vol(P).
Then we extend Theorem 4 and algorithms to mixed-integer cases, i.e., approximating
integral(F) via vol(P).

3.1 The Framework of Bounds Approximation Algorithm
To compute bounds of lat(P), i.e., |C(P)| − |C(B(P))| and |C(P)|, we introduce a Monte-
Carlo algorithm which samples points in union(C(P)) and then counts the number of points
that lie in P and union(C(B(P))).

CP 2024

13:6 Improved Bounds of Integer Solution Counts via Volume

▶ Theorem 6. Suppose X is a set of sample points uniformly generated from union(C(P)).
Let r̂1 = |X∩P |

|X| and r̂2 = 1 − |X∩union(C(B(P)))|
|X| . Then |C(P)| − |C(B(P))| = vol(P) ·

lim|X|→∞
r̂2
r̂1

and |C(P)| = vol(P) · lim|X|→∞
1
r̂1

.

Proof. Let r1 = vol(P)
|C(P)| and r2 = 1− |C(B(P))|

|C(P)| . Since

vol(union(C(P))) =
∑

κ∈C(P)

vol(κ) = |C(P)|,

then r1 = vol(P)
vol(union(C(P))) . Note that sampling in union(C(P)) in uniform and then counting

the number of points that lie in P is a Bernoulli process. Thus r̂1 is the estimated proportion of
successes for r1. Therefore, lim|X|→∞ r̂1 = r1. Similarly, we could find that lim|X|→∞ r̂2 = r2,
and lim|X|→∞

r̂2
r̂1

= r2
r1

= |C(P)|−|C(B(P))|
vol(P) . ◀

From Lemma 3 and Theorem 6, we know that r̂2
r̂1
· vol(P) and 1

r̂1
· vol(P) are the

approximations of the lower bound and the upper bound of lat(P) respectively. Therefore,
we aim to approximate 1

r̂1
and r̂2

r̂1
. Since sampling points is a Bernoulli trial, then r̂1 =

|X∩P |
|X| ∈ [0, 1] is an approximation of proportion of a binomial distribution, and r̂2 as well.

The confidence interval (CI) of r1 is thus a binomial CI. The well-known 1 − δ normal
approximation CI on r1 is

r̂1 − z1−δ/2

√
r̂1(1− r̂1)
|X|

≤ r1 ≤ r̂1 + z1−δ/2

√
r̂1(1− r̂1)
|X|

, (4)

where z1−δ/2 is the 1− δ/2 quantile of a standard normal distribution. Intuitively, CIs of
r1 and r2 can be used as the algorithm’s stopping criterion. Let ê1 ≡ z1−δ/4

√
r̂1(1−r̂1)

|X| and

ê2 ≡ z1−δ/4

√
r̂2(1−r̂2)

|X| which are the margin errors. We obtain 1 − δ/2 CIs of r1 and r2:
r̂1 − ê1 ≤ r1 ≤ r̂1 + ê1 and r̂2 − ê2 ≤ r2 ≤ r̂2 + ê2. Then r1 ≥ r̂1 − ê1 and r2 ≤ r̂2 + ê2 with
probability at least 1− δ/4. Thus we have r̂2−ê2

r̂1+ê1
≤ r2

r1
with probability at least 1− δ/2. By

the same way, we obtain the intervals

r̂2 − ê2

r̂1 + ê1
≤ r2

r1
≤ r̂2 + ê2

r̂1 − ê1
and 1

r̂1 + ê1
≤ 1

r1
≤ 1

r̂1 − ê1
, (5)

so that r̂2
r̂1

and 1
r̂1

lie in them with probability at least 1− δ.

▶ Theorem 7. In Theorem 6, if |X| ≥ z2
1−δ/4 · (

1
ϵ ·

√
1−r2

r2
+ 1−ϵ

ϵ ·
√

1−r1
r1

)2 and |X| ≥
z2

1−δ/4 · (
1+ϵ

ϵ)2 · 1−r1
r1

, then Prob(| r̂2
r̂1
− r2

r1
| ≤ ϵ · r2

r1
) ≥ 1−δ and Prob(| 1

r̂1
− 1

r1
| ≤ ϵ · 1

r1
) ≥ 1−δ.

Proof. Note that 1
r̂1−ê1

− 1
r̂1
≤ ϵ · 1

r̂1
⇐⇒ ϵr̂1 ≥ (1+ϵ)ê1 ⇐⇒ |X| ≥ z2

1−δ/4 ·(
1+ϵ

ϵ)2 · 1−r̂1
r̂1
≈

z2
1−δ/4 · (

1+ϵ
ϵ)2 · 1−r1

r1
. From Equation 5, we have Prob(| 1

r̂1
− 1

r1
| ≤ ϵ · 1

r1
) ≥ Prob(1

r̂1−ê1
− 1

r̂1
≤

ϵ · 1
r̂1

) ≥ 1− δ. The proof of |X| ≥ z2
1−δ/4 · (

1
ϵ ·

√
1−r2

r2
+ 1−ϵ

ϵ ·
√

1−r1
r1

)2 is similar. ◀

Theorem 7 discusses the relations among the confidence δ, the error ϵ and the number
of samples |X|. Since r2

r1
∈ (0, 1] and 1

r1
∈ [1,∞), the scale of samples |X| may vary a

lot with respect to the values of r2
r1

and 1
r1

. Therefore, based on the proof of Theorem 7,
we introduce a dynamical stopping criterion for our algorithm which checks the quality
of the approximation whenever a sample is obtained. The algorithm stops when it found
r̂2
r̂1
− r̂2−ê2

r̂1+ê1
≤ ϵ · r̂2

r̂1
and 1

r̂1−ê1
− 1

r̂1
≤ ϵ

r̂1
, which guarantees Prob(| r̂2

r̂1
− r2

r1
| ≤ ϵ · r2

r1
) ≥ 1− δ

and Prob(| 1
r̂1
− 1

r1
| ≤ ϵ · 1

r1
) ≥ 1− δ.

C. Ge and A. Biere 13:7

Algorithm 2 MixIntCount.

1 Input: P

2 Parameter: ϵ, δ, w, N

3 Output: lb(P), ub(P)
4 X ← ∅;
5 Initialize x⃗ with an arbitrary point in P ;
6 while |X| ≤ N do
7 x⃗← Sampling(P , x⃗, w);
8 X ← X ∪ {x⃗};
9 r̂1 ← |X∩P |

|X| ;
10 r̂2 ← 1− |X∩union(C(B(P)))|

|X| ;
11 if r̂2

r̂1
− r̂2−ê2

r̂1+ê1
≤ ϵ · r̂2

r̂1
and 1

r̂1−ê1
− 1

r̂1
≤ ϵ

r̂1
then break;

12 return vol(P) · r̂2−ê2
r̂1+ê1

, vol(P) · 1
r̂1−ê1

;

The pseudocode of the our main framework is presented in Algorithm 2. The parameters
ϵ, δ and N determine the accuracy and the confidence of approximations and the maximum
number of samples respectively. Note that according to Theorem 7, |X| could be a quite
large number when r2

r1
is close to 0 or 1

r1
≫ 1. In such cases, the approximations of bounds

are meaningless, for example, lat(P)
vol(P) ≥

r2
r1
≈ 0. So we introduce a sampling limit N . The

bounds would be rather meaningless when the algorithm reachs the limit N . The setting
of parameters will be further discussed in Section 4. In general, Algorithm 2 returns the
bounds of lat(P), i.e., lb(P) ≤ lat(P) ≤ ub(P) and |vol(P) − lat(P)| ≤ ub(P) − lb(P)
with probability at least 1− δ.

3.2 Sampling in Unions of Integer-cubes
To generate sample points in union(C(P)) nearly uniformly, we combine Algorithm 1 with
rejection sampling. Algorithm 3 presents the new sampling algorithm. It first enlarges P to
obtain a new polytope P ′, such that P ′ contains all integer-cubes in C(P). Next it samples
real points in P ′ by Algorithm 1. Then it accepts those in union(C(P)). Obviously, the
larger P ′, the lower probability of acceptance. Now a question arises:

How to obtain such a P ′ that is as small as possible?

Algorithm 3 Sampling in union(C(P)).

1 Function Sampling(P , x⃗0, w)
2 P ′ ← Enlarging(P);
3 x⃗← x⃗0;
4 while true do
5 x⃗← Sampling_Real(P ′, x⃗, w);
6 if x⃗ ∈ union(C(P)) then
7 return x⃗;

Intuitively, we can obtain P ′ by shifting every facet H of P to H ′, s.t., the distance
between H and H ′ is sufficient to contain an integer-cube. Minimizing this shifting distance is
formulated into a linear programming (LP) problem, with constraints {−1 ≤ xi ≤ 1} and an

CP 2024

13:8 Improved Bounds of Integer Solution Counts via Volume

objective, maximize A⃗kx⃗, where A⃗k is the kth row of the matrix A. Let vk be such maximum
value for the kth LC. Then we shift it by adding vk. The pseudocode of constructing P ′ is
shown in Algorithm 4. The following theorem guarantees that P ′ obtained by Algorithm 4
contains union(C(P)).

▶ Theorem 8. Given the kth LC Hk ≡ A⃗kx⃗ ≤ bk. Let vk = max{A⃗kx⃗| − 1 ≤ xi ≤ 1, i =
1, . . . , n} and H ′

k ≡ A⃗kx⃗ ≤ bk + vk. Then we have κ ⊂ H ′
k, ∀κ ∈ C(Hk).

Proof. Let Gk = A⃗kx⃗ ≤ 0 and G′
k = A⃗kx⃗ ≤ vk. Then it is equivalent to prove κ ⊂

G′
k, ∀κ ∈ C(Gk). Assume ∃cube(α⃗) ∈ C(Gk) and ∃ ⃗pout ∈ cube(α⃗) s.t., ⃗pout ̸∈ G′

k. Let
cmax = max{A⃗kx⃗|x⃗ ∈ cube(α⃗)} and cmin = min{A⃗kx⃗|x⃗ ∈ cube(α⃗)}. Recall that cube(α⃗) =
{αi − 1

2 ≤ xi ≤ αi + 1
2}, we can find that vk = cmax − cmin. Since cube(α⃗) ∈ C(Gk), then

∃p⃗in ∈ cube(α⃗)∩Gk. Thus the hyperplane A⃗kx⃗ = A⃗k ⃗pout is outside of G′
k, and A⃗k ⃗pout > vk.

Similarly, we could find that A⃗kp⃗in ≤ 0, yielding the contradiction vk = cmax − cmin ≥
A⃗k ⃗pout − A⃗kp⃗in > vk. ◀

Algorithm 4 Enlarging P by shifting hyperplanes.

1 Function Enlarging(P)
2 for each A⃗kx⃗ ≤ bk from P do
3 constraints ← {−1 ≤ xi ≤ 1};
4 object ← A⃗kx⃗;
5 vi ← Simplex(object, constraints);

6 return {Ax⃗ ≤ b⃗ + v⃗};

3.3 Efficient Cube Checking

In Algorithm 2 and 3, we have to frequently check whether a point is in any integer-cube in
C(P) or C(B(P)). So in this section, we focus on the following question.

How to efficiently check whether a point p⃗ is in union(C(P)) or union(C(B(P)))?

We observe that if p is not on the boundary of an integer-cube, then p⃗ ∈ union(C(P)) iff
cube([⃗p]) ∈ C(P), where [⃗p] = ([p1], . . . , [pn]) is obtained by rounding numbers to integers.
Since in practice, it is nearly impossible to generate a sample point right on the boundaries
of cubes. We assume p does not sit on the boundary of an integer-cube in this section.
Similarly, we have if p is not on the boundary of an integer-cube, p⃗ ∈ union(C(B(P))) iff
cube([⃗p]) ∈ C(B(P)). Furthermore, cube([⃗p]) ∈ C(P) iff p⃗ ∈ P or cube([⃗p]) ∈ C(B(P)).
Since checking whether p⃗ ∈ P is trivial, we only have to find an efficient method to check
whether cube(α⃗) ∈ C(B(P)) with a given integer point α⃗.

Algorithm 5 presents the method for fast cube checking. Note that vk is the same as in
Algorithm 4, that is, vk = max{A⃗kx⃗|−1 ≤ xi ≤ 1, i = 1, . . . , n}, where A⃗k is the kth row of A.
Obviously, vk/2 = max{A⃗kx⃗|−0.5 ≤ xi ≤ 0.5, i = 1, . . . , n}. Since α⃗ is the center of cube(α⃗),
we have A⃗kα⃗ − vk/2 = min{A⃗kx⃗|x⃗ ∈ cube(α⃗)} and A⃗kα⃗ + vk/2 = max{A⃗kx⃗|x⃗ ∈ cube(α⃗)}.
If ∃j, s.t., A⃗jα⃗− vj/2 > bj , it indicates that cube(α⃗) is completely outside P . Otherwise, if
∃j, s.t., A⃗jα⃗ + vj/2 ≥ bj , it indicates that cube(α⃗) intersects with B(P).

C. Ge and A. Biere 13:9

Algorithm 5 Check whether cube(α⃗) ∈ C(B(P)).

1 Function CubeOnBound(α⃗, P)
2 flag← false;
3 for each A⃗kx⃗ ≤ bk from P do
4 if A⃗kα⃗− vk/2 > bk then
5 return false;

6 if A⃗kα⃗ + vk/2 ≥ bk then
7 flag← true;

8 return flag;

3.4 Extending to Mixed-Integer Cases
In this section, we will introduce and prove the theoretical result on mixed-integer cases.
Combined with Lemma 3, it not only provides bounds for integral(F), but also shows when
integral(F) can be approximated by lat(P) and vol(P).

▶ Theorem 9. |C(P)| − |C(B(P))| ≤ integral(F) ≤ |C(P)|.

Proof. According to Equation (3), the theorem is equivalent with

|C(P)| − |C(B(P))| ≤
∑

α⃗I ∈MI(F)

vol(Pα⃗I
) ≤ |C(P)|. (6)

From Lemma 3, we have |C(Pα⃗I
)| − |C(B(Pα⃗I

))| ≤ vol(Pα⃗I
) ≤ |C(Pα⃗I

)|. Then∑
α⃗I

(|C(Pα⃗I
)| − |C(B(Pα⃗I

))|) ≤
∑
α⃗I

vol(Pα⃗I
) ≤

∑
α⃗I

|C(Pα⃗I
)|. (7)

Given an arbitrary cube(α⃗R) ∈ C(Pα⃗I
). Obviously, ∃α⃗R

′ ∈ cube(α⃗R) such that α⃗R
′ ∈ Pα⃗I

.
Let α⃗ = [α⃗I α⃗R] and α⃗′ = [α⃗I α⃗R

′] which are concatenations of integer and real variables. Then
α⃗′ is an interior point in P and α⃗′ ∈ cube(α⃗). It means cube(α⃗) ∈ C(P). By this way, we could
map C(Pα⃗I

) to C(P ∩ α⃗I ×RnR) ⊂ C(P). Note that C(P ∩ α⃗I ×RnR)∩C(P ∩ α⃗′
I ×RnR) = ∅,

and α⃗I ̸= α⃗′
I , then we have∑

α⃗I

|C(Pα⃗I
)| ≤ |C(P)|. (8)

Given an arbitrary cube(β⃗) ∈ C(P) \ C(B(P)). Let β⃗ = [β⃗I β⃗R]. Note that cube(β⃗) ⊂ P ,
it means cube(β⃗) ∩M(F) ̸= ∅. Thus β⃗I ∈MI(F). Then we obtain an unique integer-cube
cube(β⃗R) ∈ C(Pβ⃗I

) \ C(B(Pβ⃗I
)). Similarly, we have

|C(P)| − |C(B(P))| = |C(P) \ C(B(P))| ≤
∑
α⃗I

(|C(Pα⃗I
)| − |C(B(Pα⃗I

))|). (9)

Combine Equation (7) (8) and (9), then Equation (6) is obtained. ◀

Theorem 9 indicates that Algorithm 2 can be directly applied for solving the solution
space integration problem on mixed-integer constraints, i.e., lb(P) ≤ integral(F) ≤ ub(P).

CP 2024

13:10 Improved Bounds of Integer Solution Counts via Volume

4 Implementation

We implemented a prototype tool called MixIntCount in C++. MixIntCount employs
GLPK for linear programming. It calls Vinci [5] and Polyvest [10] for polytopes’ volume
computation and approximation.

In our implementation, the Ellipsoid method is employed only once, and the affine
transformation T will be reused by the real point sampling in Algorithm 3. Moreover,
whenever a sample is obtained, it will immediately update the counts of samples that lie in
P or union(C(B(P))) and check whether the stopping criterion is satisfied.

Wilson score interval

For convenience, we introduced the normal approximation CI implied by the Central Limit
Theorem for describing Algorithm 2 in Section 3. However, the normal CI suffers from
problems of overshoot and zero-width intervals, e.g., r1 and r2 may sometimes be close to 0 or
1. In such circumstances, the Wilson score interval (or Wilson CI) [31] performs much better
than the normal CI. Therefore, we replace Equation 4 by Wilson CI, and let MixIntCount
compute Wilson CIs as the stopping criterion.

The setting of parameters

We choose parameters ϵ = 0.1, δ = 0.05, w = n, and N = 100000 for MixIntCount, and
ϵ = 0.2, δ = 0.05 for Polyvest. Note that ϵ and δ are different in two tools. In PolyVest,
ϵ and δ control the errors of volume approximations. In MixIntCount, ϵ and δ control
the errors of lower and upper bounds. Since previous numerical studies [19, 12] reported
that w = n is sufficient for nearly uniformly sampling points in polytopes with dozens of
dimensions, we also chose w = n in our implementation. Experiments in Section 5 show
that N = 100000 is sufficiently large, as the lower bounds lb(P) ≤ 0.001 · vol(P) are useless
when |X| reaches N .

A straightforward method for mixed-integer cases

Based on the definition, i.e., Equation 2, it is easy to propose an algorithm for computing
integral(F). First, it enumerates all assignments α⃗I ∈ MI(F). Then for each α⃗I , it
computes vol(Pα⃗I

) by volume computation algorithms. Finally, integral(F) is obtained
by summing up vol(Pα⃗I

). We implemented this method and called it ExactMI, which
could provide exact integration. We adopted it as the baseline for performance comparison
in our evaluation (Section 5). Note that in practice, we could try MixIntCount first, and if
approximations of bounds are not tight enough, we would then employ ExactMI.

Approximating bounds on SMT(LA) formulas

We incorporated MixIntCount into the DPLL(T)-based #SMT(LA) counter [12] directly
to approximate bounds of solution space integration of SMT(LA) formulas. Without loss
of generality, an SMT(LA) formula ϕ with l Boolean variables, n numeric variables and
m LCs can be formally represented as a Boolean formula PSϕ(b1, . . . , bm+l) together with
definitions in the form: bi ≡ Hi, i = 1, . . . , m, where His are LCs. Then bm+1, . . . , bm+l are
the pure Boolean variables of ϕ. An assignment γ⃗ of PSϕ is a vector (γ1, . . . , γm+l) ∈ Bm+l,
where γi is either 1 or 0. A partial assignment γ⃗ means there are some γis not assigned. Let
bool(γ⃗) represent the vector (γm+1, . . . , γm+l) ∈ Bl which corresponds to those pure Boolean

C. Ge and A. Biere 13:11

variables. Let Hγ⃗ =
⋃

1≤i≤m Hγ⃗,i, where Hγ⃗,i is {Hi} or {¬Hi} or ∅ if γi is 1 or 0 or not
assigned respectively. Note that Hi and ¬Hi are LCs, Hγ⃗ is the set of LCs that corresponds
to γ⃗. Thus, an assignment µ⃗ of ϕ consists of (x⃗, bool(γ⃗)), where γ⃗ is an assignment of PSϕ

and x⃗ is a point. Let Mϕ,γ⃗ represent M(Hγ⃗)× bool(γ⃗). The solution space of ϕ is then the
union of sets, formally:

M(ϕ) =
⋃

γ⃗∈M(P Sϕ)

M(Hγ⃗)× bool(γ⃗) =
⋃

γ⃗∈M(P Sϕ)

Mϕ,γ⃗ . (10)

To enumerate γ⃗ ∈M(PSϕ), a DPLL(T)-based scheme was introduced:
Step 1. Find a model µ⃗ of ϕ by DPLL(T) algorithm. From Equation 10, there exists a
partial assignment γ⃗ ∈M(PSϕ), s.t., µ⃗ ∈Mϕ,γ⃗ .
Step 2. Conjunct ϕ with the negation formula G of partial assignment γ⃗, which would
prevent the DPLL(T) algorithm finding models in Mϕ,γ⃗ again. In detail, G =

∨
Gi,

where Gi ≡ bi if γi = 0, Gi ≡ ¬bi if γi = 1.
Step 3. Find the next model µ⃗′ ∈ M(ϕ′) and a partial assignment γ⃗′, s.t., µ⃗′ ∈ Mϕ′,γ⃗′

like Step 1. Repeat above steps until M(ϕ′) = ∅, i.e., unsatisfiable.
In this way, we could find a set Γ = {γ⃗, γ⃗′, . . . } ⊂ M(PSϕ). The above scheme guarantees

M(ϕ) =
⋃
γ⃗∈Γ

Mϕ,γ⃗ and Mϕ,γ⃗1 ∩Mϕ,γ⃗2 = ∅, ∀γ⃗1, γ⃗2 ∈ Γ, γ⃗1 ̸= γ⃗2. (11)

From Equation 11, we know that Mϕ,γ⃗s are non-overlapping, then

integral(ϕ) =
∑
γ⃗∈Γ

integral(Mϕ,γ⃗) =
∑
γ⃗∈Γ

integral(Hγ⃗) · 2dγ⃗ , (12)

where dγ⃗ is the number of γis which are not assigned, m + 1 ≤ i ≤ l. From Algorithm 2
and Theorem 9, we could approximate bounds for each Hγ⃗ , i.e., lb(Hγ⃗) ≤ integral(Hγ⃗) ≤
ub(Hγ⃗). By summing up, we obtain the total bounds for ϕ:

lb(ϕ) ≤ integral(ϕ) =
∑
γ⃗∈Γ

integral(Hγ⃗) · 2dγ⃗ ≤ ub(ϕ), (13)

where lb(ϕ) =
∑

γ⃗∈Γ lb(Hγ⃗) · 2dγ⃗ and ub(ϕ) =
∑

γ⃗∈Γ ub(Hγ⃗) · 2dγ⃗ .

5 Evaluation

5.1 Experimental settings
Experiments were conducted on a cloud with 48 Core Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz and 128GB memory. We used a timeout of 3600 seconds and a memory limit of
16GB. The suite of benchmarks consists of two families:

Random Polytopes P (m, n, nI , c), where m, n, nI and c are the number of LCs, the
number of all variables, the number of integer variables and the range size of both xi

and bi, respectively. In detail, a polytope P (m, n, nI , c) = {Ax⃗ ≤ b⃗} is generated by the
following steps: (1) randomly choose nI different integer variables, (2) randomly select
aij ∈ A from −10 to 10 and bi from −c to c, (3) if P is unsatisfiable then repeat above
steps. In our benchmarks, we chose m = n ∈ [3, 15], nI ∈ [1, n] and c ∈ [10, 10000].
Instances from program analysis: We adopted the application benchmarks introduced
by [11] which are generated by analyzing 7 programs (“cubature”, “gjk”, “http-parser”,
“muFFT”, “SimpleXML”, “tcas” and “timeout”) ranging from 0.4k to 7.7k lines of source
code via a symbolic execution bug-finding tool. There are 3803 SMT(LIA) (linear integer
arithmetic) formulas in total.

CP 2024

13:12 Improved Bounds of Integer Solution Counts via Volume

Ta
bl

e
1

R
un

ni
ng

tim
es

an
d

ap
pr

ox
im

at
io

n
re

su
lts

ov
er

ra
nd

om
po

ly
to

pe
s

w
ith

c
=

10
00

.

B
en

ch
m

ar
ks

E
xa

ct
M

I
V

in
ci

P
ol

yV
es

t
B

ou
nd

s
by

M
ix

In
tC

ou
nt

n
n

I
S̄

in
te

gr
al

(F
)

t
(s

)
vo

l(
P

)
t

(s
)

ˆ vo
l(

P
)

t
(s

)
ub

(P
)

vo
l(

P
)

lb
(P

)
vo

l(
P

)
|X

|
t

(s
)

4
1

94
8

1.
44

E
+

10
4.

99
1.

43
E

+
10

0.
00

7
1.

45
E

+
10

0.
07

2
1.

05
5

0.
91

4
28

1
0.

00
4

2
87

4
6.

07
E

+
08

50
8

6.
07

E
+

08
0.

00
6

6.
15

E
+

08
0.

07
4

1.
17

2
0.

82
0

11
77

0.
00

6
3

10
99

—
—

1.
47

E
+

11
0.

00
6

1.
52

E
+

11
0.

06
7

1.
03

7
0.

91
9

15
6

0.
00

3
5

1
36

9
1.

64
E

+
09

1.
89

1.
64

E
+

09
0.

01
2

1.
66

E
+

09
0.

25
7

1.
47

9
0.

63
5

27
91

0.
01

1
2

94
5

—
—

8.
70

E
+

12
0.

01
9

8.
59

E
+

12
0.

25
6

1.
05

0
0.

93
5

18
9

0.
00

5
3

10
86

—
—

6.
13

E
+

13
0.

01
8

6.
17

E
+

13
0.

24
9

1.
06

2
0.

92
3

29
1

0.
00

5
6

1
71

5
5.

55
E

+
09

18
.3

5.
55

E
+

09
0.

05
3

5.
48

E
+

09
0.

75
5

2.
65

3
0.

28
1

52
43

0.
02

3
2

14
38

—
—

1.
34

E
+

17
0.

06
7

1.
39

E
+

17
0.

78
0

1.
03

4
0.

92
5

11
3

0.
00

5
3

22
9

—
—

5.
91

E
+

09
0.

06
3

5.
92

E
+

09
0.

75
1

1.
79

5
0.

46
4

38
24

0.
01

9
7

1
11

01
2.

47
E

+
17

11
3

2.
47

E
+

17
0.

65
9

2.
50

E
+

17
1.

90
1.

12
5

0.
84

8
81

0
0.

00
8

2
98

0
—

—
2.

41
E

+
17

0.
65

5
2.

44
E

+
17

2.
05

1.
13

6
0.

86
7

85
5

0.
01

0
3

72
7

—
—

6.
19

E
+

15
0.

65
8

6.
13

E
+

15
2.

04
1.

17
1

0.
81

3
11

80
0.

01
1

8
1

70
3

6.
57

E
+

14
61

5
6.

57
E

+
14

7.
64

6.
44

E
+

14
4.

56
2.

03
6

0.
41

5
46

43
0.

03
5

2
12

51
—

—
6.

83
E

+
20

7.
91

6.
83

E
+

20
4.

17
1.

09
9

0.
87

3
62

8
0.

00
9

3
55

6
—

—
5.

71
E

+
15

8.
24

5.
68

E
+

15
4.

62
1.

69
5

0.
52

7
37

06
0.

03
0

9
1

47
5

—
—

—
—

2.
37

E
+

13
9.

05
7.

56
0

0.
06

4
49

29
5

0.
39

0
2

12
50

—
—

—
—

3.
82

E
+

22
8.

46
1.

15
2

0.
83

6
10

16
0.

01
5

3
13

8
—

—
—

—
1.

47
E

+
10

9.
71

34
.5

0
0.

00
0

10
00

00
0.

79
2

12
1

25
2

—
—

—
—

2.
56

E
+

15
57

.4
43

.2
4

0.
00

1
10

00
00

1.
51

7
2

43
9

—
—

—
—

8.
18

E
+

19
54

.9
7.

06
3

0.
07

0
45

42
4

0.
70

0
3

14
08

—
—

—
—

1.
43

E
+

32
52

.3
1.

12
3

0.
84

5
84

2
0.

02
5

15
1

95
8

—
—

—
—

5.
85

E
+

32
23

5
2.

12
0

0.
40

8
51

02
0.

15
7

2
15

98
—

—
—

—
5.

10
E

+
38

22
8

1.
29

2
0.

76
6

19
50

0.
07

6
3

15
87

—
—

—
—

4.
20

E
+

36
22

4
1.

46
9

0.
63

5
29

02
0.

10
5

C. Ge and A. Biere 13:13

(1) n = 5, y-axis: ub(P)
lb(P) ,

x-axis: c

(4) n = 10, y-axis: ub(P)
lb(P) ,

x-axis: c

(7) n = 15, y-axis: ub(P)
lb(P) ,

x-axis: c

(2) n = 5, y-axis: ub(P)
lb(P) ,

x-axis: S̄

(5) n = 10, y-axis: ub(P)
lb(P) ,

x-axis: S̄

(8) n = 15, y-axis: ub(P)
lb(P) ,

x-axis: S̄

(3) n = 5, y-axis: S̄,
x-axis: c

(6) n = 10, y-axis: S̄,
x-axis: c

(9) n = 15, y-axis: S̄,
x-axis: c

Figure 2 Experimental results about tightness of bounds ub(P)
lb(P) with different c, S̄ and n.

5.2 Experimental results

Table 1 presents experimental results on random polytopes with different values of n and nI

but fixed c = 1000. Due to page limit, we could only provide partial results here. In Table 1,
S̄ = 1

n

∑n
i=1(max{xi|x⃗ ∈ P} −min{xi|x⃗ ∈ P}) is the average range size of variables in real

domain, |X| is the number of sample points generated. ExactMI is the implementation of the
straightforward method presented in Section 4, which is the baseline. Vinci and PolyVest
are tools for computing or approximating vol(P). MixIntCount approximates the bounds
of differences of integral(F) and vol(P). So the closer the bounds lb(P)/vol(P) and
ub(P)/vol(P) are to 1, the better.

Table 1 shows that vol(P) is usually very close to the exact integral(F). We observe
that ExactMI can only handle instances with only one or two integer variables because
the number of integer assignments generated by ExactMI grows exponentially with respect
to nI . The scalability of ExactMI is also limited by Vinci, which runs out of memory
in a few seconds when n ≥ 9. Polyvest is more scalable as it is a polynomial time
randomized approximation algorithm. Our tool MixIntCount generates approximate
bounds lb(P) ≤ integral(F) ≤ ub(P). The experimental results show that bounds are
mostly useful while the overhead of approximating bounds is negligible compared to the cost
of volume computation or approximation. There are two exceptions when n = 9, nI = 3 and

CP 2024

13:14 Improved Bounds of Integer Solution Counts via Volume

Figure 3 Comparison about the tightness of bounds ub(P)
lb(P) (the smaller the better) between

MixIntCount and Vol2Lat on random polytopes with pure-integer variables.

n = 12, nI = 1 in Table 1. In these cases, the algorithm does not stop before reaching the
maximum number of sample points, i.e., |X| = N , and bounds are also in essence meaningless.
Besides, we observe that bounds are sometimes loose while integral(F) and vol(P) are
very close, such as, when n = 6, nI = 1 and n = 8, nI = 1. From Table 1, we observe
that the tightness of bounds by MixIntCount is related to the size of S̄. In addition, the
parameter c, which controls the domain size of variables, is fixed to 1000. So we conducted
more experiments with different values of c.

Figure 2 presents results about tightness of bounds ub(P)
lb(P) with different settings of c and n.

From Figure 2 (3) (6) (9), we observe that S̄ is highly correlated with c. Comparing Figure 2
(1) (4) (7) and Figure 2 (2) (5) (8), we find that tightness of bounds is more correlated with
S̄ than c. Besides, we also find that tightness of bounds is negatively correlated with n by
comparing each row.

We compared our tool MixIntCount with Vol2Lat on pure integer instances which
can be viewed as the special cases of mixed-integers. Tool Vol2Lat [11] is an approximate
integer solution counter via a polytope’s volume over pure integer constraints. We conducted
experiments on random polytopes where their coefficients are generated in the same way as
the mixed-integer cases. The results are presented in Figure 3, whose x-axis and y-axis are
the tightness of bounds ub(P)

lb(P) by two tools. Note that we force ub(P)
lb(P) = 10 when ub(P)

lb(P) > 10,
thus the line of points at the top of the figure are cases that ub(P)

lb(P) > 10 for Vol2Lat.
Then we conducted experiments on application benchmarks from program analysis which

are #SMT(LIA) problems. Note that both MixIntCount and Vol2Lat were incorporated
into the DPLL (T)-based #SMT (LA) counter [12]. The results are presented in Table 2. Note
that timeout cases by exact counter barvinok (cannot evaluate bounds without exact results)
and degenerated cases (volume is zero) are excluded, so there are 3682 instances remaining.
In Table 2, ē, ēl and ēu represent the average values of relative errors e = |lat(F)−vol(F)|

lat(F) ,
el = lb(F)

lat(F) and eu = ub(F)
lat(F) . Recall that we chose ϵ = 0.1 for MixIntCount in default, so

el and eu will be at most 95% and at least 105%. With a smaller ϵ = 0.01, MixIntCount
provides a bit tighter bounds as presented in Table 2. In general, our approach provides
much tighter upper bounds than Vol2Lat and consumes more time in exchange.

C. Ge and A. Biere 13:15

Table 2 Comparison about errors of bounds (the close to 100% the better) between MixIntCount
(MIC) and Vol2Lat on pure integer instances from application instances.

Benchmarks Vol2Lat MIC (ϵ = 0.1) MIC (ϵ = 0.01)

Name t̄ (s) ēl ēu t̄ (s) ēl ēu t̄ (s) ēl ēu

cubature 1.65 14.9% 347.4% 6.35 13.8% 215.4% 29.9 14.4% 207.6%
gjk 0.17 <0.1% 806.9% 1.65 <0.1% 389.1% 6.49 <0.1% 375.1%
httpparser 0.44 90.5% 117.5% 1.42 87.8% 111.2% 5.14 90.2% 108.6%
muFFT 0.07 45.6% 500.6% 0.71 43.6% 246.8% 1.65 45.4% 239.2%
SimpleXML 0.21 93.8% 120.3% 0.58 90.6% 109.6% 0.95 94.0% 105.9%
tcas 0.60 >99.9% <100.1% 0.60 95.4% 104.9% 0.59 99.5% 100.5%
timeout 9.45 97.4% 109.3% 14.0 92.8% 108.0% 19.4 97.3% 103.5%

6 Related Works

Ge et al. [11] studied the relation between the count of integer points inside a polytope
and a polytope’s volume. Then they proposed an algorithm to approximate the upper
and lower bounds of integer solution counts via volume. They focused on the pure integer
linear constraints. In this paper, we propose new algorithms for bounds approximation via
a polytope’s volume. The experimental results show that our approach provides tighter
bounds on pure-integer cases. In addition, we extend their results and our algorithms to
mixed-integer cases using Theorem 9.

The existing works on solving weighted model integration (WMI) problems [3, 17, 25, 26,
28] were focusing on formulas with Boolean and real variables, e.g., in SMT(LRA) (linear
real arithmetic) representation. In this paper, we consider the solution space integration
problem over mixed-integer linear constraints, which is a theory atom of SMT(LIRA) (linear
mixed integer real arithmetic).

Ma et al. [24] first studied #SMT problems and proposed a DPLL(T)-based #SMT
framework. Chistikov et al. [7] first extended hashing-based model counting techniques from
#SAT to #SMT problems directly. Soon, Chakraborty et al. [6] proposed word-level hash
functions for #SMT(BV) (bit-vector) and showed that their approach outperforms Chistikov’s
method through experiments. After that, Ge et al. [13] compared more recent hashing-based
counters with exact integer counters in the scope of linear integer constraints. They observed
that exact integer counters combined with the DPLL(T)-based #SMT framework are still
more efficient for #LIA and #SMT(LIA) (linear integer arithmetic) problems. So in this
paper, we also incorporate our algorithms into DPLL(T)-based #SMT(LA) (linear arithmetic)
counters for approximating bounds of solution space integrations of #SMT(LA) formulas.

7 Conclusion

In this paper, we proposed an approximate solution space integration algorithm via a
polytope’s volume. It is based on theoretical analysis of bounds for solution space integration,
volume and integer count. The upper and lower bounds provided by our approach are
useful for users to decide whether to trust the approximations. We evaluated our approach’s
scalability and the tightness of bounds by experiments. Extending the bounds to weighted
solution counting problems would be an interesting and challenging direction for future
research.

CP 2024

13:16 Improved Bounds of Integer Solution Counts via Volume

References
1 Alexander I. Barvinok. Computing the volume, counting integral points, and exponential

sums. Discrete & Computational Geometry, 10:123–141, 1993. doi:10.1007/BF02573970.
2 Alexander I. Barvinok. Computing the ehrhart polynomial of a convex lattice polytope.

Discrete & Computational Geometry, 12:35–48, 1994. doi:10.1007/BF02574364.
3 V. Belle, A. Passerini, and Guy Van den Broeck. Probabilistic inference in hybrid domains by

weighted model integration. In Qiang Yang and Michael J. Wooldridge, editors, Proc. of IJCAI
2015, pages 2770–2776. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/392.

4 H. C. P. Berbee, C. G. E. Boender, A. H. G. Rinnooy Kan, C. L. Scheffer, R. L. Smith, and
J. Telgen. Hit-and-run algorithms for the identification of nonredundant linear inequalities.
Math. Program., 37(2):184–207, 1987. doi:10.1007/BF02591694.

5 B. Büeler, A. Enge, and K. Fukuda. Exact Volume Computation for Polytopes: A Practical
Study, pages 131–154. Birkhäuser, 2000. doi:10.1007/978-3-0348-8438-9_6.

6 Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, and Moshe Y. Vardi. Approximate
probabilistic inference via word-level counting. In Proc. of AAAI, pages 3218–3224, 2016.

7 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Approximate counting in SMT
and value estimation for probabilistic programs. In Proc. of TACAS, pages 320–334, 2015.

8 Ben Cousins and Santosh S. Vempala. Gaussian cooling and o*(n3) algorithms for volume
and gaussian volume. SIAM J. Comput., 47(3):1237–1273, 2018. doi:10.1137/15M1054250.

9 M. E. Dyer, A. M. Frieze, and R. Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies. In Proc. of STOC, pages 375–381, 1989.
doi:10.1145/73007.73043.

10 C. Ge and F. Ma. A fast and practical method to estimate volumes of convex polytopes. In
Jianxin Wang and Chee-Keng Yap, editors, Proc. of FAW, volume 9130 of Lecture Notes in
Computer Science, pages 52–65. Springer, 2015. doi:10.1007/978-3-319-19647-3_6.

11 C. Ge, F. Ma, X. Ma, F. Zhang, P. Huang, and J. Zhang. Approximating integer solution
counting via space quantification for linear constraints. In Sarit Kraus, editor, Proc. of IJCAI,
pages 1697–1703. ijcai.org, 2019. doi:10.24963/ijcai.2019/235.

12 C. Ge, F. Ma, P. Zhang, and J. Zhang. Computing and estimating the volume of the
solution space of SMT(LA) constraints. Theor. Comput. Sci., 743:110–129, 2018. doi:
10.1016/j.tcs.2016.10.019.

13 Cunjing Ge and Armin Biere. Decomposition strategies to count integer solutions over
linear constraints. In Zhi-Hua Zhou, editor, Proc. of IJCAI, pages 1389–1395. ijcai.org, 2021.
doi:10.24963/ijcai.2021/192.

14 Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic execution.
In Proc. of ISSTA, pages 166–176, 2012. doi:10.1145/2338965.2336773.

15 M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimiza-
tion. Combinatorica, 1988.

16 Amy Huang, Liam Lloyd, Mohamed Omar, and James C. Boerkoel. New perspectives on
flexibility in simple temporal planning. In Proc. of ICAPS, pages 123–131, 2018. URL:
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17775.

17 Samuel Kolb, Pedro Zuidberg Dos Martires, and Luc De Raedt. How to exploit structure while
solving weighted model integration problems. In Amir Globerson and Ricardo Silva, editors,
Proc. of UAI, volume 115 of Proceedings of Machine Learning Research, pages 744–754. AUAI
Press, 2019. URL: http://proceedings.mlr.press/v115/kolb20a.html.

18 Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. Effective
lattice point counting in rational convex polytopes. J. Symb. Comput., 38(4):1273–1302, 2004.
doi:10.1016/j.jsc.2003.04.003.

19 L. Lovász and I. Deák. Computational results of an O∗(n4) volume algorithm. European
Journal of Operational Research, 216(1):152–161, 2012. doi:10.1016/j.ejor.2011.06.024.

20 L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM J. Comput., 35(4):985–1005,
2006. doi:10.1137/S009753970544727X.

https://doi.org/10.1007/BF02573970
https://doi.org/10.1007/BF02574364
http://ijcai.org/Abstract/15/392
https://doi.org/10.1007/BF02591694
https://doi.org/10.1007/978-3-0348-8438-9_6
https://doi.org/10.1137/15M1054250
https://doi.org/10.1145/73007.73043
https://doi.org/10.1007/978-3-319-19647-3_6
https://doi.org/10.24963/ijcai.2019/235
https://doi.org/10.1016/j.tcs.2016.10.019
https://doi.org/10.1016/j.tcs.2016.10.019
https://doi.org/10.24963/ijcai.2021/192
https://doi.org/10.1145/2338965.2336773
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17775
http://proceedings.mlr.press/v115/kolb20a.html
https://doi.org/10.1016/j.jsc.2003.04.003
https://doi.org/10.1016/j.ejor.2011.06.024
https://doi.org/10.1137/S009753970544727X

C. Ge and A. Biere 13:17

21 L. Lovász and S. Vempala. Simulated annealing in convex bodies and an O∗(n4) volume
algorithm. J. Comput. Syst. Sci., 72(2):392–417, 2006. doi:10.1016/j.jcss.2005.08.004.

22 László Lovász. Hit-and-run mixes fast. Math. Program., 86(3):443–461, 1999. doi:10.1007/
s101070050099.

23 Kasper Søe Luckow, Corina S. Pasareanu, Matthew B. Dwyer, Antonio Filieri, and Willem
Visser. Exact and approximate probabilistic symbolic execution for nondeterministic programs.
In Proc. of ASE, pages 575–586, 2014. doi:10.1145/2642937.2643011.

24 F. Ma, S. Liu, and J. Zhang. Volume computation for boolean combination of linear arithmetic
constraints. In Proc. of CADE, pages 453–468, 2009. doi:10.1007/978-3-642-02959-2_33.

25 P. Z. Dos Martires, A. Dries, and Luc De Raedt. Exact and approximate weighted model
integration with probability density functions using knowledge compilation. In Proc. of AAAI,
2019, pages 7825–7833. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33017825.

26 P. Morettin, A. Passerini, and R. Sebastiani. Advanced SMT techniques for weighted model
integration. Artif. Intell., 275:1–27, 2019. doi:10.1016/j.artint.2019.04.003.

27 Gilles Pesant. Counting-based search for constraint optimization problems. In Proc. of AAAI,
pages 3441–3448, 2016. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/
view/12065, doi:10.1609/AAAI.V30I1.10433.

28 Giuseppe Spallitta, Gabriele Masina, Paolo Morettin, Andrea Passerini, and Roberto Sebastiani.
Smt-based weighted model integration with structure awareness. In James Cussens and Kun
Zhang, editors, Proc. of UAI, volume 180 of Proceedings of Machine Learning Research, pages
1876–1885. PMLR, 2022. URL: https://proceedings.mlr.press/v180/spallitta22a.html.

29 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979. doi:10.1137/0208032.

30 Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice Bruynooghe.
Counting integer points in parametric polytopes using barvinok’s rational functions. Algorith-
mica, 48(1):37–66, 2007. doi:10.1007/s00453-006-1231-0.

31 E. B. Wilson. Probable inference, the law of succession, and statistical inference. Journal
of the American Statistical Association, 22(158):209–212, 1927. doi:10.1080/01621459.1927.
10502953.

32 Alessandro Zanarini and Gilles Pesant. Solution counting algorithms for constraint-centered
search heuristics. In Proc. of CP, pages 743–757, 2007. doi:10.1007/978-3-540-74970-7_52.

CP 2024

https://doi.org/10.1016/j.jcss.2005.08.004
https://doi.org/10.1007/s101070050099
https://doi.org/10.1007/s101070050099
https://doi.org/10.1145/2642937.2643011
https://doi.org/10.1007/978-3-642-02959-2_33
https://doi.org/10.1609/aaai.v33i01.33017825
https://doi.org/10.1016/j.artint.2019.04.003
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12065
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12065
https://doi.org/10.1609/AAAI.V30I1.10433
https://proceedings.mlr.press/v180/spallitta22a.html
https://doi.org/10.1137/0208032
https://doi.org/10.1007/s00453-006-1231-0
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1007/978-3-540-74970-7_52

A CP/LS Heuristic Method for Maxmin and
Minmax Location Problems with Distance
Constraints
Panteleimon Iosif #

University of Western Macedonia, Kozani, Greece

Nikolaos Ploskas #

University of Western Macedonia, Kozani, Greece

Kostas Stergiou #

University of Western Macedonia, Kozani, Greece

Dimosthenis C. Tsouros #

KU Leuven, Belgium

Abstract
In facility location problems we seek to locate a set of facilities in an area, where clients may be
present, so that some criterion is optimized. For instance, in the p-center problem we seek to minimize
the maximum distance between any client and its closest facility, whereas in the p-dispersion problem
we seek to maximize the minimum distance between any two facilities. Hence, in the former we
have a minmax objective, whereas in the latter we have a maxmin objective. Recently, a variant
of p-dispersion where distance constraints exist between facilities was studied from a CP and ILP
perspective. An incomplete CP solver that uses a greedy heuristic to prune branches was shown
to significantly outperform Gurobi and OR-Tools in terms of execution time, although it failed
to discover optimal or near-optimal solutions in many instances. We enhance this work in two
directions, regarding the effectiveness and the applicability of the approach. We first show how local
search can be used to obtain better estimations of the bound at each node, resulting in more focused
pruning, which allows for optimal or near-optimal solutions to be discovered in many more instances.
Then, we demonstrate how the framework can be applied on the p-center problem with distance
constraints, comparing it to ILP and CP models implemented in Gurobi and OR-Tools, respectively.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Programming, Local Search, facility location, distance constraints,
optimization

Digital Object Identifier 10.4230/LIPIcs.CP.2024.14

1 Introduction

Facility location problems are widely studied in OR, AI, computational geometry and other
disciplines. In such problems we seek to locate a set of facilities in an area, where clients may
be present, so that some criterion is optimized. The optimization criterion largely depends
on the type of facilities to be located. When the facilities have beneficial properties (e.g.
pharmacies), we want to locate them close to clients. In contrast, when the facilities are
(ob)noxious, i.e. they have hazardous effects (e.g. dump sites), we seek to locate them far
from clients and/or each other. In between, we have the class of semi-obnoxious facilities
that have both desirable and undesirable properties. For instance, we may wish to locate gas
stations close to clients for their convenience, but not too close because of the pollution and
potential danger they are associated with.

© Panteleimon Iosif, Nikolaos Ploskas, Kostas Stergiou, and Dimosthenis C. Tsouros;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 14; pp. 14:1–14:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.iosif@uowm.gr
https://orcid.org/0009-0001-4589-3346
mailto:nploskas@uowm.gr
https://orcid.org/0000-0001-5876-9945
mailto:kstergiou@uowm.gr
https://orcid.org/0000-0002-5702-9096
mailto:dimos.tsouros@kuleuven.be
https://orcid.org/0000-0002-3040-0959
https://doi.org/10.4230/LIPIcs.CP.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 A CP/LS Heuristic for Location Problems with Distance Constraints

The p-center and the p-dispersion problems have been widely studied when modeling
beneficial and obnoxious scenarios, respectively [29, 38, 34]. In the former we seek to locate
p facilities in an area where clients are present, so that the maximum distance between any
client and its closest facility is minimized. In the latter we seek to locate p (ob)noxious
facilities, so that the minimum distance between any two facilities is maximized. Hence, in
p-center we have a minmax objective, whereas in p-dispersion we have a maxmin objective.
The relationship between these two problems has been identified as early as 1977 [45].

In practice, p-center problems occur when the close proximity of facilities to clients is
desirable, and in addition, we seek a fair location, in the sense that no client is too far from
the facilities. On the other hand, p-dispersion problems occur whenever a close proximity of
facilities is dangerous or for other reasons undesirable [34, 20, 37].

Recently, a variant of p-dispersion that includes distance constraints between facilities
was studied from a CP and ILP perspective [41]. Distance constraints in location problems
were first studied by Moon and Chaudhry [38] and can stem from operational needs and
regulations, such as clearance distances for safe chemical storage [1], separation distances
between packages containing radioactive materials [49] or portable fire extinguishers [50].
Also, by placing distance constraints between facilities and/or between facilities and clients,
we can model the requirements that arise when trying to locate semi-obnoxious facilities [33].

Ploskas et al. [41] described a search method that uses a heuristic to prune branches,
based on a estimation of the cost at each node. If the estimated bound, provided by a greedy
assignment of the unassigned variables, is not higher than the cost of the incumbent solution
then a fail is forced and the sub-tree below the current node is pruned. A solver that uses
this method is naturally incomplete, but the solver of [41] was shown to be much faster than
standard CP and ILP solvers. However, it was able to discover the optimal solution in only
2 out of the 82 MDPLIB benchmark instances for which the optimal solution is known, and
was quite far from the optimal in many cases. This is because the greedy heuristic may often
underestimate the cost, resulting in exceedingly high branch pruning, and the omission of
the optimal and close-to-optimal solutions.

We extend the work of [41] in two directions, regarding effectiveness and applicability.
We first enhance the heuristic used to prune the search space through the use of local search
(LS). Specifically, at each node we compute the greedy assignment and use it as the initial
solution to the relaxed problem obtained by not considering the distance constraints. Then
we try to improve this assignment through the application of a variant of the best pairwise
interchange heuristic for p-dispersion (a LS method) [22]. This results in better estimations
of the bound, allowing for the discovery of 40 optimal and many near-optimal solutions, and
resulting in better solutions being discovered in almost all instances for which the optimal
is not known. We also add a second local search component that tries to improve any new
solution being discovered by searching in the neighborhood of feasible solutions.

Secondly, we demonstrate that the entire concept of building an incomplete CP solver
around a heuristic that estimates the cost at each node and accordingly prunes the search
space, is also applicable in other location problems with distance constraints, using the
p-center problem as a demonstration. As baseline methods, we introduce ILP and CP models
for this problem and implement them in Gurobi and CP-SAT OR-Tools, respectively. We
use similar reasoning to the p-dispersion problem to build a CP solver that uses a simple
model of the problem and applies a local search method to estimate the bound at each node,
and thereby prune branches, making the solver incomplete.

We experimented with p-center problems with distance constraints of two types. In the
first one the locations of the clients and the potential facility sites are randomly placed in a
grid, while in the second we use p-median benchmark instances [3] as basis. Problems of the

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:3

first type, that typically have few solutions, can be very hard for Gurobi, as it often does
not discover any solution within 1 hour of cpu time, but mostly manageable by OR-Tools,
except for the larger ones. In contrast, OR-Tools fares badly on problems of the second type,
that typically have many solutions, while Gurobi finds most of these problems quite easy.
But both face difficulties in handling very large problems because of the size of their models.

The incomplete CP solver’s performance is much more robust. It is outperformed by
OR-Tools, in terms of solution quality, in small/medium size grid-structured problems, but
is much more efficient than Gurobi. It also discovers solutions in all instances, even the
larger ones that are out of reach for the complete solvers. On the other hand, the solver
outperforms OR-Tools in p-median based problems, finding many optimal or near-optimal
solutions much faster. It can also be quite faster than Gurobi in some cases, especially when
the number of facilities is small, but cannot compete in instances where we try to locate a
large number of facilities in relatively few facility sites.

In the following we first review related work and define the two problems, focusing on the
p-center variant which has not been considered before, in terms of solution methods. Hence,
we propose ILP and CP models for this problem. Then we describe the use of local search to
boost the effectiveness of a CP solver. Finally, we present experimental results.

2 Related Work

The p-center problem, which is NP-hard in the general case, was originally proposed
by Hakimi, along with the related p-median problem [29, 30]. Since then, various ILP
formulations for the p-center problem have been proposed [13, 18, 6]. A review of exact and
heuristic methods for the p-center problem is given in [6]. The p-dispersion problem, which
is also NP-hard on general networks for an arbitrary p [25], was originally mentioned by
Shier [45]. However, the term p-dispersion first appeared in the analysis of location problems
with distance constraints by Moon and Chaudhry [38]. The first ILP solution was proposed
by Kuby [34] while a specialized algorithm and alternative ILP models followed [19, 44, 43].

Regarding distance constraints, Moon and Chaudhry were the first to systematically
study them [38]. Both p-dispersion and p-center with distance constraints were mentioned as
problems that can arise in real-life scenarios, but no approaches towards solving them were
proposed. Recently, Dai et al. revisited the former as part of a study on circle dispersion in
non-convex polygons [12]. Distance constraints have also been considered in the context of
other location problems [9, 10, 32, 47, 8, 39, 11, 48]. For instance, Tansel et al. studied the
distance constrained p-center problem for the case where the network is a tree [47], whereas
Comley studied the problem of locating a small number of semi-obnoxious facilities that
interact with each other as well as with other existing facilities [11]. More recently, Berman
and Huang studied the problem of locating obnoxious facilities so as to minimize the total
demand covered, so that no two facilities are closer than a pre-specified distance [4]. Drezner
et al. studied obnoxious facility location problems with restrictions on the distance between
facilities and demand points [16, 17].

There are very few CP-related methods for facility location problems [23, 7, 46, 41]. As
mentioned above, we build on the work of [41] which is concerned with the p-dispersion
problem. There are CP works outside facility location that are relevant to ours, as they too
sacrifice the completeness of a CP solver to solve optimization problems faster [31, 36, 26].
However, these works typically do this through different ways, e.g. by adding extra constraints
that may disallow solutions but cut off large portions of the search tree.

CP 2024

14:4 A CP/LS Heuristic for Location Problems with Distance Constraints

The greedy heuristic for p-dispersion (resp. p-center) solves the 2-dispersion problem first
(resp. the 1-center problem) and then places the remaining facilities one by one, choosing the
location point for the currently considered facility f that maximizes the minimum distance
in the set of already placed facilities plus f (resp. minimizes the maximum distance between
clients and their closest facility among the already located ones plus f) [35, 21]. The best
pairwise interchange heuristic for p-dispersion starts with a random location of the facilities,
then it finds the pair of facilities f1,f2 that are closest to each other, and then it finds the free
location point v that by allocating either f1 or f2 to v, the value of the objective function is
maximally improved. This is repeated until no further improvement is possible [22].

3 Problem Definition

We assume that p facilities in a set of facilities F are to be placed on p nodes of a weighted
network G. Hence, we deal with discrete/network location problems. Each facility site can
host at most one facility. In a p-center with distance constraints problem (pCD), a set CL of
demand points (clients) to be serviced by the facilities is located at certain (known) nodes of
G. In a p-dispersion with distance constraints problem (pDD), we are only interested in the
dispersion of the facilities. In the following, we will use the terms demand points and clients
interchangeably, and we will assume that the set of nodes in G where the clients are located
is known, and so is the set of nodes P where the facilities can potentially be located. The
weight wij of an edge denotes the symmetric service cost (typically the distance) between
nodes i and j. We assume that once the facilities have been located in a pCD, each client
will be serviced by its closest facility, and there are no capacity restrictions on the facilities.

Between each pair of facilities fi and fj there is a distance constraint dis(fi, fj) > dij

specifying that the distance dis(fi, fj) between the points where the facilities fi and fj are
located must be greater than dij , where dij is a constant. In a pCD there is also a distance
constraint dis(fi, ck) > dki between each facility fi and any client ck, specifying that the
distance dis(fi, ck) between the node where facility fi is located and node k where client ck

is located must be greater than dki, where dki is a constant.
A common assumption in the relevant literature is that the distance bound dij is the

same for all the constraints between facilities. This is reasonable when the facilities are
homogeneous, and therefore in essence indistinguishable, but it is not always realistic,
especially when the facilities have different properties, as for example in [1, 49]. In this paper
we deal with the heterogeneous case where the distance bound may vary from constraint to
constraint. However, we follow the homogeneity assumption with respect to clients, meaning
that for a specific facility fi, we assume that the minimum distance bound between its
location and the locations of the clients is the same for all clients.

The distance between two points i and j can be given by the Euclidean distance, e.g.
for the location of hazardous facilities, or by the shortest path in a street network, e.g. for
the location of franchises, or by any other suitable metric. The methods we propose do
not depend on any particular distance measure because, as is common in the literature, we
assume that the pairwise distances between all possible client and facility location points are
given in a 2-d distance matrix D. In the case of the pCD, we assume that the service cost
between a client and the location of a facility, which we try to minimize, is as natural given
by the length of the shortest path between the two nodes in the network. We assume that
the shortest paths between all pairs of nodes have been precomputed and their lengths are
stored in a 2-d matrix SP . However, if necessary, instead of precomputing the distances and
storing them in a distance matrix, they could be computed “on the fly”, under the condition

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:5

that this operation takes constant time. This holds for Euclidean or Manhattan distances
given the coordinates of the points, but it does not hold for the shortest path in a network.
To summarize, in a pDD we have:

P : the set of candidate facility locations.
F : the set of facilities to be located.
p: the number of facilities to be located.
D[i, j]: the distance between any two points.
dij : the lower bound in the distance between each pair of facilities (i, j).

Additionally, in a pCD we have:
CL: the set of demand nodes.
SP [i, j]: the shortest path (s.p.) distance between any two points i and j.
dki: the lower bound in the distance between each facility i ∈ F and all demand nodes.

The goal in a pCD (resp. pDD) is to locate each facility so that the maximum s.p. distance
between any client and its closest facility is minimized (resp. the minimum distance between
any two facilities is maximized), subject to the satisfaction of all the distance constraints.

4 ILP Model for the pCD

In this section, we present an ILP formulation for the pCD, based on a standard formulation
for p-center [18]. The model is extended to deal with heterogeneous facilities and to include
distance constraints. We make use of the following additional notation:

C = {(i, j, f1, f2)|i, j ∈ P, f1, f2 ∈ F, D[i, j] ≤ df1f2}: the set of quadruples (i, j, f1, f2)
s.t. facilities f1 and f2 cannot be placed in facility sites i and j, respectively, because i

and j are not in a safe distance between each other with respect to the allowed distance
between f1 and f2.
N = {(i, j)|i ∈ P, j ∈ F, ∃k ∈ CL, D[i, k] ≤ dkj}: the set of pairs (i, j) s.t. facility j

cannot be placed in facility site i because there exists a demand node k that is not in safe
distance from i with respect to the allowed distance between j and the demand nodes.
xij = 1 if a facility j ∈ F is located at a facility site i ∈ P and 0 otherwise.
yki = 1 if a demand node k ∈ CL is assigned to a facility site i ∈ P and 0 otherwise.

As we deal with heterogeneous facilities, we need |P | × |F | variables, i.e. one variable
xij , ∀(i, j), i ∈ P, j ∈ F , in order to know whether or not a specific facility j ∈ F is located
at a facility site i ∈ P , because facilities are not indistinguishable as in the standard case of
p-center. In addition, we need |CL| × |P | variables, i.e. yki, ∀(k, i), k ∈ CL, i ∈ P , in order
to know whether or not a demand node k ∈ CL is assigned to a facility site i ∈ P . Variables
yki, ∀(k, i), k ∈ CL, i ∈ P , are required in order to: (i) calculate the distance between each
demand node and the facility that serves it (in the objective function of the model), and
(ii) place restrictions on which facilities can serve each demand node based on the distance
constraints. Variable z is a continuous variable capturing the maximum s.p. distance between
clients and located facilities.

CP 2024

14:6 A CP/LS Heuristic for Location Problems with Distance Constraints

The mixed-integer linear programming model for the pCD problem can be expressed as:

min z (1)
s.t.

∑
i∈P

xij = 1 ∀j ∈ F (2)∑
i∈P

∑
j∈F

xij = p (3)∑
i∈P

yki = 1 ∀k ∈ CL (4)

yki ≤
∑

j∈F

xij ∀k ∈ CL, ∀i ∈ P (5)∑
i∈P

yki × SP [k, i] ≤ z ∀k ∈ CL (6)∑
j∈F

xij ≤ 1 ∀i ∈ P (7)

xif1 + xjf2 ≤ 1 ∀ (i, j, f1, f2) ∈ C (8)
xij = 0 ∀ (i, j) ∈ N (9)

xij ∈ {0, 1} ∀i ∈ P, ∀j ∈ F (10)
yki ∈ {0, 1} ∀k ∈ CL, ∀i ∈ P (11)

z ∈ R (12)

The objective function 1 aims at minimizing the maximum s.p. distance between the
clients and their nearest located facility. Constraint 2 guarantees that each facility should
be hosted at exactly one facility site, while Constraint 3 specifies that p facilities are to be
located. Although this constraint is subsumed by Constraint 2, our experiments showed
that there are cases where it results in important speed-ups. Hence, we include it in the
model. Constraint 4 ensures that each demand node will be served by one facility site, while
Constraint 5 guarantees that each demand node will be served by a facility site where a
facility has been located. It is a generalization of the Balinski constraint [2] to the case of
heterogeneous facilities. Constraint 6 ensures that the variable z will be greater than or
equal to all the s.p. distances between demand nodes and their nearest located facility.

Constraint 7 ensures that each facility site can host at most one facility. Constraint 8
models the distance constraints between facilities. It ensures that each facility is at a safe
distance from all other facilities by not allowing two facilities f1 and f2 to be established
at sites that are at a distance closer than the allowed distance between f1 and f2. Finally,
Constraint 9 is the distance constraint between facilities and demand nodes. This constraint
ensures that any located facility is at a safe distance from every demand node.

Two important decisions regarding the efficiency of the model are how to formulate
the requirement that each client will be served by an open facility site, and the modeling
of the distance constraints. Regarding the former, the requirement can be captured by a
generalization of the Efroymson & Ray constraint, using a Big M constant. This results in
fewer constraints compared to using the Balinski Constraint 5, but run times are clearly
worse, and therefore the Efroymson & Ray was rejected. Regarding the distance constraints,
we chose to follow and adapt the best model described in [4], where essentially the distance
constraints are modeled through a special case of clique constraints. Computational results
from [4], as well as our own preliminary experiments, showed that this model is better than
various other models proposed in the literature [38, 40].

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:7

5 CP Models for the pCD

The pCD is modeled as a Constraint Optimization Problem (X, Dom, CL, C, O), where X is
the set of decision variables, Dom is the set of finite domains, CL is the set of demand nodes,
C is the set of hard constraints, and O is the optimization function. The model is as follows:
1. For each facility i ∈ F there is a finite domain variable xi.These p variables are the

decision variables in the problem, meaning that |X| = |F | = p. The domain of each
variable xi ∈ X, denoted by Dom(xi), includes as values all the points where a facility
can be located, i.e. ∀xi ∈ X : Dom(xi) = P .

2. Y1 is a set of auxiliary variables, s.t. for each pair of variables (xi, xj) ∈ X ×X | i < j,
there is a variable y1ij ∈ Y1 and a constraint y1ij = D[xi, xj]. Hence, each y1ij ∈ Y1
models the distance between xi and xj . In CP solvers, this is implemented using the
Element global constraint, i.e. y1ij = Element(D, [xi, xj]).

3. Y2 is a set of auxiliary variables, s.t. for each pair of facilities and clients (xi, ck) ∈ X×CL,
there is a variable y2ik ∈ Y2 and a constraint y2ik = D[xi, ck]. Hence, each y2ik ∈ Y2
models the distance between xi and ck. In CP solvers, this is again implemented using
the Element constraint, i.e. y2ik = Element(D, [xi, ck]).

4. S is a set of auxiliary variables, s.t. for each pair of variables and clients (xi, ck) ∈ X×CL,
there is a variable sik ∈ S and a constraint sik = SP [xi, ck]. Hence, each sik ∈ S models
the service cost (i.e. s.p. distance) between xi and ck. Again, this is implemented using
the Element constraint, i.e. sik = Element(SP, [xi, ck]).

5. Z is a set of auxiliary variables, s.t. for each client ck ∈ CL, there is a variable zk ∈ Z

and a constraint zk = min(s1k, s2k, ..., spk). Hence, each zk ∈ Z models the shortest path
distance between each client and its nearest facility.

6. For each variable y1ij ∈ Y1, there is a distance constraint y1ij > dij .
7. For each variable y2ik ∈ Y2, there is a distance constraint y2ik > dki.
8. There is a variable z, s.t. z = max(Z), capturing the maximum shortest path distance

between a client and its closest facility.
9. The objective function is O = minimize(z).

The sik = SP [xi, ck] constraints link the auxiliary variables sik, and therefore also the z

variable and the objective function, with the decision variables. We also considered adding an
AllDifferent constraint over all variables in X. Such a constraint is redundant, as the distance
constraints already force the variables to take different values, and experiments with and
without it showed no noticeable difference. Also, to reduce the number of auxiliary variables,
the distance constraints between facilities can be captured using the Table constraint instead
of the Element constraint. Our experiments showed that this does not make a difference in
very large problems, where, as we will demonstrate, OR-Tools runs out of memory, but its
effect on smaller problems remains to be experimentally investigated in detail.

A reason for the failure of OR-Tools to solve large instances of the pCD (and the pDD)
is the size of the model it constructs, largely because of the very large domains (which are
not uncommon in location problems), along with the auxiliary variables. This is to an extent
due to the lazy clause generation mechanism of the solver, which creates a large amount of
literals to represent all the variable-value combinations. To bypass this, we propose to use a
much simpler model, dropping all the auxiliary variables and relevant constraints, resulting
in a model with only the p decision variables and the distance constraints. The optimization
function can now be handled procedurally within the solver by simply computing the cost of
any new solution found so as to determine if this cost is better than the cost of the incumbent
solution. If so, then the bound is tightened.

CP 2024

14:8 A CP/LS Heuristic for Location Problems with Distance Constraints

Dropping the auxiliary variables may result in a lighter model, but on the other hand we
lose propagation power. If there is no link between the decision variables and the objective
function, whether it is explicitly represented, as in the CP model above (items 8,9), or
procedurally handled, then any improvement in the cost of the incumbent solution will not
be propagated to the decision variables. To partially overcome this problem while keeping a
simple model, we apply the following inference techniques:

Assume that a solution A with better cost than all previously found ones has been located
and let CA denote its cost. We find the clients that determine the value of CA (i.e. clients
with distance CA from their closest facility). For each one of them, we check if there
exists a candidate facility point at a smaller distance than CA. If there is no such point
for some client, then there is no possible way for a facility to be located at a facility point
that is closer to this specific client than the value of CA. Hence, the value of the objective
function cannot be further improved, and therefore we terminate search.
After a variable has been assigned and the distance constraints have been propagated, we
check for each client if there exists a value (i.e. available facility point) in any domain of
a variable that is located at a distance smaller than the value of CA, from this specific
client. If no such value exists in any domain, then we know that in any feasible solution
existing in the sub-tree below the current assignment, at least one client will be assigned
to a facility located at an equal or greater distance than CA. Hence, the cost cannot be
improved, and therefore we prune the current branch and continue searching.

Both these techniques are subsumed by propagation in a CP solver that uses the full
model of the problem described above. But in the simple model they (partially) compensate
for the absence of a link between the optimization function and the decision variables.

6 Enhancing a Heuristic CP-Based Method Through LS

Ploskas et al. proposed a heuristic technique for the pDD that tries to prune early the parts
of the search tree for which it seems unlikely that their exploration will improve the value of
the optimization function. Specifically, the cost of the first feasible solution found is used as
the initial lower bound. Thereafter, at each node, after the currently tried assignment xi = a

has been propagated, an upper bound for the best possible solution is computed, giving an
estimation of the best possible cost that can be achieved if the sub-tree rooted at the specific
node is explored. If this is not higher than the current lower bound then the current branch
of the search tree is abandoned and the search moves on. Each time a solution with a higher
cost than the current lower bound is found, the lower bound is updated.

At each node, the bound is computed by applying the greedy heuristic for p-dispersion
on the relaxed problem obtained by not considering the distance constraints. Assuming that
xi is the current variable, x1 ← v1, . . . , xi−1 ← vi−1 is the assignment to past variables and
vi is the value under consideration for xi, the heuristic greedily computes the cost of the
“best” assignment for the future variables xi+1, . . . , xp [41]. That is, it visits these variables
one by one, starting with xi+1, and for each variable xj , i + 1 ≤ j ≤ p, and each value
vj ∈ Dom(xj), it finds the minimum distance between vj and any assignment (location)
among variables (facilities) x1, . . . , xj−1. The value that maximizes this distance is then
(temporarily) assigned to xj . This is repeated until all variables have been assigned.

This heuristic pruning method was embedded in a custom CP solver (thus making the
solver incomplete), which was compared to the complete ILP and CP-SAT solvers Gurobi
and OR-Tools. Results demonstrated that it can discover much better solutions in large
instances that are very hard for the complete solvers. However, the custom solver was able

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:9

to discover the optimal solution in only 2 out of the 82 MDPLIB instances of smaller size
that are solvable to optimality by the complete solvers. Also, in many cases the cost of the
best solution it discovered was quite far from the optimal.

The reason for this is that the greedy heuristic often underestimates the true cost that
can be obtained. This leads to faster exploration of the search space, as many branches are
pruned, but it also very often results in the omission of optimal/near-optimal solutions. We
now describe one way to improve the effectiveness of a solver that follows this reasoning
using local search to obtain more accurate bounds when estimating the cost at each node.

6.1 pDD
We propose to invoke LS before the decision is taken to cut off the branch, when the greedy
heuristic dictates to do so. We use the assignment obtained by the greedy heuristic as the
initial solution to the relaxed problem that omits the distance constraints, and then try to
improve it with local moves until either it cannot be improved any more (a local maximum)
or its cost becomes higher than that of the incumbent solution. In the former case we cut off
the current branch, while in the latter we accept it and continue its exploration.

We use a variant of the best pairwise interchange heuristic for p-dispersion. Our method
takes as input the complete assignment A =< x1 ← v1, . . . , xi ← vi, xi+1 ← vi+1, . . . , xp ←
vp >, where xi+1 ← vi+1, . . . , xp ← vp is the temporary assignment to future variables, the
cost CA of this assignment and the cost of the incumbent solution CI . It then finds the pairs
of facilities (xl, xk) that are closest to each other, and therefore have distance equal to CA

(there can be many such pairs, which we call “culprit”), it forms the set of variables Xc

involved in such pairs, and for each variable in Xc, it tries to find an alternative location so
as to improve the value of CA as much as possible. Note that for any “culprit” pair, both
variables will necessarily be among xi+1, . . . , xp (the future ones), and therefore we can freely
change their values in the assignment. This stems from the propagation of the updated
bound any time a solution that improves the current bound is discovered. CP solvers do
this by adding a constraint forcing subsequent solutions to be better than the current one,
while the method of [41], that we follow, does it in a slightly different way by integrating the
bound’s propagation in the solver’s arc consistency propagation mechanism.

If at some point, CA becomes higher than CI then the method terminates, signaling
that the current branch must not be cut off. If this does not happen then the method stops
when a local maximum is reached, e.g. when there is no alternative location for any variable
in Xc that can increase the value of CA. Algorithm 1 depicts this process, which, as our
experiments showed, is more effective than the best pairwise interchange heuristic which it
modifies, especially when a variable is involved in more than one “culprit” pair.

A[xj] denotes the value that variable xj takes in the assignment A. Function
Compute_Cost takes a complete assignment of the variables and returns its cost. The
identification of the pairs of facilities that are closest to each other takes place each time a
local move is made because any improvement to the cost means that other pairs are now the
“culprit” ones.

Naturally, more sophisticated LS methods or meta-heuristics might be able to obtain
better bounds. Indeed, we tried several options, including a GRASP meta-heuristic. The LS
method of Algorithm 1 was chosen because it achieves a good balance in terms of quality and
cpu time. For instance, the GRASP procedure rarely offered overall quality improvements to
compensate for the higher run times (and implementation complexity).

Finally, we also use LS to tighten the bound obtained each time a solution that improves
the incumbent is discovered. Specifically, once a new incumbent solution A =< x1 ←
v1, . . . , xp ← vp > with cost CI is discovered, we evaluate the alternative assignments of all

CP 2024

14:10 A CP/LS Heuristic for Location Problems with Distance Constraints

Algorithm 1 LS(X, Dom, C, A, CA, CI) for the pDD.

repeat until no change in value of CA

Xc ← {xl, xk ∈ X|D[A[xl], A[xk]] = CA};
Ctemp ← CA;
for each xj ∈ Xc

for each vj ∈ Dom(xj)|vj ̸= A[xj]
A[xj] ← vj ;
temp-cost ← Compute_Cost(X, Dom, C, A);
if temp-cost > Ctemp

Ctemp ← temp-cost;
mark A[xj] = vj as best move;

restore A[xj];
if Ctemp > CA

CA ← Ctemp;
if CA > CI return true;
make best move;

return false;

variables involved in “culprit” pairs. If an assignment that improves CI (say xi ← vk) is
found, and by changing the value of xi to vk in A, we get a feasible solution (i.e. the distance
constraints are satisfied) then CI is tightened and the process is repeated until no local move
that results in a feasible solution can improve CI . Thereafter, the solver continues search as
usual, but with a (hopefully) tightened bound. Using LS to improve the solutions found by a
CP solver in optimization problems is a standard way of integrating CP and LS [24].

6.2 pCD

The heuristic we have developed for the pCD works in a similar way. The cost of the first
feasible solution found is now used as the initial upper bound, as we have a minimization
problem. The initial estimation at each node is again performed by solving the relaxed
problem without the distance constraints in a greedy fashion. That is, for each variable xj ,
i + 1 ≤ j ≤ p, and each value vj ∈ Dom(xj), we compute the maximum distance between
any client and its closest facility among x1, . . . , xj that we would get if vj was assigned to xj .
The value that minimizes this distance is then temporarily assigned to xj . After all future
variables have been assigned in this way, the resulting assignment A is given to a local search
method that tries to improve it. The only difference between this method and the one of
Algorithm 1, is that in the case of the pCD there are no “culprit” pairs of variables. Hence,
the second line in Algorithm 1 is omitted and all variables are considered when looking for
the best local move. Let us explain this.

In a pCD the cost CA of any complete assignment A is due to the one or more clients
that are at distance CA from their closest facility. But any relocation of a facility xi may
potentially result in an improvement of the cost (a decrease in the value of CA), as xi may
move closer to these clients, meaning that they could perhaps now be serviced by xi. In
contrast, in the pDD, if none of the variables in a culprit pair is relocated, the cost will never
improve (but could worsen), regardless of the relocation of other facilities.

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:11

7 Experiments

We experimented with instances generated in two different ways. The first uses a benchmark
library as basis to create pCDs or pDDs. For the former, we use the p-median benchmark
dataset [3], while for the latter we use the p-dispersion benchmark library MDPLIB 2.0 [37],
as in [41]. In the second generation method we seek to locate a number of facilities in a grid.

Computations were performed on an Intel i7 CPU 8700 with 16 GB of main memory,
a clock of 3.2 GHz, an L1 cache of 348 KB, an L2 cache of 2 MB, and an L3 cache of 12
MB, running under CentOS 8.4. We set a time limit of 3,600 seconds for all the experiments
reported below. The ILP model was solved using Gurobi 9.0.3 [28]. The CP model was
written in the CPMpy modeling tool [27] and compiled into CP-SAT OR-Tools [15]. The
heuristic CP approach, for both pDDs and pCDs, was implemented in a custom solver written
in C. This solver, which is basically a MAC search algorithm [42], implements the simple CP
model of Section 5, uses dom/wdeg for variable ordering [5], lexicographic value ordering,
arc consistency for the propagation of distance constraints and implements the two inference
techniques of Section 5. We also ran experiments with an 8-thread version of OR-Tools,
which uses techniques such as large neighborhood search in parallel with the main search,
as well as the CP solver Choco [14]. The ILP model is stored in compressed sparse column
format, as the constraint matrix can sometimes be too large to be stored as a full array.

7.1 Problem Generation Models
The MDPLIB collects a large number of p-dispersion instances divided into various classes [37].
In the GKD, MDG, and SOM classes, the distances between the potential facility locations
are given by Euclidean distances, random real numbers, and random integers, respectively.
The instances we tried have 100-1000 potential facility points and 10-30 facilities.

We generated pCDs in two different ways. The grid generation model creates problems
embedded in a n × n grid. It takes the following parameters: n, p, |CL|, |P |. We first
randomly select |CL| + |P | among the n×n nodes. |CL| of these nodes are randomly selected
to place the clients and the remaining nodes are the potential facility locations. We assume
that the weight of each edge in the grid is equal to 1. Therefore, given that we have a grid, the
distance of the shortest path between any two points can be at best equal to the Manhattan
distance between them. For each distance constraint dis(xi, xj) > dij between facilities
xi and xj , dij is randomly set to an integer number in the interval [0, max_euc/2], where
max_euc is the maximum Euclidean distance between two points on the grid. Accordingly,
for the constraints specifying the distances between facilities and clients, a random integer is
set in the (experimentally selected) interval [0, 3], in order to minimize infeasibilities.

The p-median based generator takes instances from the p-median benchmark dataset [3],
consisting of problems with 100–900 nodes and 5 to 200 facilities. We randomly select |P |
nodes to be candidate facilities, while the remaining nodes are clients. We have considered
two cases: 1) 80% of the nodes are candidate facility sites and the remaining 20% are clients.
If the resulting number of candidate sites is less than or equal to p, then we progressively
increase the number of candidate sites until |P | > p and the generated instances are feasible.
2) 20% of the nodes are candidate facility sites and the remaining 80% are clients. Similarly
to the previous case, we progressively increase the number of candidate sites until |P | > p

and the generated instances are feasible. To set the parameter dij , we find the minimum and
maximum distance between all pairs of candidate sites and we set dij equal to a random
number in the range [min, min +(max−min)/10]. Similarly for parameter dki.

For each generation model and each setting of the parameters, 10 instances were generated.

CP 2024

14:12 A CP/LS Heuristic for Location Problems with Distance Constraints

7.2 Experiments with the pDD
In Table 1 we compare the LS-enhanced CP-based method, denoted CPLS , to that of [41],
denoted CPG, using the same instances (https://github.com/ploskasnikos/pdispersion), and
adding some larger ones that are very hard for the complete solvers. For each class we give
the number of the MDPLIB instance on which it is based, and in brackets the numbers of
potential location sites and facilities. For each solver configuration we report the total cpu
time taken over the 10 instances (

∑
cpu columns), the number of times when the optimal

solution was found (#opt columns), and the mean value of the best solution found within
the time limit. In the #opt column for CPG we give in brackets the number of instances for
which the optimal is known. We also give the number of instances in each class where CPLS

found a better solution compared to CPG (#imp columns). In brackets we give the number
of instances where CPLS found a worse solution. As baseline, in the last column, for each
class we give the mean value of the best solution found by the complete solver that displayed
the best performance in the particular class. This is left blank (-) if no complete solver was
able to find at least one solution in all instances of a class.

Table 1 Comparing CPLS to CPG on MDPLIB-generated pDDs.

Class CPG CPLS Baseline
(p,|P |)

∑
cpu #opt cost

∑
cpu #opt #imp cost cost

MDG
a1 (100,10) 1 0 (10) 4.35 1 10 10 (0) 4.68 4.68
a1 (100,20) 94 0 (0) 1.69 170 0 8 (2) 1.79 1.17
a1 (500,10) 51 0 (0) 5.88 56 0 10 (0) 6.11 6.02
a1 (500,20) 132 0 (0) 2.91 188 0 9 (1) 2.96 1.57
a2 (100,10) 1 0 (10) 4.24 1 10 10 (0) 4.74 4.74
a2 (100,20) 156 0 (0) 1.64 166 0 7 (2) 1.71 1.4
a2 (500,10) 54 0(0) 5.94 66 0 10 (0) 6.22 5.92
b1 (100,10) 1 0 (10) 428.18 1 0 10 (0) 455.94 460.11
b1 (100,20) 63 0 (0) 181.2 133 0 8 (1) 200.49 109.35
b1 (500,10) 45 0 (0) 576.45 53 0 10 (0) 591.56 584.33
b1 (500,20) 107 0 (0) 290.64 128 0 9 (0) 302.75 -
b2 (100,10) 1 0 (9) 428.17 1 9 10 (0) 459.99 459.99
b2 (100,20) 109 0 (0) 159.93 140 0 8 (2) 170.40 113.33
b2 (500,10) 51 0 (0) 574.55 55 0 10 (0) 608.61 581.31

GKD
d1 (100,10) 2 1 (10) 33.42 2 0 9 (1) 33.85 34.06
d1 (250,10) 11 0 (7) 34.25 21 3 10 (0) 36.06 35.98
d1 (250,20) >19,837 0 (0) 18.83 >24,663 0 8 (1) 19.24 10.55
d1 (500,10) 108 0 (0) 36.01 99 0 10 (0) 38.21 36.96
d1 (1000, 20) >36,000 0 (0) 16.99 >36,000 0 6 (1) 17.95 -
d2 (100,10) 2 1 (10) 31.29 3 8 10 (0) 34.22 34.82
d2 (250,10) 10 0 (5) 35.06 22 0 10 (0) 37.1 36.31
d2 (250,20) >24,865 0 (0) 14.93 >24,998 0 5 (0) 15.39 -
d2 (1000, 10) 846 0 (0) 36.47 1,830 0 10 (0) 39.25 32.72

SOM-GRID
b5 (200, 20) 11 0 (0) 2 13 0 0 (0) 2 2
g7 (80, 30) 36 10 (10) 2 51 10 0 (0) 2 1.9

We can make the following observations. CPLS finds better solutions than CPG in the vast
majority of instances, discovering the optimal solution in 40 MDPLIB instances, compared to
only 2 for CPG. This gives an improvement in the mean cost in all classes of the MDG and

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:13

GKD categories, often by large margins. As a result, CPLS finds optimal solutions or near-
optimal ones in all of the smaller classes that are within reach of the complete solvers, while
improving the bounds in larger classes for which the optimal is unknown (e.g. in b1(100,20)
where the value is now almost twice that obtained by the complete solvers). Importantly, the
cpu time overheads of CPLS compared to CPG are not very significant, keeping in mind that
the

∑
cpu columns give total run times over 10 instances until termination or cut-off and

that both solver configurations are orders of magnitude faster than the complete solvers [41].
CPLS usually reaches the best solution found by CPG in similar or faster run times, but
often takes longer to terminate because it further improves this solution.

For CPLS , we counted the number of times that the greedy heuristic made an estimation
lower than the current bound, meaning that LS was then called, and the number of times that
LS managed to increase the estimation to a value greater than the current bound, meaning
that the current branch was not cut off. It turns out that in around 4% to 14% of the calls
to LS, on average, the current branch was not cut off (details in the Appendix). Despite
these relatively low percentages, CPLS obtains significant improvements in solution quality.

Results from the SOM MDPLIB class and from grid-structured problems are also given
in [41]. These categories were both very easy in terms of run times for CPG and CPLS . In
these cases, CPLS found the same solutions as CPG because either CPG already discovered
the (known) optimal solutions in the smaller classes, or the solutions discovered had very
little room for improvement (objective values in the range 1 . . . 5). Hence, we only give
indicative results from the hardest class from each category. In the b5 SOM class, CPLS and
CPG display similar performance and probably both discover the optimal in all instances
(Gurobi also finds solutions with cost 2, but was unable to prove optimality within the time
limit). In the g7 grid class, both CPLS and CPG discover the known optimal solutions in all
instances.

Finally, in some rare cases CPG can locate slightly better solutions than CPLS . To put
it simply, this is because both methods are heuristic. In more detail, a possible scenario
is the following: Suppose that the first solution A located has objective value CA. As the
search continues, assume that LS improves the heuristic’s estimation at some node and does
not cut the current branch (as CPG would do), leading to a better solution B being later
located, with value CB < CA. The discovery of solution B may lead to more branches being
then cut off, potentially including a branch that leads to a solution C with value CC < CB .
Hence, CPLS will not discover this solution. On the other hand, it is possible that CPG

locates solution C, because using the upper bound of CA > CB to prune, may lead to weaker
pruning, allowing for the branch that leads to solution C to be explored.

7.3 Experiments with the pCD
Table 2 details the classes generated for pCDs using the two generation models. For the
p-median based ones, we give the name of the p-median benchmark used as basis. Each such
class is defined by the parameters < |V |, p, |P |, |CL| >. For example, class <400,5,80,320>

includes problems with 400 points, 5 facilities, 80 potential locations and 320 clients. The
2nd column gives classes where the number of clients is larger or equal to the number of
candidate sites, while the 3rd gives classes where there are more candidate sites than clients.
Each grid based class is defined by the parameters < n, p, |P |, |CL| >. For example, in class
<10,20,80,20> we have a 10×10 grid, 20 facilities, 80 potential locations and 20 clients.

We have experimented with five solvers: Gurobi, OR-Tools, 8-threads OR-Tools, Choco,
our custom CP solver. These are all complete solvers. We also experimented with three
configurations of our solver that incorporate the pruning heuristic, making the solver incom-

CP 2024

14:14 A CP/LS Heuristic for Location Problems with Distance Constraints

Table 2 Problem classes and their characteristics.

p-median based |CL| ≥ |F P | |F P | > |CL| grid based
pmed5 <100,33,40,60> <100,33,80,20> g1 <10,20,80,20>

pmed10 <200,67,100,100> <200,67,160,40> g2 <20,10,350,50>

pmed15 <300,100,150,150> <300,100,240,60> g3 <20,20,350,50>

pmed21 <500,5,100,400> <500,5,400,100> g4 <20,25,350,50>

pmed26 <600,5,120,480> <600,5,480,120> g5 <30,20,300,50>

pmed31 <700,5,140,560> <700,5,560,140> g6 <30,10,500,100>

pmed36 <800,10,400,400> <800,10,640,160> g7 <30,20,500,100>

pmed38 <900,5,450,450> <900,5,720,180> g8 <30,20,700,200>

g9 <50,100,1300,200>

plete. The first (CPG), only uses a greedy heuristic to estimate the cost at each node (as
in [41] for the pDD), the second one uses LS to perform the estimation, and the third one
(CPLS), adds the LS component that tries to improve any solution found. Choco displayed
inferior performance compared to OR-Tools and therefore was not included in extensive
experiments, while the 8-thread version of OR-Tools did not demonstrate any significant
benefits compared to the single thread one. The basic complete version of our solver (i.e.
without the heuristic) was not competitive, despite using a simple model of the problem.
Indicative results of this solver and 8-threads OR-Tools are given in the Appendix.

Among the configurations of our solver that use the bound estimation heuristic, CPLS

displayed the best results. CPLS finds the optimal in 85 out of the 187 instances for which
the optimal is known, as opposed to 68 for CPG, and improves the cost found by CPG (resp.
worsens it) in 47 (resp. 4). Regarding run times, as in the pDD, CPLS usually reaches the
best solution found by CPG in similar or faster run times, but may take longer to terminate
because it further improves this solution. It achieves similar run times in classes where CPLS

rarely improves the cost, while it can take up to twice the time to terminate in classes where
it often improves the cost. The second LS component makes a slight contribution towards
the solver’s performance. When turned off (i.e. LS only used for branch pruning) then there
is an improvement in 43 instances (82 optimal) compared to CPG.

Interestingly, in only around 0.3% to 3% of the calls to LS, the current branch was not
cut off. Despite these very low percentages, CPLS still managed to find better solutions than
CPG in many instances. It is not surprising that the corresponding percentages are higher
in pDDs, as intuitively it is more likely to improve the bound’s estimation by changing the
location of a facility through a local move in a pDD rather than in a pCD, where a local
move must place a facility fi close to all the clients that are at maximum distance from their
closest facility, so that they are now served by fi.

In Table 3, we compare CPLS to Gurobi and OR-Tools. We report the total cpu times,
the mean cost of the best solution found, and the number of instances where any solver was
cut off (in brackets after

∑
cpu). If a solver did not terminate, we count 3, 600 secs towards

its cpu time sum and record the best solution it was able to find. Column tb gives the mean
cpu time taken by CPLS to find its best solution. Columns tm give the mean cpu time taken
by Gurobi and OR-Tools to find the first solution that matches (or improves) the cost of
the best solution found by CPLS . If CPLS was unable to find any solution within the time
limit in some instances then tb is left blank (-). Accordingly, if Gurobi or OR-Tools did
not manage to match the solution found by CPLS in some instances, tm is left blank. The
last column gives the number of instances where CPLS found the optimal solution. In some
classes, OR-Tools (and Gurobi in one class) suffered memory exhaustion and crashed in all
instances without discovering any solutions. This is denoted with MEM in the

∑
cpu column.

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:15

Table 3 Comparing solvers on pCD problems.

Gur
∑

cpu tm cost ORt
∑

cpu tm cost CPLS

∑
cpu tb cost #opt

|CL| ≥ |F P |
pmed5 2 (0) 0 100.5 1,668 (0) 164 100.5 >7,306 (2) - - 5
pmed10 44 (0) 4 63.4 1,963 (0) 196 63.4 4 (0) 0.2 63.4 10
pmed15 123 (0) 12 49.7 19,753 (0) 1,974 49.7 384 (0) 1.3 50.1 9
pmed21 201 (0) 11 45.8 212 (0) 18 45.8 6 (0) 0.3 46.5 6
pmed26 206 (0) 13 43.2 224 (0) 16 43.2 9 (0) 0.3 44 4
pmed31 985 (0) 67 34.7 254 (0) 19 34.7 17 (0) 0.7 35.6 3
pmed36 1,160 (0) 19 35.9 >18,468 (3) 951 35.9 478 (0) 19 37 4
pmed38 146 (0) 14 37.2 3,522 (0) 352 37.2 52 (0) 3 37.3 9

|F P | > |CL|
pmed5 5 (0) 0 47 249(0) 25 47 407 (0) 40 47 10
pmed10 64 (0) 6 25.3 10,775 (0) 1,076 25.3 343 (0) 2 26.3 7
pmed15 219 (0) 21 21.6 MEM - - 7,544 (0) 36 22.3 7
pmed21 252 (0) 9 27.6 >19,747 (1) 225 27.6 101 (0) 5 28.6 2
pmed26 537 (0) 27 24.7 14,901 (0) 460 24.7 113 (0) 5 25.6 2
pmed31 2,535 (0) 48 21.8 >33,041 (5) 912 21.8 227 (0) 8 22.8 0
pmed36 >5,817 (1) 110 19 MEM - - 1,697 (0) 110 20.7 0
pmed38 4,345 (0) 69 20.2 >33,218 (6) 2,454 20.2 184 (0) 8 20.9 3

GRID

g1 4,103 (0) 381 2.1 443 (0) 14 2.1 2 (0) 0.1 2.8 3
g2 5,191 (0) 73 4.1 7,737 (0) 16 4.1 26 (0) 0.1 6.1 0
g3 >36,000 (10) - - >36,000 (10) 159 4.2 205 (0) 14 5.3 0
g4 >36,000 (10) - - >33,302 (9) - - 9,300 (0) 922 5.4 1
g5 >36,000 (10) - - >36,000 (10) 818 6.9 3,317 (0) 320 8.4 0
g6 >23,021 (4) 852 7.6 >34,641 (9) 30 7.4 99 (0) 0.5 9.9 0
g7 >36,000 (10) - - >36,000 (10) - - 1,264 (0) 100 8.4 0
g8 >36,000 (10) - - >36,000 (10) - - 275 (0) 10 9 0
g9 MEM - - MEM - - >36,000 (10) 814 13.7 0

Gurobi outperforms OR-Tools, in run times, in all classes of the p-median based problems,
and in fact finds these problems quite easy, terminating within the time limit in all but one
instance. CPLS is able to find many optimal or near-optimal solutions, and it does this
very fast in most classes. As the tb and tm columns indicate, it can take OR-Tools orders of
magnitude longer runs to match the solutions found by CPLS (e.g. pmed15 and pmed38).
Compared to Gurobi, CPLS is generally able to find good solutions faster, especially in
classes with few facilities (e.g. pmed31), but cannot compete in classes that include many
facilities and relatively few facility points. In terms of optimal solutions found, CPLS is
quite successful in classes with more clients than facility points, as it finds at least 5 optimal
solutions in 5 classes, while it locates all of them in the pmed10 class. The performance is
not as good in the |FP | > |CL| category, as there are classes where no optimal solution is
found. This is not surprising, considering that in such classes, domain sizes are larger.

Regarding grid based problems, the results differ significantly. OR-Tools now performs
better than Gurobi, as the latter finds 6 out of the 9 classes very hard and did not manage to
find any solution in any instance of these classes. OR-Tools also finds some of these classes
very hard, but managed to discover solutions in at least one instance from every class, but
not in all instances (hence the blank tm and cost columns). CPLS is much more robust,
being able to find solutions in all instances of all classes, and doing this very fast in some
classes (including hard ones, such as g8).

CP 2024

14:16 A CP/LS Heuristic for Location Problems with Distance Constraints

Regarding solution quality, in classes where one or both of the complete solvers solved
all instances, the cost of the solutions discovered by CPLS is worse than that discovered by
OR-Tools (and in some cases Gurobi). Also, CPLS managed to find only 4 of the known
optimal solutions. On the other hand, CPLS obtained solutions in all instances, even the
very large ones with 1,300 facility points. This ability to handle the very large instances is
due to both the simpler model of the problem and the pruning heuristic. The simpler model
means that propagation is not very costly, and therefore an initial solution is sooner or later
located. Thereafter, the heuristic takes over and prunes many branches, allowing for the
solution to be quickly improved.

On the other hand, the propagation performed by OR-Tools is costly, because of the
many auxiliary variables and relevant constraints, meaning that for very large grid problems,
which typically have few solutions, it is either unable to reach a solution within the time limit,
even if the memory requirements are manageable, or takes very long to improve the ones
found. Of course, OR-Tools could also use the simpler model, but in this case the pruning
heuristic should be written into the solver as a specialized constraint to make it competitive.

Regarding Gurobi, a factor that seems to affects its performance is the ratio of candidate
facility sites to facilities. If this is small then Gurobi quickly locates the optimal solution
and proves optimality. In contrast, when it is large then Gurobi finds the problems harder.
On the other hand, the performance of CPLS , and OR-Tools to a large extent, is dependant
on the number of facilities/variables which mainly determines the size of the search space
these solvers explore.

Another important factor that affects the performance of the solvers is the number of
solutions. Gurobi seems to benefit from the presence of many solutions in an instance, while
this does not hold for CPLS and OR-Tools. In contrast, Gurobi finds it hard to deal with
problems that only have a few solutions, whereas the CP solvers handle such problems more
efficiently. Let us note that p-median generated instances typically have a very large number
of solutions. For example, a simple enumeration of the feasible solutions, using a complete
CP solver without the objective function, counted 13,343,409 solutions in 10 minutes of cpu
time on average for the 10 instances of pmed38 with |CL| ≥ |FP |. The enumeration was
stopped after 10 minutes, meaning that the actual number of solutions could be much higher.
Further to this, focusing on two contrasting instances of class g1; one having only 58 feasible
solutions and another with 87,950,294 solutions, Gurobi took 3,590 secs to match the best
solution of CPLS in the former, while it managed this in 17 secs in the latter.

When there are few solutions then Gurobi is either unable to find any solution within the
time limit and/or finds it hard to obtain a good initial bound, meaning that its progress
towards the optimal is very slow. In contrast, in the presence of many solutions, it starts
with a good initial bound and is able to quickly improve it. The low number of solutions in
grid problems is also a possible explanation for the lower quality of solutions discovered by
CPLS compared to OR-Tools in classes that OR-Tools can handle. In such cases, erroneous
pruning by the heuristic may be costly, as the optimal and near-optimal solutions are few,
whereas when there are many solutions, (as in the MDPLIB and p-median benchmarks),
mistakes are not as costly, as there may be many branches that lead to good solutions.

8 Conclusion

We have enhanced a recent heuristic approach towards solving the p-dispersion problem with
distance constraints in two directions. First, we showed how LS can significantly improve
the effectiveness of the method by computing better bound estimations at each node, and

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:17

therefore performing more focused branch pruning, and to a lesser extent by tightening the
bound each time a new solution is discovered. Second, we showed that the entire method is
applicable to other location problems, using the p-center problem as an example. Results
demonstrated that a solver that heuristically prunes the search space during search is more
robust than standard ILP and CP solvers. It would be very interesting to investigate the
applicability of the approach to other types of constraint optimization problems.

References
1 T. Argo and E. Sandstrom. Separation distances in NFPA codes and standards (tech. rep.).

Fire Protection Research Foundation. 2014.
2 M.L. Balinski. Integer programming: methods, uses, computations. Management Science,

12(3):253–313, 1965.
3 J.E. Beasley. A note on solving large p-median problems. European Journal of Operational

Research, 21(2):270–273, 1985.
4 O. Berman and R. Huang. The minimum weighted covering location problem with distance

constraints. Computers and Operations Research, 35(12):356–372, 2008. doi:10.1016/j.cor.
2006.03.003.

5 F. Boussemart, F. Heremy, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’04, pages 482–486, 2004.

6 H. Calik and B.C. Tansel. Double bound method for solving the p-center location problem.
Comput. Oper. Res., 40(12):2991–2999, 2013. doi:10.1016/j.cor.2013.07.011.

7 H. Cambazard, D. Mehta, B. O’Sullivan, and L. Quesada. A computational geometry-based
local search algorithm for planar location problems. In Proceedings of the 9th International
Conference on the Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR 2012), pages 97–112, 2012.

8 S. Chaudhry, T. McCormick, and I. D. Moon. Locating independent facilities with maximum
weight: Greedy heuristics. International Journal of Management Science, 14(5):383–389, 1986.

9 R. L. Church and M. E. Meadows. Results of a new approach to solving the p-median problem
with maximum distance constraints. Geographical Analysis, 9(4):364–378, 1977.

10 V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979. doi:10.1287/moor.4.3.233.

11 W. Comley. The location of ambivalent facilities: Use of a quadratic zero-one programming
algorithm. Applied Mathematical Modeling, 19(1):26–29, 1995.

12 Z. Dai, K. Xu, and M. Ornik. Repulsion-based p-dispersion with distance constraints
in non-convex polygons. Annals of Operations Research, 307:75–91, 2021. doi:10.1007/
s10479-021-04281-z.

13 M.S. Daskin. Network and discrete location: models, algorithms, and applications, 2nd edn.
Wiley, Hoboken, 2013.

14 Choco development team. An Open-Source java library for constraint programming.
https://choco-solver.org/.

15 OR-Tools development team. OR-Tools, CP-SAT solver.
https://developers.google.com/optimization/cp/cp_solver.

16 T. Drezner, Z. Drezner, and A. Schöbel. The weber obnoxious facility location model: A
big arc small arc approach. Computers and Operations Research, 98:240–250, 2018. doi:
10.1016/j.cor.2018.06.006.

17 Z. Drezner, P. Kalczynski, and S. Salhi. The planar multiple obnoxious facilities location
problem: A Voronoi based heuristic. Omega, 87:105–116, 2019.

18 S. Elloumi, M. Labbé, and Y. Pochet. A new formulation and resolution method for the
p-center problem. INFORMS J. Comput., 16(1):83–94, 2004. doi:10.1287/ijoc.1030.0028.

19 E. Erkut. The discrete p-dispersion problem. European Journal of Operational Research,
46(1):48–60, 1990.

20 E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. European
Journal of Operational Research, 40(3):275–291, 1989.

CP 2024

https://doi.org/10.1016/j.cor.2006.03.003
https://doi.org/10.1016/j.cor.2006.03.003
https://doi.org/10.1016/j.cor.2013.07.011
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1007/s10479-021-04281-z
https://doi.org/10.1007/s10479-021-04281-z
https://doi.org/10.1016/j.cor.2018.06.006
https://doi.org/10.1016/j.cor.2018.06.006
https://doi.org/10.1287/ijoc.1030.0028

14:18 A CP/LS Heuristic for Location Problems with Distance Constraints

21 E. Erkut and S. Neuman. Comparison of four models for dispersing facilities. Information
Systems and Operational Research, 29:68–86, 1991.

22 E. Erkut, Y. Ülküsal, and O. Yeniçerioglu. A comparison of p-dispersion heuristics. Computers
& Operations Research, 21(10):1103–1113, 1994. doi:10.1016/0305-0548(94)90041-8.

23 M. M. Fazel-Zarandi and J. C. Beck. Solving a location-allocation problem with logic-based
benders’ decomposition. In Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming (CP 2009), pages 344–351, 2009.

24 F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming. In F.W.
Glover and G.A. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International
Series in Operations Research & Management Science, pages 369–403. Kluwer / Springer,
2003. doi:10.1007/0-306-48056-5_13.

25 J. B. Ghosh. Computational aspects of the maximum diversity problem. Operations Research
Letters, 19(4):175–181, 1996. doi:10.1016/0167-6377(96)00025-9.

26 C. Gomes and M. Sellmann. Streamlined constraint reasoning. In Proceedings of the Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2004), pages
274–289, 2004.

27 T. Guns. Increasing modeling language convenience with a universal n-dimensional array,
CPpy as python-embedded example. In Proceedings of the 18th Workshop on Constraint
Modelling and Reformulation, 2019.

28 LLC Gurobi Optimization. Gurobi optimizer reference manual. , 2023. URL: https://www.
gurobi.com.

29 S.L. Hakimi. Optimum locations of switching centers and the absolute centers and medians of
a graph. Operations Research, 12(3):450–459, 1964.

30 S.L. Hakimi. Optimum distribution of switching centers in a communication network and
some related graph theoretic problems. Operations Research, 13(3):462–475, 1965.

31 N. Isoart and J.-C. Régin. A k-Opt Based Constraint for the TSP. In Proceedings of the 27th
International Conference on Principles and Practice of Constraint Programming (CP 2021),
2021.

32 B. M. Khumawala. An efficient algorithm for the p-median problem with maximum distance
constraints. Geographical Analysis, 5(4):309–321, 1973.

33 J. Krarup, D. Pisinger, and F. Plastria. Discrete location problems with push-pull object-
ives. Discrete Applied Mathematics, 123(1-3):363–378, 2002. doi:10.1016/S0166-218X(01)
00346-8.

34 M. J. Kuby. Programming models for facility dispersion: The p-dispersion and maxisum
dispersion problems. Mathematical and Computer Modelling, 10(10):792, 1988.

35 A.A. Kuehn and M.J. Hamburger. A heuristic program for locating warehouses. Management
Science, 9:643–666, 1963.

36 M.Z. Lagerkvist and M. Rattfeldt. Half-checking propagators. In Proceedings of the 19th
Workshop on Constraint Modelling and Reformulation, 2020.

37 R. Marti, A. Martinez-Gavara, S. Perez-Pelo, and J. Sanchez-Oro. A review on discrete diversity
and dispersion maximization from an OR perspective. European Journal of Operational
Research, 299(3):795–813, 2022. doi:10.1016/j.ejor.2021.07.044.

38 I. D. Moon and S. Chaudhry. An analysis of network location problems with distance
constraints. Management Science, 30(3):290–307, 1984.

39 I. D. Moon and L. Papayanopoulos. Minimax location of two facilities with minimum separation:
Interactive graphical solutions. Journal of the Operations Research Society, 42:685–694, 1991.

40 A.T. Murray, R.L. Church, R.A. Gerrard, and W.S. Tsui. Impact models for siting undesirable
facilities. Papers in Regional Science, 77(1):19–36, 1998.

41 N. Ploskas, K. Stergiou, and D.C. Tsouros. The p-dispersion problem with distance constraints.
In Roland H. C. Yap, editor, 29th International Conference on Principles and Practice of
Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada, volume 280 of

https://doi.org/10.1016/0305-0548(94)90041-8
https://doi.org/10.1007/0-306-48056-5_13
https://doi.org/10.1016/0167-6377(96)00025-9
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/S0166-218X(01)00346-8
https://doi.org/10.1016/S0166-218X(01)00346-8
https://doi.org/10.1016/j.ejor.2021.07.044

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:19

LIPIcs, pages 30:1–30:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.CP.2023.30.

42 D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
A.G. Cohn, editor, Proceedings of the Eleventh European Conference on Artificial Intelligence,
Amsterdam, The Netherlands, August 8-12, 1994, pages 125–129, 1994.

43 D. Sayah and S. Irnich. A new compact formulation for the discrete p-dispersion problem.
European Journal of Operational Research, 256(1):62–67, 2017. doi:10.1016/j.ejor.2016.
06.036.

44 F. Sayyady and Y Fathi. An integer programming approach for solving the p-dispersion
problem. European Journal of Operational Research, 253(1):216–225, 2016. doi:10.1016/j.
ejor.2016.02.026.

45 D. R. Shier. A min-max theorem for p-center problems on a tree. Transportation Science,
11:243–252, 1977.

46 S.Y.D. Sorkhabi, D.A. Romero, J.C. Beck, and C. Amon. Constrained multi-objective
wind farm layout optimization: Novel constraint handling approach based on constraint
programming. Renewable Energy, 126(C):341–353, 2018.

47 B.C. Tansel, R.L. Francis, T.J. Lowe, and M.L. Chen. Duality and distance constraints for
the nonlinear p-center problem and covering problem on a tree network. Operations Research,
30(4):725–744, 1982. doi:10.1287/opre.30.4.725.

48 S.B. Welch and S. Salhi. The obnoxious p facility network location problem with facility
interaction. European Journal of Operations Research, 102:302–319, 1997.

49 49 C.F.R. §175.701. Separation distance requirements for packages containing class 7 (radio-
active) materials in passenger-carrying aircraft. Title 49 Code of Federal Regulations, Part
175. 2021.

50 29 C.F.R. §1910.157. Portable fire extinguishers. Title 29 Code of Federal Regulations, Part
157. 2021.

Appendix

In Table 4 we give mean results regarding the pruning of the heuristic and the effect of LS.
CPLSh

is the solver configuration that uses LS only within the branch pruning heuristic
to perform a potential improvement in the estimation of the bound. We denote by Ra the
ratio of branches accepted (not cut off) by LS (within the branch pruning heuristic) to the
total number of times that it was called. We denote by Rb the ratio of the total number of
branches pruned by the heuristic to the number of times the heuristic was called. We denote
by Ri, the ratio of the number of times that LS further improved a feasible solution to the
number of times that it was called to do so. The ratios are presented as percentages and are
computed as means over all the instances of a problem category (MDG and GKD in pDDs -
p-median and grid in pCDs).

The high percentages of Rb explain the efficiency of the solver that applies this type of
pruning, as large amounts of the search tree are cut off (more than 90% of the calls to the
heuristic, on average, result in branch pruning, in both categories of the pCD and one of the
pDD). As expected, the basic CPG variant usually displays a higher pruning ratio compared
to CPLS , but not always, because in some instances, especially p-median based pCDs, the
latter quickly finds very good solutions, tightening the bound, and thereby resulting in heavy
pruning. Regarding the effect of LS as a means to improve newly discovered solutions, in the
GKD classes of pDDs and the p-median classes of pCDs there was an improving ratio Ri of
around 60%, meaning that LS was able to improve an incumbent solution more than half of
the times it was called to do so.

CP 2024

https://doi.org/10.4230/LIPIcs.CP.2023.30
https://doi.org/10.4230/LIPIcs.CP.2023.30
https://doi.org/10.1016/j.ejor.2016.06.036
https://doi.org/10.1016/j.ejor.2016.06.036
https://doi.org/10.1016/j.ejor.2016.02.026
https://doi.org/10.1016/j.ejor.2016.02.026
https://doi.org/10.1287/opre.30.4.725

14:20 A CP/LS Heuristic for Location Problems with Distance Constraints

Table 4 Ratios for pDDs and pCDs.

Ra Rb Ri Ra Rb Ri

pDD MDG GKD
CPG - 91.78% - - 85.18% -
CPLS 4.16% 91.22% 35.64% 14.15% 79.94% 58.89%
CPLSh 4.19% 90.82% - 14.12% 79.54% -
pCD p-median Grid
CPG - 90.55% - - 95.35% -
CPLS 0.36% 91.78% 60.91% 2.76% 93.79% 31.34%
CPLSh 0.61% 90.24% - 3.08% 92.96% -

In Table 5 an indicative comparison between the basic solver fo pCDs (denoted CPde),
i.e. the solver with the branch pruning heuristic deactivated, and CPLS is presented. For
each class, we report the total cpu times taken by the solvers, the mean cost of the best
solution found, and the number of instances where any solver reached the cut off limit of 1
hour without terminating (in brackets after the total cpu time). Column tb gives the mean
cpu time taken by the solvers to find their best solution. Column tm gives the mean cpu
time taken by CPde to find the first solution that matches (or improves) the cost of the best
solution found by CPLS . If CPde did not manage to match the solution found by CPLS in
some instances, tm is left blank. Finally, we also report the total nodes visited by each solver.

Table 5 Comparing CP solver with/without the branch pruning heuristic in pCDs.

CPde CPLS

Class
∑

cpu tb tm cost
∑

nodes
∑

cpu tb cost
∑

nodes
|CL| ≥ |F P |
pmed21 2,775 (0) 19 8 45.9 72,202,355 6 (0) 0.3 46.5 2,995
pmed36 >21,600 (6) 406 - 37.8 307,856,397 478 (0) 19 37 15,731
pmed38 >12,355 (3) 286 - 37.5 269,869,194 52 (0) 3 37.3 8,960
|F P | > |CL|
pmed21 >36,000 (10) 1,292 - 29.4 3,479,429,138 101 (0) 5 28.6 26,045
pmed36 >36,000 (10) 643 - 22.7 1,365,670,278 1,697 (0) 110 20.7 74,489
pmed38 >36,000 (10) 430 - 21.1 2,996,757,611 184 (0) 8 20.9 24,921
GRID

g3 >32,788 (9) 381 17 4.1 67,219,121 205 (0) 14 5.3 154,500
g6 >36,000 (10) 751 88 9.2 250,773,552 99 (0) 0.5 9.9 11,230
g8 >31,509 (8) 918 20 7.6 23,653,359 275 (0) 10 9 55,194

Not surprisingly, the behaviour of CPde resembles somewhat that of OR-Tools. It is
by far slower than its incomplete version CPLS , and typically discovers worse solutions, in
p-median based problems. On the other hand, it is still slower in grid problems (though by
smaller margins), but it discovers better solutions than CPLS . The huge numbers of visited
nodes compared to CPLS , demonstrate the pruning power of the branch pruning heuristic,
although results from the grid classes indicate that this massive pruning can sometimes
be costly, in terms of solution quality, when problems have a relatively small amount of
solutions.

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:21

In Table 6 we give an indicative comparison between two different configurations of
OR-Tools, one single threaded and one with 8 threads. For each class, we report the total
cpu times taken, the mean cost of the best solution found, and the number of instances
where the cut off limit of 1 hour without terminating is reached (in brackets after the total
cpu time).

Table 6 Comparing ORtools with 1 and 8 threads.

ORt1
∑

cpu tb cost ORt8
∑

cpu tb cost
|CL| ≥ |F P |
pmed5 1,668 (0) 167 100.5 872 (0) 86 100.5
pmed10 1,963 (0) 196 63.4 1,902 (0) 188 63.4
pmed21 212 (0) 18 45.8 203 (0) 16 45.8
pmed26 224 (0) 19 43.2 195 (0) 18 43.2
|F P | > |CL|
pmed5 249 (0) 25 47 249 (0) 24 47
pmed10 10,775 (0) 1,077 25.3 10,726 (0) 1,071 25.3
pmed21 >19,747 (1) 497 27.6 10,173 (0) 319 27.6
pmed26 14,901 (0) 604 24.7 9,775 (0) 525 24.7
GRID

g1 443 (0) 30 2.1 272 (0) 14 2.1
g2 7,737 (0) 98 4.1 8,178 (0) 158 4.1
g3 >36,000 (10) 396 4.2 >35,977 (9) 354 4.1
g6 >34,641 (9) 358 7.4 >35,334 (9) 732 7.4

Results demonstrate that the 8 thread configuration for OR-Tools did not result in
significantly improved run times (sometimes it is detrimental). In most classes, the mean
times taken for the discovery of the best solution were close. But importantly, the 8 thread
variant very rarely manages to improve the cost of the best solution found. Finally, the two
versions crashed in the same classes that are denoted with MEM in Table 3.

CP 2024

CSPs with Few Alien Constraints
Peter Jonsson #

Department of Computer and Information Science, Linköping University, Sweden

Victor Lagerkvist #

Department of Computer and Information Science, Linköping University, Sweden

George Osipov #

Department of Computer and Information Science, Linköping University, Sweden

Abstract
The constraint satisfaction problem asks to decide if a set of constraints over a relational structure
A is satisfiable (CSP(A)). We consider CSP(A ∪ B) where A is a structure and B is an alien
structure, and analyse its (parameterized) complexity when at most k alien constraints are allowed.
We establish connections and obtain transferable complexity results to several well-studied problems
that previously escaped classification attempts. Our novel approach, utilizing logical and algebraic
methods, yields an FPT versus pNP dichotomy for arbitrary finite structures and sharper dichotomies
for Boolean structures and first-order reducts of (N, =) (equality CSPs), together with many partial
results for general ω-categorical structures.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Mathem-
atics of computing → Discrete mathematics

Keywords and phrases Constraint satisfaction, parameterized complexity, hybrid theories

Digital Object Identifier 10.4230/LIPIcs.CP.2024.15

Funding Peter Jonsson and George Osipov: Supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Peter Jonsson: Partially supported by the Swedish research council under grant VR-2021-04371.
Victor Lagerkvist: Partially supported by the Swedish research council under grant VR-2022-03214.

Acknowledgements We thank the anonymous reviewers for helpful suggestions for how to improve
the presentation of the paper.

1 Introduction

The constraint satisfaction problem over a structure A (CSP(A)) is the problem of verifying
whether a set of constraints over A admits at least one solution. This problem framework is
vast, and, just to name a few, include all Boolean satisfiability problems as well as k-coloring
problems, and for infinite domains we may formulate both problems centrally related to
model checking first-order formulas and qualitative reasoning. Notable examples where
complete complexity dichotomies are known (separating tractable from NP-hard problems)
include all finite structures [12, 24] and first-order definable relations over well-behaved base
structures like (N, =) and (Q, <) [2]. While impressive mathematical achievements, these
dichotomy results are still somewhat unsatisfactory from a practical perspective since we are
unlikely to encounter instances which are based on purely tractable constraints. Could it
be possible to extend the reach of these powerful theoretical results by relaxing the basic
setting so that we may allow greater flexibility than purely tractable constraints while still
obtaining something simpler than an arbitrary NP-hard CSP?

We consider this problem in a hybrid setting via problems of the form CSP(A ∪ B) where
A is a “stable”, tractable background structure and B is an alien structure. We focus on the
case when CSP(A ∪ B) is NP-hard (thus, richer than a polynomial-time solvable problem)
but where we have comparably few constraints from the alien structure B. This problem is

© Peter Jonsson, Victor Lagerkvist, and George Osipov;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peter.jonsson@liu.se
mailto:victor.lagerkvist@liu.se
mailto:george.osipov@liu.se
https://doi.org/10.4230/LIPIcs.CP.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 CSPs with Few Alien Constraints

compatible with the influential framework of parameterized complexity which has been used
with great effect to study structurally restricted problems (e.g., based on tree-width) but
where comparably little is known when one simultaneously restricts the allowed constraints.

We begin (in Section 3) by relating the CSP problem with alien constraints to other
problems, namely, (1) model checking, (2) the problem of checking whether a constraint in a
CSP instance is redundant, (3) the implication problem and (4) the equivalence problem. We
prove that the latter three problems are equivalent under Turing reductions and provide a
general method for obtaining complexity dichotomies for all of these problems via a complexity
dichotomy for the CSP problem with alien constraints. Importantly, all of these problems
are well-known in their own right, but have traditionally been studied with wildly disparate
tools and techniques, but by viewing them under the unifying lens of alien constraints we
not only get four dichotomies for the price of one but also open the powerful toolbox based
on universal algebra. For non-Boolean domains this is not only a simplifying aspect but
an absolute necessity to obtain general results. We expand upon the algebraic approach in
Section 4 and relate alien constraints to primitive positive definitions (pp-definitions) and
the important notion of a core. As a second general contribution we explore the case when
each relation in B can be defined via an existential positive formula over A. This results in
a general fixed-parameter tractable (FPT) algorithm (with respect to the number of alien
constraints) applicable to both finite, and, as we demonstrate later, many natural classes of
structures over infinite domains.

In the second half of the paper we attack the complexity of alien constraints more
systematically. We begin with structures over finite domains where we obtain a general
tractability result by combining the aforementioned FPT algorithm together with the CSP
dichotomy theorem [12, 24]. In a similar vein we obtain a general hardness result based
on a universal algebraic gadget. Put together this yields a general result: if A ∪ B is a
core (which we may assume without loss of generality) then either CSP≤(A ∪ B) is FPT, or
CSP≤p(A ∪ B) is NP-hard for some p ≥ 0, i.e., is para-NP-hard (pNP-hard). Thus, from a
parameterized complexity view we obtain a complete dichotomy (FPT versus pNP-hardness)
for finite-domain structures. However, to also obtain dichotomies for implication, equivalence,
and the redundancy problem, we need sharper bounds on the parameter p. We concentrate
on two special cases. We begin with Boolean structures in Section 5.2 and obtain a complete
classification which e.g. states that CSP≤(A ∪ B) is FPT if A is in one of the classical
Schaefer classes, and give a precise characterization of CSP≤p(A ∪ B) for all relevant values
of p if A is not Schaefer. For example, if we assume that A is Horn, we may thus conclude
that CSP≤(A ∪ B) is FPT for any alien Boolean structure B. More generally this dichotomy
is sufficiently sharp to also yield dichotomies for implication, equivalence, and redundancy.
Compared to the proofs by Schnoor & Schnoor [22] for implication and Böhler [11] for
equivalence, we do not use an exhaustive case analysis over Post’s lattice.

In Section 6 we consider structures over infinite domains. If we assume that A and B
are ω-categorical, then we manage to lift the FPT algorithm based on existential positive
definability from Section 4 to the infinite setting. Another important distinction is that
the notion of a core, and subsequently the common trick of singleton expansion, works
differently for ω-categorical languages. Here we follow Bodirsky [2] and use the notion
of a model-complete core, which means that all n-ary orbits are pp-definable, where an
orbit is defined as the action of the automorphism group over a fixed n-ary tuple. This
allows us to, for example, prove that CSP≤(A ∪ B) is FPT whenever A is an ω-categorical
model-complete core and CSP(A) is in P such that the orbits of the automorphism group of
B are included in the orbits of the automorphism group of A. This forms a cornerstone for

P. Jonsson, V. Lagerkvist, and G. Osipov 15:3

the dichotomy for equality languages since the only remaining cases are when A is 0-valid
(meaning that each relation contains a constant tuple) but not Horn (defined similarly to
the Boolean domain), and when B is not 0-valid. The remaining cases are far from trivial,
however, and we require the algebraic machinery from Bodirsky et al. [4] which provides a
characterization of equality languages in terms of their retraction to finite domains. We rely
on this description via a recent classification result by Osipov & Wahlström [19]. Importantly,
our dichotomy result is sufficiently sharp to additionally obtain complexity dichotomies for
the implication, equivalence, and redundancy problems. To the best of our knowledge, these
dichotomies are the first of their kind for arbitrary equality languages.

We finish the paper with a comprehensive discussion in Section 7. Most importantly, we
have opened up the possibility to systematically study not only alien constraints, but also
related problems that have previously escaped complexity classifications. For future research
the main open questions are whether (1) sharper results can be obtained for arbitrary finite
domains and (2) which further classes of infinite domain structures should be considered.

Proofs of statements marked with (⋆) have been removed due to space constraints.

2 Preliminaries

We begin by introducing the basic terminology and the fundamental problems under consider-
ation. We assume throughout the paper that the complexity classes P and NP are distinct. We
let Q denote the rationals, N = {0, 1, 2, . . . } the natural numbers, Z = {. . . , −2.−1, 0, 1, 2, . . . }
the integers, and Z+ = {1, 2, 3, . . . } the positive integers. For every c ∈ Z+, we let
[c] = {1, 2, . . . , c}.

A parameterized problem is a subset of Σ∗ × N where Σ is the input alphabet, i.e., an
instance is given by x ∈ Σ∗ of size n and a natural number k, and the running time of
an algorithm is studied with respect to both k and n. The most favourable complexity
class is FPT (fixed-parameter tractable), which contains all problems that can be decided
in f(k) · nO(1) time with f being some computable function. An fpt-reduction from a
parameterized problem L1 ⊆ Σ∗

1 ×N to L2 ⊆ Σ∗
2 ×N is a function P : Σ∗

1 ×N → Σ∗
2 ×N that

preserves membership (i.e., (x, k) ∈ L1 ⇔ P ((x, k)) ∈ L2), is computable in f(k) · |x|O(1)

time for some computable function f , and there exists a computable function g such that
for all (x, k) ∈ L1, if (x′, k′) = P ((x, k)), then k′ ≤ g(k). It is easy to verify that if L1 and
L2 are parameterized problems such that L1 fpt-reduces to L2 and L2 is in FPT, then it
follows that L1 is in FPT, too. There are many parameterized classes with less desirable
running times than FPT but we focus on pNP-hard problems: a problem is pNP-hard under
fpt-reductions if it is NP-hard for some constant parameter value, implying such problems
are not in FPT unless P = NP.

We continue by defining constraint satisfaction problems. First, a constraint language is
a (typically finite) set of relations A over a universe A, and for a relation R ∈ Γ we write
ar(R) = k to denote its arity k. It is sometimes convenient to associate a constraint language
with a relational signature, and thus obtaining a relational structure: a tuple (A; τ, I) where
A is the domain, or universe, τ is a relational signature, and I is a function from σ to the
set of all relations over D which assigns each relation symbol R a corresponding relation
RA over D. We write ar(R) for the arity of a relation R, and if R = ∅ then ar(R) = 0. All
structures in this paper are relational and we assume that they have a finite signature unless
otherwise stated. Typically, we do not need to make a sharp distinction between relations
and the corresponding relation symbols, so we usually simply write (A; R1, . . . , Rm), where
each Ri is a relation over A, to denote a structure. We also sometimes do not make a sharp

CP 2024

15:4 CSPs with Few Alien Constraints

distinction between structures and sets of relations when the signature is not important. For
arbitrary structures A and A′ with domains A and A′, we let A ∪ A′ denote the structure
with domain A ∪ A′ and containing the relations in A and A′.

For a constraint language (or structure) A an instance of the constraint satisfaction
problem over A (CSP(A)) is then given by I = (V, C) where V is a set of variables and
C a set of constraints of the form R(x1, . . . , xk) where x1, . . . , xk ∈ V and R ∈ A, and the
question is whether there exist a function f : V → A that satisfies all constraints (a solution),
i.e., (f(x1), . . . , f(xk)) ∈ R for all R(x1, . . . , xk) ∈ C. The CSP dichotomy theorem says
that all finite-domain CSPs are either in P or are NP-complete [12, 24]. Given an instance
I = (V, C) of CSP(A), we let Sol(I) be the set of solutions to I. We now define CSPs with
alien constraints in the style of Cohen et al. [14].

CSP≤(A ∪ B)
Instance: A natural number k and an instance I = (V, C1 ∪ C2) of CSP(A ∪ B), where
(V, C1) is an instance of CSP(A) and (V, C2) is an instance of CSP(B) with |C2| ≤ k.
Question: Does there exist a satisfying assignment to I?

Throughout the paper, we assume without loss of generality that the structures A and B
can be associated with disjoint signatures. The parameter in CSP≤(A ∪ B) is the number
of alien constraints (abbreviated #ac). We let CSP≤k(A ∪ B) denote the CSP≤(A ∪ B)
problem restricted to a fixed value k of parameter #ac. Note that if CSP(A) is not in P,
then CSP≤0(A ∪ B) is not in P; moreover, if CSP(A ∪ B) is in P, then CSP≤(A ∪ B) is in
P. Thus, it is sensible to always require that CSP(A) is in P and CSP(A ∪ B) is not in P. In
many natural cases (e.g., all finite-domain CSPs), CSP(A ∪ B) not being polynomial-time
solvable implies that CSP(A ∪ B) is NP-hard.

A k-ary relation R is said to have a primitive positive definition (pp-definition) over a
constraint language A if R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ : R1(x1) ∧ . . . ∧ Rm(xm) where each
Ri ∈ A ∪ {=A} and each xi is a tuple of variables over x1, . . . , xk, y1, . . . , yk′ matching the
arity of Ri. Here, and in the sequel, =A is the equality relation over A, i.e. {(a, a) | a ∈ A}.
If A is a constraint language, then we let ⟨A⟩ be the inclusion-wise smallest set of relations
containing A closed under pp-definitions.

▶ Theorem 1 ([16]). Let A and B be structures with the same domain. If every relation of
A has a primitive positive definition in B, then there is a polynomial-time reduction from
CSP(A) to CSP(B).

When working with problems of the form CSP≤k(A ∪ B) we additionally introduce the
following simplifying notation: ⟨A ∪ B⟩≤k denotes the set of all pp-definable relations over
A∪B using at most k atoms from B. We now describe the corresponding algebraic objects. An
operation f : Dm → D is a polymorphism of a relation R ⊆ Dk if, for any choice of m tuples
(t11, . . . , t1k), . . . , (tm1, . . . , tmk) from R, it holds that (f(t11, . . . , tm1), . . . , f(t1k, . . . , tmk))
is in R. An endomorphism is a polymorphism with arity one. If f is a polymorphism of
R, then we sometimes say that R is invariant under f . A constraint language A has the
polymorphism f if every relation in A has f as a polymorphism. We let Pol(A) and End(A)
denote the sets of polymorphisms and endomorphisms of A, respectively. If F is a set of
functions over D, then Inv(F) denotes the set of relations over D that are invariant under
every function in F . There are close algebraic connections between the operators ⟨·⟩, Pol(·),
and Inv(·). For instance, if A has a finite domain (or, more generally, if A is ω-categorical;
see below), then we have a Galois connection ⟨A⟩ = Inv(Pol(A)) [9, Theorem 5.1].

Polymorphisms enable us to compactly describe the tractable cases of Boolean CSPs.

P. Jonsson, V. Lagerkvist, and G. Osipov 15:5

▶ Theorem 2 ([21]). Let A be a constraint language over the Boolean domain. The problem
CSP(A) is decidable in polynomial time if A is invariant under one of the following six
operations: (1) the constant unary operation 0 (A is 0-valid), (2) the constant unary operation
1 (A is 1-valid), (3) the binary min operation ⊓ (A is Horn), (4) the binary max operation ⊔
(A is anti-Horn), (5) the ternary majority operation M(x, y, z) = (x ⊓ y) ⊔ (x ⊓ z) ⊔ (y ⊓ z)
(A is 2-SAT), or (6) the ternary minority operation m(x, y, z) = x ⊕ y ⊕ z where ⊕ is the
addition operator in GF(2) (A is affine). Otherwise, the problem CSP(A) is NP-complete.

A Boolean constraint language that satisfies condition (3), (4), (5), or (6) is called
Schaefer.

A finite-domain structure A is a core if every e ∈ End(A) is a bijection. We let
f(R) = {(f(t1), . . . , f(tn)) | (t1, . . . , tn) ∈ R} when f : A → A and R ∈ A. If e ∈ End(A)
has minimal range, then e(A) = {e(R) | R ∈ A} is a core and this core is unique up to
isomorphism. We can thus speak about the core Ac of A. It is easy to see that CSP(A) and
CSP(Ac) are equivalent under polynomial-time reductions (indeed, even log-space reductions
suffice). Another useful equivalence concerns constant relations. Let A+ denote the structure
A expanded by all unary singleton relations {(a)}, a ∈ A. If A is a core, then CSP(A) and
CSP(A+) are equivalent under polynomial-time reductions [1].

We will frequently consider ω-categorical structures. An automorphism of a structure A is
a permutation α of its domain A such that both α and its inverse are homomorphisms. The set
of all automorphisms of a structure A is denoted by Aut(A), and forms a group with respect
to composition. The orbit of (a1, . . . , an) ∈ An in Aut(A) is the set {(α(a1), . . . , α(an)) |
α ∈ Aut(A)}. Let Orb(A) denote the set of orbits of n-tuples in Aut(A) (for all n ≥ 1). A
structure A with countable domain is ω-categorical if and only if Aut(A) is oligomorphic,
i.e., it has only finitely many orbits of n-tuples for all n ≥ 1.

Two important classes of ω-categorical structures are equality languages (respectively,
temporal languages) where each relation can be defined as the set of models of a first-order
formula over (N; =) (respectively, (Q; <)). Importantly, Aut(A) is the full symmetric group
if A is an equality language. A relation in an equality language is said to be 0-valid if it
contains any constant tuple. This is justified since if the relation is invariant under one
constant operation, then it is invariant under all constant operations.The computational
complexity of CSP for equality languages was classified by Bodirsky and Kára [7, Theorem 1]:
for any equality language A, CSP(A) is solvable in polynomial time if A is 0-valid or invariant
under a binary injective operation, and is NP-complete otherwise.

3 Applications of Alien Constraints

We will now demonstrate how alien constraints can be used for studying the complexity of
CSP-related problem: Section 3.1 contains an example where we analyse the complexity of
redundancy, equivalence, and implication problems, and we consider connections between the
model checking problem and CSPs with alien constraints in Section 3.2. To relate problem
complexity we use Turing reductions: a problem L1 is polynomial-time Turing reducible to
L2 (denoted L1 ≤p

T L2) if it can be solved in polynomial time using an oracle for L2. Two
problems L1 and L2 are polynomial-time Turing equivalent if L1 ≤p

T L2 and L2 ≤p
T L1.

3.1 The Redundancy Problem and its Relatives
We will now study the complexity of a family of well-known computational problems. We
begin by some definitions. Let A denote a constraint language and assume that I = (V, C)
is an instance of CSP(A). We say that a constraint c ∈ C is redundant in I if Sol((V, C)) =
Sol((V, C \ {c})). We have the following computational problems.

CP 2024

15:6 CSPs with Few Alien Constraints

Redundant(A)
Instance: An instance (V, C) of CSP(A) and a constraint c ∈ C.
Question: Is c redundant in (V, C)?

Impl(A)
Instance: Two instances (V, C1), (V, C2) of CSP(A).
Question: Does (V, C1) imply (V, C2), i.e., is it the case that Sol((V, C1)) ⊆ Sol((V, C2))?

Equiv(A)
Instance: Two instances (V, C1), (V, C2) of CSP(A).
Question: Is it the case that Sol((V, C1)) = Sol((V, C2))?

Before we start working with alien constraints, we exhibit a close connection between
Redundant(·), Equiv(·), and Impl(·).

▶ Lemma 3. Let A be a structure. The problems Equiv(A), Impl(A), and Redundant(A)
are polynomial-time Turing equivalent.

Proof. We show that (1) Equiv(A) ≤p
T Impl(A), (2) Impl(A) ≤p

T Redundant(A), and
(3) Redundant(A) ≤p

T Equiv(A).
(1). Let ((V, C1), (V, C2)) be an instance of Equiv(A). We need to check whether

Sol((V, C1)) = Sol((V, C2)). This is true if and only if the two Impl instances
((V, C1), (V, C2)) and ((V, C2), (V, C1)) are yes-instances.

(2). Let ((V, C1), (V, C2)) be an instance of Impl(A). For each constraint c ∈ C2, first check
whether C1 implies {c} by (a) checking if c ∈ C1, in which case C1 trivially implies {c},
(b) if not, then check whether c is redundant in C1 ∪ {c}, in which case we answer yes,
and otherwise no. If C1 implies {c} for every c ∈ C2 then C1 implies C2 and we answer
yes, and otherwise no.

(3). Let I = ((V, C), c) be an instance of Redundant(A). It is obvious that I is a yes-
instance if and only if the instance ((V, C), (V, C\{c})) is a yes-instance of Equiv(A). ◀

Next, we show how the complexity of Redundant(A) can be analysed by exploiting
CSPs with alien constraints. If R is a k-ary relation over domain D, then we let R̄ denote
its complement, i.e. R̄ = Dk \ R.

▶ Theorem 4 (⋆). Let A be a structure with domain A. If CSP(A) is not in P, then
Redundant(A) is not in P. In particular, Redundant(A) is NP-hard (under polynomial-
time Turing reductions) whenever CSP(A) is NP-hard. Otherwise, Redundant(A) is in P
if and only if for every relation R ∈ A, CSP≤1(A ∪ {R̄}) is in P.

Combining Theorem 4 with the forthcoming complexity classification of Boolean CSPs
with alien constraints (Theorem 14) shows that Boolean Redundant(A) is in P if and only
if A is Schaefer. We have not found this result in the literature but we view it as folklore
since it follows from other classification results (start from [11] or [22] and transfer the results
to Redundant(A) with the aid of Lemma 3). However, we claim that our proof is very
different when compared to the proofs in [11] and [22]): Böhler et al. use a lengthy case
analysis while Schnoor & Schnoor in addition uses the so-called weak base method, which
scales poorly since not much is known about this construction for non-Boolean domains. We
do not claim that our proof is superior, but we do not see how to generalize the classifications
by Böhler et al. and Schnoor & Schnoor to larger (in particular infinite) domains since they
are fundamentally based on Post’s classification of Boolean clones. Such a generalization,
on the other hand, is indeed possible with our approach. We demonstrate in Section 6.2

P. Jonsson, V. Lagerkvist, and G. Osipov 15:7

that we can obtain a full understanding of the complexity of CSPs with alien constraints for
equality languages. This result carries over to Redundant(·) via Theorem 4, implying that
we have a full complexity classification of Redundant(·) for equality languages. This result
can immediately be transferred to Impl(·) and Equiv(·) by Lemma 3.

3.2 Model Checking
We follow [18] and view the model checking problem as follows: given a logic L , a structure
A, and a sentence ϕ of L , decide whether A |= ϕ. The main motivation for this problem is its
connection to databases [23]. From the CSP perspective, we consider a slightly reformulated
version: given an instance I = (V, C) of CSP(A) and a formula ϕ with free variables in V ,
we ask if there is a tuple in Sol(I) that satisfies ϕ. If ϕ can be expressed as an instance I ′

of CSP(B) for some structure B, then this is the same thing as if asking whether I ∪ I ′ has
a solution or not. In the model-checking setting, we want to check whether ϕ is true in all
solutions of I. If ¬ϕ can be expressed as an instance I ′ of CSP(B) for some structure B,
then we are done: every solution to I satisfies ϕ if and only if CSP(I ∪ I ′) is not satisfiable,
and this clarifies the connection with CSPs with alien constraints. For instance, one may
view Impl(A) (and consequently the underlying CSP≤1(A ∪ R̄) problems by Lemma 3
and Theorem 4) as the model checking problem restricted to queries that are A-sentences
constructed using the operators ∀ and ∨. Naturally, one wants the ability to use more
complex queries such as (1) queries extended with other relations, i.e. queries constructed
over an expanded structure, or (2) queries that are built using other logical connectives.

In both cases, it makes sense to study the fixed-parameter tractability of CSP≤(A ∪ B)
with parameter #ac since the query is typically much smaller than the structure A. The
connection is quite obvious in the first case (one may view #ac as measuring how “complex”
the given query is) while it is more hidden in the second case. Let us therefore consider the
negation operator. From a logical perspective, one may view a constraint R̄(x1, . . . , xk) as
the formula ¬R(x1, . . . , xk). Needless to say, the relation R̄ is often not pp-definable in a
structure A containing R but it may be existential positive definable in A. Assume that
the preconditions of the example hold and that CSP(A) is in P. We know that R̄ has an
existential positive definition in A for every R ∈ A. Let Ā = {R̄ | R ∈ A} and consider the
problem CSP≤(A ∪ Ā). The forthcoming Theorem 15 is applicable so this problem is in
FPT parameterized by #ac. Now, the corresponding model checking problem is to decide if
A |= ϕ where ϕ is an A-sentence constructed using the operators ∀ and ∨ and where we are
additionally allowed to use negated relations ¬R(x1, . . . , xm). It follows that this problem is
in FPT parameterized by the number of negated relations.

4 General Tools for Alien Constraints

We analyze the complexity of CSP≤k(A ∪ B), starting in Section 4.1 by investigating which
of the classic algebraic tools are applicable to the alien constraint setting, and continuing in
Section 4.2 by presenting a general FPT result. We will use these observations for proving
various results but also for obtaining a better understanding of alien constraints.

4.1 Alien Constraints and Algebra
First, we have a straightforward generalization of Theorem 1 in the alien constraint setting.
▶ Theorem 5 (⋆). Let A and B be two structures with disjoint signatures. There exists
a polynomial time many-one reduction f from CSP≤(A∗ ∪ B∗) to CSP≤(A ∪ B) for any
finite A∗ ⊆ ⟨A⟩ and B∗ ⊆ ⟨A ∪ B⟩. If I = (V, C, k) is an instance of CSP≤(A∗ ∪ B∗) and
f(I) = (V ′, C ′, k′), then k′ only depends on k, A, B, and B∗, so f is an fpt-reduction.

CP 2024

15:8 CSPs with Few Alien Constraints

This claim is, naturally, in general not true for CSP≤k(A∗ ∪ B) for finite A∗ ⊆ ⟨A ∪ B⟩.
The idea underlying Theorem 5 can be used in many different ways and we give one example.

▶ Proposition 6. If A, B are structures and R ∈ ⟨A ∪ B⟩≤1, then CSP≤k(A ∪ (B ∪ {R})) is
polynomial-time reducible to CSP≤k(A ∪ B).

We proceed by relating CSP≤k(A ∪ B) to the important idea of reducing to a core (recall
Section 2). Recall that Ac denotes the (unique up to isomorphism) core of a finite-domain
structure A. For two structures A ∪ B we similarly write (A ∪ B)c for the core. Specifically, if
e ∈ End(A∪B) has minimal range, then the core consists of {e(R) | R ∈ A}∪{e(R) | R ∈ B}
of the same signature as A and B, and the problem CSP≤((A ∪ B)c) is thus well-defined.

▶ Theorem 7 (⋆). Let A and B be two structures over a finite universe A. Then CSP≤(A ∪ B)
and CSP≤((A ∪ B)c) are interreducible under both polynomial-time and fpt reductions.

In general, it is not possible to reduce from CSP≤k(A ∪ B) to CSP≤k(Ac ∪ B) or from
CSP≤k(A ∪ B) to CSP≤k(A ∪ Bc). This can be seen as follows. Consider the Boolean
relation R(x1, x2, x3) ≡ x1 = x2 ∨x2 = x3, and let A = {R}, B = {≠}. Then, CSP≤1(A ∪ B)
is NP-hard (see e.g. Exercise 3.24 in [13]) so CSP≤(A ∪ B) is pNP-hard. However, A is
0-valid, so Ac = {{(0, 0, 0)}}, implying that CSP≤(Ac ∪ B) is in P.

4.2 Fixed-Parameter Tractability
We present an algorithm in this section that underlies many of our fixed-parameter tractability
results and it is based on a particular notion of definability. The existential fragment of
first-order logic consists of formulas that only use the operations negation, conjunction,
disjunction, and existential quantification, while the existential positive fragment additionally
disallows negation. We emphasize that it is required that the equality relation is allowed
in existential (positive) definitions. We can view existential positive in a different way
that is easier to use in our algorithm. Let A be a structure with domain A and assume
that R ⊆ Am is defined via a existential positive definition over A, i.e., R(x1, . . . , xm) ≡
∃y1, . . . , yn : ϕ(x1, . . . , xm, y1, . . . , yn) where ϕ is a quantifier-free existential positive A-
formula. Since ϕ can be written in disjunctive normal form without introducing negation or
quantifiers, it follows that R is a finite union of relations in ⟨A⟩.

▶ Theorem 8. Assume the following.
1. A, B are structures with the same domain A,
2. every relation in B is existential positive definable in A, and
3. CSP(A) is in P.

Then CSP≤(A ∪ B) is in FPT parameterized by #ac.

Proof. Assume B = {A; B1, . . . , Bm}. Condition 2. implies that Bi, i ∈ [m], is a finite union
of relations Bi = R1

i ∪ · · · ∪ Rci
i where R1

i , . . . , Rci
i are in ⟨A⟩. Let the structure A∗ contain

the relations in A ∪ {Rj
i | i ∈ [m] and j ∈ [ci]}. Clearly, A∗ has a finite signature and the

problem CSP(A∗) is in P by Theorem 1 since every relation in A∗ is a member of ⟨A⟩. Let
b = max{ci | i ∈ [m]}.

Let ((V, C), k) denote an arbitrary instance of CSP≤(A ∪ B)). The satisfiability of (V, C)
can be checked via the following procedure. If C contains no B-constraint, then check the
satisfiability of (V, C) with the polynomial-time algorithm for CSP(A). Otherwise, pick
one constraint c = Bi(x1, . . . , xq) with Bi ∈ B and check recursively the satisfiability of the
following instances:

(V, (C \ {c}) ∪ {R1
i (x1, . . . , xq)}), . . . , (V, (C \ {c}) ∪ {Rci

i (x1, . . . , xq)}).

P. Jonsson, V. Lagerkvist, and G. Osipov 15:9

If at least one of the instances is satisfiable, then answer “yes” and otherwise “no”. This is
clearly a correct algorithm for CSP≤(A ∪ B).

We continue with the complexity analysis. Note that the leaves in the computation tree
produced by the algorithm are CSP(A∗) instances and they are consequently solvable in
polynomial time. The depth of the computation tree is at most k (since (V, C) contains
at most k B-constraints) and each node has at most b children. Thus, the problem can be
solved in bk · poly(|I|) time. We conclude that CSP≤(A ∪ B) is in FPT parameterized by
#ac since b is a fixed constant that only depends on the structures A and B. ◀

5 Finite-Domain Languages

This section is devoted to CSPs over finite domains. We begin in Section 5.1 by studying
how the definability of constants affect the complexity of finite-domain CSPs with alien
constraints, and we use this as a cornerstone for a parameterized FPT versus pNP dichotomy
result for of CSP≤(A ∪ B). We show a sharper result for Boolean structures in Section 5.2.

5.1 Parameterized Dichotomy
We begin with a simplifying result. For a finite set A, let CA be the structure whose relations
are the constants over A.

▶ Lemma 9 (⋆). Let A be a structure over a domain A. For every C ⊆ CA, CSP(A ∪ C) is
polynomial-time reducible to CSP≤|C|(A ∪ C).

Lemma 9 together with the basic algebraic results from Section 4.1 allows us to prove the
following result that combines a more easily formulated fixed-parameter result (compared to
Theorem 8) with a powerful hardness result.

▶ Theorem 10 (⋆). Let A, B be structures with finite domain D. Assume that A ∪ B is a
core. If CSP(A ∪ CA) is in P, then CSP≤(A ∪ B) is in FPT with parameter #ac. Otherwise,
CSP≤p(A ∪ B) is NP-hard for some p that only depends on the structures A and B.

Proof. We provide a short proof sketch. Using the dichotomy of finite domain CSPs [12, 24],
we first assume CSP(A ∪ CD) is in P. One can prove that every tuple over D is pp-definable
over A ∪ CD and then that each relation in B is existential positive definable over A ∪ CD.
We can now apply Theorem 8, and CSP≤(A ∪ B) is in FPT.

For the NP-hard case, we assume CSP(A ∪ CD) is NP-hard and construct a polynomial-
time reduction from CSP(A ∪ CD) to CSP≤p(A ∪ B). We use the endomorphisms of A ∪ B
to construct a pp-definable relation E which allow us to simulate the constant relations, and
a reduction to CSP≤1(A ∪ {E}) to establish the claim via Lemma 9 and Theorem 5. ◀

Theorem 10 has broad applicability. Let us, for instance, consider a structure A with
finite domain A and containing a finite number of relations from Inv(f) where f : Am → A

is idempotent (f : Am → D is idempotent if f(a, . . . , a) = a for all a ∈ A.) If CSP(A)
is in P, then CSP(A ∪ CA) is in P since constant relations are invariant under f . Hence,
CSP≤(A ∪ B) is in FPT parameterized by #ac for every finite structure B with domain A

by Theorem 10. Idempotent functions that give rise to polynomial-time solvable CSPs are
fundamental and well-studied in the literature; see e.g. the survey by Barto et al. [1].

Via Theorem 7 we obtain the following parameterized complexity dichotomy separating
problems in FPT from pNP-hard problems.

CP 2024

15:10 CSPs with Few Alien Constraints

▶ Corollary 11. Let A, B be structures over the finite domain A. Then, CSP≤(A ∪ B) is
either in FPT or pNP-hard (in parameter #ac).

Proof. Let e ∈ End(A ∪ B) have minimal range and let A′ = {e(R) | R ∈ A} and B′ = {R |
R ∈ B} be the two components of the core (A ∪ B)c, and let A′ = {e(a) | a ∈ A} be the
resulting domain. The problems CSP≤(A ∪ B) and CSP≤(A′ ∪ B′) are fpt-interreducible by
Theorem 7. The problem CSP(A′ ∪ CA′) is either in P or is NP-hard by the CSP dichotomy
theorem [12, 24]. In the first case, CSP≤(A′ ∪ B′) (and thus CSP≤(A ∪ B)) is in FPT
with parameter #ac. Otherwise, CSP≤(A′ ∪ B′) is pNP-hard, and the fpt-reduction from
CSP≤(A′ ∪ B′) to CSP≤(A ∪ B) establishes pNP-hardness for the latter. ◀

Corollary 11 must be used with caution: it does not imply that CSP≤1(A ∪ B) is NP-hard
and results such as Theorem 4 may not be applicable. This encourages the refinement of
coarse complexity results based on Theorem 10. We use Boolean relations as an example of
this in the next section.

5.2 Classification of Boolean Languages
We present a complexity classification of CSP≤(A ∪ B) when A and B are Boolean structures
(Theorem 14). We begin with two auxiliary results and we define relations c0 = {(0)} and
c1 = {(1)}.

▶ Lemma 12 (⋆). Let A be a Boolean structure where c0 ∈ ⟨A⟩. If an n-ary Boolean R ̸= ∅
is not 0-valid then c1 ∈ ⟨A ∪ {R}⟩≤1.

We say that a Boolean relation R is invariant under complement if it is invariant
under the operation {0 7→ 1, 1 7→ 0}. This is equivalent to (t1, . . . , tk) ∈ R if and only if
(1 − t1, . . . , 1 − tk) ∈ R.

▶ Lemma 13 (⋆). Let A be a Boolean structure with finite signature. If A is invariant under
complement, then CSP(A ∪ {c0, c1}) is polynomial-time reducible to CSP≤1(A ∪ {̸=}).

We are now ready for analysing the complexity of CSP≤(A ∪ B) when A and B are
Boolean structures. We use a simplifying concept: a 0/1 -pair (R0, R1) contains two Boolean
relations where R0 is 0-valid but not 1-valid and R1 is 1-valid but not 0-valid.

▶ Theorem 14. Let A and B be Boolean structures such that CSP(A) is in P and CSP(A∪B)
is NP-hard. Then the following holds.
1. If A is Schaefer, then CSP≤(A ∪ B) is in FPT with parameter #ac.
2. If (i) A is not Schaefer, (ii) A is both 0- and 1-valid, (iii) B contains a 0/1-pair, and

(iv) B is 0- or 1-valid, then CSP≤2(A ∪ B) is NP-hard and CSP≤1(A ∪ B) is in P.
3. Otherwise, CSP≤1(A ∪ B) is NP-hard.

Proof. Assume A is Schaefer and let A+ = A ∪ {c0, c1}. The structure A+ is clearly a core
and A+ ∪ B is a core, too. The problem CSP(A+) is in P by Theorem 2 so Theorem 10
implies that CSP≤(A+ ∪ B) (and naturally CSP≤(A ∪ B)) is in FPT parameterized by #ac.
Since CSP(A) is in P, we know from Theorem 2 that A is 0-valid, 1-valid or Schaefer. We
assume henceforth that A is 0-valid and not Schaefer; the other case is analogous. If B is
0-valid, then CSP(A ∪ B) is trivially in P and this is ruled out by our initial assumptions.
We assume henceforth that B is not 0-valid and consider two cases depending on whether c0
is pp-definable in A or not.

P. Jonsson, V. Lagerkvist, and G. Osipov 15:11

Case 1. c0 is pp-definable in A. We know that CSP(A ∪ {c0, c1}) is NP-hard by Theorem 2
since A is not Schaefer. We can thus assume that CSP(A ∪ {c1}) is NP-hard. Lemma 9
implies that CSP≤1(A ∪ {c1}) is NP-hard. The relation c1 is in ⟨A ∪ B⟩B≤1 by Lemma 12 so
we conclude that CSP≤1(A ∪ B) is NP-hard.

Case 2. c0 is not pp-definable in A. This implies that every relation in A is simultaneously
0- and 1-valid. To see this, assume to the contrary that A contains a relation that is not
1-valid. Then, x = 0 ⇔ R(x, . . . , x) and c0 is pp-definable in A. This implies that B contains
(a) a relation that is not invariant under any constant operation or (b) every relation is
closed under a constant operation and B contains a 0/1-pair. Note that if (a) and (b) does
not hold, then B is invariant under a constant operation and CSP(A ∪ B) is trivially in P.

Case 2(a). There is a a relation R in B that is not invariant under any constant operation,
i.e. (0, . . . , 0) ̸∈ R and (1, . . . , 1) ̸∈ R. The relation R has arity a ≥ 2. Let t be the tuple in R

that contains the maximal number b of 0:s. Clearly, b < a. We assume that the arguments are
permuted so that t begins with b 0:s and continues with a − b 1:s. Consider the pp-defintion

S(x, y) ≡ R(x, . . . , x︸ ︷︷ ︸
b occ.

, y, . . . , y︸ ︷︷ ︸
a−b occ.

).

There are two possibilities: either S(x, y) ⇔ x = 0 ∧ y = 1 or S(x, y) ⇔ x ̸= y. In the first
case we are done since CSP(A ∪ {c0, c1}) is NP-hard (recall that A is not Schaefer) and
CSP≤1(A ∪ B) is easily seen to be NP-hard by Lemma 9. Let us consider the second case.
If A is invariant under complement, then CSP≤1(A ∪ B) is NP-hard by Lemma 13. If A is
not invariant under complement, then we claim that c0 and c1 can be pp-defined with the
aid of ̸=. Arbitrarily choose a relation T in A that contains a tuple t = (t1, . . . , ta) such that
(1 − t1, . . . , 1 − ta) ̸∈ T – note that t cannot be a constant tuple since both (0, . . . , 0) and
(1, . . . , 1) are in T . Assume that t contains b 0:s and that the arguments are permuted so
that t begins with b 0:s followed by a − b 1:s. Consider the pp-definition

U(x, y) ≡ x ̸= y ∧ T (x, . . . , x︸ ︷︷ ︸
b occ.

, y, . . . , y︸ ︷︷ ︸
a−b occ.

).

The relation U contains the single tuple (0, 1). We know that CSP(A ∪ {c0, c1}) is NP-hard
(recall that A is not Schaefer) and Lemma 9 implies that CSP≤2(A ∪ {c0, c1}) is NP-hard,
too. It is now easy to see that CSP≤1(A ∪ B) is NP-hard via the definition of U .

Case 2(b). Every relation in B is closed under at least one constant operation and B contains
a 0/1-pair (R0, R1). Since A is both 0- and 1-valid, it follows that CSP≤1(A ∪ B) is in P.
The constant relations c0 and c1 are pp-definable in {R0, R1} since x = 0 ⇔ R0(x, . . . , x)
and x = 1 ⇔ R1(x, . . . , x). This implies with the aid of Lemma 9 that CSP≤2(A ∪ B) is
NP-hard since A is not Schaefer. ◀

Theorem 14 carries over to Boolean Redundant(·), Equiv(·) and Impl(·) by Lemma 3
combined with Theorem 4, so these problems are in P if and only if A is Schaefer (case 2.
in Theorem 14 is not applicable when analysing these problems since it requires |B| ≥ 2).
Otherwise, they are NP-complete under polynomial-time Turing reductions. The meta-
problem for Boolean CSPs with alien constraints is decidable, i.e., there is an algorithm
that decides for Boolean structures A, B whether CSP≤(A ∪ B) is in case 1., 2., or 3. of
Theorem 14. This is obvious since we have polymorphism descriptions of the Schaefer
languages.

CP 2024

15:12 CSPs with Few Alien Constraints

6 Infinite-Domain Languages

We focus on infinite-domain CSPs in this section. We begin Section 6.1 by discussing
certain problems when CSPs with alien constraints are generalized to infinite domains.
Our conclusion is that restricting ourselves to ω-categorical structures is a viable first step:
ω-categorical structures constitute a rich class of CSPs and we can generalize at least some
of the machinery from Section 5 to this setting. We demonstrate this in Section 6.2 where
we obtain a complete complexity classification for equality languages.

6.1 Orbits and Infinite-Domain CSPs
It is not straightforward to tranfer the results in Section 5 to the infinite-domain regime. First,
let us consider Theorem 8. In contrast to finite domains, relations in B may not be finite
unions of relations in ⟨A⟩ or, equivalently, not being definable with an existential positive
formula. Second, let us consider Theorem 10: the proof is based on structures expanded
with symbols for each domain value and this leads to problematic structures with infinite
signatures. The proof is also based on the assumption that CSPs are either polynomial-time
solvable or NP-complete, and this is no longer true [5]. It is thus necessary to restrict our
attention to some class of structures with sufficiently pleasant properties. A natural choice is
ω-categorical structures that allows us to reformulate Theorem 8 as follows.

▶ Theorem 15 (⋆). Assume the following.
1. A, B are structures with the same countable (not necessarily infinite) domain A,
2. A and B are ω-categorical,
3. every relation in Orb(B) is existential primitive definable in ⟨A⟩, and
4. CSP(A) is in P

Then CSP≤(A ∪ B) is in FPT parameterized by #ac.

▶ Example 16. Results related to Theorem 15 have been presented in the literature. Recall
that RCC5 and RCC8 are spatial formalism with binary relations that are disjunctions of
certain basic relations [20]. Li et al. [17] prove that if A is a polynomial-time solvable RCC5
or RCC8 constraint language containing all basic relations, then Redundant(A) is in P.
This immediately follows from combining Theorem 4 and Theorem 15 since RCC5 and RCC8
can be represented by ω-categorical constraint languages [3, 10] and every RCC5/RCC8
relation is existential primitive definable in the structure of basic relations by definition. This
result can be generalized to a much larger class of relations in the case of RCC5 since the
orbits of k-tuples are pp-definable in the structure of basic relations [6, Proposition 35].

A general hardness result based on the principles behind Theorem 10 does not seem
possible in the infinite-domain setting, even for ω-categorical structures. The hardness proof
in Theorem 10 utilizes variables given fixed values and a direct generalization would lead
to groups of variables that together form an orbit of an n-tuple. Such gadgets behave very
differently from variables given fixed values: in particular, they do not admit a result similar
to Lemma 9. Thus, hardness results needs to be constructed in other ways.

We know from Section 4.1 that CSP≤(A ∪ B) and CSP≤((A ∪ B)c) are the same when
A and B has the same finite domain. We now consider a generalisation of cores to infinite
domains from Bodirsky [2]: an ω-categorical structure A with countable domain is a
model-complete core if every relation in Orb(A) is pp-definable in A. There is an obvious
infinite-domain analogue of Theorem 7: if A′ ∪ B′ is the model-complete core of A ∪ B (where
A, B are ω-categorical structures over a countable domain A), then CSP≤(A ∪ B) polynomial-
time reduces to CSP≤(A′ ∪ B′). Model-complete cores share many other properties with

P. Jonsson, V. Lagerkvist, and G. Osipov 15:13

cores, too. With this said, it is interesting to understand model-complete cores in the context
of CSP≤(A ∪ B), simply because they are so well-studied and exhibit useful properties. We
merely touch upon this subject by making an observation that we use in Section 6.2.

▶ Lemma 17 (⋆). Let A and B denote ω-categorical structures with a countable domain A.
Assume that A is a model-complete core and CSP(A) is in P. Then, CSP≤(A ∪ B) is in
FPT parameterized by #ac for every structure B such that Orb(B) ⊆ Orb(A).

6.2 Classification of Equality Languages
We present a complexity classification of CSP≤(A ∪ B) for equality languages A, B. Essen-
tially, there are two interesting cases: when A is Horn, and when A is 0-valid and not Horn.
In the former case, CSP≤(A ∪ B) is in FPT parameterized by #ac, while in the second case
it is pNP-hard. It turns out that the ability to pp-define the arity-c disequality relation,
where c depends only on A, using at most k alien constraints, determines the complexity. A
dichotomy for Redundant(·), Impl(·), and Equiv(·) follows: these problems are either in
P or NP-hard under polynomial-time Turing reductions.

Recall that CSP(A) for a finite equality constraint language A is in P if A is 0-valid or
preserved by a binary injective operation, and NP-hard otherwise, and that the automorphism
group for equality languages is the symmetric group Σ on N, i.e. the set of permutations on N.
It is easy to see that an orbit of a k-tuple (a1, . . . , ak) is pp-definable in {=, ̸=}. For instance,
the orbit of (0, 0, 1, 2) is defined by O(x1, x2, x3, x4) ≡ x1 = x2 ∧ x2 ≠ x3 ∧ x2 ≠ x4 ∧ x3 ̸= x4.
Observe that ̸= is invariant under every binary injective operation, so if A is Horn, then
̸=∈ ⟨A⟩ and every orbit of n-tuples under Σ is pp-definable in A. Thus, A is a model-complete
core as pointed out in Section 6.1. Lemma 17 now implies the following.

▶ Corollary 18. Let A and B be equality languages. If A is Horn, then CSP≤(A ∪ B) is in
FPT parameterized by #ac.

Thus, we need to classify the complexity of CSP≤k(A ∪ B) for every k, where A is
0-valid and not Horn, and B is not 0-valid. We will rely on results about the complexity
of singleton expansions of equality constraint languages. Let A be a constraint language
over the domain N. By A+

c we denote the expansion of A with c singleton relations, i.e.
A+

c = A ∪ {{1}, . . . , {c}}. The complexity of CSP(A+
c) for equality constraint languages A

and all constants c was classified by Osipov & Wahlström [19, Section 7], building on the
detailed study of polymorphisms of equality constraint languages by Bodirsky et al. [4].

The connection between CSP≤k(A ∪ B) and CSP(A+
c) is the following. In one direction,

we can augment every instance of CSP(A) with c fresh variables z1, . . . , zc and, assuming k

is large enough and B is not 0-valid, use B-constraints to ensure that z1, . . . , zc attain distinct
values in every satisfying assignment. Given that A is invariant under every permutation
of N, we can now treat z1, . . . , zc as constants, e.g. as 1, . . . , c, and transfer hardness
results from the singleton expansion to our problem. In the other direction, if the relation
NEQc+1 /∈ ⟨A ∪ B⟩≤k, then every satisfiable instance of CSP≤k(A ∪ B) has a solution
with range [c], and A+

c is tractable: indeed, a satisfiable instance without such a solution
would be a pp-definition of NEQc′ for some c′ > c. These connections are formalized in
Lemmas 23 and 24. We will leverage the following hardness result.

▶ Lemma 19 (Follows from Theorem 54 in [19]). Let A be a finite equality language. If A is
not Horn, then CSP(A+

c) is NP-hard for some c = c(A).

Our main tool for studying singleton expansions are retractions.

CP 2024

15:14 CSPs with Few Alien Constraints

▶ Definition 20. Let A be an equality language. An operation f : N → [c] is a retraction of
A to [c] if f is an endomorphism of A where f(i) = i for all i ∈ [c]. If A admits a retraction
f to [c], then we say that A retracts to [c], and Af is a retract (of A to [c]).

We obtain a useful characterization of retracts.

▶ Lemma 21. Let A be an equality language and f be a retraction from A to [c]. Then
f(R) = R ∩ [c]ar(R) for all R ∈ A.

Proof. First, observe that f(R) ⊆ R ∩ [c]ar(R): indeed, f is an endomorphism, so f(R) ⊆ R,
and f(R) ⊆ [c]ar(R) because the range of f is [c]. Moreover, we have R ∩ [c]ar(R) ⊆ f(R)
because f is constant on [c], so it preserves every tuple in [c]ar(R). ◀

The finite-domain language {R ∩ [c]ar(R) : R ∈ A} is called a c-slice of A in [19, Section 7].
Lemma 21 shows that a c-slice of A is the retract Af under any retraction f from A to [c].
Note that the definition of the c-slice does not depend on f , so we can talk about the retract
of A to [c]. We will use this fact implicitly when transferring results from Theorem 57 in [19].

▶ Lemma 22 (Follows from Theorem 57 in [19]). Let A be an equality language that is 0-valid
and not Horn, and let c be a positive integer. Then exactly one of the following holds:

A does not retract to [c], and CSP(A+
c) is NP-hard.

A retracts to [c], and CSP(A+
c) is NP-hard for all c ≥ 2.

A retracts to [c], and both CSP(∆+
c) for the retract ∆ and CSP(A+

c) are in P.

Let NEQr = {(t1, . . . , tr) ∈ Nr : |{t1, . . . , tr}| = r}, i.e. the relation that contains every
tuple of arity r with all entries distinct.

▶ Lemma 23 (⋆). Let A and B be equality languages and c ∈ Z+. If NEQc+1 /∈ ⟨A ∪ B⟩≤k,
then every satisfiable instance of CSP≤k(A ∪ B) has a solution whose range is in [c].

▶ Lemma 24 (⋆). Let A, B be two equality constraint languages, and let c ∈ Z+ be an integer.
CSP(A+

c) is polynomial-time reducible to CSP≤k(A ∪ B) whenever NEQc ∈ ⟨A ∪ B⟩≤k.

We are ready to present the classification.

▶ Theorem 25. Let A and B be equality languages such that CSP(A) is in P and CSP(A∪B)
is NP-hard.
1. If A is Horn, CSP≤(A ∪ B) is in FPT parameterized by #ac.
2. If A is not Horn, CSP≤(A ∪ B) is pNP-hard parameterized by #ac. Moreover, there

exists an integer c = c(A) such that CSP≤k(A ∪ B) is in P whenever NEQc /∈ ⟨A ∪ B⟩≤k,
and is NP-hard otherwise.

Proof. CSP(A) is in P so A is Horn or 0-valid. If A is Horn, then Corollary 18 applies,
proving part 1 of the theorem. Suppose A is 0-valid and not Horn. By applying Lemma 19 to
A, we infer that there is a minimum positive integer c such that CSP(A+

c) is NP-hard. Since
A is 0-valid, we have c ≥ 2. Using Lemma 24, we can reduce CSP(A+

c) to CSP≤k(A ∪ B)
in polynomial time whenever NEQc ∈ ⟨A ∪ B⟩B≤k, proving that the latter problem is NP-
hard. Observe that B is not 0-valid because CSP(A ∪ B) is NP-hard, so ̸= ∈ ⟨B⟩ and
NEQc ∈ ⟨A ∪ B⟩B≤k for some finite k ≤

(
c
2
)
. This show the pNP-hardness result in part 2.

To complete the proof of part 2, it suffices to show that we can solve CSP≤k(A ∪ B) in
polynomial time whenever NEQc /∈ ⟨A ∪ B⟩B≤k. To this end, observe that, by the choice of
c, if c′ < c, then CSP(A+

c′) is in P. Then, by Lemma 22, A retracts to the finite domain [c′],
and the retract ∆ is such that CSP(∆+

c′) is in P. We will use the algorithm for CSP(∆+
c′) in

our algorithm for CSP≤k(A ∪ B) that works for all k such that NEQc /∈ ⟨A ∪ B⟩≤k.

P. Jonsson, V. Lagerkvist, and G. Osipov 15:15

Let I be an instance of CSP≤k(A ∪ B). Since NEQc /∈ ⟨A ∪ B⟩B≤k, Lemma 23 implies
that I is satisfiable if and only if it admits a satisfying assignment with range [c−1]. Let X be
the set of variables in I that occur in the scopes of the alien constraints. Note that |X| ∈ O(k).
Enumerate all assignments α : X → [c − 1], and check if it satisfies all B-constraints in I. If
not, reject it, otherwise remove the B-constraints and add unary constraints x = α(x) for
all x ∈ X instead. This leads to an instance of CSP(∆+

c−1), which is solvable in polynomial
time. If we obtain a satisfiable instance for some α, then accept I, and otherwise reject it.
Correctness follows by Lemma 23 and the fact that the algorithm considers all assignments
from X to [c]. We make 2O(k) calls to the algorithm for CSP(∆+

c−1), where k is a fixed
constant, and each call runs in polynomial time. This completes the proof. ◀

Theorem 14 implies that CSP≤(A ∪ B) is pNP-hard if and only if CSP≤k(A ∪ B) is
NP-hard for some k, and it is in FPT parameterized by #ac otherwise. Theorem 25 now
implies a dichotomy for Redundant(·), Impl(·), and Equiv(·) over finite equality languages.

▶ Theorem 26 (⋆). Let A be a finite equality language. Then Redundant(A), Impl(A),
and Equiv(A) are either in P or NP-hard (under polynomial-time Turing reductions).

Algebraically characterizing the exact borderline between tractable and hard cases of
the problem seems difficult. In particular, given a 0-valid non-Horn equality language A,
answering whether CSP≤1(A ∪ Ā) is in P, i.e. whether NEQc ∈ ⟨A ∪ R̄⟩≤1 for some R ∈ A
and large enough c, requires a deeper understanding of such languages. However, one can
show that the answer to this, and even a more general question is decidable.

▶ Proposition 27 (⋆). There is an algorithm that takes two equality constraint languages A
and B and outputs minimum k ∈ N ∪ {∞} such that CSP≤k(A ∪ B) is NP-hard.

7 Discussion

We have focused on structures with finite signatures in this paper. This is common in the CSP
literature since relational structures with infinite signature cause vexatious representational
issues. It may, though, be interesting to look at structures with infinite signatures, too.
Zhuk [25] observes that the complexity of the following problem is open: given a system of
linear equations mod 2 and a single linear equation mod 24, find a satisfying assignment over
the domain {0, 1}. The equations have unbounded arity so this problem can be viewed as a
CSP≤1(A ∪ B) problem where A, B have infinite signatures. This question is thus not directly
answered by Theorem 14. Second, let us also remark that when considering CSP≤(A ∪ B),
we have assumed that both A and B are taken from some nice “superstructure”. For example,
in the equality language case we assume that both structures are first-order reducts of (N; =).
One could choose structures more freely and, for example, let A be an equality language and
B a finite-domain language. This calls for modifications of the underlying theory since (for
instance) the algorithm that Theorem 8 is based on breaks down.

For finite domains we obtained a coarse parameterized dichotomy for CSP≤(A ∪ B)
separating FPT from pNP-hardness. Sharper results providing the exact borderline between
P and NP-hardness for the pNP-hard cases are required for classifying implication, equivalence,
and redundancy. Via Theorem 7 and Theorem 10 the interesting case is when CSP(A) is in
P, A ∪ B is core but A is not core. This question may be of independent algebraic interest
and could be useful for other problems where the core property is not as straightforward as
in the CSP case. For example, in surjective CSP we require the solution to be surjective,
and this problem is generally hardest to analyze when the template is not a core [8].

CP 2024

15:16 CSPs with Few Alien Constraints

Any complexity classification of the first-order reducts of a structure includes by necessity
a classification of equality CSPs. Thus, our equality language classification lay the foundation
for studying first-order reducts of more expressive structures. A natural step is to study
temporal languages, i.e. first-order reducts of (Q; <). Our classification of equality constraint
languages relies on the work in [4] via [19], who studied the clones of polymorphisms of
equality constraint languages in more detail. One important result, due to Haddad &
Rosenberg [15], is that after excluding several easy cases, every equality constraint language
we end up with is only closed under operations with range [c] for some constant c. Then,
pp-defining the relation NEQc+1 brings us into pNP-hard territory. Similar characterizations
of the polymorphisms for reducts of other infinite structures, e.g. (Q; <), would imply
corresponding pNP-hardness results, and this appear to be a manageable way forward.

References
1 Libor Barto, Andrei A. Krokhin, and Ross Willard. Polymorphisms, and how to use them. In

The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl
Follow-Ups, pages 1–44. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

2 Manuel Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University
Press, 2021.

3 Manuel Bodirsky and Hubie Chen. Qualitative temporal and spatial reasoning revisited.
Journal of Logic and Computation, 19(6):1359–1383, 2009.

4 Manuel Bodirsky, Hubie Chen, and Michael Pinsker. The reducts of equality up to primitive
positive interdefinability. The Journal of Symbolic Logic, 75(4):1249–1292, 2010. doi:10.
2178/jsl/1286198146.

5 Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complexity. In
Proc. 35th International Colloquium on Automata, Languages and Programming (ICALP-2008),
pages 184–196, 2008.

6 Manuel Bodirsky and Peter Jonsson. A model-theoretic view on qualitative constraint reasoning.
Journal of Artificial Intelligence Research, 58:339–385, 2017.

7 Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of
Computing Systems, 43(2):136–158, 2008.

8 Manuel Bodirsky, Jan Kára, and Barnaby Martin. The complexity of surjective homomorphism
problems - a survey. Discrete Applied Mathematics, 160(12):1680–1690, 2012.

9 Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homogeneous
templates. In Proc. 17th International Workshop on Computer Science Logic (CSL-2003),
pages 44–57, 2003.

10 Manuel Bodirsky and Stefan Wölfl. RCC8 is polynomial on networks of bounded treewidth.
In Proc. 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pages
756–761, 2011.

11 Elmar Böhler, Edith Hemaspaandra, Steffen Reith, and Heribert Vollmer. Equivalence and
isomorphism for Boolean constraint satisfaction. In Proc. 16th International Workshop on
Computer Science Logic (CSL-2002), pages 412–426, 2002.

12 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th IEEE Annual
Symposium on Foundations of Computer Science (FOCS-2017), pages 319–330, 2017.

13 Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM SIGACT News, 37(4):85–114,
2006.

14 David A. Cohen, Peter Jeavons, Peter Jonsson, and Manolis Koubarakis. Building tractable
disjunctive constraints. Journal of the ACM, 47(5):826–853, 2000.

15 Lucien Haddad and Ivo G. Rosenberg. Finite clones containing all permutations. Canadian
Journal of Mathematics, 46(5):951–970, 1994.

16 Peter G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200:185–204, 1998.

https://doi.org/10.2178/jsl/1286198146
https://doi.org/10.2178/jsl/1286198146

P. Jonsson, V. Lagerkvist, and G. Osipov 15:17

17 Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan Both. On redundant
topological constraints. Artificial Intelligence, 225:51–76, 2015.

18 Florent R. Madelaine and Barnaby Martin. On the complexity of the model checking problem.
SIAM Journal on Computing, 47(3):769–797, 2018.

19 George Osipov and Magnus Wahlström. Parameterized complexity of equality MinCSP. arXiv
preprint arXiv:2305.11131, 2023. This is the report version of a paper that appears in Proc.
31st Annual European Symposium on Algorithms (ESA-2023), pp. 86:1-86:17.

20 David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on regions and
connection. In Proc. 3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR-1992), pages 165–176, 1992.

21 Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM
Symposium on Theory of Computing (STOC-1978), pages 216–226, 1978.

22 Henning Schnoor and Ilka Schnoor. Partial polymorphisms and constraint satisfaction problems.
In Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl
Seminar], pages 229–254. Springer, 2008.

23 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Proc.
14th Annual ACM Symposium on Theory of Computing (STOC-1982), pages 137–146, 1982.

24 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5):30:1–30:78,
2020.

25 Dmitriy Zhuk. Constraint satisfaction problem: what makes the problem easy. In Proc.
International Conference of Mathematicians 2022 (ICM-2022), pages 1530–1553, 2022.

CP 2024

A New Optimization Model for Multiple-Control
Toffoli Quantum Circuit Design
Jihye Jung1 #

H. Milton Stewart School of Ind. and Syst. Engineering, Georgia Institute of Technology, Atlanta,
GA, USA

Kevin Dalmeijer # Ñ

H. Milton Stewart School of Ind. and Syst. Engineering, Georgia Institute of Technology, Atlanta,
GA, USA

Pascal Van Hentenryck # Ñ

H. Milton Stewart School of Ind. and Syst. Engineering, Georgia Institute of Technology, Atlanta,
GA, USA

Abstract
As quantum technology is advancing, the efficient design of quantum circuits has become an important
area of research. This paper provides an introduction to the MCT quantum circuit design problem
for reversible Boolean functions without assuming a prior background in quantum computing. While
this is a well-studied problem, optimization models that minimize the true objective have only
been explored recently. This paper introduces a new optimization model and symmetry-breaking
constraints that improve solving time by up to two orders of magnitude compared to earlier work
when a Constraint Programming solver is used. Experiments with up to seven qubits and using up to
15 quantum gates result in several new best-known circuits, obtained by any method, for well-known
benchmarks. Finally, an extensive comparison with other approaches shows that optimization models
may require more time but can provide superior circuits with optimality guarantees.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Programming, Quantum Circuit Design, Reversible Circuits

Digital Object Identifier 10.4230/LIPIcs.CP.2024.16

Related Version Full Version: https://doi.org/10.48550/arXiv.2404.14384

Funding This research was partly funded by the NSF AI Institute for Advances in Optimization
(Award 2112533).

1 Introduction

As quantum technology is advancing, the efficient design of quantum circuits has become an
important area of research. The primary challenge in quantum circuit design is to implement
a target function using gates from a preset gate library to minimize the circuit costs according
to some metric. This paper focuses on three choices that are often considered in the literature:
1. Target function: Reversible Boolean function, a key component that embeds the input

data in most quantum algorithms.
2. Preset gate library: Multiple-Control Toffoli (MCT) gate, a typical high-level gate

commonly used to represent reversible Boolean functions.
3. Circuit cost: Quantum cost, the number of low-level quantum gates required to realize

the high-level gates in the circuit.

1 Corresponding author

© Jihye Jung, Kevin Dalmeijer, and Pascal Van Hentenryck;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 16; pp. 16:1–16:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jihye.jung@gatech.edu
https://orcid.org/0000-0002-5217-020X
mailto:dalmeijer@gatech.edu
https://www.isye.gatech.edu/users/kevin-dalmeijer
https://orcid.org/0000-0002-4304-7517
mailto:pvh@gatech.edu
https://www.isye.gatech.edu/users/pascal-van-hentenryck
https://orcid.org/0000-0001-7085-9994
https://doi.org/10.4230/LIPIcs.CP.2024.16
https://doi.org/10.48550/arXiv.2404.14384
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 A New Optimization Model for MCT Quantum Circuit Design

These concepts will be introduced in detail in Section 2, without assuming a prior background
in quantum computing. The goal of this paper is to introduce a new optimization model to
design quantum circuits within the setting defined above. For brevity, this problem will be
referred to as the MCT quantum circuit design problem.

Literature Review. In similar settings to the one described above, early methods for
quantum circuit design were developed based on intuitive observations and preconfigured
circuit templates. Studies in this stage constructed a base library of small-scaled circuits to
heuristically synthesize larger circuits for reversible Boolean functions [17, 9]. Post-synthesis
algorithms, such as relocation algorithms [1, 22, 18, 19], were introduced to further improve
these circuits, although the improved results cannot guarantee optimality either.

Several papers have used different representations of reversible Boolean functions to
develop efficient synthesis algorithms. Cycle representation was used to devise several
decomposition-based approaches [24, 31]. In particular, reference [24] reports an average
cost improvement of 20% for benchmark functions with up to 20 qubits. Other approaches
have leveraged the Reed-Muller expansion to decompose reversible boolean functions into
exclusive-OR terms of Boolean products. The Reed-Muller expansion and the corresponding
decision diagrams have appeared in reference [11] and [15] to address functions with up to 30
and 15 qubits, respectively. Reference [15] demonstrates a cost improvement of approximately
35% compared to previous studies, using a time limit of 600 seconds. A comparative analysis
of decision diagram approaches for Reed-Muller expansion is also proposed [27].

Another heuristic approach was proposed via a quantum multiple-valued decision diagram,
an efficient representation for matrices, to handle both reversible and irreversible functions [32].
The authors demonstrate the high scalability of the algorithm, handling functions with states
up to length 156. A* algorithm was applied to the problem with an approximate heuristic
function deduced from observations on state transitions [6], while others used heuristics based
on isomorphic subgraph matching [14] and window optimization [26]. Evolutionary algorithms
such as genetic algorithms [4], adaptive genetic algorithms [25], genetic programming [2], tabu
search [8], and particle swarm optimization [7] were also suggested to obtain near-optimal
solutions. While these methods offer different trade-offs between computation time and
circuit quality, they are all heuristic and do not provide optimality guarantees.

Meanwhile, exact synthesis methodologies have been proposed to obtain optimal quantum
circuits. Reference [10] iteratively solves satisfiability problems to obtain a quantum circuit
with the minimum number of gates. This exact approach handles benchmark functions
with three up to six qubits within a maximum of 5,000 seconds of computing time. The
method based on quantified Boolean formula satisfiability, a generalized version of Boolean
satisfiability, is also proposed to handle the same problem [29]. The authors report results
for functions with four up to six qubits using a 2,000-second time limit. The exact methods
notably handle relatively small functions but find better solutions within this space. Both
references [10] and [29] report results in terms of quantum cost, which is the total number
of low-level quantum gates required to implement a sequence of high-level logical gates.
However, they do not directly minimize this objective; instead, they minimize the number of
high-level gates as a proxy.

An optimization model was introduced to directly minimize the quantum cost in refer-
ence [13]. The authors use a multi-commodity flow-based model that is solved with a Mixed
Integer Programming (MIP) solver. The method is applied to functions with three to six
qubits, and significant improvements in quantum cost between 18.8% and 68.6% are observed.
This provides a strong motivation to optimize quantum costs directly. While good results
are obtained for small functions, the method does not scale well beyond seven gates due to
the exponential number of binary variables in the model.

J. Jung, K. Dalmeijer, and P. Van Hentenryck 16:3

Contributions. This paper introduces a new optimization model to minimize quantum cost
directly. Compared to [13], the new model is easier to implement, requires exponentially
fewer binary variables, and has a beneficial block-angular structure. Furthermore, the paper
demonstrates the advantage of Constraint Programming (CP) in solving this model. The
key contributions can be summarized as follows:

The paper introduces a new optimization model and new symmetry-breaking constraints
for MCT quantum circuit design.
The new model allows both CP and MIP solvers to significantly improve solving time,
with up to two orders of magnitude speedup when the CP solver is used.
Experiments with up to seven qubits and using up to 15 quantum gates result in several
new best-known circuits for well-known benchmarks.
An extensive comparison with other approaches shows that optimization models may
require more time but can provide superior circuits with guaranteed optimality.

The remainder of the paper is organized as follows. Section 2 presents the necessary
terminology and provides the problem description. Section 3 introduces the new optimization
model, while Section 4 introduces new symmetry-breaking constraints. The computational
results are presented by Section 5, and Section 6 concludes the paper.

2 Terminology

As discussed in the introduction, this paper designs quantum circuits for reversible Boolean
functions using MCT gates to minimize the quantum costs of the resulting circuit. The
relevant definitions are introduced here without assuming a prior knowledge of quantum
computing. Example 1 presents a running example that is used throughout this section.

Basics of Quantum Computing. A state of a quantum system is represented by qubits,
analogous to classical bits in classical computers. While bits assume values of 0 or 1 to
define a single basis state (i.e., a binary vector), qubits may represent a superposed state
(i.e., a complex vector) formed as a convex combination of the basis states. A quantum gate
operates on qubits to transition the system to a new state based on the specification. Not
every state transition can be realized by a single elementary gate, and multiple quantum
gates may be combined into a quantum circuit to represent more complicated functions.

Reversible Boolean Function. A reversible Boolean function is a bijective function where
inputs and outputs are provided as binary strings of fixed length. This function corresponds
to a unique permutation and is often presented in the form of a truth table. It is noteworthy
that reversible Boolean functions have been recognized as fundamental operators in quantum
computing, thus explored extensively in prior research on quantum circuit synthesis [23].

Example 1a provides an example of a three-qubit reversible Boolean function. The
specification defines a one-to-one mapping for each of the 23 = 8 basis states. For instance,
the input state (qubit 1, qubit 2, qubit 3)= (1, 1, 0) is mapped to the output state
(qubit 1, qubit 2, qubit 3) = (0, 1, 1), or 110 → 011 for short. It is sufficient to only
specify the function for the basis states: when superposed states are involved, they can
simply be decomposed into a convex combination of basis states, after which the function
can be applied to each basis state according to the specification.

CP 2024

16:4 A New Optimization Model for MCT Quantum Circuit Design

Input Output Input Output

000 001 100 101
001 000 101 100
010 110 110 011
011 111 111 010

(a) Truth Table (completely specified).

d=1 d=2 d=3
q = 1

q = 2

q = 3

(b) Implementing Circuit.

Example 1 Specification and Implementing Circuit (interactive: algassert.com/quirk).

Multiple Control Toffoli (MCT) Circuit. MCT circuits consist of a sequence of MCT
gates. Example 1b provides a circuit that meets the specification of Example 1a. It has three
horizontal lines (one for each qubit q) and three MCT gates (one per column d). An MCT
gate consists of one target qubit with the ⊕ symbol and zero or more control qubits with the
• symbol. Control qubits do not have to be adjacent, and vertical lines connect the control
qubits to the target qubit. For a given input, the circuit is read from left to right, and the
MCT gates are applied one at a time. Transitions follow the following rule: if all the control
qubits are in state 1, then the target qubit is flipped.

For example, consider the input 110 and start from the very left of the given circuit
Example 1b. The top line has value 1, the middle line has value 1 and the bottom line has
value 0. The first gate has one control qubit on line two. It follows that all control qubits
are in state 1. As a result, the target qubit (qubit 1) is flipped, changing the state to 010
after the first gate. The second gate has two control qubits, but they are not all in state 1
(qubit 1 is in state 0) so nothing happens. The third gate does not have any control bits, so
the target qubit is flipped. This results in the output 011. That is, the total transition is
110 → 010 → 010 → 011, meeting the specification. It can be checked that the circuit meets
the specifications for the other input states as well.

An important property of MCT circuits is that they are reversible, i.e., they perform the
inverse operation when read from right to left [24]. Therefore, MCT circuits are a natural
candidate to represent reversible Boolean functions. In fact, it is well-known that every
reversible Boolean function can be represented in this way.

Quantum Costs. To implement an MCT circuit in practice, each MCT gate is decomposed
into elementary quantum gates. The number of elementary quantum gates is a well-established
proxy for the cost of the MCT circuit, known as the quantum cost. Table 1 summarizes the
best-known quantum cost f(c) for an MCT gate that uses a total of c ≥ 0 control qubits
[5, 16, 10]. Note that the costs change based on the number of slack qubits that are available
and that are not used in the MCT gate otherwise. The cost of the circuit in Example 1 is
f(1) + f(2) + f(0) = 7. Note that the costs in the table may go down in the future as better
decompositions are found. It can also be seen that the quantum cost of an MCT gate tends
to increase rapidly as more control qubits are added.

Remarks on Incomplete Specification. In Example 1, the truth table was completely
specified, but this does not always have to be the case: depending on the application,
there may be specific qubits that are used in the computation but for which the output is
uninteresting (don’t care qubits). However, every circuit implementation still represents a
bijective function that assigns specific states to the don’t cares, due to the reversible nature
of quantum operators. Note that don’t cares apply only to the outputs, whereas the inputs
are completely specified in practice.

https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%5D%2C%5B%22X%22%2C%22%E2%80%A2%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%5D%2C%5B%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%5D%2C%5B1%2C1%2C%22X%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%5D%5D%2C%22init%22%3A%5B1%2C1%5D%7D

J. Jung, K. Dalmeijer, and P. Van Hentenryck 16:5

Table 1 Quantum Costs for MCT Gates (dots indicate the same cost as above; slack qubits are
qubits that are available but not used in the MCT gate).

Control qubits p

Slack qubits 0 1 2 3 4 5 6 ≤ 7
0 1 1 5 13 29 62 125 2p+1 − 3
1 · · · · · 52 80 ·
2 · · · · 26 · · ·
3 · · · · · 38 · ·

≤ 4 · · · · · · 50 ·

Input Output Impl. 2b Input Output Impl. 2b

000 00- 001 100 101 101
001 00- 000 101 100 100
010 11- 111 110 011 011
011 --- 110 111 010 010

(a) Incompletely Specified Truth Table.

d=1 d=2
q = 1

q = 2

q = 3

(b) Implementing Circuit.

Example 2 Specification and Implementing Circuit (interactive: algassert.com/quirk).

Example 2 turns the complete specification of Example 1 into an incomplete specification
by replacing some of the output qubits by “-” (don’t care) instead of 0 or 1. Note that the
circuit in Example 1b is still valid, but with the additional freedom it might be possible to
find a circuit with a cost lower than 7. Example 2b shows that a better circuit can indeed
be found. The outputs of this implementation are added to Example 2a under “Impl. 2b”.
These outputs are different from the circuit in Example 1, but they both meet the incomplete
specification. At a cost of only f(1) + f(0) = 2, the new circuit is a better implementation.

3 Optimization Model

This section presents a new optimization model to design minimum-cost MCT quantum
circuits that meet a given specification. The new model is provided as Model (1) in
Figure 3, and the different components will be introduced over the next several paragraphs.
Constraints (1h)-(1i) are introduced as logical constraints first to clearly state their intent,
after which a linear implementation is provided as just one possible implementation. An
overview of the nomenclature is provided in Appendix A for convenience. While [13] and
this paper both use network flows to model quantum state transitions, there are significant
differences between the models that will be discussed at the end of this section.

Circuit Design. The design of a quantum circuit is modeled through variables that describe a
quantum circuit diagram such as Example 1b or Example 2b. The set of qubits Q = {1, . . . , n}
describes the rows, while the set of gates D = {1, . . . , m} describes the columns. Note that
the maximum number of gates m is an input to the problem. Variables td

q and wd
q are

binary variables in Model (1) that indicate whether (q, d), contains a target or control qubit,
respectively, for any q ∈ Q, d ∈ D. Constraints (1b) state that each spot contains a target
qubit, a control qubit, or neither; but not both. Constraints (1c) enforce at most one target
qubit per gate. Gates without a target qubit are forced to be empty through Constraints (1d).
The variables are defined in Equation (1j).

CP 2024

https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%5D%2C%5B%22X%22%2C%22%E2%80%A2%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%5D%2C%5B1%2C1%2C%22X%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%5D%5D%2C%22init%22%3A%5B1%2C1%5D%7D

16:6 A New Optimization Model for MCT Quantum Circuit Design

min
∑
d∈D

∑
j∈Q

f(j − 1)yd
j , (1a)

s.t. td
q + wd

q ≤ 1 ∀q ∈ Q, d ∈ D, (1b)∑
q∈Q

td
q ≤ 1 ∀d ∈ D, (1c)

wd
q ≤

∑
r∈Q

td
r ∀q ∈ Q, d ∈ D, (1d)

∑
j∈Q

jyd
j =

∑
q∈Q

td
q +

∑
q∈Q

wd
q ∀d ∈ D, (1e)

∑
j∈Q

yd
j ≤ 1 ∀d ∈ D, (1f)

∑
a∈δ+

k
(v)

xk
a −

∑
a∈δ−

k
(v)

xk
a =

|Ωin

k | if v = S

−|Ωin
k | if v = T

0 else
∀k ∈ K, v ∈ V, (1g)

∨
q0∈Q0

σ(a)

(
w

d(a)
q0 = 1

) ∨ (
t
d(a)
q(a) = 0

)
=⇒ xk

a = 0 ∀k ∈ K, a ∈ Aflip
k , (1h)

∧
q0∈Q0

σ(a)

(
w

d(a)
q0 = 0

) ∧ ∑
q∈Q

td(a)
q = 1

 =⇒ xk
a = 0 ∀k ∈ K, a ∈ Akeep

k , (1i)

td
q , wd

q , yd
j ∈ {0, 1} ∀q, j ∈ Q, d ∈ D, (1j)

xk
a ∈ {0, 1} ∀k ∈ K, a ∈ Ak. (1k)

Figure 3 Optimization Model.

Quantum Cost. An MCT gate with c ≥ 0 control qubits incurs a quantum cost of f(c), as
defined in Table 1. Let yd

j be a binary indicator that takes value one if gate d ∈ D contains
exactly j ∈ Q target and control qubits, or zero otherwise. Objective (1a) then calculates the
total quantum cost over all gates. Note that the input q − 1 subtracts the single target qubit,
as f(.) is defined in terms of control qubits only. When gate d ∈ D is empty, all indicators
yd

j are zero (note j ≥ 1) and there is no contribution to the objective. The y-variables are
forced to take the correct values by Constraints (1e) and (1f). The former ensures that the
indicators together represent the total number of target and control qubits, and the latter
ensures that at most one indicator is active.

Intuition Flow Networks. The new model uses network flows to model the state transitions
that are caused by the circuit. Before formally introducing this part of the model, this
paragraph aims to give some intuition through Figure 4. The graph in this figure has vertices
(σ, d) that indicate being in state σ ∈ Ω before gate d ∈ D is applied. The arrows show the
transitions when state 010 is provided as an input to Circuit 2b. That is, gate d = 1 carries
out the transition 010 → 110 (vertex (010, 1) to (110, 2)), and gate d = 2 carries out the
transition 110 → 111 (vertex (110, 2) to (111, 3)), for a total transition of 010 → 111.

Which state transitions are available depends on the design of the circuit. The dotted
lines in Figure 4 show the state transitions that are allowed when the circuit design variables
represent Circuit 2b. Because of the reversible nature of MCT gates, the dotted lines create

J. Jung, K. Dalmeijer, and P. Van Hentenryck 16:7

Figure 4 Flow Network Example for k = 2 corresponding to Example 2.

bijections between the states. As such, flow entering vertex (σ, 1) is pushed to a unique
vertex (σ′, m + 1), which represents the transition σ → σ′ that is caused by the circuit. To
make sure that the state transitions match the specification, a source S and a sink T are
added. The source pushes the flow to a particular input state, while the sink only accepts
flow from the correct output states. In the example, input state 010 has output specification
11− (Table 2a). As such, the source pushes flow to 010, and the sink only accepts flow from
110 and 111. If no flow from S to T is possible, then the circuit fails to meet the specification,
and the current assignment of the circuit design variables is infeasible.

A separate flow network is introduced for each input state to ensure that the circuit
meets all the specifications. The model is further improved by grouping input states with
the same output specification into commodities. For a completely specified function, each
commodity is associated with a single input state. In contrast, for an incomplete function,
multiple input states can be grouped together based on the output specification. The source
pushes a unit flow to each of the input states in the group. The flows remain separated
due to the bijections, and are eventually collected by the sink. Note that this grouping is
only possible when input states have the same output specification, and therefore the arcs
connecting to the sink are the same.

Quantum States and Flow Commodities. Given the intuition, this paragraph formalizes
the quantum states and the flow commodities. The set Ω of basis states is given by the
2n binary vectors of length n. For example, Ω = {000, 001, 010, 011, 100, 101, 110, 111} in
Example 2. States with the same (possibly incomplete) output specification will be modeled
together and grouped into commodities k ∈ K. Each commodity is represented by the set
Ωin

k ⊆ Ω of corresponding input states. Again, using Example 2: Ωin
1 = {000, 001} (output

specification 00−), Ωin
2 = {010} (output specification 11−), etc. In addition, the set Ωout

k

defines the permitted output states for each commodity k ∈ K. In the example this yields
Ωout

1 = {000, 001} (both match 00−), Ωout
2 = {110, 111} (both match 11−), etc. Note that

the sets Ωin
k partition Ω by definition, while the sets Ωout

k may overlap and together cover Ω.

Flow Networks. Next, flow networks are defined that model the state transitions throughout
the circuit. Figure 4 continues to provide a running example for this paragraph. A graph
Gk = (V, Ak) is defined for each commodity k ∈ K. The vertex set V consists of a source S,
a sink T , and the vertices (σ, d) for σ ∈ Ω, d ∈ D ∪ {m + 1}. Each vertex (σ, d) represents
being in state σ right after gate d − 1 or right before gate d, i.e., gate d is to be applied next.
The arc set Ak of commodity k ∈ K consists of four components:

CP 2024

16:8 A New Optimization Model for MCT Quantum Circuit Design

Source arcs that connect the source to the commodity input states: (S, (σ, 1)) ∀σ ∈ Ωin
k .

Sink arcs that connect permitted output states to the sink: ((σ, m + 1), T), ∀σ ∈ Ωout
k .

Flip arcs Aflip
k that represent the cases when gate d ∈ D acts on state σ ∈ Ω by flipping

bit q ∈ Q. Let σ ⊕ q denote state σ with bit q flipped. Then Aflip
k consists of arcs

((σ, d), (σ ⊕ q, d + 1)), ∀d ∈ D, σ ∈ Ω, q ∈ Q.
Keep arcs Akeep

k that represent the cases when gate d ∈ D keeps state σ ∈ Ω the same.
That is, the keep arcs are given by ((σ, d), (σ, d + 1)), ∀d ∈ D, σ ∈ Ω.

The state transitions for commodity k ∈ K are represented by a network flow in Gk.
Equation (1k) defines flow variables xk

a that take on value one if arc a ∈ Ak is used, and zero
otherwise. The required flow is a flow from the source to the sink of size |Ωin

k |. This flow is
distributed to all the input states Ωin

k by the source arcs, after which the flip and keep arcs
model the state transitions. The only way to reach the sink is through the sink arcs that
start from one of the permitted output states Ωout

k . The flow balance constraints (1g) enforce
that the xk

a variables represent such a flow. Here δ+
k (v) and δ−

k (v) denote the out-arcs and
in-arcs of vertex v ∈ V , respectively.

It remains to connect the circuit design decisions to the network flows, i.e., ensure that
arcs can only be used if they match the circuit specification. For convenience, the following
shorthands are used for properties of flip and keep arcs a ∈ Aflip

k ∪ Akeep
k : d(a) ∈ D is the

gate associated with arc a, q(a) ∈ Q is the qubit that is flipped by arc a (flip arcs only), and
σ(a) ∈ Ω is the state that the arc a transitions from. Furthermore, for a given state σ ∈ Ω it
will be convenient to define Q0

σ as the set of qubits that are in state 0, e.g., Q0
010 = {1, 3}.

Constraints (1h) and (1i) eliminate the flow from all flip and keep arcs that do not match
the circuit specification. This can be seen by considering the outgoing arcs of an arbitrary
vertex (σ, d), σ ∈ Ω, d ∈ D. That is, the set of one keep arc and n flip arcs that model the
state transition due to gate d.

Case 1: Gate d flips some qubit q̄ ∈ Q. Based on the transition rule (Section 2) this
means that q̄ is the target qubit (td

q̄ = 1) and all controls are on qubits with value 1
in state σ. Or alternatively, none of the controls are on qubits with value 0 in state σ

(wd
q0 = 0 ∀q0 ∈ Q0

σ). It follows that the antecedent of (1i) holds and that the keep arc is
excluded as expected. Flip arcs a are eliminated by (1h) as soon as they flip the wrong
qubit, i.e., q(a) ̸= q̄, which implies td

q(a) = 0. The arc that flips q̄ is the only flip arc that
is not excluded by (1h), as the target is in the right place (td

q(a) = 1) and all controls are
on the zero states (wd

q0 = 0).
Case 2: Gate d keeps state σ the same. Either there is no target qubit, in which case all
flip arcs have td

q(a) = 0 and get eliminated by (1h) while the keep arc is unaffected by
(1i). Or there is a target qubit q̄, but at least one of the controls is on a zero state, i.e.,
wd

q0 = 1 for some q0 ∈ Q0
σ. It follows again that all flip arcs are eliminated while the keep

arc is unaffected.

It is concluded that Constraints (1h)-(1i) close the correct arcs to match the design of the
circuit, which completes the model. It should also be noted that the flow variables may
be relaxed to the continuous domain xk

a ∈ [0, 1] ∀k ∈ K, a ∈ Ak. This follows from the
fact that for fixed values of the t, w, and y-variables the remaining problem decomposes
into |K| independent minimum-cost flow problems, which are known to have the integrality
property [3]. This means that the new model requires only O(nm) binaries.

J. Jung, K. Dalmeijer, and P. Van Hentenryck 16:9

Implementation of (1h)-(1i). There are multiple ways to implement Constraints (1h)-(1i),
depending on the solver. This paper reformulates the implications as linear constraints,
which are widely supported. The conversion is straightforward (e.g., see [30]), and results in
the following inequalities that replace (1h)-(1i):

xk
a ≤ t

d(a)
q(a) ∀k ∈ K, a ∈ Aflip

k , (2a)

xk
a ≤ 1 − w

d(a)
q0 ∀k ∈ K, a ∈ Aflip

k , q0 ∈ Q0
σ(a), (2b)

xk
a ≤ 1 −

∑
q∈Q

td(a)
q +

∑
q0∈Q0

σ(a)

w
d(a)
q0 ∀k ∈ K, a ∈ Akeep

k . (2c)

Comparison to [13]. The new optimization model differs from [13] in a number of significant
ways. First, [13] separately treat four cases for each state transition: empty gate (no flip),
zero control qubits (flip), one or more control qubits with flip, one or more control qubits
without flip. The new model captures all these cases in the same framework, significantly
simplifying the formulation. Another important difference is in how the circuit is connected to
opening and closing the flow arcs. [13] define a binary variable for each state σ ∈ Ω and gate
d ∈ D that identifies whether this state is modified by the gate, which introduces O(2nm)
binary variables. The new model provides a much more direct way to close arcs through
Constraints (1h) and (1i). Compared to [13], this multiplies the number of constraints
by a factor of O(n2), but no additional binary variables are necessary. As a result, the
new model requires only O(nm) binary variables. The number of flow variables remains
at O(2nnm|K|). However, as mentioned before, the new model decomposes into smaller
independent minimum-cost flow problems for a fixed design. This implies that the formulation
has a block-angular structure that may be exploited by decomposition methods in future
work.

4 Symmetry-Breaking Constraints

It has been observed previously that the optimal quantum circuit design is not necessarily
unique. The paper by [13] observes that empty gates do not affect the overall circuit, and
constraints are added to force empty gates to appear at the end. The work by [12] presents
multiple transformations that lead to new circuits with equivalent outputs (but not necessarily
the same quantum cost). Inspired by these observations, this section defines three different
swap operations – Swap 1, Swap 2, and Swap 3 – that result in a different but equivalent
circuit with the same cost. It will be proven that repeatedly applying these operations
eventually results in a circuit that is unswappable, i.e., no further swaps of these types can
be applied. This makes it possible to introduce symmetry-breaking constraints that limit
the search to unswappable circuits, without loss of optimality. After all, every swappable
quantum circuit is associated with an unswappable quantum circuit that has the same cost.
The swaps used in this paper are introduced below, and future works may expand the list to
eliminate additional symmetries.

Swap 1: Empty Gate. If gate d ∈ D is empty (
∑

q∈Q td
q = 0) and gate d + 1 is not empty

(
∑

q∈Q td+1
q = 1), then swap the two gates.

Swap 2: Different Target. If the target qubit q ∈ Q of gate d ∈ D is at a higher line than
the target qubit r ∈ Q of gate d + 1 (q > r, lower in the diagram), and the target qubits
do not neighbor a control qubit (wd+1

q = 0 and wd
r = 0), then swap the two gates. It was

observed by [12] that the target qubits do not affect the control qubits in either direction,
and hence the gates can safely be swapped. Example 5a-5b provides a visualization.

CP 2024

16:10 A New Optimization Model for MCT Quantum Circuit Design

q = 1

q = 2

q = 3

q = 4

(a) Before Swap 2. (b) After Swap 2. (c) Before Swap 3. (d) After Swap 3.

Example 5 Swap Operations.

Swap 3: Same Target. If gate d ∈ D and gate d + 1 have the same target qubit q ∈ Q

(td
q = 1 and td+1

q = 1), and gate d has fewer control bits (
∑

r∈Q wd
r <

∑
r∈Q wd+1

r), then
swap the two gates. Again, the target qubits do not affect the neighboring control qubits,
which justifies the swap. A visualization is provided by Example 5c-5d.

▶ Proposition 1. Any swappable circuit can be turned into an unswappable circuit by
repeatedly applying Swap 1-3.

Proof. See Appendix B. ◀

Constraints. Proposition 1 justifies symmetry-breaking constraints that enforce that the
circuit is unswappable. The three swaps are translated into the following three classes of
inequalities: ∑

q∈Q

td
q ≥

∑
q∈Q

td+1
q ∀d ∈ D, (3a)

td
q + td+1

r ≤ 1 + wd+1
q + wd

r ∀d ∈ D, q, r ∈ Q, q > r, (3b)∑
r∈Q

wd
r −

∑
r∈Q

wd+1
r ≥ (n − 1)(td

q + td+1
q − 2) ∀d ∈ D, q ∈ Q. (3c)

Constraints (3a) prevent Swap 1 by forcing gate d ∈ D to be non-empty when gate d + 1 is
non-empty. A similar constraint is used in [13]. Constraints (3b) model that if the target bits
are set up correctly for Swap 2 (left-hand side of the equation equals two), then wd+1

q = 1
or wd

r = 1. This is necessary because wd+1
q = wd

r = 0 would allow Swap 2 to be applied.
The constraint is automatically satisfied when the left-hand side is less than two. Finally,
consider Constrains (3c). If the gates have targets on the same qubit (td

q = td+1
q = 1) then

the constraint reduces to
∑

r∈Q wd
r ≥

∑
r∈Q wd+1

r to prevent Swap 3. The term n − 1 (the
maximum number of control bits per gate) is sufficiently large to make the constraint inactive
when the targets are not on the same qubit.

5 Computational Experiments

Computational experiments on well-known benchmarks are presented to demonstrate the
performance of the new optimization model. The new model and the symmetry-breaking
constraints are implemented in Python 3.11 and run on a Linux machine with dual Intel
Xeon Gold 6226 CPUs (24 cores in total) on the PACE Phoenix cluster [20]. CP-SAT
9.8.3296 [21] is used as the CP solver with 24 workers (threads), and Gurobi 11.0.0 is used for
the MIP approach. The instances are sourced from RevLib [28], a common benchmark for
reversible and quantum circuit design. This paper selects boolean functions with up to seven
qubits that have known circuit implementations in fewer than 100 gates. After removing
easy three-qubit functions, a benchmark suite of 49 functions remains. A time limit of 3600

J. Jung, K. Dalmeijer, and P. Van Hentenryck 16:11

Table 2 Performance New Optimization Model compared to [13].

Average Runtime (s) Solved Instances

m = 6 m = 7 m = 8 Limit m = 6 m = 7 m = 8

[13] (MIP) 6,614 21,126 29,895 36,000 36/38 20/38 7/38
New Model (MIP) 160 1252 2541 3,600 38/38 38/38 15/38
New Model (CP) 12 115 1193 3,600 38/38 38/38 28/38

Table 3 Performance New Optimization Model with CP on Large Instances.

m = 6 m = 7 m = 8 m = 9 m = 10

Average Runtime (s) 14 111 1,101 2,140 2,502
Solved Instances 49/49 49/49 37/49 23/49 18/49

m = 11 m = 12 m = 13 m = 14 m = 15

Average Runtime (s) 2,754 2,757 2,753 2,761 2,758
Solved Instances 13/49 13/49 13/49 13/49 13/49

seconds per instance is imposed in all experiments. The circuit design problem is considered
to be solved if an optimal circuit implementation is found and proven to be optimal, or if it
is proven that the problem is infeasible. If no circuit is found, or if optimality cannot be
proven within the time limit, then the time limit is reported as the runtime.

Performance New Optimization Model. The performance of the new optimization model
is first compared to the optimization model by [13]. To the best of our knowledge, [13] is the
first MIP approach to the MCT quantum circuit design problem and therefore closests to
the current work. Results are compared for the 38 reversible functions that overlap with the
benchmark suite in this paper and experiments are conducted for m ∈ {6, 7, 8} number of
gates.

Table 2 demonstrates that the new optimization model completely outperforms previous
work. Even accounting for the difference in hardware (6 cores vs. 24 cores), the new model
is an order of magnitude faster when solved with Gurobi. When solved with CP-SAT, the
new runtimes even improve by another magnitude. For m = 6 for example, CP is over 500x
times faster than the runtime reported in [13]. It can also be seen that the new model solves
significantly more instances. All benchmarks with m = 7 gates can now be solved, where
only 20 out of 38 were solved previously. Further inspection of the results reveals that every
instance that is solved by [13] is solved by the new model as well, regardless of whether MIP
or CP was used. When CP fails to solve the problem (which only happens for m = 8), the
best feasible solution is never worse than the best feasible solution obtained by [13]. The
best performance is clearly obtained by the new model with CP, and this is the setting that
is used for the remainder of the experiments.

Larger Instances. The improved performance of the new optimization model motivates
experiments on the full benchmark suite for m = 6 up to m = 15 gates. This includes
reversible functions such as rd53 and decod24-enable that were not previously considered,
and a number of gates that far exceeds the m = 8 gates in the experiments by [13].

CP 2024

16:12 A New Optimization Model for MCT Quantum Circuit Design

Figure 6 Solution Status of New Model with CP at 1-Hour Time Limit.

Table 3 shows that a big step was made in handling larger instances. All instances with
up to m = 7 gates can now be solved in a matter of minutes on average, including the more
complicated circuits. While most instances with m = 8 gates can still be solved within one
hour, the average runtime starts to rise sharply at this point. It is clear that more work
remains to be done to solve the largest instances, although 13 out of the 49 instances with
m = 15 gates can already be solved.

Figure 6 details the final solution status (infeasible, optimal, suboptimal, or timeout) for
each of the large instances. The newly added reversible functions are 449 up to sym6 on the
right side of the figure. It is interesting to observe that these functions require a relatively
large number of gates. For example, rd53 (marked with a ⋆) is proven infeasible for m = 6
and m = 7, and the solver was unable to find a feasible solution for m ∈ {8, 9, 10}, which are
presumably infeasible. At m = 11, however, the solver fails to prove optimality but does find
a feasible circuit. This circuit, shown in Appendix C, improves the state of the art with a
quantum cost of 47, using only seven qubits. Compare this to [14], for example, who obtain
a circuit with quantum cost 86 that requires 12 qubits. This demonstrates the benefit of
using a model that can handle a larger number of gates, as good results may be obtained
even when optimality cannot be proven.

Effect of Symmetry-Breaking Constraints. Figure 7 demonstrates the benefit of using
symmetry-breaking constraints (3a)-(3c). Without symmetry-breaking constraints, all in-
stances with m = 6 and m = 7 gates can still be solved, but the average solution times are
29% and 139% longer, respectively. For m ≥ 8 gates, the difference in solvability becomes
apparent. Out of the largest instances with m = 15 gates, only graycode6 can be solved
without breaking symmetries, while 13 instances can be solved when the constraints are
included. It is not surprising that the symmetry-breaking constraints are more effective for
longer circuits (i.e., large m values), as they are expected to have more symmetric solutions.
More interestingly, adding the constraints outperforms the built-in symmetry detection in
CP-SAT, which suggests that the symmetries observed in this paper are not obvious to detect
automatically.

Comparative Analysis. A comparative analysis is provided to show how optimization-based
methods fit in with other methods considered in the literature. Papers are selected that
synthesize the entire circuit from scratch (as opposed to post-processing), that report quantum
cost and computation time for every experiment, and for which the benchmark suite overlaps
significantly with the current paper. This results in five studies that are summarized by

J. Jung, K. Dalmeijer, and P. Van Hentenryck 16:13

Figure 7 Comparison Symmetry-Breaking Constraints.

Table 4 Summary of Papers for Comparative Analysis.

Paper Method Objective Type Gate Lib. Max Time

[15] Reed-Muller
+ decision diagram Gate count Heuristic MCT 600s

[14] Subgraph matching
+ decision diagram Qubit count Heuristic MCT up to

two controls <1s

[10] Satisfiability
problem Gate count Exact MCT 5,000s

[29] Quantified Boolean
satisfiability problem Gate count Exact MCT 2,000s

[13] Optimization model
+ MIP solver Quantum cost Exact MCT 36,000s

Current Optimization model
+ CP solver Quantum cost Exact MCT 3,600s

Table 4. The papers provide a mix of exact and heuristic methods that provide different
trade-offs in terms of solution time and solution quality. Also note that while all papers
report quantum cost, the methods themselves often use a different objective function as a
proxy, such as minimizing the number of gates or the number of qubits.

Figure 8 includes 42 plots that show the performance of each method with a circle on
the two-dimensional time-quantum cost plane. As for the results of this study, we select a
solution with the smallest m value that brings the lowest quantum costs regardless of the
proven optimality. Thus, circles with black borders indicate the current paper, and blue
circles indicate that the solution was proven to be optimal in the selected m in terms of
quantum cost, which is only optimized directly by [13] and this paper. While the current
paper only considers circuits for a given number of qubits, [14] and [15] introduce additional
qubits to obtain a feasible design. The number of qubits used is indicated by the relative size
of the circle in Figure 8. A circuit is considered better if it has a lower quantum cost, and
methods are preferred when they have a shorter solution time and introduce fewer ancilla
qubits. That is, small circles in the lower-left are preferred.

Figure 8 shows that the current method outperforms the other methods in quantum cost
(or in solution time if quantum cost is tied) in 29 out of 42 cases. These function names are
marked by a blue box in the top right corner. Even when the new model does not reduce
quantum cost or solution time, it can still provide a benefit of guaranteed optimality (e.g.,
4gt11-v0, 4gt11-v0, 4mod5-v0, 4mod5-v1, alu-v2, decod24-v0, decod24-v3, graycode6,
mod5d1, mod5d2) or fewer ancilla qubits (e.g., 449). It should be noted, however, that the
improved performance comes at the cost of a longer solution time: if only limited time is
available, some of the other methods are better suited to provide good solutions quickly.

CP 2024

16:14 A New Optimization Model for MCT Quantum Circuit Design

Figure 8 Comparison of Best Results with Previous Studies.

J. Jung, K. Dalmeijer, and P. Van Hentenryck 16:15

Figure 8 Comparison of Best Results with Previous Studies. (cont.).

CP 2024

16:16 A New Optimization Model for MCT Quantum Circuit Design

In particular, [29] provides high-quality solutions in a short amount of time, but improve-
ments are still possible for some instances. For decod24-v1 for example, [29] presents a
circuit with six gates and a quantum cost of 14. This solution is found by first minimizing
the number of gates, and then minimizing the quantum cost when the number of gates is
fixed to six. The new optimization model, however, can directly solve the case with seven
gates to find a circuit with quantum cost 11. This indicates that even for a small circuit
of only four qubits, significant savings may still be obtained: a 21% cost reduction in this
case. Overall, six new circuits have been found with new best-known quantum costs. These
circuits are presented in Appendix C.

6 Conclusion

This paper introduced a new optimization model and symmetry-breaking constraints for the
MCT quantum circuit design problem. The new model simplifies earlier work and drastically
reduces the number of binary variables in the formulation. Computational experiments have
shown that the new model allows both CP and MIP solvers to significantly improve solving
time, with up to two orders of magnitude speedup when the CP solver is used. Experiments
with larger instances of up to seven qubits and 15 gates have resulted in six new circuits with
a lower cost than the previously best known. It was also shown that the symmetry-breaking
constraints are very effective, especially in larger instances. Finally, a detailed comparison
demonstrated that optimization models may require more time, but can provide superior
circuits with guaranteed optimality.

There are several directions that may be explored in future work. While the new
optimization model is effective, technical work remains to be done to scale to instances with
more gates and more qubits. One opportunity would be to apply decomposition methods,
as the structure of the proposed optimization model is such that the problem decomposes
into independent minimum-cost flow problems when the binary variables are fixed. Another
potential direction would be to extend the optimization model to different gate libraries or
to directly optimize over elementary quantum gates instead of MCT gates.

References
1 Nabila Abdessaied, Mathias Soeken, Robert Wille, and Rolf Drechsler. Exact Template

Matching Using Boolean Satisfiability. In International Symposium on Multiple-Valued Logic,
pages 328–333, 2013. doi:10.1109/ismvl.2013.26.

2 Mustapha Y. Abubakar, Low Tang Jung, Nordin Zakaria, Ahmed Younes, and Abdel-Haleem
Abdel-Aty. Reversible circuit synthesis by genetic programming using dynamic gate libraries.
Quantum Information Processing, 16(6):1–24, 2017. doi:10.1007/s11128-017-1609-8.

3 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, 1993.

4 Mohammad AlFailakawi, Imtiaz Ahmad, Laila AlTerkawi, and Suha Hamdan. Depth optimiz-
ation for topological quantum circuits. Quantum Information Processing, 14(2):447–463, 2015.
doi:10.1007/s11128-014-0867-y.

5 Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Mar-
golus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Element-
ary gates for quantum computation. Physical Review A, 52(5):3457–3467, 1995. doi:
10.1103/physreva.52.3457.

6 Kamalika Datta, Gaurav Rathi, Indranil Sengupta, and Hafizur Rahaman. Synthesis of
Reversible Circuits Using Heuristic Search Method. In International Conference on VLSI
Design, pages 328–333, 2012. doi:10.1109/vlsid.2012.92.

https://doi.org/10.1109/ismvl.2013.26
https://doi.org/10.1007/s11128-017-1609-8
https://doi.org/10.1007/s11128-014-0867-y
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1109/vlsid.2012.92

J. Jung, K. Dalmeijer, and P. Van Hentenryck 16:17

7 Kamalika Datta, Indranil Sengupta, and Hafizur Rahaman. Particle Swarm Optimization
Based Circuit Synthesis of Reversible Logic. In International Symposium on Electronic System
Design, pages 226–230, 2012. doi:10.1109/ised.2012.33.

8 Alexandre A. A. de Almeida, Gerhard W. Dueck, and Alexandre C. R. da Silva. Reversible
Circuit Optimization Based on Tabu Search. In International Symposium on Multiple-Valued
Logic, pages 103–108, 2018. doi:10.1109/ismvl.2018.00026.

9 Oleg Golubitsky and Dmitri Maslov. A Study of Optimal 4-Bit Reversible Toffoli Circuits
and Their Synthesis. IEEE Transactions on Computers, 61(9):1341–1353, 2011. doi:10.1109/
tc.2011.144.

10 Daniel Große, Robert Wille, Gerhard W. Dueck, and Rolf Drechsler. Exact Multiple-
Control Toffoli Network Synthesis With SAT Techniques. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 28(5):703–715, 2009. doi:10.1109/
tcad.2009.2017215.

11 Pallav Gupta, Abhinav Agrawal, and Niraj K. Jha. An Algorithm for Synthesis of Reversible
Logic Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(11):2317–2330, 2006. doi:10.1109/tcad.2006.871622.

12 Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita. Transformation rules for designing
CNOT-based quantum circuits. In Design Automation Conference. ACM Press, 2002. doi:
10.1145/513918.514026.

13 Jihye Jung and In-Chan Choi. A multi-commodity network model for optimal quantum revers-
ible circuit synthesis. PLOS ONE, 16(6):e0253140, 2021. doi:10.1371/journal.pone.0253140.

14 Mridul Krishna and Anupam Chattopadhyay. Efficient Reversible Logic Synthesis via Iso-
morphic Subgraph Matching. In International Symposium on Multiple-Valued Logic, pages
103–108, 2014. doi:10.1109/ismvl.2014.26.

15 Chia-Chun Lin and Niraj K. Jha. RMDDS: Reed-Muller decision diagram synthesis of reversible
logic circuits. ACM Journal on Emerging Technologies in Computing Systems, 10(2):1–25,
2014. doi:10.1145/2564923.

16 Dmitri Maslov and Gerhard W. Dueck. Improved quantum cost for n-bit Toffoli gates.
Electronics Letters, 39(25):1790, 2003. doi:10.1049/el:20031202.

17 Dmitri Maslov, Gerhard W. Dueck, and D. Michael Miller. Toffoli network synthesis with
templates. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(6):807–817, 2005. doi:10.1109/tcad.2005.847911.

18 Dmitri Maslov, Gerhard W. Dueck, and D. Michael Miller. Techniques for the synthesis of
reversible Toffoli networks. ACM Transactions on Design Automation of Electronic Systems,
12(4):42:1–42:28, 2007. doi:10.1145/1278349.1278355.

19 Dmitri Maslov, Gerhard W. Dueck, D. Michael Miller, and Camille Negrevergne. Quantum
Circuit Simplification and Level Compaction. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 27(3):436–444, 2008. doi:10.1109/tcad.2007.911334.

20 PACE. Partnership for an Advanced Computing Environment (PACE), 2017. URL: http:
//www.pace.gatech.edu.

21 Laurent Perron and Vincent Furnon. Google OR-Tools v9.8. https://developers.google.com/
optimization/, 2023.

22 Aditya K. Prasad, Vivek V. Shende, Igor L. Markov, John P. Hayes, and Ketan N. Patel.
Data structures and algorithms for simplifying reversible circuits. ACM Journal on Emerging
Technologies in Computing Systems, 2(4):277–293, 2006. doi:10.1145/1216396.1216399.

23 Mehdi Saeedi and Igor L. Markov. Synthesis and optimization of reversible circuits—a survey.
ACM Computing Surveys, 45(2):1–34, 2013. doi:10.1145/2431211.2431220.

24 Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi, and Zahra Sasanian. Reversible circuit
synthesis using a cycle-based approach. ACM Journal on Emerging Technologies in Computing
Systems, 6(4):1–26, 2010. doi:10.1145/1877745.1877747.

CP 2024

https://doi.org/10.1109/ised.2012.33
https://doi.org/10.1109/ismvl.2018.00026
https://doi.org/10.1109/tc.2011.144
https://doi.org/10.1109/tc.2011.144
https://doi.org/10.1109/tcad.2009.2017215
https://doi.org/10.1109/tcad.2009.2017215
https://doi.org/10.1109/tcad.2006.871622
https://doi.org/10.1145/513918.514026
https://doi.org/10.1145/513918.514026
https://doi.org/10.1371/journal.pone.0253140
https://doi.org/10.1109/ismvl.2014.26
https://doi.org/10.1145/2564923
https://doi.org/10.1049/el:20031202
https://doi.org/10.1109/tcad.2005.847911
https://doi.org/10.1145/1278349.1278355
https://doi.org/10.1109/tcad.2007.911334
http://www.pace.gatech.edu
http://www.pace.gatech.edu
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1145/1216396.1216399
https://doi.org/10.1145/2431211.2431220
https://doi.org/10.1145/1877745.1877747

16:18 A New Optimization Model for MCT Quantum Circuit Design

25 Trailokya Nath Sasamal, Ashutosh Kumar Singh, and Anand Mohan. Reversible Logic Circuit
Synthesis and Optimization Using Adaptive Genetic Algorithm. Procedia Computer Science,
70:407–413, 2015. doi:10.1016/j.procs.2015.10.054.

26 Mathias Soeken, Robert Wille, Gerhard W. Dueck, and Rolf Drechsler. Window optimization of
reversible and quantum circuits. In IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems, pages 341–345, 2010. doi:10.1109/ddecs.2010.5491754.

27 Robert Wille and Rolf Drechsler. Effect of BDD Optimization on Synthesis of Reversible
and Quantum Logic. Electronic Notes in Theoretical Computer Science, 253(6):57–70, 2010.
doi:10.1016/j.entcs.2010.02.006.

28 Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler. RevLib: An
Online Resource for Reversible Functions and Reversible Circuits. In International Symposium
on Multiple-Valued Logic, pages 220–225, 2008. doi:10.1109/ismvl.2008.43.

29 Robert Wille, Hoang M. Le, Gerhard W. Dueck, and Daniel Große. Quantified synthesis of
reversible logic. In Conference on Design, automation and test in Europe, pages 1015–1020,
2008. doi:10.1145/1403375.1403620.

30 H. Paul Williams. Model Building in Mathematical Programming. John Wiley & Sons, 2013.
31 Wei Zhu, Zhiqiang Li, Gaoman Zhang, Suhan Pan, and Wei Zhang. A Reversible Logical

Circuit Synthesis Algorithm Based on Decomposition of Cycle Representations of Permutations.
International Journal of Theoretical Physics, 57(8):2466–2474, 2018. doi:10.1007/s10773-
018-3768-5.

32 Alwin Zulehner and Robert Wille. Skipping Embedding in the Design of Reversible Circuits.
In International Symposium on Multiple-Valued Logic, pages 173–178, 2017. doi:10.1109/
ismvl.2017.19.

https://doi.org/10.1016/j.procs.2015.10.054
https://doi.org/10.1109/ddecs.2010.5491754
https://doi.org/10.1016/j.entcs.2010.02.006
https://doi.org/10.1109/ismvl.2008.43
https://doi.org/10.1145/1403375.1403620
https://doi.org/10.1007/s10773-018-3768-5
https://doi.org/10.1007/s10773-018-3768-5
https://doi.org/10.1109/ismvl.2017.19
https://doi.org/10.1109/ismvl.2017.19

J. Jung, K. Dalmeijer, and P. Van Hentenryck 16:19

A Nomenclature

Symbol Definition
Circuit Design: (1b)-(1d), (1j)
Q = {1, . . . , n} set of qubits.
D = {1, . . . , m} set of gates.
td
q variable with value 1 if qubit q ∈ Q is the target qubit of gate d ∈ D, and 0 otherwise.

wd
q variable with value 1 if qubit q ∈ Q is a control qubit of gate d ∈ D, and 0 otherwise.

Quantum Cost: (1a), (1e)-(1f), (1j)
f(c) quantum cost of a single MCT gate with c ≥ 0 control qubits.
yd

j variable with value 1 if gate d ∈ D consists of a total of j ∈ Q target and control
qubits, zero otherwise.

Quantum States and Flow Commodities: (1g)-(1i), (1k)
Ω = {0(2), . . . , (2n − 1)(2)} set of pure quantum states.
Q0

σ = {q ∈ Q : σq = 0} set of qubits that are zero in state σ ∈ Ω.
K set of indices of the flow commodities; each commodity represents a set of input

quantum states that have the same (possibly incomplete) output specification.
Ωin

k ⊆ Ω set of input quantum states that represent commodity k ∈ K; together the sets
Ωin

k ∀k ∈ K provide a partition of Ω.
Ωout

k ⊆ Ω set of quantum states that meet the (possibly incomplete) output specification
associated with commodity k ∈ K; the sets Ωout

k may overlap, and together cover Ω.
Flow Networks: (1g)-(1i), (1k)
V set of vertices in each flow network; consists of source S, sink T , and nodes (σ, d)

∀σ ∈ Ω, d ∈ D ∪ {m + 1}.
Ak set of arcs in the flow network of commodity k ∈ K.
Aflip

k ⊂ Ak set of arcs for commodity k ∈ K that represent a transition that flips a qubit.
Akeep

k ⊂ Ak set of arcs for k ∈ K that represent a transition that keeps the state the same.
xk

a variable with value 1 if commodity k ∈ K uses arc a ∈ Ak, and 0 otherwise.
δ+

k (v) ⊆ Ak set of arcs for k ∈ K coming out of vertex v ∈ V .
δ−

k (v) ⊆ Ak set of arcs for k ∈ K coming into vertex v ∈ V .
d(a) ∈ D shorthand for the gate associated with arc a ∈ Aflip

k ∪ Akeep
k .

q(a) ∈ Q shorthand for the qubit that is flipped by arc a ∈ Aflip
k .

σ(a) ∈ Ω shorthand for the state that arc a ∈ Aflip
k ∪ Akeep

k transitions from.

B Proof Proposition 1

▶ Proposition 1. Any swappable circuit can be turned into an unswappable circuit by
repeatedly applying Swap 1-3.

Proof. The number of permutations of the gates is finite, so it is sufficient to prove that the
swaps can be applied in a way that avoids cycling. First repeatedly apply Swap 1, which
results in all empty gates moving to the end of the circuit. These empty gates are not affected
by Swap 2 and 3, and hence will stay in place and Swap 1 will not be applicable again. Let τ

be a vector of length m that contains the target qubit of each gate, or zero otherwise. Every
Swap 2 strictly decreases τ in lexicographical order, which avoids cycling. For example, the
swap in Example 5a-5b changes τ from (4, 2) to (2, 4). Whenever no Swaps 2 can be made,
repeatedly applying Swap 3 has the effect of sorting groups with the same target qubit by
the number of control qubits, and does not introduce cycles. Swap 3 does not affect the
vector τ , so no cycles are introduced when returning to Swap 2 after Swap 3 is exhausted.
Eventually, an unswappable circuit is obtained after finitely many steps. ◀

CP 2024

16:20 A New Optimization Model for MCT Quantum Circuit Design

C New Best-Known Circuits

Figure 9 rd53 for m = 11 (quantum cost: 47, optimality proven: no).

Figure 10 4mod7-v0 for m = 10 (quantum cost: 30, optimality proven: no).

Figure 11 decod24-enable for m = 6 (quantum cost: 18, optimality proven: yes).

Figure 12 one-two-three-v0 for m = 9 (quantum cost: 17, optimality proven: no).

Figure 13 one-two-three-v1 for m = 8 (quantum cost: 16, optimality proven: yes).

Figure 14 one-two-three-v3 for m = 9 (quantum cost: 17, optimality proven: no).

Exponential Steepest Ascent from Valued
Constraint Graphs of Pathwidth Four
Artem Kaznatcheev #

Department of Mathematics, and Department of Information and Computing Sciences,
Utrecht University, The Netherlands

Melle van Marle #

Department of Mathematics, and Department of Information and Computing Sciences,
Utrecht University, The Netherlands

Abstract
We examine the complexity of maximising fitness via local search on valued constraint satisfaction
problems (VCSPs). We consider two kinds of local ascents: (1) steepest ascents, where each step
changes the domain that produces a maximal increase in fitness; and (2) ≺-ordered ascents, where –
of the domains with available fitness increasing changes – each step changes the ≺-minimal domain.
We provide a general padding argument to simulate any ordered ascent by a steepest ascent. We
construct a VCSP that is a path of binary constraints between alternating 2-state and 3-state
domains with exponentially long ordered ascents. We apply our padding argument to this VCSP
to obtain a Boolean VCSP that has a constraint (hyper)graph of arity 5 and pathwidth 4 with
exponential steepest ascents. This is an improvement on the previous best known construction for
long steepest ascents, which had arity 8 and pathwidth 7.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases valued constraint satisfaction problem, steepest ascent, local search, bounded
treewidth, intractability

Digital Object Identifier 10.4230/LIPIcs.CP.2024.17

Acknowledgements AK would like to thank Dave Cohen and Peter Jeavons for helpful discussions.
AK and MvM would also like to thank Daniel Dadush for helpful feedback and questions.

1 Introduction

Local search is often used in combinatorial optimisation. One of the most common methods
for choosing which local modification to make is the steepest ascent algorithm, which at each
step selects the highest-value option from the neighbours of the current state. Clearly such
an algorithm could get trapped at local optima that might prevent it from reaching a higher
optimum. Surprisingly, [9] showed that for problems that are hard for the complexity class
of polynomial local search (PLS), even local optima can be intractable to find – regardless of
what polynomial time algorithm is used for the search. As such, it is natural to ask: under
what conditions could popular local search algorithms like steepest ascent be guaranteed
to find even a local optimum in reasonable time? Or stated in term of intractability: for
what problems does steepest ascent not find a local optimum quickly, taking instead an
exponential number of steps before arriving at any local optimum.

Many combinatorial optimisation problems can be formulated as valued constraint satis-
faction problems (VCSPs). Since weighted 2-SAT is PLS-complete [14] and a special case
of binary Boolean VCSPs, it is believed to be intractable to find local optima in general
VCSPs. It is also possible to create VCSPs where every ascent from some initial assignment
is exponentially long. VCSPs of bounded treewidth, however, are tractable – even for finding
global optima – by using a non-local-search algorithm [1, 2]. But the existence of efficient
non-local algorithms does not mean that local search algorithms will find optima efficiently.

© Artem Kaznatcheev and Melle van Marle;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.kaznatcheev@uu.nl
https://orcid.org/0000-0001-8063-2187
mailto:melvanmarle@gmail.com
https://doi.org/10.4230/LIPIcs.CP.2024.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

For situations where local search is forced upon us – as is for example the case when we
are modelling biological evolution [11, 10, 13] or social systems in business [15, 17] and
economics [18]; or energy-minimization in physical systems – it is useful to know whether we
can expect the local search algorithm to terminate in reasonable time.

Even in the case of VCSPs of bounded treewidth, a (reasonable) local search algorithm
like steepest ascent may take a long time to equilibrate. [3] have provided a Boolean VCSP
with arity 8 and pathwidth 7 (and treewidth 7), on which an exponentially long steepest
ascent exists. This shows that what is tractable/intractable for steepest ascent is distinct
from what is tractable/intractable for non-local algorithms. We currently do not yet have a
full characterisation of the intractability class for steepest ascent. In this article, we take
a next step towards this full characterisation and lower the threshold for intractability, by
constructing a Boolean VCSP of arity 5 and pathwidth 4 that has exponentially long steepest
ascents. We do this in four steps:
Section 3: Introduce a general padding argument that allows us to simulate any ascent

respecting an ordering of the domains by a steepest ascent (see Theorem 9).
Section 4: Introduce a new VCSP (specifically path made by alternating two different 2-by-3

constraints between variables of domain size alternating between 2 and 3) that produces
an exponentially long ordered ascent (see Proposition 12).

Section 5: Apply the padding argument to the 2-by-3 construction. This yields a 3-by-5
construction, implementable by a VCSP with ternary constraints, on which the original
ordered ascent is simulated by a steepest ascent.

Section 6: Encode the expanded domains using Boolean variables, and apply some tricks to
get the resulting VCSP to arity 5 and pathwidth 4 while preserving the exponentially
long steepest ascent.

2 Background

Let D be a set and R ⊂ D × D a binary relation on D. We call (D, R) a domain and R the
transition relation. We omit R when it is a complete graph or obvious from context.

We will consider local search problems on search spaces of the form D1 × D2 × · · · × Dn,
where the (Di, Ri) are domains. We call the elements of D1 × · · · × Dn assignments. We
consider two assignments x, y ∈ D1 × · · · × Dn to be as adjacent iff x differs from y at
exactly one position, say k, and (xk, yk) ∈ Rk. We view Rk as being undirected, so that
(xk, yk) ∈ Rk implies that both the transition from xk to yk and the transition from yk to xk

are allowed. N(x) is the set of assignments adjacent to x.

▶ Definition 1. Let D1 ×· · ·×Dn be a search space of assignments, and f : D1 ×· · ·×Dn → Z
a function. We call f a fitness function and the pair (D1 × · · · × Dn, f) a fitness landscape.
We say that an assignment x is a local solution in the fitness landscape (D1 × · · · × Dn, f) if
f(x) ≥ f(y) for all y ∈ N(x). 1

We can represent fitness landscapes using a collection of constraints. A valued constraint
on D1 × · · · × Dn with scope S ⊆ [n] is a function CS :

∏
i∈S Di → Z. The size |S| of the

scope is the arity of the constraint.
In general, we can represent a constraint of arity n by an n-dimensional tensor, whose

fibers are indexed by the domains in the scope of the constraint. In particular, this means
that a binary constraint between two domains Dk and Dl can be represented by a matrix
whose rows are indexed by Dk and whose columns are indexed by Dl (or vice versa).

1 We could have used the more traditional “value” or “reward”, but we prefer “fitness” given the connection
to biological evolution that we discuss in Section 7.

A. Kaznatcheev and M. van Marle 17:3

▶ Example 2. Let C{i,j} be a binary constraint between domains Di = {u1, u2, u3, u4} and
Dj = {v1, v2, v3}, then we can represent C{i,j} by

C{i,j} =

v1 v2 v3

C{i,j}(u1, v1) C{i,j}(u1, v2) C{i,j}(u1, v3) u1

C{i,j}(u2, v1) C{i,j}(u2, v2) C{i,j}(u2, v3) u2

C{i,j}(u3, v1) C{i,j}(u3, v2) C{i,j}(u3, v3) u3

C{i,j}(u4, v1) C{i,j}(u4, v2) C{i,j}(u4, v3) u4

(1)

▶ Definition 3 (Valued Constraint Satisfaction Problem (VCSP), based on [8]). An instance of a
valued constraint satisfaction problem (VCSP) is given by a a tuple (D1 × · · · × Dn, C), where
C = {CS1 , CS2 , . . . , CSm

} is a collection of valued constraints on domains D1 ×D2 ×· · ·×Dn.
The fitness function f of the VCSP instance is given by f(x) =

∑m
i=1 CSi((xj)j∈Si). The

goal is to find a local solution in the fitness landscape (D1 × · · · × Dn, f).

We will usually denote a VCSP instance (D1 × · · · × Dn, C,) simply by C, and we will
say that the fitness landscape (D1 × · · · × Dn, f) is implemented by C.

To any VCSP C on n variables, we can associate a constraint (hyper)graph GC , whose set
of vertices is given by [n]. For each constraint Cs, there is a (hyper)edge S, labeled by Cs.
We are interested in VCPS with “sparse” constraint graphs. Specifically, constraint graphs
of bounded pathwidth.

▶ Definition 4 (adapted from [5]). Let GC = ([n], {S | CS ∈ C}) be the constraint graph of a
VCSP C. A sequence (Xi)m

i=1 of subsets Xi ⊆ [n] is called a path decomposition of GC if the
following three properties hold
1. For all h ∈ [n], there is some i such that h ∈ Xi.
2. For all S ∈ E(GC), there is some i such that S ⊆ Xi.
3. For h ∈ [n] and for all i ≤ j ≤ k, if h ∈ Xi and h ∈ Xk, then h ∈ Xj.

The pathwidth of GC is the least l such that l ≥ |Xi| − 1 for all 1 ≤ i ≤ m.

Note that when the value of a single variable changes within a VCSP, the accompanying
change in fitness value is determined entirely by those constraints whose scope contains
this variable. Because of this, it is often useful to consider the “restricted” fitness function
resulting from only considering these domains. Let f be a fitness function associated to some
VCSP C, and let C[k] ⊂ C be the set of constraints whose scope contains the k-th variable.
We use fk to denote the function given by fk(u; z) =

∑
CSi

∈C[k] CSi(u, (zj)j∈Si\{k}) where
u is the value of the k-th variable, and z is a (sub-)assignment consisting of values for all
variables who share a constraint with the k-th variable.

▶ Definition 5. Let F = (D1 × · · · × Dn, f) be a fitness lanscape, and let p = (xt)T
t=0 ⊂

(D1 × · · · × Dn)T +1 be a sequence of assignments in D1 × · · · × Dn. We call p an ascent on F
if for all t < T , we have xt+1 ∈ N(xt), we have f(xt) < f(xt+1), and xT is a local solution.

In this article, we are focused on ascents which take steps that most increase fitness.

▶ Definition 6. Let F = (D1 × · · · × Dn, f) be a fitness landscape, and let p = (xt)T
t=0 be an

ascent on F. We call p a steepest ascent on F if for all t < T and for all y ∈ N(xt), we have
f(y) ≤ f(xt+1).

In other words, at any step, all neighbours of an assignment in p have fitness less than or
equal to the fitness of the next assignment in p.

CP 2024

17:4 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

We will use the following notation to represent local changes: if y can be generated from
x by changing the k-th entry from xk = u to yk = v, we write y = x[k : v].2 Furthermore, if
p = (xt)T

t=0 is an ascent, we write u
k→p(t) v to denote that the transition from xt to xt+1

in p consists of replacing symbol u with symbol v at position k. If the ascent is clear from
context, we drop the p from the notation.

▶ Definition 7. Let F = (D1 × · · · × Dn, f) be a fitness landscape, and let p = (xt)T
t=0 be

an ascent on F. Let ≺ be an ordering on [n]. We call p a ≺-ordered ascent on C if the
following holds. For any t < T , if xt+1 = xt[k : v], then, for all j ≺ k and for all u ∈ Dj

with (xt
j , u) ∈ R, we have f(xt[j : u]) ≤ f(xt).

In other words, at any step, the ascent changes an entry in the domain with ≺-minimal index
where a change can yield a fitness increase.

3 Steepest Ascent Simulation of Ordered Ascents

Given an ordered ascent on some fitness landscape, we show how to construct a new fitness
landscape that “simulates” the ordered ascent with a steepest ascent. This will be done by
expanding the domain and then encoding the expanded domain using Boolean variables.

3.1 Domain Expansion
Let F = (D1 × · · · × Dn, f) be a fitness landscape. Let p = (xt)T

t=0 be a ≺-ordered ascent
on F. For any k ∈ {1, 2, . . . , n}, we expand Dk by adding intermediate states σuv = σvu for
all (u, v) ∈ Rk. We call the elements of the original domain Dk main states. We denote
the resulting expanded domain by D̂k ⊃ Dk. We define the new transition relation on the
expanded domains to be R̂k = {(u, σuv) | (u, v) ∈ Rk}∪{(σuv, v) | (u, v) ∈ Rk}. This relation
ensures that the only possible transition are those from a main state to an intermediate state
and vice versa.

We now construct a new fitness function f̂ : D̂1 ×· · ·×D̂n → Z. For any x ∈ D1 ×· · ·×Dn

– i.e., any x containing only main states – we set:

f̂(x) := (2n + 1)f(x) if x contains only main states. (2)

For an assignment x containing a single intermediate state σuv at position k and main states
at all other positions, if f(x[k : u]) ̸= f(x[k : v]) then we set f̂(x) to be:

f̂(x) := n − k + 1 + (2n + 1) min
w∈{u,v}

f(x[k : w]) if x containts exactly one inter-
mediate state σuv at position k. (3)

If f(x[k : u]) = f(x[k : v]) then we set f̂(x) = (2n + 1) minw∈{u,v}{f(x[k : w]).
Next, let x be an assignment that contains exactly two intermediate symbols σujvj

, σukvk

at positions j and k respectively. We do not want such an assignments to appear in the
steepest ascent. To ensure this, we require that f̂ satisfies the following:

f̂(x) ≤ 2n − (j + k) + 2 + (2n + 1) min
w∈{uj ,vj}

w′∈{uk,vk}

f(x[j, k : w, w′])
if x contains exactly two in-
termediate states σujvj

and
σukvk

at positions j and k.
(4)

For remaining assignments with more than two intermediate symbols, f̂ may take any value.

2 Note that y = x[k : v] is equivalent to x = y[k : u].

A. Kaznatcheev and M. van Marle 17:5

3.2 Steepest Ascent Simulation
▶ Definition 8. Given an ascent p = (xt)T

t=0 on a fitness landscape (D1 × · · · × Dn, f), we
define an ascent p̂ = (x̂t)2T

t=0 on the new fitness landscape (D̂1 × · · · × D̂n, f̂) as:

x̂t =
{

xs, t = 2s;
xs[k : σuv], t = 2s + 1, xs+1 = xs[k : v] and xs = xs+1[k : u].

(5)

We say p̂ a simulation of p.

Note that p̂ alternates between main states of p and the relevant intermediate states
between them. Given the definition of p̂, we are now ready to state our main result.

▶ Theorem 9. Let F = (D1 × · · · × Dn, f) be a fitness landscapes, and let ≺ be an ordering
on {1, 2, . . . , n}. Suppose p is a ≺-ordered ascent on F and that p̂ is a simulation of p. Then,
p̂ is a steepest ascent on (D̂1 × · · · × D̂n, f̂).

By reindexing the domains, we may assume that p is <-ordered without loss of generality
(where < is the standard ordering on [n]). We prove this theorem through the following two
lemmas. The first shows that the transitions from main states into intermediate states are
steepest ascent steps. The second shows that the transitions from intermediate states into
main states are steepest ascent steps.

▶ Lemma 10. Let xt, xt+1 ∈ p, with the transition between these two states being u
k→p(t) v.

Then, the highest fitness neighbour of x̂2t ∈ p̂ is x̂2t[k : σuv]. Moreover, x̂2t[k : σuv] has
higher fitness than x̂2t.

Proof. We begin by noting that x̂2t contains only main states. Due to the nature of the
encoding, the only possible transitions are those flipping a main state to an intermediate
state. Note that by equation (3), we have

f̂(x̂2t[k : σuv]) − f̂(x̂2t) = n − k + 1 > 0. (6)

Consider any l < k. Since we may assume p is a <-ordered ascent, we know that for any
neighbour xt[l : w] of xt, we have f(xt[l : w]) ≤ f(xt). It follows that

f̂(x̂2t[l : σ]) ≤ f̂(x̂2t) < f̂(x̂2t[k : σuv]

for any intermediate state σ in D̂l.
Next, consider any l ≥ k. From equation (3), it is clear that the fitness increase from

a flip to an intermediate state will be at most n − l + 1 ≤ n − k + 1. Thus, the transition
from x̂2t to neighbour x̂2t[k : σuv] with fitness increase of n − k + 1, is a steepest step as
desired. ◀

▶ Lemma 11. Let xt, xt+1 ∈ p, with the change between these two states being u
k→p(t) v.

Then, the highest fitness neighbour of x̂2t+1 ∈ p̂ is x̂2t+1[k : v]. Moreover, x̂2t+1[k : v] has
higher fitness than x̂2t+1.

Proof. We begin by noting that by definition, x̂2t+1 consists of the intermediate state σuv at
position k, and main states at all other positions. We have f̂(x̂2(t+1))− f̂(x̂2t) ≥ 2n+1, since
x̂2(t+1) = xt+1, x̂2t = xt and f(xt+1) > f(xt). Moreover f̂(x̂2t+1) − f̂(x̂2t) = n − k + 1. Thus
f̂(x̂2(t+1)) − f̂(x̂2t+1) ≥ 2n + 1 − (n − k + 1) ≥ n + 1. Since a transition to an intermediate
state at position j ∈ [n] yields a fitness increase of n− j +1, any transition to an intermediate

CP 2024

17:6 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

state can yield a fitness increase of at most n. Thus, we know that such a transition will
never be preferred over the transition from intermediate state σuv to main state v, which
yields a fitness increase of at least n + 1. By definition of the transition relation, the only
alternative transition is from σuv to main state u but this decreases fitness by n − k + 1.
Thus the transition from x̂2t+1 to neighbour x̂2t+1[k : v] is steepest step as desired. ◀

Together Lemmas 10 and 11 prove Theorem 9, implying that p̂ is a steepest ascent.

3.3 Boolean Encoding of Expanded Domains
Note that both p was an ascent on a fitness landscape of arbitrary domain sizes and p̂ was an
ascent on a fitness landscape with further expanded domains. Given that we want to arrive
at a Boolean VCSP, we will show how to encode each (D̂k, R̂k) using |Dk| Boolean variables.
Without loss of generality, we may assume that Dk = {1, 2, . . . , |Dk|}. We can now encode
any main state u ∈ Dk by the string of length |Dk| that contains a 1 at position u and a 0
in all other positions. Any intermediate state σuv can likewise be encoded by the string of
length |Dk| containing a 1 at positions u and v and a 0 at all other positions.

Using this encoding we ensure that all main states are more than a single bit-flip away
from each other. At the same time, the intermediate states are exactly one flip away from
the corresponding two main states (and more than one flip away from all other main states).
Thus, the transition relation R̂k is respected by this encoding.

4 Pair of 2-by-3 Constraints with Long Ordered Ascent

To build an ordered ascent of exponential length, we consider a VCSP on n domains
D1 × D2 × · · · × Dn, where the odd domains have size 2 (i.e. D1, D2k+1 = {A, B}), and the
even domains have size 3 (i.e. D2k = {A, B, C}. For the odd domains, the transition relation
is simply given by R1, R2k+1 = {(A, B)}. For the even domains, the transition relation is
given by R2k = {(A, B), (B, C)}. In other words, the values are only allowed to transition
between A-and-B, and between B-and-C. Transitions between A-and-C are not allowed.

We arrange the domains into a path, where each pair of consecutive domains have a
binary constraint between them. The n-th domain gets a unary constraint inspired by the
relevant binary constraint. The binary constraints are different weights of the following:

L =

A B 0 2 A

1 1 B

2 0 C

, M =

A B C()
0 1 0 A

1 0 1 B

(7)

We recursively define weights for these constraints by setting m1 = 1, and mk+1 = 2mk +3.
We can solve this recurrence relation to get mk = 2k+1−3. To D1 and D2 we assign constraint
M . Between D2k and D2k+1 we set constraint (mk + 1)L. Between D2k+1 and D2(k+1) we
set constraint mk+1M . Finally, if n = 2h, we assign unary constraint (mh + 1)L(−, A) to
Dn. If n = 2h + 1, we assign unary constraint mh+1M(−, A) to Dn. These cases are shown
in Figure 1.

Note that whenever a variable at an even position 2k changes value, it can lose at most mk

from the left constraint (i.e., mkM), while any gain from the right constraint (i.e. (mk + 1)L)
will be at least mk + 1. Likewise, whenever a variable at an even position 2k + 1 changes
value, it can lose at most 2(mk + 1) from the left constraint (i.e. (mk + 1)L), while any gain

A. Kaznatcheev and M. van Marle 17:7

()0 A

mh + 1 B

2mh + 3 C
D2h· · ·D2k+1D2k· · ·D1

mhMmkM

mk+1︷ ︸︸ ︷
(2mk + 3) M(mk + 1)LmkMM

(a) Even number of domains.

()0 A

mh+1 BD2h+1· · ·D2k+1D2k· · ·D1

(mh + 1)LmkM

mk+1︷ ︸︸ ︷
(2mk + 3) M(mk + 1)LmkMM

(b) Odd number of domains.

Figure 1 Constraint graphs for 2-by-3 VCSP when there are an (a) even number of domains and
when there are an (b) odd number of domains. Constraints L and M are given in Equation (7). The
final domain is assigned a unary constraint (mh + 1)L(−, A) (in the even case) or mh+1M(−, A) (in
the odd case), represented as a column vector in the figures. Boxes represend domains with two
values, and circles represent domains with three values.

from the right constraint (i.e. mk+1M) will be at least mk+1 = 2(mk + 1) + 1. Thus, any
fitness gain from the right constraint will always outweigh the fitness loss from the left. The
maximal fitness value that can be attained by an assignment of length n is given by

fmax(n) :=

0, n = 0∑h

i=1(3mi + 2) = 3 · 2h+2 − 7h − 12, n = 2h for some h > 0
fmax(2h) + mh+1 = 2h+4 − 7h − 15, n = 2h + 1 for some h ≥ 0.

(8)

This fitness value is attained by the assignment BABA . . . ABABC for n = 2h and the
assignment BABA . . . ABAB for n = 2h + 1.

We now prove that there is an ascent that takes on all fitness values from 0 to fmax(n)
and is thus exponentially long in the number of variables. To prove this, it will be useful to
say that a constraint CS ∈ C is saturated by an assignment x if CS((xi)i∈S) ≥ CS(y) for all
y ∈

∏
i∈S Di.

▶ Proposition 12. Let n ∈ N, and let D1 × D2 × · · · × Dn−1 × Dn be the search space given
by setting D2k = {A, B, C} and D2k+1 = {A, B}, with only transitions between A-and-B and
B-and-C being allowed. Let p = (xt)T

t=0 be the <-ordered ascent on the VCSP with constraints
from Figure 1, given by starting at x0 = An. Then, p has length fmax(n) ≥ 3 · 2⌊ n

2 ⌋ − O(n).

Proof. We will show that for any assignment on n variables whose fitness is below fmax(n),
there is a fitness increasing move. Moreover, the fitness increasing move on the least index
where such a move is possible yields a fitness increase of 1. Since An has fitness 0, it follows
from these facts that p has length fmax(n).

Let x ∈ D1 × · · · × Dn be an assignment on n variables and suppose f(x) < fmax(n).
Then, there must be some position k ≤ n such that the constraint between xk and xk+1 is
not saturated (or in the case that k = n, then the unary constraint on xn is not saturated).
Consider the least k for which is the case.

Firstly, consider the case where k = 1. Then, we must have M(x1, x2) = 0. By considering
M , we see that we can change x1 to obtain a increase of 1.

CP 2024

17:8 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

Next, consider the case where k = 2l. We must have that M(xk−1, xk) = 1, since
by assumption, this constraint is saturated. Recall that the transition relations of our
domains are such that we may only transition between A-and-B, and between B-and-C. By
considering the constraints, we see that if xk = B, one of the two options yields a increase of
ml + 1 from the right constraint (which is an L-constraint with weight ml + 1), while the
other yields a decrease of ml + 1 from right constraint. If xk = A or xk = C, then due to the
nature of the transition relation, the k-th variable can transition only to B. The fact that
M(xk−1, xk) = 1 implies that we are in case guaranteed to lose ml from the left constraint
by changing xk. Furthermore, L(xk, xk+1) not being saturated, ensures that changing xk

to B is guaranteed to yield an increase of ml + 1 from the right constraint. Thus, the
fitness-improving change of xk yields a net fitness increase of 1 by changing xk.

Finally, consider the case where k = 2l + 1. We must have that L(xk−1, xk) = 2, and
M(xk, xk+1) = 0. By considering the constraints, we see that the only possible change for xk

yields a fitness increase of 2ml + 3 = 2(ml + 1) + 1, from the right constraint, while it yields
a fitness loss of 2(ml + 1) from the left constraint. Thus, this step again yields a net fitness
increase of 1. In the cases where k = n, the above arguments hold when we fix xk+1 = A. ◀

5 Steepest Ascent Simulation of 2-by-3 Ordered Ascent

Since the exponentially long ascent described in Section 4 is ordered, we can construct a
steepest ascent that simulates it by applying the technique introduced in Section 3. This yields
a steepest ascent on an expanded VCSP with alternating 5-state and 3-state domains, and
constraints with arity at most 3. The construction has three steps: (i) we define constraints
that implement Equation (2), then we define constraints that implement Equation (3) for
(ii) odd domains and for (iii) even domains.

Our expanded domains are given by D̂1, D̂2k+1 = {A, B, σAB} for the odd domains, and
D̂2k = {A, B, C, σAB , σBC} for the even domains. In order to obtain the required fitness value
for our main states, we add expanded versions L̂ and M̂ from Equation (7). These expanded
constraints are still binary, and are given by firstly setting L̂uv = Luv and M̂vu = Mvu for
all u ∈ {A, B, C} and v ∈ {A, B}. All other entries in L̂ and M̂ , for which at least one of
the indices is an intermediate state, are set to 0.

We place these constraints into a path as in Section 4, with new weight 2n + 1 times
the original weight. For any assignment x containing only main states, these expanded
constraints yield f̂(x) = (2n + 1)f(x), which is Equation (2), as desired.

We will separately define constraints that ensure that Equation (3) holds for neighbour-
hoods of odd domains, and for neighbourhoods of even domains. We begin with the odd
domains by introducing a ternary constraint P̂ that we call the minimisation constraint, as
well as unary constraint Û .

Suppose intermediate state σAB is at odd position k = 2l + 1. We assume u = xk−1 and
v = xk+1 are main states. Equation (3) requires our restricted fitness function f̂k to satisfy:

f̂k(σAB ; u, v) = n − k + 1 + (2n + 1) min
h∈{A,B}

{fk(h; u, v)} (9)

= n − k + 1 + (2n + 1) min
{

(ml + 1) · L(u, A) + ml+1 · M(A, v)
(ml + 1) · L(u, B) + ml+1 · M(B, v)

(10)

= n − k + 1 + (2n + 1)(ml + 1) · K(u, v) (11)

A. Kaznatcheev and M. van Marle 17:9

where K =

A B C 0 2 0 A

1 1 1 B

2 0 2 C

. K specifies the non-zero part of the minimisation constraint

P̂ , by setting P̂uwv = Kuv for u, v ∈ {A, B, C} and w = σAB. All other entries in P̂ (i.e.
those for w is a main state, or at least one of u and v is an intermediate state) are set to
0. In order to get the +n − k + 1 term from Equation (3), we need a unary constraint

Û⊤ =
A B σAB()
0 0 1 . For odd k = 2l + 1, we assign Û with weight n − k + 1 to D̂k. We

assign ternary constraint P̂ with weight (2n + 1)(ml + 1) to D̂k, D̂k−1 and D̂k+1.
Now, suppose that x is an assignment with exactly one intermediate symbol σAB at odd

position k = 2l + 1. For any two adjacent main states in x, the binary constraint between
them is given by the binary constraint from the original VCSP, multiplied by a factor 2n + 1.
Moreover, P̂ is 0 when there are two adjacent main states among its three indices. Together
P̂ and Û ensure that for our single intermediate state σAB at position k, Equation (10) holds.
This yields f̂(x) = n − k + 1 + (2n + 1) minh∈A,B{f(x[k : h])} – the desired Equation (3).

Next, consider intermediate symbol w ∈ {σAB , σBC} at even position k = 2l. Assume
u = xk−1 and v = xk+1 are main states. Equation (3) requires:

f̂k(σAB ; u, v) = n − k + 1 + (2n + 1) min
h∈{A,B}

{fk(x[k : h])} (12)

= n − k + 1 + (2n + 1) min
{

ml · M(u, A) + (ml + 1) · L(A, v)
ml · M(u, B) + (ml + 1) · L(B, v)

(13)

= n − k + 1 + (2n + 1) · Ql(u, v) (14)

f̂k(σBC ; u, v) = n − k + 1 + (2n + 1) min
h∈{B,C}

{fk(x[k : h])} (15)

= n − k + 1 + (2n + 1) min
{

ml · M(u, B) + (ml + 1) · L(B, v)
ml · M(u, C) + (ml + 1) · L(C, v)

(16)

= n − k + 1 + (2n + 1) · Rl(u, v) (17)

where Ql =

A B()
0 2ml + 1 A

ml ml + 1 B

and Rl =

A B()
2ml + 1 0 A

ml + 1 ml B

. The matrices Ql and Rl

specify the non-zero part of the ternary minimisation constraint Ŝl, by setting Ŝl
uwv = Ql

uv

for w = σAB, and Ŝl
uwv = Rl

uv for w = σBC . All other entries in Ŝl (i.e. those for w is a
main state, or at least one of u and v is an intermediate state) are set to 0. Furthermore,
in order to get the first summands of Equation (3), we need a unary constraint V̂ ⊤ =

A B C σAB σBC()
0 0 0 1 1 . For any even k = 2l, we assign constraint V̂ with weight n − k + 1

to D̂k. We also assign the ternary constraint Sl with weight 2n+1 to D̂k and its neighbouring
domains D̂k−1 and D̂k+1.3

3 Note that introducing these new constraints does not impact Equation (3), since V̂ adds fitness value 0
for main states, and Suwv adds fitness value 0 if w is a main state or u or v is an intermediate symbol
(which are the only situations occurring in Equation (3)).

CP 2024

17:10 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

Now, suppose that x is an assignment with exactly one intermediate symbol w ∈
{σAB , σBC} at even position k = 2l. Note that constraints P̂ and Û do not add any fitness
value for this assignment. Thus, in the same manner as before, the binary constraints M̂ and
L̂, together with Ŝ and V̂ yield the desired f̂(x) = k + (2n + 1)f minh∈A,B({f(x[k : h])}.

In order to apply Theorem 9, it only remains to show that the inequality from Equation (4)
holds. By inspecting Ŝl and P̂ however, it is clear that this is the case. Specifically, we have
equality in the case of two non-adjacent intermediate states, and strict inequality in the case
of adjacent intermediate states.

6 Low-arity Boolean Encoding for 3-by-5 Steepest Ascent

In order to turn the alternating 3-state and 5-state VCSP from Section 5 into a Boolean
VCSP, we encode the expanded domains using Boolean variables as in Section 3.3. The
3-state domain is encoded by two boolean variables with A = 10, B = 01 and σAB = 11. The
5-state domain is encoded using three variables with A = 100, B = 010, C = 001, σAB = 110
and σBC = 011. We write D̂̂k for an encoded domain and f̂̂ for our new fitness function.
Note that f̂̂ takes the same values as our old fitness function f̂ , but has a new domain.

Note that the constraints can be encoded by taking the value of the original constraint
for any encoded states and 0 for strings that don’t encode any states. In the encoded VCSP,
the arity of the constraints defined in Section 5 increases. The Ŝl-constraint, which was a
ternary constraint on a 3-state, a 5-state and another 3-state domain, turns into a constraint
with arity 2 + 3 + 2 = 7 in the encoded VCSP. The P̂ -constraint, which was a ternary
constraint on a 5-state, a 3-state, and another 5-state domain, turns into a constraint with
arity 3 + 2 + 3 = 8. We will use some tricks to reduce this arity to 5 in both cases. The
resulting full encoded VCSP is shown in Figure 2.

First, we look at a lower arity implementation of the minimisation constraint P̂ for 3-state
domain neighbourhoods, from Section 5. Suppose that we have an intermediate state σAB at
odd position k = 2l + 1. We assume that xk−1 and xk+1 are main states, represented by u

and v respectively. Recall that the non-zero part of P̂ is given by P̂∗σAB∗ =

A B C 0 2 0 A

1 1 1 B

2 0 2 C

.4

Instead of encoding σAB with the single string 11, we can let both 00 and 11 perform part of
the role of encoding σAB . Importantly, this encoding still agrees with our transition relation,
since 00 and 11 are two bit-flips away from one another, and a single bit flip away from 10 and
01. We now have to set up the fitness values in such a way that we can transition through either
00 or 11. In order for this to work, we require that maxs∈{00,11} f̂̂k(s; u, v) = f̂k(σAB; u, v)

for all u, v. We may view u and v as vectors, writing them as vectors with A⃗ =
A B C()
1 0 0 ,

B⃗ =
A B C()
0 1 0 and C⃗ =

A B C()
0 0 1 . We can achieve our desired property with:

4 One could try to decompose P̂ into two arity-5 constraints between D̂̂k−1-and-D̂̂k and one between
D̂̂k-and-D̂̂k+1. This is not possible if σAB is encoded by a single string (see Appendix A).

A. Kaznatcheev and M. van Marle 17:11

Û̂ l−1

(2n + 1) ·
(

L̂̂l−1 + P̂̂ (l−1)− + Ĵ̂⊤
)

(2n + 1) ·
(

M̂̂ l + P̂̂ (l−1)+ + Ĵ̂
)

(2n + 1) · Ŝ̂l

(2n + 1) · Ŝ̂l−1

· · · · · ·

G2l−1

(a)

V̂̂ l

(2n + 1) · Ŝ̂l

(2n + 1) ·
(

L̂̂l + P̂̂ l− + Ĵ̂⊤
)

(2n + 1) ·
(

M̂̂ l + P̂̂ (l−1)+ + Ĵ̂
)

· · · · · ·

G2l

(b)

Figure 2 The final VCSP contains 5n domains, divided alternatingly into collections G1, G2l+1

of 2 domains and collections G2l of 3 domains. There are eight different types of constraints M̂̂ l, L̂̂l,
P̂̂ l−, P̂̂ l+, Ŝ̂l, Ĵ̂ , Û̂ l, and V̂̂ l. Their values can be found in Equations (23)-(30). These constraints
are arranged in a path of repeating chunks. These chunks are shown for (a) odd collections and (b)
even collections. As exceptions, we do not include a P̂̂ + constraint between the first two collections
G1 and G2. Furthermore, for the final collection Gn, we pretend the pattern continues, but that
the values for collections beyond Gn are fixed to 100 for even collections and 10 for odd collections.
The steepest ascent starting from assignment 10100⌊ n

2 ⌋ (with an extra 10 at the end in case n is
odd), has length at least 3 · 2⌊ n

2 ⌋+3 − O(n) (see Proposition 12 and Theorem 9). Furthemore, the
constraint graph has pathwidth 4. To see this, take for the path decomposition the scopes of the M̂̂ l

constraints, the scopes of the Ŝ̂l constraints, and the scopes of the L̂̂l constraints as the bins, and
put these bins in the path · · ·-M̂̂ l-Ŝ̂l-L̂̂l-M̂̂ l+1-· · ·.

f̂̂k(00; u, v) = n − k + 1 + (2n + 1)(ml + 1)u⃗

0 −2 0
1 −1 1
2 0 2

 v⃗ (18)

= n − k + 1 + (2n + 1)(ml + 1)u⃗

0
1
2

 (
1 1 1

)
+

1
1
1

 (
0 −2 0

) v⃗, (19)

f̂̂k(11; u, v) = n − k + 1 + (2n + 1)(ml + 1)u⃗

 0 2 0
−1 1 −1
−2 0 −2

 v⃗ (20)

= n − k + 1 + (2n + 1)(ml + 1)u⃗

2
1
0

 (
1 1 1

)
+

1
1
1

 (
−2 0 −2

) v⃗. (21)

Note that P̂∗σAB∗ is the element-wise maximum of the two 3 × 3 matrices above. From this,
we obtain our desired arity-5 constraints P̂̂ l− and P̂̂ l+ between D̂̂k−1 and D̂̂k, and between
D̂̂k and D̂̂k+1. The non-zero part of P̂̂ l− and P̂̂ l+ are given by

P̂̂ l− =

00 11 0 2(ml + 1) 100

ml + 1 ml + 1 010

2(ml + 1) 0 001

and P̂̂ l+ = −2(ml + 1) ·

100 010 001()
0 1 0 00

1 0 1 11
. (22)

CP 2024

17:12 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

Next, we look at a lower arity implementation of the minimisation constraint Ŝl. Suppose
that we have an intermediate state σAB at even position k = 2l. We assume that xk−1 and
xk+1 are main states, represented by u and v respectively. Recall that the non-zero parts of

Ŝl are given by Ŝl
∗σAB∗ =

A B()
0 2ml + 1 A

ml ml + 1 B

and Ŝl
∗σBC∗ =

A B()
2ml + 1 0 A

ml + 1 ml B

.

This time we will use a different trick to lower the arity of the encoded constraint from
7 to 5. Note that only one domain can enter transition. Since we are considering domain
Dk entering transition, we can assume that u and w are main states. This implies that we
do not need to look at both bits of u’s and w’s representation to know their value. We can
just look at the right bit of u and the left bit of v. This reduces the arity of the constraint
to 5. We get a new constraint Ŝ̂l whose scope consists of right bit of the encoding of xk−1,
three bits that encode xk, and left bit of the encoding of xk+1. Non-zero parts of Ŝ̂l are

Ŝ̂l
∗110∗ =

1 0()
0 2ml + 1 0

ml ml + 1 1
and Ŝ̂l

∗011∗ =

1 0()
2ml + 1 0 0

ml + 1 ml 1
.

By restricting our perspective to only a single bit of the representation of xk−1 and xk+1,
we can no longer distinguish whether xk−1 and xk+1 are main states, or whether they are
intermediate states. Through this, we may inadvertently violate Equation (4). To remedy
this, we introduce an arity-5 constraint Ĵ that penalises the occurrence of two adjacent

intermediate states by setting the non-zero part of Ĵ as −fmax(n) ·

110 011()
1 1 00

1 1 11
where n

is the number of domains in the original VCSP and fmax(n) is the maximal fitness from
Equation (8) of the original 2-by-3 VCSP. The magnitude of this negative value is always
larger than the magnitude of any fitness value assigned by Sl for any l.

We have now constructed a VCSP with Boolean domains. We arrange these domains
alternatingly into collections G2l consisting of 3 domains and G2l+1 of 2 domains. The VCSP
has eight different types of constraints which we list explicitly. We have an arity-5 constraint
M̂̂ l on collections G2l−1 and G2l:

M̂̂ l =

100 010 001 110 101 011 000 111

0 ml 0 0 0 0 0 0 10

ml 0 ml 0 0 0 0 0 01

0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 11

(23)

and an an arity-5 constraint L̂̂l on collections G2l and G2l+1, given by:

L̂̂l =

10 01 00 11

0 2(ml + 1) 0 0 100

ml + 1 ml + 1 0 0 010

2(ml + 1) 0 0 0 001

0 0 0 0 110

0 0 0 0 101

0 0 0 0 011

0 0 0 0 000

0 0 0 0 111

(24)

A. Kaznatcheev and M. van Marle 17:13

Then, we have our (decomposed) minimisation constraints P l− and P l+, on collections G2l

and G2l+1, and collections G2l+1 and G2(l+1), respectively. These constraints are given by:

P̂̂ l− =

10 01 00 11

0 0 0 2(ml + 1) 100

0 0 ml + 1 ml + 1 010

0 0 2(ml + 1) 0 001

0 0 0 0 110

0 0 0 0 101

0 0 0 0 011

0 0 0 0 000

0 0 0 0 111

(25)

P̂̂ l+ = −2(ml + 1) ·

100 010 001 110 101 011 000 111

0 0 0 0 0 0 0 0 10

0 0 0 0 0 0 0 0 01

0 1 0 0 0 0 0 0 00

1 0 1 0 0 0 0 0 11

(26)

The next minimisation constraint is the arity-5 constraint Ŝ̂l with scope consisting of a
single domain in G2l−1, all three domains in G2l and one more domain in G2l+1. The single
domains are selected such that the scopes of Ŝ̂l and Ŝ̂l+1 do not overlap. Ŝ̂l is given by:

Ŝ̂l =

(0,0) (1,0) (0,1) (1,1)

0 0 0 0 100

0 0 0 0 010

0 0 0 0 001

2ml + 1 ml + 1 0 ml 110

0 0 0 0 101

0 ml 2ml + 1 ml + 1 011

0 0 0 0 000

0 0 0 0 111

(27)

where the (u, v) for the column indices takes u and v as the values for respective single domains
in G2l−1 and G2l+1. In order to ensure that this constraint does not inadvertently allow
adjacent intermediate states, we introduce an arity-5 constraint Ĵ̂ on adjacent collections:

Ĵ̂ = −fmax(n) ·

100 010 001 110 101 011 000 111

0 0 0 0 0 0 0 0 10

0 0 0 0 0 0 0 0 01

0 0 0 1 0 1 0 0 00

0 0 0 1 0 1 0 0 11

(28)

where n is the number of collections, and fmax(n) is as defined in Equation (8).

CP 2024

17:14 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

Finally, we have arity-3 constraint V l on G2l and arity-2 constraint U l on G2l+1:

(Û̂ l)⊤ =
10 01 00 11()
0 0 n − 2l n − 2l (29)

(V̂̂ l)⊤ =
100 010 001 110 101 011 000 111()
0 0 0 n − 2l + 1 0 n − 2l + 1 0 0 (30)

We arrange these constraints into a path of repeating chunks between the collections, as
shown in Figure 2.

7 Summary and Future Directions

In this paper, we presented a sequence of three constructions with each improving on the
state-of-the-art for the “simplest” VCSP with exponential (steepest) ascents. In Section 4,
we presented a binary VCSP with a path as its constraint graph and domains alternating
in size between two-state and three-state. In Proposition 12, we showed that this 2-by-3
VCSP has an exponential ascent. This a simplification over [13]’s simplest example of an
exponential ascent from a path-structured VCSP with all domains of size 3. Our example
also has the added benefit over prior work of the exponential ascent being an ordered-ascent.
The ascent being ordered allows us to apply our general padding technique from Section 3
to create a ternary VCSP with domains alternating between size 3 and 5 in Section 5. It
then follows from Theorem 9 that this 3-by-5 ternary VCSP produces a fitness landscapes
with exponential steepest ascents. This could be viewed as a simplification over the binary
VCSP with domains of size 10 implicit in [3]’s construction of exponential steepest ascents.
Finally, in Section 6, we encoded the 3-by-5 VCSP with Boolean domains to construct a
Boolean VCSP with a constraint graph of pathwidth 4 that produce a fitness landscape with
an exponentially long steepest ascent. This is an improvement over the pathwidth 7 of the
best known prior construction [3].

Our final construction means that Boolean VCSPs of pathwidth 4 are intractable for local
search by steepest ascent. Since our graph also has treewidth 4 this means that Boolean
VCSPs of treewidth 4 are also intractable for steepest ascent. For tractability, [13] have
shown that all ascents – and thus in particular the steepest ascent – have at most quadratic
length when the constraint graph is a tree, i.e. has treewidth 1. This leaves a gap between
treewidth 1 and treewidth 4 for which the status of steepest ascent for finding local maxima
in Boolean VCSPs remains unknown. Our current best guess at the exact location of the
tractability boundary for steepest ascent is at pathwidth 2:

▶ Conjecture 13. There exists a polynomial p(n) such that for any Boolean VCSP instance
C on n variables if the constraint graph of C has pathwidth ≤ 2, then any steepest ascent in
the associated fitness landscape has length at most p(n).

Of course, the existence of exponential steepest ascents does not mean that all ascents
are long. In our construction, it is relatively easy to find a short ascent that violates the
steepest ascent condition. In fact, [12] has shown that polynomially short ascents to some
local solution exist from all initial assignment in fitness landscape from VCSPs of bounded
treewidth. More generally, there exist efficient (non-local search) algorithms for finding the
global maximum in VCSPs of bounded treewidth [1, 7, 2]. However, such global algorithms
cannot always be run – especially in cases where the algorithm is actually some natural
process and thus we have no (or only partial) control to “rewrite” the algorithm.

A. Kaznatcheev and M. van Marle 17:15

Biological evolution is an important local search algorithm that is set by nature [20, 16, 11].
The intractability of finding local peaks provides an explanations for important features of
evolution like its open-endededness [10, 11]. In this case, we can read ascents as “adaptive
paths” [4] and steepest ascent as a strong-selection weak mutation dynamic that is often
studied in evolutionary biology [6, 16]. The VCSP’s variables correspond to genetic loci, the
valued constraints correspond to gene-interactions, and the constraint graphs of the VCSPs
encoding fitness landscapes correspond to gene-interaction networks [19, 11].5 In this case,
finding the “simplest” VCSPs that have exponential steepest ascents allows us to reason
about the minimal conditions for open-endedness in evolution. Thus, our hope is that further
progress on local search for VCSPs increases not only our understanding of combinatorial
optimization but also of natural processes like biological evolution.

References
1 Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming. Journal of

Combinatorial Theory, Series A, 14(2):137–148, 1973. doi:10.1016/0097-3165(73)90016-2.
2 Clément Carbonnel, Miguel Romero, and Stanislav Živný. The complexity of general-valued

constraint satisfaction problems seen from the other side. SIAM Journal on Computing,
51(1):19–69, 2022. doi:10.1137/19M1250121.

3 David A Cohen, Martin C Cooper, Artem Kaznatcheev, and Mark Wallace. Steepest ascent
can be exponential in bounded treewidth problems. Operations Research Letters, 48:217–224,
2020.

4 K. Crona, D. Greene, and M. Barlow. The peaks and geometry of fitness landscapes. Journal
of Theoretical Biology, 317:1–10, 2013.

5 Reinhard Diestel. Graph Theory. Springer Publishing Company, Incorporated, 5th edition,
2017.

6 John H Gillespie. A simple stochastic gene substitution model. Theoretical population biology,
23(2):202–215, 1983.

7 Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Tractable optimization problems
through hypergraph-based structural restrictions. In International Colloquium on Automata,
Languages, and Programming, pages 16–30. Springer, 2009.

8 P. Jeavons, A. Krokhin, and S. Živný. The complexity of valued constraint satisfaction. Bulletin
of the European Association for Theoretical Computer Science, 113:21–55, 2014.

9 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/
0022-0000(88)90046-3.

10 Artem Kaznatcheev. Computational complexity as an ultimate constraint on evolution.
Genetics, 212(1):245–265, 2019.

11 Artem Kaznatcheev. Algorithmic Biology of Evolution and Ecology. PhD thesis, University of
Oxford, 2020.

12 Artem Kaznatcheev. Local search for valued constraint satisfaction parameterized by treedepth.
ArXiv, 2024.

13 Artem Kaznatcheev, David A Cohen, and Peter Jeavons. Representing fitness landscapes
by valued constraints to understand the complexity of local search. Journal of Artificial
Intelligence Research, 69:1077–1102, 2020.

14 Mark W. Krentel. On finding and verifying locally optimal solutions. SIAM Journal on
Computing, 19(4):742–749, 1990. doi:10.1137/0219052.

5 Similar models where the local search algorithm is set by nature exist for social systems studied in
business [15, 17] and economics [18]; and for energy-minimization in physical systems.

CP 2024

https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.1137/19M1250121
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1137/0219052

17:16 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

15 Daniel A Levinthal. Adaptation on rugged landscapes. Management Science, 43(7):934–950,
1997.

16 H. Allen Orr. The genetic theory of adaptation: a brief history. Nature Reviews. Genetics,
6:119–127, 2005.

17 Jan W Rivkin and Nicolaj Siggelkow. Patterned interactions in complex systems: Implications
for exploration. Management Science, 53(7):1068–1085, 2007.

18 T Roughgarden. Computing equilibria: A computational complexity perspective. Economic
Theory, 42:193–236, 2010.

19 Alexandru Strimbu. Simulating evolution on fitness landscapes represented by valued constraint
satisfaction problems. arXiv:1912.02134, 2019.

20 S. Wright. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In
Proc. of the 6th International Congress on Genetics, pages 355–366, 1932.

A No naive decomposition into arity-5 constraints for P

Let k > 0 be an odd integer. One option for reducing the arity of constraint P̂ from Section 5,
would be to decompose it into two arity-5 constraints, one between Dk−1-and-Dk and one
between Dk-and-Dk+1. Note that in this case, the value xk would pick out the column of
the Dk−1-Dk-constraint, and the row of the Dk-Dk+1-constraint. Taken together, these two
components would need to result in K from Section 5. Thus, if we want to implement this
with two arity-5 constraints between we need to show how to implement K as the sum Q of
two rank-1 matrices:

Q =

0 1 2
2 1 0
0 1 2

 ?=

A1
B1
C1

 (
1 1 1

)
+

1
1
1

 (
A2 B2 C2

)
(31)

=

A1 + A2 A1 + B2 A1 + C2
B1 + A2 B1 + B2 B1 + C2
C1 + A2 C1 + B2 C1 + C2

 = Q (32)

We can see that this is impossible to satisfy because on the side of Q we have:

Q1,1 + Q2,2 = A1 + A2 + B1 + B2 (33)
= A1 + B2 + B1 + A2 = Q1,2 + Q2,1 (34)

but on the side of K we have:

K1,1 + K2,2 = 0 + 1 (35)
̸= 1 + 2 = K1,2 + K2,1. (36)

Thus, if the even domains contain only a single intermediate state, we cannot decompose
the minimisation constraint P̂ into two arity-5 constraints between Dk−1-and-Dk and Dk-
and-Dk+1.

Learning Effect and Compound Activities in High
Multiplicity RCPSP: Application to Satellite
Production
Duc Anh Le1 #

DTIS, ONERA, Université de Toulouse, France

Stéphanie Roussel #

DTIS, ONERA, Université de Toulouse, France

Christophe Lecoutre #

CRIL, Université d’Artois & CNRS, France

Anouck Chan #

DTIS, ONERA, Université de Toulouse, France

Abstract
This paper addresses the High Multiplicity Resource-Constrained Project Scheduling Problem (HM-
RCPSP), in which multiple projects are performed iteratively while sharing limited resources. We
extend this problem by integrating the learning effect, which makes the duration of some activities
decrease when they are repeated. Learning effect can be represented by any decreasing function,
allowing us to get flexibility in modeling various scenarios. Additionally, we take composition
of activities into consideration for reasoning about precedence and resources in a more abstract
way. A Constraint Programming model is proposed for this richer problem, including a symmetry-
breaking technique applied to some activities. We also present a heuristic-based search strategy. The
effectiveness of these solving approaches is evaluated through an experimentation conducted on data
concerning real-world satellite assembly lines, as well as on some adapted literature benchmarks.
Obtained results demonstrate that our methods serve as robust baselines for addressing this novel
problem (denoted by HM-RCPSP/L-C).

2012 ACM Subject Classification Applied computing → Decision analysis

Keywords and phrases High-multiplicity Project Scheduling, Learning Effect, Compound Activities,
Satellite Assembly Line, Constraint Programming, Symmetry Breaking

Digital Object Identifier 10.4230/LIPIcs.CP.2024.18

Supplementary Material Dataset (PSP-based dataset): https://doi.org/10.57745/ASGLBH [18]

Funding Stéphanie Roussel, Anouck Chan: This work has been partly realised with the support
of the French government, in the context of the BPI PSPC project “LiChIE” of the “Programme
d’Investissements d’Avenir”.
Christophe Lecoutre: This work has benefited from the support of the National Research Agency
under France 2030, MAIA Project ANR-22-EXES-0009.

1 Introduction

In numerous industries, especially in manufacturing, a frequent challenge is to schedule
several projects, each demanding multiple executions, within an environment of limited
resources. This scheduling problem is known as the High Multiplicity Resource-Constrained
Project Scheduling Problem (HM-RCPSP) [8].

1 Corresponding author

© Duc Anh Le, Stéphanie Roussel, Christophe Lecoutre, and Anouck Chan;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 18; pp. 18:1–18:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:duc_anh.le@onera.fr
https://orcid.org/0009-0002-1028-4329
mailto:Stephanie.Roussel@onera.fr
https://orcid.org/0000-0001-7033-555X
mailto:christophe.lecoutre@cril.fr
https://orcid.org/0000-0002-2205-6545
mailto:anouck.chan@onera.fr
https://orcid.org/0000-0003-0581-5287
https://doi.org/10.4230/LIPIcs.CP.2024.18
https://doi.org/10.57745/ASGLBH
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Learning Effect and Compound Activities in High Multiplicity RCPSP

This problem arises, for example, when planning the assembly of complex products such
as satellites. Traditional satellite manufacturing tends to be handcrafted, and only a few
units are produced over a long time horizon. Recently, there has been a growing interest in
satellite constellations and large-scale satellite production is now essential to meet demand as
highlighted in [7, 9]. We have been working on the production of Earth observation satellites,
where most of the activities require human operators. In this case, satellite manufacturers
have to adapt their industrial system to cope with very different numbers of units to be
produced (from one to dozens) and different deadlines for these satellites. For example, it
may be necessary to produce an Earth observation satellite every two months to keep up
with constellation development, but a highly specialised sensor satellite can be produced in a
dozen months. While each type of satellite has its own assembly process, the resources and
machinery used to perform tasks are sometimes identical for satellites of different types. For
instance, an Earth observation satellite and a highly dedicated sensor satellite both require
aseismic areas in order to install instruments without any interference from the other tasks.
As most of these resources and machines are generally very expensive, they are only available
in limited quantities in the factory and are shared between the production of all satellite
types.

Two features of the satellite assembly line scheduling problem cannot be modelled within
the HM-RCPSP frame. Firstly, in addition to the classical precedence relationship over
activities, one has also to deal with a composition relationship, which makes possible to
express that an activity encompasses other ones (therefore starting and ending with the
earliest and latest encompassed activity, respectively). Such an activity, called compound,
can for instance be used for representing the “installation of a mirror on the satellite”,
which is decomposed into several atomic activities such as “fixing the mirror”, “verifying the
mirror alignment”, etc. The interest for composition is twofold. It allows us to express the
precedence relationship in a more compact way, and to indicate that a resource is consumed
globally (the resource becoming unavailable for the whole duration of the compound activity).
For instance, a bench test may be required for the overall mirror installation, expressing not
only that each activity encompassed in this activity may use the bench test but also that the
latter cannot be used by any other activity until the mirror installation is finished.

Secondly, in some manufacturing environments, the time required to perform an operation
usually fluctuates over time. As a production system operates, workers acquire expertise or
improve the manufacturing process, become proficient in required actions, learn tool utiliza-
tion, and enhance their interaction with the supply chain, among other factors. Consequently,
the overall system becomes more efficient. For example, the time needed to assemble the
10th iteration of a product may be only half of the time taken for the initial one. This
phenomenon is recognized as the learning effect, and the variation in duration based on
the repetition of the same operation is called a learning curve [25]. In the case of complex
products such as satellites or aircrafts, such a phenomenon can have a significant impact on
the medium and long-term production planning of the factory. Interestingly, taking learning
effect into account permits a more realistic estimation of the dates at which products will be
ready. It can also be useful to predict potential additional investment in terms of resources
to meet delivery goals. However, incorporating learning effect makes HM-RCPSP more
intricated because projects are inter-dependent in terms of activities duration.

The objective of this paper is to address the High Multiplicity RCPSP with Learning
effect and Compound activities, denoted HM-RCPSP/L-C. More precisely, the contributions
of this paper are:

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:3

HM-RCPSP/L-C is formally defined, notably by introducing a generic learning effect
component;
a symmetry-breaking method is proposed, while proving its correctness;
a Constraint Programming (CP) model and a heuristic-based search strategy are intro-
duced;
new academic benchmarks are proposed (and made publicly available);
an experimentation is conducted on these benchmarks as well as on industrial satellite
assembly line benchmarks, showing the potential of the CP approach (with and without
symmetric-breaking constraints) which is compared to some other approaches.

The paper is structured as follows. After presenting some related works in Section 2,
HM-RCPSP/L-C is formally introduced in Section 3. Then, symmetry breaking is addressed
in Section 4. Two main solving approaches for HM-RCPSP/L-C are introduced in Section 5,
and the results of the experiments we have performed are presented in Section 6. Finally, we
conclude and discuss some perspectives in Section 7.

2 Related Works

The RCPSP problem is a classical problem in combinatorial optimization, for which plenty
of solving approaches have been proposed in the literature [2]. As described in [12], many
extensions have been proposed over the years. In this section, we first focus on extensions
that address either the presence of several projects or their repetition in a context of
shared resources. Then, we present some works in which scheduling and learning effects are
simultaneously handled.

Multi Project and Repetition in Scheduling. In a recent survey [22], the authors present
several extensions of the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP).
Such extensions can address activities features (e.g. preemption or uncertainty), activities
relationships (e.g. concurrency or time lags), projects and resource features (e.g. renewability
or availability). Because of the learning effect, the projects we consider in this study are
inter-dependent, which prevents the HM-RCPSP/L-C to be seen as a special case of RCMPSP.

In [6], the authors address the cyclic RCPSP (a single project is repeated infinitely)
through a Discrete Time Constraint Programming (DT-CP) approach. The objective is to
find a pattern that interleaves several repetitions of the project in order to use resources
optimally. In the context of construction projects [10], identical activities are repeated a given
number of times. In [8], the authors address the HM-RCPSP/max in which several projects
are repeated and share common resources. Projects can be linked through a generalized
precedence relationship which specifies maximum time-lags between activities. They propose
a symmetry breaking method for identical projects of the same class.

Learning Effect and Scheduling. The learning effect phenomenon was initially reported
in [23]. The author defines a log-linear learning model that we use in our experiments.
Various learning curves have been proposed since then [25].

There are two different approaches to learning in scheduling environments: (i) position-
based approach, meaning that learning is effected by the pure number of times an activity
has been completed; and (ii) sum-of-processing-time approach which takes into account
the processing time of all same activities processed so far [5]. Some works have studied
under which conditions the problem becomes polynomial [4, 3, 26]. In [1], a position-based
scheduling problem with repetitive projects is studied using a two-stage approximation

CP 2024

18:4 Learning Effect and Compound Activities in High Multiplicity RCPSP

approach. It consists of identical projects that can be executed in parallel while respecting
the resource capacity, and each activity requires exactly one unit of one specific resource
type.

Staff allocation has been studied in [24] and [21], respectively with a position based and
a sum-of-processing based learning effect modelling. Learning effect has also been studied in
the case of Discrete Time/Resource Trade-off Problem (DTRTP), as presented in [20, 19].
DTRTP is a sub-problem of the multi-mode RCPSP, where the duration of each activity
depends on the amount of workers or resources assigned to it. Finally, in [13], the authors
introduce four DT-CP formulations for the RCPSP with position-based learning effect, and
provide an empirical comparison of their scheduling and lower bounding performance. In
their study, the effect of learning is modeled by having two duration values for each activity:
a nominal and a reduced one, and there is no repetition factor.

To conclude this section, to the best of our knowledge, there is no work in the literature
addressing simultaneously multi-projects sharing resources, with compound activities and
whose activity duration depends on learning effect.

3 HM-RCPSP/L-C

The components (data) required to define an instance of the high-multiplicity resource-
constrained project scheduling problem with compound activities and learning effect (HM-
RCPSP/L-C) are formally described in this section.

3.1 Problem Inputs
An instance of HM-RCPSP/L-C is a tuple composed of the following elements:

C is the set of project classes (or categories);
for each class c ∈ C, Ic is the set of projects (or instances) of c that have to be realized.
For each project p ∈ Ic, duep represents its due date, i.e. the date at which it should be
finished;
for each class c ∈ C, Ac represents the set of non-preemptive activities that have to be
realized for each project of c. Activities Ac can be partitioned into two sets AA

c and
AC

c that respectively represent atomic activities and compound activities. Intuitively, a
compound activity can be seen as a group of activities. Such an activity spans over all
activities in the group;
for each class c ∈ C, Hc ⊆ AC

c × Ac is the composition relation of c. If a is a compound
activity and b an activity, then (a, b) ∈ Hc expresses that b is encompassed by a (or a
child activity of a). Note that it is possible to have (a, b) if b is a compound activity;
for each class c ∈ C and for each atomic activity a ∈ AA

c , we assume the existence of a
monotonically decreasing duration function, denoted as dura : N+ → N+, which returns
the duration of the activity based on the number of times it has been completely executed
before;
for each class c ∈ C, Pc is a precedence relationship between activities in Ac. If (a, b) ∈ Pc,
then activity a must be finished before the start of activity b;
R is the set of cumulative and renewable resources. For each resource r ∈ R, capar

denotes its capacity.
for each resource r ∈ R, for each class c ∈ C, for each activity a ∈ Ac, consr,a denotes
the amount of resource r consumed by a;
H ∈ N+ is the maximum time horizon.

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:5

We denote ap the instance of activity a ∈ Ac that has to be realized for project p ∈ Ic

and c ∈ C.

Assumptions. An instance of HM-RCPSP/L-C is said to be well-formed if and only if the
following assumptions hold. Note that unless said otherwise, all instances considered in the
paper are supposed to be well-formed.
1. Projects and activities are associated with exactly one class.
2. The duration function associated with each activity is monotonically decreasing. Formally,

∀c ∈ C, ∀a ∈ AA
c , ∀n ≥ 0, dura(n + 1) ≤ dura(n).

3. For each class c ∈ C, we suppose that the set of atomic activities AA
c contains two virtual

activities αc and ωc that respectively represent the start and end activities for a project.
Such activities do not consume any resource, they are not encompassed by any compound
activity and their duration is null. Moreover, αc precedes (resp. ωc follows) all other
activities in Ac.

4. For each class c ∈ C, the graph induced by the compound/atomic activities relationship
is a forest, i.e. each node has at most one parent and there is no cycle. Formally, such a
graph GH

c is composed of a set of nodes N H
c and a set of arcs ArcsH

c that are defined as
follows. N H

c is composed of one node na for each activity a in Ac. ArcsH
c is composed of

one arc (na, nb) for each pair of activities (a, b) ∈ Hc.
5. For each class c ∈ C, for each tree in the forest GH

c , and for each path from the root to an
arbitrary leaf, the resource capacities are sufficient to execute all activities on this path
simultaneously.

6. For each class c ∈ C, the graph GP
c induced by the precedence relationship is acyclic.

To build such a graph, we first define an atomic version of the precedence relationship,
denoted PA

c , in which all precedences of Pc are transposed to atomic activities. Formally,
for all a, b in AA

c , (a, b) belongs to PA
c if and only if there exist two activities d and e in

Ac such that: 1. (d, e) ∈ Pc, 2. there exists a path in GH
c from nd to na and 3. a path

from ne to nb. Then, the set of nodes for GP
c is N P

c = {va | a ∈ AA
c }, that contains one

node for each atomic activity. The set of arcs is ArcsP
c = {(va, vb) | (a, b) ∈ PA

c } and
contains one arc for each pair in the atomic precedence relationship.

▶ Example 1. Figure 1 illustrates a toy example instance of HM-RCPSP/L-C. There are
two classes, c1 and c2. The activities of each class are described on the left table of Figure 1a.
For each project of class c1, 4 activities (+2 dummy activities α1 and ω1) must be performed.
Activities a, b, c, α1 and ω1 are atomic (AA

c1
= {α1, ω1, a, b, c}). Activity a’s duration is

given by function δ1 described in the lower right corner: if no instance of activity a has
been completed yet (i.e. n = 0), then its duration is 3, if one execution has been fully
completed before starting a then its duration is equal to 2, and so on. Activity d is compound
(AC

c1
= {d}) and its children are b and c, as represented on the upper graph of Figure 1b.

This graph also represents the precedence relationship Pc1 . For instance, (α1, d) and (b, c)
both belong to Pc1 . r1 and r2 are the two resources and respectively have a capacity equal
to 3 and 2. Both atomic and compound activities can consume these resources. For instance,
consr1,d = 1 and consr2,b = 1. Two projects, p1 and p2, of class c1 and one project, q, for
class c2 must be realized. Due dates for these projects are respectively equal to 7, 8 and 6.

3.2 Schedule, Solution and Optimality
Schedule. A schedule σ for an HM-RCPSP/L-C instance is defined through the assignment
of a start date to each atomic activity of each project of each class. Formally, if a is an
atomic activity, the start date of ap in σ is denoted startσ(ap).

CP 2024

18:6 Learning Effect and Compound Activities in High Multiplicity RCPSP

C Ic duep

c1
p1 7
p2 8

c2 q 6

R capar

r1 3
r2 2

C Ac dura r1 r2

c1

a δ1 1 0
b δ2 0 1
c δ1 0 1
d - 1 0

c2

e δ2 0 1
f δ1 1 0
g - 1 0 n

δ1(n)
δ2(n)

0
1
2
3

0 1 2 3 4

(a) Example of classes, projects, activities and resources.

c1 :

α1

a

b c

ω1d

c2 :

α2 e f ω2

g

(b) Composition and precedence relation-
ships.

Figure 1 Toy example of a HM-RCPSP/L-C instance.

The end date of ap, where a is an atomic activity and p a project, is denoted endσ(ap).
Because of the learning effect, ap’s duration depends on the number of times activity a has
already been completed for other projects in the same class at the start of ap. The function
ncσ, applied to activity a and time step t, returns the number of times that a has been
completed at t. Formally,

endσ(ap) = startσ(ap) + dura(ncσ(a, startσ(ap))).
ncσ(a, t) =

∑
q∈Ic\{p}(endσ(aq) ≤ t)

In practice, the value of these functions can be determined for a given schedule σ by
ordering the activities executions using their start dates. The start dates of two virtual
activities αc and ωc can be then defined as follows:

startσ(αp
c) = mina∈AA

c
startσ(ap)

startσ(ωp
c) = maxa∈AA

c
endσ(ap)

Start and end dates of compound activities can be deduced from those of atomic ones:
the start date of a compound activity a (resp. the end date) is equal to the minimum start
date (resp. maximum end date) of activities encompassed by a. For readability, we also use
functions startσ(ap) and endσ(ap) for denoting start and end dates of compound activities.

Solution. A schedule σ is a solution for an HM-RCPSP/L-C instance if and only if the
precedence constraints (Equation 1) are satisfied and the resources capacity is respected
through the entire time horizon (Equation 2).

∀c ∈ C, ∀(a, b) ∈ Pc, ∀p ∈ Ic, endσ(ap) ≤ startσ(bp) (1)

∀r ∈ R, ∀t ∈ J0, H K,
(∑

c∈C,a∈Ac,p∈Ic

startσ(ap)≤t<endσ(ap)

consr,a

)
≤ capar (2)

Optimal Solution. A solution σ is said to be optimal if it minimizes (in lexicographic order)
the two following optimization criteria: (1) the sum of tardiness for projects (Equation 3),
and (2) the makespan (Equation 4).∑

c∈C,p∈Ic

max{0, endσ(ωp
c) − duep} (3)

max
c∈C,p∈Ic

endσ(ωp
c) (4)

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:7

▶ Example 2. Figures 2a and 2b respectively illustrate two solutions σ1 and σ2. We have
startσ(cp1) = 2, i.e. the execution of c in project p1, starts at time 2 in solution σ1. As
δ1(0) = 3, cp1 lasts 3 time units and endσ(cp1) = 5. Still in σ1, at the start of cp2 (time step
6), one execution of c is completed so duration of cp2 is equal to 2. Note that in σ2, when
starting activity cp2 , the execution of cp1 is not completed yet, so the duration of cp2 is equal
to 3.
As the compound activity gq spans activities eq and fq, in solution σ1, this makes gq start
at time 0 and end at time 6. However, in σ2, gq ends at time 3. In both cases, the resource
r1 is consumed all over gq’s duration.
Both solutions satisfy projects due dates. For instance, endσ1(ωp1

c1
) is equal to 5, which is

less than 7. However, the makespan of σ2 is lower than the makespan of σ1, which makes σ2
a better solution.

t

r1

ap1

dp1

fq

gq

dp2

ap2

0 1 2 3 4 5 6 7 8 9

t

r2
bp1 cp1

eq

bp2 cp2

0 1 2 3 4 5 6 7 8 9

ωp1
c1

ωq
c2

ωp2
c1

(a) Solution σ1 with a makespan equal to 8.

t

r1

ap1

dp1

fq

gq
dp2

ap2

0 1 2 3 4 5 6 7 8 9

t

r2
bp1 cp1

eq bp2 cp2

0 1 2 3 4 5 6 7 8 9

ωp1
c1

ωq
c2

ωp2
c1

(b) Solution σ2 with a makespan equal to 7.

Figure 2 Illustration of Example 2 – Due dates are satisfied in both solutions.

4 Symmetry Breaking

In this section, we establish the existence of symmetries between identical activities from
different projects within the same class.

First, because of the learning effect, an activity a that starts in project q later than in
project p can finish earlier in q. This is illustrated on the left part of Figure 3.

t

ap

aq

Solution σ
t

ap

aq

Solution υ

Figure 3 Illustration of Lemma 4’s proof:
σ is not start-end-consistent but υ is.

t

ap

aq

bp

bq

Solution σ
t

ap

aq

bp

bq

(p − q)-permutation of σ

Figure 4 Illustration of a (p − q)-permutation: ap

and aq are swapped.

We address that particular case through Definition 3 and Lemma 4.

▶ Definition 3 (Start-end-consistency). A solution σ is start-end-consistent if for any class
c ∈ C, any atomic activity a ∈ AA

c , and any two projects p, q ∈ Ic, we have:

startσ(ap) < startσ(aq) ⇐⇒ endσ(ap) < endσ(aq)

▶ Lemma 4. If a solution σ is not start-end-consistent then there exists a start-end-consistent
solution υ that is equivalent or better than σ with respect to the two optimization criteria.

CP 2024

18:8 Learning Effect and Compound Activities in High Multiplicity RCPSP

Sketch of proof. Let a be an atomic activity and p and q be two projects for which a solution
σ is not start-end-consistent as in Figure 3. We can build a schedule υ that is equal to σ

except that the start date of ap is delayed until the start date of aq. All precedence and
resource consumption constraints will be naturally satisfied in υ (they are relaxed). ◀

Note that the transformation for obtaining a start-end consistent solution (proof of
Lemma 4) can delay some activities. However, as any activity delayed by the transformation
also ends earlier, criteria can only be improved. From this point onward, we only consider
start-end-consistent solutions. In the following, we define specific moves on schedules, that
we call permutations, and show that they preserve the satisfaction of precedence and resource
constraints.

▶ Definition 5 ((p, q)-permutation). For any solution σ, any class c ∈ C and any two projects
p, q ∈ Ic, a schedule π is a (p, q)-permutation of σ if for all atomic activities a ∈ AA

c \{αc, ωc},
we have:

∀o ∈ Ic \ {p, q}, startπ(ao) = startσ(ao),
if startσ(ap) > startσ(aq), then startπ(aq) = startσ(ap) and startπ(ap) = startσ(aq),
else startπ(ap) = startσ(ap) and startπ(aq) = startσ(aq).

The operation that consists in swapping start dates of a specific atomic activity, excluding the
source and the sink, between two projects is called a swap.

As illustrated in Figure 4, a (p, q)-permutation consists in swapping all atomic activities
of p that start after their counterpart activities in q. Because the start date of compound
activities and source and sink depend only on the start dates of atomic activities, a corollary
of Definition 5 is that all activities in p start before their counterpart activities in q. Note
also that swapping the start dates of atomic activities ap and aq also swaps their duration
and their end dates.

t

ap

aq

bp

bq

a. no swap t

ap

aq

bp

bq

b. ap and aq swapped

t

ap

aq

bp

bq

c. bp and bq swapped
t

ap

aq

bp

bq

d. ap and aq swapped,
bp and bq swapped

Figure 5 Four precedence cases considered
in the proof of Lemma 6.

σ

0
1
2

ap

aq

t

c o
ns

r
,a π

0
1
2

ap

aq

t

co
n

s r
,a

(a) Usage of resource r at time t: from 0 to consr,a.
σ

0
1
2

ap

aq

t

c o
ns

r
,a π

0
1
2

ap

aq

t

c o
ns

r
,a

(b) Usage of resource r at time t: from consr,a to
2consr,a.

Figure 6 Two impossible cases considered in proof
of Lemma 7 when a ∈ AC

c .

▶ Lemma 6. Given a start-end-consistent solution σ, for any class c ∈ C and any two projects
p, q ∈ Ic, the (p, q)-permutation π of σ is precedence-feasible, i.e. it satisfies Equation 1.

Sketch of proof. As inferred by Assumption 5, we consider only precedence on atomic
activities. If π is not precedence-feasible, there exist two atomic activities a and b such
that a precedes b and such that endπ(ap) > startπ(bp) or endπ(aq) > startπ(bq) hold.
As σ is precedence-feasible, then endσ(ap) ≤ startσ(bp) and endσ(aq) ≤ startσ(bq) both
hold. We then consider all possible cases in terms of exchange, as illustrated in Figure 5,
where the dashed lines correspond to an exchange of activities in π. In all cases, if σ is
precedence-feasible, then so is π. ◀

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:9

▶ Lemma 7. Given a start-end-consistent solution σ, for any class c ∈ C and any two projects
p, q ∈ Ic, the (p, q)-permutation π of σ is resource-feasible, i.e. it satisfies Equation 2.

Sketch of proof. The resource feasibility is easy to prove in the case of atomic activities. In
fact, when swapping activities, the consumption of resources does not change. However, in
the case of compound activities, it is possible that some children activities are swapped and
some other not, meaning that duration of compound activities can change when performing
a (p, q)-permutation. In the following, we consider all the cases and show that even with
compound activities, the permutation stays resource-feasible.

We define a function γr,a,t(p, σ) that represents how much the activity a executed for
project p consumes a resource r at a given time step t in σ, i.e. γr,a,t(p, σ) = consr,a if
t ∈ T σ

p,a, 0 otherwise. The consumption of a resource r at each time step t in a schedule σ is
given by the formula

∑
c∈C,p∈Ic,a∈Ac

γr,a,t(p, σ). The proof is divided into several steps.
1. We show that if π is not-resource feasible, there exists a time-step t and a resource r

such that
∑

c∈C,p∈Ic,a∈Ac
γr,a,t(p, π) − γr,a,t(p, σ) > 0. We consider this specific resource

r and this time step t.
2. We prove that the resource capacity violation in π comes only from projects p and q.
3. Let c be the class associated with p and q and a an activity in Ac, we show that the

consumption of r induced by both activities ap and aq is equivalent in π and σ. Formally,
γr,a,t(p, π) − γr,a,t(p, σ) + γr,a,t(q, π) − γr,a,t(q, σ) = 0.
a. If a is an activity atomic, the usage of r unchanged.
b. If a is a compound activity then we consider two cases (Figure 6): (i) if activities ap

and aq do not use r at time t in σ, but at least one of them uses it in π, then we have
γr,a,t(p, σ) = γr,a,t(q, σ) = 0 and γr,a,t(p, π) + γr,a,t(q, π) ≥ consr,a (Figure 5a) ; (ii) if
exactly one activity (ap or aq) uses r at time t in σ and they both use it in π, then
γr,a,t(p, σ) + γr,a,t(q, σ) = consr,a and γr,a,t(p, π) + γr,a,t(q, π) = 2consr,a(Figure 5b).
We show that both cases lead to a contradiction.

All cases imply a contradiction, meaning that π is resource-feasible. ◀

▶ Lemma 8. Given a start-end-consistent schedule σ, for any class c ∈ C and any two
projects p, q ∈ Ic, the makespan of the (p, q)-permutation π of σ is equivalent to that of σ.

Complete proof. Let ϵσ
p,q = maxa∈Ac

(endσ(ap), endσ(aq)) be the date at which both projects
p and q are finished in σ. In π, even if there is a swap between activities, the date when p

and q are both finished does not change, i.e. ϵπ
p,q = ϵσ

p,q. As the timing of all other projects
in π remains the same as in σ, the makespan of π must be equivalent to that of σ. ◀

For the tardiness, only some (p, q)-permutation such that duep < dueq allows to get a
lower or equal tardiness. Therefore, we define a preorder on projects consistent with due
dates and show that it preserves or improves tardiness. Note that we do not define a unique
preorder ≺ based on uniquely considering p ≺c q when duep < dueq, as we allow the user
to set arbitrarily p ≺c q when duep = dueq, provided that the relation remains well-formed.
This is somewhat distantly related to the arbitrary choices made when posting the global
constraint Precedence [17] (for example, between identical projects, you can choose one to
precede the other, as done in [8]).

▶ Definition 9 (Due-date consistent strict preorder). For any class c ∈ C, a strict order ≺c is
due-date consistent for c if ∀p, q ∈ Ic such that duep < dueq, then p ≺c q.
A relation ≺ is a due-date consistent strict preorder if it is the union of due-date consistent
strict preorders ≺c for each class c ∈ C.

CP 2024

18:10 Learning Effect and Compound Activities in High Multiplicity RCPSP

▶ Example 10. Let us consider an instance with two classes, c1 and c2, and for which
projects p1, p2 and p3, and q1 and q2 are respectively associated, and such that duep1 = 7,
duep2 = duep3 = 10, dueq1 = 8 and dueq2 = 6. Then ≺c1= {(p1, p2), (p1, p3), (p3, p2)} is a
due-date consistent strict preorder for c1. Considering (p2, p3) instead of (p3, p2) would also
result in a due-date consistent strict preorder. ≺c2= {(q2, q1)} is the only due-date consistent
strict preorder for c2. ≺ = ≺c1 ∪ ≺c2 is a due-date consistent strict preorder for this instance.

In the following, for a class c ∈ C, a project p ∈ Ic and a schedule σ, let τσ
p denote the

tardiness of project p. Formally, τσ
p = max{0, endσ(ωp

c) − duep}. τσ denotes the sum of
tardiness of all projects, as expressed in Equation 3.

▶ Lemma 11. Given a start-end-consistent solution σ, a due-date consistent strict preorder
≺, a class c ∈ C and two projects p, q ∈ Ic. If p ≺ q and π is the (p, q)-permutation of σ,
then τπ ≤ τσ, i.e. the tardiness of π is less than or equal to the tardiness of σ.

Sketch of proof. Except from projects p and q, all other projects activities remain the
same in σ and π. Thus, the difference between tardiness of both schedules comes from the
difference tardiness of projects p and q in σ and in π. Intuitively, p always ends earlier
(its tardiness is reduced) but q might end later in π than in σ. We therefore have to show
that τπ

p + τπ
q ≤ τσ

p + τσ
q or τπ

q ≤ τσ
q . We suppose that ap and bq are respectively the latest

activities for p and q in σ. Cases considered in the following are illustrated in Figure 7.
1. If both activities a and b are not swapped between projects p and q in π, so bq still

concludes q in π, which implies τπ
q = τσ

q .
2. If ap and aq are swapped, but bp and bq are not then τπ

p ≤ τσ
p .

a. If endσ(ap) ≤ endσ(bq) then we can show that bq still concludes q in π, so τπ
q = τσ

q .
b. Else, aq concludes q in π and we have to consider several following situations.

i. If endσ(ap) ≤ dueq, then τπ
q = τσ

q = 0.
ii. If endσ(ap) > dueq, then τπ

q = endσ(ap) − dueq and τσ
p = endσ(ap) − duep.

Regardless of the relative positions of endσ(bq), duep and dueq, we show that
τπ

p + τπ
q ≤ τσ

p + τσ
q .

3. It is impossible to have bp and bq being swapped but not ap and aq, because ap and bq

are respectively the latest activities for p and q in σ.
4. If both ap and aq are swapped, and so are bp and bq, then endσ(aq) ≤ endσ(bq) <

endσ(bp) ≤ endσ(ap) then bp and aq are respectively the latest activities for p and q in π.
We prove that τπ

p + τπ
q ≤ τσ

p + τσ
q in several cases: a. both p and q are late in σ, b. p is

late and q is early in σ and c. both p and q are early in σ.
In those all cases, τπ

p + τπ
q ≤ τσ

p + τσ
q , which proves that τπ ≤ τσ. ◀

t

aq

bq

ap

bp

π

Case 2.a.
τπ

p ≤ τσ
p , τπ

q = τσ
q

t

aq

bq

ap

bp

duep

dueq

π

Case 2.b.i.
τπ

p ≤ τσ
p , τπ

q = τσ
q

t

aq

bq

ap

bp

π
τσ

p

τσ
q

τπ
q

τπ
p

dueqduep

Case 2.b.ii.
τπ

p + τπ
q ≤ τσ

p + τσ
q

t

aq

bq

ap

bp

dueqduep

τσ
p

τσ
q

τπ
q

τπ
p

π

π

Case 4.a.
τπ

p + τπ
q ≤ τσ

p + τσ
q

t

aq

bq

ap

bp

dueqduep

τσ
p

τπ
p

τπ
q

π

π

Case 4.b.
τπ

p + τπ
q ≤ τσ

p

Figure 7 Illustration of cases considered in Lemma 11’s proof.

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:11

We now define a ≺-permutation of σ in which (p, q)-permutations are done for all p, q

such that p ≺ q and show that if σ is a solution then the ≺-permutation is also a solution
better or equivalent to σ.

▶ Definition 12 (≺-permutation). Given a solution σ and a due-date consistent strict preorder
≺, a schedule π is a ≺-permutation of σ if, for any class c ∈ C, and any two projects p, q in
Ic such that p ≺ q, π is a (p, q)-permutation of σ.

▶ Lemma 13. Given a start-end-consistent solution σ and a due-date consistent strict
preorder ≺, the ≺-permutation π of σ is a solution with a makespan equivalent to that of σ

and a tardiness as least as good as that of σ.

Complete proof. Let π be a ≺-permutation of a schedule σ. π can be built from σ through
several schedules υ0, . . . , υn where υ0 = σ, υn = π and ∀i ∈ J1, nK, υi is a (p, q)-permutation
of υi−1 with p and q two projects such that p ≺ q. According to Lemmas 6, 7, 8 and 11, each
of these permutations is a solution with an equivalent makespan and equivalent or lesser
tardiness. ◀

This result means that for finding a solution σ to an HM-RCPSP/L-C instance, one may
consider a due date consistent preorder ≺ and look for solutions in which for all p and q such
that p ≺ q, for all activity a ∈ Ac, startσ(ap) ≤ startσ(aq).

5 Solving HM-RCPSP/L-C

In this section we present the two main approaches we have developed for solving HM-
RCPSP/L-C, namely a CP approach and a heuristic-based search approach. They can be
combined, but the exact description of these combinations is left to Section 6.

5.1 Building a CP Model
Regarding the CP approach, in this paper, we use the interval based variable formulation
of Optimization Programming Language (OPL) associated with CP Optimizer [16]. An
interval variable allows us to represent an activity along with its variable starting date, its
variable duration, its mandatory or optional presence in the computed schedule, its earliest
start and latest end dates. The start date, end date and duration of an interval variable are
respectively accessible through functions startOf, endOf and lengthOf. For each class c ∈ C,
for each project p ∈ Ic, for each activity a ∈ Ac, we consider the following variables:

itva,p ∈ J0, H K is an interval variable for the execution of activity ap;
na,p ∈ J0, |Ic|K is an integer variable representing the number of times activity a of class
c was completed before the start of this instance of a, corresponding to ncσ(a, startσ(ap))
defined in Section 3.

Constraints and criteria are encoded as follows:

minimize
(∑

c∈C,p∈Ic

a∈Ac

max(0, endOf(itva,p) − duep), max
c∈C,p∈Ic

a∈Ac

endOf(itva,p)
)

(5)

such that:

∀r ∈ R,
∑

c∈C,p∈Ic,
a∈Ac

pulse(itva,p, consr,a) ≤ capar (6)

∀c ∈ C, ∀p ∈ Ic, ∀(a, b) ∈ Pc, endBeforeStart(itva,p, itvb,p) (7)
∀c ∈ C, ∀p ∈ Ic, ∀a ∈ AC

c , span(itva,p, {itvb,p|(a, b) ∈ Hc}) (8)
∀c ∈ C, ∀p ∈ Ic, ∀a ∈ AA

c , na,p =
∑

q∈Ic
(endOf(itva,q) ≤ startOf(itva,p)) (9)

∀c ∈ C, ∀p ∈ Ic, ∀a ∈ AA
c , lengthOf(itva,p) = dura(na,p) (10)

CP 2024

18:12 Learning Effect and Compound Activities in High Multiplicity RCPSP

The lexicographic order of criteria is formalized in Equation (5). Constraints (6) are
cumulative global constraints with respect to resource capacities, expressed through the
OPL pulse function. Constraints (7) guarantee that the precedence relationships are satisfied
(OPL function endBeforeStart). Constraints (8) enforce compound activities to span over
their children. Constraints (9) encode the computation of ncσ(a,) at the time the atomic
activity ap starts. The duration with learning effect are pre-computed and atomic activities
are assigned their duration through Element Constraints (10). In addition to the original
constraints mentioned above, symmetry breaking constraints are defined as follows:

∀c ∈ C, ∀p, q ∈ Ic s.t. p ≺c q, ∀a ∈ AA
c , startBeforeStart(itva,p, itva,q) (11)

5.2 Using Squeaky Wheel Optimization
The second main approach we use to address HM-RCPSP/L-C is called Squeaky Wheel
Optimisation (SWO) [14]. This technique consists of constructing an initial solution using
a greedy algorithm. It is followed by an analysis to identify areas for improvement, i.e.
parts of the solution that might improve the objective function score if they are modified.
From this analysis, new priorities are generated, which modifies the sequence in which the
greedy algorithm constructs subsequent solutions. This iterative process is repeated until a
predefined limit is reached.

More precisely, the greedy approach for constructing a solution of HM-RCPSP/L-C
consists in a Parallel Schedule Generation Scheme. Starting with an empty schedule, it
iterates chronologically over the time horizon and fills the schedule with eligible activities.
For a given time step t, an atomic activity a is eligible if Equations (1) and (2) are satisfied
when a starts at time t (taking the compound activity of a into account). Using a choice
heuristic, an eligible activity is inserted at time t and the set of eligible activities is updated.
When this set becomes empty, the process is repeated for the next time step t + 1. The
schedule is complete when all activities have been inserted. Given a set of eligible activities
E , the choice heuristic follows several steps.
1. Because of the symmetry proof, we first remove from E all the activities aq for which there

exists a project p of the same class as q such that p precedes q in the due-date consistent
strict preorder (p ≺ q) and ap has not been inserted yet (ap ∈ E). The resulting set of
eligible activities is denoted ESB .

2. There are two possible cases: a) if there is no late project at the moment, all available
projects with activities in ESB will be considered as candidates; b) otherwise, only the late
projects will be considered as candidates. For each candidate project p of a class c, the
remaining-graph of p is defined as follows: i) for each a ∈ AA

c which is already inserted,
we remove from PA

c the vertex a and all the arcs related to a; ii) the weight of an arc
(a, b) in the remaining-graph is the duration of activity a. Each candidate project p is
assigned a probability based on the ratio CPL′

p/(duep−t) if p is early and 1/CPL′
p otherwise,

where CPL′
p is the critical path length of the remaining-graph of p. One project is then

selected according to the resulting probability distribution. The set of eligible activities
is reduced to Ep

SB by considering only activities from the selected project p.
3. An activity is randomly selected in Ep

SB using a uniform probability distribution.

As the heuristic choice is stochastic, the greedy algorithm is run several times until a
given number of solutions have been constructed without improvement. At each step, the
tardiness of the projects in the best-constructed solution is analysed to modify the probability
of projects for the next cycle. To achieve that, we increase (resp. decrease) the due date
of the most advanced (resp. the tardiest) project: this corresponds to a random portion of

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:13

the smallest amount between the earliness of the most advanced project and the due date
of the tardiest project (in our datasets, we do not have the case in which all projects are
late). Note that these modified due dates are only used to calculate the project selection
probability, not the tardiness objective. This iterative cycle continues until a given timeout
condition is reached, and the best-found solution is returned.

6 Experimentation

In this section, we present the results of some experiments conducted on real-world and
synthetic benchmarks. Before presenting the experimental results, we describe the benchmarks
and the solving approaches tested, including the main ones and their combinations or
derivations.

6.1 Benchmarks
Learning Curves. In this research, we use the log-linear learning curve with a steady learning
state [23, 25, 11]2. Formally, for each class c ∈ C, each atomic activity a ∈ AA

c and each
integer n, we consider the following elements: (i) the duration for the first execution, denoted
dur0

a; (ii) the steady state of learning, denoted dur∞
a , that represents the ultimate duration

of a; (iii) the learning effect la ∈]0, 1], that impacts the duration curve slope. Then, for all
n ≥ 0, dura(n) = dur∞

a +
⌈
(dur0

a − dur∞
a) · (n + 1)log2la

⌉
. In our experiments, we consider

that dur∞
a = 1

2 dur0
a.

Table 1 Features of instances per dataset: number of classes, atomic activities, compound
activities, projects, resources, capacity of resources, and learning rate.

Instances |C| |Ac| |AC
c | |Ic| |R| capar la

PSP-based
small J2, 4K {30, 60}

0 J5, 10K 4
∑
iLIB

capaiLIB
r [0.45, 0.95]

large J5, 7K {60, 90, 120}

Satellite
original 3

≤ 30 ≤ 3
≤ 5

40 ≤ 16
[0.05, 0.95]

extended 6 ≤ 14 0.85

Datasets. We tested our approaches on two datasets presented in Table 1. First, we
created the PSP-based dataset (50 instances), where each class is an RCPSP instance from
PSPLIB [15]. The due dates are computed as follows: a project has a due date equal to the
maximum due date d in the original PSPLIB instance, then for each other project’s due date,
we iteratively add k × d, where k is a random value in [0.3, 0.8]. The time horizon is equal
to 40 (resp. 70) times the largest due dates among the involved PSPLIB instances in small
(resp. large) instances. The capacity of each resource is the sum of the capacities of that
resource from the involved PSPLIB instances. This dataset does not include any compound
activity. This dataset is publicly available ([18]).

The satellite dataset contains 24 instances updated from a satellite manufacturer. The
original set of instances, described in Table 1, covers a time horizon of more than one year
with activities lasting from a few hours to a few days. We only vary the learning rate in these
instances. We have created larger instances by increasing the number of classes, projects,

2 This curve was not provided by our industrial partner but is classically used in the aerospace domain.

CP 2024

18:14 Learning Effect and Compound Activities in High Multiplicity RCPSP

and the horizon from the original data while maintaining the resource capacities. The due
dates for the additional projects have been randomly selected with good diversity: the due
dates are distributed so that there are at most two satellites in every thousand time unit.

6.2 Solving Approaches
We have compared various approaches, based on the main techniques presented in Section 5.

CP-based Approaches. Two CP (variants of) models of HM-RCPSP/L-C are defined as
follows: i) LC, Learning Curve, corresponding to Constraints (5) to (10), and ii) LCSB,
Learning Curve and Symmetry Breaking, including Constraints (11) as well.

SWO Approach. In our implementation, the greedy algorithm is run until the solution has
not been improved 150 times in a row.

Hybrid Approach. SWO is able to produce solutions in a very short time, whereas CP-based
approaches can take longer to find a first “good” solution. Therefore, we have tested an
hybrid approach, denoted HYB, which consists of computing a solution with SWO in a short
time (5 seconds in the experiments) and then using that solution as a starting point for
LCSB (that tries to improve it for the rest of the time).

Constant then Learning Curve Approach. The Constant then Learning Curve approach,
denoted CLC, aims to adress the complexity of dealing with varying durations (due to learning
curves). Such an approach consists of the following steps:
1. we consider the Constant Duration variant of LCSB, denoted CD, in which Constraints (10)

are replaced by constraints imposing a constant duration for all activities (actually solving
HM-RCPSP/C);

2. we extract the resource-accessing order of activities from the CD solution, i.e. the
execution order of all activities;

3. using a Parallel Generation Scheme, we chronologically compute the start date of each
activity using the fixed execution order of step 2., considering that the durations of
activities follow the specified learning curves.

We have tested three variations of this approach, denoted CLC0, CLCmid and CLC∞, depending
on the value chosen as constant duration in CD: this value is respectively dur0

a, 1/2(dur0
a +

dur∞
a) and dur∞

a . For each dataset, only the results of the variation with the best performance
will be presented in the main paper result tables (complete results for the PSPLib-based
dataset are available online [18]).

6.3 Experimental Results
The tests have been launched using IBM CP Optimizer 22.1.1 through the DOcplex API for
the CP-based approaches and Julia v1.10.2 for the SWO-based approaches, on Intel® Xeon®

CPU E5-2660v3 2.60-3.30 GHz with 62 GB of RAM. All approaches have been launched
twice, to compare them over a short timeout (15 seconds) and a long timeout (2 hours).

Satellite Dataset. For the original satellite instances, all approaches achieve zero tardiness
within 15 seconds, except CLCmid and CLC∞. The final solutions obtained by CP-based
approaches after 2 hours are the same as those obtained after 15 seconds. Interestingly,
LCSB and HYB have successfully proved the optimality of 2 instances after 2 hours (whereas

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:15

SWO has the worst makespan values). For the five extended satellite instances, the tardiness
values are much higher as showed in Table 2. In the 2-hour test, LCSB clearly outperforms
the others in 4 instances out of 5. LC falls behind and struggles to order projects in a way
that minimizes tardiness. LCSB also provides the best makespan values in all instances but
one (not visible in Table 2). Note that the optimality was not proved by any approach. In
the 15-second test, HYB achieves the best tardiness in more than half of the instances, but
CLCmid surprisingly performs best overall.

Table 2 Tardiness values obtained by all solving approaches on the extended satellite dataset.

∑
c,p

|Ac| 2 hours 15 seconds

LC LCSB SWO HYB CLCmid LC LCSB SWO HYB CLCmid

637 1, 341 1, 318 4, 566 1,243 1, 668 5, 516 3, 286 6, 979 2,021 2, 033
913 1, 267 1,210 5, 963 1,210 2, 443 9, 906 9, 981 6, 734 2,544 2, 582

1, 217 2, 004 1,786 13, 174 2, 626 4, 372 48, 099 22, 121 21, 854 12,510 13, 893
1, 526 10, 993 2,135 23, 530 2, 149 5, 132 126, 012 41, 409 33, 228 41, 204 17,430
1, 832 13, 372 3,040 39, 440 4, 403 8, 268 210, 673 30, 827 54, 347 54, 266 26,979

PSP-based Dataset. In Table 3, we present for each criterion and each approach the
number of times the best value is computed (obtained) compared to others, and also the
average difference from the best value found by all approaches, denoted ADBV, which can
be calculated by: ADBV(obj, λ) =

∑
i∈I

(objλ
i − objbest

i)/
∑

i∈I
(objλ

i ̸= objbest
i), where I is the set of

instances, objλ
i is the final value of the objective obj (either tardiness or makespan) found by

approach λ in instance i, and objbest
i is the best-found value of the objective obj for instance

i by all approaches.

Table 3 Number of times the best value (#Best) is obtained and ADBV values for all solving
approaches on the PSP-based dataset.

Timeout Dataset Objective #Best ADBV

LC LCSB SWO HYB CLC0 LC LCSB SWO HYB CLC0

2h
small Tardiness 21 21 0 21 15 13 27 144 28 113

Makespan 18 19 0 14 0 3 1 14 2 31

large Tardiness 17 16 0 16 7 66 109 629 72 451
Makespan 14 15 4 16 0 7 6 10 7 62

15s
small Tardiness 22 16 0 19 15 48 40 126 38 115

Makespan 16 15 2 10 0 4 3 12 5 33

large Tardiness 15 4 6 3 5 5, 494 – 386 307 2, 011
Makespan 8 2 6 12 0 23 – 7 10 96

In the 2-hour test, for the PSP-based instances, LC, LCSB, and HYB performed best,
successfully meeting all due dates in 31 to 33 out of 50 instances (not visible in Table 3).
Nevertheless, LCSB has a slight advantage when considering the second criterion (makespan).
CLC0 performs satisfactorily but it has a poor ADBV value of tardiness. Clearly, SWO has
the worst performance since it never reaches the best value. Note that the optimality was
not proved by any solving approach regardless the dataset (small or large).

CP 2024

18:16 Learning Effect and Compound Activities in High Multiplicity RCPSP

In the 15-second test, the three approaches LC, LCSB, and HYB keep taking the lead
for the small PSP-based dataset, with a slight advantage for LC. However, for the large
dataset, the pure CP-based approach LC sometimes struggles to find a good solution in time,
resulting in a large ADBV value, even though it achieves the best tardiness in 15 out of 24
instances. SWO showcases its strengths when dealing with big-size instances in a low-timeout
condition, while LCSB cannot find a solution for half of the instances. The hybrid approach
HYB shows the best overall performance in the 15-second test, with the lowest ADBV value
across both small and large PSP-based datasets.

7 Conclusion

In this paper, we have i) formally defined the High Multiplicity RCPSP with Compound
activities and Learning effect, ii) proposed a CP model for this problem, iii) proved the
existence of symmetric projects within each class, and iv) adapted a heuristic-based search
(SWO) using the proof of symmetric projects. Additionally, we compared the performance of
various solving approaches using an industrial satellite dataset and a PSP-based one.

On satellite assembly instances, the approaches presented in this paper can generate a
schedule within a reasonable amount of time. Interestingly enough, we have observed that
the performance of the CP-based approaches was boosted by breaking symmetries on these
industrial instances. Importantly, built schedules allow satellite engineers to effectively scale
resources, particularly human means, and anticipate potential delays. Besides, industrial
partners will be able to fine-tune the schedules according to their environment learning effect
features, as our approach is completely generic on that point.

For future research, it would be beneficial to explore cases where learning effect is shared
among similar activities across different classes, which will render projects from different
classes interdependent. Additionally, considering the uncertainty in learning efficiency could
be explored to enhance the robustness of the schedule.

References
1 J.P. Amor. Scheduling programs with repetitive projects using composite learning curve

approximations. Project Management Journal, 33(3):16–29, 2002.
2 C. Artigues, S. Demassey, and E. Neron. Resource-Constrained Project Scheduling: Models,

Algorithms, Extensions and Applications. ISTE/Wiley, 2008. URL: https://hal.science/
hal-00482946.

3 A. Bachman and A. Janiak. Scheduling jobs with position-dependent processing times. Journal
of the Operational Research Society, 55(3):257–264, 2004.

4 D. Biskup. Single-machine scheduling with learning considerations. European Journal of
Operational Research, 115(1):173–178, 1999.

5 D. Biskup. A state-of-the-art review on scheduling with learning effects. European Journal of
Operational Research, 188(2):315–329, 2008.

6 A. Bonfietti, M. Lombardi, L. Benini, and M. Milano. A constraint based approach to cyclic
RCPSP. In Proceedings of CP’11, pages 130–144. Springer, 2011.

7 C. Daehnick, I. Klinghoffer, B. Maritz, and B. Wiseman. Large LEO satellite constellations:
Will it be different this time? McKinsey & Company, 4, 2020.

8 S.J. Edwards, D. Baatar, K. Smith-Miles, and A.T. Ernst. Symmetry breaking of identical
projects in the high-multiplicity rcpsp/max. Journal of the Operational Research Society,
72(8):1822–1843, 2021.

https://hal.science/hal-00482946
https://hal.science/hal-00482946

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:17

9 M. Eugeni, T. Quercia, M. Bernabei, A. Boschetto, F. Costantino, L. Lampani, A. Marchetti
Spaccamela, A. Lombardo, M. Mecella, L. Querzoni, R. Usinger, M. Aliprandi, A. Stancu,
M.M. Ivagnes, G. Morabito, A. Simoni, A. Brandão, and P. Gaudenzi. An industry 4.0
approach to large scale production of satellite constellations. the case study of composite
sandwich panel manufacturing. Acta Astronautica, 192:276–290, March 2022. doi:10.1016/j.
actaastro.2021.12.039.

10 J.D. García-Nieves, J.L. Ponz-Tienda, A. Ospina-Alvarado, and M. Bonilla-Palacios. Multipur-
pose linear programming optimization model for repetitive activities scheduling in construction
projects. Automation in Construction, 105:102799, 2019. doi:10.1016/j.autcon.2019.03.
020.

11 E.H. Grosse, C.H. Glock, and S. Müller. Production economics and the learning curve: A
meta-analysis. International Journal of Production Economics, 170:401–412, 2015.

12 S. Hartmann and D. Briskorn. An updated survey of variants and extensions of the resource-
constrained project scheduling problem. Eur. J. Oper. Res., 297(1):1–14, 2022. doi:10.1016/
J.EJOR.2021.05.004.

13 A. Hill, J. Ticktin, and T.W.M. Vossen. A computational study of constraint programming
approaches for resource-constrained project scheduling with autonomous learning effects. In
Proceedings of CPAIOR’21, pages 26–44. Springer, 2021.

14 D.E. Joslin and D.P. Clements. Squeaky wheel optimization. Journal of Artificial Intelligence
Research, 10:353–373, 1999.

15 R. Kolisch and A. Sprecher. Psplib - a project scheduling problem library: Or software - orsep
operations research software exchange program. European Journal of Operational Research,
96(1):205–216, 1997. doi:10.1016/S0377-2217(96)00170-1.

16 P. Laborie, J. Rogerie, P. Shaw, and P. Vilím. Ibm ilog cp optimizer for scheduling: 20+ years
of scheduling with constraints at ibm/ilog. Constraints, 23:210–250, 2018.

17 Y.C. Law and J. Lee. Global constraints for integer and set value precedence. In Proceedings
of CP’04, pages 362–376, 2004.

18 D.A. Le and S. Roussel. Dataset for the High Multiplicity RCPSP with Learning Effect and
Compound Activities, 2024. Dataset, version 3.2. (visited on 2024-08-19). doi:10.57745/
ASGLBH.

19 V. Van Peteghem and M. Vanhoucke. A genetic algorithm for the preemptive and non-
preemptive multi-mode resource-constrained project scheduling problem. European Journal of
Operational Research, 201(2):409–418, 2010.

20 V. Van Peteghem and M. Vanhoucke. Influence of learning in resource-constrained project
scheduling. Computers & Industrial Engineering, 87:569–579, 2015.

21 S. Qin, S. Liu, H. Kuang, et al. Piecewise linear model for multiskilled workforce scheduling
problems considering learning effect and project quality. Mathematical problems in Engineering,
2016, 2016.

22 M. Gómez Sánchez, E. Lalla-Ruiz, A. Fernández Gil, C. Castro, and S. Voß. Resource-
constrained multi-project scheduling problem: A survey. European Journal of Operational
Research, 309(3):958–976, 2023. doi:10.1016/j.ejor.2022.09.033.

23 T.P. Wright. Factors affecting the cost of airplanes. Journal of the aeronautical sciences,
3(4):122–128, 1936.

24 M.C. Wu and S.H. Sun. A project scheduling and staff assignment model considering learning
effect. The International Journal of Advanced Manufacturing Technology, 28:1190–1195, 2006.

25 L.E. Yelle. The learning curve: Historical review and comprehensive survey. Decision sciences,
10(2):302–328, 1979.

26 Y. Yin, D. Xu, K. Sun, and H. Li. Some scheduling problems with general position-dependent
and time-dependent learning effects. Information Sciences, 179(14):2416–2425, 2009.

CP 2024

https://doi.org/10.1016/j.actaastro.2021.12.039
https://doi.org/10.1016/j.actaastro.2021.12.039
https://doi.org/10.1016/j.autcon.2019.03.020
https://doi.org/10.1016/j.autcon.2019.03.020
https://doi.org/10.1016/J.EJOR.2021.05.004
https://doi.org/10.1016/J.EJOR.2021.05.004
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.57745/ASGLBH
https://doi.org/10.57745/ASGLBH
https://doi.org/10.1016/j.ejor.2022.09.033

18:18 Learning Effect and Compound Activities in High Multiplicity RCPSP

Appendix

In this appendix, we provide the complete proofs of lemmas in Section 4 for breaking the
symmetry. Note that we believe that sketches of proof provided in the paper are sufficient
for understanding and reproducing the complete ones.

Note that the complete result tables of the tests in Section 6 are available at the datasets
URL.

A Lemma 4

Complete proof. Let σ be a solution that is not start-end-consistent. There exists a class
c ∈ C, an atomic activity a ∈ AA

c , two projects p and q in Ic such that startσ(ap) < startσ(aq)
and endσ(ap) ≥ endσ(aq). We create a new solution υa,p,q such that for all activities b in
AA

c , for all projects u ∈ Ic such that bu ̸= ap, startσ(bu) = startυa,p,q (bu). Then, for activity
a and project p, we delay the start of activity ap in order to make it start at the same
time as aq. Formally, we have startυa,p,q (ap) = startυa,p,q (aq) = startσ(aq). We also have
endυa,p,q (ap) = endυa,p,q (aq) = endσ(aq).

As ap starts later and finishes earlier in υa,p,q, all precedence that are satisfied in
σ are also satisfied in υa,p,q. The same holds for the resource consumption. If ap is
the activity which concludes project p in σ (i.e. endσ(ωp

c) = endσ(ap)), then we have
endυa,p,q (ap) ≤ endυa,p,q (ωp

c) ≤ endσ(ωp
c). The end date of project p in υa,p,q either becomes

earlier or remains the same as in σ. As the timing for all other projects remains the same as
in σ, the values of both criteria for υa,p,q are either better than or equivalent to σ.

We perform the solution modification iteratively for each tuple (a, p, q) that is not start-
end-consistent. The resulting solution υ is start-end-consistent and at least as good as σ for
both criteria. ◀

t

ap

aq

Solution σ
t

ap

aq

Solution υ

Figure 8 Illustration of Lemma 4’s proof:
σ is not start-end-consistent but υ is.

t

ap

aq

bp

bq

a. no swap t

ap

aq

bp

bq

b. ap and aq swapped

t

ap

aq

bp

bq

c. bp and bq swapped
t

ap

aq

bp

bq

d. ap and aq swapped,
bp and bq swapped

Figure 9 Four precedence cases considered in
the proof of Lemma 6.

B Lemma 6

Complete proof. We assume that π is not precedence-feasible. Since all precedence relations
in Pc can be transposed into PA

c (see Assumption 5), which is concerned only with atomic
activities, this implies the existence of two atomic activities a, b ∈ AA

c such that (a, b) ∈ PA
c

and such that at least one of the following equations hold:

endπ(ap) > startπ(bp) (12)
endπ(aq) > startπ(bq) (13)

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:19

Due to the definition of the start dates for the two virtual activities αc and ωc (see Schedule),
these activities never contribute to a precedence violation and they are not considered in the
following.

Case 1. startσ(ap) ≤ startσ(aq) and startσ(bp) ≤ startσ(bq) (Figure 9a). This means that
there is no swap of activities, and the start dates of ap, aq, bp, bq in π remain the same as in
σ. In this case, end dates are not modified and we have:

endπ(ap) = endσ(ap), startπ(bp) = startσ(bp)
endπ(aq) = endσ(aq), startπ(bq) = startσ(bq)

If any of the conditions 12 and 13 is met, then it means that σ is not be precedence-feasible.
This leads to a contradiction.

Case 2. startσ(ap) > startσ(aq) and startσ(bp) ≤ startσ(bq) (Figure 9b). This means that
in the schedule π, the start dates of ap and aq are swapped, but bp and bq remain the same
as in σ. In this case, we have:

endπ(ap) = endσ(aq) ; startπ(bp) = startσ(bp)
endπ(aq) = endσ(ap) ; startπ(bq) = startσ(bq)

If Cond. 12 is true, then we have endσ(aq) > startσ(bp). Since startσ(ap) > startσ(aq)
from hypothesis, then endσ(ap) > endσ(aq) by the Definition 3. Therefore, we have
endσ(ap) > endσ(aq) > startσ(bp). As a result, σ is not precedence-feasible, leading to
a contradiction.

If Cond. 13 is true, then we have endσ(ap) > startσ(bq). Since startσ(bq) ≥ startσ(bp)
from hypothesis, then we have endσ(ap) > startσ(bp). As a result, σ is not precedence-feasible,
leading to a contradiction.

Case 3. startσ(ap) ≤ startσ(aq) and startσ(bp) > startσ(bq) (Figure 9c). This means that
in the schedule π, the positions of ap and aq remain the same as in σ, but bp and bq are
swapped. In this case, we have:

endπ(ap) = endσ(ap) ; startπ(bp) = startσ(bq)
endπ(aq) = endσ(aq) ; startπ(bq) = startσ(bp)

If Cond. 12 is true, then we have endσ(ap) > startσ(bq). Since startσ(aq) ≥ startσ(ap)
from hypothesis, then endσ(aq) ≥ endσ(ap) by the Definition 3. Therefore, we have
endσ(aq) ≥ endσ(ap) > startσ(bq). As a result, σ is not precedence-feasible, leading to
a contradiction.

If Cond. 13 is true, then we have endσ(aq) > startσ(bp). Since we have startσ(bp) >

startσ(bq), then endσ(aq) > startσ(bp) > startσ(bq). As a result, σ is not precedence-feasible,
leading to a contradiction.

Case 4. startσ(ap) > startσ(aq) and startσ(bp) > startσ(bq) (Figure 9d). This means that
in the schedule π, the positions between ap and aq, and between bp and bq are swapped. In
this case, we have:

endπ(ap) = endσ(aq) ; startπ(bp) = startσ(bq)
endπ(aq) = endσ(ap) ; startπ(bq) = startσ(bp)

If any of the conditions 12 and 13 is met, σ will not be precedence-feasible, leading to a
contradiction.

Every possible cases are leading to a contradiction, so π is precedence-feasible and lemma 6
is proved. ◀

CP 2024

18:20 Learning Effect and Compound Activities in High Multiplicity RCPSP

C Lemma 7

Complete proof. We first define several elements for the proof.
Let T σ

p,a denote the time interval during which the activity a ∈ Ac of project p of a class
c is active in a schedule σ, i.e. Tσ

p,a = {t ∈ J0, H K|startσ(ap) ≤ t < endσ(ap)}.
We then define a function representing the resource consumption of an activity within a

project at a given time step in a schedule.
For any resource r ∈ R, any time step t ∈ J0, H K, any class c ∈ C and any activity a ∈ Ac,

we define a function γ that takes in parameter a schedule σ and a project p ∈ Ic and that
has the following value:

γr,a,t(p, σ) =
{

consr,a if t ∈ Tσ
p,a

0 otherwise
(14)

The consumption of a resource r at each time step t in a schedule σ is given by the
formula

∑
c∈C,p∈Ic,a∈Ac

γr,a,t(p, σ).
Then, we define a function ∆r,a,t(p, σ, π) representing the difference in resource consump-

tion of resource r by activity a in project p between two schedules σ and π, at time step t.
Formally,

∆r,a,t(p, σ, π) = γr,a,t(p, π) − γr,a,t(p, σ)

We now consider a solution σ, a class c ∈ C and two projects p, q ∈ Ic. We suppose the
(p, q)-permutation π of σ is not resource-feasible. This means there exists a time moment
t ∈ J0, H K and a resource r ∈ R such that

∑
d∈C,u∈Id,a∈Ad

γr,a,t(u, π) > capar. Since σ is
resource-feasible, we have

∑
d∈C,u∈Id,a∈Ad

γr,a,t(u, σ) ≤ capar. This implies:∑
d∈C,u∈Id,a∈Ad

(
γr,a,t(u, π) − γr,a,t(u, σ)

)
> 0

and then:∑
d∈C,u∈Id,a∈Ad

∆r,a,t(u, σ, π) > 0 (15)

Following the definition of π (Definition 5), any class d ∈ C, any project u ∈ Id such
that u ̸= p and u ≠ q, and any activity a ∈ Ad, startπ(au) = startσ(au) and endπ(au) =
endσ(au). This means that for any time moment t ∈ J0, H K, γr,a,t(u, σ) = γr,a,t(u, π) and
then ∆r,a,t(u, σ, π) = 0, i.e. the consumption of resource r by activity au does not change.
Equation 15 can be simplified by only considering activities of projects p and q as:∑

a∈Ac

(
∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π)

)
> 0 (16)

Case 1. Consider an arbitrary atomic activity a ∈ AA
c . The two virtual activities αc and

ωc are not considered in the following as they do not consume resources (see Assumption 3).
The two activities ap and aq are positioned in π according to the condition in Definition 5,
that is:

startσ(ap) ≤ startσ(aq) =⇒ startπ(ap) = startσ(ap) and startπ(aq) = startσ(aq)
startσ(ap) > startσ(aq) =⇒ startπ(ap) = startσ(aq) and startπ(aq) = startσ(ap)

In this case, we have Tπ
p,a ∪ Tπ

q,a = Tσ
p,a ∪ Tσ

q,a and Tπ
p,a ∩ Tπ

q,a = Tσ
p,a ∩ Tσ

q,a because:
If startσ(ap) ≤ startσ(aq) then Tπ

p,a = Tσ
p,a and Tπ

q,a = Tσ
q,a

If startσ(ap) > startσ(aq) then Tπ
p,a = Tσ

q,a and Tπ
q,a = Tσ

p,a

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:21

Case 1.1. If there is no swap between ap and aq, then Tπ
p,a = Tσ

p,a and Tπ
q,a = Tσ

q,a. Con-
sumption of resource r is not modified at time t and we have ∆r,a,t(p, σ, π) = ∆r,a,t(q, σ, π) =
0.

Case 1.2. If there is a swap between ap and aq, then Tπ
p,a = Tσ

q,a and Tπ
q,a = Tσ

p,a.
1. If t /∈ T σ

p,a ∪ T σ
q,a, then t /∈ T π

p,a ∪ T π
q,a. Both ap and aq are not being executed at time t

in π, so

γr,a,t(p, σ) = γr,a,t(q, σ) = γr,a,t(p, π) = γr,a,t(q, π) = 0

This implies ∆r,a,t(p, σ, π) = ∆r,a,t(q, σ, π) = 0.
2. If t ∈ (T σ

p,a ∪ T σ
q,a) \ (T σ

p,a ∩ T σ
q,a), then t ∈ (T π

p,a ∪ T π
q,a) \ (T π

p,a ∩ T π
q,a). In both schedules

σ and π, either ap or aq is being executed at time t.
a. If t ∈ Tσ

p,a, t /∈ Tσ
q,a, then we have t ∈ Tπ

q,a and t /∈ Tπ
p,a. This implies:

γr,a,t(p, σ) = γr,a,t(q, π) = consr,a ; γr,a,t(q, σ) = γr,a,t(p, π) = 0

and then:

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) = −consr,a + consr,a = 0

b. Similarly, if t /∈ Tσ
p,a, t ∈ Tσ

q,a then:

γr,a,t(p, σ) = γr,a,t(q, π) = 0 ; γr,a,t(q, σ) = γr,a,t(p, π) = consr,a

This implies:

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) = consr,a − consr,a = 0

3. If t ∈ T σ
p,a ∩ T σ

q,a, then t ∈ T π
p,a ∩ T π

q,a. Both ap and aq are being executed at time t in π,
so

γr,a,t(p, σ) = γr,a,t(q, σ) = γr,a,t(p, π) = γr,a,t(q, π) = consr,a

This implies ∆r,a,t(p, σ, π) = ∆r,a,t(q, σ, π) = 0.

From the above, we can conclude that the swap between two atomic activities never violates
the resource constraint as ∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) = 0. Therefore, Equation 16 can be
rewritten as:∑

a∈AC
c

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) > 0 (17)

Case 2. Consider an arbitrary compound activity a ∈ AC
c . There are two ways for making

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) strictly positive.
1. If activities ap and aq do not use r at time t in σ, but at least one of them uses it in π,

then we have γr,a,t(p, σ) = γr,a,t(q, σ) = 0 and γr,a,t(p, π) + γr,a,t(q, π) ≥ consr,a. This is
expressed through the following condition.

(t /∈ Tσ
p,a ∪ Tσ

q,a) ∧ (t ∈ Tπ
p,a ∪ Tπ

q,a) (18)

2. if exactly one activity (ap or aq) uses r at time t in σ and they both use it in π, then
γr,a,t(p, σ)+γr,a,t(q, σ) = consr,a and γr,a,t(p, π)+γr,a,t(q, π) = 2consr,a. This is expressed
by

(t ∈ (T σ
p,a ∪ Tσ

q,a) \ (T σ
p,a ∩ Tσ

q,a)) ∧ (t ∈ Tπ
p,a ∩ Tπ

q,a) (19)

CP 2024

18:22 Learning Effect and Compound Activities in High Multiplicity RCPSP

σ

0
1
2

ap

aq

t

co
ns

r
,a π

0
1
2

ap

aq

t

co
n

s r
,a

(a) Usage of resource r at time t: from 0 to consr,a.

σ

0
1
2

ap

aq

t
co

ns
r
,a π

0
1
2

ap

aq

t

co
ns

r
,a

(b) Usage of resource r at time t: from consr,a to 2consr,a.

Figure 10 Two impossible cases considered in proof of Lemma 7 when a ∈ AC
c .

Case 2.1. Let the condition 18 be true.
1. If t < startσ(ap) and t < startσ(aq) then for all b ∈ Ac with (a, b) ∈ Hc, we have

t < startσ(bp) and t < startσ(bq). We then have t < startπ(bp) and t < startπ(bq) and
this implies t /∈ Tπ

p,a ∪ Tπ
q,a, leading to a contradiction.

2. If t ≥ endσ(ap) and t ≥ endσ(aq) then for all b ∈ Ac such that (a, b) ∈ Hc, we have
t ≥ endσ(bp) and t ≥ endσ(bq). We then have t ≥ endπ(bp) and t ≥ endπ(bq) and this
implies t /∈ Tπ

p,a ∪ Tπ
q,a, leading to a contradiction.

3. If endσ(ap) ≤ t < startσ(aq) then for all b ∈ Ac such that (a, b) ∈ Hc, we have
startσ(bp) ≤ endσ(bp) ≤ t < startσ(bq). This implies that zero swap operations were
performed. Thus, t /∈ Tπ

p,a ∪ Tπ
q,a, leading to a contradiction.

4. If endσ(aq) ≤ t < startσ(ap) then for all b ∈ Ac such that (a, b) ∈ Hc, we have startσ(bq) ≤
endσ(bq) ≤ t < startσ(bp). We then have startπ(bp) ≤ endπ(bp) ≤ t < startπ(bq) and this
implies t /∈ Tπ

p,a ∪ Tπ
q,a, leading to a contradiction.

All possible situations lead to a contradiction, so condition 18 is never satisfied.

Case 2.2. Let the condition 19 be true.
1. If Tσ

p,a ∩ Tσ
q,a = ∅, then for all t′ ∈ Tσ

p,a, either t′ < startσ(aq) or t′ ≥ endσ(aq). In
the first case, none activities from p and q are swapped, meaning that Tπ

p,a = Tσ
p,a and

Tπ
q,a = Tσ

q,a. In the second case, all activities from p and q are swapped, meaning that
Tπ

p,a = Tσ
q,a and Tπ

q,a = Tσ
p,a. In both cases, Tπ

p,a ∩ Tπ
q,a = Tσ

p,a ∩ Tσ
q,a = ∅, leading to a

contradiction.
2. If Tσ

p,a ∩ Tσ
q,a ̸= ∅, there are four possible situations (see Figure 11):

a. We suppose that startσ(ap) ≤ t < startσ(aq). Because π is a (p, q)-permutation of
σ, for all activity b ∈ Ac such that (a, b) ∈ Hc, we have startσ(bq) ≤ startπ(bq). In
particular, for each b such that (a, b) ∈ Hc, we have t < startσ(bq) ≤ startπ(bq). As
startπ(aq) is the minimum value of start dates of bq, we have t < startπ(aq). This
implies that t /∈ Tπ

q,a, which contradicts Condition 19.
b. We suppose that startσ(aq) ≤ t < startσ(ap). Let b be a child activity of a. Because

startσ(ap) ≤ startσ(bp), we have t < startσ(bp).
Suppose that startσ(bq) < startσ(ap). As startσ(ap) ≤ startσ(bp), we have
startσ(bq) < startσ(bp). Therefore, bq and bp are swapped in π, which means
that startπ(bq) = startσ(bp). We therefore have t < startπ(bq).
Suppose that startσ(bq) ≥ startσ(ap). Because start dates of activities of q in π are
always greater or equal to those in σ, we have startπ(bq) ≥ startσ(bq) ≥ startσ(ap).
This means that t < startπ(bq).

We have t < startπ(bq) for all b ∈ Ac such that (a, b) ∈ Hc, so t < startπ(aq) and then
t /∈ Tπ

q,a, leading to a contradiction.

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:23

Figure 11 Four possible situation if Tσ
p,a ∩ Tσ

q,a ̸= ∅ (Case 2.2.2 – Lemma 7).

c. Let suppose that endσ(ap) ≤ t < endσ(aq). Let b be a child activity of a. Because
endσ(bp) ≤ endσ(ap), we have endσ(bp) ≤ t. π is a (p, q)-permutation so endπ(bp) ≤
endσ(bp). So, endπ(bp) ≤ t.
This means that endπ(ap) ≤ t, which implies that t /∈ T π

p,a, leading to a contradiction.
d. Let suppose that endσ(aq) ≤ t < endσ(ap). Let b be a child activity of a. Because

endσ(bq) ≤ endσ(aq), we have endσ(bq) ≤ t.
Let suppose that endσ(aq) < endσ(bp). Then, endσ(bq) < endσ(bp). With defini-
tion 3, this means that startσ(bq) < startσ(bp). This condition implies that bq and
bp are swapped in π. Therefore, endπ(bp) = endσ(bq). So endπ(bp) ≤ t.
Now suppose that endσ(aq) ≥ endσ(bp). We have endσ(bp) ≥ endπ(bp) (end dates
of activities of p in σ are greater or equal to those in π). Therefore, t ≥ endπ(bp).

We have t ≥ endπ(bp) for all child b of a so t ≥ endπ(ap). This means that t /∈ Tπ
p,a,

leading to a contradiction.

All possible situations lead to a contradiction, so condition 19 is never satisfied. Both
conditions 18 and 19 are never satisfied, so the sum ∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) is never
positive.

In all cases, we have
∑

a∈AC
c

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) ≤ 0 so the (p, q)-permutation
π of σ is resource-feasible. ◀

D Lemma 11

Complete Proof. As all compound activities start and conclude with at least one atomic
activity among their children, the end date of a project only depends on the end date of
its atomic activities. Since σ is start-end-consistent, π is also start-end-consistent because
the swap operation does not change the duration of atomic activities. Thus, we have
startπ(ap) ≤ startπ(aq) and endπ(ap) ≤ endπ(aq), ∀a ∈ AA

c . Because p ≺ q, then for each
activity a ∈ AA

c that is swapped, we have endπ(ap) = endσ(aq) < endσ(ap). This implies
that the statement τπ

p ≤ τσ
p is always true.

Let a, b ∈ AA
c such that ap concludes project p and bq concludes project q in the schedule σ.

There are four possible situations:

CP 2024

18:24 Learning Effect and Compound Activities in High Multiplicity RCPSP

t

aq

bq

ap

bp

π

Case 2.a.
τπ

p ≤ τσ
p , τπ

q = τσ
q

t

aq

bq

ap

bp

duep

dueq

π

Case 2.b.i.
τπ

p ≤ τσ
p , τπ

q = τσ
q

t

aq

bq

ap

bp

π
τσ

p

τσ
q

τπ
q

τπ
p

dueqduep

Case 2.b.ii.
τπ

p + τπ
q ≤ τσ

p + τσ
q

t

aq

bq

ap

bp

dueqduep

τσ
p

τσ
q

τπ
q

τπ
p

π

π

Case 4.a.
τπ

p + τπ
q ≤ τσ

p + τσ
q

t

aq

bq

ap

bp

dueqduep

τσ
p

τπ
p

τπ
q

π

π

Case 4.b.
τπ

p + τπ
q ≤ τσ

p

Figure 12 Illustration of cases considered in Lemma 11’s proof.

1. Both a and b are not swapped in π then for each activity i ∈ AA
c , we have endσ(ip) ≤

endσ(ap) ≤ endσ(aq) ≤ endσ(bq) and endσ(iq) ≤ endσ(bq). Whether activity i is swapped
or not, we always have endπ(iq) ≤ endσ(bq) = endπ(bq), so bq is still the activity that
concludes q in π and τπ

q = τσ
q . Since τπ

p ≤ τσ
p is always true, π is at least as good as σ in

this criterion.
2. a is swapped but b is not swapped in π.

a. If endσ(ap) ≤ endσ(bq) then for each activity i ∈ AA
c , we have endσ(ip) ≤ endσ(ap) ≤

endσ(bq) and endσ(iq) ≤ endσ(bq). Whether activity i is swapped or not, we always
have endπ(iq) ≤ endσ(bq) = endπ(bq), so bq is still the activity that concludes q in π

and τπ
q = τσ

q . Since τπ
p ≤ τσ

p is always true, π is at least as good as σ in this criterion.
b. If endσ(ap) > endσ(bq) then for each activity i ∈ AA

c , we have endσ(iq) ≤ endσ(bq) <

endσ(ap) and endσ(ip) ≤ endσ(ap). Whether activity i is swapped or not, we always
have endπ(iq) ≤ endσ(ap) = endπ(aq), so aq is the activity that concludes q in π.
i. If endσ(ap) ≤ dueq then endπ(aq) ≤ dueq. This implies τπ

q = 0 and since τπ
p ≤ τσ

p

is always true, π is at least as good as σ in this criterion.
ii. If endσ(ap) > dueq ≥ duep, then τπ

q = endσ(ap) − dueq and τσ
p = endσ(ap) − duep.

For each activity i ∈ AA
c , there exists iq such that endσ(iq) ≤ endσ(bq). Whether

i is swapped or not in π, we always have endπ(ip) ≤ endσ(bq). Thus we have
τπ

p ≤ max(0, endσ(bq) − duep).
We also have τσ

q = max(0, endσ(bq) − dueq). We next consider three cases for the
relative values for endσ(bq), duep and dueq.

A. If endσ(bq) ≥ dueq, then endσ(bq) ≥ duep. So τπ
p ≤ endσ(bq) − duep. We also

have τσ
q = endσ(bq) − dueq.

Therefore, τπ
p + τπ

q ≤ endσ(bq) − duep + endσ(ap) − dueq. The right member of
that inequality is exactly equal to τσ

p + τσ
q so τπ

p + τπ
q ≤ τσ

p + τσ
q .

B. If duep ≤ endσ(bq) ≤ dueq, then τσ
q = 0 and τπ

p ≤ endσ(bq) − duep. Then, we
have: τπ

p + τπ
q ≤ endσ(bq) − duep + endσ(ap) − dueq. The right part is equal

to endσ(bq) − dueq + τσ
p . Because endσ(bq) ≤ dueq, we have τπ

p + τπ
q ≤ τσ

p . As
τσ

q = 0, we have τπ
p + τπ

q ≤ τσ
p + τσ

q .
C. If endσ(bq) ≤ duep, then endσ(bq) ≤ dueq. This means that τπ

p = τσ
q = 0.

Therefore, τπ
p + τπ

q = endσ(ap) − dueq. Because duep ≤ dueq, τπ
p + τπ

q ≤
endσ(ap) − duep, where the left part is equal to τσ

p . As τσ
q = 0, then τπ

p + τπ
q ≤

τσ
p + τσ

q .
We have shown that in this case, τπ

p + τπ
q ≤ τσ

p + τσ
q so π is at least as good as σ for

the tardiness criterion.
3. a is not swapped but b is swapped in π. This means endσ(ap) ≤ endσ(aq) and endσ(bq) <

endσ(bp). As ap concludes p in σ, we have endσ(bq) < endσ(bp) ≤ endσ(ap) ≤ endσ(aq).
This violates the condition that bq concludes q in σ, so this situation never happen.

D. A. Le, S. Roussel, C. Lecoutre, and A. Chan 18:25

4. Both a and b are swapped in π. We have endσ(aq) < endσ(ap) and endσ(bq) < endσ(bp).
Because ap concludes p and bq concludes q in σ, then:
endσ(aq) ≤ endσ(bq) < endσ(bp) ≤ endσ(ap)
For each activity i ∈ AA

c , iq and ip are such that endσ(iq) ≤ endσ(bq) and endσ(ip) ≤
endσ(ap). Whether i is swapped or not in π, we always have endπ(ip) ≤ endσ(bq) =
endπ(bp) and endπ(iq) ≤ endσ(ap) = endπ(aq). Thus, we have bp concludes p and aq

concludes q in π. If:
a. q is late in σ then p is also late in σ because duep ≤ dueq and endσ(bq) < endσ(ap).

We have:
duep ≤ dueq < endσ(bq) = endπ(bp) < endσ(ap) = endπ(aq)
So both p and q are late in π. We have:
τπ

p + τπ
q = endπ(bp) − duep + endπ(aq) − dueq

= endσ(bq) − duep + endσ(ap) − dueq

= τσ
p + τσ

q

So π and σ are equivalent in this criterion.
b. q is early and p is late in σ then τσ

p = endσ(ap) − duep and τσ
q = 0. Since ap is the last

finished activity for both projects in σ and duep ≤ dueq, the value endσ(ap) − duep

is the maximal possible tardiness of both projects in both schedules, i.e., we have
τπ

p < endσ(ap) − duep and τπ
q < endσ(ap) − duep. If:

i. At least one between p and q is early in π, then at lease one between τπ
p and τπ

q is
equal to zero. Thus, τπ

p + τπ
q < endσ(ap) − duep = τσ

p + τσ
q , so π is better than σ in

this criterion.
ii. Both p and q are late in π, then we have τπ

p = endπ(bp) − duep = endσ(bq) − duep

and τπ
q = endπ(aq) − dueq = endσ(ap) − dueq. We have:

τπ
p + τπ

q = endσ(bq) − duep + endσ(ap) − dueq

= τσ
p + endσ(bq) − dueq

As q is early in σ then endσ(bq) − dueq < 0. This implies τπ
p + τπ

q < τσ
p = τσ

p + τσ
q ,

so π is better than σ in this criterion.
c. Both p and q are early in σ, then we have:

endσ(bq) < endσ(ap) ≤ duep ≤ dueq

and then:
endπ(bp) < endπ(aq) ≤ duep ≤ dueq

This implies that both p and q are early in π, so π and σ are equivalent in this criterion.
From the above, we can conclude that π is at least as good as σ in this criterion. ◀

CP 2024

An Efficient Local Search Solver for Mixed Integer
Programming
Peng Lin # Ñ

Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,
China

Mengchuan Zou #

Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Shaowei Cai1 # Ñ

Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,
China

Abstract
Mixed integer programming (MIP) is a fundamental model in operations research. Local search is a
powerful method for solving hard problems, but the development of local search solvers for MIP
still needs to be explored. This work develops an efficient local search solver for solving MIP, called
Local-MIP. We propose two new operators for MIP to adaptively modify variables for optimizing the
objective function and satisfying constraints, respectively. Furthermore, we design a new weighting
scheme to dynamically balance the priority between the objective function and each constraint, and
propose a two-level scoring function structure to hierarchically guide the search for high-quality
feasible solutions. Experiments are conducted on seven public benchmarks to compare Local-MIP
with state-of-the-art MIP solvers, which demonstrate that Local-MIP significantly outperforms
CPLEX , HiGHS , SCIP and Feasibility Jump, and is competitive with the most powerful commercial
solver Gurobi. Moreover, Local-MIP establishes 4 new records for MIPLIB open instances.

2012 ACM Subject Classification Mathematics of computing → Integer programming; Theory of
computation → Randomized local search; Applied computing → Operations research

Keywords and phrases Mixed Integer Programming, Local Search, Operator, Scoring Function

Digital Object Identifier 10.4230/LIPIcs.CP.2024.19

Supplementary Material Software (Source Code): https://github.com/shaowei-cai-group/
Local-MIP [31], archived at swh:1:dir:883191ffb9b4503105cce3e9d3da6d50421956f3

Funding This work is supported by National Key R&D Program of China (2023YFA1009500).

1 Introduction

Mixed integer programming (MIP) is a fundamental mathematical model in operations
research [3], which represents the problem of optimizing a linear objective function under
linear constraints, where some variables are restricted to taking integer values. Due to its
powerful expressive ability, MIP is widely used both in academic areas and in industrial
sectors to model various problems [46, 41]. In previous research, many combinatorial
optimization problems can be described by MIP formulation, such as the Boolean satisfiability

1 Corresponding author

© Peng Lin, Mengchuan Zou, and Shaowei Cai;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 19; pp. 19:1–19:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:linpeng@ios.ac.cn
https://linpeng0105.github.io
https://orcid.org/0009-0002-4183-5998
mailto:zoumc@ios.ac.cn
https://orcid.org/0000-0001-6919-0533
mailto:caisw@ios.ac.cn
https://lcs.ios.ac.cn/~caisw/
https://orcid.org/0000-0003-1730-6922
https://doi.org/10.4230/LIPIcs.CP.2024.19
https://github.com/shaowei-cai-group/Local-MIP
https://github.com/shaowei-cai-group/Local-MIP
https://archive.softwareheritage.org/swh:1:dir:883191ffb9b4503105cce3e9d3da6d50421956f3;origin=https://github.com/shaowei-cai-group/Local-MIP;visit=swh:1:snp:34d027907a0a0b75fa84bfa7f8345ee2ee858337;anchor=swh:1:rev:09f5626d23710b0a1a0b7b38ad910f5b25ae7096
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 An Efficient Local Search Solver for Mixed Integer Programming

(SAT) and maximum satisfiability (MaxSAT) [13], the knapsack problem [32], the traveling
salesman problem (TSP) [37], the job-shop scheduling problem (JSP) [26], and many graph
problems [34]. In the industry domain, MIP could model lots of optimization problems in
applications, including production planning [38], crew scheduling [16], resource allocation [17],
and so on.

Solving MIP is a challenging task as the problem is NP-hard [25, 24]. The solving
methods can be divided into two classes: complete methods and incomplete methods. While
complete methods aim at computing the exact optimal solution and proving its optimality,
incomplete methods aim to obtain high-quality solutions within a reasonable time. In real-
world applications, due to the large scale of instances, problems are usually difficult to handle
by complete methods. On the other hand, high-quality solutions usually show good usability
in practical applications; thus, incomplete methods are of great importance in MIP solving.

Existing MIP solvers, however, rely primarily on complete methods. The most commonly
admitted complete method is the branch-and-bound algorithm [27, 28], which iteratively
divides the feasible region of solution space and prunes nodes by the bounds of the object-
ive function. Additionally, many techniques were developed, including the cutting plane
method [20] and the domain propagation [40], which are often incorporated into the branch-
and-bound process in modern MIP solvers [2]. Almost all state-of-the-art MIP solvers are
based on the branch-and-bound framework, including the commercial solvers Gurobi [21]
and CPLEX [36], and the academic solvers SCIP [5] and HiGHS [23].

Local search is a powerful incomplete method for solving challenging problems across
various fields in computer science and operations research [22]. It aims to find good solutions
quickly and demonstrates significant effectiveness in solving SAT and MaxSAT [6]. Some
local search solvers for special cases of MIP have been proposed, such as pseudo-Boolean
optimization [4, 11] and integer linear programming [39, 30]. However, the development of
local search solvers for MIP is still in its infancy. As far as we know, there is in lack of
efficient free local search solvers for MIP that is available to public communities. Feasibility
Jump [33] is the most related work to us, which proposed a local search algorithm to solve
MIP, and won 1st place in the MIP 2022 Competition.2 However, it only focuses on finding
feasible solutions and ignores the objective function, which does not treat MIP’s original
optimization purpose and does not show a strong capacity for finding high-quality solutions.

We intend to propose an efficient local search solver for MIP. There are two main
challenges to achieving this goal: 1. Enhancing adaptability: to handle MIP, local search
must accommodate general constraints and variables rather than specific forms. However,
solving such general-form problems is more difficult than specific combinatorial problems
since less information about problems could be leveraged. Therefore, it is important to
enhance the adaptability of the solver to search states. 2. Balance the optimization and the
satisfaction: unlike decision problems such as SAT, MIP considers both the optimization
of the objective function and the satisfaction of all constraints. But these two factors are
sometimes conflicting, thus finding the balance between them is also an important concern.

In this work, we design a novel local search solver for solving general MIP, synthesizing
new operators and scoring functions to handle the above challenges. We propose a mixed
tight move operator to satisfy general constraints, and a breakthrough operator to surpass the
best-found solution by considering the objective value of the dynamically updated best-found
solution. Moreover, we propose a two-level scoring function structure to measure the benefit
of candidate solutions, which is also related to the dynamically updated best-found objective

2 https://www.mixedinteger.org/2022/competition/

https://www.mixedinteger.org/2022/competition/

P. Lin, M. Zou, and S. Cai 19:3

value. Within each level of the structure, we design the scoring function that synthesizes
the score for optimizing the objective function and the score for satisfying constraints.
Experimental results demonstrate our solver’s excellent performance for solving MIP.

Contributions

We develop an efficient local search solver to find high-quality feasible solutions for MIP.
Firstly, we propose two new operators to adaptively modify variables to optimize the

objective function and satisfy constraints, respectively. The breakthrough move operator
is proposed to break through the objective value of the dynamically updated best-found
solution, and the mixed tight move operator is proposed to satisfy and tighten constraints.

Then, to efficiently guide the search, we first design a new weighting scheme to balance
the priority between the objective function and each constraint during the search process.
Based on the weighting scheme, we propose a two-level scoring function structure to measure
the benefit of each candidate solution. The first level is the progress score, which measures
operations by comparing them with the current solution, aiming to make local progress for
the current solution. The second level is the bonus score, containing the breakthrough bonus
for improving the objective function and the robustness bonus for satisfying constraints stably,
being complementary to the progress score. The breakthrough bonus, working together
with the breakthrough move operator, enables our solver to select and modify variables
according to the dynamically updated best-found solution, improving its adaptability to the
global search state. At each level, the scoring function consider both the optimization of the
objective function and the satisfaction of constraints.

By putting these together, we develop a new local search solver for MIP called Local-MIP .
Experiments conducted on seven public benchmarks show the efficiency of Local-MIP in
finding high-quality feasible solutions for MIP. We compare Local-MIP with the state-of-the-
art MIP solvers, including the commercial solvers Gurobi [21] and CPLEX [36], the academic
solvers SCIP [5] and HiGHS [23], and the local search algorithm Feasibility Jump [33].
Experimental results show the excellent performance of Local-MIP, which significantly
outperforms CPLEX , HiGHS , SCIP and Feasibility Jump, and is competitive with the most
powerful commercial solver Gurobi, indicating a significant improvement in the field of local
search solver for MIP. Moreover, Local-MIP establishes 4 new records for MIPLIB open
instances by finding the new best solutions. Additionally, we analyze the effectiveness of
proposed strategies and the stability of Local-MIP with different random seeds.

2 Preliminaries and Notation

2.1 Formulations of MIP
▶ Definition 1. Mixed Integer Programming (MIP): Given a matrix A ∈ Rm×n, vectors
b ∈ Rm, c, l, u ∈ Rn, and a subset I ⊆ N = {1, ..., n}. Let x = {x1, x2, ..., xn} be a set of
variables. The mixed integer programming is to solve

min{c⊤x| Ax ≤ b, l ≤ x ≤ u, x ∈ Rn, xj ∈ Z for all j ∈ I} (1)

In the above definition, we call c⊤x the objective function, Ax ≤ b the general linear
constraints, l ≤ x ≤ u the global bounds, and xj ∈ Z for all j ∈ I the integrality constraints.
A general linear constraint Aix ≤ bi is denoted as coni, and it contains xj if Aij ̸= 0. MIP
aims to minimize the objective function while satisfying all constraints. A maximization
problem and other types of linear constraints can be easily converted into this formulation.

CP 2024

19:4 An Efficient Local Search Solver for Mixed Integer Programming

A solution s of a MIP instance is a vector of values assigned for each variable, where
sj denotes the value of xj . A solution is a feasible solution if and only if it satisfies all
constraints, including general linear constraints, global bounds, and integrality constraints.
For feasible solutions, the lower objective value indicates higher quality.

To facilitate clarity, we establish certain symbols here. s∗ denotes the best-found solution
in the local search process, and scur denotes the current solution in each step of local search.
s∗ is initialized to an empty set and updated whenever a new best feasible solution is found.
The objective value of a solution s is denoted as obj(s), i.e., obj(s) = c⊤s.

2.2 Local Search Algorithm
When solving combinatorial optimization problems, the local search typically starts from
an initial solution and iteratively modifies the current solution by changing the value of a
variable, in order to search for feasible solutions with high-quality objective values.

In local search, an operator defines how to modify variables to generate candidate
solutions. When an operator is instantiated by a specifying variable to operate, an operation
is obtained. For example, for Boolean variables, the standard operator is flip, which turns
the value of a variable to its opposite, and flip(x1) is an operation to flip the specifying
variable x1. For the current solution, performing an operation could generate a new candidate
solution.

During each step of the local search process, scoring functions are used to evaluate
different candidate operations for picking one to execute to update the current solution.
Given an operation op, a scoring function score(op) measures how good op is. An operation
op is said positive if score(op) > 0, which indicates that performing op could improve the
quality of the current solution.

In the following two sections, we propose tailored operators and scoring functions to guide
the local search process. Section 5 provides a detailed description of our local search solver.

3 New Operators Tailored for MIP

In this section, we propose two novel local search operators for MIP: the breakthrough move
for optimizing the objective function, and the mixed tight move for satisfying constraints.

3.1 Breakthrough Move
To find solutions with high-quality objective values in the local search process, for the first
time, we propose the new idea of the breakthrough move operator, which modifies the
current solution to improve the quality of the objective function, aiming to break through
the objective value of the dynamically updated best-found solution.

▶ Definition 2. Given a variable xj that appears in the objective function (i.e., cj ≠ 0), and
a solution s that obj(s) ≥ obj(s∗), the breakthrough move operator, denoted as bm(xj , s),
assigns a variable xj to the threshold value making the objective value better than obj(s∗) as
possible and keeping xj’s bounds satisfied. Precisely, let ϵ be a very small positive number
(e.g., 10−6) for making the objective value strictly better, ∆j = (obj(s∗)− obj(s)− ϵ)/cj, a
breakthrough move operation bm(xj , s) assigns xj to a new value snew

j ,

snew
j =

{
min(sj + ∆j , uj), if cj < 0,

max(sj + ∆j , lj), else.
(2)

P. Lin, M. Zou, and S. Cai 19:5

If xj is an integer variable, snew
j is rounded to the integer within its global bounds to optimize

the objective function, specifically:

snew
j =

{
min(⌈sj + ∆j⌉, ⌊uj⌋), if cj < 0,

max(⌊sj + ∆j⌋, ⌈lj⌉), else.
(3)

Given the above definition, the breakthrough move operator adaptively modifies the variable
to make the objective value strictly better than the best-found solution while keeping the
variable’s global bound satisfied. To the best of our knowledge, this is the first time that the
idea of an operator to break through the dynamically updated best-found objective value is
proposed in the local search for solving combinatorial optimization problems.

▶ Example 3. Given a MIP instance whose objective function is obj = 3x1 − 2x2, where x1
is an integer variable with global bounds 1 ≤ x1 ≤ 5; x2 is a real variable with 1 ≤ x2 ≤ 3.
Suppose the best-found solution is s∗ = {s1 = 3, s2 = 2}, thus obj(s∗) = 5; the current
solution is scur = {s1 = 4, s2 = 1.5}, thus obj(scur) = 9. As shown in Figure 1, the
operation bm(x1, scur) refers to assigning x1 to the threshold value 2 to make objective
value better than obj(s∗), and the operation bm(x2, scur) assigns x2 to its upper bound 3
to optimize the objective function as much as possible while satisfying the variable’s bound.

Figure 1 A graphical explanation of the breakthrough move operator.

3.2 Mixed Tight Move
How to adaptively move variables to satisfy constraints is the key technology when applying
local search to solve linear systems.

The Simplex algorithm [12] solves linear programming by tightening constraints to locate
solutions in extreme points of the polyhedron. Also, tightening constraints show benefits for
finding feasible solutions for integer programming [30]. Both linear programming and integer
programming are the subclasses of MIP. Here, based on the insight for tightening constraints,
we go one step further and propose an operator suitable for MIP, which can handle both real
and integer variables, dubbed as the mixed tight move.

▶ Definition 4. Given a variable xj, a constraint coni containing xj (i.e., Aij ≠ 0), and a
solution s, the mixed tight move operator, denoted as mtm(xj , coni, s), assigns xj to
the threshold value making the constraint coni satisfied and tight while keeping xj’s bounds
satisfied. Precisely, let ∆ij = (bi−Ai ·s)/Aij , a mixed tight move operation mtm(xj , coni, s)
assigns xj to a new value snew

j ,

snew
j =

min(sj + ∆ij , uj), if ∆ij > 0,

max(sj + ∆ij , lj), if ∆ij < 0,

sj , else.

(4)

CP 2024

19:6 An Efficient Local Search Solver for Mixed Integer Programming

If xj is an integer variable, snew
j is rounded to the feasible integer to satisfy and tighten the

corresponding constraint, specifically:

snew
j =

min(⌈sj + ∆ij⌉, ⌊uj⌋), if bi −Ai · s < 0 and Aij < 0,

max(⌊sj + ∆ij⌋, ⌈lj⌉), if bi −Ai · s < 0 and Aij > 0.

max(⌈sj + ∆ij⌉, ⌈lj⌉), if bi −Ai · s > 0 and Aij < 0,

min(⌊sj + ∆ij⌋, ⌊uj⌋), if bi −Ai · s > 0 and Aij > 0,

sj , else.

(5)

According to the above definition, both violated and satisfied constraints can be handled
by the mixed tight move operator. The mixed tight move ensures the global bound of related
variables is satisfied. Assuming that there is no global bound for each variable, a mixed tight
operation of a violated constraint will satisfy the corresponding constraint by choosing the
minimal possible change to a variable, which will have the least impact on other constraints
that contain the corresponding variable. For a satisfied constraint, a mixed tight operation
assigns a variable to its extreme value while ensuring that the corresponding constraint
remains satisfied. This allows the exploration for escaping local optimum, as it takes the
maximal change of the corresponding variable to the objective function and other constraints.

4 Weighting Scheme and Scoring Functions

As core techniques to guide the local search process, scoring functions measure the benefits of
candidate operations for selecting one with the highest score to execute in each step. When
solving combinatorial optimization problems, dynamic weighting techniques are commonly
used in scoring functions to guide and diversify the search process [29, 11]. In this section, we
first design a new weighting scheme for MIP, and then we propose a two-level weighting-based
scoring function structure to hierarchically guide search for high-quality feasible solutions.

4.1 Weighting Scheme for MIP
Weighting schemes are usually used to adjust the priority of each constraint by diversified
weights in the local search process [45, 43]. Weighting schemes typically increase the weights
of constraints that are often violated, hence guiding the search process toward satisfying these
constraints. When designing a weighting scheme for combinatorial optimization problems,
the main challenge is how to balance the weights between the objective function and each
constraint in the search process [45]. For example, in solving MaxSAT, excessive weights of
soft clauses would make the local search difficult to satisfy all hard clauses, thereby hindering
the capability of finding feasible solutions [10].

Here, we design a new weighting scheme for MIP based on the probabilistic version of
PAWS scheme [44, 9, 7, 30], which updates weights according to a smoothing probability sp,
and we set sp = 0.0003 as mentioned in [7, 30]. Our weighting scheme aims to dynamically
balance the weights of the objective function and each constraint by preventing excessive
weight while maintaining the distinction between them. It works as follows:
(a) The objective function and each constraint have the attribute of an integral weight, which

are denoted as w(obj) and w(coni), respectively.
(b) Initalization: w(obj) = 1 and w(coni) = 1.
(c) When the search process is trapped in a local optimum (i.e., there is no positive operation

to select), the weighting scheme is activated, and weights are updated in one of the ways
as follows:

P. Lin, M. Zou, and S. Cai 19:7

With probability 1 − sp, if the current solution is feasible, w(obj) = w(obj) + 1;
otherwise, for each violated constraint coni, w(coni) = w(coni) + 1.
With probability sp, if obj(scur) < obj(s∗) and w(obj) > 0, w(obj) = w(obj)− 1; for
each satisfied constraint coni whose w(coni) > 0, w(coni) = w(coni)− 1.

The weighting scheme makes the weights of constraints diverse, reflecting different priorities
for considering constraints in search directions. By focusing on constraints that are often
violated in local optima, the weighting scheme helps the local search process find feasible
solutions. Accordingly, if the search process frequently visits feasible solutions in local optima,
then the objective function should be prioritized and will be set with a higher weight, which
helps to find higher-quality feasible solutions. Besides, the weight of the objective function
decreases if the visited solutions are often infeasible but have a better objective value than the
best-found solution, which means the satisfaction of constraints should be more addressed.

4.2 Two-level Scoring Function Structure
Based on the weighting scheme, we propose a two-level scoring function structure, which
contains a base scoring function for the first level and a bonus scoring function for the second
level. The base scoring function incorporates basic metrics on improving the quality of the
objective function and the number of satisfied constraints. The bonus score evaluates the
selected operations from a finer view: it both rewards the breakthrough of the objective
function, and the robust satisfaction of constraints.

In evaluating an operation, the base scoring function is applied first to select the best
operations under it, and then the bonus scoring function is used to evaluate the operations
with the best base scores. The composition of the two-level scoring functions takes into
consideration both the basic improvement and the adaptive adjusting with the solving
process. Moreover, at each level, the scoring functions both measure the objective value and
satisfaction of constraints, which balance the aim of optimization and satisfaction.

4.2.1 First Level: Progress Score as the Base Scoring Function
In the first level, we propose the progress score as the base scoring function. The progress
score takes a local perspective for improving the quality of the current solution, including
the value of the objective function and the satisfaction of each constraint.

MIP aims to minimize the objective. Therefore, the progress score rewards the situation
if the objective value is decreased from the current solution, and punishes it if increased.

▶ Definition 5. Given an operation op, and the current solution scur. Let sop be the new
candidate solution generated by performing op on scur. The progress score of op for improving
the quality of the objective value, denoted as scoreobj

progress(op),

scoreobj
progress(op) =

w(obj), if obj(sop) < obj(scur),
−w(obj), if obj(sop) > obj(scur),
0, else.

(6)

For constraints, the primary goal of MIP is to make them satisfied, thus the progress score
rewards the changes from violated to satisfied, and punishes reverse changes. Additionally, for
unsatisfied constraints, it is preferred to make them closer to being satisfied. Therefore, the
progress score also rewards the proximity to be satisfied and punishes aggravated violations.

CP 2024

19:8 An Efficient Local Search Solver for Mixed Integer Programming

▶ Definition 6. Given an operation op, a constraint coni, and the current solution scur. Let
sop be the new candidate solution generated by performing op on scur. The progress score of
op for improving the satisfaction of the constraint coni, denoted as scoreconi

progress(op),

scoreconi
progress(op) =

w(coni), if Ai · sop ≤ bi < Ai · scur,

−w(coni), if Ai · scur ≤ bi < Ai · sop,

w(coni)/2, if bi < Ai · sop < Ai · scur,

−w(coni)/2, if bi < Ai · scur < Ai · sop,

0, else.

(7)

Considering the objective function and all constraints, the progress score is defined as
below.

▶ Definition 7. Given an operation op, the progress score of op, denoted as scoreprogress(op),

scoreprogress(op) = scoreobj
progress(op) +

m∑
i=1

scoreconi
progress(op) (8)

According to the above definitions, the progress score measures benefits including improving
objective value and satisfying constraints. Performing the operations with positive progress
scores indicates overall progress made based on the current solution.

4.2.2 Second Level: Bonus Scoring Function
The progress score introduced above is employed as the elementary scoring function for
selecting the operations with the highest score to be applied. However, the progress score has
limited capacity to distinguish better operations, according to our preliminary experiments
which execute 10000 steps local search on all testing instances, there are on average %47.5
steps where multiple operations with the same greatest progress score are presented. It is
important to further evaluate these operations by designing finer scores, to do tie-breaking
and award better operations in some metrics. For a similar purpose, previous local search
works often use the age information of variables as the secondary scoring function [8], where
age is defined as the number of steps since the last time it is modified, and the operation of
oldest age variable is selected to break tie.

However, the age scoring function does not consider the characterizations of MIP and
cannot effectively guide the search process for MIP according to the experiment. According
to Definition 7, the progress score takes the local perspective to make progress for the current
solution. Therefore, to further choose an operation among operations with the same best
progress score, we consider global properties for the objective function and each constraint,
instead of comparing the candidate solution with the current solution.

We design the bonus scoring function as the second level, denoted as scorebonus, which
contains the breakthrough bonus for the objective function and the robustness bonus for
constraints, to make distinctions in operations with the best progress score.

Breakthrough Bonus

For the objective function, the bonus scoring function aims to move a variable to break
through the global best-found solution, working together with the proposed breakthrough
move operator. Thus, we propose the breakthrough bonus to reward the situation that the
new candidate solution is better than the dynamically updated best-found solution for the
objective value.

P. Lin, M. Zou, and S. Cai 19:9

▶ Definition 8. Given an operation op, and the best-found solution s∗. Let sop be the new
candidate solution generated by performing op on the current solution. The breakthrough
bonus of op for breaking through the objective value of s∗, denoted as bonusbreak(op),

bonusbreak(op) =
{

w(obj), if obj(sop) < obj(s∗),
0, otherwise.

(9)

Robustness Bonus

For a constraint Ai · x ≤ bi, we take a further step by distinguishing satisfied constraints in
terms of the equality between left-hand side Ai · x and right-hand side bi. For the current
solution scur, a special type of satisfied constraint is those Ai · scur = bi. These constraints,
although being satisfied, would become violated more easily than other satisfied constraints
because they are fragile and sensitive to the operations of variables contained in the constraint.
Therefore, we propose the robustness bonus to reward the operations that keep the strict
inequality, i.e. the left-hand side is strictly less than the right-hand side

▶ Definition 9. Given an operation op, a constraint coni. Let sop be the new candidate
solution generated by performing op on the current solution. The robustness bonus of op of
the constraint coni, denoted as bonusconi

robust(op),

bonusconi

robust(op) =
{

w(coni), if Ai · sop < bi,

0, otherwise.
(10)

To our knowledge, this is the first time that the distinctions in satisfied constraints are
utilized for scoring in local search.

Synthesize the breakthrough bonus for breaking through the best-found solution and the
robustness bonus for robust satisfaction, the bonus scoring function that serves in the second
level is defined below.

▶ Definition 10. Given an operation op, the bonus score of op, denoted as scorebonus(op),

scorebonus(op) = bonusbreak(op) +
m∑

i=1
bonusconi

robust(op) (11)

Complementary to the progress score that compares new candidate solutions with the
current solution from a local perspective, the breakthrough bonus considers information from
a global perspective to compare and try to break through the global best-known solution,
thus extending the selection and modification of variables according to the global search
performances. Moreover, the robustness bonus score makes distinctions of inequalities,
providing a finer evaluation of the satisfaction of constraints.

Consequently, we combine the progress score and the bonus score in a two-level manner
to hierarchically evaluate operations in our solver. This design considers both the local
improvement and global improvement for operations and balances the objective optimizing
and constraints satisfaction, enhancing the adaptability and efficiency of our algorithm.

5 The Local-MIP Algorithm

Based on the ideas proposed in previous sections, we develop a local search solver for solving
MIP called Local-MIP. The pseudo-code of Local-MIP is outlined in Algorithm 1.

CP 2024

19:10 An Efficient Local Search Solver for Mixed Integer Programming

Algorithm 1 The Local-MIP Algorithm.

Input: MIP instance Q, time limit cutoff
Output: Best-found solution s∗ of Q and its objective value obj(s∗)

1 scur ← all variables are set to the value closest to 0 within their global bounds;
2 s∗ ← ∅; obj(s∗)← +∞;
3 while running time < cutoff do
4 if scur is feasible then
5 Improve the objective value while maintaining feasibility by lift move process;
6 if obj(scur) < obj(s∗) then
7 s∗ ← scur; obj(s∗)← obj(scur);

8 candOP ← Get Candidate Operations(Q, scur) ;
9 candOP + ← operation(s) with the greatest progress score in candOP ;

10 op← an operation with the greatest bonus score in candOP +;
11 scur ← a new solution generated by performing op to modify scur ;
12 return s∗ and obj(s∗);

We use scur to denote the current solution which is maintained during the search process,
while s∗ and obj(s∗) denote the best-found solution and its objective value. In the beginning,
each variable of scur is initialized as the value closest to 0 within its global bounds (Line 1).
s∗ is initialized as an empty set, and obj(s∗) is initialized as +∞ (Line 2).

After initialization, Local-MIP conducts the search process until a given time limit
cutoff is reached (Lines 3–10). In each step of local search, the best-found solution and the
corresponding objective value are updated once a new better feasible solution is discovered
(Lines 4-7). The lift move process was proposed in [30] to improve the objective value while
maintaining feasibility for a feasible solution of integer programming, a subclass of MIP,
which can be easily applied for a feasible solution of MIP, and thus we employ the process
once a feasible solution is found in the search process (Line 6). The lift move process improves
the quality of the objective function via the best local feasible domain derived by the local
domain reduction, until reaches the local optimum [30].

The algorithm generates neighborhood solutions through candidate operations by calling
the function Get Candidate Operations(Q, scur) (Line 8), which is detailedly described in
Algorithm 2. Afterward, Local-MIP selects the operations with the greatest progress score,
if there is only one such operation, it is applied directly; otherwise the second level of the
bonus score function is applied and an operation with the greatest bonus score is selected
and performed (Line 9-10), to modify the current solution to get a new scur (Line 11).

Candidate Operations in Each Step

The candidate solutions in each step are constructed by Algorithm 2, containing the break-
through move operation and the mixed tight move operation proposed in Section 3. For
brevity, we denote the breakthrough move as bm, and denote the mixed tight move as mtm.

At the beginning of the search, the top priority is to find the first feasible solution, thus it
first considers the positive mtm operations in violated constraints (Lines 1-3). For violated
constraints under an infeasible solution, there are always mtm operations that improve the
satisfaction of these violated constraints. However, there may be no positive operations since
their scores are defined on all constraints, since they perhaps reduce the satisfaction of other
constraints.

P. Lin, M. Zou, and S. Cai 19:11

Algorithm 2 Get Candidate Operations.

Input: MIP instance Q, current solution scur

Output: Candidate operations set candOP

1 if no feasible solution is found then
2 if ∃ positive mtm operation in violated constraints then
3 candOP ← positive mtm operations in violated constraints;

4 else
5 if ∃ positive bm operation or mtm operation in violated constraints then
6 candOP ← positive bm operations ∪ mtm operations in violated

constraints;
7 else if ∃ positive mtm operation in satisfied constraints then
8 candOP ← positive mtm operations in satisfied constraints;

9 if op == ∅ then
10 if ∃ positive Boolean flip operation then
11 candOP ← positive Boolean flip operations;
12 else
13 Activate the weighting scheme to update the weights;
14 candOP ← bm operations ∪ random selected mtm operations;

15 return candOP ;

Once any feasible solution has been found, the goal of the search process is transformed
into discovering feasible solutions with high-quality objective value. Therefore, the primal
candidate operations are the union of positive bm operations and positive mtm operations in
violated constraints (Lines 5-6). If there are no such positive operations, it tries to construct
the candidate operations set with the positive mtm operations in satisfied constraints
(Lines 7-8).

If the algorithm fails to find any positive operation in the previous process, it tries to
search for positive Boolean flip operations as candidate operations (Lines 9-11), which we
will describe later. Once the above exploration fails, it is indicated that local search falls into
the local optimum (Line 12). It first activates the weighting scheme to update the weights
of objective function and constraints (Line 13). Afterward, it randomly selects a violated
constraint if one exits, and then generates candidate operations set by the union of bm
operations and mtm operations in the selected constraint (Line 14).

Note that we use the Boolean flip operation in Lines 9-11 to flip the values of Boolean
variables. The motivation is due to the importance of Boolean variables in MIP modeling
(involved in 96.3% of the MIPLIB instances) and the feature of the flip operation that it
could generate more operations than the above operators for Boolean candidate variables.
Thus we adopt the flip operator as a special treatment for Boolean variables and apply it to
complement the proposed operators to generate more operations.

Besides the main part as shown in Algorithm 1 and 2, we also introduce a forbidding
strategy to further improve efficiency. Local search methods may often stuck in suboptimal
regions. To address the cycling phenomenon of revisiting the same regions, we employ
a forbidding strategy, the tabu strategy [19, 7]. The tabu strategy is directly applied to
Local-MIP. Once a variable is modified, it forbids the modification for the reverse direction
in the following tt iterations, where tt is called tabu tenure, and we set tt = 3 + rand(10) as
mentioned in [7].

CP 2024

19:12 An Efficient Local Search Solver for Mixed Integer Programming

6 Experimental Evaluations

Here, we introduce the preliminaries and results of our experiments. First, we compare
Local-MIP with 5 state-of-the-art MIP solvers, including Gurobi, CPLEX , SCIP, HiGHS
and Feasibility Jump. Moreover, we report new records established by Local-MIP for 4 open
instances in the MIPLIB dataset. Additionally, we analyze the effectiveness of proposed
strategies and the stability of Local-MIP with different random seeds.

6.1 Experiment Preliminaries
6.1.1 Benchmarks
Our experiments are carried out with 4 benchmarks of the mainstream dataset for MIP,
i.e., MIPLIB [18] with hard3 and open4 instances. In each instance of MIPLIB, at least one
variable is an integer variable. Depending on the type of variables, the MIPLIB instances
are classified into the 4 benchmarks.

MIPLIB-BP: the binary programming (66 instances), only contains Boolean variables.
MIPLIB-IP: the integer programming (32 instances), where all variables are integer
variables, and at least one variable is not a Boolean variable.
MIPLIB-MBP: the mixed binary programming (195 instances), where all variables are
Boolean or real variables, and at least one variable is a real variable.
MIPLIB-MIP: the mixed integer programming (62 instances), where integer variable
and real variable both exist and at least one of integer variables is not a Boolean variable.

Additionally, two practical problems are tested: the bin packing and the scheduling problem.
They are challenging combinatorial optimization problems, and also have significant applic-
ations in real-world industry. We evaluate solvers on 1 standard bin packing benchmark
for [15], and 2 standard scheduling benchmarks provided by Taillard’s instances [42].

BBP: the Bin Packing problem, This benchmark consists of 60 instances with 500 and
1000 items to pack, encoded by the modeling method proposed in [14].
JSP: the Job-shop Scheduling problem. This benchmark consists of 80 instances encoded
by the modeling method proposed in [26].
OSP: the Open-shop Scheduling problem. This benchmark consists of 60 instances
encoded by the modeling method proposed in [35].

6.1.2 State-of-the-art Competitors
In Section 6.2, we compare Local-MIP with 5 state-of-the-art MIP solvers.

HiGHS [23]: an academic solver for large-scale sparse MIP (version 1.6.0).5
SCIP [5]: one of the fastest academic solvers for MIP (Version 8.1.0, using SoPlex 6.0.4).6
Gurobi [21]: the most powerful commercial MIP solvers (version 11.0.0). We use both
its complete and heuristic versions, denoted by Gurobicomp and Gurobiheur, respectively.7
CPLEX [36]: a famous commercial MIP solver to solve complex models (version 22.1.0).8
Feasibility Jump [33]: FJ for short, the state-of-the-art local search MIP algorithm,
which won 1st place in MIP 2022 Computational Competition.9

3 https://miplib.zib.de/downloads/hard-v22.test
4 https://miplib.zib.de/downloads/open-v22.test
5 https://github.com/ERGO-Code/HiGHS
6 https://www.scipopt.org
7 https://www.gurobi.com/solutions/gurobi-optimizer/
8 https://www.ibm.com/products/ilog-cplex-optimization-studio
9 https://github.com/sintef/feasibilityjump

https://miplib.zib.de/downloads/hard-v22.test
https://miplib.zib.de/downloads/open-v22.test
https://github.com/ERGO-Code/HiGHS
https://www.scipopt.org
https://www.gurobi.com/solutions/gurobi-optimizer/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/sintef/feasibilityjump

P. Lin, M. Zou, and S. Cai 19:13

All of the competitors are downloaded from their websites, and always use default settings.
Note that HiGHS , SCIP, Gurobi, and CPLEX are trying to do much more than find a
high-quality solution quickly. They are also finding optimality certificates and trying to
guarantee a feasible solution.

6.1.3 Experiment Setup
Local-MIP is implemented in C++ and compiled in g++ with the ’-O3’ option. All experi-
ments are carried out on a server with AMD EPYC 9654 CPU and 2048G RAM under the
system Ubuntu 20.04.4. we use two metrics to evaluate the performance of each solver for
the ability to find high-quality feasible solutions in a reasonable time:

#Feas: the number of instances where a solver can find a feasible solution within given
time limits. This evaluates a solver’s ability to find feasible solutions.
#Win: the number of instances in which the solver yields the best solution among all
solvers within time limits. This evaluates the ability to find high-quality feasible solutions.

For both #Feas and #Win, a larger metric value on a benchmark indicates better performance
on the corresponding benchmark. For each instance, each solver is executed by one thread
with time limits of 10, 60, and 300 seconds as mentioned in [30]. For each time limit setting
in the table, the best performance for the corresponding metric is highlighted in bold.
Additionally, the number of instances in each benchmark is denoted by #Inst. Detailed
results and the sourced code are made publicly available on GitHub.10

6.2 Comparison with State-of-the-art MIP Solvers

Figure 2 Run time comparison on each instance for finding the first feasible solution. Note that
the comparison with CPLEX is absent, as it do not provide the exact time for finding solutions.

10 https://github.com/shaowei-cai-group/Local-MIP/

CP 2024

https://github.com/shaowei-cai-group/Local-MIP/

19:14 An Efficient Local Search Solver for Mixed Integer Programming

Table 1 Empirical results on comparing Local-MIP with the state-of-the-art MIP solvers in terms
of #Feas and #Win within each given time limit.

Benchmark #Inst HiGHS SCIP CPLEX Gurobicomp Gurobiheur FJ Local-MIP
#Feas #Win #Feas #Win #Feas #Win #Feas #Win #Feas #Win #Feas #Win #Feas #Win

time limit 10 seconds
MIPLIB-BP 66 6 0 29 2 42 11 44 9 44 7 42 4 44 31
MIPLIB-IP 32 7 0 11 2 17 4 17 8 17 8 11 1 17 7
MIPLIB-MBP 195 57 1 80 7 116 31 117 43 119 51 56 10 103 35
MIPLIB-MIP 62 9 2 21 0 32 10 37 11 37 13 18 4 35 15
BPP 60 9 0 0 0 60 0 60 0 60 0 60 0 60 60
JSP 80 22 0 70 25 31 0 10 1 12 8 0 0 45 36
OSP 60 48 22 60 20 28 7 47 27 42 25 1 0 60 45
Total 555 158 25 271 56 326 63 332 99 331 112 188 19 364 229

time limit 60 seconds
MIPLIB-BP 66 14 0 35 2 43 8 46 10 47 15 49 2 48 28
MIPLIB-IP 32 12 1 14 1 20 6 20 7 20 9 12 1 21 6
MIPLIB-MBP 195 96 6 109 2 129 32 137 49 134 65 62 9 119 23
MIPLIB-MIP 62 15 3 28 1 36 7 41 8 41 18 20 3 43 17
BPP 60 40 0 20 0 60 11 60 13 60 15 60 0 60 33
JSP 80 41 0 70 15 52 1 23 3 26 13 1 0 54 38
OSP 60 58 27 60 20 30 10 53 37 51 31 9 0 60 42
Total 555 276 37 336 41 370 75 380 127 379 166 213 15 405 187

time limit 300 seconds
MIPLIB-BP 66 22 1 42 4 43 6 47 10 48 23 49 0 49 17
MIPLIB-IP 32 14 2 17 2 21 5 21 10 22 14 12 1 22 4
MIPLIB-MBP 195 115 7 122 7 137 22 150 59 152 69 67 11 123 14
MIPLIB-MIP 62 24 1 34 1 38 7 44 10 43 23 21 3 45 16
BPP 60 47 0 40 0 60 31 60 30 60 13 60 0 60 3
JSP 80 49 0 70 0 68 1 36 10 34 20 1 0 70 41
OSP 60 60 38 60 24 33 13 55 40 60 43 19 0 60 44
Total 555 331 49 385 38 400 85 413 169 419 205 229 15 429 139

The results of comparison with 4 state-of-the-art MIP solvers are shown in Tables 1.

The ability to find feasible solutions (#Feas). Local-MIP performs best on 4 benchmarks
in the 10s and 60s time limits, and 5 benchmarks in the 300s. For all benchmarks, Local-MIP
performs best on most benchmarks in the 60s and 300s time limits, and the second most in
the 10s. In terms of the total instances of all benchmarks, Local-MIP establishes the best
performance for all the time limits. In general, this result confirms the powerful ability of
Local-MIP to find a feasible solution within reasonable times.

The ability to find high-quality feasible solutions (#Win). Local-MIP performs best on
5 benchmarks in the 10s time limit, 4 benchmarks in 60s, and 2 benchmarks in 300s. For
all benchmarks, Local-MIP performs best on most benchmarks in the 10s and 60s, and the
second most in the 300s. Particularly, Local-MIP exhibits the best performance for JSP
and OSP benchmarks on all time limits, indicating the advantages of our solver in solving
scheduling problems. In terms of total instances, Local-MIP consistently establishes the
best performance for 10s and 60s, but in 300s, Gurobi wins more instances than Local-MIP,
especially its heuristic version. Overall, for the ability to find high-quality feasible solutions,
Local-MIP significantly outperforms the two academic MIP solvers HiGHS and SCIP, and
another local search solver Feasibility Jump. Moreover, Local-MIP performs better than the
commercial MIP solver CPLEX , and is competitive with the most powerful solver Gurobi.

According to Table 1, Local-MIP outperforms Feasibility Jump on almost all settings,
indicating a significant improvement in the field of local search solver for MIP.

P. Lin, M. Zou, and S. Cai 19:15

Furthermore, the run time comparison on all instances for finding the first feasible solution
is presented in Figure 2. For comparison with each solver, there are obviously more instances
above the red line, which confirms the powerful solving ability of Local-MIP.

6.3 New Records to Open Instances
In the MIPLIB dataset, the instances labeled as open are those that the optimal solution has
not yet been solved. The current best solutions known for each open instance are available
on the corresponding page on the MIPLIB website. These open instances are representative
of the hard-solving problems.

Table 2 Local-MIP establishes new records to 4 open instances. #var and #cons denote the
number of variables and constraints of the corresponding instance, respectively.

Instance name #var #cons constraint types Previous best Local-MIP
genus-sym-g31-8 3484 32073 knapsack, precedence, etc. -21 -23
genus-sym-g62-2 12912 78472 set partitioning, set covering, etc. -34 -38
genus-g61-25 14380 94735 cardinality, general linear, etc. -34 -40
neos-4232544-orira 87060 180600 aggregations, variable bound, etc. 17540506.0 15108527.512195

Excitingly, Local-MIP established the new best-known solutions for 4 open instances.
The new records have been submitted to MIPLIB 2017 and have been accepted; the links
to the website are denoted in the footnotes.11 12 13 14 As shown in Table 2, each of
these 4 instances contains multiple different constraint types,15 simultaneously indicating
the powerful solving ability and its extensive applicability.

6.4 Analysis on the Proposed Ideas

Table 3 Comparison bettewn Local-MIP and its modified versions. #better and #worse denote
the number of instances where Local-MIP obtains better and worse best-found solution, respectively.

Benchmark #Inst 10 seconds 60 seconds 300 seconds 10 seconds 60 seconds 300 seconds
#better #worse #better #worse #better #worse #better #worse #better #worse #better #worse

Comparison with Vno−bm Comparison with Vno−weight

MIPLIB-BP 66 28 7 23 17 24 18 33 4 34 7 34 8
MIPLIB-IP 32 10 2 11 5 12 4 15 0 19 0 20 0
MIPLIB-MBP 195 61 20 68 26 63 35 95 5 112 5 116 5
MIPLIB-MIP 62 22 7 27 8 27 8 35 0 40 1 41 0
BPP 60 59 0 59 0 58 0 35 10 56 0 60 0
JSP 80 32 13 45 8 60 10 45 0 54 0 70 0
OSP 60 48 5 49 1 46 3 60 0 60 0 60 0
Total 555 260 54 282 65 290 78 318 19 375 13 401 13

Comparison with Vrandom Comparison with Vage

MIPLIB-BP 66 26 10 27 15 26 15 27 10 23 16 26 13
MIPLIB-IP 32 10 4 13 3 15 4 11 3 15 1 15 1
MIPLIB-MBP 195 69 27 80 30 71 43 66 28 68 42 71 41
MIPLIB-MIP 62 22 12 19 18 18 17 23 10 23 13 22 15
BPP 60 28 15 11 27 11 34 34 11 16 29 13 25
JSP 80 29 16 31 23 39 31 30 15 31 23 42 26
OSP 60 25 20 27 15 21 12 29 18 31 13 22 13
Total 555 209 104 208 131 201 156 220 95 207 137 211 134

11 https://miplib.zib.de/instance_details_genus-sym-g31-8.html
12 https://miplib.zib.de/instance_details_genus-sym-g62-2.html
13 https://miplib.zib.de/instance_details_genus-g61-25.html
14 https://miplib.zib.de/instance_details_neos-4232544-orira.html
15 https://miplib.zib.de/statistics.html

CP 2024

https://miplib.zib.de/instance_details_genus-sym-g31-8.html
https://miplib.zib.de/instance_details_genus-sym-g62-2.html
https://miplib.zib.de/instance_details_genus-g61-25.html
https://miplib.zib.de/instance_details_neos-4232544-orira.html
https://miplib.zib.de/statistics.html

19:16 An Efficient Local Search Solver for Mixed Integer Programming

To verify the effectiveness of the proposed strategies, we conduct comparative experiments
on 4 alternative versions of Local-MIP, which are obtained as follows.

Vno−bm: to analyze the effectiveness of the breakthrough move operator, we modify
Local-MIP by removing all the breakthrough move operations in Algorithm 2.
Vno−weight: to analyze the weighting scheme, we modify Local-MIP by removing the
activation of the weighting scheme in Algorithm 2 and making all weights equal to 1.
Vrandom and Vage: to analyze the effectiveness of the bonus score, we modify Local-MIP
by utilizing the random selection and the age strategy instead of bonus score to break
ties in Algorithm 1, resulting the versions Vrandom and Vage, respectively.

As shown in Table 3, Local-MIP significantly outperforms other variations in almost all
settings, confirming the effectiveness of the proposed strategies.

6.5 Stability with Repetitive Experiments
To examine the stability of Local-MIP which involves randomness, we run Local-MIP 10
times with seeds ranging from 1 to 10, and measure the coefficient of variation [1, 11].

For each instance, we calculate the average value AV G and the standard deviation STD

for the absolute objective values of the best-found solutions from 10 different seeds. The
coefficient of variation of each instance is STD/AV G, and the lower value indicates greater
stability. The experimental results are presented in Table 4, where over 85% have a coefficient
of variation less than 0.1, indicating Local-MIP exhibits stable performance.

Table 4 Experimental results of Local-MIP with 10 different seeds on each benchmark, where
#CV denotes the number of instances in each range of the coefficient of variation.

Time limit #CV
[0, 0.01) [0.01, 0.1) [0.1, 0.5) [0.5, +∞)

10 second 335 140 56 24
60 second 322 150 60 23
300 second 316 160 49 30

7 Conclusions and Future Work

In this paper, for solving MIP, we proposed two operators, a weighting scheme, and a tow-level
scoring function structure. Based on these novel strategies, we developed an efficient local
search solver for MIP. Experimental results demonstrate our solver’s excellent performance
for solving MIP. Moreover, we establish 4 new records for MIPLIB open instances by finding
new best solutions.

For future work, we would like to develop more sophisticated operators and scoring
functions to improve the performance of the local search solver for MIP.

References

1 Hervé Abdi. Coefficient of variation. Encyclopedia of research design, 1(5), 2010.
2 Tobias Achterberg. SCIP: solving constraint integer programs. Math. Program. Comput.,

1(1):1–41, 2009. doi:10.1007/S12532-008-0001-1.
3 Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years

of progress. In Facets of combinatorial optimization: Festschrift for martin grötschel, pages
449–481. Springer, 2013.

https://doi.org/10.1007/S12532-008-0001-1

P. Lin, M. Zou, and S. Cai 19:17

4 VL Beresnev, EN Goncharov, and AA Mel’nikov. Local search with a generalized neighborhood
in the optimization problem for pseudo-boolean functions. Journal of Applied and Industrial
Mathematics, 6:22–30, 2012.

5 Ksenia Bestuzheva, Mathieu Besanccon, Weikun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros M. Gleixner,
Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny,
Rolf van der Hulst, Thorsten Koch, Marco E. Lübbecke, Stephen J. Maher, Frederic Matter,
Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska
Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian
Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. Enabling research through
the SCIP optimization suite 8.0. ACM Trans. Math. Softw., 49(2):22:1–22:21, 2023. doi:
10.1145/3585516.

6 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

7 Shaowei Cai, Bohan Li, and Xindi Zhang. Local search for SMT on linear integer arith-
metic. In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
II, volume 13372 of Lecture Notes in Computer Science, pages 227–248. Springer, 2022.
doi:10.1007/978-3-031-13188-2_12.

8 Shaowei Cai, Chuan Luo, and Kaile Su. Scoring functions based on second level score for k-sat
with long clauses. J. Artif. Intell. Res., 51:413–441, 2014. doi:10.1613/JAIR.4480.

9 Shaowei Cai and Kaile Su. Local search for boolean satisfiability with configuration checking
and subscore. Artif. Intell., 204:75–98, 2013. doi:10.1016/J.ARTINT.2013.09.001.

10 Byungki Cha, Kazuo Iwama, Yahiko Kambayashi, and Shuichi Miyazaki. Local search
algorithms for partial MAXSAT. In Benjamin Kuipers and Bonnie L. Webber, editors,
Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innov-
ative Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997,
Providence, Rhode Island, USA, pages 263–268. AAAI Press / The MIT Press, 1997. URL:
http://www.aaai.org/Library/AAAI/1997/aaai97-041.php.

11 Yi Chu, Shaowei Cai, Chuan Luo, Zhendong Lei, and Cong Peng. Towards more efficient
local search for pseudo-boolean optimization. In Roland H. C. Yap, editor, 29th International
Conference on Principles and Practice of Constraint Programming, CP 2023, August 27-
31, 2023, Toronto, Canada, volume 280 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.CP.2023.12.

12 George B Dantzig, Alex Orden, Philip Wolfe, et al. The generalized simplex method for
minimizing a linear form under linear inequality restraints. Pacific Journal of Mathematics,
5(2):183–195, 1955.

13 Jessica Davies and Fahiem Bacchus. Exploiting the power of mip solvers in maxsat. In
Matti Järvisalo and Allen Van Gelder, editors, Theory and Applications of Satisfiability
Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013.
Proceedings, volume 7962 of Lecture Notes in Computer Science, pages 166–181. Springer,
2013. doi:10.1007/978-3-642-39071-5_13.

14 Maxence Delorme, Manuel Iori, and Silvano Martello. Bin packing and cutting stock problems:
Mathematical models and exact algorithms. Eur. J. Oper. Res., 255(1):1–20, 2016. doi:
10.1016/J.EJOR.2016.04.030.

15 Emanuel Falkenauer. A hybrid grouping genetic algorithm for bin packing. J. Heuristics,
2(1):5–30, 1996. doi:10.1007/BF00226291.

16 Christodoulos A. Floudas and Xiaoxia Lin. Mixed integer linear programming in process
scheduling: Modeling, algorithms, and applications. Ann. Oper. Res., 139(1):131–162, 2005.
doi:10.1007/S10479-005-3446-X.

CP 2024

https://doi.org/10.1145/3585516
https://doi.org/10.1145/3585516
https://doi.org/10.1007/978-3-031-13188-2_12
https://doi.org/10.1613/JAIR.4480
https://doi.org/10.1016/J.ARTINT.2013.09.001
http://www.aaai.org/Library/AAAI/1997/aaai97-041.php
https://doi.org/10.4230/LIPICS.CP.2023.12
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1016/J.EJOR.2016.04.030
https://doi.org/10.1016/J.EJOR.2016.04.030
https://doi.org/10.1007/BF00226291
https://doi.org/10.1007/S10479-005-3446-X

19:18 An Efficient Local Search Solver for Mixed Integer Programming

17 Sethavidh Gertphol and Viktor K. Prasanna. MIP formulation for robust resource allocation
in dynamic real-time systems. J. Syst. Softw., 77(1):55–65, 2005. doi:10.1016/J.JSS.2003.
12.040.

18 Ambros M. Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe,
Timo Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff T. Linderoth, Marco E.
Lübbecke, Hans D. Mittelmann, Derya B. Özyurt, Ted K. Ralphs, Domenico Salvagnin, and
Yuji Shinano. MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming
library. Math. Program. Comput., 13(3):443–490, 2021. doi:10.1007/S12532-020-00194-3.

19 Fred Glover and Manuel Laguna. Tabu search. Springer, 1998.
20 Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs and an

algorithm for the mixed integer problem. In Michael Jünger, Thomas M. Liebling, Denis
Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi,
and Laurence A. Wolsey, editors, 50 Years of Integer Programming 1958-2008 - From the Early
Years to the State-of-the-Art, pages 77–103. Springer, 2010. doi:10.1007/978-3-540-68279-0_
4.

21 LLC Gurobi Optimization. Gurobi optimizer ref. manual, 2024.
22 Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications.

Elsevier / Morgan Kaufmann, 2004.
23 Qi Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method. Math. Program.

Comput., 10(1):119–142, 2018. doi:10.1007/S12532-017-0130-5.
24 Ravindran Kannan and Clyde L Monma. On the computational complexity of integer

programming problems. In Optimization and Operations Research: Proceedings of a Workshop
Held at the University of Bonn, October 2–8, 1977, pages 161–172. Springer, 1978.

25 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

26 Wen-Yang Ku and J. Christopher Beck. Mixed integer programming models for job shop
scheduling: A computational analysis. Comput. Oper. Res., 73:165–173, 2016. doi:10.1016/
J.COR.2016.04.006.

27 Ailsa H. Land and Alison G. Doig. An automatic method for solving discrete programming
problems. In Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors,
50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art,
pages 105–132. Springer, 2010. doi:10.1007/978-3-540-68279-0_5.

28 Eugene L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Oper. Res.,
14(4):699–719, 1966. doi:10.1287/OPRE.14.4.699.

29 Zhendong Lei and Shaowei Cai. Solving (weighted) partial maxsat by dynamic local search
for SAT. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages
1346–1352. ijcai.org, 2018. doi:10.24963/IJCAI.2018/187.

30 Peng Lin, Shaowei Cai, Mengchuan Zou, and Jinkun Lin. New characterizations and efficient
local search for general integer linear programming. arXiv preprint arXiv:2305.00188, 2023.
arXiv:2305.00188.

31 Peng Lin, Mengchuan Zou, and Shaowei Cai. Local-MIP. Software, version 1.0., swhId:
swh:1:dir:883191ffb9b4503105cce3e9d3da6d50421956f3 (visited on 2024-08-19). URL:
https://github.com/shaowei-cai-group/Local-MIP.

32 Andrea Lodi and Michele Monaci. Integer linear programming models for 2-staged two-
dimensional knapsack problems. Math. Program., 94(2-3):257–278, 2003. doi:10.1007/
S10107-002-0319-9.

https://doi.org/10.1016/J.JSS.2003.12.040
https://doi.org/10.1016/J.JSS.2003.12.040
https://doi.org/10.1007/S12532-020-00194-3
https://doi.org/10.1007/978-3-540-68279-0_4
https://doi.org/10.1007/978-3-540-68279-0_4
https://doi.org/10.1007/S12532-017-0130-5
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/J.COR.2016.04.006
https://doi.org/10.1016/J.COR.2016.04.006
https://doi.org/10.1007/978-3-540-68279-0_5
https://doi.org/10.1287/OPRE.14.4.699
https://doi.org/10.24963/IJCAI.2018/187
https://arxiv.org/abs/2305.00188
https://archive.softwareheritage.org/swh:1:dir:883191ffb9b4503105cce3e9d3da6d50421956f3;origin=https://github.com/shaowei-cai-group/Local-MIP;visit=swh:1:snp:34d027907a0a0b75fa84bfa7f8345ee2ee858337;anchor=swh:1:rev:09f5626d23710b0a1a0b7b38ad910f5b25ae7096
https://github.com/shaowei-cai-group/Local-MIP
https://doi.org/10.1007/S10107-002-0319-9
https://doi.org/10.1007/S10107-002-0319-9

P. Lin, M. Zou, and S. Cai 19:19

33 Bjørnar Luteberget and Giorgio Sartor. Feasibility jump: an lp-free lagrangian MIP heuristic.
Math. Program. Comput., 15(2):365–388, 2023. doi:10.1007/S12532-023-00234-8.

34 Rafael A. Melo and Celso C. Ribeiro. MIP formulations for induced graph optimization
problems: a tutorial. Int. Trans. Oper. Res., 30(6):3159–3200, 2023. doi:10.1111/ITOR.13299.

35 B Naderi and M Zandieh. Modeling and scheduling no-wait open shop problems. International
Journal of Production Economics, 158:256–266, 2014.

36 Stefan Nickel, Claudius Steinhardt, Hans Schlenker, and Wolfgang Burkart. Ibm ilog cplex
optimization studio—a primer. In Decision Optimization with IBM ILOG CPLEX Optimization
Studio: A Hands-On Introduction to Modeling with the Optimization Programming Language
(OPL), pages 9–21. Springer, 2022.

37 Gábor Pataki. Teaching integer programming formulations using the traveling salesman
problem. SIAM Rev., 45(1):116–123, 2003. doi:10.1137/S00361445023685.

38 Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming,
volume 149. Springer, 2006.

39 SD Prestwich and S Verachi. Constructive vs perturbative local search for general integer
linear programming. In Proceedings of the Fifth International Workshop on Local Search
Techniques in Constraint Satisfaction (LSCS), 2008.

40 Martin W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer program-
ming problems. INFORMS J. Comput., 6(4):445–454, 1994. doi:10.1287/IJOC.6.4.445.

41 J Cole Smith and Z Caner Taskin. A tutorial guide to mixed-integer programming models
and solution techniques. Optimization in medicine and biology, pages 521–548, 2008.

42 Eric Taillard. Benchmarks for basic scheduling problems. european journal of operational
research, 64(2):278–285, 1993.

43 John Thornton. Clause weighting local search for SAT. J. Autom. Reason., 35(1-3):97–142,
2005. doi:10.1007/S10817-005-9010-1.

44 John Thornton, Duc Nghia Pham, Stuart Bain, and Valnir Ferreira Jr. Additive versus
multiplicative clause weighting for SAT. In Deborah L. McGuinness and George Ferguson,
editors, Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth
Conference on Innovative Applications of Artificial Intelligence, July 25-29, 2004, San Jose,
California, USA, pages 191–196. AAAI Press / The MIT Press, 2004. URL: http://www.aaai.
org/Library/AAAI/2004/aaai04-031.php.

45 John Thornton and Abdul Sattar. Dynamic constraint weighting for over-constrained problems.
In Hing-Yan Lee and Hiroshi Motoda, editors, PRICAI’98, Topics in Artificial Intelligence, 5th
Pacific Rim International Conference on Artificial Intelligence, Singapore, November 22-27,
1998, Proceedings, volume 1531 of Lecture Notes in Computer Science, pages 377–388. Springer,
1998. doi:10.1007/BFB0095285.

46 Laurence A. Wolsey. Mixed integer programming. In Benjamin W. Wah, editor, Wiley
Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Inc., 2008. doi:
10.1002/9780470050118.ECSE244.

CP 2024

https://doi.org/10.1007/S12532-023-00234-8
https://doi.org/10.1111/ITOR.13299
https://doi.org/10.1137/S00361445023685
https://doi.org/10.1287/IJOC.6.4.445
https://doi.org/10.1007/S10817-005-9010-1
http://www.aaai.org/Library/AAAI/2004/aaai04-031.php
http://www.aaai.org/Library/AAAI/2004/aaai04-031.php
https://doi.org/10.1007/BFB0095285
https://doi.org/10.1002/9780470050118.ECSE244
https://doi.org/10.1002/9780470050118.ECSE244

Constraint Modelling with LLMs Using In-Context
Learning
Kostis Michailidis #

DTAI, KU Leuven, Belgium

Dimos Tsouros #

DTAI, KU Leuven, Belgium

Tias Guns #

DTAI, KU Leuven, Belgium

Abstract
Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial
problems. However, modelling such problems using constraints over decision variables still requires
significant expertise, both in conceptual thinking and syntactic use of modelling languages. In
this work, we explore the potential of using pre-trained Large Language Models (LLMs) as coding
assistants, to transform textual problem descriptions into concrete and executable CP specifications.
We present different transformation pipelines with explicit intermediate representations, and we
investigate the potential benefit of various retrieval-augmented example selection strategies for
in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt
(optimisation) and Logic Grid Puzzles (satisfaction), and a heterogeneous set of exercises from
a CP course. The results show that pre-trained LLMs have promising potential for initialising
the modelling process, with retrieval-augmented in-context learning significantly enhancing their
modelling capabilities.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Computing methodologies → Natural language generation; Computing methodologies → Discrete
space search

Keywords and phrases Constraint Modelling, Constraint Acquisition, Constraint Programming,
Large Language Models, In-Context Learning, Natural Language Processing, Named Entity Recog-
nition, Retrieval-Augmented Generation, Optimisation

Digital Object Identifier 10.4230/LIPIcs.CP.2024.20

Supplementary Material Software (Source Code): https://github.com/kostis-init/CP-LLMs-
ICL [37], archived at swh:1:dir:5e4383ad6c4329796c9f21c51bbff4882dca8271

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (Grant No. 101002802, CHAT-Opt).

Acknowledgements We want to thank the reviewers for their valuable feedback.

1 Introduction

Constraint Programming (CP) is a powerful paradigm for solving complex combinatorial
decision-making and optimisation problems. It is widely applicable in various industrial
tasks such as scheduling, resource allocation, and various assignment problems [49, 55].
However, utilizing CP requires the translation of real-world problems into a formal model;
defining decision variables, constraints, and potentially an optimisation function. This is a
complex process, necessitating expertise in the specific application domain, in addition to CP
modelling and the semantic and syntactic formalisms of CP solvers or modelling languages.

© Kostis Michailidis, Dimos Tsouros, and Tias Guns;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 20; pp. 20:1–20:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kostis.michailidis@kuleuven.be
https://orcid.org/0009-0000-2139-0106
mailto:dimos.tsouros@kuleuven.be
https://orcid.org/0000-0002-3040-0959
mailto:tias.guns@kuleuven.be
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2024.20
https://github.com/kostis-init/CP-LLMs-ICL
https://github.com/kostis-init/CP-LLMs-ICL
https://archive.softwareheritage.org/swh:1:dir:5e4383ad6c4329796c9f21c51bbff4882dca8271
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Constraint Modelling with LLMs Using In-Context Learning

The expertise needed for modelling CP problems has been recognised to be a bottleneck
for the wider use of CP [16, 15]. This has motivated the development of tools and meth-
ods to simplify the modelling process, e.g. high-level modelling languages and automatic
reformulation libraries such as MiniZinc [40] or CPMpy [21]. There is also active research
on assisting the user through constraint acquisition, where either the user has to provide
examples of solutions and optionally non-solutions (passive learning) [45, 35, 44] or the user
interacts with the system, classifying partial assignments as solutions or not [3, 51, 50].

While these advancements show potential in assisting the user through the modelling
process, there is still a gap between a natural language description of the problem and
its corresponding CP model. As a result, a number of works have looked at utilizing
Natural Language Processing (NLP) techniques in modelling. For example, in [27], a method
to detect constraints from textual descriptions of combinatorial problems is presented,
while [9] shows how Logic Grid Puzzle (LGP) clues can be formulated in first-order logic
expressions. A classification-based approach to detect and rewrite the typical LGP clues
as constraints was also explored [24]. Recently, the NL4Opt competition at NeurIPS1

formulated the challenge of using NLP methods to transform textual descriptions of small
linear programming optimisation problems into an LP formulation [47]. The most successful
approaches of the competition [25, 22, 41, 18] primarily utilized fine-tuned BERT [12] and
BART [29] architectures.

Orthogonally, the rise of new-generation Large Language Models (LLMs) pre-trained
on web-scale data, such as GPT-3 [4] and similar models, has enabled the introduction of
coding assistants [8]. A coding assistant is an LLM that can write a certain piece of code as a
response to a user request in natural language. Given that these LLMs are trained on large
portions of web data, they can likewise be asked to formulate constraint models for publicly
documented constraint-solving systems. Indeed, there are preliminary reports on prompting
strategies that present initial successes in CP modelling [52, 1]. On arithmetic and logical
reasoning tasks, LLMs have also been used to rewrite the task into a formal specification
that can be solved with an SMT Theorem Prover [62]. For LGPs, LLMs have been prompted
to detect the constants and then rewrite complex clues and translate them to ASP rules [23].
On the NL4Opt dataset, pre-trained LLMs have been shown to outperform the fine-tuned
BERT/BART models [43, 31].

These are promising precursors to employing LLMs to formulate CP models from natural
language descriptions of any combinatorial problem, including logic grid puzzles, integer
linear programs and more. While this is still a distant dream, it requires evaluating on
both satisfaction (CSP) and optimisation problems (COP), for well-defined evaluation
measures. We will define these and systematically investigate two orthogonal techniques
that are commonly used in LLM approaches: 1) using multiple prompts and intermediate
representations to get a final formal CP specification; and 2) using in-context examples
and retrieval-augmented example selection techniques. Our goal is to contribute to the
development and better understanding of coding assistants for CP modelling.

The contributions of this paper are as follows:
We present a framework that transforms natural language descriptions of constraint
problems into formal solvable CP models using LLMs.
We compare prompting LLMs to generate solutions, to generating CP models that are then
used to solve the problem at hand. We employ different approaches using intermediate
representations, and various retrieval-augmented in-context examples selection techniques,
including novel variations.

1 https://neurips.cc/virtual/2022/competition/50079

https://neurips.cc/virtual/2022/competition/50079

K. Michailidis, D. Tsouros, and T. Guns 20:3

We define precise evaluation metrics, to standardize the evaluation of the performance of
LLMs in modelling CP problems.
We systematically evaluate the ability of pre-trained LLMs to generate accurate constraint
models and solutions for satisfaction and optimisation problems, on 2 datasets from the
literature and exercises from a CP course.

2 Background

This section formalizes some fundamental concepts needed for our methodology.

2.1 Constraint Programming
CP is a paradigm for modelling and solving combinatorial problems, by declaratively stating
decision variables, their possible values (domains), the constraints that express the relation-
ships between these variables, as well as potentially an objective function to optimise. We
now formalize these elements for both satisfaction and optimisation problems.

Constraint Satisfaction Problems

A CSP can be formally defined as a tuple (X, D, C), where:
X = {x1, x2, . . . , xn} is a set of n decision variables.
D = {D1, D2, . . . , Dn} represents the domains of these variables, where each Di is a
subset of Z and specifies the allowable values for the decision variable xi.
C = {C1, C2, . . . , Cm} is a set of m constraints, where each constraint Cj includes tuples
of allowed values for a subset of the decision variables, formally Cj ⊆ Dj1×Dj2× . . .×Djk

for some subset {xj1, xj2, . . . , xjk} ⊆ X.

Let sol(C) denote the set of all solutions to a CSP. An assignment a = {x1 = v1, x2 =
v2, . . . , xn = vn} is in sol(C) if each vi ∈ Di and if all constraints in C are satisfied, i.e.,
(vj1, vj2, . . . , vjk) ∈ Cj for each j ∈ {1, 2, . . . , m}.

Constraint Optimisation Problems

A COP extends a CSP by incorporating an objective function f that needs to be minimized
or maximized. Formally, a COP is defined as a tuple (X, D, C, f), where f :

∏n
i=1 Di →

R represents the objective function to be optimised. An optimal solution to a COP is
an assignment a, such that a ∈ sol(C), and a optimises the objective function f . For
maximization, f(a) ≥ f(b), for all b ∈ sol(C). For minimization, the inequality is reversed.

2.2 Large Language Models
Large Language Models (LLMs) are deep learning architectures with billions of parameters,
based on the Transformer [54, 2]. They are extensively trained on diverse textual data,
which allows them to learn and produce complex language patterns [30]. During inference,
LLMs generate text by predicting the next token in a sequence, based on the previous tokens.
Given an input text (or prompt) p, they produce a sequence of w tokens as follows:

LLM(p) = (x1, x2, . . . , xw), where xt+1 = arg maxxt+1 P (xt+1|p, x≤t) (1)

Here, x≤t denotes the sequence of tokens generated up to time step t, for all t ∈
{0, 1, ..., w − 1}. P (xt+1|p, x≤t) is the conditional probability of token xt+1 given the initial
prompt p concatenated with the preceding tokens x≤t. Also, x≤0 is the empty sequence

CP 2024

20:4 Constraint Modelling with LLMs Using In-Context Learning

and x1 is the first generated token. The sequence generation process terminates when a
predefined stop token is generated or when the maximum context length of the LLM is
reached. In this work, we utilize greedy decoding for LLMs and assume the transformation
of text into a token sequence and vice versa is done automatically.

In-Context Learning

In-Context Learning (ICL) received significant attention with the introduction of GPT-3 [4].
As a learning paradigm, it enables LLMs to adapt to new tasks at inference time by including
examples directly in their input prompts [14, 28, 59]. This capability allows these models to
generate responses that are contextually aligned without requiring retraining.

Formally, ICL specifies an ordered set E of k input-output pairs, denoted as E =
{(ij , oj)}k

j=1. During inference, the examples (or shots) in E are inserted before a new input
to influence the model’s output towards the expected task-oriented response. This can be
represented as LLM(E ⊕ inew) ≈ onew, where onew is the expected response for the input
inew based on the patterns outlined by the in-context examples E.

Retrieval Augmented ICL

A challenge in ICL is how to choose the in-context examples, with various studies on how
to select [33, 61, 57, 65, 32], order [36, 34, 60], or formulate [58, 20, 26, 38] them. Some
works used a predefined static set of examples [58], while others employed a more dynamic
approach by selecting them from a database at inference time [63]. The latter, referred to as
retrieval-augmented ICL (RAICL), aims to specifically adapt the context to each new input.
To implement RAICL, we define a retrieval function R that selects the in-context examples
E as follows:

E = R(inew, S, k) (2)

where inew is a text input, and S = {(ij , oj)}n
j=1 is the database of examples that the

retrieval function will choose from, with n ≥ k and thus E ⊆ S. Various strategies – i.e.
implementations of the retrieval function R – can be utilised for dynamically selecting
in-context examples. They are typically relevance-based metrics with respect to inew. We
describe some in 3.4.

3 Methodology

We now formalize the framework of our study; a baseline solution generation method, the
proposed modular pipeline to produce an executable CP model, and the RAICL strategies.

3.1 Problem Formulation
The objective is to create a system that solves constraint problems given a natural language
description PNL. More formally:
Input: A natural language description of a constraint problem PNL, from which decision

variables, constraints, and potentially an objective function must be inferred.
Output: A valid solution or assignment a of values to the decision variables, satisfying all

constraints and optimising the objective function if specified, as described in 2.1.

K. Michailidis, D. Tsouros, and T. Guns 20:5

The methods to derive a from PNL will be explored through different approaches. Firstly,
we will consider the LLMs as constraint problem solvers, where they generate reasoning
and ultimately the solution. More fundamentally, we will prompt LLMs to produce solvable
CP models, through optional intermediate representations, and use a solver to compute the
solution. The steps and pathways that we will explore are visible in Figure 1.

Problem Description Solution

Formal CP ModelBlueprint ModelTagged Entities CP Solver

Figure 1 The various pathways for solving constraint problems: direct LLM-based solving
(LLMsol), or solvable model generation (LLMCP), optionally including entity tagging (NER) and
blueprints (LLMBM) as intermediate representations.

3.2 LLMs as CP Solvers
As a baseline method, we investigate the use of LLMs to directly generate the solution from
the natural language problem description PNL of a constraint problem. This approach is
based on Chain-of-Thought (CoT) techniques, where the model is prompted to produce
a sequence of reasoning steps towards solving a given arithmetic or symbolic reasoning
problem [58]. The solution generation process is formalized as follows:

â = LLM(E ⊕ PNL), where E = R(PNL, SNL−CoT , k) (3)

Here, LLM represents the large language model as defined in (1), E is the set of in-
context examples retrieved from the full examples database SNL−CoT , and R is the retrieval
function (2). In SNL−CoT , each ij is a natural language description of a constraint problem
and oj is its CoT reasoning that ends with the solution. The input to the LLM is the
concatenation of the in-context examples E with the textual description of the problem PNL,
and the output is the generated reasoning sequence â. The final solution a is then extracted
from the end of this generated sequence.

3.3 LLMs as CP Modellers
Recognizing the limitations of LLMs in performing arithmetic and logical computations [17],
some recent works shifted towards using them to generate formal models or programs [19, 52,
23, 1]. Inspired by these studies, we introduce an additional step in which the LLM is tasked
with generating a formal CP model PCP from the given constraint problem description PNL.
Our methodology requires that PCP is formatted to fit a predefined CP solver or modelling
framework. We define a two-step model-and-solve process as follows:
1. Model Generation:

PCP = LLM(E ⊕ PNL), where E = R(PNL, SNL−CP , k) (4)

The only difference with Equation 3 is the content of the database SNL−CP . Here, each ij

is a constraint problem description in natural language and oj is its corresponding formal
CP model, formatted according to the predefined CP solver or modelling framework. An
example of a CP model can be seen in Figure 2, bottom right.

CP 2024

20:6 Constraint Modelling with LLMs Using In-Context Learning

2. Model Solution:

a = M(PCP) (5)

M represents the predefined off-the-shelf CP solver or modelling framework that computes
the solution a from the generated formal model PCP .

3.3.1 Blueprint Model Generation
Transforming textual descriptions directly into formal runnable CP models presents a complex
challenge. It could be seen as involving two separate non-trivial operations: identifying
elements of the constraint problem and generating solver-compatible output. We propose to
use different LLM calls and examples for each of the two. We refer to the intermediary result
as the blueprint model (PBM). It outlines in plain text the decision variables, constraints
and objective function (if applicable) based on the problem description, each of them in both
natural language and mathematical notation. An example is provided in Figure 2, bottom
left.

We first prompt an LLM to transform the problem description PNL into a blueprint model
PBM . Then, we use the description combined with the blueprint to generate the formal CP
model. This approach aims to decompose the complex task of direct model generation and
also provides an additional interpretable layer. We define this pipeline as follows:
1. Blueprint Generation:

PBM = LLM(E ⊕ PNL), where E = R(PNL, SNL−BM , k) (6)

In SNL−BM , each ij is a constraint problem description in natural language and oj is its
corresponding blueprint model.

2. Model Generation:

PCP = LLM(E ⊕ PNL ⊕ PBM), where E = R(PNL ⊕ PBM , SNL−BM−CP , k) (7)

In SNL−BM−CP , each ij is the concatenation of a constraint problem description with
its blueprint model and oj is their corresponding formal CP model.

3. Model Solution: Same as (5).

3.3.2 Named Entity Recognition
As part of the first subtask of the NL4Opt competition, there have been numerous approaches
for accurately tagging and identifying linear optimisation entities from textual descriptions [56,
41, 13]. Based on these works, we integrate Named Entity Recognition (NER) into our
methodology to systematically identify and extract decision variables, parameters, constraints,
and objective keywords from natural language descriptions PNL of constraint problems.
Parameters are fixed coefficients or constants in the formal definition of the CP model. For
example, in Figure 2 the numeric values in the description are parameters of the problem.

This integration of entity tags aims to improve the available information for constructing
blueprints and formal CP models as follows:
1. Entity Tagging: PET = NER(PNL), where NER is an automated system designed to

detect and label specific entities relevant to CP problems within the text of PNL. This
step could also be performed with an LLM, but we chose NER4Opt as a specialized
framework trained for entity tagging in an optimisation context [11].

K. Michailidis, D. Tsouros, and T. Guns 20:7

A retired professor wants to invest up to $50000 in the airline and railway industries. Each dollar
invested in the airline industry yields a $0.30 profit and each dollar invested in the railway industry
yields a $0.10 profit. A minimum of $10000 must be invested in the railway industry and at least
25% of all money invested must be in the airline industry. How to maximize the professor’s profit?

Decision Variables:
Amount invested in the airline industry:
Airline

Amount invested in the railway industry:
Railway

Constraints:
Total investment should not exceed 50000
dollars: Airline + Railway <= 50000
Minimum investment of 10000 dollars in
the railway industry: Railway >= 10000
At least 25% of all money invested must
be in the airline industry:
Airline >= 0.25 × (Airline + Railway)

Objective:
Maximize profit ($0.30 profit per dollar
invested in the airline, $0.10 profit per
dollar invested in the railway industry):
0.30 × Airline + 0.10 × Railway

1 from cpmpy import Model , intvar
2

3 # Decision Variables
4 Airline = intvar (0, 1 _000_000)
5 Railway = intvar (0, 1 _000_000)
6

7 # Constraints
8 m = Model ()
9

10 # Total investment
11 m += Airline + Railway <= 50000
12 # Minimum investment in railway
13 m += Railway >= 10000
14 # Minimum investment in airline
15 m += Airline >= 0.25 * (Airline + Railway)
16

17 # Objective : Maximize profit
18 m. maximize (0.3 * Airline + 0.1 * Railway)
19

20 m. solve ()

Figure 2 An example of textual description (top), blueprint (bottom left), and formal CP model
written with the CPMpy library (bottom right) for the investment problem from NL4Opt.

2. Blueprint Generation:

PBM = LLM(E ⊕ PNL ⊕ PET), where E = R(PNL ⊕ PET , SNL−ET −BM , k) (8)

In SNL−ET −BM , each ij is the concatenation of a constraint problem description with a
textual representation of its tagged entities and oj their corresponding blueprint model.

3. Model Generation:

PCP = LLM(E ⊕ PNL ⊕ PET ⊕ PBM),
where E = R(PNL ⊕ PET ⊕ PBM , SNL−ET −BM−CP , k) (9)

Here, in SNL−ET −BM−CP each ij is a constraint problem description concatenated with
its tagged entities and blueprint model, and oj is its corresponding CP model.

4. Model Solution: Same as (5).

3.4 In-Context Examples Selection
A significant component of the presented pipelines is the retrieval function R, as it is
responsible for the dynamic selection of in-context examples from the full database S (2.2).

Static & Random Strategies

As a baseline method, we can employ a traditional approach where the same predefined
examples are selected for any input [58]. These examples are selected in advance and remain
unchanged, providing a consistent basis for evaluation. In our research, we retrieve the first
k example pairs from S, formalized as:

CP 2024

20:8 Constraint Modelling with LLMs Using In-Context Learning

R(inew, S, k) = {Sj | j ∈ {1, 2, . . . , k}} (10)

where Sj represents the j-th example tuple in the database.
To provide a more stochastic view, we will also consider random selection where we use

the same selection strategy but on a randomly shuffled database.

Semantic Similarity (SIM)

The first retrieval-augmented strategy that we will utilize selects examples that are semantic-
ally close to the input [6]. As it provides context that is relevant to the current query, it
has been shown to improve ICL on various tasks [33]. We define semantic similarity Sim

between two texts using the cosine similarity between their vector embeddings:

Sim(text1, text2) = v⃗(text1) · v⃗(text2)
∥v⃗(text1)∥∥v⃗(text2)∥ (11)

where v⃗(text) is the vector embedding of a text. Vector embeddings are numerical represent-
ations of tokens that capture semantic meanings, often derived from the embedding layers of
LLMs. For a new input inew, we first compute its embedding vector and then the retrieval
function R selects the k most semantically similar examples from S as follows:

R(inew, S, k) = {(Sorted(inew, S))j | j ∈ {1, 2, . . . , k}}, (12)
Sorted(inew, S) = {Sj | Sim(inew, ij) ≥ Sim(inew, ij+1) ∀j ∈ {1, 2, . . . , n− 1}}, (13)

where ij is the input element of the j-th example pair (ij , oj) in S (2.2).

Maximal Marginal Relevance (MMR)

To add more information and variety in the context, we will also consider the MMR
metric [5, 63]. It selects examples that balance relevance to the input with diversity within
the chosen set. This balance is achieved by selecting an example Sj that maximizes both its
relevance to the input and its difference from previously selected examples:

arg maxSj∈S\T

[
λ · Sim(inew, ij)− (1− λ) · max

St∈T
Sim(ij , it)

]
(14)

Here, λ is the hyperparameter that controls diversity, Sim is the similarity measure (11),
S is the total set of examples, and T is the set of already selected examples. The retrieval
function R will first select the most similar example from the database S, and select the
remaining k − 1 according to (14).

Last-Similar Variations

We also introduce variations of example selection strategies, inspired by the recency effect [10,
53, 64]. This suggests that the content positioned towards the end of an input sequence
has a more significant influence on the output of an LLM [34]. Based on this insight, the
next proposed strategies involve placing the most semantically similar example last in the
sequence to exploit this recency bias.

Reversed Semantic Similarity (R-SIM): The retrieved examples based on the
Semantic Similarity metric are reordered so that the most relevant to the current problem
is last. This was also explored in Liu et al. [33].
Reversed Maximal Marginal Relevance (R-MMR): Similarly with R-SIM, the
original MMR order is reversed, so that the most similar example is placed last.
Last-Similar, Rest-Random (LSRR): Places the most similar example from S last,
and the rest are selected randomly.

K. Michailidis, D. Tsouros, and T. Guns 20:9

4 Experiments

This section outlines our experimental framework, devised to evaluate the effectiveness of
using LLMs to convert natural language descriptions into formal CP models. We seek to
answer the following research questions:
Q1: How does each intermediate representation impact the efficiency of LLMs in generating

CP models, and how do they compare to direct solution generation from the LLMs?
Q2: How do different in-context example selection strategies influence the correctness of the

generated CP models and their solutions?
Q3: How many in-context examples should be used, depending on the type of the problems?
Q4: How effectively can LLMs with RAICL generate CP models for a small dataset of

problems that human students learn to solve?

4.1 Setup & Datasets
For our experimental setup, we utilized Python 3.9 along with several specialized tools and
libraries2. For entity tagging, we employed NER4Opt [11] and for CP modelling we used
CPMpy [21]. To implement and test RAICL strategies, we used LangChain [7] and Chroma
DB3, and the OpenAI API4 was used for accessing gpt-3.5-turbo-0125 and vector embeddings.
Our framework is evaluated on the following datasets:

NL4Opt [47]: This dataset includes NL descriptions of linear optimisation problems,
with 289 test and 713 training instances, such as in Figure 2. We use the test instances
for evaluation, and the training instances to compose the examples database S.
Logic Grid Puzzles (LGPs) [39]: Consists of 50 train and 100 test instances featuring
logical puzzles described with clues and entities; these can be expressed as CSPs. As
above, we use the test instances for evaluation and the training instances for S.
Mixed CP Dataset: Comprises 18 diverse CP problems (a mix of 13 CSPs and 5 COPs)
drawn from a university-level CP modelling course, arranged by increasing complexity.
Due to its small size, we use a leave-one-out strategy for evaluation, testing each problem
individually while utilizing the rest for S.

To facilitate both RAICL and evaluation, we extended the datasets by generating entity
tags, blueprint models and formal CPMpy models. This generation process is described in
Section 4.2. For the mixed CP dataset, we manually curated and assessed all the blueprint
and formal CP models. For more information regarding these datasets, such as the average
number of decision variables, constraints, and more, refer to Appendix E.

4.2 Data Annotations Generation
For NL4Opt and LGPs, we utilized NER4Opt [11] to generate the entity tags for all instances
(3.3.2). Then, we created detailed CoT-including solutions for 4 instances to evaluate the
baseline of our methodology (3.2). Finally, we manually created the blueprint and formal
CP models of their first six instances, ensuring clarity and correctness. For generating the
remaining ground-truth blueprint and CP models, we employed gpt-4-0125-preview [42] with
static ICL using the manually produced ones. We ensured the correctness of the generated

2 The code is available at https://github.com/kostis-init/CP-LLMs-ICL.
3 https://docs.trychroma.com/
4 https://platform.openai.com/docs/api-reference

CP 2024

https://github.com/kostis-init/CP-LLMs-ICL
https://docs.trychroma.com/
https://platform.openai.com/docs/api-reference

20:10 Constraint Modelling with LLMs Using In-Context Learning

CP models – correcting them when needed – as follows: For NL4Opt, we asserted that
the generated models are equivalent (18) and produce the same solutions with the already
existing canonical formulations. This is a deterministic procedure, as the linear constraints
can be automatically transformed into a CP model. For LGPs, we validated that the solutions
produced by the generated models match the ground-truth solutions already present in the
dataset.

4.3 Evaluation
Defining a unified evaluation framework for modelling varying CP problem types from textual
descriptions is not trivial. Evaluations at either the solution, constraint, or model level must
include some form of mapping between the decision variables (and/or their values) of the
predictions and those of the ground truth. We implemented a process that identifies the best
match for each decision variable by first considering exact matches, then prefixes, substrings,
and finally, a composite textual and numerical similarity metric.

Additionally, LLMs generate executable CP models that may contain syntax errors5.
Therefore, we also track and report the number of models containing at least one error,
denoted as #Err in the results. To ensure precise evaluation, we adopt a strict criterion: if
a generated CP model cannot be executed due to syntax errors, or if the decision variables
of the predicted model cannot all be mapped to those of the ground truth models, then the
instance is considered incorrect on all metrics.

We now present three separate accuracy measures, each focused on different aspects.

Solution Accuracy

The solution accuracy metric evaluates the correctness of the solutions produced by the
generated CP models compared to the ground truth solutions. A solution is deemed correct
if it satisfies all constraints and, if applicable, achieves the optimal objective value as defined
in the ground truth CP model. We formalize the solution accuracy as follows:

accsol =
∑N

i=1 valid(ai, truei)
N

(15)

where N is the total number of test instances, ai represents the solution derived from the
LLM or the predicted CP model predi; valid(ai, truei) equals 1 if ai ∈ sol(Ctruei

), and for
COPs ftruei

(ai) must be optimal. We do not compute all solutions, but simply check whether
ai is a satisfying solution and optionally whether its objective value equals the optimal value.

Declaration Accuracy

As part of the evaluation metrics used in the NL4Opt competition [47], declaration accuracy
measures the percentage of individual declarations (constraints and objectives) predicted
accurately with respect to the ground truth declarations. It is calculated using the formula:

accdecl = 1−
∑N

i=1 min(FPi + δi, Qi)∑N
i=1 Qi

(16)

where N is the total number of test instances and Qi is the total number of declarations,
in the i-th ground-truth model. FPi denotes the number of false positives, and δ is the
difference in the number of constraints between the ground-truth model and the predicted
model, only counted when the predicted model has fewer constraints.

5 An example is demonstrated in Appendix C.2

K. Michailidis, D. Tsouros, and T. Guns 20:11

To calculate FPi, we count all the declarations of the predicted model for which an
equivalent declaration was not found in the ground-truth model. Two constraints from
different models are considered equivalent if they imply each other for the selected decision
variable mapping. For verifying the correctness of a linear objective function, equivalence is
established by asserting that the coefficients of the mapped variables are identical.

Model Accuracy

Model accuracy assesses the semantic correctness of the generated CP models relative to
the ground truth models. It quantifies how well the entire set of constraints and the logical
structure in a predicted model capture the problem as defined in the ground truth. This
metric is defined as:

accmodel =
∑N

i=1 equiv(predi, truei)
N

(17)

where equiv(predi, truei) equals 1 if the predicted model predi is logically equivalent to
the ground truth model truei for a specified mapping of variables. Logical equivalence is
confirmed if the constraints of the predicted model imply and are implied by the constraints
of the ground truth model, ensuring a bidirectional logical consistency:

equiv(pred, true)⇔ ((
∧

pred =⇒
∧

true) ∧ (
∧

true =⇒
∧

pred)) (18)

This verifies that the complete set of constraints in one model logically corresponds to
those in the other, confirming their semantic equivalence. The equivalence algorithm is
described in Appendix B.

4.4 Results
This section details the results and findings from our experiments with the proposed methods
and systematically explores the proposed research questions. We do not present any 0-shot
attempts, primarily due to the infeasibility of producing runnable CPMpy models without
examples in the prompt context6. For the core experiments, we employed gpt-3.5-turbo-0125
with a temperature value of 0. Additional results on other LLMs are available in Appendix A.

4.4.1 Intermediate Representations
An incremental analysis is necessary to understand the effect of each intermediate component
in our pipeline. As an initial baseline, we employ static (3.4) in-context examples selection,
with k = 4 examples in the context. The results are shown in Table 1.

Using LLMs as CP modellers, instead of direct combinatorial problem-solvers, proved to
be essential for obtaining substantial performance across the datasets. Even if the LLM is
instructed to solve the problem with 4 pairs of descriptions and CoT solutions in the context,
the direct solving approach results in significantly lower solution accuracy.

Interestingly, appending NER in the pipeline of the LGP instances nearly doubled the
number of errors and dropped accuracy compared to direct CP modelling. Our qualitative
analysis showed that decision variables were often misclassified as parameters, leading to
inconsistencies and irrelevant context at subsequent steps in the pipeline [48]. Conversely, in
the NL4Opt instances, where NER tagging was more accurate, the performance improvements
were comparable to those achieved with BM. The inclusion of BM was slightly more beneficial

6 An example with errors is demonstrated in Appendix C.1

CP 2024

20:12 Constraint Modelling with LLMs Using In-Context Learning

Table 1 Comparison of our methods for both NL4Opt (#289 test instances) and LGPs (#100
test instances). Configuration: gpt-3.5-turbo-0125, 4-shot static in-context examples selection.

Dataset Method #Err Accuracy (%)
Solution Declaration Model

NL4Opt

Direct - 11.46 - -
CP 7 81.31 87.81 79.24
+ BM 8 84.43 89.93 82.01
+ NER 8 85.47 88.60 80.62

LGPs

Direct - 9.36 - -
CP 11 57.00 80.45 55.00
+ BM 18 58.00 70.69 58.00
+ NER 20 54.00 67.77 50.00

than directly generating CP models, but it produced a larger number of errors in the LGP
dataset. This can be attributed to the larger structure of the intermediate models in LGPs7.
As such, LGP blueprints are prone to be generated with errors, which would introduce
irrelevant context in the LLMs, similar to NER.

Comparing the results of the two datasets, we can see a discrepancy that can be attributed
to their different nature and modelling difficulties. On the one hand, NL4Opt contains simple
linear optimisation problems with around 2 decision variables and 3 constraints on average per
instance. LGPs, in contrast, include 12 decision variables and 4 clues on average, including
complex constraints such as all different and pairwise exclusive disjunction.

Overall, the best approach for both datasets is the blueprint and CP model generation,
thus we will utilize this to investigate RAICL in the following experiments.

4.4.2 Examples Selection Strategy
To understand the impact of RAICL and different in-context example selection strategies,
we evaluated the presented methods with a fixed number of k = 4 in-context examples. The
results are shown in Table 2.

In both datasets, the dynamic retrieval algorithms consistently outperform static and
random selection methods, underlining the importance of semantic relevance in the prompt
context.

As proposed, applying the recency effect by placing the most similar example last in
the context considerably improves accuracy. This is mostly evident in the large accuracy
difference between the random and LSRR methods across both datasets; and additionally
between the reversed retrieval methods in the LGPs with direct CP modelling. In this
configuration, LSRR also outperforms MMR and R-MMR, which suggests that adding even
more diversity further improves performance in LGPs.

In the NL4Opt dataset, the dynamic methods showed relatively similar performance, with
all of them achieving higher accuracies than the static and random strategies. Declaration
accuracy in this dataset is on par with the LP-specialized top-ranked approaches in the
NL4Opt competition8 [18]. In LGPs, employing retrieval-augmented ICL not only improved
accuracy over all metrics but also significantly diminished the number of errors. This
showcases that relevance in the context is important for generating valid and runnable code.

7 An example is available in Appendix F
8 https://nl4opt.github.io/

https://nl4opt.github.io/

K. Michailidis, D. Tsouros, and T. Guns 20:13

Table 2 Comparison of example selection strategies for NL4Opt and LGPs datasets, gpt-3.5-
turbo-0125, 4-shot ICL, λ = 0.5.

Dataset Method
CP BM + CP

#Err Accuracy (%) #Err Accuracy (%)
Sol. Decl. Mod. Sol. Decl. Mod.

NL4Opt

Static 7 81.31 87.81 79.24 8 84.43 89.93 82.01
Random 11 77.16 85.60 75.09 14 78.55 83.13 77.16
SIM 8 85.12 87.72 80.28 5 86.16 90.02 84.08
R-SIM 11 83.39 88.16 80.62 11 85.47 89.31 83.04
MMR 8 84.08 87.99 80.97 7 86.51 90.81 85.47
R-MMR 6 83.74 87.10 80.62 8 87.54 89.93 84.78
LSRR 12 83.74 88.34 80.62 11 83.39 88.25 82.70

LGPs

Static 11 57.00 80.45 55.00 18 58.00 70.69 58.00
Random 14 66.00 76.75 62.00 8 59.00 81.51 52.00
SIM 9 68.00 85.34 66.00 9 66.00 81.24 63.00
R-SIM 4 72.00 89.83 69.00 19 61.00 73.18 58.00
MMR 10 66.00 83.09 64.00 7 63.00 83.75 58.00
R-MMR 6 74.00 87.98 71.00 7 64.00 81.77 61.00
LSRR 4 76.00 89.96 72.00 5 75.00 86.39 70.00

The overall results indicate that RAICL outperforms static selection in generating formal
CP models by a large margin for both datasets. Additionally, the results of R-MMR and
LSRR highlight the importance of both the last in-context example and the context diversity
in the prompt.

4.4.3 Number of In-Context Examples

The results shown in Figure 3, illustrate how the number of in-context examples influences
the model and solution accuracy in NL4Opt and LGPs, both for including blueprint model
generation and not. We selected R-MMR as a retrieval strategy as it demonstrated consistently
fewer errors and high accuracy across the two datasets.

2 4 8 12 16
Number of Shots

50

55

60

65

70

75

80

85

M
od

el
 A

cc
ur

ac
y

(%
)

NL4Opt CP
NL4Opt BM+CP
LGPs CP
LGPs BM+CP

(a) Model accuracy changes with the number of
shots.

2 4 8 12 16
Number of Shots

55

60

65

70

75

80

85

So
lu

tio
n

Ac
cu

ra
cy

 (%
)

NL4Opt CP
NL4Opt BM+CP
LGPs CP
LGPs BM+CP

(b) Solution accuracy changes with the number of
shots.

Figure 3 Comparison of model and solution accuracies with a varying number of in-context
examples. Config: gpt-3.5-turbo-0125 R-MMR (λ = 0.5).

CP 2024

20:14 Constraint Modelling with LLMs Using In-Context Learning

In the NL4Opt dataset, we observe a progressive gain in accuracy metrics as the number
of in-context examples increases, reaching an optimal performance at 12 shots when not
including BM. However, beyond this point, a further increase shows a slight performance
degradation. Including the blueprint model caused this decline to start earlier, at 4–8 shots,
hinting towards a ceiling effect on the size of the prompt context. The LGPs dataset presents
a similar picture but with the BM inclusion consistently underperforming in comparison
to the direct CP model generation. As in NL4Opt, including blueprint models peaks at
a smaller k value (4) than when directly generating the CP model (peaking at k = 8). It
should be noted that with blueprint models, the examples that generate the CP model are
much larger as they also contain these blueprints.

Based on these observations, a balance is needed between providing adequate context
and avoiding information overload, which can influence the quality of the provided answers.
The number of in-context examples should also be adapted according to their size so that
the prompt does not become overly dense. Notably, the LGPs with the blueprint model
generation could not accommodate more than 8 in-context examples due to their length and
the limitations imposed by the 16k context window of gpt-3.5-turbo-0125.

4.4.4 Mixed CP Dataset
We complete this section by assessing the potential of LLMs to generate correct CP models
from a dataset with diverse and more complex constraint problems. We focused exclusively on
solution accuracy since there can be multiple different CP models for such complex problems,
which may involve varying selections of decision and auxiliary variables. As a result, the
variable mapping required to use the other metrics proved impractical.

For these problems, we included additional instructions in the problem descriptions,
specifying how solutions should be printed and formatted by the generated CP model code.
This allowed us to directly validate this output with the ground truth model, ensuring that
the solutions can be assessed without needing to map decision variables. Also, we chose
R-SIM as the selected retrieval-augmented technique to balance the diversity of the dataset.
The results are shown in Table 3, with supplementary results in Appendix D.

While adding more in-context examples improves the accuracy of the produced solutions,
blueprint inclusion degrades performance. This suggests that its integration might be less
beneficial for complex problems, in which the generated blueprints are even more likely to
contain errors. Additionally, using retrieval-augmented R-SIM does not seem to improve
much over static selection. Due to the small dataset size, static and R-SIM often share some
of the same examples. This limited size and high diversity of the dataset proves challenging
for LLMs, with only a bit over half of the exercises solved.

Table 3 Solution Accuracy across different numbers of in-context examples for both static and
R-SIM retrieval strategies in the mixed CP dataset. LLM: gpt-3.5-turbo-0125.

#Shots
Solution Accuracy (%)

Static R-SIM
CP BM + CP CP BM + CP

2 33.33 16.67 50.00 38.89
4 50.00 50.00 55.56 38.89
8 50.00 44.44 55.56 44.44
12 55.56 50.00 61.11 44.44
16 50.00 - 61.11 -

K. Michailidis, D. Tsouros, and T. Guns 20:15

As these problems are based on a university course, we arranged them in increasing
difficulty based on the exercise session they were covered in. Figure 4 shows that as the
difficulty of the problems increases, there is also an analogous decrease in accuracy, pointing
to the challenge LLMs face when required to produce CP models for complex problems.

Ex. Session 1 Ex. Session 2 Ex. Session 3 Ex. Session 4
Exercise Sessions

0
10
20
30
40
50
60
70
80

Co
rre

ct
 S

ol
ut

io
ns

 (%
)

CP
BM + CP

Exercise sessions:
1. 6 problems: Five Floors, Bank Card,

Guards and Apples, Magic Square,
Thick as Thieves, Money Change.

2. 5 problems: Color Simple, Movie
Scheduling, Subset Sum, Subsets 100,
Maximal Independent Sets.

3. 4 problems: Exodus, People in a Room,
Kidney Exchange, Farmer and Cows.

4. 3 problems: Grocery, Climbing Stairs,
Hardy 1729.

Figure 4 Solution accuracy per session when increasing difficulty. Config: R-SIM, 12-shot ICL.

5 Conclusion & Future Work

In this paper, we explored the potential of leveraging pre-trained Large Language Models to
model CP problems from textual problem descriptions. We introduced and systematically
evaluated LLM-based approaches, investigating the use of intermediate representations with
multiple prompting steps, to formulate an executable CP model specification. We utilized
in-context learning and retrieval techniques for the in-context examples. As the use of LLMs
for modelling constraint problems has not been explored in much depth in the literature, we
also focused on both augmenting existing datasets and defining evaluation measures. We
augmented the NL4Opt and LGP datasets, with intermediate representations and formal
model specifications in CPMpy, and created a small course-based diverse CP dataset. We
presented an evaluation framework with precise metrics for the correctness of solutions, the
semantic equivalence of the individual constraints, as well as the overall constraint model.

Our experiments demonstrated how challenging it is for LLMs to solve combinatorial
problems directly. However, using them to write constraint models was significantly more
successful. Including NER, as proposed in the NL4OPT challenge, did not always improve
the quality of the final models. On the other hand, using a human-interpretable blueprint
modelling before the executable model generation was beneficial only for the simple linear
optimisation problems of NL4Opt. We observed that such intermediate steps can introduce
additional errors, due to incorrect tagging and irrelevant prompt context. What mostly
improved the performance of LLMs is: a) retrieval-augmented selection of the in-context
examples, based on a balance of relevance to the current input and context diversity, and
b) increasing the number of such examples up to a certain threshold per dataset. We also
demonstrated that the small mixed CP dataset was a harder challenge, because of both the
complexity of the problems and the small amount of available CP problems to effectively
utilize RAICL, highlighting the need for creating more such datasets.

Further advancements towards the development and evaluation of CP modelling assistants
require more high-quality NL-CP datasets, including pairs of problem descriptions and their
formal CP model, potentially inspired by educational material or examples from modelling
systems. This could also allow going beyond in-context learning and towards supervised

CP 2024

20:16 Constraint Modelling with LLMs Using In-Context Learning

fine-tuning of LLMs. In addition, addressing larger (parameterized) problems that include
external data files is an interesting challenge. Finally, as the generated models will likely have
occasional errors, the integration with other (code-specialized) LLMs, debugging techniques,
or example-based constraint acquisition techniques holds much promise.

References

1 Boris Almonacid. Towards an automatic optimisation model generator assisted with generative
pre-trained transformer. CoRR, abs/2305.05811(arXiv:2305.05811), 2023. doi:10.48550/
arXiv.2305.05811.

2 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. doi:10.48550/arXiv.1409.0473.

3 Christian Bessiere, Clément Carbonnel, Anton Dries, Emmanuel Hebrard, George Katsirelos,
Nadjib Lazaar, Nina Narodytska, Claude-Guy Quimper, Kostas Stergiou, Dimosthenis C.
Tsouros, and Toby Walsh. Learning constraints through partial queries. Artif. Intell.,
319:103896, 2023. doi:10.1016/j.artint.2023.103896.

4 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. URL: https://proceedings.
neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

5 Jaime G. Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In W. Bruce Croft, Alistair Moffat, C. J.
van Rijsbergen, Ross Wilkinson, and Justin Zobel, editors, SIGIR ’98: Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, August 24-28 1998, Melbourne, Australia, SIGIR ’98, pages 335–336, New York, NY,
USA, 1998. ACM. doi:10.1145/290941.291025.

6 Dhivya Chandrasekaran and Vijay Mago. Evolution of semantic similarity - A survey. ACM
Comput. Surv., 54(2):41:1–41:37, February 2022. doi:10.1145/3440755.

7 Harrison Chase. Langchain, October 2022. URL: https://github.com/langchain-ai/
langchain.

8 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374,
2021. doi:10.48550/arXiv.2107.03374.

https://doi.org/10.48550/arXiv.2305.05811
https://doi.org/10.48550/arXiv.2305.05811
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.1016/j.artint.2023.103896
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/3440755
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://doi.org/10.48550/arXiv.2107.03374

K. Michailidis, D. Tsouros, and T. Guns 20:17

9 Jens Claes, Bart Bogaerts, Rocsildes Canoy, Emilio Gamba, and Tias Guns. Zebratutor:
Explaining how to solve logic grid puzzles. In Katrien Beuls, Bart Bogaerts, Gianluca Bontempi,
Pierre Geurts, Nick Harley, Bertrand Lebichot, Tom Lenaerts, Gilles Louppe, and Paul Van
Eecke, editors, Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC
2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), Brussels,
Belgium, November 6-8, 2019, volume 2491 of CEUR Workshop Proceedings. CEUR-WS.org,
2019. URL: https://ceur-ws.org/Vol-2491/demo96.pdf.

10 Cathleen Cortis Mack, Caterina Cinel, Nigel Davies, Michael Harding, and Geoff Ward. Serial
position, output order, and list length effects for words presented on smartphones over very
long intervals. Journal of Memory and Language, 97:61–80, 2017. doi:10.1016/j.jml.2017.
07.009.

11 Parag Pravin Dakle, Serdar Kadioglu, Karthik Uppuluri, Regina Politi, Preethi Raghavan,
SaiKrishna Rallabandi, and Ravisutha Srinivasamurthy. Ner4opt: Named entity recognition
for optimization modelling from natural language. In André A. Ciré, editor, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research - 20th International
Conference, CPAIOR 2023, Nice, France, May 29 - June 1, 2023, Proceedings, volume
13884 of Lecture Notes in Computer Science, pages 299–319, Cham, 2023. Springer. doi:
10.1007/978-3-031-33271-5_20.

12 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,
and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi:10.18653/v1/n19-1423.

13 Xuan-Dung Doan. VTCC-NLP at nl4opt competition subtask 1: An ensemble pre-trained
language models for named entity recognition. CoRR, abs/2212.07219(arXiv:2212.07219),
2022. doi:10.48550/arXiv.2212.07219.

14 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun,
Jingjing Xu, Lei Li, and Zhifang Sui. A survey for in-context learning. CoRR,
abs/2301.00234(arXiv:2301.00234), 2023. doi:10.48550/arXiv.2301.00234.

15 Eugene C. Freuder. Progress towards the holy grail. Constraints An Int. J., 23(2):158–171,
2018. doi:10.1007/s10601-017-9275-0.

16 Eugene C. Freuder and Barry O’Sullivan. Grand challenges for constraint programming.
Constraints An Int. J., 19(2):150–162, 2014. doi:10.1007/s10601-013-9155-1.

17 Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and Julius Berner. Mathematical capabilities of
chatgpt. CoRR, abs/2301.13867, 2023. doi:10.48550/arXiv.2301.13867.

18 Neeraj Gangwar and Nickvash Kani. Highlighting named entities in input for auto-formulation
of optimization problems. In Catherine Dubois and Manfred Kerber, editors, Intelligent Com-
puter Mathematics - 16th International Conference, CICM 2023, Cambridge, UK, September
5-8, 2023, Proceedings, volume 14101 of Lecture Notes in Computer Science, pages 130–141.
Springer, Springer, 2023. doi:10.1007/978-3-031-42753-4_9.

19 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. PAL: program-aided language models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 10764–10799.
PMLR, PMLR, 2023. URL: https://proceedings.mlr.press/v202/gao23f.html.

20 Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith, and Luke Zettlemoyer. Demystifying
prompts in language models via perplexity estimation. In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Findings of the Association for Computational Linguistics: EMNLP 2023,
Singapore, December 6-10, 2023, pages 10136–10148, Singapore, December 2023. Association
for Computational Linguistics. doi:10.18653/v1/2023.findings-emnlp.679.

CP 2024

https://ceur-ws.org/Vol-2491/demo96.pdf
https://doi.org/10.1016/j.jml.2017.07.009
https://doi.org/10.1016/j.jml.2017.07.009
https://doi.org/10.1007/978-3-031-33271-5_20
https://doi.org/10.1007/978-3-031-33271-5_20
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2212.07219
https://doi.org/10.48550/arXiv.2301.00234
https://doi.org/10.1007/s10601-017-9275-0
https://doi.org/10.1007/s10601-013-9155-1
https://doi.org/10.48550/arXiv.2301.13867
https://doi.org/10.1007/978-3-031-42753-4_9
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.18653/v1/2023.findings-emnlp.679

20:18 Constraint Modelling with LLMs Using In-Context Learning

21 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.

22 Jianglong He, Mamatha N, Shiv Vignesh, Deepak Kumar, and Akshay Uppal. Linear
programming word problems formulation using ensemblecrf NER labeler and T5 text gen-
erator with data augmentations. CoRR, abs/2212.14657(arXiv:2212.14657), 2022. doi:
10.48550/arXiv.2212.14657.

23 Adam Ishay, Zhun Yang, and Joohyung Lee. Leveraging large language models to generate
answer set programs. In Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner, editors,
Proceedings of the 20th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023, KR ’23, pages 374–383, 2023.
doi:10.24963/kr.2023/37.

24 Elgun Jabrayilzade and Selma Tekir. Lgpsolver - solving logic grid puzzles automatically. In
Trevor Cohn, Yulan He, and Yang Liu, editors, Findings of the Association for Computational
Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1118–1123. Association for Computational Linguistics, 2020.
doi:10.18653/v1/2020.findings-emnlp.100.

25 Sanghwan Jang. Tag embedding and well-defined intermediate representation improve auto-
formulation of problem description. CoRR, abs/2212.03575(arXiv:2212.03575), 2022. doi:
10.48550/arXiv.2212.03575.

26 Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Taeuk Kim, Kang Min Yoo, and Sang-goo
Lee. Self-generated in-context learning: Leveraging auto-regressive language models as a
demonstration generator. CoRR, abs/2206.08082(arXiv:2206.08082), 2022. doi:10.48550/
arXiv.2206.08082.

27 Zeynep Kiziltan, Marco Lippi, and Paolo Torroni. Constraint detection in natural language
problem descriptions. In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, IJCAI’16, pages 744–750. IJCAI/AAAI Press, 2016. URL: http://www.ijcai.
org/Abstract/16/111.

28 Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y. Chan, Kory W. Mathewson, Mi-
chael Henry Tessler, Antonia Creswell, James L. McClelland, Jane Wang, and Felix Hill.
Can language models learn from explanations in context? In Yoav Goldberg, Zornitsa Koz-
areva, and Yue Zhang, editors, Findings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 537–563, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
doi:10.18653/v1/2022.findings-emnlp.38.

29 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 7871–7880. Association for Computational Linguistics, Association for Computational
Linguistics, 2020. doi:10.18653/v1/2020.acl-main.703.

30 Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong Wen. Pretrained language model for
text generation: A survey. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada,
19-27 August 2021, pages 4492–4499. ijcai.org, 2021. doi:10.24963/ijcai.2021/612.

31 Qingyang Li, Lele Zhang, and Vicky Mak-Hau. Synthesizing mixed-integer linear programming
models from natural language descriptions. doi:10.48550/arXiv.2311.15271[math].

32 Xiaonan Li and Xipeng Qiu. Finding support examples for in-context learning. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pages 6219–6235, Singa-
pore, December 2023. Association for Computational Linguistics. doi:10.18653/v1/2023.
findings-emnlp.411.

https://doi.org/10.48550/arXiv.2212.14657
https://doi.org/10.48550/arXiv.2212.14657
https://doi.org/10.24963/kr.2023/37
https://doi.org/10.18653/v1/2020.findings-emnlp.100
https://doi.org/10.48550/arXiv.2212.03575
https://doi.org/10.48550/arXiv.2212.03575
https://doi.org/10.48550/arXiv.2206.08082
https://doi.org/10.48550/arXiv.2206.08082
http://www.ijcai.org/Abstract/16/111
http://www.ijcai.org/Abstract/16/111
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.24963/ijcai.2021/612
https://doi.org/10.48550/arXiv.2311.15271 [math]
https://doi.org/10.18653/v1/2023.findings-emnlp.411
https://doi.org/10.18653/v1/2023.findings-emnlp.411

K. Michailidis, D. Tsouros, and T. Guns 20:19

33 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? In Eneko Agirre, Marianna Apidianaki,
and Ivan Vulic, editors, Proceedings of Deep Learning Inside Out: The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures, DeeLIO@ACL 2022,
Dublin, Ireland and Online, May 27, 2022, pages 100–114, Dublin, Ireland and Online, May
2022. Association for Computational Linguistics. doi:10.18653/v1/2022.deelio-1.10.

34 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Trans. Assoc.
Comput. Linguistics, 12:157–173, 2024. doi:10.1162/tacl_a_00638.

35 Michele Lombardi and Michela Milano. Boosting combinatorial problem modeling with
machine learning. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pages 5472–5478. ijcai.org, July 2018. doi:10.24963/ijcai.2018/772.

36 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 8086–8098, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi:10.18653/v1/2022.acl-long.556.

37 Kostis Michailidis, Dimos Tsouros, and Tias Guns. CP-LLMs-ICL. Software, swhId:
swh:1:dir:5e4383ad6c4329796c9f21c51bbff4882dca8271 (visited on 2024-08-16). URL:
https://github.com/kostis-init/CP-LLMs-ICL.

38 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi,
and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context
learning work? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 11048–11064, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
doi:10.18653/v1/2022.emnlp-main.759.

39 Arindam Mitra and Chitta Baral. Learning to automatically solve logic grid puzzles. In
Lluís Màrquez, Chris Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors,
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 1023–1033, Lisbon, Portugal,
September 2015. The Association for Computational Linguistics. doi:10.18653/v1/d15-1118.

40 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In Christian Bessiere,
editor, Principles and Practice of Constraint Programming - CP 2007, 13th International
Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume
4741 of Lecture Notes in Computer Science, pages 529–543. Springer, 2007. doi:10.1007/
978-3-540-74970-7_38.

41 Yuting Ning, Jiayu Liu, Longhu Qin, Tong Xiao, Shangzi Xue, Zhenya Huang, Qi Liu, Enhong
Chen, and Jinze Wu. A novel approach for auto-formulation of optimization problems. CoRR,
abs/2302.04643(arXiv:2302.04643), 2023. doi:10.48550/arXiv.2302.04643.

42 OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi:10.48550/arXiv.2303.
08774.

43 Ganesh Prasath and Shirish Karande. Synthesis of mathematical programs from natural
language specifications. CoRR, abs/2304.03287(arXiv:2304.03287), 2023. doi:10.48550/
arXiv.2304.03287.

44 Steven Prestwich and Nic Wilson. A statistical approach to learning constraints. International
Journal of Approximate Reasoning, page 109184, 2024. doi:10.1016/j.ijar.2024.109184.

45 Luc De Raedt, Andrea Passerini, and Stefano Teso. Learning constraints from examples. In
Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial

CP 2024

https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.24963/ijcai.2018/772
https://doi.org/10.18653/v1/2022.acl-long.556
https://archive.softwareheritage.org/swh:1:dir:5e4383ad6c4329796c9f21c51bbff4882dca8271
https://github.com/kostis-init/CP-LLMs-ICL
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/d15-1118
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.48550/arXiv.2302.04643
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2304.03287
https://doi.org/10.48550/arXiv.2304.03287
https://doi.org/10.1016/j.ijar.2024.109184

20:20 Constraint Modelling with LLMs Using In-Context Learning

Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 7965–7970.
AAAI Press, 2018. doi:10.1609/aaai.v32i1.12217.

46 Rindranirina Ramamonjison, Haley Li, Timothy T. L. Yu, Shiqi He, Vishnu Rengan,
Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang. Augmenting operations re-
search with auto-formulation of optimization models from problem descriptions. CoRR,
abs/2209.15565(arXiv:2209.15565), 2022. doi:10.48550/arXiv.2209.15565.

47 Rindranirina Ramamonjison, Timothy T. L. Yu, Raymond Li, Haley Li, Giuseppe Carenini,
Bissan Ghaddar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou,
and Yong Zhang. Nl4opt competition: Formulating optimization problems based on their
natural language descriptions. In Marco Ciccone, Gustavo Stolovitzky, and Jacob Albrecht,
editors, NeurIPS 2022 Competition Track, November 28 - December 9, 2022, Online, volume
220 of Proceedings of Machine Learning Research, pages 189–203. PMLR, PMLR, 2021. URL:
https://proceedings.mlr.press/v220/ramamonjison22a.html.

48 Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pages 31210–31227. PMLR, 2023. URL: https://proceedings.mlr.press/v202/
shi23a.html.

49 Helmut Simonis. Building industrial applications with constraint programming. In Hubert Co-
mon, Claude Marché, and Ralf Treinen, editors, Constraints in Computational Logics: Theory
and Applications, International Summer School, CCL’99 Gif-sur-Yvette, France, September
5-8, 1999, Revised Lectures, volume 2002 of Lecture Notes in Computer Science, pages 271–309.
Springer, 1999. doi:10.1007/3-540-45406-3_6.

50 Dimosthenis C. Tsouros, Senne Berden, and Tias Guns. Guided bottom-up interactive
constraint acquisition. In Roland H. C. Yap, editor, 29th International Conference on Principles
and Practice of Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada,
volume 280 of LIPIcs, pages 36:1–36:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.CP.2023.36.

51 Dimosthenis C. Tsouros, Senne Berden, and Tias Guns. Learning to learn in interactive con-
straint acquisition. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors,
Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pages 8154–8162. AAAI Press, 2024. doi:10.1609/aaai.v38i8.28655.

52 Dimosthenis C. Tsouros, Hélène Verhaeghe, Serdar Kadioglu, and Tias Guns. Holy grail 2.0:
From natural language to constraint models. CoRR, abs/2308.01589(arXiv:2308.01589), 2023.
doi:10.48550/arXiv.2308.01589.

53 Giuseppe Vallar and Costanza Papagno. Phonological short-term store and the nature of the
recency effect: Evidence from neuropsychology. Brain and Cognition, 5(4):428–442, 1986.

54 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
volume 30, pages 5998–6008, 2017. URL: https://proceedings.neurips.cc/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

55 Mark Wallace. Practical applications of constraint programming. Constraints An Int. J.,
1(1/2):139–168, 1996. doi:10.1007/BF00143881.

https://doi.org/10.1609/aaai.v32i1.12217
https://doi.org/10.48550/arXiv.2209.15565
https://proceedings.mlr.press/v220/ramamonjison22a.html
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
https://doi.org/10.1007/3-540-45406-3_6
https://doi.org/10.4230/LIPIcs.CP.2023.36
https://doi.org/10.1609/aaai.v38i8.28655
https://doi.org/10.48550/arXiv.2308.01589
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1007/BF00143881

K. Michailidis, D. Tsouros, and T. Guns 20:21

56 Kangxu Wang, Ze Chen, and Jiewen Zheng. Opd@nl4opt: An ensemble approach for the
NER task of the optimization problem. CoRR, abs/2301.02459(arXiv:2301.02459), 2023.
doi:10.48550/arXiv.2301.02459.

57 Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large
language models are latent variable models: Explaining and finding good demonstrations
for in-context learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Sys-
tems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, volume 36, pages 15614–15638. Cur-
ran Associates, Inc., 2023. URL: http://papers.nips.cc/paper_files/paper/2023/hash/
3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html.

58 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.
Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in
large language models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022, NIPS ’22, Red Hook, NY, USA,
2022. Curran Associates Inc. URL: http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

59 Jerry W. Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen,
Hanxiao Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context
learning differently. CoRR, abs/2303.03846, 2023. doi:10.48550/arXiv.2303.03846.

60 Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context
learning: An information compression perspective for in-context example selection and ordering.
In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages 1423–1436, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi:10.18653/v1/2023.acl-long.79.

61 Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional
exemplars for in-context learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages 39818–39833. PMLR, 23–29 July 2023. URL:
https://proceedings.mlr.press/v202/ye23c.html.

62 Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided language models
using declarative prompting. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
45548–45580. Curran Associates, Inc., 2023. URL: https://proceedings.neurips.cc/paper_
files/paper/2023/file/8e9c7d4a48bdac81a58f983a64aaf42b-Paper-Conference.pdf.

63 Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Veselin Stoyanov, Greg Durrett, and Ramakanth
Pasunuru. Complementary explanations for effective in-context learning. In Anna Ro-
gers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association
for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pages
4469–4484, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.findings-acl.273.

64 Ying-Jung Yvonne Yeh and Min-Hung Chen. Examining the primacy and recency effect
on learning effectiveness with the application of interactive response systems (irs). Technol.
Knowl. Learn., 27(3):957–970, 2022. doi:10.1007/s10758-021-09521-6.

65 Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 9134–9148, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi:10.18653/v1/2022.emnlp-main.622.

CP 2024

https://doi.org/10.48550/arXiv.2301.02459
http://papers.nips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2303.03846
https://doi.org/10.18653/v1/2023.acl-long.79
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/8e9c7d4a48bdac81a58f983a64aaf42b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8e9c7d4a48bdac81a58f983a64aaf42b-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.1007/s10758-021-09521-6
https://doi.org/10.18653/v1/2022.emnlp-main.622

20:22 Constraint Modelling with LLMs Using In-Context Learning

Table 4 Performance of various LLMs on LGPs using CP generation with R-MMR (λ = 0.5).

LLM #Shots #Err Accuracy (%)
Model Solution Declaration

gpt-3.5-turbo-0125 4 6 71.00 74.00 87.98
gpt-4-0125-preview 4 16 61.00 64.00 73.85
deepseek-coder-33b-instruct 4 1 73.00 77.00 92.60
Mixtral-8x7B-Instruct-v0.1 4 19 52.00 52.00 70.01
Qwen1.5-72B-Chat 4 15 64.00 66.00 80.32
gpt-3.5-turbo-0125 8 4 74.00 77.00 90.49
gpt-4-0125-preview 8 10 77.00 82.00 85.87
deepseek-coder-33b-instruct 8 2 77.00 77.00 93.66
Mixtral-8x7B-Instruct-v0.1 8 18 58.00 61.00 74.90
Qwen1.5-72B-Chat 8 7 62.00 65.00 86.00

A Various LLMs

We also present preliminary results when running our methodology on LGPs for direct
CP modelling using various LLMs in Table 4. We used the OpenAI 9, Together AI 10 and
DeepSeek11 APIs for these experiments. As a code-tuned LLM, the deepseek-coder-33b-
instruct managed to produce the fewest models with errors. Additionally, gpt-4-0125-preview
achieved the highest solution accuracy when prompted with 8 in-context examples.

B Model Equivalence Algorithm

To assert the equivalence of two constraint models, we first create a one-to-one mapping
between their decision variables based on syntactic similarity. We then construct the
conjunction of all constraints for each model. Assuming the two models are not equivalent,
we add to a new combined model the negation of the equivalence formula between the two
models, as defined in Equation (18). If the resulting model is unsatisfiable, the two models
are considered equivalent. Otherwise, they are not. The detailed steps are provided in
Algorithm 1.

C Errors in the generated CP model

C.1 0-shot
An example with a syntax error of a zero-shot attempt to directly model the first problem
from the NL4Opt dataset with gpt-3.5-turbo-0125 is shown in Figure 5.

C.2 4-shot
An example with a syntax error on an LGP when prompting statically with 4 examples in
the context is briefly shown in Figure 6.

9 https://platform.openai.com/docs/api-reference
10 https://docs.together.ai/reference/chat-completions
11 https://platform.deepseek.com/docs

https://platform.openai.com/docs/api-reference
https://docs.together.ai/reference/chat-completions
https://platform.deepseek.com/docs

K. Michailidis, D. Tsouros, and T. Guns 20:23

Algorithm 1 Model Equivalence.

1: function ModelsEquivalent(m1, m2)
2: vars1← GetVariables(m1), vars2← GetVariables(m2)
3: if length(vars1) ̸= length(vars2) then
4: return False
5: end if
6: mapping ← CreateMapping(vars1, vars2) ▷ Map variables based on syntax

matching of their names
7: conj1←

∧
c∈m1.constraints c

8: conj2←
∧

c∈m2.constraints c

9: negatedImplications← mapping ∧ ((conj1 ∧ ¬conj2) ∨ (¬conj1 ∧ conj2))
10: if IsUnsatisfiable(negatedImplications) then
11: return True ▷ Models are equivalent
12: else
13: return False ▷ Models are not equivalent
14: end if
15: end function

1 import cpmpy . solvers
2

3 # Define the variables
4 num_sled_dog_trips = intvar (0, 10) # Number of sled dog trips
5 num_truck_trips = intvar (0, 10) # Number of truck trips
6

7 # Define the objective function to maximize the number of fish transported
8 total_fish_transported = 100* num_sled_dog_trips + 300* num_truck_trips
9

10 # Define the constraints
11 cost_sled_dog_trips = 50* num_sled_dog_trips # Cost of sled dog trips
12 cost_truck_trips = 100* num_truck_trips # Cost of truck trips
13 total_cost = cost_sled_dog_trips + cost_truck_trips <= 1000 # Total cost

constraint
14

15 # Number of sled dog trips must be less than the number of truck trips
16 num_sled_dog_trips <= num_truck_trips
17

18 # Define the LP problem
19 problem = cpmpy . Model (
20 cpmpy . maximize (total_fish_transported),
21 [total_cost]
22)
23

24 # Solve the LP problem
25 cpmpy . solvers . cplex (problem)
26

27 # Error : module ’cpmpy ’ has no attribute ’maximize ’

Figure 5 Generated code with syntax error. Configuration: gpt-3.5-turbo-0125, 0-shot.

CP 2024

20:24 Constraint Modelling with LLMs Using In-Context Learning

1 from cpmpy import *
2

3 # Code omitted
4

5 # Clue 4: Of the runner who paid $9 and the contestant who ordered fettuccine ,
one was Margie and the other was Velma :

6 m += ((margie == price9) & (velma == fettuccine)) | ((margie == fettuccine) &
(velma == price9)

7

8 # Error : ’)’ expected

Figure 6 Generated code with syntax error. Configuration: gpt-3.5-turbo-0125, 4-shot static
ICL.

Table 5 Mixed CP Dataset. Configuration: gpt-3.5-turbo-0125, 4-shot static in-context examples
selection.

Pathway Solution Accuracy (%)
Direct 16.67
CP 50.00
+ BM 50.00
+ NER 44.44

D Mixed CP Dataset: Supplementary Results

Adding to the main results presented in the paper, Table 5 shows results for all four pathways
and Table 6 displays the solution-level accuracy of the direct CP modelling pathway for all
seven example retrieval strategies.

E Datasets Metadata

In this section, we present details of the datasets that we utilized in the experimental part.
Table 7 describes the NL4Opt dataset. All values refer to the average number across each
instance in the dataset. Regarding the LGPs, they contain on average 12 entities (or decision
variables) and 4.55 clues per instance, while each instance has one unique solution. Table 8
outlines the type of each clue along with an example and its constraint representation. Finally,
Table 9 provides some information about the instances of the mixed CP dataset that we
curated.

Table 6 Mixed CP Dataset. Configuration: gpt-3.5-turbo-0125, 4 examples in the context, direct
CP modelling pathway.

Strategy Solution Accuracy (%)
Static 50.00
Random 38.89
SIM 55.56
R-SIM 55.56
MMR 61.11
R-MMR 55.56
LSRR 50.00

K. Michailidis, D. Tsouros, and T. Guns 20:25

Table 7 NL4Opt information. To calculate the average number of optimal solutions for the train
split, we did not take into consideration some outlier instances that had over 100 optimal solutions.
All constraints and objectives are linear in this dataset. For more details please refer to the original
paper [46].

Split (#) #Decision Var. #Constraints #Obj. Terms #Optimal Solutions
Train (713) 2.09 2.79 2.05 1.13
Test (289) 2.02 2.92 1.43 1.20

Table 8 LGPs clue types. In our CP models, we treat all puzzle entities as decision variables.
Also refer to the other works employing LGPs [39, 24].

Type Clue Example Constraint Expression (CPMpy [21])

Equivalence The Luzagueil is a chardonnay luzagueil == chardonnay

XOR The Annata Branco is either
the 1992 wine or the syrah.

Xor([annata == vintage1992,
annata == syrah])

Pairwise
XOR

Of the pinot gris and the 1984
bottle, one is the Luzagueil and
the other is the Zifennwein

Xor([(pinot_gris == luzagueil) &
(vintage1984 == zifennwein),
(pinot_gris == zifennwein) &
(vintage1984 == luzagueil)])

AllDifferent The four people are Deep
Shadow, the superhero who
started in 2007, the hero who
started in 2009 and Matt
Minkle

AllDifferent([deep_shadow, _2007,
_2009, matt_minkle])

Arithmetic
Comparison

The pinot gris was bottled 4
years after the merlot

[((v1 == pinot_gris) & (v2 == merlot))
.implies(vintage_to_int[v1] ==
vintage_to_int[v2] + 4)
for v1 in vintages for v2 in vintages]

CP 2024

20:26 Constraint Modelling with LLMs Using In-Context Learning

Table 9 Mixed CP Dataset information.

Instance #Dec.
Vars

#Const. Optimisation #Vars per
Constraint

#(Optimal)
Solutions

Five Floors 5 7 No 2 1
Bank Card 4 3 No 4 1
Guards and Apples 6 6 No 2 1
Magic Square 16 11 No 5 10
Thick as Thieves 6 7 No 3 1
Money Change 6 1 Yes 6 1
Colour Simple 6 9 Yes 2 >50
Movie Scheduling 9 26 Yes 2 3
Subset Sum 6 1 No 6 1
Subsets 100 20 4 No 15 >50
Maximal Ind. Sets 8 24 Yes 2 2
Exodus 20 9 No 10 17
People in a Room 17 13 No 9 >50
Kidney Exchange 64 24 Yes 8 1
Farmer and Cows 25 10 No 25 >50
Grocery 4 2 No 4 1
Climbing Stairs 20 22 No 12 >50
Hardy 1729 4 5 No 4 >50

F An LGP example

In Figure 7 we showcase an example from the LGPs dataset [39].

K. Michailidis, D. Tsouros, and T. Guns 20:27

The Luzagueil is a chardonnay. The Annata Branco is either the 1992 wine or the syrah. The
Friambliss is a syrah. Of the pinot gris and the 1984 bottle, one is the Luzagueil and the other is
the Zifennwein. The pinot gris was bottled 4 years after the merlot. Vintages: 1984, 1988, 1992,
1996. Wines: Annata Branco, Friambliss, Luzagueil, Zifennwein. Types: chardonnay, merlot,
pinot gris, syrah.

Decision Variables:
Names of the wines: AnnataBranco, Friambliss, Luzagueil, Zifennwein (all different, 1 to 4)
Vintages of the wines: Vintage1984, Vintage1988, Vintage1992, Vintage1996 (all different, 1 to
4)
Types of the wines: Chardonnay, Merlot, PinotGris, Syrah (all different, 1 to 4)

Constraints:
The Luzagueil is a chardonnay: Luzagueil == Chardonnay.
The Annata Branco is either the 1992 wine or the syrah: Xor([AnnataBranco ==
Vintage1992, AnnataBranco == Syrah]).
The Friambliss is a syrah: Friambliss == Syrah.
Of the pinot gris and the 1984 bottle, one is the Luzagueil and the other is the Zifennwein:
Xor([(PinotGris == Luzagueil, Vintage1984 == Zifennwein), (PinotGris == Zifennwein,
Vintage1984 == Luzagueil)]).
The pinot gris was bottled 4 years after the merlot: v1 == PinotGris and v2 == Merlot =>
v1_to_int == v2_to_int + 4, for all v1, v2 in vintages.

1 from cpmpy import *
2

3 # Decision variables
4 # (variables with the same value will correspond to the same triplet of vintage ,

wine , and type)
5 # e.g. if annata == 1 and vintage1984 == 1 and chardonnay == 1, then Annata Branco

is a 1984 chardonnay
6 annata , friambliss , luzagueil , zifennwein = wines = intvar (1, 4, shape =4)
7 vintage1984 , vintage1988 , vintage1992 , vintage1996 = vintages = intvar (1, 4, shape

=4)
8 chardonnay , merlot , pinot_gris , syrah = types = intvar (1, 4, shape =4)
9 # Integer representation , for comparison constraints

10 vintage_to_int = { vintage1984 : 1984 , vintage1988 : 1988 , vintage1992 : 1992 ,
vintage1996 : 1996} # in years

11

12 # Helper functions (for formulating comparison constraints)
13 def bottled_exactly_after_than (var1 , var2 , diff):
14 """
15 Formulate the constraint that var1 was bottled exactly diff years after var2.
16 """
17 return [((v1 == var1) & (v2 == var2)). implies (vintage_to_int [v1] ==

vintage_to_int [v2] + diff) for v1 in vintages for v2 in vintages]
18

19 # Constraints
20 m = Model ()
21 # All entities are different per category
22 m += AllDifferent (wines)
23 m += AllDifferent (vintages)
24 m += AllDifferent (types)
25 # Clue 1: The Luzagueil is a chardonnay :
26 m += luzagueil == chardonnay
27 # Clue 2: The Annata Branco is either the 1992 wine or the syrah :
28 m += Xor ([annata == vintage1992 , annata == syrah])
29 # Clue 3: The Friambliss is a syrah :
30 m += friambliss == syrah
31 # Clue 4: Of the pinot gris and the 1984 bottle , one is the Luzagueil and the other

is the Zifennwein :
32 m += Xor ([(pinot_gris == luzagueil) & (vintage1984 == zifennwein), (pinot_gris ==

zifennwein) & (vintage1984 == luzagueil)])
33 # Clue 5: The pinot gris was bottled 4 years after the merlot :
34 m += bottled_exactly_after_than (pinot_gris , merlot , 4)

Figure 7 From top to bottom: Problem description, Blueprint Model, CPMpy model.

CP 2024

Strengthening Relaxed Decision Diagrams for
Maximum Independent Set Problem: Novel
Variable Ordering and Merge Heuristics
Mohsen Nafar1 #

Bielefeld University, Germany

Michael Römer #

Bielefeld University, Germany

Abstract
Finding high-quality bounds is key to devising efficient exact solution approaches for Discrete
Optimization (DO) problems. To this end, Decision Diagrams (DDs) provide strong and generic
bounding mechanisms. This paper focuses on so-called relaxed DDs which, by merging nodes,
over-approximate the solution space of DO problems and provide dual bounds the quality of which
hinges upon the ordering of the variables in the DD compilation and on the selection of the nodes to
merge. Addressing the Maximum Independent Set Problem, we present a novel dynamic variable
ordering strategy relying on induced subgraphs of the original graph, and a new tie-based merge
heuristic. In a set of computational experiments, we show that our strategies yield much stronger
bounds than the standard state-of-the-art approaches. Furthermore, implementing our heuristics in
a DD-based branch-and-bound, we reduce the solution times by around 33 % on average and by
more than 50 % on hard instances.

2012 ACM Subject Classification Theory of computation → Discrete optimization

Keywords and phrases Decision Diagram, Dynamic Programming, Maximum Independent Set
Problem, Dual Bound

Digital Object Identifier 10.4230/LIPIcs.CP.2024.21

Funding This research was funded by the Return Programme of the Federal State of North Rhine
Westphalia (NRW Rückkehrprogramm).

1 Introduction

As becomes clear from the recent survey [6], Decision Diagrams (DDs) form a versatile tool
for discrete optimization (DO), as they allow a compact representation of the solution space
of DO problems in the form of a layered graph and provide generic mechanisms to obtain
primal and dual bounds. Specifically, given a Dynamic Programming (DP) formulation of
a DO problem, one can create a so-called exact DD such that the set of all paths in the
DD corresponds to the set of feasible solutions to the DO problem. While the size of such
an exact DD grows exponentially in the number of decision variables, there are two types
of approximate DDs for which the number of nodes only grows linearly as the width of
each DD layer is not allowed to exceed a threshold: Restricted DDs, which are obtained by
removing feasible nodes (which are associated with states defined by the DP formulation),
provide an under-approximation of the solution space, and relaxed DDs, which are obtained
by merging nodes associated with non-equivalent states, provide an over-approximation of
the solution space. As proposed in [3], relaxed and restricted DDs can be used within an
exact branch-and-bound algorithm entirely based on DDs; the authors show that this method

1 Corresponding author

© Mohsen Nafar and Michael Römer;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohsen.nafar@uni-bielefeld.de
https://orcid.org/0000-0002-0895-2837
mailto:michael.roemer@uni-bielefeld.de
https://orcid.org/0000-0001-8369-7939
https://doi.org/10.4230/LIPIcs.CP.2024.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

achieves an excellent performance on DO problems such as the Maximum Independent
Set Problem (MISP), the Maximum Cut Problem and the 2-Satisfiability Problem. For
an in-depth discussion of DD-based solution approaches illustrated using a wide variety of
DO problems, we refer to the monograph [1]. For an efficient open source implementation
of DD-based branch-and-bound algorithm in Rust, we refer to the solver DDO presented
in [10]. An alternative to the classical DD-based branch-and-bound with an open source
implementation in the Julia language is Peel and Bound [16, 17].

The performance of DD-based branch-and-bound algorithms is highly dependent on
the quality of the bounds of the approximate DDs involved. These approximate DDs are
typically compiled using the so-called top-down approach, in which the DD is constructed
layer by layer. For a given DO problem and a given maximum DD width, the strength of
the approximate DD bounds depends on two key heuristic decisions within the compilation
process: (i) the variable ordering, that is, the order in which the variables are considered in
the top-down compilation, and (ii) the node selection, that is, the selection of the nodes in a
DD layer to be removed (for restricted DDs) or to be merged (for relaxed DDs) in case the
maximum width of a layer is exceeded.

The first decision, that is, devising a good variable ordering, is relatively straightforward
for certain problems such as the 0/1-Knapsack Problem. For other problems such as the
MISP, however, finding a good variable ordering turns out to be more intricate and has
been considered by various authors, see e.g. the review in [6]. In particular, it has been
shown that for the MISP it is useful to determine the variable ordering dynamically, that
is, to decide upon the next variable to consider based on information becoming available
during the DD compilation, e.g. in order by minimizing the number of nodes appearing
in the next layer, or by performing some lookahead steps, see e.g. [1] for a comparison
of different generic strategies. The MISP was also considered in several papers proposing
to use Machine Learning to support the dynamic ordering of variables: As an example,
in [5] the authors use Deep Reinforcement Learning to determine the variable ordering.
They show that for a given maximum width of each layer, the ML-supported approach can
substantially improve the bounds compared to the standard variable ordering heuristics
considered in the literature. In two follow-up works [15, 4], the authors show that despite
the fact that the ML-based compilation of approximate DDs is slower than the standard
approaches, this bound improvement leads to a significant overall speed-up of an exact
DD-based branch-and-bound solver.

The second decision, that is, the node selection decision, was also investigated by many
authors. Following the monograph [1], a generic and often highly efficient strategy is to
sort the states according to some criterion (e.g. the length of the partial path ending at
each node), to keep the “best” nodes until the maximum width is reached and to merge
the remaining nodes with the last node in the list to form one large “tail node”. In [8],
the authors propose a classification-based mechanism to predict the most promising node
selection heuristic for each layer of a relaxed DD. The paper [9] proposes a tie-breaking
strategy to deal with the problem of identical criterion values in sorting-based approaches.
Other node selection approaches do not rely on sorting nodes (and creating a single large
node) but aim at grouping nodes to merge according to some similarity measure. As an
example, [12] proposes to use so-called collector nodes that aim at merging states that have
the same value with respect to a labeling function. A similar approach was recently used
in [7] who merge nodes based on partitioning the state space for a single machine scheduling
problem with release times, deadlines setup times and rejection. Another technique for
top-down compilation of relaxed DDs which is based on DD reduction is proposed in [13]. In

M. Nafar and M. Römer 21:3

that paper, the authors partition the nodes in a lookahead layer, which is then used to reduce
the target layer, i.e. the layer whose width exceeds the given maximum width. Finally, the
paper [14] proposes using clustering approaches to group the nodes according to the state
attributes and to form a single merged node for each group.

Contribution. Dealing with relaxed DDs for the MISP, this paper proposes both a new
dynamic variable ordering strategy and a new heuristic to select which nodes to merge.
The variable ordering strategy exploits the problem structure of the MISP by relying on
graph-theoretical properties that can be inferred from the states of the partially compiled
DDs. The new merge heuristic aims at reducing the approximation error in sorting-based
merge strategies resulting from merging the whole tail into a single large node by introducing
an additional merged node from nodes around the maximum width border having the
same value of the sorting criterion. In a set of computational experiments with randomly
generated graph instances with 100 vertices and different densities, we observe that each
of the proposed approaches independently provides significantly stronger DD relaxations
for the MISP than DDs compiled with standard approaches. When combined, i.e. using
our proposed variable ordering and merge heuristic at the same time, the bounds become
much stronger. Furthermore, implementing these heuristics in a DD-based branch-and-bound
algorithm, the solution time reduces by 33% on average compared to a branch-and-bound
using standard variable ordering and merge strategies. The solution time reduction grows
with the hardness of the instances; for the hardest instances, the solution time reduction
amounts to more than 50%.

2 Exact and Approximate Decision Diagrams

A decision diagram D = (N , A) is a layered directed acyclic graph with node set N and
arc set A. The paths in D represent solutions to a discrete optimization problem P with
a maximization objective function f and an n-dimensional vector of decision variables
x1, · · · , xn ∈ {0, 1}. N is partitioned into n + 1 layers N1, . . . , Nn+1, where N1 = {r} and
Nn+1 = {t} for a root r and a terminal t. Each arc a = (u, u′) connects nodes of two
consecutive layers ℓ(u), ℓ(u′) = ℓ(u) + 1 and is associated with a decision d(a) representing
the assignment xℓ(u) = d(a). This means that a path p = (a1, . . . , an) starting from r and
ending at t represents the solution x(p) = (d(a1), . . . , d(an)). We denote the set of all r-t
paths with P, and we refer to the solutions to P represented by P with Sol(D). Moreover,
each arc a has length w(a) and

∑n
i=1 w(ai) provides the length w(p) of path p. We refer to

D as exact if Sol(D) = Sol(P) if for each path p ∈ P we have w(p) = f(x(p)); then a longest
path in D forms an optimal solution to P.

To deal with the exponential growth of the DD size, DD-based solution approaches such
as DD-based branch-and-bound [2] rely on so-called approximate DDs that can be used to
obtain upper or lower bounds for the solutions of P. There are two types of approximate
DDs: in a restricted DD D, one aims at considering only promising nodes and arcs, meaning
that Sol(D) ⊆ Sol(P), and thus, the longest path in a restricted DD provides a lower bound
to P. The second type of approximate DD, which is the one we focus on in this paper, is
the relaxed DD providing an upper bound: in a relaxed DD, we have Sol(D) ⊇ Sol(P), that
is, the set of paths may contain paths associated with infeasible solutions to P. Regarding
the objective function value, every path in a relaxed DD needs to satisfy w(p) ≥ f(x(p)). In
both restricted and relaxed DDs, a common approach to control the size of the DD is to
impose a maximum width W for each layer in the DD which is enforced by removing nodes
(in a restricted DD) or merging nodes (in a relaxed DD).

CP 2024

21:4 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

A common approach to compile an exact DD is to provide a Dynamic Programming (DP)
formulation of P and to compile the DD in a top-down fashion. To do so, every node u

is associated with a state Su and every arc a is associated with a state transition induced
by the decision d(a) associated with a. Su is an element of the state space S; the state
Sr associated with the r is the so-called initial state. The state Sv of the target node v of
the arc depends on the state Su of the arc’s source node as well as on d and is computed
by the state-transition function f(Su, d). The objective function contribution of a decision
are computed by a reward function g(Su, d). Finally, the set of out-arcs of a node u is
determined by the set of feasible decisions X(Su) given state Su. The top-down compilation
then proceeds layer-by-layer until reaching layer Nn; all arcs emanating from that layer point
to the terminal node t. In a DD compiled in the sketched top-down fashion, any pair of
nodes in a layer has different states, that is, partial paths ending in the same state point to
the same node.

In case of approximate DDs, after having created all nodes of a given layer, one reduces
its size to W by removing or merging nodes. Nodes are merged by redirecting the incoming
arcs of the nodes to be merged to a single merged node. In order to ensure that no feasible
completions of any of the merged nodes is lost, one requires a problem-specific merge operator
⊕ for the states associated with the two nodes, see [11] for a discussion of the conditions a
valid merge operator needs to satisfy.

Algorithm 1 displays the pseudocode for a top-down compilation procedure for DD
construction. The procedure takes a DP formulation DP (comprising the definition of the
state space S including the initial state Sr, the functions X, f and g), a DD D containing
only the root node and the maximum width W . Calling the algorithm with an unlimited
width W will yield an exact DD and depending on the operation performed in line 11, it
will result in a restricted or relaxed DD. In addition to these, the algorithm requires node
selection (for restricting and/or relaxing the layers) and variable ordering heuristics (an
order for considering the decision variables for layer by layer construction, since every layer
corresponds to one decision variable). In order to allow for a dynamic variable ordering,
Algorithm 1 introduces the set unfixed of variables that have not been considered so far in
the compilation as well as the the generic procedure NextVariable which chooses the next
variable according to a given variable ordering strategy. Note that in case of a static variable
ordering strategy, NextVariable simply returns the next variable according to a pre-specified
order.

Algorithm 1 Top-Down DD Compilation.

1: CompileTopDown (DP , D, W)
2: unfixed = set of all decision variables
3: for k = 1 to n do
4: xk = NextVariable (Nk, unfixed)
5: unfixed = unfixed/{xk}
6: for all u ∈ Nk do
7: for all d ∈ X(Su) do
8: v = GetOrAddNode (Nk, f(Su, d))
9: AddArc (u,v,d)

10: if |Nk+1| > W then
11: RelaxLayer/RestrictLayer (Nk+1)
12: return D

As mentioned in the introduction, the strength of the bounds obtained with approximate
DDs compiled using a top-down approach crucially depends on the strategies used to
determine the variable ordering (determined in line 4 of Algorithm 1), and on the strategies

M. Nafar and M. Römer 21:5

for selecting the nodes to remove or merge (line 11 of Algorithm 1). In this paper, we
devise new heuristics for both of these decisions for the compilation of relaxed DDs for the
Maximum Independent Set Problem which will be discussed next.

3 Decision Diagrams for the Maximum Independent Set Problem

In this section, we briefly introduce the Maximum Independent Set Problem (MISP) and its
DP formulation. We then illustrate how this DP formulation can be used to construct exact
and relaxed DDs.

3.1 The Maximum Independent Set Problem
Given a graph G = (V, E) with n vertices, where V = {v1, v2, · · · , vn} is the set vertices
and E is the set of edges, the Maximum Independent Set Problem (MISP) asks for the
largest subset I ⊆ V such that no two vertices in I are connected via an edge, i.e. I = {v ∈
V |(u, v) /∈ E, ∀u ∈ I}.

Example. Fig. 1 shows an example that will serve for illustration purposes in the remainder
of this paper. It shows a graph G with five vertices. As can be easily verified, there
are multiple optimal solutions, each of which contains two vertices, e.g. I = {v1, v4} or
I = {v3, v5} or I = {v2, v3}.

Figure 1 Example Graph G for a Maximum Independent Set Problem.

In order to be able to compile a decision diagram for MISP we need to formulate the
MISP in terms of a DP. To begin with, a state Su associated with a node u in the DD
corresponds to a subset of the vertices V of the original graph G, namely with the vertices
that are still available to be part of an independent set. The initial state Sr associated with
the root node r thus corresponds to V , the terminal state corresponds to the empty set.
Each layer j in the DD is associated with the decision variable xj which consists in adding
the j-th vertex v(j) (according to the chosen variable order) in the original graph G to the
independent set or not. Given a state Su and a decision d(a) (d = 1 means adding the vertex
to the solution, d = 0 not adding it) associated with arc a = (u, u′) emanating from node u,
the state transition function fj(Su, d(a)) determines the state of node u′ in the next layer
j + 1 of the DD. Specifically, fj(Su, 0) = Su/{v(j)}, and fj(Su, 1) = Su/{Γ(v(j))} where
Γ(v(j)) is the set of vertices adjacent to v(j) in V . Note that if v(j) /∈ Su, the decision d = 1
is not feasible, and thus the DD will not contain an arc a emanating from u with d(a) = 1.
The reward function gj(Su, d) is gj(Su, 0) = 0 and gj(Su, 1) = 1.

Example (continued). Fig. 2 shows an exact DD for the MISP on graph G from Fig. 1 with
the variable order according to the indexes of the vertices in V , that is, v(j) = vj∀v ∈ V .
Every node of the DD is framed using blue color, where its corresponding state (i.e. a
subset of the vertices in V) is placed inside its frame. Small orange labels next to each

CP 2024

21:6 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

node are their partial objective value. Each dashed red and solid green arc show the
assignment of value 0 and 1 to the corresponding decision variable, respectively. The exact
DD in this example has a width of 4, and one of the longest r-t-paths with length 2 is
[x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 1], giving us an optimal solution, namely {v4, v5} with
the value 2.

Figure 2 Exact DD for the MISP example graph G.

3.2 Relaxed Decision Diagrams for the MISP
As previously explained, a relaxed DD over-approximates the solution space of the problem
under consideration, resulting in a dual bound. This relaxation is obtained by merging nodes
with non-equivalent states. In order to obtain a valid relaxation, this merge process must
ensure that no feasible solution is lost, that is, that the whole feasible solution space of the
problem is included in the space represented by the relaxed DD. Merging two nodes u and
u′ into a node M involves two steps: First, all incoming arcs to nodes u and u′ must be
redirected to merged node M . Second, the state SM of the new node must be determined in
a way that the solution space of the tail problem starting from M contains the tail problem
solutions of both nodes u and u′. As explained above, the state SM = Su ⊕ Su′ , where ⊕ is
a so-called merge operator. As discussed e.g. in [1], a valid merge operator for MISP is ∪,
that is, SM is given by the union of the vertex sets (subsets of V in the problem graph G)
forming the states Su and Su′ .

Figure 3 Merging two nodes in a relaxed DD for the MISP.

M. Nafar and M. Römer 21:7

Fig. 3 illustrates the merge of two nodes into a single node. Observe that the state of
the resulting merged node is the union of states of the two nodes on top. Moreover, recall
that while a state in MISP is a subset of the vertices, it can be interpreted to represent an
induced subgraph of the original graph on those vertices. Therefore, the edge between v2
and v4 which did not exist in any of the two induced subgraphs of the nodes to be merged
now will be included in the induced subgraph of the state of the merged node. Actually, this
augmented interpretation of the DD states for the MISP carries more information about
the DD nodes – this fact will later be used to develop the new variable ordering heuristic
proposed in this paper.

Figure 4 Relaxed DD for graph G, where variables are ordered according to their indices in the
original graph and W = 2. Its obtained gap is 100%.

Example (continued). Fig. 4 represents the relaxed DD for graph G where W = 2, using
the variable ordering given by indexes of the vertices, i.e. v(1) = v1, v(2) = v2, v(3) =
v3, v(4) = v4, v(5) = v5, in Fig. 1 that was also used for the exact DD. It turns out that the
resulting dual bound has the value of 4 which is two times the optimum value.

4 A New Dynamic Variable Ordering for the MISP

The order of the decision variables according to which the DD is being compiled heavily
affects both the size of an exact DD, and quality of the bounds from approximate DDs with
a fixed maximum width. In the examples above, we used a static variable ordering, that is,
an ordering that is specified before the compilation of the DD and that is independent of the
configuration of the layers during the compilation process. However, it turns out that the
best variable ordering strategies for the MISP are dynamic, that is, they use information of
the partially compiled DD to choose the next decision variable (in case of MISP, the next
vertex).

In the following, we will first consider the dynamic variable ordering strategy most
commonly used for the MISP in the literature. Then, we propose a novel dynamic variable
ordering strategy that exploits the information gained by interpreting the DD states in terms
of induced subgraphs.

CP 2024

21:8 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

4.1 Standard Strategy: Minimum Number of States (MIN)

In this ordering, vertices are assigned a value that corresponds to the number of times they
appear in the states of the nodes in the current layer Nk. Then, the vertex exhibiting the
minimum number appearances is selected as the next vertex (variable) to be considered in
the top-down compilation of the DD. Algorithm 2 shows the corresponding heuristic which
is called Minimum Number of States (MIN). The worst-case time complexity to perform this
selection is O(W · |V |) per layer. In this algorithm, Nk is the current layer and unfixed is the
set of the vertices to which no decision has been assigned yet.

Algorithm 2 NextVariableMIN (Nk, unfixed).

1: NS := a dictionary where keys are unfixed variables (associated with vertices of G) and
values 0

2: for x ∈ unfixed do
3: for all S ∈ Nk do
4: if v(x) ∈ S then
5: NS[x]+=1
6: return the unfixed variable with minimum NS

Example (continued). Using the MIN variable ordering in the top-down compilation of
a relaxed DD with W = 2 for the example graph G from Fig. 1 results in the following
variable order: [v(1) = v1, v(2) = v2, v(3) = v5, v(4) = v3, v(5) = v4]. Following this order
of variables (vertices), the corresponding relaxed decision diagram which provides a dual
bound with value 3 is illustrated in Figure 5.

Figure 5 Relaxed DD for graph G, compiled via MIN and W = 2, yielding a gap of 50%.

The intuition behind the effectiveness of the MIN variable ordering strategy is that a
node u only has an outgoing 1-arc for the variable associated with a vertex v if v ∈ Su. As a
result, a vertex appearing only a few times in the states of the layer under consideration will
result in a small number of outgoing arcs of the layer and thus in a small number of nodes in
the next layer.

M. Nafar and M. Römer 21:9

4.2 A New Strategy: Current Degree Sum (CDS)

Now, we present a new dynamic variable ordering heuristic which is based on the interpretation
of node states as induced subgraphs of the original graph introduced in Section 3. Previously,
we mentioned that the intuition behind the MIN strategy is to improve the quality of the
dual bounds in a relaxed DD by controlling the growth of the layers by choosing a variable
that will result in less feasible decisions to be taken. Adding to this, the idea behind our new
strategy is to reduce the “destructive” effect of the subsequent merge operations: We aim at
choosing the variable order in a way that the difference between the states to be merged in a
layer is somewhat small such that the resulting merged state is not too different from the
states of the nodes to be merged.

Intuitively, a vertex with a lower degree in a given graph is likely to belong to a higher
number of independent sets in that graph than a vertex with a larger degree. Therefore,
it can be beneficial to decide about such vertices (i.e. vertices with smaller degree) sooner
than later, because it can result in exploration of the search space that is closer to the
optimum solution. Since the graph-theoretical information of vertices in a MISP evolves a
lot during the compilation (every subproblem corresponding to a node/state is associated
with an induced subgraph of the original graph on the members of that state), it is crucial
to recompute them for each state and then take the best decision.

Current Degree Sum (CDS) is a novel variable ordering that can account for all of these
intuitions, i.e. resulting in a lower number of feasible decisions, reducing the destructive
effect of subsequent merge operations, and providing a better chance of resulting in partial
solutions (tail solutions) closer to optimum. Recall that every state in a DP formulation
of MISP is represented via a subset of the vertices of the original graph. Considering the
induced subgraph on members of these states, every member (i.e. a vertex) has a degree
which might be different from its degree in another state (induced subgraph), we call it the
current degree of a vertex, i.e. dgS

v reads degree of vertex v in state S. The strategy is to
sum up the current degrees of each vertex, i.e.

∑
S∈Nk

dgS
v in the layer under consideration,

and to choose the vertex with minimum sum.
Algorithm 3 shows the process for CDS variable ordering, which has a worst-case time

complexity of O(W · |V |2) per layer.

Algorithm 3 NextVariableCDS procedure (Nk, unfixed).

1: CDS = a dictionary where keys are unfixed variables and values 0
2: for all S ∈ Nk do
3: for x ∈ S do
4: for y ∈ S do
5: if x is adjacent to y then
6: CDS[x]+ = 1
7: return the unfixed variable with minimum CDS

Example (continued). Using CDS variable ordering in the top-down compilation of a
relaxed DD with W = 2 for the example graph G from Fig. 1 results in the following
order of variables / vertices: [v(1) = v3, v(2) = v4, v(3) = v2, v(4) = v1, v(5) = v5]. The
corresponding relaxed decision diagram provides a dual bound with value 2 which is exactly
the optimum value of the original problem (see Fig. 6).

CP 2024

21:10 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

Figure 6 Relaxed DD for graph G compiled using CDS and W = 2, yielding a gap of 0%.

5 A New Merge Heuristic

The second important decision during the top-down compilation of relaxed DDs that has a
huge impact on the quality of the achievable dual bounds is to select the nodes to merge
in case the maximum width is exceeded. A (heuristic) strategy for taking this decision is
also called a merge heuristic. In this section, we will first describe a problem-agnostic merge
heuristic that is commonly used in the literature and then propose a new merge heuristic.

5.1 Standard Strategy: SortObj Merging (SO)

A highly generic merge heuristic for the top-down compilation of relaxed DDs that we will
subsequently refer to as SortObj (SO) works as follows: First, all nodes in the layer the
size of which exceeds the given maximum width W are sorted according to their objective
function values. Then, the first W − 1 nodes, i.e. the nodes having the highest objective
values, will remain in the layer, and the rest of the nodes, which we refer to the tail (of the
sorted list) will be merged into a single node called Mtail.

Fig. 7 shows an example of SortObj being applied in a layer with 12 nodes, the maximum
width is W = 8. In the figure, the nodes are sorted according to their objective values
(written inside the orange boxes under the nodes). When applying SortObj, the first 7
nodes, i.e. {A, B, C, D, E, F, G}, will be retained in the layer and the rest of the nodes, i.e.
{H, I, J, K, L}, will be merged and form the merged node Mtail that will replace all the nodes
in the tail. The vertical dashed line in the figure marks the border between the nodes to be
retained and those that are merged into Mtail.

M. Nafar and M. Römer 21:11

Figure 7 SortObj merging heuristic where W = 8.

5.2 A new Strategy: Border Tie Merging (BT)

Here, we present a new merge heuristic which is based on identifying certain ties that may
arise in the layers of relaxed DDs. This merging heuristic that we call Border Tie merging
and denote by BT is described after the following definition:

▶ Definition 1 (Border Tie). Let the nodes in a layer of a DD be sorted according to some
criterion C and SortC be its corresponding sorted list, and let W be the given maximum
width. A subsequence of SortC in which all nodes have the same criterion value and which
includes SortC [W − 1] and SortC [W] is called a Border Tie.

Note that the smallest border tie includes at least 2 nodes, i.e. SortC [W − 1] and
SortC [W]. Furthermore, there can exist at most one border tie in a layer. The criterion we
use in border tie merging for the MISP is the same as in SortObj, that is, objective function
value associated with each node.

A merged node in MISP is a “two-sided” over-approximation of all the nodes in the merge:
From one side it over-approximates the states of the merged nodes by forming a super-set of
their states. From the other side, redirecting the in-arcs causes an over-approximation of the
longest path from root to the merged node. The intuition behind this new merge heuristic is
to control the approximation error caused by the merge operation from one side, i.e. the
over-approximation of the length of the partial solution caused by redirecting the in-arcs.
Therefore, if we merge the nodes that have the same objective value (the lengths of their
partial solutions are the same), then we can control the over-approximation error from one
side. Moreover, we reckon that this merging heuristic will be a perfect fit for CDS, since
one of the intuitions behind the design of CDS was to keep the diversity of the states in
layers in a small range so as to control the destructive effect of the merge, that is the other
side of the over approximation in MISP. Therefore, it is expected that coupling these two
heuristics, i.e. BT and CDS, will strengthen the dual bounds obtained via relaxed DDs for
MISP as they decrease the over-approximation error from both sides.

Figure 8 Border Tie merging heuristic where W = 8.

CP 2024

21:12 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

Fig. 8 shows the border tie merge heuristic applied to a layer with 12 nodes where W = 8.
Note that the first two nodes in the list have the same objective value and therefore form a
tie; however, their tie does not play a role in border tie merging heuristic. The border tie
heuristic first identifies the nodes in the border tie (i.e., {F, G, H, I}) and merges them into
a single merged node called Mtie. The nodes on the left side of the border tie are unchanged
and remain in the layer. Finally, the nodes in the tail of the list, if there exist any, will be
merged into Mtail. Note the following special cases regarding the tail of the sorted list may
arise:

1. the tail is empty: in this case, Mtie is the only one merged node in the relaxed layer,

2. the tail comprises a single node: Mtie is the only one merged node in the relaxed layer,
and the single tail node is unchanged and remains in the relaxed layer.

6 Computational Results

In this section, we present the results of computational experiments with two different
dynamic variable ordering approaches (i.e. MIN, CDS) and two merge heuristics (i.e. SO,
BT) and their combinations for the MISP. First, we assess the performance of the different
strategy combinations with respect to the time-bound trade-off when compiling relaxed
DDs. Second, we investigate the effects of these strategy choices for compiling relaxed DDs
on the performance of an otherwise standard DD-based branch-and-bound algorithm [3].
For performing the experiments, we created nine instance sets, each of which contains 20
randomly generated graphs with 100 vertices. The instances set differ with respect to the
graph density which ranges from 0.9 to 0.1. We implemented all approaches in the Julia
programming language and ran the experiments on a Windows machine with 16GB RAM
and an 11th Gen Intel(R) Core(TM) i7-11800H processor with 2.30 GHz.

6.1 Results on Dual Bounds

Fig. 9 shows the average dual gaps provided by using the strategy combinations (MIN,SO),
(CDS, SO), (MIN,BT), and (CDS, BT) in relaxed DDs for the MISP on graph instances with
different densities. The gaps reported in this figure are computed as dual bound−optimum

optimum × 100
and then averaged over the 20 instances. Moreover, all relaxed DDs are compiled using
given maximum widths W ∈ {50, 100, 200, 500, 1000}; the X-axis displays the time needed
for compiling the relaxed DDs in ms. Every sub-plot in this figure corresponds to one density.
In the sub-plots red-dashed, blue-solid, green-solid, and black-solid curves show (MIN,SO),
(CDS, SO), (MIN,BT), and (CDS, BT) performances, respectively.

From the figure it is clear that all combinations involving our new heuristics, i.e. (CDS,
SO), (MIN,BT), and (CDS, BT), provide stronger dual bounds than the standard strategy,
i.e. (MIN,SO). Looking into the plots reveals that as the density decreases, the instances
become harder and the performance difference between standard method and our proposed
methods increases, meaning that for harder instances our strategies provide significantly
stronger bounds. Moreover, (CDS, BT) which is the combination of our proposed dynamic
variable ordering with our proposed merge heuristic clearly outperforms the other approaches.

M. Nafar and M. Römer 21:13

20 40 60 80 100

10

20

30

40

50

60

GA
P

%

(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.9

20 40 60 80 100 120 140
10

20

30

40

50

60

70 (CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.8

0 20 40 60 80 100 120 140 160
10

20

30

40

50

60
(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.7

0 25 50 75 100 125 150 175 200
10

20

30

40

50

60

70

GA
P

%

(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.6

0 50 100 150 200

20

30

40

50

60 (CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.5

0 50 100 150 200 250

20

30

40

50

60 (CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.4

0 50 100 150 200 250 300 350
Time (millisecond)

15
20
25
30
35
40
45
50
55

GA
P

%

(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.3

0 100 200 300 400
Time (millisecond)

15

20

25

30

35

40
(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.2

0 100 200 300 400 500 600
Time (millisecond)

10

15

20

25

30
(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.1

Figure 9 Gap-time performance of different strategies when being used in compiling relaxed DDs.

Table 1 shows the average size of the relaxed DDs built using different strategy com-
binations for a given maximum width W = 1000. A comparison between (MIN,SO) and
(CDS,SO) supports one of the intuitions behind the design of CDS, i.e. reducing the de-
structive effect of merge operation by controlling the diversity of the states (subproblems /
induced subgraphs). While MIN, which was designed to decrease the width of the layers,
provides smaller relaxed DDs than those compiled using CDS, the relaxed DDs compiled
via CDS are stronger, hinting at the successful control of the diversity of the states when
using CDS. Another interesting observation is that when comparing the combinations that
include BT to those that do not is the significant drop of the sizes of the DDs compiled
having BT as their merge heuristic. It shows that although the DDs compiled using this
heuristic contain more merged nodes (in some layers they can contain up to two merged
nodes whereas in SortObj every layer has at most 1 merged node) and one might expect
worse bound quality, it actually results in stronger dual bounds (see Fig. 9).

6.2 Performance within a DD-based Branch-and-Bound
We now present the results of implementing the proposed variable ordering and merge
heuristics and their combinations in a DD-based branch-and-bound algorithm proposed in [3].
In the implemented branch-and-bound algorithm, the primal bounds are obtained using
restricted DDs. For the compilation of the restricted DDs, no advanced approaches are
used: The variables are ordered only once according to their degree in the original graph

CP 2024

21:14 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

Table 1 Average size of relaxed DDs compiled via different methods with W = 1000.

Density Average DD Size (nodes)
(MIN,SO) (CDS,SO) (MIN,BT) (CDS,BT)

0.1 73513 76190 58059 59069
0.2 71324 73190 56393 57173
0.3 68484 69470 54020 55253
0.4 65088 66580 51870 53049
0.5 62053 63355 50456 51356
0.6 58946 59661 47715 47505
0.7 55058 56040 43606 45629
0.8 50808 51466 35334 36025
0.9 45770 47272 37578 41607

in increasing order; the node selection follows the SortObj heuristic. We are dealing with a
relatively pure implementation of a DD-based branch-and-bound that does not make use of
advanced techniques but basically follows the description in the monograph [1]. All relaxed
and restricted DDs in the branch-and-bound are compiled with a maximum width W = 100.

Table 2 Average solution time of DD-based branch-and-bound for strategy combinations.

Density Time (Seconds)
(MIN,SO) (CDS,SO) (MIN,BT) (CDS,BT)

0.1 872.3 821.9 445.8 320.9
0.2 126.4 94.0 85.5 56.4
0.3 31.0 26.8 24.3 17.0
0.4 10.1 9.3 8.6 5.9
0.5 4.3 3.5 4.0 2.5
0.6 1.92 1.70 1.57 1.4
0.7 1.11 1.01 0.93 0.89
0.8 0.73 0.70 0.81 0.66
0.9 0.60 0.56 0.65 0.61

Table 2 shows the average solution time of DD-based branch-and-bound using relaxed
DDs constructed via different strategies (all instances are solved to optimality). The results
reveal that all combinations involving our new strategies are able to reduce the solution time
considerably in comparison to the baseline combination (MIN,SO).

Table 3 Solution time reduction in percent of different strategy combination in comparison to
the baseline, i.e. (MIN,SO).

Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average
(CDS,SO) 5.7 25.61 13.42 8.4 18.3 11.4 9.0 4.1 6.6 11.43
(MIN,BT) 48.8 32.3 21.4 15.6 6.2 18.2 16.2 -10.9 -8.3 15.52
(CDS,BT) 63.2 55.3 45.2 42.0 40.6 25.52 19.8 9.5 -1.6 33.30

Table 3 summarizes the solution time reductions of each combination per density
compared to the baseline. As becomes clear from the table, using our proposed heuristics
individually, i.e. (CDS,SO) and (MIN,BT), reduces the solution time by 11% and 15% on

M. Nafar and M. Römer 21:15

average. However, if we use both heuristics at the same time, i.e. (CDS,BT), the solution
reduction increases to 33% on average. In all cases, as the hardness of the instances increases
(that is, the graph density decreases), the superiority of the proposed methods becomes more
significant, such that the best combination, i.e. (CDS,BT), has a solution time reduction of
more than 50% compared to the baseline for instances with density 0.2 and 0.1.

Table 4 Average number of sub-problems solved in the DD-based branch-and-bound for different
strategy combinations.

Density Node Size (Sub-problem Solved in B&B)
(MIN,SO) (CDS,SO) (MIN,BT) (CDS,BT)

0.1 63880 39051 34183 17150
0.2 15454 6623 9088 3816
0.3 5906 3053 3830 1700
0.4 2609 1581 1814 802
0.5 1452 796 947 450
0.6 702 397 440 266
0.7 399 256 283 195
0.8 291 210 245 173
0.9 247 174 224 178

Another interesting aspect of a branch-and-bound algorithm is the number of subproblems
that are solved until an optimal solution is reached. We report the average number of the
subproblems solved in the DD-based branch-and-bound using different methods in Table 4.

Table 5 Reduction of the number of the solved subproblems in percent in DD-based branch-and-
bound using different strategy combinations in comparison to the base line, i.e. (MIN,SO).

Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average
(CDS,SO) 38.8 57.1 48.3 39.4 45.2 43.3 35.7 27.7 29.6 40.6
(MIN,BT) 46.4 41.1 35.1 30.4 34.7 37.3 29.0 15.8 9.3 31.0
(CDS,BT) 73.1 75.30 71.2 69.2 68.9 62.0 51.0 40.3 27.6 59.8

Table 5 summarizes the reduction of the number of subproblems solved in DD-based
branch and bound using different combinations of strategies. A comparison between the
methods shows that although (MIN,BT) have better dual gaps and better solution times
than (CDS,SO), it requires more subproblems to be solved. This can be a sign that in a
DD-based branch-and-bound, having good quality bounds is not the only factor for having a
good solution time: If it was the only factor, we should have seen a smaller number of solved
subproblems for (MIN,BT) as it gives better bounds than (CDS,SO). This suggests that
perhaps the reason for this can be one of the intuitions behind the design of CDS, which was
to move in the direction of having solutions that potentially have more intersections with
optimal solutions. However, when combining CDS and BT, the algorithm has the benefits of
the both, i.e. good quality bounds and a reduction of the number of solved subproblems by
50% on average.

To put our results into perspective, let us briefly mention the results reported in [4],
where the authors compare the impact of their RL-based dynamic variable ordering strategy
to the MIN strategy within a standared DD-based branch-and-bound algorithm for solving
randomly generated MISP instances with a density of 0.3 and between 200 and 300 vertices.
It turns out that for instances that could be solved to optimality, the reduction in solution

CP 2024

21:16 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

time of their best approach compared to MIN is around 10%, whereas our reductions amount
to 13.42%, 21.4%, and 45.2% for (CDS,SO), (MIN,BT), and (CDS,BT) combinations,
respectively, for instances with density 0.3.

7 Conclusion

In this paper, we propose a novel dynamic variable ordering and a new merge heuristic
for the top-down compilation of relaxed DDs for the MISP. The dynamic variable ordering
strategy relies on the information obtainable from induced subgraphs of the original graph
and the merge heuristic merges the nodes among which there is a tie regarding their partial
objective value. Our computational experiments from applying the new strategies to a set of
randomly generated graph instances containing 100 vertices with densities ranging from 0.9
to 0.1 (20 instances per density) show that our proposed strategies, individually, are capable
of significantly strengthening the dual bounds compared to the standard strategy from the
literature where this strengthening becomes more significant when our methods are combined.
For the harder instances, i.e. lower densities, the performance gap is higher in our favor. In
the end, the implementation of the resulting relaxed DDs into a DD-based branch-and-bound
reduces the solution time by 33% on average and more than 50% on harder instances.

References
1 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John Hooker. Decision Diagrams

for Optimization. Springer Publishing Company, Incorporated, 1st edition, 2016.
2 David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John Hooker. Branch-and-bound

based on decision diagrams. In Decision Diagrams for Optimization, pages 95–122. Springer,
2016.

3 David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John N Hooker. Discrete
optimization with decision diagrams. INFORMS Journal on Computing, 28(1):47–66, 2016.

4 Quentin Cappart, David Bergman, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Augustin Parjadis. Improving variable orderings of approximate decision diagrams using
reinforcement learning. INFORMS Journal on Computing, 34(5):2552–2570, 2022.

5 Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improv-
ing optimization bounds using machine learning: Decision diagrams meet deep reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1443–1451, 2019.

6 Margarita P Castro, Andre A Cire, and J Christopher Beck. Decision diagrams for discrete
optimization: A survey of recent advances. INFORMS Journal on Computing, 34(4):2271–2295,
2022.

7 Mathijs de Weerdt, Robert Baart, and Lei He. Single-machine scheduling with release times,
deadlines, setup times, and rejection. European Journal of Operational Research, 291(2):629–
639, 2021.

8 Nikolaus Frohner and Günther R Raidl. Merging quality estimation for binary decision diagrams
with binary classifiers. In International Conference on Machine Learning, Optimization, and
Data Science, pages 445–457. Springer, 2019.

9 Nikolaus Frohner and Günther R Raidl. Towards improving merging heuristics for binary
decision diagrams. In Learning and Intelligent Optimization: 13th International Conference,
LION 13, Chania, Crete, Greece, May 27–31, 2019, Revised Selected Papers 13, pages 30–45.
Springer, 2020.

10 Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic and efficient framework
for mdd-based optimization. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pages 5243–5245, 2021.

M. Nafar and M. Römer 21:17

11 John N Hooker. Job sequencing bounds from decision diagrams. In International Conference
on Principles and Practice of Constraint Programming, pages 565–578. Springer, 2017.

12 Matthias Horn, Johannes Maschler, Günther R Raidl, and Elina Rönnberg. A*-based construc-
tion of decision diagrams for a prize-collecting scheduling problem. Computers & Operations
Research, 126:105125, 2021.

13 Mohsen Nafar and Michael Römer. Lookahead, merge and reduce for compiling relaxed decision
diagrams for optimization. In International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 74–82. Springer, 2024.

14 Mohsen Nafar and Michael Römer. Using clustering to strengthen decision diagram bounds
for discrete optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 8082–8089, 2024.

15 Augustin Parjadis, Quentin Cappart, Louis-Martin Rousseau, and David Bergman. Improving
branch-and-bound using decision diagrams and reinforcement learning. In Integration of
Constraint Programming, Artificial Intelligence, and Operations Research: 18th International
Conference, CPAIOR 2021, Vienna, Austria, July 5–8, 2021, Proceedings 18, pages 446–455.
Springer, 2021.

16 Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. Peel-and-bound: Generating
stronger relaxed bounds with multivalued decision diagrams. In Christine Solnon, editor, 28th
International Conference on Principles and Practice of Constraint Programming, CP 2022,
July 31 to August 8, 2022, Haifa, Israel, volume 235 of LIPIcs, pages 35:1–35:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CP.2022.35.

17 Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. Improved peel-and-bound:
Methods for generating dual bounds with multivalued decision diagrams. Journal of Artificial
Intelligence Research, 77:1489–1538, 2023.

CP 2024

https://doi.org/10.4230/LIPIcs.CP.2022.35

Learning Lagrangian Multipliers for the Travelling
Salesman Problem
Augustin Parjadis #

Polytechnique Montréal, Canada

Quentin Cappart # Ñ

Polytechnique Montréal, Canada

Bistra Dilkina # Ñ

Center for Artificial Intelligence in Society, University of Southern California, Los Angeles, CA, USA

Aaron Ferber # Ñ

Center for Artificial Intelligence in Society, University of Southern California, Los Angeles, CA, USA

Louis-Martin Rousseau # Ñ

Polytechnique Montréal, Canada

Abstract
Lagrangian relaxation is a versatile mathematical technique employed to relax constraints in an
optimization problem, enabling the generation of dual bounds to prove the optimality of feasible
solutions and the design of efficient propagators in constraint programming (such as the weighted
circuit constraint). However, the conventional process of deriving Lagrangian multipliers (e.g., using
subgradient methods) is often computationally intensive, limiting its practicality for large-scale or
time-sensitive problems. To address this challenge, we propose an innovative unsupervised learning
approach that harnesses the capabilities of graph neural networks to exploit the problem structure,
aiming to generate accurate Lagrangian multipliers efficiently. We apply this technique to the
well-known Held-Karp Lagrangian relaxation for the traveling salesman problem. The core idea
is to predict accurate Lagrangian multipliers and to employ them as a warm start for generating
Held-Karp relaxation bounds. These bounds are subsequently utilized to enhance the filtering process
carried out by branch-and-bound algorithms. In contrast to much of the existing literature, which
primarily focuses on finding feasible solutions, our approach operates on the dual side, demonstrating
that learning can also accelerate the proof of optimality. We conduct experiments across various
distributions of the metric traveling salesman problem, considering instances with up to 200 cities.
The results illustrate that our approach can improve the filtering level of the weighted circuit global
constraint, reduce the optimality gap by a factor two for unsolved instances up to a timeout, and
reduce the execution time for solved instances by 10%.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Theory of
computation → Constraint and logic programming; Computing methodologies → Machine learning

Keywords and phrases Lagrangian relaxation, unsupervised learning, graph neural network

Digital Object Identifier 10.4230/LIPIcs.CP.2024.22

Supplementary Material
Software (Code source): https://github.com/corail-research/learning-hk-bound

Acknowledgements We sincerely thank the anonymous reviewers for their constructive feedback.
Their comments helped us better position our contribution within the field. Furthermore, their
insights have provided guidance for our future research directions.

© Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, and Louis-Martin Rousseau;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:augustin.parjadis-de-lariviere@polymtl.ca
mailto:quentin.cappart@polymtl.ca
https://qcappart.github.io/
https://orcid.org/0000-0002-8742-0774
mailto:dilkina@usc.edu
https://viterbi.usc.edu/directory/faculty/Dilkina/Bistra
https://orcid.org/0000-0002-6784-473X
mailto:aferber@usc.edu
https://aaron-ferber.github.io/
https://orcid.org/0000-0002-7422-0044
mailto:louis-martin.rousseau@polymtl.ca
https://hanalog.ca/
https://orcid.org/0000-0001-6949-6014
https://doi.org/10.4230/LIPIcs.CP.2024.22
https://github.com/corail-research/learning-hk-bound
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Learning Lagrangian Multipliers for the Travelling Salesman Problem

1 Introduction

The travelling salesman problem (TSP) has been the subject of extensive research and has
broad practical applications. Due to its NP-hard nature, numerous approaches have been
proposed to solve it efficiently, ranging from exact to heuristic methods. Exact solvers not
only need to identify the optimal solution but also to prove that it is optimal, often via a
dual bound. Held and Karp (1970) [25] proposed a relaxation that provides strong dual
bounds in practice. For instance, these bounds are used in Concorde, the state-of-the-art
TSP solver [3] or in the design of global constraints in constraint programming [6, 5]. An
associated branch-and-bound algorithm using this relaxation was subsequently proposed by
Held and Karp (1971) [26], which enabled the optimality proof for several open benchmark
instances at the time of its publication. Briefly, this algorithm leverages a combinatorial
structure, referred to as minimum 1-tree, that can serve as a valid relaxation for the TSP
and obtain dual bounds. However, this algorithm is based on a few heuristic design choices
which have an important impact on the tightness of the relaxation. One is the procedure to
generate the bounds from Lagrangian multipliers (explained in the next section), which can
be assimilated as a hill-climbing algorithm. Starting from initial bounds, the algorithm refines
the bound iteratively with local perturbations until convergence. There are two drawbacks
to this process. First, it requires several potentially costly iterations to get accurate bounds,
and second, it only converges to local minima. Our research hypothesis is that this procedure
can be improved thanks to a learning-based approach. The idea is to train a model in
an unsupervised fashion with similar TSP instances and to use it to predict Lagrangian
multipliers that can be used to obtain a valid dual bound instead of computing it iteratively.
In the field of constraint programming, Lagrangian decomposition has been also considered
to provide dual bounds [8, 23], but without resorting to a learning-based component. We
also note that other algorithms have been considered to improve the bounds for arborescence
problems in constraint programming [28].

Machine learning has helped guide heuristic components in branch-and-bound [31, 38,
22, 57], constraint programming [13], SAT solving [49], local search [56], and non linear
optimization [20]. We refer to the survey of Bengio et al. (2021) [7] for an extended literature
review on this topic. Most of such works operate on the branching decisions (e.g., selecting the
next variable to branch on) or on the primal side. However, learning to improve the quality
of relaxations by means of better dual bounds has been much less considered in the literature.
To our knowledge, this has only been addressed for the restricted use case of solvers based on
decision diagrams [11], for combinatorial optimization over factor graphs [15] (e.g., see the
max-sum labeling problem [54] and soft arc consistency [14] for relevant applications) and
for learning relaxations of integer linear programs [1]. This last work is contemporaneous to
ours.

Additionally, recent work in decision-focused learning (DFL) [40] has approached settings
where the problem formulation is not fully specified at the time of decision-making. Thus,
these approaches train gradient-based deep learning models to predict the missing components,
with a key component being to determine how to train the deep learning model to improve the
downstream decision quality. As training for deep networks is done using gradient descent,
the difficulty lies in deriving methods for differentiating the output of the optimization
model with respect to its predicted inputs. Our proposed approach seeks to predict the
parameters of the Held-Karp relaxation such that the resulting relaxed solution provides a
dual bound as tight as possible. This is achieved by deriving gradients for the relaxation
to learn parameters that directly optimize the related bound. Differentiation has been

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:3

successfully deployed for quadratic programs [2], linear programs [55, 18, 39], mixed integer
linear programs [19], MAXSAT [52], and blackbox discrete optimization [44, 42], among
others discussed in these surveys [46, 35]. However, this approach is the first to consider
using differentiable optimization together with learning to improve the filtering of a global
constraint.

Coming back to the TSP, the design of learning-based solving approaches has also
sparked a great interest in the research community [16, 34, 37]. In an industrial context,
this methodology is relevant for practitioners who are solving similar problem instances
every day and want to leverage historical decisions, e.g. in last-mile package delivery [41].
Graph neural networks (GNN) is a neural architecture [47, 33] widely considered for the
TSP [29]. More generally, GNNs also play a crucial role in the success of applying deep
learning to combinatorial optimization [30, 12]. They allow for the extraction of rich hidden
representations by successively aggregating the weights of neighboring nodes in a graph, on
which many combinatorial problems are defined.

Based on this context, the contribution of the paper is an approach based on unsupervised
learning and graph neural networks to generate appropriate Lagrangian multipliers for the
TSP, which are then used to improve the Held-Karp relaxation. We highlight that, compared
to most of the related work, we do not learn a primal heuristic but a learning-based strategy
that derives valid and tight dual bounds. Additionally, we integrate this mechanism inside a
branch-and-bound algorithm with domain filtering and constraint propagation [5] to improve
exact TSP solving. Experiments are carried out on three distributions of metric TSPs and
the results show that our approach can improve the filtering level of the weighted circuit
global constraint, reduce the optimality gap by a factor of two for unsolved instances up to a
timeout, and reduce the execution time for solved instances by 10%.

The following section briefly overviews the Held-Karp relaxation principle for the TSP.
Building upon this, we next describe the proposed learning approach for generating bounds
through unsupervised learning on the Lagrangian multipliers of the Held-Karp relaxation.
Finally, we discuss the training and integration of dual-bound generation within a branch-
and-bound algorithm to evaluate their impact.

2 Held-Karp Lagrangian Relaxation

Finding optimal solutions for large TSP instances requires sophisticated approaches due to the
combinatorial explosion of the solution space. With branch-and-bound, optimization bounds
are employed to prune the search tree and accelerate the search, allowing solvers to prove
optimality without exploring the entire tree. To achieve this, the Held-Karp relaxation [25]
offers a robust dual bound based on a variant of minimum spanning trees.

Let G = (V, E) be a complete graph with a cost attached to each edge. A minimum
1-tree is a minimum spanning tree of G\{1} to which we add the node 1 along with the two
cheapest edges connecting it to the tree. We note that the choice of node 1 is arbitrary,
depending on the labeling of V . A minimum 1-tree can be obtained by solving the integer
program presented in Equations (1) to (5). Constraints (2) and (3) define the 1-tree structure
and Constraint (4) enforces the elimination of sub-tours. This problem involves finding a
minimum spanning tree that can be solved in O(E log V) by Kruskal’s algorithm. Here, δ(v)
denotes the edges containing node v ∈ V and µe, νe denotes the two nodes linked by an edge
e ∈ E. We use ce ∈ R to represent the cost of an edge e ∈ E, and xe ∈ {0, 1} is the decision
variable indicating whether edge e is included in the 1-tree.

CP 2024

22:4 Learning Lagrangian Multipliers for the Travelling Salesman Problem

min
∑
e∈E

cexe (1)

s. t.
∑

e∈δ(1)
xe = 2 (2)

∑
e∈E

xe = |V | (3)∑
µe∈S
νe∈S
µe<νe

xe ≤ |S| − 1 ∀S ⊂ V \{1} ∧ |S| ≥ 3 (4)

xe ∈ {0, 1} ∀e ∈ E (5)

Let us note that every tour in G is a 1-tree, and if a minimum 1-tree is a tour, it is an
optimal solution to the TSP. Therefore any minimum 1-tree is a valid relaxation for the TSP,
which is an interesting property to leverage. However, a solution of this integer program is
not ensured to be a tour. To do so, a new set of constraints must be enforced.∑

e∈δ(v)

xe = 2 ∀v ∈ V \{1} (6)

These constraints force each node to have only two edges, an incoming and an outgoing
one, and turn the problem in finding a minimum-cost Hamiltonian cycle, which is NP-hard.
To obtain a valid 1-tree relaxation efficiently, one can then move these constraints (one for
each node) into the Objective (1) and penalize their violations with associated Lagrangian
multipliers θv ∈ R for each v ∈ V \{1}. The updated objective function is as follows.

min
∑
e∈E

cexe −
∑

v∈V \{1}

θv

(
2 −

∑
e∈δ(v)

xe

)
(7)

Intuitively, each node having a degree other than two will be penalized. An optimal 1-tree
relaxation can be found by optimizing over the θv variables. To do so, an iterative approach
has been proposed by Held and Karp [25, 26]. The idea is to adjust the Lagrangian multipliers
θ step-by-step to build a sequence of 1-trees which provides increasingly better bounds. An
overview of the process is proposed in Figure 1.

G(V, E)

∀v ∈ V : θv = 0

HK relaxation 1-tree Tθ(c′) Bound HK(θ)
∀(i, j) ∈ E :

c′
i,j = ci,j + θi + θj

∀v ∈ V : θv = C ×
(
2 − deg(v)

)

Figure 1 Approach of Held and Karp [25, 26] - Iterative process for improving θ multipliers.

First, an initial minimum 1-tree is computed by finding a minimum spanning tree on
G\{1} and adding the two cheapest edges incident to node 1. If the optimal 1-tree is a tour,
it corresponds to the optimal TSP solution. Otherwise, some constraints are penalized as at
least one node has a degree greater than 2. The main idea of Held and Karp [25, 26] is to
penalize such nodes by modifying the cost ci,j of edges (i, j) ∈ E, based on the values of θi

and θj (i.e., the multipliers of adjacent nodes). Let c′
i,j ∈ R be the modified costs. They are

computed as follows.

c′
i,j = ci,j + θi + θj ∀(i, j) ∈ E (8)

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:5

A property proved by Held and Karp [25, 26] is that the optimal TSP tour is invariant
under this perturbation, whereas the optimal 1-tree is not. This gives room to improve the
solution by finding better multipliers. Equation (9) proposes a standard choice to compute
the multipliers, where C ∈ R is an arbitrary constant and deg(v) denotes the degree of node
v ∈ V in the current 1-tree.

θv = C ×
(
2 − deg(v)

)
∀v ∈ V (9)

Finally, a new minimum 1-tree is computed from the graph with the updated costs c′
i,j .

We note this 1-tree as Tθ(c′) where c′ = {c1, . . . , c|E|} is the set of all modified costs, and
θ = {θ1, . . . , θ|V |} is the set of all multipliers. We also use the notation cost

(
Tθ(c′)

)
to refer

to the total cost of the 1-tree. This process is reiterated, and a new 1-tree Tθ(c′) is obtained
until no improvement is obtained (i.e., when a local minimum is reached). The cost of the
optimal 1-tree gives a lower bound on the objective value as follows.

HK(θ) = cost
(
Tθ(c′)

)
− 2

|V |∑
i=1

θi (10)

This bound, HK(θ), is commonly referred to in the literature as the Held-Karp bound. This
is a valid lower bound as if the related solution is not a tour, the optimal TSP tour will have
a higher value. Otherwise, the optimal tour would have been obtained as tours are 1-trees.
This approach is typically incorporated into a branch-and-bound algorithm, using this bound
to prune the search. While computing a 1-tree is generally computationally efficient, the
iterative adjustment of the θ multipliers can be computationally expensive. Our contribution
is dedicated to mitigating this issue thanks to an unsupervised learning process.

Example. Figure 2 illustrates the Held-Karp relaxation for a graph with an optimal TSP tour
value of 62 (a). A 1-tree is computed on the original graph without Lagrangian multipliers,
which yields a bound of 50 (b). Considering Equation (9) with C = 2, we obtain the following
multipliers: {θ1 : 0, θ2 : 4, θ3 : 0, θ4 : −2, θ5 : −2}. The corresponding penalized 1-tree with
Lagrangian multipliers modifying the edge costs provides a bound of 59, which is tighter (c).

1

2

3

4

5

20

22

15
40

14

10

16 7

12
5

(a) Initial TSP instance. The
optimal cost is 62.

1

2

3

4

5

20

22

15
40

14

10

16 7

12
5

(b) Minimum 1-tree under the
initial costs. Lower bound ob-
tained is 50 (gap of 20%).

1

2

3

4

5

18

20

11
38

12

14

16 9

14
9

θ2 : 4

θ1 : 0

θ3 : 0 θ4 : −2

θ5 : −2

(c) Minimum 1-tree with modified
costs. Lower bound obtained is 59
(gap of 5%).

Figure 2 Illustration of a single iteration of Held-Karp relaxation for an arbitrary TSP instance.

In constraint programming, the weighted circuit constraint [4] ensures that a set of
variables Y forms a Hamiltonian circuit on a graph, while also satisfying a specified condition
on the total cost z of the circuit. This can be intuitively understood as a conjunction of

CP 2024

22:6 Learning Lagrangian Multipliers for the Travelling Salesman Problem

a circuit constraint [36] and a second constraint enforcing the circuit to be lower than a
threshold. Briefly, the standard filtering algorithms for this constraint typically involve: (1)
identifying edges that must be included in any feasible solution, (2) eliminating edges that
cannot be part of any solution, and (3) determining the minimum possible value of the cost
threshold z. This information is then used for narrowing the domains of the variables Y .
Given that establishing bounds consistency for this constraint is NP-hard, Benchimol et
al. (2012) [5] proposed a filtering algorithm that uses relaxations of the weighted circuit
constraint, specifically leveraging the Held-Karp relaxation. A stronger relaxation, such as a
1-tree that provides a tighter lower bound, allows for more extensive filtering. This in turn
improves the efficacy of the weighted circuit propagator, which is the focus of this paper.
More broadly, this propagator is part of the cost-based filtering family, which utilizes valid
bounds for effective filtering. Generally, a tighter bound leads to more efficient filtering
within this framework.

3 Learning Held-Karp Multipliers

The Held-Karp bound HK(θ) has two interesting properties: (1) it can be parameterized
thanks to the θ Lagrangian multipliers, and (2) it is always valid, meaning it will never exceed
optimal TSP cost. Both properties open the opportunity to use a learning-based approach
to compute the bound. To do so, we propose to build a model Φw : G(V, E) → R|V | able to
directly predict all the θ multipliers for a TSP instance given as input (i.e., a graph). The
model is parameterized with p parameters w = {w1, . . . , wp}. There are two benefits to this.
First, it eliminates parts of the iterative process of Held and Karp [25] depicted in Figure 2
and saves execution time. Second, it allows us to obtain tighter bounds. The process is
illustrated in Figure 3.

G(V, E)

∀v ∈ V : θv = Φw(G)

HK relaxation 1-tree Tθ(c′) Bound HK(θ)
∀(i, j) ∈ E :

c′
i,j = ci,j + θi + θj

∇wHK(θ) with θ = Φw(G)

Figure 3 Our contribution - Unsupervised learning approach to obtain θ multipliers through
backpropagation.

The goal is to find model parameters w yielding the highest possible bound. This corres-
ponds to a maximization problem that can be solved by gradient-based optimization. The
obtained bound is provably valid, regardless of the trained model’s accuracy thanks to the
second property. We consider this a major strength of our contribution, as obtaining guaran-
tees with machine learning for combinatorial optimization is known to be a challenge [35].
We formulate the bound maximization problem and its gradient below.

max
w

HK
(
Φw(G)

)
7−→ ∇wHK(Φw(G)) (11)

However, computing the gradient of this expression is not trivial, as the bound is obtained
by means of the 1-tree combinatorial structure Tθ(c′) (see Equation (10)). As the tree is
parameterized by θ, the chain rule can be applied to clarify the dependencies between model
parameters w and Lagrangian multipliers θ.

∇wHK
(
Φw(G)

)
= ∂HK(Φw(G))

∂θ
× ∂θ

∂w
(12)

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:7

The right term corresponds to the differentiation of the predictive neural network model and
is easily obtained by backpropagation. However, the left term requires to differentiate the
expression depicted in Equation (10) for all θi with i ∈ V .

∂HK(.)
∂θ

=
∂cost

(
Tθ(c′)

)
∂θ

− 2
∂
∑|V |

i=1 θi

∂θ
(13)

The cost of the 1-tree (i.e., cost
(
Tθ(c′)) corresponds to the weighted sum of the selected edges

(i.e., variables xi,j for each (i, j) ∈ E). The cost c′
i,j defines the weights.

∂HK(.)
∂θ

=
∂
(∑∈E

(i,j) c′
i,jxi,j

)
∂θ

− 2
∂
∑|V |

i=1 θi

∂θ
(14)

Let us consider a specific multiplier θi associated to node i ∈ V and let us unroll the cost as
c′

i,j = ci,j + θi + θj (see Equation (8)). The partial derivative of θi is non-zero only for the
node itself and its adjacent edges, i.e. (i, j) ∈ δ(i).

∂HK(.)
∂θi

=
∂
∑∈δ(i)

(i,j) (ci,j + θi + θj)xi,j

∂θi
− 2∂θi

∂θi
(15)

=
∂
∑∈δ(i)

(i,j) θixi,j

∂θi
− 2∂θi

∂θi
(16)

=
∑

(i,j)∈δ(i)
xi,j − 2 (17)

This gives the partial derivative for each θi and allows us to maximize a bound obtained by
a neural network directly with gradient ascent. Interestingly, this signal is non-zero when
the degree of the node is different than 2 in the 1-tree. This is aligned with the intuition
that we want to adjust the multipliers of conflicting nodes.

We note that the derivative obtained is correct only locally and not globally. Indeed, the
cost function in Equation (13) is an optimization problem consisting in finding a minimum
1-tree (i.e., setting variables x) from the current costs c′ and that the values of x will depend
on θ. We experimented with a globally valid derivative by computing all insertion and
replacement costs to integrate them in the derivative of x, but this resulted latter in an
unstable training, likely because of the non-convexity of the optimization landscape. For such
a reason, we carried out a subgradient ascent on a locally valid derivative instead. Variations
of variables x are then taken into account in the subsequent gradient ascent step. We have
empirically observed increased stability as a result of this procedure.

The training procedure is formalized in Algorithm 1. It gives as output the parameters w

of the trained neural network Φw. We note that this training loop can be easily improved
with standard techniques in deep learning, such as mini-batches or using another gradient-
based optimizer, such as Adam [32]. Unlike gradient descent, we aim to maximize the
bound, explaining the + term at Line 10. We highlight that the training is unsupervised
as it does not require ground truth on known tight bounds for training the model, nor the
corresponding Lagrangian multipliers. In each iteration of the algorithm, the values of x will
change as the multipliers (θ) are updated. This explains how the variations of x are implicitly
considered during each subgradient ascent step. Finally, two aspects of the methodology
require clarification: the architecture of the network Φw and how the training set D is built.
Both are discussed in the following sections.

CP 2024

22:8 Learning Lagrangian Multipliers for the Travelling Salesman Problem

Algorithm 1 Training phase from an input graph G(V, E).
1: ▷ Pre: D is the set of instances used for training.
2: ▷ Pre: Φw is the differentiable model to train.
3: ▷ Pre: w are randomly initialized parameters.
4: ▷ Pre: K is the number of training epochs.

5: for k from 1 to K do
6: G := SampleFromTrainingSet(D)
7: θ := Φw(G)
8: Tθ(c′) := HeldKarpRelaxation(G, θ)
9: HK

(
θ
)

:= cost
(
Tθ(c′)

)
− 2

∑|V |
i=1 θi

10: w := w + ∇wHK
(
Φw(G)

)
11: end for
12: return w

3.1 Training Set Construction

The training is carried out from a dataset D consisting of a set of graphs G(V, E) serving as
TSP instances. The graphs can either be obtained from historical problem instances (e.g.,
previous routing networks and costs for a delivery company) or randomly generated. Each
graph has six features fi for each node i ∈ V and three features ki,j for each edge (i, j) ∈ E.
The features we used are presented in Table 1 and in Table 2. We have incorporated the
features we believe are important for this task, but we have not analyzed the individual
impact of each feature. One strength of deep neural networks is their ability to learn to
disregard features that are not beneficial for the task. Although most of the features are
relatively standard, k2

i,j and k3
i,j introduce the notions of mandatory and forbidden edges.

In the context of a branch-and-bound algorithm, some decision variables are fixed after
branching operations. An edge is mandatory if it must be part of the TSP solution (i.e.,
xi,j = 1) and it is forbidden if it cannot be in the solution (i.e., xi,j = 0). This information
is crucial as we plan to compute bounds several times during a branch-and-bound execution,
with the intention of leveraging partial solutions to get better bounds.

Table 1 Summary of the features on nodes i for each i ∈ V used in an input graph G(V, E).

Symbol Formalization Description

f1
i , f2

i ∈ R2 xPos(i), yPos(i) 2-dimensional coordinate of the node.
f3

i ∈ R 1
|V |

∑|V |
j=1 ∥coord(i) − coord(j)∥2 Average euclidean distance with the other nodes.

f4
i ∈ R minj ̸=i (f3

1 , . . . , f3
j , . . . , f3

|V |) Distance to the nearest node in the graph.
f5

i ∈ N+ deg(i) Degree in terms of incoming and outgoing edges.
f6

i ∈ {0, 1} 1 iff i = 1, 0 otherwise Indication if it is the excluded node in G\{1}.

A direct observation is that there are no fixed edges at the root node of a branch-and-
bound tree, and consequently, for none of the instances in the training set. This causes a
distributional shift between instances used for the training (only at the root node) and the
ones occurring at the testing phase (also inside the branch-and-bound tree). To address
this limitation, we propose to enrich the training set with partially solved TSP instances
extracted from explored branch-and-bound nodes. In practice, it is done by fixing a threshold
k ∈ N+ on the number of nodes to consider in the training set. This makes the computation
tractable as it avoids considering all the nodes of an exponentially sized tree search.

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:9

Table 2 Summary of the features on edges (i, j) for each (i, j) ∈ E used in an input graph
G(V, E).

Symbol Formalization Description

k1
i,j ∈ R ci,j The cost of the edge.

k2
i,j ∈ {0, 1} 1 iff (i, j) is forbidden, 0 otherwise Binary value indicating if the edge is forbidden.

k3
i,j ∈ {0, 1} 1 iff (i, j) is mandarory, 0 otherwise Binary value indicating if the edge is mandatory.

3.2 Graph Neural Network Architecture
A TSP instance exhibits a natural graph structure. For this reason, we built the model
Φw with a graph neural network [47, 33] (GNN). This architecture has been widely used
in related works for the TSP, thanks to their ability to handle instances of different size,
to leverage node and edge features, etc. In its standard version, GNNs are dedicated to
computing a vector representation of each node of the graph. Such a representation is
commonly referred to as an embedding. The embedding of a specific node is computed by
iteratively transforming and aggregating information from the neighboring nodes. Each
aggregation operation is referred to as a layer of the GNN and involves weights that must be
learned. This operation can be performed in many ways, and there exist in the literature
different variants of GNNs. An analysis on the performances of various architectures is
proposed by Dwivedi et al. (2023) [17]. Our model is based on the edge-featured graph
attention network [53] which is a variant of the well-known graph attention network [50]
dedicated to handle features on the edges. The whole architecture is differentiable and is
trained with backpropagation.

Let G(V, E) be the input graph, fi ∈ R6 be a vector concatenating the 6 features of a
node i ∈ V , and ki,j ∈ R3 be a vector concatenating the three features of an edge (i, j) ∈ E.
The GNN architecture is composed of L layers. Let hl

i ∈ Rd be a d-dimensional vector
representation of a node i ∈ V at layer l ∈ {1, . . . , L}, and let hl+1

i ∈ Rd′ a d′-dimensional
vector representation of i at the next layer. The inference process consists in computing the
next representation (hl+1

i) from the previous one hl
i for each node i. The first representation

is set with the initial features of the node, i.e. h1
i = fi for each i ∈ V . The computation is

formalized in Equations (18) to (20), where wl
1 and wl

2 are two weight tensors that need to
be trained for each layer.

hl+1
i = ReLU

(∑
j∈N (i)

αl
(i,j)w

l
1hl

j

)
∀i ∈ V ∧ ∀l ∈ {1, . . . , L − 1} (18)

αl
(i,j) = Softmax

(
LeakyReLU

(
wl

2 ×
(
hl

i

∥∥ki,j

∥∥hl
j

)))
(19)

θv = FCNN
(
h

|L|
i

)
∀i ∈ V (20)

Equation (18) shows the message passing operation in a layer. Each node i aggregates
information of all its neighbors N (i). The aggregation is subject to parameterized weights
wl

1 and a self-attention score αl
i,j . This score allows the model to put different weights on the

incoming messages from neighboring nodes. We note that the attention integrates information
about the node itself (hl

i), its neighbor (hl
j), and the features attached to the adjacent edge

(ki,j). Such information is concatenated (.∥.) into a single vector. Non-linearities are added
after each aggregation and the final node embeddings h

|L|
i are given as input to a fully-

connected neural network (FCNN) outputing the corresponding θi multiplier for each i ∈ V .
The GNN has 3 graph attention layers with a hidden size of 32 and the fully-connected
neural network has 2 layers with 32 neurons.

CP 2024

22:10 Learning Lagrangian Multipliers for the Travelling Salesman Problem

4 Experimental Evaluation

The goal of the experiments is to evaluate the efficiency of the approach to speed-up a
TSP solver based on branch-and-bound and constraint programming [5]. To do so, the
learned bounds are integrated into the Held-Karp relaxation used by the weighted circuit
constraint [4] and are used to filter unpromising edges. The model is used only for the 10
first nodes expanded in the branch-and-bound tree (parameter k). We refer to HK for the
standard solver of Benchimol et al. (2012) [5] and to HK+GNN for the one we introduce. We
also considered a version using the learned multipliers but without the Held-Karp refinement
(i.e., GNN without HK) but the results showed that the bounds obtained only with the
learned multipliers alone were far from the optimal bound and are not included in the next
experiments. Combining the learned bounds with the Held-Karp refinement is thus required.

4.1 Experimental Protocol
This section outlines the experimental protocol employed to evaluate the efficacy and reliability
of our approach. It details the specific datasets, hardware configurations, software tools, and
performance metrics used across various testing scenarios.

4.1.1 Datasets
Five datasets of different complexity are considered. They correspond to variants of the
metric TSP (i.e., the graphs are complete and the distances are euclidean) on which the
cities are localized with different patterns.
1. Random100 (and 200): the cities (100 or 200) are uniformly generated in the [0, 1]2 plan.
2. Clustered100 (and 200): inspired by Fischetti and Toth (1989) [21], five clusters are

uniformly generated in the [0, 1]2 plan. Then, the cities (100 or 200) are uniformly
generated inside the 0.1-radius circles for each cluster.

3. Hard: introduced by Hougardy and Zhong (2021) [27], these 50 instances ranging from 52
to 199 cities have been generated to have a large integrality gap and are provably hard to
solve for branch-and-bound methods.

A test set of 50 instances is built for each configuration and is used for evaluation. For
the last dataset, as it is relatively small, only 6 instances are taken for evaluation.

4.1.2 Implementation
The graph neural network has been implemented with deep graph library [51] and Pytorch [43].
During the training, the minimum spanning trees have been computed with NetworkX [24].
We used the C++ implementation of Benchimol et al. (2012) [5] for the branch-and-
bound solver. The interface between the python and the C++ code has been done with
native functions from both languages. The solver used to compute the optimal solution is
Concorde [3]. The implementation and the datasets used are released on Github1.

4.1.3 Training
The training phase corresponds to the execution of Algorithm 1. A specific model is trained
for the five configurations. The training sets for Random and Clustered have 100 instances
sampled from the given generating scheme. For the Hard dataset, 40 instances uniformly

1 https://github.com/corail-research/learning-hk-bound

https://github.com/corail-research/learning-hk-bound

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:11

sampled from the 50 available instances are taken. For each instance, 10 subgraphs are
generated (parameter k) and are added to the training set. They correspond to partially
solved instances that could be found inside the branch-and-bound tree. We highlight that
we do not need to label the training instances with known multipliers as the learning is
unsupervised. Training time is limited to 4 hours on a AMD Rome 7502 2.50GHz processor
with 64GB RAM. No GPU has been used. Models are trained with a single run and we
observed the convergence of the loss function on a validation set of 20 instances. The Adam
optimizer with a learning rate of 10−3 has been used.

4.1.4 Hyperparameters
The branch-and-bound has been configured with the standard settings and most of the
hyperparameters follow the recommended values. No hyperparameter tuning has been
carried out due to our limited resources. We think that our results can be improved with
a more thorough calibration (e.g., slightly changing the number of layers), but as our goal
was not to build the most efficient neural network but rather to show the promise of using
them to get valid multipliers, we have not carried out this operation. A notable exception is
the threshold k on the maximum number of nodes which has an important impact on the
performances. We tested values in {1, 5, 10, 20, 50} and selected k = 10 as it provided the
best results and trade-off between accuracy and computation time.

4.1.5 Evaluation Metrics
Five metrics are reported in the results: (1) the execution time to prove the optimality of a
solution, (2) the number of instances solved to optimality, (3) the percentage of edges filtered
before branching through the propagation, (4) the optimality gap for unsolved instances, and
(5) the primal-dual integral. This last metric measures the convergence of the dual bound
and the primal bound over the whole solving time [10]. At each iteration, we record the best
primal and dual bounds during the whole solving process. Then, the primal-dual integral
value consists in taking the area between the two resulting curve obtained. Intuitively, the
smaller the better. Each instance is solved only once per experiment as no randomness is
involved in the execution. We clarify that our objective is not to compete with Concorde,
which is capable of optimally solving all the instances we consider. Instead, our goal is to
enhance the filtering of the weighted circuit constraint. This constraint can then be used
to more complex variants of the Traveling Salesman Problem, such as the TSP with time
windows.

4.2 Empirical Results
This section presents the results obtained from our experimental analysis. These findings are
compiled to provide a quantitative evaluation of the performance and effectiveness of our
approach under different scenarios. Each experiment is designed to test a specific hypothesis.
Finally, a discussion about current limitations are proposed.

4.2.1 Main Results: Quality of the Learned Bounds
Table 3 summarizes the results for HK and HK+GNN on the five datasets. Values are averaged
for each configuration. First, we can observe that our approach gives consistently better
results on all the metrics compared to the baseline. As expected, it provides better filtering on
the edges. This is reflected by a higher number of solved instances, a reduced execution time,

CP 2024

22:12 Learning Lagrangian Multipliers for the Travelling Salesman Problem

and a reduced optimality gap for unsolved instances. The primal-dual integral confirms that
tighter dual bounds are obtained during the search. Second, we notice that the improvements
on the Hard dataset are more modest. This can be explained by the fact that they are
designed to be challenging. It is consequently more difficult to get improvements on these
ones. We note that the time savings obtained with our methods could not provide to a
potential faster calculation of the multipliers. The reason is that the cost of computing the
multipliers is higher with our method as we combine both the prediction and the iterative
HK process (HK+GNN). The speed-up is consequently due to an improved filtering.

Table 3 Comparison of our approach (HK + GNN) with the standard branch-and-bound of
Benchimol et al. (HK). The primal bound is 2% above the optimal solution cost computed with
Concorde. The statistics considered are: the execution time up to a timeout of 1,800 seconds (Time),
the number of instances solved to optimality with proof (# solved), the primal-dual integral (PDI),
the percentage of edges filtered (Filt.) and the optimality gap for unsolved instances (Gap). The
relative improvement compared to the baseline is also depicted.

Configuration
Branch-and-bound with standard Held-Karp (HK) Branch-and-bound with our approach (HK+GNN)

Time (sec.) # solved PDI Filt. (%) Gap (%) Time (sec.) # solved PDI Filt. (%) Gap (%)

Random100 559 41/50 1127k 75.9 0.88 497 (- 11%) 46/50 (+ 5) 965k (- 14%) 77.7 (+ 2%) 0.48 (- 45%)

Random200 1800 0/50 4.71m 67.8 1.82 1800 0/50 (+ 0) 4.26m (- 10%) 70.6 (+ 4%) 0.59 (- 68%)

Clustered100 643 38/50 497k 17.7 0.19 590 (- 8%) 40/50 (+ 2) 470k (- 5%) 20.3 (+ 15%) 0.08 (- 58%)

Clustered200 1800 0/50 922k 9.9 0.68 1800 0/50 (+ 0) 690k (- 25%) 12.6 (+27%) 0.38 (- 44%)

Hard 1800 0/6 9.59M 6.4 0.32 1800 0/6 (+ 0) 9.36M (- 2%) 6.5 (+1%) 0.31 (- 3%)

4.2.2 Analysis: Focus on Individual Instances
Figure 4 provides an analysis of the optimality gap for the three hardest configurations by
means of scatter plots. Each dot corresponds to a specific instance. When a dot is upper
than the diagonal, it means that our approach provided better results than the baseline.
Unlike the previous experiments, it provides insights about the robustness of the method.
For the majority of the instances, our approach gave better or similar results, except for one
instance in the Hard dataset.

(a) Results on Random200. (b) Results on Clustered200. (c) Results on Hard.

Figure 4 Scatter plots comparing the optimality gap (%) for HK and HK + GNN on the three
hardest configurations.

4.2.3 Analysis: Addressing the Optimality Proof
This next experiment evaluates the ability of proving the optimality of a solution only once
this solution has been found. Concretely, instead of taking a reasonable upper bound of
2%, we assume that the optimal solution has been found and we use it as a perfect upper

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:13

bound. The idea is to mimic results achieved by a good primal heuristic and to close the
search by proving the optimality of the solution provided with this information. Results
are summarized in Table 4. In such a situation, the improvements with the baseline are
still positive, especially for the largest and hardest configurations. This shows the potential
of learning dual bounds to accelerate optimality proofs and the synergies with approaches
operating in the primal side.

Table 4 Comparison of our approach (HK + GNN) with the standard branch-and-bound of
Benchimol et al. (HK) for optimality proof. Compared to Table 3, the primal bounds are now the
cost of the optimal solution.

Configuration
Branch-and-bound with standard Held-Karp (HK) Branch-and-bound with our approach (HK+GNN)

Time (sec.) # solved PDI Filt. (%) Gap (%) Time (sec.) # solved PDI Filt. (%) Gap (%)

Random100 209 48/50 591k 92.1 0.05 203 (- 3%) 48/50 (+ 0) 544k (- 7%) 92.2 (+ 0%) 0.05 (- 0%)

Random200 1800 0/50 4.44m 85.6 1.16 1800 0/50 (+ 0) 4.11m (- 7%) 89.1 (+ 4%) 0.43 (- 62%)

Clustered100 112 48/50 103k 25.4 0 110 (- 1%) 49/50 (+ 1) 100k (- 3%) 25.5 (+ 0%) 0 (- 0%)

Clustered200 1800 0/50 713k 14.5 0.43 1800 0/50 (+ 0) 644k (-9%) 16.8 (+15%) 0.30 (- 30%)

Hard 1800 0/6 7.59M 17.8 0.26 1800 0/6 (+ 0) 7.02M (- 7%) 18.0 (+ 1%) 0.19 (- 24%)

4.2.4 Analysis: Generalization Ability

This last experiment analyzes how the models are able to generalize to new configurations,
either for a higher number of cities or with another generation scheme. Concretely, we
considered four configurations (Random100, Random200, Clustered100 and AllDataset, the
latter being trained on the instance of all datasets) and evaluated them on Clustered200.
The idea of this experiment is to compare the generalization ability of models trained on
specific datasets (Random100, Random200 and Cluster100). Results on AllDataset provide an
idea of the best performances that the specific models can achieve. Results are presented in
Table 5. Although the performance of the specific model is not reached, we observe that the
models trained on the other distributions are still able to outperform the standard model.
Training a model on all datasets (AllDataset) allows to improve upon out-of-distribution
models but does not achieve the performance of the specialized model. This confirms the
intuitive benefit to know beforehand the distribution of the instances to solve.

Table 5 Analysis of the generalization. The different models are used to solve Clustered200
graphs.

Model Branch-and-bound with HK+GNN

PDI Filt. (%) Gap (%)

Clustered200 690k 12.6 0.38

HK without GNN 922k 9.9 0.68

Clustered100 817k 11.1 0.54
Random100 845k 10.4 0.61
Random200 784k 11.3 0.49
AllDataset 722k 12.0 0.45

CP 2024

22:14 Learning Lagrangian Multipliers for the Travelling Salesman Problem

4.2.5 Discussion: Application to Non-Euclidean Instances

Previous experiments have shown promising results for various configurations of metric TSPs.
However, it is important to note that the performance on other types of TSP instances,
such as asymmetric or non-Euclidean TSPs, which are known to be more challenging, has
not been evaluated in this paper. Consequently, it remains uncertain whether the observed
performance will extend to these more complex instances. Exploring this further constitutes
an interesting avenue for future research. Such an analysis can be facilitated using the
instances available in TSPLib [45], providing a robust framework for testing under more
diverse conditions.

4.2.6 Discussion: Considering the Training Time

As is common practice with machine learning tools, our framework assumes that we can
train a model offline before its deployment to solve new instances, ideally following a similar
distribution. In such cases, the training time can be disregarded, as it will be amortized
over a large number of future instances. However, this assumption does not hold in all
realistic scenarios where training time cannot be separated from solving time. In such
situations, while our approach remains applicable, the time required to train the model
must be considered and can be prohibitive. To address this, an initial analysis could involve
monitoring how the learned bounds improve with training time. This would provide a more
detailed understanding and help identify when training can be stopped to proceed directly to
the solving phase. Intuitively, this approach may offer slightly less effective filtering compared
to HK+GNN, but it is aimed to result in a reduced total execution time.

5 Conclusion

Learning-based methods have been extensively considered to provide approximate solutions
to combinatorial optimization problems, such as the travelling salesman. However, learning
to obtain dual bounds has been less considered in the literature and is much more challenging
as there is no trivial way to ensure that the obtained bounds are valid. This paper introduces
an unsupervised learning approach, based on graph neural networks and the Held-Karp
Lagrangian relaxation, to tackle this challenge. The core idea is to predict accurate Lagrangian
multipliers and employ them as a warm start for generating Held-Karp relaxation bounds.
These bounds are subsequently used to enhance the filtering level of the weighted circuit
global constraint and improve the performances of a branch-and-bound algorithm. The
empirical results on different configurations of the TSP showed that the learning component
can significantly improve the algorithm. We believe that the methodology can be integrated
into existing CP solvers. To do so, one will need to refactor the weighted circuit global
constraint implemented in the related solver to add the learned bounds. Although centered
on the TSP, we note that weighted circuit global constraint could be used for other, and
more challenging, TSP variants including time windows or time-dependent costs. Analyzing
how these variants can be handled efficiently is part of our future work. Also, we believe that
the methodology can be easily reused for other propagators using Lagrangian relaxation,
such as for the AtMostNValue [9] or for the general framework of CP-based Lagrangian
relaxation [48].

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:15

References
1 Ahmed Abbas and Paul Swoboda. DOGE-train: Discrete optimization on GPU with end-to-end

training. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):20623–20631,
2024.

2 Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pages 136–145. JMLR.org, 2017.

3 David L. Applegate, Robert E. Bixby, Vašek Chvatál, and William J. Cook. The Traveling
Salesman Problem: A Computational Study. Princeton University Press, 2006. URL: http:
//www.jstor.org/stable/j.ctt7s8xg.

4 Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints in CHIP. Mathem-
atical and computer Modelling, 20(12):97–123, 1994.

5 Pascal Benchimol, Willem-Jan van Hoeve, Jean-Charles Régin, Louis-Martin Rousseau, and
Michel Rueher. Improved filtering for weighted circuit constraints. Constraints, 17:205–233,
2012.

6 Pascal Benchimol, Jean-Charles Régin, Louis-Martin Rousseau, Michel Rueher, and Willem-
Jan Van Hoeve. Improving the Held and Karp approach with constraint programming. In
International Conference on Integration of Artificial Intelligence (AI) and Operations Research
(OR) Techniques in Constraint Programming, pages 40–44. Springer, 2010.

7 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

8 David Bergman, Andre A Cire, and Willem-Jan van Hoeve. Improved constraint propagation
via lagrangian decomposition. In International Conference on Principles and Practice of
Constraint Programming, pages 30–38. Springer, 2015.

9 Frédéric Berthiaume and Claude-Guy Quimper. Local alterations of the lagrange multipliers
for enhancing the filtering of the atmostnvalue constraint. In International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pages
68–83. Springer, 2024.

10 Timo Berthold. Measuring the impact of primal heuristics. Operations Research Letters,
41(6):611–614, 2013.

11 Quentin Cappart, David Bergman, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Augustin Parjadis. Improving variable orderings of approximate decision diagrams using
reinforcement learning. INFORMS Journal on Computing, 34(5):2552–2570, 2022.

12 Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and
Petar Velickovic. Combinatorial optimization and reasoning with graph neural networks.
Journal of Machine Learning Research, 24(130):1–61, 2023. URL: http://jmlr.org/papers/
v24/21-0449.html.

13 Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Andre A Cire. Combining reinforcement learning and constraint programming for combinatorial
optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 3677–3687, 2021.

14 Martin C Cooper, Simon De Givry, Martı Sánchez, Thomas Schiex, Matthias Zytnicki, and
Tomas Werner. Soft arc consistency revisited. Artificial Intelligence, 174(7-8):449–478, 2010.

15 Yanchen Deng, Shufeng Kong, Caihua Liu, and Bo An. Deep attentive belief propagation:
Integrating reasoning and learning for solving constraint optimization problems. Advances in
Neural Information Processing Systems, 35:25436–25449, 2022.

16 Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the TSP by policy gradient. In International Conference on
the Integration of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 170–181. Springer, 2018.

CP 2024

http://www.jstor.org/stable/j.ctt7s8xg
http://www.jstor.org/stable/j.ctt7s8xg
http://jmlr.org/papers/v24/21-0449.html
http://jmlr.org/papers/v24/21-0449.html

22:16 Learning Lagrangian Multipliers for the Travelling Salesman Problem

17 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023.

18 Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science,
68(1):9–26, 2022.

19 Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. MIPaaL: Mixed integer
program as a layer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 1504–1511, 2020.

20 Aaron M Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra
Dilkina, and Yuandong Tian. SurCo: Learning linear surrogates for combinatorial nonlinear
optimization problems. In International Conference on Machine Learning, pages 10034–10052.
PMLR, 2023.

21 Matteo Fischetti and Paolo Toth. An additive bounding procedure for combinatorial optimiz-
ation problems. Operations Research, 37(2):319–328, 1989.

22 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

23 Minh Hoàng Hà, Claude-Guy Quimper, and Louis-Martin Rousseau. General bounding mech-
anism for constraint programs. In Principles and Practice of Constraint Programming: 21st
International Conference, CP 2015, Cork, Ireland, August 31–September 4, 2015, Proceedings
21, pages 158–172. Springer, 2015.

24 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using NetworkX. Technical report, Los Alamos National Lab. Los Alamos, NM
(United States), 2008.

25 Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18(6):1138–1162, 1970. URL: http://www.jstor.org/stable/
169411.

26 Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning
trees: Part II. Mathematical Programming, 18(1):6–25, 1971. doi:10.1007/BF01584070.

27 Stefan Hougardy and Xianghui Zhong. Hard to solve instances of the euclidean traveling
salesman problem. Mathematical Programming Computation, 13:51–74, 2021.

28 Vinasetan Ratheil Houndji, Pierre Schaus, Mahouton Norbert Hounkonnou, and Laurence
Wolsey. The weighted arborescence constraint. In International Conference on AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages
185–201. Springer, 2017.

29 Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
the travelling salesperson problem requires rethinking generalization. Constraints, 27(1-2):70–
98, 2022.

30 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
pages 6351–6361, 2017.

31 Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning
to branch in mixed integer programming. Proceedings of the AAAI Conference on Artificial
Intelligence, 30(1), February 2016. doi:10.1609/aaai.v30i1.10080.

32 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

33 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL: https:
//openreview.net/forum?id=SJU4ayYgl.

34 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2019.

http://www.jstor.org/stable/169411
http://www.jstor.org/stable/169411
https://doi.org/10.1007/BF01584070
https://doi.org/10.1609/aaai.v30i1.10080
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:17

35 James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end
constrained optimization learning: A survey. In Zhi-Hua Zhou, editor, Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4475–4482.
International Joint Conferences on Artificial Intelligence Organization, August 2021. Survey
Track. doi:10.24963/ijcai.2021/610.

36 Jena-Lonis Lauriere. A language and a program for stating and solving combinatorial problems.
Artificial intelligence, 10(1):29–127, 1978.

37 Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

38 Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. TOP, 25(2):207–236,
2017.

39 Jayanta Mandi, Emir Demirovic, Peter J Stuckey, and Tias Guns. Smart predict-and-optimize
for hard combinatorial optimization problems. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 1603–1610, 2020.

40 Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns,
and Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark
and future opportunities. arXiv preprint arXiv:2307.13565, 2023.

41 Daniel Merchán, Jatin Arora, Julian Pachon, Karthik Konduri, Matthias Winkenbach, Steven
Parks, and Joseph Noszek. 2021 Amazon last mile routing research challenge: Data set.
Transportation Science, 2022.

42 Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit MLE: backpropagating
through discrete exponential family distributions. Advances in Neural Information Processing
Systems, 34:14567–14579, 2021.

43 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

44 Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek.
Differentiation of blackbox combinatorial solvers. In International Conference on Learning
Representations, 2019.

45 Gerhard Reinelt. TSPLIB — A traveling salesman problem library. ORSA journal on
computing, 3(4):376–384, 1991.

46 Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and
Thibaut Vidal. A survey of contextual optimization methods for decision-making under
uncertainty. European Journal of Operational Research, 2024.

47 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

48 Meinolf Sellmann. Theoretical foundations of CP-based lagrangian relaxation. In International
Conference on Principles and Practice of Constraint Programming, pages 634–647. Springer,
2004.

49 Daniel Selsam, Matthew Lamm, B Benedikt, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a SAT solver from single-bit supervision. In International Conference on
Learning Representations, 2018.

50 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. International Conference on Learning Represent-
ations, 2018. URL: https://openreview.net/forum?id=rJXMpikCZ.

51 Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

CP 2024

https://doi.org/10.24963/ijcai.2021/610
https://openreview.net/forum?id=rJXMpikCZ

22:18 Learning Lagrangian Multipliers for the Travelling Salesman Problem

52 Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. SATNet: Bridging deep learning
and logical reasoning using a differentiable satisfiability solver. In International Conference on
Machine Learning, pages 6545–6554. PMLR, 2019.

53 Ziming Wang, Jun Chen, and Haopeng Chen. EGAT: Edge-featured graph attention network.
In Igor Farkaš, Paolo Masulli, Sebastian Otte, and Stefan Wermter, editors, Artificial Neural
Networks and Machine Learning – ICANN 2021, pages 253–264, Cham, 2021. Springer
International Publishing.

54 Tomas Werner. A linear programming approach to max-sum problem: A review. IEEE
transactions on pattern analysis and machine intelligence, 29(7):1165–1179, 2007.

55 Bryan Wilder. Melding the data-decisions pipeline: Decision-focused learning for combinatorial
optimization. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019.

56 Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. NeuroLKH: Combining deep learn-
ing model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem.
Advances in Neural Information Processing Systems, 34:7472–7483, 2021.

57 Kaan Yilmaz and Neil Yorke-Smith. A study of learning search approximation in mixed
integer branch and bound: Node selection in SCIP. AI, 2(2):150–178, April 2021. doi:
10.3390/ai2020010.

https://doi.org/10.3390/ai2020010
https://doi.org/10.3390/ai2020010

Constraint Programming Model for Assembly Line
Balancing and Scheduling with Walking Workers
and Parallel Stations
Xavier Pucel1 #

ONERA, ONERA DTIS, Toulouse, Université de Toulouse, France

Stéphanie Roussel #

ONERA, ONERA DTIS, Toulouse, Université de Toulouse, France

Abstract
In the context of aircraft assembly lines, increasing the production rate and decreasing the operating
costs are two important, and sometimes contradictory, objectives. In small assembly lines, sharing
production resources across workstations is a simple and efficient way to reduce operating costs.
Therefore, workers are not assigned to a unique workstation but can walk between them. On the
other side, paralleling workstations is an efficient way to increase the production rate. However,
the combination of both strategies create complex conditions for tasks to access the production
resources. This paper addresses the problem of allocating tasks to workstations and scheduling them
in an assembly line where workers can freely walk across workstations, and where workstations can
be organized in parallel. We model this novel problem with Constraint Programming. We evaluate
it on real world industrial use cases coming from aircraft manufacturers, as well as synthetic use
cases adapted from the literature.

2012 ACM Subject Classification Applied computing → Computer-aided manufacturing

Keywords and phrases Constraint Programming, Assembly Line, Balancing and Scheduling, Parallel
Workstations, Walking Workers

Digital Object Identifier 10.4230/LIPIcs.CP.2024.23

Supplementary Material Dataset (Assembly Line Design): https://doi.org/10.57745/EWXS9O [29]

Funding This work was funded by the European Union’s NextGenerationEU program, and the
national France Relance program. It was coordinated by the Directorate General of Civil Aviation
(DGAC) in France.

1 Introduction

The production of complex artefacts such as aircraft is commonly performed by the use
of assembly lines. In an assembly line, several workstations are dedicated to a subset of
assembly tasks, and the artefacts being built travel from one workstation to another until
they are complete. As each workstation is always occupied by one instance of the artefact,
all instances visit the workstations in the same order, and travel at the same time, after a
fixed time interval called the cycle time. Since the cycle time is the duration between the
completion of two instances of the artefact, its value is of critical importance for business
purposes, and a lot of research aims at improving (i.e. minimizing) its value for all sorts of
production systems.

A natural way to improve the production rate, without modifying the artifact design,
is simply to add more workstations. Since the same amount of work is divided in a larger
number of workstations, each workstation has less tasks and complete them faster, thus

1 Corresponding author

© Xavier Pucel and Stéphanie Roussel;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xavier.pucel@onera.fr
https://orcid.org/0000-0001-8747-0889
mailto:stephanie.roussel@onera.fr
https://orcid.org/0000-0001-7033-555X
https://doi.org/10.4230/LIPIcs.CP.2024.23
https://doi.org/10.57745/EWXS9O
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 CP Model for ALBS with Walking Workers and Parallel Stations

decreasing the cycle time. The main drawback of adding workstations is that it occupies more
space in the factory and may not always be possible. Furthermore, even when it is possible,
the cost of creating a new workstation can be another obstacle. While in large assembly lines
each workstation has its dedicated equipment and operators, this is not necessarily the case
in smaller assembly lines, where it is possible for operators to travel, and equipment to be
transferred, across workstations. In this context, adding a new workstation can be much
cheaper if expensive equipment does not need to be duplicated.

Another way to increase the production rate is to act on the artefact flow, and in particular
to extend a production stage with parallel workstations. The requirement of having each
task confined to a single workstation then translates to weaker temporal constraints, and it
even allows the cycle time to be smaller than the duration of some tasks. It also has the
drawback of occupying more space in the factory since more routes must be cleared for the
artifacts to travel. Moreover, parallel workstations with shared resources can create complex
situations in terms of conflicting access by tasks to resources. These conditions are precisely
the highlight of this paper.

In this paper, inspired by an industrial assembly line for small aircraft, we address the
problem of increasing the production rate, and use it to evaluate different assembly line
structures (number of stages, number of parallel workstations), with a predefined amount of
resources. More precisely, our assembly line model has the following features:

Minimizing the assembly duration.
The number and layout of workstations is an input of the problem. The layout specifies
the number of serial stages, and the number of parallel duplicate workstations in each
stage.
Each workstation has different zones (e.g. inside or outside of the aircraft, front or rear,
etc.), and each task occupies one or more zones. Two tasks that occupy the same zone
cannot be performed simultaneously.
Workers can walk freely across workstations. The travel time between workstations is not
accounted for, as it is considered negligible with respect to the work time.
Each worker has one specific skill, and each task requires a given number of workers with
each skill (including zero). At each instant a worker can only perform one task, which
means tasks compete with one another for accessing workers. As we have walking workers,
this competition occurs not only inside workstations, but also across workstations.
As parallel workstations allow for tasks longer than the cycle time, such a long task
can compete with itself for accessing workers. More precisely, two instances of the task
performed on two parallel workstations, but shifted by only one cycle, overlap, and
thus require twice the amount of workers. This aspect is original, and is explained and
illustrated in detail.
In the problem output, in addition to the smallest possible cycle time, each assembly task
is assigned to a unique workstation (or rather a stage in the case of parallel workstations),
and is given start and end dates. Moreover, tasks are not preemptive.

We can summarize the contribution of this work as follows:
we address a novel extension of the Assembly Line Balancing (ALB) problem in which we
schedule all tasks, some resources can walk between stations and stations can be parallel;
we propose a Constraint Programming (CP) model for this problem ;
we present results associated with data coming from an aircraft manufacturer, which
show the applicability of the approach;

X. Pucel and S. Roussel 23:3

we experiment on public benchmarks that we have adapted to our hypotheses: some cor-
responding to aircraft assembly lines and the others based on public Resource-Constrained
Project Scheduling Problem (RCPSP) instances.

This paper is organized as follows. First the state of the art is reviewed in Section 2,
around the ALB and RCPSP variants, and constraint programming in the aeronautics
industry. Second, a more detailed account of the assembly line is provided in Section 3,
and in particular how parallel workstations behave, and how it impacts the competition
for resources between tasks. The CP model is then described in Section 4 along with an
illustrative example. Finally, Section 5 relates our experiments on both academic benchmarks
and industrial examples. We describe perspectives of this work in Section 6.

2 Related Work

The work presented in this paper can be compared with two well known optimisation
problems: the Assembly Line Balancing (ALB) problem and the Resource-Constrained Project
Scheduling Problem (RCPSP). ALB essentially deals with assigning tasks to workstations [11].
In particular, the Simple Assembly Line Balancing Problem version 2 (SALB2) aims at
minimizing the cycle time given a list of tasks, a list of workstations and precedence constraints
between tasks. However, in a classical ALB problem, tasks are only assigned to workstations,
but are not scheduled, i.e. they are not assigned a start and end date.

A family of variants of ALB addresses assembly lines where some workstations perform
the same tasks in parallel. More precisely, the assembly line is composed of a series of stages,
each stage contains one or several parallel workstations. Each product goes through each
stage in order, but only on one workstations at each stage. Using parallel workstations helps
decreasing the cycle time, but requires more resources. Parallel ALB approaches minimize
either the cycle time or total cost associated to workstations, and assign tasks to workstations,
but do not schedule them [12, 3, 4, 16].

In a classical RCPSP, given a list of tasks, precedence constraints between tasks, a list of
resources and a consumption relation between tasks and resources, the problem is to assign
a start date and an end date to each task so as to minimize the total work time [18]. The
main difference with ALB is that the work is not divided among synchronized workstations.
However, by reasoning on start and end dates, it supports a precise management of resources.
Our approach can be seen as an extension of RCPSP with workstations, work zones in each
workstation, and cumulative resources shared across workstations. This is how we could
evaluate our approach on the PSPlib benchmark [19].

The RCPSP enjoys a vast amount of variants [15]. Among them is the Multi-Skill RCPSP,
in which workers have one or several skills that are required for executing tasks. Our approach
does not feature this aspect. Each worker has a unique skill, and a set of n workers with a
particular skill can be directly modeled as a renewable resource with a capacity equal to n.

There are many extensions of ALB that incorporate RCPSP aspects. Resource Con-
strained ALB (RCALB) accounts for the resources deployed on each workstation and for how
tasks use resources [2, 13, 7], much like RCPSP cumulative resources, or [1] that supports
multi-mode RCPSP constraints. In RCALB, resources are assigned to a single workstation,
which differs from our approach where resources are shared across workstations.

The variant of Multi-Manned ALB resembles RCALB, except in the case of Walking
Workers. These approaches have many common points with ours and are detailed in a
dedicated section 2.1. ALB and RCPSP have been combined in other ways described in [8].

CP 2024

23:4 CP Model for ALBS with Walking Workers and Parallel Stations

Multi-Model ALB models assembly lines where several types of product are manufactured.
In this variant, many approaches not only assign tasks to workstations but also schedule
them. [24] has a list of tasks with precedence constraints in order to assemble a set of
products. Tasks are scheduled on workstations accounting for precedence, equipment, surface
and buffers, but completely ignores possible future tasks. In [25] the problem is modified
to consider cyclic schedules, in which the list of tasks is expected to be repeated, and the
concept of cycle time appears again, event though the assembly line is not pulsated. [21]
also computes cyclic schedules for multi-model assembly lines, however the products advance
on a treadmill and workstations are not separated and organized into stages.

Some variants of the ALB problem support walking workers. In [32] workers can move
from one station to another, and the time to travel between stations is accounted for under a
form similar to the Traveling Salesman Problem. However, tasks are not scheduled inside
each station. [10] addresses mixed model assembly lines and assigns workers to workstations.
However, the assignment of tasks to workstations is predefined as input.

2.1 Multi-manned ALB with Walking Workers
An important family of variants of ALBP concerns Multi-manned ALB (MMALBP). Some
of these variants model the workers needed to perform tasks in a way similar to how tasks
use resources in a RCPSP, much like this paper does. As a consequence, many approaches
in this family not only assign tasks to workstations, but also schedule their start and end
dates in order to ensure that the tasks assigned to each worker are feasible, both in volume
and precedence. In addition, some of these variants have walking workers that travel across
workstations. Many of these variants bear significant similarities with our work.

[14] proposes Mixed Integer Linear Programming (MILP) models for MMALB. Each
worker is assigned to a station, and each task is assigned to both a workstation and a worker,
and is scheduled inside its station. Workers cannot travel to another workstation, and
working zones and parallel workstations are not modelled.

[30] addresses MMALBP with walking workers. Each worker can travel to a predefined
set of stations (possibly all), and each station can host several workers at once. Each task
is assigned to a station and a worker, and is scheduled inside its station. It only differs
with this work in that working zones, and more importantly parallel workstations, are not
accounted for.

[23] describes MMALB with moving workers. Each task has a set of compatible workers,
which models worker skills, and a set of mutually exclusive tasks, which could be used to
model working zones. Each workstation is divided into sides, and each worker is assigned
to at most two sides of a single workstation. Each task requires one or several sides, and is
assigned to a single station, as well as one worker per required side. Tasks are not scheduled
by date, but a partial ordering is computed during optimization. Workers only travel across
sides of a single workstation; furthermore parallel workstations are not modelled in this
paper.

[22] addresses MMALB in production lines where the product does not advance in pulses
from one station to another, but rather advances continuously as on a treadmill. Tasks are
assigned to workers and scheduled inside an envelope called “cycle time” so as to occupy
a bounded region of the treadmill. However, there are no global date boundaries like in
pulsated assembly lines.

[9] defines variable workplaces ALB, in which each workstation has a list of so-called
“mounting positions”, that are gathered into workplaces in a possibly different way at each
workstation. Tasks are assigned to workplaces that must contain the required mounting

X. Pucel and S. Roussel 23:5

WS1,1

WS2,1

WS2,2

WS3,1 WS4,1

stage1 stage2 stage3 stage4

time

Ai

Ai+1

Ai+2

WS1,1 WS2,1 WS3,1 WS4,1

WS1,1 WS2,2 WS3,1

WS1,1 WS2,1

Figure 1 An example of an assembly line with 4 stages and two parallel workstations in the
second stage. The left side depicts the physical layout of the assembly line. The right side depicts
the temporal schedule of several consecutive aircraft. Note that aircraft Ai and Ai+2 go through
workstation WS2,1 while Ai+1 goes through workstation WS2,2. This allows each aircraft to spend
2 cycles in stage 2 without conflict.

positions. Two workplaces cannot overlap on the same workstation. In that work, tasks are
scheduled inside workstations, and it accounts for extra-long tasks (longer than one cycle
time) by splitting them into smaller tasks.

2.2 ALB and RCPSP Applied to Aircraft Manufacturing

The application of operation research techniques to aircraft manufacturing is not novel. In [31]
the problem of scheduling assembly tasks is formulated as a RCPSP problem. Similarly, [5]
addresses the problem of assigning operators and models the assembly line as a RCPSP. [17]
plans the resources for aircraft turnaround operations as an RCPSP problem. However, the
concept of workstation is absent from those studies.

In a more closely related approach, [26] both allocates tasks to workstations and schedules
their executions dates. The model accounts for renewable resources and work zones and scales
up to a large number of tasks. [27] addresses multi-criteria optimization for the preliminary
design of assembly lines. Tasks are both assigned to workstations and scheduled inside them,
and work zones and resources such as machines are accounted for. It introduces specific
types of constraints such as neutralized zones, and skill exclusion. A simplified version of
their use-case was used in the 2023 XCSP3 competition [6]. While they do not account for
parallel workstations, in this paper we modify their use-case in the evaluation section.

3 Aircraft Assembly Line Description

The production systems involved in aircraft construction are complex as they are usually
composed of several factories that can produce one part of the aircraft or assemble several
parts together. Each factory has several key areas: storage, offices, preparation areas,
assembly lines, locker rooms, etc. In this work, we focus on the final assembly line of a
manufacturer of small aircraft. This final assembly line is in charge of assembling the fuselage,
the wings, the propeller and the engine, and of installing electrical and hydraulic systems in
the aircraft.

As done classically in the aeronautics industry, the assembly line we consider here is
composed of several workstations, and is pulsated. In a sequential assembly line, each aircraft
stays a given duration in each workstation before going to the next one or going out of the
line after the final workstation. This duration, called cycle time, and noted Ct, is imposed on
the manufacturer: it is calculated so as to guarantee a certain number of aircraft delivered per

CP 2024

23:6 CP Model for ALBS with Walking Workers and Parallel Stations

month or per year2. A set of assembly tasks on the aircraft is performed on each workstation.
Tasks are not pre-emptive, i.e. no task can be interrupted, and they cannot overlap several
workstations. In fact, no assembly task can be performed while the aircraft moves from one
workstation to the next.

In order to be executed, tasks can require equipment and operators with particular skills.
Each of them is only available in limited quantity, and we represent it through an abstract
cumulative renewable resource. All tools and operators are shared by all the workstations
of the assembly line. If a task requires a shared resource in a given workstation, it impacts
the resource’s available capacity on all other workstations during the task execution. For
instance, if a resource with capacity 1 is required for the first task of the first workstation,
and if this task has a duration equal to 2, then the resource is not available during the two
first time units of each cycle in the entire assembly line.

The aircraft is divided into several zones in which tasks are performed. Two tasks that
occupy the same zone cannot be performed simultaneously on the same workstation. Zones
are represented as renewable resources of capacity 1; however, unlike equipment and operators,
each workstation has its own work zones. This means that two tasks that occupy the same
zone, need to be scheduled either one after another on a single workstation, or on different
workstations. Note that it would be possible to consider zones with capacity greater than 1.

The assembly line considered in this paper features duplicated workstations that operate
in parallel. It is organised as a series of stages, each stage being composed of one or several
identical workstations that operate in parallel. This allows the aircraft to stay longer in
these duplicated workstations. Stages with one workstation behave much like in sequential
assembly lines. However, in a stage with n parallel workstations, each aircraft stays n times
the cycle time on its workstation before heading to the next stage. At each cycle, one aircraft
goes out of each stage and into the next one. For instance, in the assembly line illustrated
in Figure 1, the second stage contains two workstations. When entering the second stage,
each aircraft Ai goes either on workstation WS2,1 or workstation WS2,2 and stays there for
a duration equal to 2 ·Ct in the example. As WS2,1 and WS2,2 are shifted of one cycle time,
there is still an aircraft entering WS3,1 at each cycle.

Parallel duplicate workstations allow the aircraft to stay in a stage for a duration greater
than the cycle time. This allows for tasks longer than the cycle time to be realized. In the
example of Figure 1, stages 1, 3 and 4 last one cycle time, but stage 2 lasts two cycles, so it
can be assigned a task of a duration up to 2 · Ct.

Note that while a stage is physically, or spatially, decomposed into workstations, it would
be misleading to divide the time period an aircraft spends on a stage into time periods called
“workstations”. For example in Figure 1, while stage 2 physically has 2 workstations, and
while aircraft Ai stays two cycles in workstation WS2,1, it would be incorrect to refer to the
first half of this time period stay as “the first workstation of stage 2”, since aircraft Ai will
never travel to workstation WS2,2. Instead, we say that stage 2 is temporally decomposed
into two substages, and stages 1, 3 and 4 are composed of one substage.

To summarize, all substages have the same duration of 1 cycle. The assembly line has
as many substages as it has workstations. At each instant, each workstation is occupied by
exactly one aircraft, and each aircraft is in a different substage of its construction. Each
aircraft goes through all construction substages in the same order, however it does not
necessarily travel through all workstations.

2 More precisely, the long term production rate, or takt, is an objective imposed on the manufacturer.
Our work evaluates whether a factory design can reach an operational cycle time consistent with the
takt under realistic conditions.

X. Pucel and S. Roussel 23:7

Task Duration Zone 1 Zone 2 Resource 1 Resource 2
t1 2 × 2 1
t2 8 × 1
t3 6 ×
t4 2 × 1
t5 2 × ×
t6 4 × 1 1
t7 4 × 1

capa1 = 3 capa2 = 2

t1 t2

t3 t4

t5

t6

t7

Figure 2 Illustration of the simple assembly line problem detailed in Example 2.

WS1,1 WS2,1 WS3,1

stage1 stage2 stage3

(a) First layout, denoted L1.

WS1,1

WS1,2

WS2,1

stage1 stage2

(b) Second layout, denoted L2.

Figure 3 Illustration of two possible layouts for the problem described in Example 2.

Parallel workstations are a useful tool to increase the production rate. They make it
possible to schedule tasks that last more than the cycle time, or conversely to increase the
production rate so that the cycle time is smaller than the longest assembly task, which
is impossible on sequential assembly lines. The drawbacks of parallel workstations are an
increased surface occupation, increased tools and operators requirements, and an increased
number of aircraft under construction, which can be a significant financial constraint.

When combined with walking workers, parallel workstations can create counter-intuitive
situations, where a task seems to use several times its amount of workers. This happens
on stages with duplicated workstations, that are assigned a task longer than the cycle time.
Assume in Figure 1 that a task of length 1.5 · Ct is executed at the start of stage 2, and in
theory only requires 1 worker. When aircraft Ai arrives on workstation WS2,1 the task starts
and one worker starts working on it, for the next 1.5 ·Ct. One Ct later, aircraft Ai+1 arrives
on workstation WS2,2, but the worker is still busy on the aircraft Ai. As a consequence, a
task that would only require one worker in a sequential layout, will in fact need two workers
in the layout of Figure 1 and with a cycle time shorter than its duration. This aspect is
illustrated later in Example 2 and Figure 5.

Our goal is to study the impact of paralleling workstations on the production rate. To
that end, we model the assembly line under several layout assumptions and minimize the
cycle time under constant resource capacity assumptions.

4 Assembly Line Model

This section introduces definitions for our multi-manned assembly line balancing problem
with walking workers and parallel stations. The elements constituting such a problem and
an associated solution are described first. Then, a constraint programming model in the
OPL ([20]) language is detailed, explained and illustrated.

CP 2024

23:8 CP Model for ALBS with Walking Workers and Parallel Stations

4.1 Formal Definitions
▶ Definition 1 (MALBWP). A Multi-manned Assembly Line Balancing problem with Walking
workers and Parallel stations is a tuple (T , nS ,Z,R, Prec, Occ, Cons) where:
T is a set of assembly tasks. Each task t ∈ T is associated with its duration dur t.
nS is the number of stages. S denotes the set [1..nS] of assembly stages, where each stage
can have one or more parallel workstations. For each stage s ∈ S, its number of parallel
workstations (and thus substages) is noted ws. The total number of substages is noted
W =

∑
s∈S ws.

Z is a set of work zones representing the different areas of the aircraft, in which workers
can perform different tasks.
R is a set of resources or tools that are needed to perform certain tasks. Each resource
r ∈ R is associated with its capacity capar .
Prec ⊆ T ×T is the precedence relation between tasks. For each pair of tasks (t1, t2) ∈ Prec,
t2 cannot start until t1 is finished.
Occ ⊆ T × Z is the occupation relation between tasks and zones. (t, z) ∈ Occ means that
task t occupies zone z. Each task can use any number of zones.
Cons ⊆ T × N×R is the resource usage relation between tasks and resources. (t, n, r) ∈
Cons means that task t uses n units of resource r. Each task can use any number of
resources. For each resource r, we denote Consr the set {(t, n)|(t, n, r) ∈ Cons}, i.e. the
weighted set of tasks that consumes r.

This model features two different types of resources. Zones have capacity 1, are specific
to each workstation, and are present in all workstations. Resources have a finite capacity
(possibly 1), however they are shared across all workstations. Note that this type of problem
could easily be extended to workstation-specific resources with finite capacity as in [26].

▶ Example 2. Figure 2 describes a small multi-manned assembly line balancing problem
with walking workers and parallel stations. The problem contains 7 tasks, 2 zones and 2
resources. The zone occupation relation, the resource consumption relation and the resource
capacities are detailed in the table on the left, and the graph induced by the precedence
relation is depicted on the right. Resource 1 has capacity 3, and resource 2 has capacity 2.

Figure 3 illustrates two possible layouts for the assembly line with 3 workstations, i.e.
W = 3. In layout L1 (Figure 3a) the stage set S = {1, 2, 3} contains 3 stages of 1 workstation
each, i.e. w1 = w2 = w3 = 1. In layout L2 (Figure 3b), there are two stages S = {1, 2}, and
the first one is composed of two workstations, i.e. w1 = 2 and w2 = 1.

▶ Definition 3 (Solution). A solution to a given MALBWP is a tuple (Ct, start) defined as
follows.

Ct is the pulse rate of the assembly line.
The duration of stage s ∈ S equals ws.Ct, the first stage starts at time 0 and each
other stage starts when its predecessor stage ends. The start date of stage s is denoted
stageStarts and its end date is denoted stageEnds.
start associates a start date to each task t ∈ T , noted startt. The end date of each task,
noted endt is the sum of its start date and its duration.
Each task is performed inside a unique stage, i.e. for each task t ∈ T , there exists a
unique stage s ∈ S such that stageStarts ≤ startt ≤ endt ≤ stageEnds.
Two tasks that occupy the same zone do not overlap temporally. Formally, if (t1, z1) ∈ Occ
and (t2, z2) ∈ Occ, we have either t1 = t2, z1 ̸= z2, endt1 ≤ startt2 , or endt2 ≤ startt1 .

X. Pucel and S. Roussel 23:9

At each instant, resources are not used beyond their capacity across all workstations.
Formally, we denote consumption(r, τ) the amount of units of resource r used at instant
τ , and require that at each instant τ ∈ [0, Ct] and for each resource r ∈ R, we have
consumption(r, τ) ≤ capar where:

consumption(r, τ) =
∑

(t,n)∈Consr

W∑
k=1

{
n if startt ≤ τ + k.Ct ≤ endt

0 otherwise
(1)

The last constraint on the consumption of resources across workstations is, to our
knowledge, original. At each instant, there is one aircraft in each assembly substage, thus
each resource is used simultaneously by each aircraft. Hence, in Equation (1), in the second
summation, k ranges across all substages (W is the total number of substages). Moreover, in
a stage with multiple workstations, a task may last longer than one Ct. In this case, this
task is performed simultaneously on multiple workstations, and contributes to the resource
usage multiple times. This is captured by the τ + k.Ct term of Equation (1), and illustrated
in the example that follows.

▶ Example 4. Figures 4 and 5 depict two solutions for the problem of Example 2 respectively
associated with layout L1 and layout L2.

With layout L1 (Figure 4), the best possible cycle time is 8. Zone occupation and resource
usage can be visualized by the intervals depicted in the figure. Since each aircraft instance
has its own work zones, each zone is duplicated in each stage and substage. On the opposite,
resources are shared between all assembly stages, and are used simultaneously. Thus, the
aircraft in stage 1 consumes 2 units of resource 1, at the same time as the aircraft in stage 2
consumes 1 unit of it. The same holds for all stages, resources and tasks. This is illustrated
on the right hand side of Figure 4.

In Figure 5, the stage set S = {1, 2} contains two stages, however the first stage contains
two parallel workstations and therefore two substages. This means we have w1 = 2, and
w2 = 1, which allows task t2 to start at date 2 in substage 1.1 and end at date 8 in substage
1.2 (as tasks cannot span across stages, but can span across substages). In this setting, the
smallest cycle time is 6.

A feature specific to our approach is how task t2 consumes resource 1 “several times” in
Figure 5. At each instant, 3 aircraft are being assembled, one in each assembly stage. Let us
consider the moment when 3 time units have elapsed in the current cycle and that aircraft
Ai, Ai−1 are in stage 1, and aircraft Ai−2 in stage 2. Ai has already spent 3 time units
in stage 1, meaning that 1 time unit of task t2 has already been executed for it. Aircraft
Ai−1 is also in stage 1 but has entered it Ct + 3 = 9 time units ago and is therefore in
substage 1.2. Task t2 is not yet finished for this aircraft, as 7 time units have already been
executed. Consequently, two instances of the task t2 are simultaneously executed on two
different aircraft instances, thus using twice the amount of resource 1, as illustrated on the
right. Note that at the same time, task t6 is executed on aircraft Ai−1 in stage 2, consuming
an additional unit of resource 1.

4.2 Constraint Programming Representation
The MALBWP problem can be represented in CP provided that an upper bound on the
pulse time maxCt is added to the problem inputs. The resulting temporal horizon considered,
denoted H , is equal to

∑
s∈S ws ·maxCt.

CP 2024

23:10 CP Model for ALBS with Walking Workers and Parallel Stations

Stage 1 Stage 2 Stage 3
Zone 1
Zone 2

t1 t2 t6

t3 t4 t7

t5

Ct Ct Ct

Resource 1

t1

t2

t6

Ct

Resource 2
t1 t6

t7 t4

Ct

Figure 4 Solution with Ct = 8 for the toy problem with layout L1.

Substage 1.1 Substage 1.2 Substage 2.1
Stage 1 Stage 2

Zone 1
Zone 2

t1 t2 t5 t6

t3 t4 t7

Ct Ct Ct

Resource 1

t1

t2

t2

t6

Ct

Resource 2
t1

t4 t6

t7

Ct

Figure 5 Solution with Ct = 6 for the toy problem with layout L2.

Our representation makes use of the OPL constraint programming language [33], as it
makes heavy use of its concept of interval variables and associated constraints, in particular
for optional intervals. An interval variable has a range [min, max] that specifies its earliest
start date and latest end date, and it can be optional, meaning in that case that it is
not necessarily present in the produced schedule. The OPL functions startOf, endOf, and
lengthOf return respectively the start date, end date and length of a given interval.

Our constraint model uses the following decision variables. All interval variables have the
range [0, H] unless explicitly mentioned.

The rate is modeled by an integer variable Ct in the range [0, maxCt].
For each task t ∈ T , the mandatory interval variable itvt represents the execution of task
t. Its duration is fixed to dur t .
For each task t ∈ T and each stage s ∈ S, the optional interval variable itvt,s. If present,
this interval has the fixed duration dur t , and represents the execution of task t in stage s.
If absent, it means task t is executed in another stage.
For each task t ∈ T , each stage s ∈ S and each substage w ∈ [1..ws], the optional interval
variable itvt,s,w represents the execution of task t during the w-th substage of stage s. If
absent, it means that task t is executed on another stage or substage. For example in
Figure 5, task t1 is executed during the first substage of the first stage. Hence itvt1,1,1 is
present, and both itvt1,1,2 and itvt1,2,1 are absent. On the other hand, task t2 is executed
in both substages of stage 1, so itvt2,1,1 and itvt2,1,2 are both present and itvt2,2,1 is
absent.
For each task t ∈ T , each stage s ∈ S and each substage w ∈ [1..ws], the optional interval
variable itvRsct,s,w has a range equal to [0, maxCt]. It represents the time during which
the execution of time t on the w-th substage of station s uses its resources. If task t is
executed on another stage, or not during the w-th substage, this interval is absent. As
for the previous set of interval variables, itvRsct1,1,1, itvRsct2,1,1 and itvRsct2,1,2 are
present, whereas itvRsct1,2,1 and itvRsct2,2,1 are absent.

The constraints of our encoding are as follows.

X. Pucel and S. Roussel 23:11

Assembly Line Expressions

We start by defining some expressions for the start and end dates for each stage, and for
each pulse cycle inside each stage. Expressions are neither constraints nor decision variables,
but are useful for efficiently expressing recurrent patterns in constraints.

∀s ∈ S, stageStarts =
s−1∑
i=1

wi ·Ct (2)

∀s ∈ S, stageEnds =
s∑

i=1
wi ·Ct (3)

∀s ∈ S, ∀w ∈ [1..ws], subStageStarts,w = stageStarts + (w − 1) ·Ct (4)
∀s ∈ S, ∀w ∈ [1..ws], subStageEnds,w = stageStarts + w ·Ct (5)

Equations (2) and (3) define expressions for the start and end dates of each stage. These
dates directly depend on the value of Ct. Similarly, Equations (4) and (5) define expressions
for the start and end date of every substage.

Note that stageStart1 = 0, which means the first stage starts at time 0. Moreover,
stageStarts+1 = stageEnds for all stages except for the last one, which means each stage
starts right when its predecessor ends. Finally, a stage with ws workstations has a duration
of ws · Ct, and each substage has a duration of exactly one Ct.

Stage and Zone Constraints

The stage constraints express that each task can only take place inside one stage. Furthermore,
two tasks that occupy the same zone cannot be executed at the same time in the same stage.
This set of constraints features the alternative OPL keyword, that accepts one interval a and
one set of optional intervals B as arguments, and has the following semantics. If a is absent,
then all intervals in B are absent. If a is present, then exactly one interval is B is present,
and it has the same start and end dates as a.

∀(t, t′) ∈ Prec, endBeforeStart(itvt, itvt′) (6)
∀z ∈ Z noOverlap

(
{itvt|(z, t) ∈ Occ}

)
(7)

∀t ∈ T , alternative
(

itvt,
{

itvt,s|s ∈ [1..nS]
})

(8)

∀t ∈ T , ∀s ∈ S, stageStarts ≤ startOf(itvt,s, H) (9)
∀t ∈ T , ∀s ∈ S, endOf(itvt,s, 0) ≤ stageEnds (10)

Constraints (6) expresses that two tasks with a precedence constraint must be scheduled in
the proper order. Constraints (7) forbid two tasks that occupy the same zone to be executed
simultaneously in the same stage. Constraints (8) force interval itvt to equal exactly one of
the itvt,s. Constraints (9) and (10) ensure that each interval itvt,s, if present, takes place
during stage s. The second arguments to the startOf and endOf functions (respectively H

and 0) are default values in case the interval is absent. In conjunction to Constraints (8),
this enforces every task to be executed inside one stage.

CP 2024

23:12 CP Model for ALBS with Walking Workers and Parallel Stations

Substage Constraints
We consider here constraints associated with the execution of tasks in substages.

∀t ∈ T , ∀s ∈ [1..nS], span
(

itvt,s,
{

itvt,s,w|w ∈ [1..ws]
})

(11)

∀t ∈ T , ∀s ∈ S, ∀w ∈ ws, subStageStarts,w ≤ startOf(itvt,s,w, H) (12)
∀t ∈ T , ∀s ∈ S, ∀w ∈ ws, endOf(itvt,s,w, 0) ≤ subStageEnds,w (13)

∀t ∈ T , ∀s ∈ S, lenghtOf(itvt,s) =
∑

w∈[1..ws]

lengthOf(itvt,s,w) (14)

Constraints (11) uses the span OPL constraint, that accepts an interval a and a set of
optional intervals B as arguments, and has the following semantics. If a is absent, then all
intervals in B are absent. If a is present, then at least one interval in B is present and the
start (resp. end) date of a equals the earliest start date (resp. latest end date) of all the
present intervals in B.

Constraints (12) and (13) ensure that each interval itvt,s,w, if present, lies within the
w-th substage. As a consequence, for each task t and stage s, two intervals itvt,s,w and
itvt,s,w′ cannot overlap, unless w = w′.

Constraints (14) ensure that the cumulated length of all present itvt,s,w intervals equals the
length of their spanning itvt,s interval. Since they cannot overlap because of Constraints (12)
and (13), this ensures that the intervals itvt,s,w entirely cover the interval itvt,s without any
gaps, for each task t and stage s.

Resource Constraints
As illustrated in Example 2, resource usage is a pattern that is repeated every cycle. In
order to model resource usage across workstations with interval variables, we rewrite the
consumption of resources of Equation (1) as a consumption elements set. Formally, for each
resource r, we consider the set Cr of consumption elements {(σ, τ, n)} where σ is the start
date of the consumption, τ is its end date and n the number of units it consumes. Cr is built
following Algorithm 1, where % is the integer remainder.

Algorithm 1 Computation of Cr for each resource r.

1: function computeCr(r)
2: Cr ← ∅
3: for (t, n) ∈ Consr do
4: if (dur t ≤ Ct) ∧ (startt % Ct + dur t ≤ Ct) then
5: Cr ← Cr ∪ {(startt % Ct, endt % Ct, n)}
6: else
7: before ← Ct− startt % Ct

8: after ← endt % Ct

9: q ← ⌊dur t−before−after
Ct ⌋

10: Cr ← Cr ∪ {(startt % Ct, Ct, n), (0, endt % Ct, n), (0, Ct, n · q)}
return Cr

Cr is initialized to the emptyset. Then, for each tuple (t, n) ∈ Consr, we add one or
several elements to Cr. If the task is contained in a unique substage (Line 4), then we shift
the task so that it is contained in the interval [0, Ct]. Otherwise, we consider the duration of
the task in its first substage (Line 7) and in its last substage (Line 8). Then, the quotient

X. Pucel and S. Roussel 23:13

q (Line 9) denotes the number of substages over which the task completely spans. We
finally add consumptions corresponding to the first substage, to the last and all the included
substages, and shift them so that they belong to the interval [0, Ct].

The OPL encoding uses the itvRsct,s,w intervals to represent the tuples from the Cr

set for each resource. The integer remainder operator can be eluded thanks to the itvt,s,w

intervals.

∀t ∈ T , ∀s ∈ S, ∀w ∈ ws, endOf(itvRsct,s,w, 0) ≤ Ct (15)
∀t ∈ T , ∀s ∈ S, ∀w ∈ ws, presenceOf(itvRsct,s,w) = presenceOf(itvt,s,w) (16)
∀t ∈ T , ∀s ∈ S, ∀w ∈ ws, startAtStart(itvRsct,s,w, itvt,s,w, subStageStarts,w) (17)
∀t ∈ T , ∀s ∈ S, ∀w ∈ ws, endAtEnd(itvRsct,s,w, itvt,s,w, subStageStarts,w) (18)

∀r ∈ R,
∑

(t,n)∈Consr

pulse(itvRsct,s,w, n) ≤ capar (19)

Constraints (15) ensure that resource usage intervals fall into the [0, Ct] time frame,
since they represent the use of each resource at each substages. Constraints (16) impose
that the only resource usage intervals that are present are those that correspond to a
present substage interval for this task. Constraints (17) and (18) use the startAtStart
and endAtEnd OPL constraints with delay. When both intervals are present they are
respective shorthands for startOf(itvRsct,s,w) + subStageStarts,w = startOf(itvt,s,w), and
endOf(itvRsct,s,w) + subStageStarts,w = endOf(itvt,s,w), and do nothing if at least one
interval is absent.

The final constraints (19) use the pulse OPL function, that represents a cumulative
function. The pulse primitive accepts an interval a and an integer value h, and describes the
function with value h in interval a (if present), and 0 elsewhere. Constraints (19) ensure that
the resources consumed by all tasks at some time during the range [0, Ct] do not exceed the
resource capacity.

Figure 6 illustrates the relationship between all interval variables used in the CP model.
Absent intervals are grayed, mandatory intervals have a thick border. A dotted line between
two intervals indicates that they are connected by the constraints indicated on the right.
This figure represents a [3, 1] layout, i.e. a layout with 3 workstations in the first stage and
one in the second stage, and a single task t that uses n units of a resource r with capacity 3n.
Interval itvt ranges across the whole planning horizon. Each interval itvt,s ranges across
stage s. Each interval itvt,s,w ranges across substage s, w. Intervals itvRsct,s,w all range
across [0, Ct].

5 Experimentation

This section presents experimental results for the constraint model presented in this paper.
Experiments were all run using IBM CP Optimizer 20.1.0 through the Java API on a 20-core
Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz with 62GB RAM. We first present results
obtained on PSPLib-based benchmarks, then results obtained on two real assembly line
datasets.

5.1 Results for PSPLib-based Benchmarks
Our model can be seen as an extension of a classical RCPSP problem (A,Res, Cons,Prec),
where A is the set of activities, Res the set of resources, Cons the consumption relationship
and Prec the precedence relationship. Given a set of stages {1..nS} and their associated

CP 2024

23:14 CP Model for ALBS with Walking Workers and Parallel Stations

stage1 stage2

substage1 ,1 substage1 ,2 substage1 ,3 substage2 ,1

itvt

itvt,1

itvt,1,1 itvt,1,2

itvRsct,1,1

itvRsct,1,2

itvt,2

itvt,1,3 itvt,2,1

itvRsct,1,3

itvRsct,2,1

alternative (8)

span (11)∑
lengthOf (14)

delay by
subStageStarts,w

(17) (18)

∑
pulse (19)

n
2n

capar

Consumption of resource r induced by task t

Figure 6 Illustration of the interval variables hierarchy in the CP model.

number of workstations, and a RCPSP problem, we consider the associated MMALBWP
(A, nS , ∅,Res,Prec, ∅, Cons) in which the set of zones is empty. The resulting dataset will
be made public upon acceptance of the paper.

We adapted problems from the PSPLib [19], converting them to MMALBWP by adding
a stage size specification, and used a time limit of 5 minutes. The results on the 150 first
problems of the j30rcp benchmark, detailed in appendix A, demonstrate several results
summarized in Table 1a, and in graph in Table 1b that counts the number of instances where
some layouts strictly improve other layouts. Below are additional considerations.

With one workstation, the cycle time equals the RCPSP makespan.
More workstations always means a better or equal cycle time (in sequence or in parallel).
Adding a second workstation, in sequence (layout [1, 1]) or in parallel (layout [2]), always
strictly improves the cycle time of layout [1].
Adding a third workstation further improves the cycle time in 62% of sequential instances
(93/150, [1, 1, 1] compared to [1, 1]), and in 51% of parallel instances ((74 + 78)/300, [2, 1]
and [1, 2] compared to [2]).
At constant number of workstations, merging two stages yields a better cycle time in 25%
of instances ((69 + 23 + 21)/450, [2] compared to [1, 1] plus [2, 1] and [1, 2] compared to
[1, 1, 1]). This lower number is explained by the fact that resources become a limiting
factor.
Adding stages makes the problem more difficult for the solver, especially with parallel
workstations.

X. Pucel and S. Roussel 23:15

Table 1 Statistics of the solutions of the first 150 instances of the j30rcp PSPLIB benchmark.

(a) Results summary.

Layout #Solved #Optimal Avg. Time (s)

[1] 150 150 2.5
[1, 1] 150 122 72.3
[2] 134 99 124.1

[1, 1, 1] 150 84 151.1
[2, 1] 149 59 193.9
[1, 2] 150 64 184.5

(b) Number of instances in which a layout
yields a strictly better cycle time than an-
other.

[1]

[1, 1]

[1, 1, 1]

[1, 2]

[2, 1]

[2]

150

93

69

23

21

74
78

5.2 Industrial Assembly Line
This work was initially motivated by the final assembly line of a manufacturer of small
aircraft, who already uses a parallel workstation.

The assembly line model contains 51 tasks, 93 precedence constraints, 12 work zones,
and 23 resources. Tasks use between 1 and 4 resource units. We have tested two factory
layouts: the first one has 5 sequential stages of one workstation each ([1, 1, 1, 1, 1]); the
second layout duplicates the first workstation in parallel ([2, 1, 1, 1]). We solved the model
with a 30 minutes timeout. The solver finds its best solution in a few seconds, but fails
to prove that the solution is optimal in the rest of its computation time. The results, and
in general the entire modeling work, helped analyse and consolidate the different factory
configurations. Note that due to confidentiality issues, we do not provide more information
about this dataset nor the obtained results.

5.3 Assembly Line Design Use Case
We tested our approach on the assembly line preliminary design problem originally dataset [28]
presented in [27] and adapted for the 2023 XCSP3 competition [6]. In the latter, the assembly
line is composed of 4 stages with one workstation each. The objective is to minimize the
number of operators in the line. We adapt these benchmarks by fixing the number of available
operators, ignoring neutralization constraints, and optimizing the cycle time when considering
several factory layouts. We have considered 7 layouts for each of the three instances, resulting
in a dataset of 21 instances available online [29].

These instances are larger and much more challenging than the ones presented before.
We gave a 10mn time limit to the solver, it only managed to find a solution for 15 instances
out of 21, and it still failed to prove the optimality of all instances, as reported in Table 2.
Furthermore, in instance 3, the cycle time found for stage sizes [1, 3] (i.e. two stages of
respectively 3 and 1 workstations) is higher than the one found for stage sizes [1, 2, 1], which
indicates that the solver failed to find the same solution within its time limit.

6 Conclusion

This paper presents a Constraint Programming model for a multi-manned assembly line
balancing problem with walking workers and parallel stations. This model can be seen
as an extension of multi-manned ALP with walking workers, and of RCPSP with parallel
workstations. It provides an efficient way to evaluate how the number of workstations and

CP 2024

23:16 CP Model for ALBS with Walking Workers and Parallel Stations

Table 2 Production rates associated to each dataset and various layouts. Empty cells indicate
that the 10 minutes timeout elapsed before a solution was found.

Layout

Instance Nb. tasks [1, 1, 1, 1] [2, 1, 1] [1, 2, 1] [1, 1, 2] [3, 1] [1, 3] [4]

Instance 1 178 1260 1260 1260 1260 1024 900 855
Instance 2 178 1260 – 1260 1260 – 954 –
Instance 3 628 1200 – 900 1172 – 1160 –

their flow can help design a factory, by evaluating the production rates that it can attain.
We detailed a constraint programming model in the OPL language that makes extensive use
of interval variables, and validated the model by reproducing classical RCPSP benchmark
results. We also used it to study assembly line implementations for industrial use cases.

There are several directions for pursuing this work. Better heuristics would probably
improve the solver performance on the PSPLIB-based instances. Moreover, it would be inter-
esting to address both workstation layout and resource sizing in a multi-objective approach.
This would pave the way for the design of assembly lines with different configurations for low
rate with low resource consumption, and high rates with high resource consumption.

References
1 Hacı Mehmet Alakaş. General resource-constrained assembly line balancing problem: conjunc-

tion normal form based constraint programming models. Soft Computing, 25(8):6101–6111,
2021.

2 Hacı Mehmet Alakaş, Mehmet Pınarbaşı, and Mustafa Yüzükırmızı. Constraint programming
model for resource-constrained assembly line balancing problem. Soft Computing, 24:5367–5375,
2020.

3 Eduardo Álvarez-Miranda, Sebastián Chace, and Jordi Pereira. Assembly line balancing with
parallel workstations. International Journal of Production Research, 59(21):6486–6506, 2021.

4 Felipe FB Araújo, Alysson M Costa, and Cristóbal Miralles. Two extensions for the alwabp:
Parallel stations and collaborative approach. International Journal of Production Economics,
140(1):483–495, 2012.

5 Dmitry Arkhipov, Olga Battaïa, Julien Cegarra, and Alexander Lazarev. Operator assignment
problem in aircraft assembly lines: a new planning approach taking into account economic
and ergonomic constraints. Procedia CIRP, 76:63–66, 2018.

6 Gilles Audemard, Christophe Lecoutre, and Emmanuel Lonca. Proceedings of the 2023 XCSP3
competition. CoRR, abs/2312.05877, 2023. doi:10.48550/arXiv.2312.05877.

7 Zhongkai Bao, Lu Chen, and Kejun Qiu. An aircraft final assembly line balancing prob-
lem considering resource constraints and parallel task scheduling. Computers & Industrial
Engineering, 182:109436, 2023.

8 Olga Battaïa and Alexandre Dolgui. Hybridizations in line balancing problems: A comprehens-
ive review on new trends and formulations. International Journal of Production Economics,
250:108673, 2022.

9 Christian Becker and Armin Scholl. Balancing assembly lines with variable parallel workplaces:
Problem definition and effective solution procedure. European Journal of Operational Research,
199(2):359–374, 2009.

10 Alexander Biele and Lars Mönch. Hybrid approaches to optimize mixed-model assembly lines
in low-volume manufacturing. Journal of Heuristics, 24(1):49–81, 2018.

11 Nils Boysen, Philipp Schulze, and Armin Scholl. Assembly line balancing: What happened in
the last fifteen years? European Journal of Operational Research, 301(3):797–814, 2022.

https://doi.org/10.48550/arXiv.2312.05877

X. Pucel and S. Roussel 23:17

12 Joseph Bukchin and Jacob Rubinovitz. A weighted approach for assembly line design with
station paralleling and equipment selection. IIE transactions, 35(1):73–85, 2003.

13 Yin-Yann Chen, Chen-Yang Cheng, and Jia-Ying Li. Resource-constrained assembly line
balancing problems with multi-manned workstations. Journal of Manufacturing Systems,
48:107–119, 2018.

14 Zeynel Abidin Çil and Damla Kizilay. Constraint programming model for multi-manned
assembly line balancing problem. Computers & Operations Research, 124:105069, 2020.

15 Hongyan Ding, Cunbo Zhuang, and Jianhua Liu. Extensions of the resource-constrained
project scheduling problem. Automation in Construction, 153:104958, 2023.

16 Yunus Ege, Meral Azizoglu, and Nur E Ozdemirel. Assembly line balancing with station
paralleling. Computers & Industrial Engineering, 57(4):1218–1225, 2009.

17 Yagmur S Gök, Daniel Guimarans, Peter J Stuckey, Maurizio Tomasella, and Cemalettin
Ozturk. Robust resource planning for aircraft ground operations. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 17th International Conference,
CPAIOR 2020, Vienna, Austria, September 21–24, 2020, Proceedings 17, pages 222–238.
Springer, 2020.

18 Sönke Hartmann and Dirk Briskorn. An updated survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of operational research,
297(1):1–14, 2022.

19 Rainer Kolisch and Sönke Hartmann. Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European journal of operational research, 174(1):23–
37, 2006.

20 Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. Ibm ilog cp optimizer for
scheduling: 20+ years of scheduling with constraints at ibm/ilog. Constraints, 23:210–250,
2018.

21 Thiago Cantos Lopes, Adalberto Sato Michels, Celso Gustavo Stall Sikora, and Leandro
Magatão. Balancing and cyclical scheduling of asynchronous mixed-model assembly lines with
parallel stations. Journal of Manufacturing Systems, 50:193–200, 2019.

22 Thiago Cantos Lopes, Giuliano Vidal Pastre, Adalberto Sato Michels, and Leandro Magatão.
Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and
lower bounds for line length minimization. Omega, 95:102063, 2020.

23 Bahman Naderi, Ahmed Azab, and Katayoun Borooshan. A realistic multi-manned five-sided
mixed-model assembly line balancing and scheduling problem with moving workers and limited
workspace. International Journal of Production Research, 57(3):643–661, 2019.

24 Cemalettin Öztürk, Semra Tunalı, Brahim Hnich, and Arslan Örnek. Balancing and scheduling
of flexible mixed model assembly lines with parallel stations. The International Journal of
Advanced Manufacturing Technology, 67:2577–2591, 2013.

25 Cemalettin Öztürk, Semra Tunalı, Brahim Hnich, and Arslan Örnek. Cyclic scheduling of
flexible mixed model assembly lines with parallel stations. Journal of Manufacturing Systems,
36:147–158, 2015.

26 Cédric Pralet, Stéphanie Roussel, Thomas Polacsek, François Bouissière, Claude Cuiller,
Pierre-Eric Dereux, Stéphane Kersuzan, and Marc Lelay. A scheduling tool for bridging the
gap between aircraft design and aircraft manufacturing. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 28, pages 347–355, 2018.

27 Stéphanie Roussel, Thomas Polacsek, and Anouck Chan. Assembly Line Preliminary Design
Optimization for an Aircraft. In CP 2023 (The 29th International Conference on Principles
and Practice of Constraint Programming), Toronto, Canada, August 2023. doi:10.4230/
LIPIcs.CP.2023.32.

28 Stéphanie Roussel. Dataset for the Assembly Line Preliminary Design Optimization Problem,
2024. doi:10.57745/IQLQ7A.

CP 2024

https://doi.org/10.4230/LIPIcs.CP.2023.32
https://doi.org/10.4230/LIPIcs.CP.2023.32
https://doi.org/10.57745/IQLQ7A

23:18 CP Model for ALBS with Walking Workers and Parallel Stations

29 Stéphanie Roussel and Xavier Pucel. Dataset for the Constraint Programming Model for
Assembly Line Balancing and Scheduling with Walking Workers and Parallel Stations, 2024.
doi:10.57745/EWXS9O.

30 Murat Şahin and Talip Kellegöz. Balancing multi-manned assembly lines with walking workers:
problem definition, mathematical formulation, and an electromagnetic field optimisation
algorithm. International Journal of Production Research, 57(20):6487–6505, 2019.

31 Tamara Borreguero Sanchidrián, Tom Portoleau, Christian Artigues, Alvaro García Sánchez,
Miguel Ortega Mier, and Pierre Lopez. Exact and heuristic methods for an aeronautical
assembly line time-constrained scheduling problem with multiple modes and a resource leveling
objective. working paper or preprint, September 2021.

32 Celso Gustavo Stall Sikora, Thiago Cantos Lopes, and Leandro Magatão. Traveling worker
assembly line (re) balancing problem: Model, reduction techniques, and real case studies.
European Journal of Operational Research, 259(3):949–971, 2017.

33 Pascal Van Hentenryck, Laurent Michel, Laurent Perron, and J-C Régin. Constraint pro-
gramming in opl. In International Conference on Principles and Practice of Declarative
Programming, pages 98–116. Springer, 1999.

A PSPLib Benchmarks Results

This appendix presents the results of execution of our solver on the first 150 instances
of the PSPLib benchmark j30rcp. Table 3 is read as follows: Parameter value p and
Instance value i describe the problem found in the file named J30p_i.RCP in the archive
named j30rcp.zip found in the PSPlib [19] accessible at url https://www.om-db.wi.tum.
de/psplib/getdata_sm.html. Each column in the “Cycle time” and “Computation time”
groups corresponds to a different layout. A cycle time of −1 indicates that the solver failed
to find a suitable schedule in the allocated time of 5 minutes. A computation time of 300
seconds (5 minutes) indicates that the solver used all its computation time. This means that
the corresponding cycle time (if any) may be sub-optimal.

Table 3 Detailed Results of the 150 first instances of the j30rcp benchmark for various number
of stages and workstations.

Parameter Instance Cycle time Computation time (seconds)

[1]

[1
,1]

[2]
[1

,1,1]

[2
,1]

[1
,2]

[1]

[1
,1]

[2]

[1
,1,1]

[2
,1]

[1
,2]

1 1 43 29 29 29 29 29 0.25 1.17 11.75 8.25 77.54 14.15
1 2 47 33 33 33 33 33 0.32 0.72 9.15 3.02 26.13 3.27
1 3 47 26 26 23 23 23 0.06 0.91 11.18 2.21 33.70 3.50
1 4 62 41 41 41 41 41 0.06 1.61 8.42 16.51 30.81 32.36
1 5 39 34 34 34 34 34 0.32 3.82 22.92 33.93 300 119.20
1 6 48 32 32 32 32 32 0.34 0.92 14.08 4.29 38.52 9.59
1 7 60 35 35 35 35 35 0.05 1.11 9.12 4.79 15.42 8.33
1 8 53 33 33 33 33 33 0.06 0.80 5.14 2.79 3.13 2.77
1 9 49 31 31 31 31 31 0.25 1.83 12.68 16.64 115.54 38.57
1 10 45 29 29 29 29 29 0.05 2.37 13.58 4.60 40.59 7.95
2 1 38 26 26 21 21 21 0.05 2.12 13.53 5.94 118.13 102.28
2 2 51 36 36 36 36 36 0.05 1.19 12.30 2.26 23.37 3.69
2 3 43 29 29 29 29 29 0.06 1.00 10.71 2.14 22.25 3.40
2 4 43 23 23 19 19 19 0.05 0.70 9.11 2.33 13.63 2.06
2 5 51 33 33 27 27 27 0.05 0.44 10.23 1.89 2.56 1.93

https://doi.org/10.57745/EWXS9O
https://www.om-db.wi.tum.de/psplib/getdata_sm.html
https://www.om-db.wi.tum.de/psplib/getdata_sm.html

X. Pucel and S. Roussel 23:19

2 6 47 29 29 22 22 22 0.05 0.95 5.74 1.48 2.46 3.38
2 7 47 29 26 25 25 25 0.06 0.80 10.44 2.98 7.13 4.91
2 8 54 33 32 29 29 29 0.05 1.16 9.35 2.11 21.70 2.43
2 9 54 32 32 30 30 30 0.05 1.26 10.48 10.77 300 300
2 10 43 25 24 22 22 22 0.05 0.85 10.80 1.70 20.23 6.91
3 1 72 39 39 30 29 30 0.06 0.23 8.75 0.81 1.06 2.92
3 2 40 23 20 20 18 19 0.05 0.49 13.45 2.92 1.50 2.59
3 3 57 32 32 24 23 24 0.06 0.37 7.59 0.71 1.26 2.22
3 4 98 62 62 39 39 39 0.06 1.20 2.03 1.27 2.23 1.51
3 5 53 28 28 28 28 28 0.06 1.28 10.12 1.91 23.03 4.60
3 6 54 33 28 24 24 24 0.05 0.81 1.34 5.80 3.42 1.57
3 7 48 24 24 20 18 19 0.05 0.26 1.48 0.96 2.17 2.12
3 8 54 29 27 25 22 22 0.05 0.25 9.22 0.97 1.27 2.27
3 9 65 35 34 31 31 31 0.11 1.58 12.45 2.59 29.00 3.03
3 10 59 30 30 30 30 30 0.06 0.68 9.84 1.69 22.66 3.52
4 1 49 28 25 19 19 18 0.06 0.23 0.48 1.01 1.29 1.34
4 2 60 36 36 28 28 28 0.10 0.39 0.89 0.94 1.91 2.09
4 3 47 28 25 22 20 21 0.06 0.56 1.04 1.31 2.35 1.29
4 4 57 33 32 21 20 21 0.05 0.22 0.80 0.81 1.03 1.36
4 5 59 34 32 24 24 24 0.06 0.61 1.00 2.36 3.02 1.99
4 6 45 26 23 21 21 21 0.06 0.32 0.65 1.32 2.66 8.89
4 7 56 29 28 24 23 23 0.06 0.23 0.79 1.47 1.67 1.74
4 8 55 30 28 21 20 20 0.06 0.26 0.59 0.51 0.47 0.77
4 9 38 22 22 20 20 20 0.07 0.69 0.88 1.36 2.10 2.05
4 10 48 26 25 24 24 24 0.06 0.46 0.73 1.35 2.28 2.34
5 1 53 37 37 34 35 34 0.25 6.59 59.39 95.36 300 269.00
5 2 82 56 56 56 56 56 0.87 6.45 39.28 129.70 300 300
5 3 76 57 57 56 56 56 0.52 6.67 86.05 300 300 300
5 4 63 52 52 52 52 52 1.16 25.59 236.89 233.18 300 300
5 5 76 59 58 58 58 58 0.58 7.45 97.50 197.38 300 300
5 6 64 46 46 44 44 44 0.35 5.98 134.79 47.18 235.48 165.77
5 7 76 72 73 72 72 72 1.07 133.64 300 300 300 300
5 8 67 54 54 51 59 56 0.91 20.42 201.24 105.83 300 300
5 9 49 37 36 35 36 36 0.37 7.11 75.86 184.16 300 300
5 10 70 55 54 52 53 53 0.63 11.10 99.64 126.15 300 300
6 1 59 42 42 42 42 42 0.29 11.41 95.94 300 300 300
6 2 51 36 36 35 34 34 0.13 1.85 13.04 26.98 283.05 74.27
6 3 48 31 31 30 30 30 0.08 1.83 15.05 78.84 300 300
6 4 42 33 33 32 33 32 0.50 11.12 300 300 300 300
6 5 67 51 51 48 50 48 0.26 7.67 74.17 93.55 300 300
6 6 37 26 25 24 24 24 0.05 3.08 17.31 21.34 300 251.14
6 7 46 30 30 29 30 29 0.05 1.95 15.39 16.08 300 227.00
6 8 39 30 30 30 30 31 0.05 3.78 123.51 300 300 300
6 9 51 35 35 35 35 35 0.06 1.61 8.64 7.15 60.12 10.62
6 10 61 44 43 43 43 45 0.37 16.67 201.23 300 300 300
7 1 55 29 28 25 25 25 0.06 1.63 11.28 2.06 6.03 4.25
7 2 42 28 28 27 27 27 0.05 1.86 12.51 6.13 11.71 20.75
7 3 42 28 27 26 26 26 0.06 2.66 6.12 4.49 61.24 11.89

CP 2024

23:20 CP Model for ALBS with Walking Workers and Parallel Stations

7 4 44 30 29 25 25 25 0.05 1.83 12.79 8.00 72.16 33.25
7 5 44 31 30 30 30 30 0.09 3.07 40.28 144.03 300 300
7 6 35 22 20 19 18 18 0.06 0.92 14.24 4.04 12.15 23.66
7 7 50 33 32 30 29 30 0.06 1.80 11.25 5.07 16.05 19.83
7 8 44 35 34 33 34 33 0.06 2.10 16.16 26.62 300 155.17
7 9 60 33 33 31 31 30 0.05 1.02 13.21 2.76 22.47 3.02
7 10 49 33 31 29 29 29 0.26 1.52 11.14 3.23 30.24 14.02
8 1 44 26 25 23 23 23 0.06 1.15 1.03 2.40 9.16 12.08
8 2 51 30 26 21 21 21 0.07 0.21 0.64 1.49 3.37 2.64
8 3 53 29 27 25 25 25 0.05 0.56 1.07 1.27 2.59 2.74
8 4 48 26 24 22 21 21 0.06 0.43 0.98 1.33 2.06 3.00
8 5 58 32 32 30 30 30 0.06 1.03 1.05 4.50 7.36 17.72
8 6 47 27 26 25 24 24 0.06 0.83 1.21 21.96 49.80 51.37
8 7 41 23 21 18 18 18 0.07 0.36 0.08 1.36 3.93 3.60
8 8 51 30 28 25 25 25 0.06 1.53 1.49 3.28 6.08 6.51
8 9 39 22 20 19 19 19 0.16 0.54 0.77 5.67 173.10 74.25
8 10 67 36 34 25 25 25 0.06 0.09 0.29 1.24 3.89 2.06
9 1 83 75 -1 75 80 75 3.57 300 300 300 300 300
9 2 92 91 -1 89 91 89 50.50 300 300 300 300 300
9 3 68 64 60 56 60 59 1.18 300 300 300 300 300
9 4 71 63 64 62 66 69 1.48 128.39 300 300 300 300
9 5 70 58 58 57 63 61 0.75 32.52 191.66 300 300 300
9 6 59 48 -1 51 50 50 1.16 211.58 300 300 300 300
9 7 63 52 -1 53 55 56 1.74 198.00 300 300 300 300
9 8 91 79 -1 79 82 81 1.46 300 300 300 300 300
9 9 63 52 52 52 61 52 2.58 300 300 300 300 300
9 10 88 79 80 76 76 80 3.53 300 300 300 300 300
10 1 42 31 31 30 31 31 0.06 6.13 47.72 208.58 300 300
10 2 56 43 -1 43 44 44 0.42 35.87 300 300 300 300
10 3 62 48 51 49 48 49 0.38 213.37 300 300 300 300
10 4 58 44 44 44 45 44 0.28 17.68 300 300 300 300
10 5 41 35 34 34 35 34 0.11 300 300 300 300 300
10 6 44 34 34 34 35 34 0.36 28.65 300 300 300 300
10 7 49 34 34 33 34 33 0.07 41.67 300 300 300 300
10 8 54 41 -1 40 41 42 0.38 45.85 300 300 300 300
10 9 49 31 32 31 31 31 0.05 26.49 300 300 300 300
10 10 41 31 31 30 31 31 0.31 15.29 300 300 300 300
11 1 54 44 44 44 44 44 0.08 51.93 300 300 300 300
11 2 56 43 42 42 43 42 0.13 10.68 163.90 300 300 300
11 3 81 43 41 37 38 38 0.06 0.95 15.16 142.67 300 300
11 4 63 42 41 40 41 41 0.05 4.83 55.68 300 300 300
11 5 49 40 40 40 40 40 0.34 79.96 300 300 300 300
11 6 44 30 30 29 30 29 0.06 14.26 246.49 300 300 300
11 7 36 27 26 26 27 27 0.06 10.49 300 300 300 300
11 8 62 44 43 44 43 45 0.07 17.88 281.82 300 300 300
11 9 67 41 41 40 41 41 0.06 3.70 27.53 300 300 300
11 10 38 27 27 26 26 27 0.06 3.00 19.09 174.05 300 300
12 1 47 29 28 26 26 26 0.15 1.76 2.51 73.81 300 300

X. Pucel and S. Roussel 23:21

12 2 46 30 30 30 30 30 0.06 2.15 45.26 300 300 300
12 3 37 23 23 22 22 22 0.06 2.17 14.73 74.48 300 300
12 4 63 35 32 29 29 29 0.08 0.29 1.31 50.03 300 300
12 5 47 24 24 21 21 21 0.07 0.29 0.89 35.54 300 300
12 6 53 31 31 29 30 29 0.06 2.76 10.51 264.60 300 300
12 7 55 30 28 27 27 27 0.07 0.75 2.29 300 300 300
12 8 35 19 18 18 18 18 0.07 0.77 0.72 5.97 300 300
12 9 52 30 29 28 28 29 0.06 1.66 8.45 300 300 300
12 10 57 32 29 26 26 26 0.07 0.24 0.95 60.81 300 300
13 1 58 55 -1 56 56 55 12.99 300 300 300 300 300
13 2 62 61 -1 61 61 60 121.27 300 300 300 300 300
13 3 76 73 -1 73 73 73 16.92 300 300 300 300 300
13 4 72 64 -1 64 67 64 4.85 300 300 300 300 300
13 5 67 65 -1 65 65 65 30.07 300 300 300 300 300
13 6 64 60 64 60 61 60 34.34 300 300 300 300 300
13 7 77 76 -1 76 -1 75 13.47 300 300 300 300 300
13 8 106 102 -1 102 109 97 47.01 300 300 300 300 300
13 9 71 65 -1 65 69 67 1.85 300 300 300 300 300
13 10 64 56 56 56 55 56 3.98 300 300 300 300 300
14 1 50 40 41 41 40 40 0.60 236.77 300 300 300 300
14 2 53 49 -1 49 49 49 1.03 300 300 300 300 300
14 3 58 52 52 50 51 52 0.36 300 300 300 300 300
14 4 50 42 42 41 43 41 0.64 300 300 300 300 300
14 5 52 36 37 37 37 36 0.10 121.81 300 300 300 300
14 6 35 30 30 29 29 29 0.07 300 300 300 300 300
14 7 50 46 45 44 44 46 1.01 300 300 300 300 300
14 8 54 42 42 42 41 42 0.06 300 300 300 300 300
14 9 46 39 40 39 40 41 0.83 258.98 300 300 300 300
14 10 61 43 44 43 44 43 0.29 10.91 300 300 300 300
15 1 46 34 34 35 34 35 0.05 300 300 300 300 300
15 2 47 29 30 29 30 29 0.06 21.71 300 300 300 300
15 3 48 34 34 35 34 34 0.05 300 300 300 300 300
15 4 48 27 24 24 24 24 0.06 0.26 7.58 300 300 300
15 5 58 53 52 52 54 53 0.94 300 300 300 300 300
15 6 67 45 46 46 46 46 0.14 198.44 300 300 300 300
15 7 47 33 33 33 34 33 0.05 23.22 300 300 300 300
15 8 50 39 39 39 39 39 0.06 300 300 300 300 300
15 9 54 35 36 36 36 35 0.06 300 300 300 300 300
15 10 65 40 40 40 40 40 0.06 6.01 112.92 300 300 300

CP 2024

Latency-Aware 2-Opt Monotonic Local Search for
Distributed Constraint Optimization
Ben Rachmut #

Ben-Gurion University of the Negev, Beersheba, Israel

Roie Zivan #

Ben-Gurion University of the Negev, Beersheba, Israel

William Yeoh #

Washington University in St. Louis, MO, USA

Abstract
Researchers recently extended Distributed Constraint Optimization Problems (DCOPs) to
Communication-Aware DCOPs so that they are applicable in scenarios in which messages can
be arbitrarily delayed. Distributed asynchronous local search and inference algorithms designed
for CA-DCOPs are less vulnerable to message latency than their counterparts for regular DCOPs.
However, unlike local search algorithms for (regular) DCOPs that converge to k-opt solutions (with
k > 1), that is, they converge to solutions that cannot be improved by a group of k agents), local
search CA-DCOP algorithms are limited to 1-opt solutions only.

In this paper, we introduce Latency-Aware Monotonic Distributed Local Search-2 (LAMDLS-2),
where agents form pairs and coordinate bilateral assignment replacements. LAMDLS-2 is monotonic,
converges to a 2-opt solution, and is also robust to message latency, making it suitable for CA-DCOPs.
Our results indicate that LAMDLS-2 converges faster than MGM-2, a benchmark algorithm, to a
similar 2-opt solution, in various message latency scenarios.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Constraint Optimization Problems, Distributed Local Search
Algorithms, Latency Awareness, Multi-Agent Optimization

Digital Object Identifier 10.4230/LIPIcs.CP.2024.24

Supplementary Material Software: https://github.com/benrachmut/CADCOP_CP_2024
archived at swh:1:dir:4d80c62cc077c5ad44894acf592359cd0ce1580c

Funding This research is partially supported by US-Israel Binational Science Foundation (BSF)
grant #2018081.

1 Introduction

A promising multi-agent approach for addressing distributed applications, where agents
aim to achieve mutual optimization goals, is by modeling them as Distributed Constraint
Optimization Problems (DCOPs) [12, 16, 5]. An illustrative example of such an application
is a smart home, where various smart devices must coordinate to create a schedule that
optimizes user preferences and satisfies constraints [6, 19]. In this context, decision-makers
are represented as “agents” that assign “values” to their respective “variables”, and the
objective is to optimize a global objective in a decentralized manner.

DCOPs are NP-hard [12] and, thus, considerable research effort has been devoted to
developing incomplete algorithms for finding good solutions quickly [23, 10, 24, 3, 4, 20, 8, 14].
Distributed local search algorithms such as Distributed Stochastic Algorithm (DSA) [24]
and Maximum Gain Message (MGM) [10] are two of the most popular incomplete DCOP
algorithms.

© Ben Rachmut, Roie Zivan, and William Yeoh;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rachmut@post.bgu.ac.il
https://orcid.org/0000-0002-3862-9387
mailto:zivanr@bgu.ac.il
https://orcid.org/0000-0002-1410-8368
mailto:wyeoh@wustl.edu
https://orcid.org/0000-0002-2617-870X
https://doi.org/10.4230/LIPIcs.CP.2024.24
https://github.com/benrachmut/CADCOP_CP_2024
https://archive.softwareheritage.org/swh:1:dir:4d80c62cc077c5ad44894acf592359cd0ce1580c;origin=https://github.com/benrachmut/CADCOP_CP_2024;visit=swh:1:snp:ac46b071c2da5e4e307f7cabcadeaf809d35c03d;anchor=swh:1:rev:4a5f110918cdcc9202cb2bcba12ec8fa93a6d819
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Latency-Aware 2-Opt Monotonic Local Search for DCOPs

Most state-of-the-art local search DCOP algorithms (including DSA and MGM) are
synchronous. However, the general setting in which agents operate is inherently asynchronous.
Synchronization is achieved through message exchanges in each iteration of the algorithm, in
which an agent receives messages sent by its neighbors in the previous iteration, performs
computation, and sends messages to all its neighbors [24, 26]. This ensures that at iteration k,
an agent has access to all information sent to it during iteration k−1. The synchronous design
enables the attainment of some desirable properties. For example, MGM agents achieve
monotonicity on the quality of the solutions found by modifying their value assignments
while ensuring that neighboring agents do not concurrently replace their assignments [10].

There exists a class of local search DCOP algorithms that guarantee that the solutions
found are k-opt (i.e., they cannot be improved by a group of k agents) [15]. MGM is a
1-opt algorithm and MGM-2 is an extension that is a 2-opt algorithm. Unfortunately, their
synchronous designs take advantage of the overly simplistic communication assumptions in
the DCOP model, which do not reflect real-world scenarios. Notably, the assumption that all
messages arrive instantaneously or with negligible and bounded delays is impractical, given
that real-world networks may suffer from delays due to congestion and limited bandwidth.

To address these limitations, researchers introduced Distributed Asynchronous Local
Optimization (DALO), an asynchronous k-opt algorithm for solving DCOPs [9]. Unfortunately,
its design lacks robustness in scenarios with message delays, restricting its applicability.
Specifically, agents try to form groups by asking others to commit to the process they initiate,
ensuring an up-to-date local view when computing local optimization. Because neighboring
agents attempt to form groups simultaneously, a randomly set local timer is used. Agents can
only commit to other groups if a lock request is sent during this timer’s duration. However,
this design fails when the local timer is not coordinated with the magnitude of message
delays, resulting in agents rejecting each other’s requests. Additionally, DALO’s design does
not adequately handle messages not arriving in the order that they were sent. This raises
concerns about the algorithm’s guaranteed properties under such conditions.

Recent studies [17, 18] explored the performance of local search algorithms for solving
DCOPs in the presence of imperfect communication, where messages can be delayed. They
demonstrated the significant impact of message latency on the performance of synchronous
distributed local search algorithms, especially on property guarantees and convergence
rates of MGM. Consequently, a 1-opt Latency Aware Monotonic Distributed Local Search
(LAMDLS) algorithm was proposed [18]. LAMDLS uses an ordered coloring scheme to
prevent neighboring agents from replacing assignments concurrently while preventing agents
from waiting for messages as they do in MGM. As a result, LAMDLS demonstrates a quicker
convergence rate compared to MGM.

Building on the success of LAMDLS, we advance the research on distributed algorithms
that are robust to message delays by proposing LAMDLS-2, which allows agents to form
pairs and coordinate their value assignment selection, while maintaining monotonicity and
converging to a 2-opt solution. LAMDLS-2 enables sequential change of values among paired
agents. Agents utilize a unique pairing selection process and an ordering scheme that allows
concurrent value modifications for unconstrained pairs. We further discuss a scheme that
will allow to generation of a similar monotonic k-opt algorithm for any 1 ≤ k ≤ n in future
studies. We prove the monotonicity of LAMDLS-2 and its convergence to a 2-opt solution.
Our empirical results indicate that LAMDLS-2 converges significantly faster, in environments
with a variety of latency patterns, compared to MGM-2, an existing 2-opt DCOP algorithm.

B. Rachmut, R. Zivan, and W. Yeoh 24:3

2 Background

We present background on Distributed Constraint Optimization Problems (DCOPs), k-opt
algorithms, including the 2-opt algorithm MGM-2, Communication-Aware DCOPs (CA-
DCOPs), and Latency-Aware Monotonic Distributed Local Search (LAMDLS).

2.1 Distributed Constraint Optimization Problems (DCOPs)
A DCOP is a tuple ⟨A,X ,D,R⟩, where A is a finite set of agents {A1, A2, . . . , An}; X is a
finite set of variables {X1, X2, . . . , Xm}, where each variable is held by a single agent (an
agent may hold more than one variable); D is a set of domains {D1, D2, . . . , Dm}, where each
domain Di contains the finite set of values that can be assigned to variable Xi and we denote
an assignment of value d ∈ Di to Xi by an ordered pair ⟨Xi, d⟩; and R is a set of constraints
(relations), where each constraint Rj ∈ R defines a non-negative cost for every possible value
combination of a set of variables and is of the form Rj : Dj1 ×Dj2 × . . .×Djk

→ R+∪{0}. A
binary constraint refers to exactly two variables and is of the form Rij : Di×Dj → R+ ∪ {0}.

A binary DCOP is a DCOP in which all constraints are binary. Agents are neighbors if they
are involved in the same constraint. A partial assignment (PA) is a set of value assignments
to variables, in which each variable appears at most once. vars(PA) is the set of all variables
that appear in partial assignment PA (i.e., vars(PA) = {Xi | ∃d ∈ Di ∧ ⟨Xi, d⟩ ∈ PA}).
A constraint Rj ∈ R of the form Rj : Dj1 × Dj2 × . . . × Djk

→ R+ ∪ {0} is applicable to
PA if each of the variables Xj1 , Xj2 , . . . , Xjk

is included in vars(PA). The cost of a partial
assignment PA is the sum of all applicable constraints to PA over the value assignments in
PA. A complete assignment (i.e., solution) is a partial assignment that includes all variables
(vars(PA) = X). An optimal solution is a complete assignment with minimal cost.

For simplicity, we assume that each agent holds exactly one variable (i.e., n = m) and we
focus on binary DCOPs. These assumptions are common in DCOP literature (e.g., [16, 22]).

2.2 k-opt and Region-opt Algorithms
Most local search DCOP algorithms are synchronous [24, 10, 26]. In MGM, a step (in which
agents decide on value replacements) includes two synchronous iterations. First, agents
receive their neighbors’ updated value assignments and seek improving alternatives for their
assignments. Next, agents share their maximal gain from a value replacement. An agent
replaces its assignment if its gain exceeds all its neighbors’ reported gains. MGM guarantees
that agents compute cost reductions using up-to-date information and prevents simultaneous
assignment changes by neighbors. This leads to monotonic global cost improvement. MGM
also guarantees convergence to a 1-opt solution.

k-opt generalizes the 1-opt solution concept to any case where k agents cannot improve a
solution [10, 15]. An algorithm ensuring this must allow all possible coalitions of k agents to
seek improving assignments. A well-known algorithm that guarantees the convergence to
a 2-opt solution (k = 2) is MGM-2. In MGM-2, agents pair with neighbors to coordinate
bilateral assignment replacements. MGM-2’s step has five synchronous iterations. In the first
three, agents attempt to form pairs, exchange information, and identify the best bilateral
gains for these pairs. Unpaired agents select the highest unilateral gain possible. In the
remaining two iterations, as in standard MGM, each agent evaluates whether its gain (or
the gain of its pair) is larger than the gain of all its neighbors. An agent that is part of a
pair, must receive the approval of its partner, that their gain is larger than the gain of the
partner’s neighbors as well.

CP 2024

24:4 Latency-Aware 2-Opt Monotonic Local Search for DCOPs

A general k-opt algorithm was proposed by Pearce an Tambe [15] and further generalized
to region-optimal algorithms by Vinyals et al. [21]. A region is defined by groups of agents
that are monitored by the same agent. Commonly, these groups are classified according to
two parameters: Their size (k) and the distance of the agents from the monitoring agent (t).
In each step of the algorithm, monitoring agents select a group from their region, aggregate
their information, select an alternative assignment, calculate the corresponding gain, and
propagate it to the neighbors of all agents in the group. Groups with a larger gain than the
gains reported by their neighbors replace their assignments.

2.3 Communication-Aware DCOPs (CA-DCOPs)

CA-DCOPs [18, 27] extend standard DCOPs by using a Constrained Communication Graph
(CCG) to model the communication latency between pairs of agents. Thus, they can model
any pattern of imperfect communication. Specifically, each edge e in the CCG represents
the imperfect communication between a pair of agents and is associated with a latency
distribution function.

2.4 Latency-Aware Monotonic Distributed Local Search (LAMDLS)

LAMDLS [17] is monotonic and 1-opt (like MGM). By allowing agents to consider value
assignment replacements using a partial order, it effectively mitigates the impact of message
latency and facilitates faster convergence. To establish the partial order structure it uses
the Distributed Ordered Color Selection (DOCS) algorithm. DOCS divides the agents into
subsets, where agents in each subset have the same color. Colors are ordered (i.e., there is
a mapping from colors to the natural numbers from 1 to NC, where NC is the number of
colors). The neighbors of each agent must hold a different color than its own, and the agent
must know which neighbors are ordered before it and which after. During the algorithm
execution, each agent keeps track of its neighbors’ computation steps, updates them with its
selection, and performs the k-th iteration when neighbors with a lower color index complete
k iterations and those with a higher index complete k− 1 iterations. LAMDLS demonstrates
a faster convergence rate compared to MGM, with the difference becoming more noticeable
as the magnitude of message delays increases [18].

3 LAMDLS-2

Latency-Aware Monotonic Distributed Local Search 2 (LAMDLS-2) is a monotonic algorithm
that converges to a 2-opt solution. 2-opt algorithms, such as MGM-2, achieve this property by
allowing all pairs of agents to make an attempt to improve any assignment that the algorithm
traverses, unless it is revised before they get their chance. The main difference in LAMDLS-2
is the method used to generate pairs that will cooperatively suggest an assignment revision.
In contrast to MGM-2, where a query response process is used to determine pairs, LAMDLS-2
uses DOCS to find an ordered coloring scheme for determining the pairs. Once DOCS selects
an order, the pairs are generated deterministically accordingly, and there are no additional
messages required for the pairing process. Thus, message latency has smaller deteriorating
effects on this algorithm compared to MGM-2. In order to make sure that all pairs of agents
get their chance to improve the current assignment, DOCS is performed iteratively, using
random agent indexes. This results in random orderings, which eventually allow all possible
pairs to be generated. We present the algorithm in more details below.

B. Rachmut, R. Zivan, and W. Yeoh 24:5

Algorithm 1 LAMDLS-2.

Input: N(i)
1: valuei ← selectRandomValue()
2: sci ← 1
3: for each Aj ∈ N(i) : vN(i)[j]← 1
4: docsIdi ← i

5: for each Aj ∈ N(i) : docsIdsN(i)[j]← j

6: coi, coN(i) ← DOCS(i,docsIdsN(i))
7: while stop condition not met:
8: pairPhase(sci, vN(i),coi,coN(i),docsIdsN(i))
9: docsIdi ← random(0,1)

10: sendDocsId(N(i),docsIdi)
11: docsIdsN(i) ←recieveAllDocsIds()
12: coi, coN(i) ←DOCS(docsIdi,docsIdsN(i))

LAMDLS-2 is composed of two alternating phases: Ordering and Pair Selection. Al-
gorithm 1 presents the pseudocode performed by an agent Ai. In the ordering phase, agents
select ordered colors using the DOCS algorithm (lines 6 and 12). In the pair selection phase,
agents select partners and collaboratively adjust assignments using the pairPhase function
(line 8). The algorithm’s input includes the set N(i) that includes Ai’s neighbors.

The algorithm starts with agent Ai randomly selecting valuei for its value assign-
ment (line 1). In addition, Ai maintains a step counter sci, which is incremented each
time Ai selects a value assignment, and a step counter for each of its neighbors in the set
vN(i). Entry vN(i)[j] is updated when a value assignment update from a neighbor Aj is
received. Both sci and entries in vN(i) are initialized to 1 (lines 2-3).

3.1 Ordering Phase
In the ordering phase, agents use the DOCS algorithm to select ordered colors, as in
LAMDLS [18]. Following DOCS, Ai receives its selected color coi, and the colors coN(i) are
selected by its neighbors. In contrast to LAMDLS, where agents use their indexes within the
DOCS procedure to select colors, in LAMDLS-2 the agents use random values (docsIdi). Ai

retains the docsId’s of its neighbors in the set docsIdsN(i). Once Ai has completed the pair
selection phase, before re-starting DOCS, it selects a new value for docsIdi and waits for the
docsId values of its neighbors to be updated in docsIdsN(i) (lines 9-11). Hence, each time
DOCS operates, it uses different values for docsId and docsIdsN(i) and, thus, the probability
that it would generate distinct values for coi and coN(i) is very high. In line 6, DOCS is
initiated before the pair selection phase. Thus, initial values for the docsIds are according to
the agents’ indexes. The use of randomized docsId values in DOCS results in diverse and
randomized ordered color selections in the different steps of the algorithm.

Algorithm 2 details the execution of the DOCS method by some agent Ai. At the
initiation of the algorithm, Ai holds its own docsIdi and the docsIds of its neighbors (in
docsIdsN(i)). When the algorithm terminates Ai holds the color it selected (coi) and the
colors of its neighbors (coN(i)). The algorithm begins by initializing the variables coi and
coN(i) (lines 1-2). If the value of docsIdi is the smallest among the values in docsIdsN(i),
Ai sets the value of coi to 1 and sends this information to its neighbors. Afterward, Ai

remains idle until it receives updated information about the colors selected by its neighbors
(line 7). The algorithm terminates when Ai becomes aware of the colors of all its neighbors

CP 2024

24:6 Latency-Aware 2-Opt Monotonic Local Search for DCOPs

Algorithm 2 LAMDLS-2 color selection DOCS.

Input: docsIdi, docsIdsN(i)

Output: coi, coN(i)

1: coi ← None
2: for each Aj ∈ N(i) : coN(i)[j]← None

3: if min(docsIdi, docsIdsN(i)) then:
4: coi ← 1
5: send (N(i),coi,valuei)
6: while not aware of all colors:
7: when color from Aj:
8: update (coj , coN(i)[j])
9: update (valuej)

10: if coi is None and can select color then:
11: coi ← selectMinAvilableColor(coN(i))
12: valuei ← selectValueUnilaterally(coN(i))
13: send (N(i),coi,valuei)
14: return coi, coN(i)

and selects a color for coi (line 6). Upon receiving updated information about the colors
selected by its neighbors, Ai updates coN(i). Then it checks if it can select a color. If a color
was not chosen previously and Ai receives the colors of all its neighbors with smaller indices
in docsIdsN(i), it selects the color with the smallest number that hasn’t been chosen by any
of its neighbors and sends this color to its neighbors. This process ensures that eventually,
the color selected by each agent is different from the colors selected by its neighbors. To
accelerate the convergence process of LAMDLS-2, agents can select values while they select
their colors (line 12).

3.2 Pair Selection Phase
Like MGM-2, LAMDLS-2 achieves monotonicity and convergence to a 2-opt solution by
allowing agents to form pairs and select the best mutual assignment, while their neighbors
avoid replacing their assignments at the same time. The main difference from MGM-2 is
the use of the ordered color scheme by agents to decide when to suggest pairing with their
neighbors, which neighbor they should make suggestions to, and whether to accept such
suggestions from their neighbors. Agent Ai selects Aj as its partner and shares all relevant
information, including its current assignment, the content of its domain, its neighbors, their
assignments, and its constraints. Then, when allowed, Aj proceeds to calculate the bilateral
value assignments for both Ai and itself and notifies Ai about its updated value assignment.
The phase concludes when the agent makes a selection of its value assignment (denoted by
valuei). If the pairing process is successful, Aj selects the value assignment for both Ai and
Aj . However, if the pairing process fails (i.e., Ai is not paired with any other agent), Ai can
unilaterally select its assignment. Following each selection of a value assignment, there is an
update of the agent’s step counter (sci), accompanied by a message sent to its neighbors,
which includes valuei and sci.

Below, we provide a more detailed description of the Pair Selection phase and present its
pseudocode in Algorithm 3. Agent Ai divides its neighbors into two sets, PC(i) and FC(i),
based on the input variables coi and coN(i). PC(i) includes neighbors with color indices
smaller than coi, while FC(i) includes neighbors with larger color indices. This division is

B. Rachmut, R. Zivan, and W. Yeoh 24:7

Algorithm 3 LAMDLS-2 Pair Selection Phase.

Input: N(i),sci, vN(i),coi,coN(i),docsIdsN(i)

1: varConsist← [sci, vN(i),coi,coN(i)]
2: sn, nInfo← None

3: sn←offer(varConsist,sn,docsIdsN(i))
4: while phase not completed:
5: when receive message from Aj:
6: if message is of type value then:
7: update(valuesN(i)[j],vN(i)[j])
8: if message.sender is sn :
9: valuei ← selectValueUnilaterally()

10: else:
11: sn←offer(varConsist,sn,docsIdsN(i))
12: if message is of type reply then:
13: updateValue(message.getValue(i))
14: if message is of type offer then:
15: nInfo←getOfferInfo(message,docsIdsN(i))
16: reply(varConsist,nInfo)
17: sci ← sci + 1
18: sendLocalInfo(N(i),valuei,sci)

used to determine the selected neighbor (sn) that Ai shares its information with. Agents
take into consideration coi, coN(i), sci, and vN(i) while deciding when to initiate partnerships
and how to respond to partnership requests. LAMDLS-2 agents exchange three types of
messages during the pair selection phase:

Value (lines 6-11): Triggers an update of vN (i), which allows agents to initiate partner-
ships and reply to them.
Reply (lines 12-13): Contains the value assignment found by the neighbor the agent
paired with.
Offer (lines 14-16): Contains the relevant information sent when an agent offers a
neighbor to form a pair.

Upon receiving a value message, Ai updates its local view (line 7) and then considers
two scenarios that may be triggered: Either rejecting or initiating an offer. If the sender
of the value message is the agent (sn) to whom Ai has made an offer in the current phase
(lines 8− 9), Ai considers the value message as a rejection of its offer. Conversely, if Ai did
not initiate an offer during the current phase, a value message reception may prompt an
offer initiation due to an update in vN(i), as Ai examines the necessary condition to offer
(lines 10− 11).

In the offer function, Ai checks its eligibility to make an offer when the condition
sci = scj − 1 is met for every Aj ∈ PC(i). The offer function is activated under two
circumstances. The first occurs when a value is received from the neighbor Aj . This results
in an update of scj , which might satisfy the condition that will allow Ai to offer. The second
is tied to the base case that initiates the phase for agents meeting the condition due to
pc = ∅ (line 3). When the agent decides to make an offer, it selects a neighbor (sn) using a
deterministic process. The chosen neighbor must meet the following conditions: Its color
index is larger by one from the color index of Ai (coi + 1 = coN(i)[sn]), and the value of
vN(i)[sn] equals sci. If multiple agents meet these conditions, the neighbor with the smallest

CP 2024

24:8 Latency-Aware 2-Opt Monotonic Local Search for DCOPs

(a) Identity index. (b) Random index.

Figure 1 Two different numerical graph color partitions.

value in docsIdsN(i) is chosen. If sn is found, Ai sends an offer message containing all
relevant information for a bilateral value assignment selection. The function returns sn for
future examination of whether the offer was accepted or rejected. If no neighbor satisfies
the conditions to qualify as sn, Ai unilaterally selects a value assignment and indicates that
the phase is completed. After sending an offer message, Ai enters an idle state, awaiting a
reply from sn. Upon receiving a reply message, Ai is informed of the offer’s acceptance.
Subsequently, Ai updates its valuei based on the bilateral decision made by sn (line 13).

Upon receiving an offer message, Ai stores the shared information and uses the reply
function (line 15). Ai has the option to either accept the offer or reject it. Ai can only
accept a single offer per step. If Ai accepts the offer, it proceeds to calculate values for itself
and its partner using its local information and the information received from its partner
and sends a reply message back to it. However, if Ai declines the offer, indicating that
it has already formed a bilateral value assignment change with a different agent, it sends
a message containing its value to inform the sender that the offer was rejected. If Ai

receives multiple offers, it selects as a partner the offering agent with the lowest index in
docsIdsN(i). Let PO(i) denote the set of agents that sent offers to Ai in the current pair
selection phase. An offer can be accepted by Ai if the following condition is met: for each
agent Aj ∈ PC(i)\PO(i), sci = scj − 1. Until this condition is met, Ai will remain idle and
wait for messages to arrive.

3.3 Demonstration of LAMDLS-2
In the following sub-section, we describe the beginning of a high-level trace of LAMDLS-2,
when operating on the constraint graph presented in Figure 1. In this graph, each node
represents an agent, and the corresponding colors (selected using DOCS) of the agents are
displayed beneath the nodes. Specifically, each node represents an agent Ai,docsId, where i

is the agent’s index and docsId is a randomly assigned value that is drawn before the next
step.

After agents randomly select values for their assignments, each agent initializes its docsId.
They also set the entries of docsIdsN(i) with the identity indices of their respective neighbors,
e.g., A1: docsId1 = 1 and docsIdsN(1) = [⟨A3 : 3⟩, ⟨A4 : 4⟩, ⟨A5 : 5⟩]

First Step
After initiation, agents proceed to execute DOCS. Figure 1 (a) presents the outcome of the
color selection process carried out by DOCS. This process utilizes the values of docsId of the
agents, therefore the outcome is dependent on their selection. In the example at hand, agents

B. Rachmut, R. Zivan, and W. Yeoh 24:9

A1 and A2 do not have neighbors with smaller indices, so they select the color 1 (blue) and
communicate this information to their neighbors. Among these neighbors, agents A3 and A4
do not have other neighbors with smaller indices, so they choose the color 2 (red) and send
messages including this information to their neighbors. Finally, agents A5 and A6 select the
color 3 (purple). This completes the color selection phase.

When the pair selection phase begins, both A1 and A2, which selected the color 1, can
choose a neighbor and send an offer along with the relevant information. They are eligible
because PC(1) = ∅ and PC(2) = ∅. A1 must select a neighbor with the smallest docsId

color among its neighbors with color 2. It has two neighbors with color 2, A3 and A4), and
among them, A3 has a smaller docsId, thus, it sends the offer to A3. A2 selects A4, since it
is its only neighbor with color 2.

Upon receiving an offer, A3 is eligible to respond, given that A1 is its only neighbor.
A3 selects values for itself and for A1, updating sc3 to 2. It then sends a reply to A1, who
adjusts its assignment and updates sc1 to 2, notifying all its neighbors including A4.

After receiving an offer from A2, A4 must wait for an update from A1 (which is included
in PC(4)). Following this update, A4 selects values for itself and for A2, increments sc4 to
2, responds to A2 and informs its neighbors of the new selected value. Subsequently, A2
updates its value, sc2 becomes 2, and it informs its neighbors too.

At this point, agents with colors 1 and 2 have already chosen value assignments. Upon
receiving this information, A5 updates vN(5) = [⟨A4 : 2⟩, ⟨A5 : 2⟩]. Thus, when receiving a
value message that finalizes the update of vN(5), A5 is eligible to offer, given that sc5 = 1 and
sc1 = sc4 = 2. While attempting to find a suitable partner, A5 will pick a value unilaterally
since no agent in coN(5) holds color 4 (which is one greater than co5 = 3). Similarly, A6 will
also independently select its value assignment. This finalizes the second phase of the first
step.

Second Step
At the beginning of the second step, agents select random docsIds and send messages that
inform their neighbors of their selection.

Next, agents execute DOCS using the random docsIds selected and generate the color
selection that is depicted in Figure 1 (b), as described next: Agents A4 with docsId4 = 0.1
and A3 with docsId3 = 0.5 do not have neighbors with smaller docsId values, leading them
to select color 1 (blue) and communicate this decision to their neighbors. Agents A2 with
docsId2 = 0.2 and A5 with docsId5 = 0.4 can then select the color 2 (red) and convey it to
their neighbors. Eventually, agents A6 with docsId6 = 0.3 and A1 with docsId1 = 0.6 select
color 3 (purple) and inform their neighbors.

In the pair selection phase, agent A4 selects A2 as its partner and forwards an offer (since
docsId4 < docsId5, i.e., 0.2 < 0.4). Agent A3 changes its value independently, as its only
neighbor A1 has color 3. Upon receiving a value message from A4, A5 can send an offer to
A1. After A1 receives a value update from A4, it can respond to A5. Notably, in the previous
step, the pair A5 and A1 did not form a partnership. When A6 receives value messages
from A2 and A4 (PC(6) = {A2, A4}), it attempts to select a neighbor. Failing to do so (no
neighbors in FC(6)), it selects a value on its own.

3.4 Theoretical Properties
We now prove that LAMDLS-2 is monotonic and convergence to a 2-opt solution. Our
monotonicity proof stems from previous studies that proved the monotonicity of MGM,
MGM-2, and LAMDLS [11, 18] based on the fact that, in DCOP algorithms, when a single

CP 2024

24:10 Latency-Aware 2-Opt Monotonic Local Search for DCOPs

agent or a pair of agents improve their local state, while their neighbors remain idle, the
global cost improves as well. Thus, it remains to show that when an agent or a pair of agents
improve their local state in LAMDLS-2, their neighbors are idle until the messages regarding
the assignment replacements that were performed by the agent or pair of agents arrive.

▶ Lemma 1. In a DCOP (with symmetric constraints), when an agent Ai is the only agent
replaces its assignment, while none of its neighbors (NC(i)) replace their assignments, and
this replacement results in a local gain, it also results in an improvement of the global cost.

Proof. Denote the global cost before Ai’s assignment replacement by gc and the local gain
following Ai’s assignment replacement by LRi. Since the problem is symmetric, the sum
of local gains of Ai’s neighbors is also equal to LRi. Since we assumed that LRi > 0,
gc > gc− 2LRi. ◀

▶ Lemma 2. When some agent Ai initiates a partnership offer, all agents in N(i) that
do not partner with Ai avoid replacing their assignments until Ai completes its assignment
replacement.

Proof. For Ai to be active, sci must be equal to k (i.e., it has not been incremented since
the color selection phase) and, for each agent Ai′ ∈ PC(i), sci′ = k + 1. Thus, when Ai

sends an offer, all agents in PC(i) have already incremented their step counters. In addition,
for each agent Aj′ ∈ FC(i) (i.e., Ai ∈ PC(j′)), until sci is incremented, Aj′ cannot send an
offer or replace its assignment. ◀

▶ Lemma 3. When agent Ai initiates a partnership offer to Aj, agents in N(j) do not
replace their assignments until Aj completes its assignment replacement.

Proof. Agents in FC(j) cannot offer or reply to an offer until scj is incremented. On the
other hand, for the agents in PC(j), there are two cases:

Ai′ ∈ PC(j)(i ̸= i′) did not offer to Aj . Then, Aj will not reply and replace assignments
until sci′ is incremented, which can happen only after Ai′ replaces its assignment. Thus,
it cannot happen concurrently with the assignment replacement of Aj .
Ai′ ∈ PC(j)(i ̸= i′) did offer to Aj . Then, either Aj pairs with it, or it sends a rejection
reply only after it completed the assignment replacement. Thus, they do not replace
assignments concurrently. ◀

▶ Proposition 4. LAMDLS-2 is monotonic (i.e., each assignment replacement improves the
global cost of the complete assignment held by the agents).

Proof. Follows immediately from Lemma 2 and Lemma 3. While agents replace their value
assignments, none of their neighbors can replace their assignments. ◀

▶ Proposition 5. At each pair selection phase, every agent that receives an offer will reply
(positively to one of the offering agents and negatively to the rest).

Proof. We prove by induction, using an order on all agents that can receive an offer (i.e., all
agents except for the ones with the color 1; we will assume that the colors are numbered from
1 to NC). When colors are selected, the step counters of all agents are equal (e.g., sci = k

for all i). Agents of the same color have a different docsId. Thus, the order between every
two agents that can receive an offer is determined first according to their color (small colors
come first). If the colors are equal then the tie is broken using their docsId (smaller comes
first).

B. Rachmut, R. Zivan, and W. Yeoh 24:11

Recall that the conditions for an agent Aj to reply to an offer are that all agents in PC(j)
either offered to Aj or their step counter equals scj + 1. Assume that Ai is the agent with
the smallest docsId among the agents with color 2. It will receive offers from all its neighbors
with color 1. Thus, it will be able to select a neighbor to reply positively to its offer, and all
its other neighbors will get a negative reply and unilaterally select an assignment.

The agent with the second smallest docsId that received an offer (Aj) with color 2 can
have two types of neighbors with color 1: Ones that sent an offer to Ai and ones that sent
an offer to Aj . The ones that sent an offer to Ai, after they receive the reply from Ai, will
attempt to replace their assignment and increase their step counter. After receiving all
indications regarding the increase of the step counters of these agents, Aj can reply to the
agents that sent it an offer.

Assume that later on during the algorithm run, Ai is the agent that received an offer,
with sci = k, and with the smallest color index and the smallest docsId among the agents
that received an offer and did not yet reply (i.e., if agent Ai′ received an offer and did not
yet reply, then either coi′ > coi or coi′ = coi&docsIdi′ > docsIdi). Since there are no agents
with a color smaller than coi that received an offer and did not reply, then there is no agent
that sent an offer with a color index smaller than coi − 1, which a reply was not sent to it.
Thus, the members of PC(i) include two types of agents: Agents that sent an offer to Ai

and agents that a reply for the offers they sent was already sent to them. Thus, once all the
offers from agents of the first type and the indications on the increase in the step counter of
the agents from the second type arrive, Ai will be able to reply to the offers sent to it. ◀

An immediate correlation from Proposition 5 is that the algorithm terminates its phases
and does not deadlock. The ordering phase uses the DOCS algorithm and its correctness
and termination have been established in previous studies [2, 18]. The pair selection phase
must terminate because every agent that receives an offer must reply, and thus, all agents
can perform the assignment selection method and increase their step counter.

▶ Proposition 6. LAMDLS-2 converges to a 2-opt solution.

Proof. According to Proposition 4, LAMDLS-2 is monotonic. Thus, since the problem is
finite, it must converge to some solution. To prove that the solution it converges to is 2-opt,
we need to establish that following convergence, every pair of neighboring agents will get a
chance to form a pair and check all their alternative assignments. For agent Ai to form a
pair with agent Aj , one of them (without loss of generality we select Ai) needs to send an
offer to the other (Aj), and Aj needs to respond positively. This happens in two conditions:
(1) coi = coj − 1; or (2) for any agent Aj′ with coj = coj′ , docsIdj < docsIdj′ . Since colors
and docsIds are selected randomly, this situation will eventually occur. ◀

4 Extension to a Region-Optimal Algorithm

Similar to how MGM-2 was extended to k-opt and then to region-opt algorithms, we propose
an extension of LAMDLS-2 to LAMDLS-ROpt. In LAMDLS-ROpt, an agent initiating
ad-hoc coalition formation takes on a mediator role. Unlike LAMDLS-2, where this agent
includes its information in the offer message sent to the selected neighbor, in LAMDLS-ROpt,
the mediator sends an offer message to neighboring agents within the coalition it aims to
form. This message invites them to join and prompts other specified neighbors to join as well.
The information of the agents in the forming coalition is sent back to the monitoring agent,
who selects an alternative assignment for the group. The group replaces the assignment if
the mediator is ordered before the mediators of neighboring groups according to the ordered

CP 2024

24:12 Latency-Aware 2-Opt Monotonic Local Search for DCOPs

color and docsId scheme. This process is similar to the region-optimal algorithm RODA [7].
The difference is in its repeated selection of mediators, the selection of members in the groups
included in the mediators’ regions, and the order in which groups replace assignments, in a
designated sequence, according to the ordered color scheme used in LAMDLS and LAMDLS-
2. We leave for future work the investigation of the performance of LAMDLS-ROpt in
comparison with RODA.

5 Experimental Evaluation

We present a comprehensive study that compares the proposed LAMDLS-2 algorithm to
MGM-2, solving a variety of DCOP benchmarks in environments with different patterns of
message latency.

5.1 Experimental Design

In our experiments, we use the same asynchronous simulator used by researchers for CA-
DCOP algorithms.1 The experiments were conducted on a Windows Server 2019 Standard
operating system, with an Intel Xeon Silver 4210 CPU 2.20GHz.

We follow the approach used in the literature [17, 18] to evaluate the quality of the
solutions of the algorithms, as a function of the asynchronous advancement of the algorithm,
in terms of non-concurrent logic operations (NCLOs) [25, 13]. The utilization of NCLO
ensures implementation independence and avoids double counting of simultaneous actions.

In each experiment, we randomly generated 100 different problem instances with 50 agents
and we reported the average solution quality of the algorithms examined. To demonstrate
the convergence of the algorithms, we present the sum of costs of the constraints involved in
the assignment that would have been selected by each algorithm every 10, 000 NCLOs.

We simulated three types of communication scenarios: (1) Perfect communication; (2)
Message latency selected from a uniform distribution U(0, UB), where UB is a parameter
indicating the maximum latency; and (3) Message latency selected from a Poisson distribution
with λ = |MSG| and then scaling it by a factor of m, where |MSG| represents the number
of messages that are currently delivered in the system, and m is a scaling factor indicating
the magnitude of the latency. This scenario is the evaluation of the impact of bandwidth
load. Latency was also measured in terms of NCLOs.

We evaluated our algorithms on three problem types that are commonly used in the
DCOP literature:

Uniform Random Problems. These are random constraint graph topologies with
densities 0.2 and 0.7. Each variable had a domain of 10 values, and constraint costs were
uniformly selected between 1 and 100.
Graph Coloring Problems [24, 4]. Each variable has three values (colors). Equal
assignments between two neighbors incurred random costs from U(10, 100), while non-
equal assignments had 0 cost. The density was set at 0.05.
Scale free Network Problems [1]. Initially, 10 agents were randomly selected and
connected. Additional agents were sequentially added, connecting to 3 other agents with
probabilities proportional to the existing agents’ edge counts. Similar to the first type,
variables had a domain of 10 values, and constraint costs ranged from 1 to 100.

1 The simulation’s code is available at https://github.com/benrachmut/CADCOP_CP_2024.

https://github.com/benrachmut/CADCOP_CP_2024

B. Rachmut, R. Zivan, and W. Yeoh 24:13

(c) Scale Free (d) Graph Coloring

(a) Sparse Uniform (b) Dense Uniform

0 25 50 75 100 0 5 10 15 20

0 50 100 150 0 100 200 300

325

350

375

400

425

0

3

6

9

80

100

120

40

50

60

70

80

NCLO X 10^4

C
os

t X
 1

0^
2

Algorithm
LAMDLS−2
MGM−2

U(0,UB)
0
5000
10000

Figure 2 Solution quality as a function of NCLOs. Message delays are sampled from a uniform
distribution.

(c) Scale Free (d) Graph Coloring

(a) Sparse Uniform (b) Dense Uniform

0 25 50 75 100 0.0 2.5 5.0 7.5 10.0

0 50 100 150 200 0 500 1,000 1,500

325

350

375

400

425

0

3

6

9

80

100

120

40

50

60

70

80

NCLO X 10^4

C
os

t X
 1

0^
2

Algorithm
LAMDLS−2
MGM−2

Pois(|MSG|)*m
0
20
50

Figure 3 Solution quality as a function of NCLOs. Message delays sampled from a Poisson
distribution linked to message volume.

5.2 Experimental Evaluation

Figure 2 presents a comparison between the results of two algorithms: The proposed
LAMDLS-2 (represented by the blue curve) and MGM-2 (represented by the red curve).
The comparison is performed on different problem types, as shown in each subgraph. The
graph illustrates the performance of both algorithms in terms of the average global cost
as a function of NCLOs. This enables the demonstration of the solution quality and the
convergence speed for each algorithm. Latency is sampled from a uniform distribution, and
the line type (solid, dashed, and dotted) corresponds to different magnitudes of latency,
where UB = {0, 5,000, 10,000}. The results demonstrate that the algorithms converge to

CP 2024

24:14 Latency-Aware 2-Opt Monotonic Local Search for DCOPs

80

100

120

0 25 50 75 100
NCLO X 10^4

C
os

t X
 1

0^
2

80

100

120

0 25 50 75 100
Idle Time (NCLO) X 10^4

C
os

t X
 1

0^
2

80

100

120

0 25 50 75 100
MSG count X 10^3

C
os

t X
 1

0^
2

Protocol
PC
U(0,5000)
Pois(|MSG|)*20

Algorithm
LAMDLS−2
MGM−2

Figure 4 Solution quality as a function of different matrices in environments with different
message delays.

solutions with similar quality, independent of message delays. This is expected because,
in both algorithms, agents wait for updated information from their neighbors before they
perform computation and replace assignments.

LAMDLS-2 demonstrates faster convergence than MGM-2 in scenarios with no message
delays, except when solving graph coloring problems, where both algorithms show similar
convergence rates. Moreover, LAMDLS-2 is more resilient to message delays than MGM-2.
Its convergence rate remains relatively stable even with increasing delay, while MGM-2
experiences a more substantial slowdown in convergence as the latency magnitude increases.
The most significant difference in the convergence rate between LAMDLS-2 and MGM-2
is observed in dense uniform problems (Figure 2(b)). Interestingly, LAMDLS-2 with the
longest delays UB = 10,000 converges faster than MGM-2 with no delays. When solving
graph coloring problems (Figure 2(d)), although the convergence rates are similar when
communication is perfect, LAMDLS-2 exhibits a much faster convergence rate compared to
MGM-2 when messages are delayed. These problems are characterized by low density among
the examined types, leading to rapid convergence for both algorithms. For sparse uniform
problems (Figure 2(a)), the impact of message delays on both LAMDLS-2 and MGM-2 is
consistent and proportional. However, LAMDLS-2 maintains its superiority over MGM-2 in
terms of convergence speed. When solving scale-free networks (Figure 2(c)), the negative
impact on convergence rates is more pronounced for MGM-2 compared to LAMDLS-2 as the
latency magnitude increases. Figure 3 presents the results of a similar experiment in which
message delays were sampled from a Poisson distribution with the parameter λ = |MSG| ·m,
where m = {0, 20, 50}. In this set of experiments, the resilience of LAMDLS-2 is pronounced
regardless of the type of problem being solved. The increase in the latency magnitude did
not significantly affect LAMDLS-2’s convergence rate, unlike the significant effect it had on
MGM-2.

The results in Figures 2 and 3 indicate a faster convergence rate of LAMDLS-2 in
comparison with MGM-2. To investigate the reasons for this advantage, we present in
Figure 4 the solution costs of the algorithms as a function of two additional elements in
the algorithms’ execution. These elements are the number of messages exchanged by the

B. Rachmut, R. Zivan, and W. Yeoh 24:15

(c) Scale Free (d) Graph Coloring

(a) Sparse Uniform (b) Dense Uniform

32050

32100

32150

32200

2.5

5.0

7.5

6750

6800

6850

4120

4140

4160

Algorithm

Av
er

ag
e

C
os

t
MGM−2
LAMDLS−2

Figure 5 Average costs at convergence with error bars.

agents and the amount of time (in NCLOs) that agents were inactive (i.e., idle). Both
algorithms solve sparse uniform problems under various communication scenarios: Perfect
communication (PC) represented by the solid line, U(0,5,000) represented by the dashed line,
and Pois(|MSG|) · 20 represented by the dotted line. While the three presented subgraphs
illustrate the faster convergence rate of LAMDLS-2 compared to MGM-2, each of them
highlights a distinct advantage of LAMDLS-2. The faster convergence in terms of message
count indicates that LAMDLS-2 makes more economical use of the communication network.
The faster convergence in terms of idle time indicates that agents in LAMDLS-2 are more
active, and perform more concurrently.

In Figure 5, we present the average costs of both algorithms at convergence with SEM error
bars. Overlapping bars across sparse, dense, and scale-free networks suggest no significant
difference. Paired t-tests confirm this, with p-values above 0.05 (0.7514 for sparse, 0.8364 for
dense, and 0.4839 for scale-free). For graph coloring problems, there is a significant difference
(p-value 0.005), indicating diverse algorithmic performance in favor of LAMDLS-2.

6 Conclusions

We introduced Latency-Aware Monotonic Distributed Local Search 2 (LAMDLS-2), a dis-
tributed local search algorithm for solving DCOPs, which is monotonic and guarantees
convergence to a 2-opt solution. LAMDLS-2 converges faster, compared to MGM-2, a
synchronous distributed local search algorithm that converges to 2-opt solutions with similar
quality. We demonstrate that the algorithm not only converges faster but also makes more
economical use of the communication network and that the agents spend less time idle
during the algorithm run. The results indicate that LAMDLS-2 is more suitable for realistic
scenarios with message delays. Our approach, which is based on the ordered color scheme,
allows the agents to be more active in computing their assignments and spend less effort
in coordinating their actions. We also discussed how this approach can be extended to a
general k-opt algorithm, which we intend to implement in future work.

CP 2024

24:16 Latency-Aware 2-Opt Monotonic Local Search for DCOPs

References
1 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.
2 Leonid Barenboim and Michael Elkin. Combinatorial algorithms for distributed graph coloring.

Distributed Computing, 27(2):79–93, 2014.
3 Muhammed Basharu, Ines Arana, and Hatem Ahriz. Solving DisCSPs with penalty driven

search. In Proceedings of AAAI, pages 47–52, 2005.
4 Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R. Jennings. Decentralised

coordination of low-power embedded devices using the Max-Sum algorithm. In Proceedings of
AAMAS, pages 639–646, 2008.

5 Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization
problems and applications: A survey. Journal of Artificial Intelligence Research, 61:623–698,
2018.

6 Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. A multiagent system approach to
scheduling devices in smart homes. In Proceedings of AAMAS, pages 981–989, 2017.

7 Tal Grinshpoun, Tamir Tassa, Vadim Levit, and Roie Zivan. Privacy preserving region optimal
algorithms for symmetric and asymmetric DCOPs. Artificial Intelligence, 266:27–50, 2019.

8 Khoi D. Hoang, Ferdinando Fioretto, William Yeoh, Enrico Pontelli, and Roie Zivan. A large
neighboring search schema for multi-agent optimization. In Proceedings of CP, pages 688–706,
2018.

9 Christopher Kiekintveld, Zhengyu Yin, Atul Kumar, and Milind Tambe. Asynchronous
algorithms for approximate distributed constraint optimization with quality bounds. In
Proceedings of AAMAS, pages 133–140, 2010.

10 Rajiv T. Maheswaran, Jonathan Pearce, and Milind Tambe. Distributed algorithms for DCOP:
A graphical game-based approach. In Proceedings of PDCS, pages 432–439, 2004.

11 Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, and Pradeep
Varakantham. Taking DCOP to the real world: Efficient complete solutions for distributed
multi-event scheduling. In Proceedings of AAMAS, 2004.

12 Pragnesh J. Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1–
2):149–180, 2005.

13 Arnon Netzer, Alon Grubshtein, and Amnon Meisels. Concurrent forward bounding for
distributed constraint optimization problems. Artificial Intelligence, 193:186–216, 2012.

14 Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, and Roie Zivan. Distributed Gibbs:
A linear-space sampling-based DCOP algorithm. Journal of Artificial Intelligence Research,
64:705–748, 2019.

15 Jonathan Pearce and Milind Tambe. Quality guarantees on k-optimal solutions for distributed
constraint optimization problems. In Proceedings of IJCAI, pages 1446–1451, 2007.

16 Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint optimization. In
Proceedings of IJCAI, pages 1413–1420, 2005.

17 Ben Rachmut, Roie Zivan, and William Yeoh. Latency-aware local search for distributed
constraint optimization. In Proceedings of AAMAS, pages 1019–1027, 2021.

18 Ben Rachmut, Roie Zivan, and William Yeoh. Communication-aware local search for distributed
constraint optimization. Journal of Artificial Intelligence Research, 75:637–675, 2022.

19 Pierre Rust, Gauthier Picard, and Fano Ramparany. Resilient distributed constraint reasoning
to autonomously configure and adapt IoT environments. ACM Transactions on Internet
Technology, 22(4):1–31, 2022.

20 Melanie Smith and Roger Mailler. Getting what you pay for: Is exploration in distributed hill
climbing really worth it? In Proceedings of IAT, pages 319–326, 2010.

21 Meritxell Vinyals, Eric Anyung Shieh, Jesús Cerquides, Juan A. Rodríguez-Aguilar, Zhengyu
Yin, Milind Tambe, and Emma Bowring. Quality guarantees for region optimal DCOP
algorithms. In Proceedings of AAMAS, pages 133–140, 2011.

B. Rachmut, R. Zivan, and W. Yeoh 24:17

22 William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence Research, 38:85–133, 2010.

23 Makoto Yokoo and Katsutoshi Hirayama. Distributed breakout algorithm for solving distributed
constraint satisfaction problems. In Proceedings of AAMAS, pages 401–408, 1996.

24 Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed stochastic
search and distributed breakout: properties, comparison and applications to constraint optim-
ization problems in sensor networks. Artificial Intelligence, 161(1-2):55–87, 2005.

25 Roie Zivan and Amnon Meisels. Message delay and DisCSP search algorithms. Annals of
Mathematics and Artificial Intelligence, 46:415–439, 2006.

26 Roie Zivan, Steven Okamoto, and Hilla Peled. Explorative anytime local search for distributed
constraint optimization. Artificial Intelligence, 212:1–26, 2014.

27 Roie Zivan, Ben Rachmut, Omer Perry, and William Yeoh. Effect of asynchronous execution
and imperfect communication on max-sum belief propagation. Autonomous Agents and
Multi-Agent Systems, 37(2), 2023.

CP 2024

Combining Constraint Programming Reasoning
with Large Language Model Predictions
Florian Régin # Ñ

Université Côte d’Azur, I3S, CNRS, Sophia Antipolis, France

Elisabetta De Maria # Ñ

Université Côte d’Azur, I3S, CNRS, Sophia Antipolis, France

Alexandre Bonlarron # Ñ

Université Côte d’Azur, Inria, Sophia Antipolis, France
Université Côte d’Azur, I3S, CNRS, Sophia Antipolis, France

Abstract
Constraint Programming (CP) and Machine Learning (ML) face challenges in text generation due
to CP’s struggle with implementing “meaning” and ML’s difficulty with structural constraints.
This paper proposes a solution by combining both approaches and embedding a Large Language
Model (LLM) in CP. The LLM handles word generation and meaning, while CP manages struc-
tural constraints. This approach builds on GenCP, an improved version of On-the-fly Constraint
Programming Search (OTFS) using LLM-generated domains. Compared to Beam Search (BS), a
standard NLP method, this combined approach (GenCP with LLM) is faster and produces better
results, ensuring all constraints are satisfied. This fusion of CP and ML presents new possibilities
for enhancing text generation under constraints.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Solver and Tools, ML-augmented CP, Constrained Text Generation, ML
alongside CO

Digital Object Identifier 10.4230/LIPIcs.CP.2024.25

Acknowledgements We thank Jack Massey for his help in reproducing the benchmarks used as
baseline in Section 4.1.1.

1 Introduction

How can we perceive Constraint Programming beyond its traditional role in solving com-
binatorial optimization problems? Once Eugene Freuder wrote Constraint programming
represents one of the closest approaches computer science has yet made to the Holy Grail of
programming: the user states the problem, the computer solves it [13].

Nevertheless, some real-world problems are still beyond the reach of the current CP
paradigm. This is particularly true when real-world problems involve vague notions such as
“meaning” and “melody” for text and music. These are not easy to model in CP with the
classical toolbox, mainly because these notions are hard to define formally. For instance, it is
unclear how to formalize an objective function or a constraint to get closer to a meaningful
sentence, a melodious song or a captivating painting. On the other hand, recent results
in Machine Learning (ML), such as transformer-based models [39], have demonstrated the
power of these techniques to capture a significant part of these vague concepts through
data-driven statistical learning (e.g., Large Language Model (LLM) like the GPT series [8],
stable-diffusion [33], ChatMusician [41]). In the article, we demonstrate that ML, and in
particular LLM, can help CP to model and solve problems where such vague concepts can
be found.

© Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 25; pp. 25:1–25:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florian.regin06@gmail.com
https://scholar.google.com/citations?user=XyUNsR8AAAAJ&hl=fr
mailto:elisabetta.demaria@univ-cotedazur.fr
https://webusers.i3s.unice.fr/~edemaria
mailto:alexandre.bonlarron@gmail.com
https://scholar.google.com/citations?user=2MxLUkwAAAAJ&hl=fr
https://orcid.org/0000-0001-6116-2773
https://doi.org/10.4230/LIPIcs.CP.2024.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Combining CP Reasoning with LLM Predictions

In recent years, there has been a growing interest in text generation under constraints
thanks to the rise of transformer-based models, like OpenAI ChatGPT ([8]) and Meta
LLaMa ([37]). Nevertheless, even fine-tuned prompted LLMs fail to generate several con-
strained outputs (see the tasks introduced in [40]). The goal of this paper is to present a
new method for the task of text generation under constraints. This interest has a strong
chance of continuing to grow insofar as many brands wish to integrate these technologies, in
particular with their customers, and want to have control and guarantees on the behavior of
these conversational agents. Hence, it may impact several critical marketing aspects (e.g.,
brand representation, legal issues, data privacy, . . .). Therefore, CP has the potential to
become a strong safeguard of this kind of generative model.

For the task of text generation under constraints, ML techniques face limitations when
they have to manage structural constraints, such as limits on the number of words or
characters (e.g. Text Summarization, Text Simplification, Text style transfer, Question
Answering, Storytelling, Poetry or Lyrics Generation, Subtitle) [15]. CP succeeds on these
types of constraints, making the combination of CP and ML a natural fit for the task of text
generation under constraints.

This paper proposes such a combination, to tackle a class of problems where neither CP
and ML succeeds on their own (Fig. 1).

PURE CPLLM +
BEAMSEARCH

So
lu

ti
on

s

Heur i st i c
Gui ded
Sear ch

Exhaust i ve
r esol ut i on

const r ai nt sWeakl y
Const r ai ned

St r ongl y
Const r ai ned

Lo
t

of
so

ls
.

Fe
w

Bonl ar r on et al . ,
I JCAI 2023

Pachet & Roy. ,
Const r ai nt s 2011

Papadopoul os et al . ,
I JCAI 2015

Per ez & Regi n,
CP 2017

Post & Vi l ar ,
NAACL 2018

Hokamp & Li u,
ACL 2017

Lu et al . ,
NAACL 2022

OUR APPROACH: CP + LLM

Figure 1 Our approach aspires to explore the in-between area. In the blue (left-hand side) region,
LLM guided searches solve weakly constrained problems [27, 32, 17] and in the green (right-hand
side) region, CP-based generation tackles strongly constrained problems [36, 5, 6, 4, 31, 30, 29].

Combining Combinatorial Optimization (CO) and ML is a very active research area [2],
however there is no easy way to integrate the ML “expertise” into CP as a constraint of the
model [1, 26] and vice versa [18]. Furthermore, there are many incentives to strengthen the
interactions between ML and CO [21, 22, 35]. Usually, the main motivation comes from the
performance perspective, where the idea is to improve a solver’s performance with ML (e.g.,
finding branching heuristics thanks to Reinforcement Learning [9] or finding better bounds
with Clustering [28]). This paper tackles it from the modeling point of view. Modeling is a

F. Régin, E. De Maria, and A. Bonlarron 25:3

crucial part of CO works. In the end, the model must account for the underlying solver that
runs it. More in detail, here, the paper focuses on the interaction between CP and ML, more
precisely through an ML-augmented CP approach [23].

In the context of text generation under constraints, the domain of a variable represents a
word. The base idea of the paper consists in letting ML manage the domain of variables and
CP manage the constraints and the number of variables. In this manner, the sentence formed
by variables has high chances to have a meaning and all the constraints will be satisfied.
In traditional CP, the domains can not be managed by ML because they have to be set
beforehand. However, it is possible to rely on On-the-fly Constraint Programming Search
(OTFS) [34], a CP based method where variables, domains and constraints are generated
during the search for a solution.

The main contribution of this paper is to propose a new version of OTFS, called GenCP,
where the generative function of the domain of variables is modified to allow CP variable
domains to be computed by an LLM embedded in it, during the search for a solution. More
in detail, ML is used during process solving but it is also used as an explicit part of the
problem definition (i.e., domains are predicted by the LLM and can replace entirely static
variable domains definition of a CSP.). Thus it bridges CP and ML through solving and
modelling.

The potential of the approach is showcased for the problem of text generation under
constraints, against one the most used techniques in the Natural Language Processing (NLP)
field: Beam Search (BS). Both methods (BS and GenCP) are compared on constrained
sentences generation tasks extracted from benchmarks recently introduced [40]. The approach
highlights how CP can provide guarantees when combined with LLM predictions.

The paper is organized as follows: Sec. 2 serves as background, Sec. 3 shows how to extend
OTFS to GenCP and how to implement an interaction between GenCP and LLM. Sec. 4
presents the experimental results in which the new approach is demonstrated on the task
of text generation under constraints. Finally, Sec. 5 delves into further discussion, offering
additional insights into this work and providing perspectives for future research endeavors.

2 Background

This section introduces the necessary background on LLM and CP.

2.1 LLM Predictions Strategies

2.1.1 Decoding Strategies Combined with LLMs

Large Language Models (LLMs), such as the GPT series, generate text by predicting the
next token (word or character) given the history of previously generated words. Decoding in
LLMs refers to the strategy used to select the next words to be generated.

2.1.2 Greedy Decoding

The simplest decoding strategy is greedy decoding. Here, the LLM selects the words with the
highest probability at each time step. Although simple and efficient, this approach does not
guarantee the best overall sequence, as it does not consider the effect of the current selection
on future tokens.

CP 2024

25:4 Combining CP Reasoning with LLM Predictions

2.1.3 Beam Search
Beam Search (BS) [25, 32, 17] is a refined version of greedy decoding. A beam is a candidate
sequence of words. Instead of selecting the single best token at each time step, it usually
keeps track of the k most likely sequences (beams) at each step.

Although BS usually achieves better results than greedy decoding, it assumes that high-
ranking token sequences consist of high-ranking tokens, which may only sometimes be the
case. For a more stochastic and diverse output, top-k sampling and top-p sampling (also
known as nucleus sampling) are used. In top-k sampling, the model selects from the top k

highest probability predictions, while in top-p sampling, it dynamically selects the number of
top predictions to cover p percent of the total probability mass.

2.1.4 Perplexity
Perplexity is an entropy metric derived from Shannon’s information theory [7]. Since an LLM
computes the probability of text, then it can compute text perplexity. It can be expressed as
the geometric mean of the inverse conditional likelihood of the sequence [20]. Let Sn be the
sequence of a succession of words of size n: Sn = w1w2..wn. The perplexity (PPL) of Sn is
computed as follows:

PPL(Sn) = n

√
1

P (w1w2w3...wn) ,

where probability P (·) is given by the LLM. PPL can be interpreted as the “how likely a
text is generated by a given model” [15]. Usually, it is used to evaluate the LLM itself by
checking that good samples are recognized as such (i.e., low PPL values).

In NLP, the evaluation of text is still an open problem, and human evaluation remains
the gold standard. Numerous metrics have been developed to address this issue. Among
them, PPL remains an objective criterion associated with text produced by a given model.
PPL is also much more convenient to use than pure probability. Its range is [1; +∞[. The
lower, the better.

2.2 Constraint Programming
Constraint Programming (CP) is a paradigm for solving combinatorial problems that draws
on a wide range of techniques from artificial intelligence and operations research. In CP
a problem can be defined as a Constraint Satisfaction Problem (CSP). A CSP is a triplet:
⟨X, D, C⟩, where:

X = {X1, X2, ..., Xn} is the set of variables of the problem.
D = {DX1 , DX2 , ..., DXn} is the set of domains, where each domain DXi corresponds to
the set of possible values for the variable Xi.
C = {c1, c2, ..., cm} is the set of constraints of the problem. A constraints represent a
property of the problem.

A solution is an assignment of all the variables to a value present in their respective domains,
such that all the constraints are satisfied.

2.2.1 Avoiding Static Definition of the CSP
In traditional CP, for the task of text generation under constraints, a variable represents a
word. Since the domains of variables have to be set beforehand, they will be of enormous size,
containing every word/declination of words for a given language. Furthermore, constraints

F. Régin, E. De Maria, and A. Bonlarron 25:5

between succession of words may lead to a combinatorial explosion. Since traditional CP
is not well suited, this work focuses on OTFS, a CP based method recently introduced by
Régin and De Maria [34]. Instead of having the variables/domains/constraints set before the
search, OTFS generates the variables/domains/constraints during the search for a solution,
avoiding the problem stated above and being expendable to permit the integration of an
LLM. The new version of OTFS is called GenCP.

3 Method: LLM alongside OTFS

The approach of this paper extends OTFS by having an embedded LLM generate the domains
of variables. Figure 2 graphically depicts the interplay between those components. The
approach also adds a minor improvement in the form of helping functions, to differentiate
between implicit constraints (prevent infinite loops, ensure a variable represents a word, etc.)
and explicit constraints (constraints of the problem). In the next subsection, the new version
of OTFS called GenCP is described.

Pr obl em
Def i ni t i on

ML

St at e

CP Sol ut i ons

Pr edi ct i ons

Deci s i on

Figure 2 This scheme presents the integration of ML into CP performed by GenCP. It is freely
inspired by Sec. 3.2.3 of Bengio et al.’s survey [2], which introduces an architecture for ML alongside
Optimization Algorithms. The similarity is highlighted because the master algorithm (here, GenCP)
repeatedly queries an ML model (here, an LLM) to obtain a prediction as a subroutine. In the
context of this paper, the decision (search or propagation) has an impact on the problem definition
(the CSP) because it may generate new variables, domains, or constraints during the solving process.
The state is the current assignment of the variables.

3.1 New version of OTFS: GenCP
In traditional CP it is not common to generate new variables/domains/constraints during the
search, while OTFS is based on this idea. OTFS begins with an empty or partially defined
CSP (the CSP has less variables/domains/constraints than the CSP in traditional CP) and
will generate variable/domains/constraints during the search for solutions.

GenCP is a new version of OTFS that makes two changes to the original version: 1) the
function that generates the domain genD calls an LLM to generate the domain of the current
variable. 2) Helping functions are added to represent implicit constraints.

Here is GenCP applied to text generation under constraints. An GenCP model can be
defined as a pair of sets {M, F}, where:

CP 2024

25:6 Combining CP Reasoning with LLM Predictions

M = {X, D, C} represents the model of the problem.
X represents the variables. The variables represent words.
D represents the domain of the variables. A domain di ∈ D contains a list of predicted
words by an LLM.
C represents the explicit constraints (constraints of the problem). A constraint ci ∈ C

represents rules over text (e.g., number of words, number of characters, forbidden words,
or symbols).
F = {G, B, H} is a set of functions.
G represents the set of generative functions: these functions explain to the solver how to
generate variables/domains/constraints.
B represents the set of Boolean functions: these functions tell the solver when a solution
is found.
H represents the set of helping functions: these functions are used to represent implicit
constraints, for example ensuring that when a variable is generated, it helps obtaining a
solution (to prevent the solver from attaining an infinite loop of generating variables).

3.1.1 Generative Functions

The set of generative functions G = {genV, genD, genC} is such that:
genV generates a new variable with an empty domain and adds it to X.
genD calls the LLM with the current sentence formed by the model and sets the domain
of the previously generated variable to the output.
genC generates the constraint(s) relevant to the current variables of the model to C. The
constraints generated depend on the problem (e.g., generate a sentence that does not
contain the letter “e”).

3.1.2 LLM integration

A variable is generated with an empty domain. To generate the domain of variables, genD

calls an LLM using callLLM(sentence, parameters, k), where:
sentence is the current sentence represented by the variables of the model.
parameters represents sampling parameters (top_k, top_p...). For this paper, top_k is
used exclusively for both GenCP and BS: the LLM answers k words ranked by probability,
highest to lowest.
k is the number of words asked to the LLM.

Since the parameters and k are not modified after the definition of the model,
callLLM(sentence, parameters, k) will be simply referred to as callLLM(sentence).

3.1.3 Helping Functions

Helping functions represent implicit constraints, like avoiding infinite loops. In our current
implementation, the set of functions H contains the following functions:

Ho: it orders the domain of variables depending on the problem.
HonlyW ords: it ensures that any word predicted by the LLM is a complete word and not
the suffix or prefix of a word and it filters out any symbol or special character.

F. Régin, E. De Maria, and A. Bonlarron 25:7

3: Helping
Functions

4: Save
State

2: Generative
Functions

5: Run
Propagation

8: Backtrack

fail

6: Boolean
Functions

no sol found

7: Save
Solution

solution found

9: Return
Solution(s) Saved fail

1: Initial
State

empty

fail

LLM

Figure 3 This graph illustrates the main steps in GenCP solving.

Algorithm 1 GenCP(M, F), M = {X, D, C}, F contains the generative and boolean
functions.

1: S = ∅; if M is not empty then go to 3.;
2: generativeFunctions(M);
3: helpingFunctions(M); if M.X.containsEmptyV ariable() then go to 8.;
4: saveState(M);
5: propagation(M); if M.X.containsEmptyV ariable() then go to 8.;
6: if not booleanFunctions(M) then go to 2.;
7: S.add(M);
8: if backtrack(M) then go to 4.; else return S;

3.1.4 Description of the new approach
The main steps of GenCP are depicted in Fig. 3 and Algorithm 1:
1. GenCP begins with an initial state. If the initial state is empty, the generative functions

are called (2.), otherwise the helping functions are called (3.).
2. The generative functions genV/genD/genC are called (genD calls the LLM).
3. The helping functions are called to manage implicit constraints, backtracking if necessary

(e.g., if the LLM generated an empty domain).
4. The current state of the model M is saved.
5. The propagation is called, if it fails the model backtracks (8.), else it calls the boolean

functions (6.).
6. The Boolean functions are called to check if a solution has been found. If a solution

is found, it is saved (7.) and the model backtracks (8.), otherwise the model calls the
generative functions (2.).

7. The current sentence formed by the variables is saved as a solution.
8. GenCP backtracks to a previously saved state (4.) of the model and changes the choices

made during propagation (5.). If no previous state was saved, then backtracking fails (9.).
When backtracking to a previously saved state, the model deletes all variables, their
respective domains, and the constraints associated with them, that are not present in
the previously saved state.

9. GenCP outputs the solution(s) that were saved or it indicates that no solution was found.

CP 2024

25:8 Combining CP Reasoning with LLM Predictions

3.1.5 Enforce variability
Variability between two sentences is the number of words that are not equal at each position,
for example:

“The little boy is” and “The little cat is” have a variability of 1.
“My name is John” and “John is my name” have a variability of 4.

To force a greater variability between solutions (greater than 2), a special backtrack
called backtrackTo(n) is used. Let the set of variables X = {x1, . . . , xn, xn+1 . . . , xm}. The
function backtrackTo(n) deletes the variables xn+1 to xm and causes a backtrack. For
example, consider the sentence “I like to swim in the summer.”. With backtrackTo(2), “to
swim in the summer.” is deleted and the value of variable x2 = “like′′ is changed. The next
solution might be “I want to break free.”.

3.1.6 Ordering
For some tasks, not following the ordering strategies of the LLM (like top-k and top-p) can
lead to better/faster solutions. Two other orderings are considered: PPL valuation and
length of a word (depending on the average word length in the given language).

3.2 Modeling Example
Here is a simple example of how the search of GenCP works: for this paper the generative
functions only generate variables one at a time but it is important to note that these functions
can generate multiple variables, domains and constraints at once. Let us suppose GenCP has
to generate a sentence beginning by “The” and containing between 10 and 15 words with
exactly 60 characters. The following functions are needed:

currentSentence(M): outputs the current sentence the variables form.
callLLM(sentence): described in 3.1.2. Here k is equal to 10 (each time the LLM is
called, it will output 10 words).
contains(sentence, word): outputs yes if the sentence contains the word and no otherwise.
nbChar(sentence): outputs the number of characters in the sentence.

The obtained model is {M, F}, where:
M = {X, D, C}:
X = {x1}.
D = {d1 = {“The”}}.
C = ∅.
F = {G, B, H}.
G = {genV, genD, genC} is a set of functions, each function follows these steps:

generate x|X|+1 and add it to X with an empty domain d|X|+1.
d|X|+1 = callLLM(currentSentence(M)).
cremoveover60char((currentSentence(M),d|X|+1).
The constraints remove the words that make the current sentence exceed 60 characters
from the domain of the current variable.

B = {endNbWords, endNbCharacters, endLLM} is a set of functions, each function
behaves as follows:

|X| >= 10 ∧ |X| <= 15.
nbChar(currentSentence(M)) == 60.
contains(callLLM (currentSentence(M)), “.′′).

F. Régin, E. De Maria, and A. Bonlarron 25:9

H = {Hho}:
Hho : order(d|X|+1).
To help attain the goal of 60 characters, the domain of the current variable is ordered
such that before the 10th word the solver tries the longer words first and at the 10th
word the solver tries the shorter words first.

With the above representation of the problem, GenCP is asked for 4 solutions,
backtrackTo(2) is used and the LLM is asked for 10 words maximum per call. The obtained
solutions are:
1. The following is an article by the author of the above book.
2. The first time you see the movie version of your book on TV.
3. The New York Times has an article on the new book by Tim Wu.
4. The new year is here and we are ready to make the next step.

3.3 Illustrated Example

X1

P

X2

man0 .
0 .
0 .

Wo r dsP
Do mai n o f X2

HOUSE

bo y

DRI NKS

and

hel ps

X3GenVar i abl e()

GenDo mai n()

PREDI CT D(X3) | A man

Back t r ack ()

GenDo mai n()

PREDI CT D(X2) | A

GenVar i abl e()

PREDI CT D(X3) | A bo y
A1

Wo r ds

Do mai n o f X1

0 .0 0
0 .0 0
0 .0 0

Wo r dsP

w 1
w 2
w 3

GenDo mai n()

GenVar i abl e()

P Wo r ds

0 .
0 .
0 .

Do mai n o f X3

Do mai n o f X3

Pr o pag at i o n()

Pr o pag at i o n()

GenDo mai n()

Figure 4 Illustrations of GenCP as a simplified framework with three variables and predictions
of 3 values per LLM call, on a simple problem: generate a sentence that does not contain the
letter e. For each variable, the predefined constraint ci “the letter e is forbidden” is generated. A
predefined domain with one word is defined for the first variable: A. The current sentence formed by
the variable “A” is not a solution (callLLM(“A′′) does not answer a period (“.”)), so a new empty
variable x2 is generated. GenCP calls the LLM with the sentence “A” to predict the domain of x2.
The LLM model predicts three values: [man, house, boy]. c2 is generated, causing the domain of
x2 to be filtered accordingly: house is removed. x2 is then assigned to boy, GenCP generates the
variable x3 and calls the LLM with the sentence “A boy” to predict a new domain. Unfortunately,
the domain of x3 is empty, either because the LLM answered an empty domain or because this
domain was entirely filtered during propagation. Hence, GenCP backtracks to x2 and the value of
x2 is changed to man. In the same fashion as before, GenCP generates the variables x3, and gives
“A man” to the LLM that predicts: [drinks, and, helps]. c3 is generated, filtering helps because
it contains an e. The process continues until the domain of the next predicted variable contains a
period (a solution is found) or the solver fails.

Fig. 4 illustrates GenCP as a simplified framework with three variables and predictions
of 3 values per LLM call, on a simple problem: generate a sentence that does not contain
the letter e.

CP 2024

25:10 Combining CP Reasoning with LLM Predictions

4 Experiments

4.1 Experimental Conditions

4.1.1 Baseline
The experiments presented by Yao et al. are partially reproduced [40]. In particular, the
constrained sentence generation tasks described in Tab. 1. Five LLMs were selected: GPT4,
GPT4-O, Mistral Next, Claude 3.5, and Gemini. The four LLMs are prompted with the
same example command given in [40]. For example, “Please create a sentence of exactly 82
characters.” for the Sent-1 task1. Tab. 2 gives an overview of the performance of the five
LLMs on the four tasks. The satisfaction rate is based on ten trials per task per model. In
addition, Tab. 2 also shows that the LLMs perform well on the lexically constrained scenario
task-4 with a 90+% satisfaction rate over ten trials. Also, as Yao et al. previously showed
in their paper, LLMs struggle to produce constrained sentences involving counting (e.g.,
words and characters). They provide a nice picture of current LLM satisfaction capabilities
by introducing new benchmarks. Unfortunately, the Yao et al. article only provides the
benchmarks and some hints on reproducing them. However, it does not give any hints on
how to solve the tasks associated with the benchmarks (see the original article for more
details [40]).

Table 1 Four tasks on sentence generation used to compare BS and GenCP extract from [40].

name words count character count lexical constraints

sent-1 = 82
sent-2 = 10 X3 = soft, X7 = soft,X10 = math
sent-3 ≥ 20 ∀i, |Xi| ≤ 6
sent-4 soft, beach, math

Table 2 Number of successes (#s), Number of fails (#f) and satisfaction rate (%sat) for each
model (GPT-4, GPT-4.0, Mistral Next, Claude 3.5, Gemini) for each task (sent-1, sent-2, sent-3,
sent-4).

name GPT-4 GPT-4.0 Mistral Next Claude3.5 Sonnet Gemini
#s #f %sat #s #f %sat #s #f %sat #s #f %sat #s #f %sat

sent-1 1 9 10% 0 10 0% 0 10 0% 1 9 10% 0 10 0%
sent-2 0 10 0% 0 10 0% 0 10 0% 0 10 0% 0 10 0%
sent-3 1 9 10% 5 5 50% 0 10 0% 9 1 90% 1 9 10%
sent-4 9 1 90% 9 1 90% 10 0 100% 10 0 100% 1 9 10%

4.1.2 Hardware & Implementation
The experiments were performed on a laptop with Windows 10 Professional, 32 GB RAM,
and Intel 16 CPU cores. The approach and the BS are implemented in Java 17 for easier
comparisons.

1 https://chatgpt.com/share/b2834735-f7d8-468a-ba54-7da19dd6723c

https://chatgpt.com/share/b2834735-f7d8-468a-ba54-7da19dd6723c

F. Régin, E. De Maria, and A. Bonlarron 25:11

4.1.3 LLM choice
LLaMa [37] is responsible for the predictions of words as domains for the variables, mainly
because an efficient implementation in C++ was recently released2. It allows running a
model on a personal laptop and CPU (only) efficiently. Thanks to quantization [16] (model
weight compression), the 7B parameters model (in Float16) of 13GB original size, in 4-bit
quantization (Q4) drops to 3.9GB of RAM. However, the biggest model of LLama 65B
(120GB), even in Q4, needs 38.5 GB of RAM. Thus, the LLaMa v1 model used in the
experiments is LLaMa 7B Q4 with low temperature (i.e., ≤ 1, temp = 0.8).

When asked for k words, this version of LLaMa will take the same amount of time to
ouput 1 word and 1000 words. To minimize the importance of k, callLLM outputs more
than k words, a beam/variable only keeps k “valid” words. A “valid” word is a word that
does not violate a constraint on its own. For example, a word that does not violate the
constraint “does not contain the letter e”.

4.1.4 Beam Search Technical Remarks
In the current implementations two halting conditions are defined for BS:

First solution: when the current beam contains at least one solution, BS is stopped and
output the solutions.
All solutions: when the current beam contains at least one solution but another beam
can continue to generate words without violating a constraint (for instance, it does not
contain enough characters to satisfy a length constraint), the beam solutions are saved
and BS continues with the remaining beams.

4.1.5 Benchmarks Settings
BS and GenCP are compared on some recent benchmarks described in Sec. 4.1.1.

To guarantee GenCP and BS to be judged on the generation of sentences of the same
quality, a solution is a sentence that satisfies all the constraints of the current task and,
when given this sentence, the LLM predicts a period (“.”). Not to alter BS too much, words
are ordered by probability (PPL is not used) and, since BS sentences have low variability,
GenCP is used without backtrackTo(n).

BS and GenCP are compared on the following criteria:
Time in seconds.
Number of solutions. GenCP was stopped when it found the same number of solutions as
BS on a task. 0/1 means that BS found no solution while GenCP found one solution.
The ratio solutions/outputs as a constraint satisfaction rate.
For BS only, the number of bad outputs (number of outputs that are not a solution).
For GenCP only, the number of backtracks.

4.2 Result Analysis
The results show that GenCP can be used to solve efficiently text generation under constraints
problems. GenCP is faster than BS and all the outputs are solutions, contrary to BS where
some outputs are not solutions.

2 https://github.com/ggerganov/llama.cpp

CP 2024

https://github.com/ggerganov/llama.cpp

25:12 Combining CP Reasoning with LLM Predictions

Although the results suggest that GenCP succeeds in all tasks (see Tab. 3), it becomes
particularly interesting when considering size constraints (e.g., sentences with a precise
number of words or characters). It obtains sentences that satisfy the constraint with a low
PPL score on sent-1 and sent-3 tasks.

GenCP also succeeds in producing sequences obeying lexical constraints in sent-2 and
sent-4. However, the PPL and a human evaluation on these sentences show a substantial
deterioration in term of quality (i.e., meaningfulness).

Therefore, regarding sent-1 and sent-3 tasks, GenCP is to be preferred, whereas for sent-4
and sent-2 tasks, LLMs prompted alone or joint with BS is still adequate.

Table 3 Comparison of BS and GenCP on the tasks of Tab. 1. Task considered (sent-i), Number
of solutions (#sols), Time in seconds (s), Number of bad output (#badoutput), satisfaction rate
(%sat) and Number of backtracks (#bk).

Experiments BS GenCP

sent-i k #sols s #badoutput %sat s %sat #bk

1 5 1 108 9 10% 103 100% 45
10 0 182 18 0% 177 100% 84
20 1 399 58 1% 46 100% 13
50 1 1123 109 ≈ 0% 47 100% 13

2 5 5 34 0 100% 38 100% 38
10 10 69 0 100% 36 100% 25
20 20 140 0 100% 58 100% 40
50 49 354 1 99% 134 100% 100

3 5 0 248 5 0% 36 100% 4
10 2 510 8 20% 55 100% 6
20 4 1030 16 20% 164 100% 38
50 20 2633 30 66% 1174 100% 374

4 5 25 279 3 89% 308 100% 118
10 30 513 8 78% 311 100% 114
20 45 1123 14 76% 321 100% 104
50 89 2928 40 68% 388 100% 27

Table 4 GenCP results for k = 50 when given approximately the same amount of time as BS
in Tab 3. Number of solutions (#sols), Time in seconds (s), Memory usage in megabytes (MB),
Number of backtracks (#bk).

Experiments GenCP

sent-i k #sols s MB #bk

1 50 2 1123 136 79
2 50 355 222 208 222
3 50 488 2633 378 624
4 50 830 2929 676 680

F. Régin, E. De Maria, and A. Bonlarron 25:13

4.2.1 Beam Search
BS and GenCP are compared in Tab. 3. In all tables, the number of backtracks is denoted
by #bk. BS is slower than GenCP and has lower satisfaction rate (number of outputs that
are solutions / total number of outputs), denoted by %sat. This is due to multiple facts:
1. Beam Search can not guarantee to find every solution.
2. Beam Search chooses the next word depending on the probability of the LLM.
3. At each step, BS considers k sentences, each sentence asks k words to the LLM, so each

step considers k2 words. BS orders these words decreasingly by probability and only
keeps the k first.

Facts 2 and 3 explain why increasing k does not guarantee to find the same/more solutions,
it might even cause BS to find less solutions.

Let us suppose k = 5, BS found one solution, and at depth 4, the candidate needed to find
this solution was ranked 5 out of 25. Let us suppose now k is increased to 6: at each step BS
will consider 36 candidates and take the 6 best ones. BS considers 11 more candidates than
with k = 5; if at depth 4, the candidate needed to find the previous solution is now ranked 7
instead of 5, BS will not consider it and k = 6 will not find the solution found with k = 5.

4.2.2 GenCP

Table 5 Output sentences of GenCP on the experiments of Tab 1 associated with the task (sent-i),
k, backtrackT o (bkT o), and Perplexity (PPL). In sent-4* a constraint was added so that “soft”,
“beach”, “math” have to be separated by at least three words. Sentences with high perplexity were
chosen to showcase the importance of low perplexity.

Experiments GenCP

sent-i k bkT o(n) PPL sentence generated

1 50 NO 8 The following is an article by Dr David Hillon the subject of the role of prayer.
2 13 The New York Times has an article on the new book by former President George Bush.
3 6 The following information is taken from the website of the National Park Services.

2 50 NO 189 The following soft skills are required beach resort jobs math.
2 169 The National soft drink association has beach balls and math.
3 107 The most soft and comfortable of beach wear is math.

3 50 NO 8 The first time you see the movie The Big Short is like being hit by an ice cube in the face.
2 5 The world is full of great ideas and the best way to get them out there is by using the power of the web.
3 5 The first step in the right path is to know what you want and where you are going in life.

4* 50 NO 347 The following is an article by Dr math and science teacher beach high school in soft.
2 593 The term of the contract is for math and science teachers beach to be able soft.
3 48 The following data is based on the math and physics of beach waves and the soft sand.

Tab. 4 shows the capability of GenCP to generate more solutions than BS. GenCP is
given the same time as BS for the same task and k = 50, GenCP obtains more solutions
than BS. Note that for sent-1, without backtrackTo GenCP only obtains 2 solutions in 1123
seconds, while with backtrackTo(6) GenCP obtains 11 solutions in 1123 seconds.

The LLM-enhanced GenCP avoids the drawbacks of BS and proposes an alternative
approach to text generation under constraints for the following reasons:

GenCP can guarantee to find every solution (if any). Increasing k guarantees to find at
least the same solutions previously found and potentially finds new solutions. Furthermore,
it can offer more solutions than BS.
All the outputs answered by GenCP are solutions (all the constraints are satisfied).
GenCP offers more options for improvement, for example to ensure better variability
(backtrackTo explained in 3.1.5 can be used) or other orderings than probability (3.1.6).

CP 2024

25:14 Combining CP Reasoning with LLM Predictions

4.2.3 Variability and Perplexity
Tab. 5 demonstrates the importance of enforcing variability and perplexity. When GenCP
generated solutions for Tab. 3 and 4, the maximum variability was 4. Tab. 5 shows that
with backtrackTo(2)/backtrackTo(3), sentences generated are almost completely different
thanks to high variability (10+ for sent-3 for example).

Tab. 5 purposefully contains sentences with high perplexity to illustrate that this leads
to a degradation in the sentence quality (i.e., low meaning).

All the sentences generated for sent-4 had the words “soft”, “beach” and “math” next to
each other. To showcase the capability of GenCP to improve sentences, sent-4* was created:
it is the same as sent-4 except that “soft”, “beach” and “math” must contain at least three
words between them.

5 Discussion & Perspectives

5.1 GPU and CPU Interplay
The article shares a proof-of-concept showing that interesting results can be obtained using
CPU resources combined with a small quantized LLM in a CP solver. However, LLMs, in
general, work best with much larger computational resources and require GPU resources.
Even though smaller models (e.g., Mistral 8x7B) sometimes manage to take top places in
specific scenarios. The top spots in the LLM Elo rankings feature gigantic models [10]. Given
their size, clusters of GPU are quickly mandatory. Hence, it would be interesting to study in
more detail how the joint use of resources (for instance, CPU for solver and GPU for LLM)
could improve the results of the paper and correspond to more real-world usage in industry.

5.2 Token Management
In this article, GenCP ignores tokens and works at the word level (pre-token). It is possible
to handle tokens by adapting the problem modeling. Indeed, it is possible to consider a word
as a meta-variable X1 composed of several decision variables (e.g., X11 , X12 , X13 ...). This is
useful and straightforward, as it is not clear in advance how the tokenizer will cut the words.
For instance, let us consider the following sentence: The first step in the recruitment of a new
hire is to make sure that the job requisition is clear. Let us look at the assignments of the
variables (space separates meta-variables, and semicolon decision variables): The; first; step;
in; the; rec;ruit;ment; of; a; new; h;ire; is; to; make; sure; that; the; job; requ;is;ition; is;
clear;. The word recruitment needs three decision variables because it is composed of three
tokens (i.e., rec, ruit and ment). It is easy to manage in GenCP because it can generate as
many variables as required. Nevertheless, the evolution of the CSP (generation of variables
and domains) is rather technical and, therefore, depends on the tokenizer.

5.3 CSP Modeling
The idea that a CSP can evolve in response to external information is not new (e.g., Dynamic
Constraint Network [12]). This dynamic vision of CSPs has been motivated by several real-
world problems, particularly in product configuration [19]. GenCP proposes ML integration
in modeling by letting LLMs manage operations for CSP domains during the resolution
process. The “outside the world” information [3] is given by the LLM. The article shows that
LLMs can contribute to CSP modeling for generation tasks. However, how ML/LLMs can be
used for CSP modeling in general for any problem remains an open problem [14, 24, 38, 11].

F. Régin, E. De Maria, and A. Bonlarron 25:15

6 Conclusion

This paper showed that combining CP solving of structural constraints and ML understanding
of vague notions (like meaning) on the task of text generation under constraints obtains
promising results. This paper presents GenCP, a new method that extends OTFS to make
the domains manageable by LLM predictions. The results show that GenCP can generate
meaningful sentences that ensure various properties like the number of words, number of
characters, mandatory keywords, or some forbidden characters. The results also show that
GenCP has 100% satisfaction rate and takes less time to output solutions of the same
quality than a well-known technique in the field of text generation under constraints: Beam
Search. GenCP provides multiple improvements thanks to ordering, enforcing variability and
perplexity, allowing thus to obtain overall higher quality solutions than BS.

References
1 Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca Benini. Neuron constraints to

model complex real-world problems. In Principles and Practice of Constraint Programming–
CP 2011: 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011,
Proceedings, volume 6876, page 115. Springer, 2011.

2 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021. doi:10.1016/j.ejor.2020.07.063.

3 Christian Bessière. Arc-consistency in dynamic constraint satisfaction problems. In Thomas L.
Dean and Kathleen R. McKeown, editors, Proceedings of the 9th National Conference on
Artificial Intelligence, Anaheim, CA, USA, July 14-19, 1991, Volume 1, pages 221–226. AAAI
Press / The MIT Press, 1991. URL: http://www.aaai.org/Library/AAAI/1991/aaai91-035.
php.

4 Alexandre Bonlarron, Aurélie Calabrèse, Pierre Kornprobst, and Jean-Charles Régin. Con-
straints first: a new mdd-based model to generate sentences under constraints. In Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pages
1893–1901, 2023.

5 Alexandre Bonlarron and Jean-Charles Régin. Intertwining cp and nlp: The generation of
unreasonably constrained sentences. In Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, IJCAI-24, 2024. To appear.

6 Alexandre Bonlarron and Jean-Charles Régin. Markov constraint as large language model
surrogate. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI-24, 2024. To appear.

7 Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Jennifer C. Lai, and
Robert L. Mercer. An estimate of an upper bound for the entropy of English. Computational
Linguistics, 18(1):31–40, 1992. URL: https://aclanthology.org/J92-1002.

8 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–1901,
2020.

9 Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and An-
dre A. Cire. Combining reinforcement learning and constraint programming for combinatorial
optimization. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):3677–3687,
May 2021. doi:10.1609/aaai.v35i5.16484.

10 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle
Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion
Stoica. Chatbot arena: An open platform for evaluating llms by human preference, 2024.
arXiv:2403.04132.

CP 2024

https://doi.org/10.1016/j.ejor.2020.07.063
http://www.aaai.org/Library/AAAI/1991/aaai91-035.php
http://www.aaai.org/Library/AAAI/1991/aaai91-035.php
https://aclanthology.org/J92-1002
https://doi.org/10.1609/aaai.v35i5.16484
https://arxiv.org/abs/2403.04132

25:16 Combining CP Reasoning with LLM Predictions

11 Parag Pravin Dakle, Serdar Kadıoğlu, Karthik Uppuluri, Regina Politi, Preethi Raghavan,
SaiKrishna Rallabandi, and Ravisutha Srinivasamurthy. Ner4opt: Named entity recognition
for ;optimization modelling from ;natural language. In Integration of Constraint Programming,
Artificial Intelligence, and Operations Research: 20th International Conference, CPAIOR 2023,
Nice, France, May 29 –June 1, 2023, Proceedings, pages 299–319, Berlin, Heidelberg, 2023.
Springer-Verlag. doi:10.1007/978-3-031-33271-5_20.

12 Rina Dechter and Avi Dechter. Belief maintenance in dynamic constraint networks. In
Howard E. Shrobe, Tom M. Mitchell, and Reid G. Smith, editors, Proceedings of the 7th
National Conference on Artificial Intelligence, St. Paul, MN, USA, August 21-26, 1988, pages
37–42. AAAI Press / The MIT Press, 1988. URL: http://www.aaai.org/Library/AAAI/
1988/aaai88-007.php.

13 Eugene C. Freuder. In pursuit of the holy grail. Constraints, 2(1):57–61, 1997. doi:10.1023/A:
1009749006768.

14 Eugene C. Freuder. Conversational modeling for constraint satisfaction. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(20):22592–22597, March 2024. doi:10.1609/
aaai.v38i20.30268.

15 Cristina Garbacea and Qiaozhu Mei. Why is constrained neural language generation particularly
challenging? arXiv preprint arXiv:2206.05395, 2022.

16 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. CoRR, abs/2103.13630,
2021. arXiv:2103.13630.

17 Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1535–1546, Vancouver, Canada, July 2017.
Association for Computational Linguistics. doi:10.18653/v1/P17-1141.

18 Nan Jiang, Maosen Zhang, Willem-Jan Van Hoeve, and Yexiang Xue. Constraint reasoning
embedded structured prediction. J. Mach. Learn. Res., 23(1), January 2022.

19 U Junker, F Rossi, P van Beek, and T Walsh. Handbook of constraint programming. Chapter
Configuration, 2006.

20 Dan Jurafsky and James H. Martin. Speech and language processing : an introduction
to natural language processing, computational linguistics, and speech recognition. Pear-
son Prentice Hall, Upper Saddle River, N.J., 2009. URL: http://www.amazon.com/
Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y.

21 Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning
to branch in mixed integer programming. Proceedings of the AAAI Conference on Artificial
Intelligence, 30(1), February 2016. doi:10.1609/aaai.v30i1.10080.

22 Elias B. Khalil, Bistra Dilkina, George L. Nemhauser, Shabbir Ahmed, and Yufen Shao.
Learning to run heuristics in tree search. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pages 659–666, 2017. doi:10.24963/
ijcai.2017/92.

23 James Kotary, Ferdinando Fioretto, Pascal van Hentenryck, and Bryan Wilder. End-to-
end constrained optimization learning: A survey. In 30th International Joint Conference
on Artificial Intelligence, IJCAI 2021, pages 4475–4482. International Joint Conferences on
Artificial Intelligence, 2021.

24 Connor Lawless, Jakob Schoeffer, Lindy Le, Kael Rowan, Shilad Sen, Cristina St. Hill, Jina
Suh, and Bahareh Sarrafzadeh. "i want it that way": Enabling interactive decision support
using large language models and constraint programming, 2024. arXiv:2312.06908.

25 Yixian Liu, Liwen Zhang, Wenjuan Han, Yue Zhang, and Kewei Tu. Constrained text
generation with global guidance - case study on commongen. CoRR, abs/2103.07170, 2021.
arXiv:2103.07170.

https://doi.org/10.1007/978-3-031-33271-5_20
http://www.aaai.org/Library/AAAI/1988/aaai88-007.php
http://www.aaai.org/Library/AAAI/1988/aaai88-007.php
https://doi.org/10.1023/A:1009749006768
https://doi.org/10.1023/A:1009749006768
https://doi.org/10.1609/aaai.v38i20.30268
https://doi.org/10.1609/aaai.v38i20.30268
https://arxiv.org/abs/2103.13630
https://doi.org/10.18653/v1/P17-1141
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.1609/aaai.v30i1.10080
https://doi.org/10.24963/ijcai.2017/92
https://doi.org/10.24963/ijcai.2017/92
https://arxiv.org/abs/2312.06908
https://arxiv.org/abs/2103.07170

F. Régin, E. De Maria, and A. Bonlarron 25:17

26 Michele Lombardi, Michela Milano, and Andrea Bartolini. Empirical decision model learning.
Artificial Intelligence, 244:343–367, 2017. Combining Constraint Solving with Mining and
Learning. doi:10.1016/j.artint.2016.01.005.

27 Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan
Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin Choi. NeuroLogic
A*esque decoding: Constrained text generation with lookahead heuristics. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 780–799, Seattle, United States, July 2022.
Association for Computational Linguistics. doi:10.18653/v1/2022.naacl-main.57.

28 Mohsen Nafar and Michael Römer. Using clustering to strengthen decision diagram bounds
for discrete optimization. Proceedings of the AAAI Conference on Artificial Intelligence,
38(8):8082–8089, March 2024. doi:10.1609/aaai.v38i8.28647.

29 François Pachet and Pierre Roy. Markov constraints: Steerable generation of markov sequences.
Constraints, 16(2):148–172, April 2011. doi:10.1007/s10601-010-9101-4.

30 Alexandre Papadopoulos, Pierre Roy, Jean-Charles Régin, and François Pachet. Generating all
possible palindromes from ngram corpora. In Proceedings of the 24th International Conference
on Artificial Intelligence, IJCAI’15, pages 2489–2495. AAAI Press, 2015.

31 Guillaume Perez and Jean-Charles Régin. MDDs: Sampling and probability constraints.
In Proceedings of the International Conference on Principles and Practice of Constraint
Programming, pages 226–242, 2017. doi:10.1007/978-3-319-66158-2_15.

32 Matt Post and David Vilar. Fast lexically constrained decoding with dynamic beam allocation
for neural machine translation. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1314–1324, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics. doi:10.18653/v1/N18-1119.

33 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models, 2021. arXiv:2112.10752.

34 Florian Régin and Elisabetta De Maria. Using on-the-fly model checking to improve constraint
programming for dynamic problems. In 2023 IEEE 35th International Conference on Tools with
Artificial Intelligence (ICTAI), pages 393–398, 2023. doi:10.1109/ICTAI59109.2023.00063.

35 Jialin Song, ravi lanka, Yisong Yue, and Bistra Dilkina. A general large neighborhood search
framework for solving integer linear programs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 20012–20023. Curran Associates, Inc., 2020. URL: https://proceedings.neurips.cc/
paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf.

36 Damien Sprockeels and Peter Van Roy. Expressing musical ideas with constraint programming
using a model of tonal harmony. In International Joint Conference on Artificial Intelligence,
2024. To appear.

37 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient
foundation language models, 2023. cite arxiv:2302.13971. URL: http://arxiv.org/abs/2302.
13971.

38 Dimos Tsouros, Hélène Verhaeghe, Serdar Kadıoğlu, and Tias Guns. Holy grail 2.0: From
natural language to constraint models, 2023. arXiv:2308.01589.

39 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, pages 5998–6008, 2017.

40 Shunyu Yao, Howard Chen, Austin W. Hanjie, Runzhe Yang, and Karthik R Narasimhan.
COLLIE: Systematic construction of constrained text generation tasks. In The Twelfth
International Conference on Learning Representations, 2024. URL: https://openreview.net/
forum?id=kxgSlyirUZ.

CP 2024

https://doi.org/10.1016/j.artint.2016.01.005
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.1609/aaai.v38i8.28647
https://doi.org/10.1007/s10601-010-9101-4
https://doi.org/10.1007/978-3-319-66158-2_15
https://doi.org/10.18653/v1/N18-1119
https://arxiv.org/abs/2112.10752
https://doi.org/10.1109/ICTAI59109.2023.00063
https://proceedings.neurips.cc/paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2308.01589
https://openreview.net/forum?id=kxgSlyirUZ
https://openreview.net/forum?id=kxgSlyirUZ

25:18 Combining CP Reasoning with LLM Predictions

41 Ruibin Yuan, Hanfeng Lin, Yi Wang, Zeyue Tian, Shangda Wu, Tianhao Shen, Ge Zhang,
Yuhang Wu, Cong Liu, Ziya Zhou, Ziyang Ma, Liumeng Xue, Ziyu Wang, Qin Liu, Tianyu
Zheng, Yizhi Li, Yinghao Ma, Yiming Liang, Xiaowei Chi, Ruibo Liu, Zili Wang, Pengfei
Li, Jingcheng Wu, Chenghua Lin, Qifeng Liu, Tao Jiang, Wenhao Huang, Wenhu Chen,
Emmanouil Benetos, Jie Fu, Gus Xia, Roger Dannenberg, Wei Xue, Shiyin Kang, and
Yike Guo. Chatmusician: Understanding and generating music intrinsically with llm, 2024.
arXiv:2402.16153.

https://arxiv.org/abs/2402.16153

Structure-Guided Local Improvement for Maximum
Satisfiability
André Schidler #

Algorithms and Complexity Group, TU Wien, Austria

Stefan Szeider #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
The enhanced performance of today’s MaxSAT solvers has elevated their appeal for many large-scale
applications, notably in software analysis and computer-aided design. Our research delves into
refining anytime MaxSAT solving by repeatedly identifying and solving with an exact solver smaller
subinstances that are chosen based on the graphical structure of the instance. We investigate various
strategies to pinpoint these subinstances. This structure-guided selection of subinstances provides an
exact solver with a high potential for improving the current solution. Our exhaustive experimental
analyses contrast our methodology as instantiated in our tool MaxSLIM with previous studies and
benchmark it against leading-edge MaxSAT solvers.

2012 ACM Subject Classification Hardware → Theorem proving and SAT solving; Theory of
computation → Discrete optimization; Theory of computation → Automated reasoning; Theory of
computation → Constraint and logic programming; General and reference → Experimentation

Keywords and phrases maximum satisfiability, large neighborhood search (LNS), SAT-based local
improvement (SLIM), incomplete MaxSAT, graphical structure, metaheuristic

Digital Object Identifier 10.4230/LIPIcs.CP.2024.26

Supplementary Material
Software (Source Code/Results): https://doi.org/10.5281/zenodo.12516816

Funding Austrian Science Fund (FWF), project 10.55776/P36420.

Acknowledgements Part of this work was carried out while taking part in the Dagstuhl Seminar
23261 “SAT Encodings and Beyond,” as well as in the extended reunion of the program “Satisfiability:
Theory, Practice, and Beyond” in the spring of 2023 at the Simons Institute for the Theory of
Computing at UC Berkeley.

1 Introduction

MaxSAT solvers (solvers for the partial weighted maximum satisfiability problem) have
proven to be indispensable tools with an expansive range of applications, including problems
that arise in software analysis [37], post-silicon fault localization [38], the identification
of concurrency bugs and suggestions for fixes [13], and malware detection in smartphone
apps [10]. Additional applications and case studies [20, 22] highlight MaxSAT’s versatility
in computer-aided design and related areas. While the focus in the past was on creating
superior exact MaxSAT solvers tailored for identifying optimal solutions, there has been a
noticeable shift towards the significance of anytime MaxSAT solvers in recent times. Unlike
exact solvers that seek optimal results, anytime solvers prioritize finding commendable
solutions in a shorter time frame and, when interrupted, output the best solution found so
far. Hickey and Bacchus [12] introduced a technique using Large Neighborhood Search [36]
that integrates the capabilities of exact and anytime solvers, harnessing the advantages of
both.

© André Schidler and Stefan Szeider;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 26; pp. 26:1–26:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aschidler@ac.tuwien.ac.at
https://orcid.org/0000-0001-6790-7158
mailto:sz@ac.tuwien.ac.at
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2024.26
https://doi.org/10.5281/zenodo.12516816
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Structure-Guided Local Improvement for Maximum Satisfiability

In our paper, we further develop the methodology of combining exact and anytime
MaxSAT solvers, leveraging the local characteristics of the MaxSAT instance’s graphical
structure to direct the search and dissection of the problem. We embody our innovative
approach in the tool MaxSLIM, which supports an array of strategies for choosing local
subinstances grounded on the incidence graph’s graphical structure of the MaxSAT instance.
Each strategy starts from a small number of variables and strategically extends the set of
variables by tracing out a subgraph in the graphical model until a predefined budget is
reached. These selection strategies use a preference metric to select the starting variable and
to decide which variable to add next. We consider several different metrics in our framework.
MaxSLIM uses a new MaxSAT solver specifically designed for solving local instances, or,
alternatively, can use any other MaxSAT solver for this purpose.

Our comprehensive experimental evaluation on the instances from the 2023 MaxSAT
Evaluation1 showcases the efficacy of considering the graphical structure in the MaxSAT
instances. The insights derived from a wide-ranging set of experiments conclusively indicate
that integrating the graphical structure not only elevates the performance but does so in
a significant and robust manner. The consistent and notable performance enhancements
highlight the value and effectiveness of this integrated approach.

Related Work

As mentioned above, Hickey and Bacchus [12] proposed an anytime MaxSAT solver based on
the Large Neighborhood Search (LNS) metaheuristic [36, 25] called MaxSAT-LNS. Similar
to MaxSLIM, MaxSAT-LNS also tries to improve a sub-optimal solution using LNS. In each
round of LNS, a weighted random subset of variables is selected and their values fixed. Then,
a separate solver is run to find an improved assignment for the remaining variables. Fixing
a few assignments can imply many other assignments via unit propagation, making the
problem of completing the assignment comparatively easy. The main difference to MaxSLIM
is that MaxSAT-LNS selects subinstances without utilizing the graphical structure of the
instance.

SAT-Based Local Improvement (SLIM) is a specific type of LNS tailored for the use with
(Max)SAT solvers. As such, SLIM is an anytime meta-heuristic that embeds (Max)SAT
encodings into heuristic algorithms. In the past, SLIM has been used for a variety of
problems, such as graph decomposition problems [11, 15, 16, 26], Bayesian Network structure
learning [27, 28, 29], decision tree induction [33, 35], graph coloring [32, 34], and circuit
minimization [14, 30, 31]. The common aspect between all these SLIM instantiations is that
the initial solution (to be improved by iteratively solving local instances) was too large to be
computed directly by a SAT-based solver. Hence initial solutions were computed by other,
often greedy heuristic methods.

Other SAT-based LNS approaches exist for timetabling [9] and cell placement [8]. Cell
placement follows the metaheuristic Local Search with SAT Oracle (LSSO) where the user
supplies problem specific neighborhood generators and the remaining algorithm is fixed,
apart from hyperparameters that control the search. These LNS instantiations, like most
other, define the neighborhood based on global properties of the instance. The search is then
performed over the whole instance, while restricting how much the solution can change. In
contrast, SLIM instantiations look at the structure of the instance and local properties. The
search space for the local instances is then unrestricted, apart from ensuring consistency

1 https://maxsat-evaluations.github.io/2023/

https://maxsat-evaluations.github.io/2023/

A. Schidler and S. Szeider 26:3

with the global solution. One big advantage of the SLIM approach is that it can be applied
to instances that are too large to encode as a whole, as it is only necessary to encode the
local instances.

Given the large volume of research, we focus the discussion of anytime MaxSAT solving
on the state-of-the-art solvers used in our experiments. SATLike [6] is a dynamic local search
algorithm that is used in several anytime solvers. SATLike uses a dynamic weighting scheme
that is used to pick variables that are then flipped in the hope of finding a good feasible
solution. NuWLS [7] is based on the SATLike algorithm and proposes a different weighing
scheme. Its implementation NuWLS-c uses another anytime MaxSAT solver (TT-Open-
WBO-Inc) for the initial solution. NuWLS-c won the MaxSAT Evaluations 2022 and 2023.
NoSAT MaxSAT [5] is another anytime solver based on SATLike and most recently NuWLS,
but in contrast to other anytime solvers, relies solely on local search without invoking a
SAT solver. TT-Open-WBO-Inc [24] uses either Open-WBO-Inc’s [18] Boolean multilevel
optimization (BMO) [17] for weighted instances, or a SAT-based bit-vector optimization
algorithm (BVO) [21] for unweighted instances. Instead of calling a SAT solver, TT-Open-
WBO-Inc’s BVO and BMO algorithms call a local search solver that searches for solutions
close to the best known solution. The local solver achieves this by polarity saving and
incremental SAT calls [23]. Loandra [4] uses preprocessing and linear search (SAT-UNSAT).
The linear search is sped up by preprocessing the instance using core-guided search: the
core-guided search runs for a limited time, after which the reformulated instance is passed
to the linear search. These solvers follow, broadly speaking, two approaches: local search
(NuWLS, NoSAT, TT-Open-WBO-Inc) and simplifying the whole instance (Open-WBO-Inc,
Loandra) in order to make finding a good feasible solution easier. In contrast, MaxSLIM
looks at much larger neighborhoods than local search and does not modify the instance itself.
Instead it tries to repeatedly extract easier subproblems.

2 Preliminaries

A propositional formula in conjunctive normal form (CNF formula) is a set of clauses, each
clause is a set of literals, each literal is a propositional variable or a negated propositional
variable. We consider a CNF formula as the conjunction of its clauses and each clause as a
disjunction of its literals. For a literal ℓ ∈ {x,¬x} we define var(ℓ) = x, for a clause C we define
var(C) = { var(ℓ) : ℓ ∈ C } and for a CNF formula F we define var(F) =

⋃
C∈F var(C). An

assignment is a mapping τ : X → {0, 1} defined on a set X of variables; we write var(τ) = X.
We extend τ to literals by setting τ(¬x) = 1 − τ(x). We implicitly use the equivalency
¬¬v = v. For an assignment τ , we put lit(τ) = {x : x ∈ var(τ), τ(x) = 1 }∪{¬x : x ∈ var(τ),
τ(x) = 0 }. An assignment τ is total for a CNF formula F if var(τ) = var(F). All future
references to assignments address assignments which may or may not be total, unless explicitly
specified. For two assignments τ1, τ2 with var(τ1) ∩ var(τ2) = ∅ we define τ1 ∪ τ2 to be the
assignment with var(τ1 ∪ τ2) = var(τ1) ∪ var(τ2) and (τ1 ∪ τ2)(x) = τi(x) for x ∈ var(τi).

An assignment τ satisfies a clause C if it sets at least one literal of C to 1. An assignment
satisfies a CNF formula if it satisfies all its clauses. For a clause C and an assignment τ , we
write C[τ] = { ℓ ∈ C : var(ℓ) /∈ var(τ) }. For a CNF formula F and an assignment τ , F [τ]
denotes the CNF formula obtained from F by removing all clauses that are satisfied by τ and
removing from the remaining clauses all literals that τ sets to 0, that is F [τ] = {C[τ] : C ∈ F,

τ does not satisfy C }. Thus τ satisfies F if and only if F [τ] = ∅.
For an assignment τ and a CNF formula F , UPF (τ) denotes the assignment obtained

from τ by unit propagation over F . This means, we iteratively extend τ to literals ℓ that are
forced because there exists a clause C ∈ F where C[τ] = {ℓ}.

CP 2024

26:4 Structure-Guided Local Improvement for Maximum Satisfiability

An instance of the Maximum Satisfiability problem, or MaxSAT instance F is a triple
consisting of two CNF formulas Fh and Fs and a weight function w : C ∈ Fs → N. The
clauses of Fh are hard, the clauses of Fs soft. A solution to F is an assignment τ that
satisfies Fh. The cost of a solution τ , denoted cost(F , τ), is the sum of weights of the soft
clauses not satisfied by τ . An optimal solution is one with minimum cost over all solutions,
thereby maximizing the sum of weights of the satisfied soft clauses, therefore the name
MaxSAT. In an unweighted instance, every soft clause has weight 1.

We write var(F) = var(Fh) ∪ var(Fs) and Fτ = (Fh[τ], Fs[τ], w′) where w′ is defined for
C ∈ Fs[τ] by w′(C) =

∑
C′ ∈ Fs with C = C′[τ] w(C ′).

We distinguish between two types of MaxSAT solvers, exact solvers which provide optimal
solutions and anytime solvers which aim at providing good solutions within a given time
bound and thus are not concerned with the optimality of the solutions. Anytime algorithms
can be interrupted at any point of time, upon which they immediately output the best
solution found so far and terminate. MaxSAT solvers can be both exact and anytime: a
solver’s classification expresses if a solver’s focus is on proving optimality or finding good
solutions, as none of the existing solvers is good at both aspects. A subtype of exact solvers
are exact incremental solvers. These solvers are run multiple times on almost the same
MaxSAT instance. In between each run, the MaxSAT instance can be modified. Further, for
each run, the user can specify a temporary variable assignment using assumptions.

3 MaxSLIM

In this section, we describe MaxSLIM, our variant of SLIM for MaxSAT. MaxSLIM expects
a MaxSAT instance – the global instance – as input. Then, either a global solution τ is
provided, or MaxSLIM computes one using a heuristic. MaxSLIM improves this global
solution by repeatedly extracting local instances, as discussed in the next section, and solving
them using a local solver. Whenever the local solver finds a solution with lower cost, we
found an improvement for the global solution. The local solver is subject to a local timeout
and is stopped whenever this timeout elapses.

Alongside our structural approach, we also discuss the details of MaxSAT-LNS’s neigh-
borhood definition.

3.1 Local Instances
Given a MaxSAT instance F = (Fh, Fs, w) and weight function w, we iteratively construct a
set L ⊆ var(F) of candidate variables that induce our local instance. The candidate variables
are selected using a strategy, the topic of Section 3.3. Given a total assignment τ of F ,
we define τ |var(F)\L as the restriction of τ to var(F) \ L, and let τL̄ = UPFh

(τ |var(F)\L).
Hence, τ |var(F)\L is the assignment after fixing the value of all non-candidate variables and
performing unit propagation and L induces the local instance FL = F [τL̄].
FL is expected to be much smaller than F . We call the variables in var(FL) free variables,

which are a subset of the candidate variables. Given a solution π for FL, we obtain a new
global solution by completing τL̄ to a total assignment using π: τ ← τL̄ ∪ π.

The updated τ is indeed a solution for F : all hard clauses not part of FL are by definition
satisfied by τL̄ and the hard clauses in FL are satisfied by π. A similar argument holds for
the soft clauses. The global cost decreases exactly by the value the local cost decreases.
Therefore, any improvement for the local instance also improves the global solution.

We specify the budget in terms of the number of free variables. Hence, we want to choose
L such that |var(FL)| ≤ b for some budget b. This ensures that the local instances do not
take too long to solve. MaxSAT-LNS uses a similar method: it incrementally fixes the values

A. Schidler and S. Szeider 26:5

of some variables, until the number of unassigned variables is below a specific threshold. Our
focus on the free variables as opposed to the fixed variables, allows us to follow the instance’s
structure, as is our next topic.

3.2 Local Instance Selection
The goal of local instance selection (i.e., selection of the candidate variables) is that we would
like to reach many unsatisfied soft clauses that can be satisfied by changing the assignment of
the free variables. This poses two challenges. The first challenge is identifying the right soft
clauses: improvements usually require that some satisfied soft clauses become unsatisfied in
exchange for satisfying some previously unsatisfied soft clauses of higher total weight. Once
the soft clauses are identified, we know which variables need to become free. The second
challenge is identifying the other variables required to free the soft clauses’ variables. This
gives us the candidate variables for our local instance. This task is hard to perform efficiently,
as unit propagation behaviour is very instance-specific and hard to predict.

We address these challenges by considering the incidence graph (also known as the clause-
variable incidence graph) for our local instance selection. While other graphical models for
MaxSAT instances exist (such as the primal graph or the resolution graph), our research
shows that the incidence graph is best suited for our method: (i) the incidence graphs
contains all the information available in the primal graph and resolution graph, and (ii) the
neighborhood of a variable shows which clauses are impacted in case we change the variable’s
value. The incidence graph GF is the graph with the set of vertices V (GF) = var(F)∪Fh∪Fs

and the set of edges E(GF) = { {u, C} : C ∈ Fh ∪ Fs, u ∈ var(C) }. Hence, the incidence
graph is a bipartite graph that connects the clauses with the variables they contain, negated
or unnegated. We annotate the edges with the polarity of the variable in the clause. Given
a global solution τ for F and a set L ⊆ var(F), we define the restriction of the incidence
graph GF,L to unsatisfied clauses. For this definition, we assume that the assignment to the
candidate variables changed and use

τ ′(x) =
{

1− τ(x) if x ∈ L,

τ(x) otherwise.

Then

V (GF,L) = var(F) ∪ {C ∈ Fs ∪ Fh : C not satisfied by τ ′ } and
E(GF,L) = E(GF) ∩ (V (GF,L)× V (GF,L)).

Local instance selection searches for connected subgraphs of the incidence graph that allow
for improvements. We focus on connected subgraphs as after changing an assignment to a
variable x, unit propagation can only affect variables within the same connected subgraph
as x. The restricted incidence graph focuses this search by considering only those clauses
that become unsatisfied after changing x.

MaxSLIM constructs local instances using strategies for exploring GF,L. Each strategy is
a different greedy algorithm that picks variables by maximizing a metric. Each metric s(.)
defines a score for each variable or soft clause x, denoted by s(x).

Algorithm 1 shows the general approach. In each iteration, we initially start from a single
unsatisfied soft clause C ∈ Fs. The soft clause is chosen according to the metric and we
avoid repeatedly choosing the same soft clause by keeping track of our previous choices in D.
Hence, we start with initial set L0 = var(C) of candidate variables. We then extend this set
to Li+1 = Li ∪ S – where S depends on the strategy used – until |var(FLi+1)| exceeds our

CP 2024

26:6 Structure-Guided Local Improvement for Maximum Satisfiability

Algorithm 1 MaxSLIM.
Input: A MaxSAT instance F = (Fh, Fs, w), a metric s(.), a strategy σ for selecting local
instances, and a budget b.
Output: A solution τ .

1: τ ←solve(F) // τ can also be passed as a parameter.
2: D ← ∅ // D keeps track of visited soft clauses.
3: while within global timeout do
4: i← 0
5: Cs ← arg maxC∈Fs\D,C∩τ=∅ s(C)
6: L0 ← var(Cs)
7: D ← D ∪ {Cs}
8: while var(Li) ̸= var(F) and |var(FLi

)| < b do
9: Extend Li to Li+1 using the strategy σ.

10: i← i + 1
11: end while
12: τLi+1 ← solve(FLi+1)
13: if cost(FLi+1 , τLi+1) < cost(FLi+1 , τ) then
14: τ ← τ |var(F)\var(FLi+1) ∪ τLi+1

15: Update metric.
16: D ← ∅
17: end if
18: if D = {C ∈ Fs : C ∩ lit(τ) = ∅ } then
19: D ← ∅
20: end if
21: end while
22: return τ

budget or we have added all variables. Then L := Li+1. Whenever we tried all soft clauses
or found an improvement, we reset D. Hence, MaxSLIM runs either until the global timeout
is reached or the budget allows solving the whole instance.

3.3 Strategies
Given a global instance F = (Fh, Fs, w), a global solution τ for F , and a metric s :
var(F) ∪ Fs → R (which can depend on τ), we use one of the following strategies for
extending Li to Li+1, where ties are always broken arbitrarily:

Variable Strategy: Let Nc = {C : u ∈ Li, {u, C} ∈ E(GF,Li
) } and Nv = {u : C ∈

Nc, {u, C} ∈ E(GF,Li) }\Li, i.e., Nv is the set of variables which occur in some clause to-
gether with at least one variable in Li. This strategy sets Li+1 = Li∪{arg maxu∈Nv

s(u)}.
I.e., this strategy adds as many high-scoring variables to the local instance as possible.
k-Adjacency Strategy: This strategy picks a variable v = arg maxv∈Li

s(v) and then
extends Li to Li+1 by adding the k best variables of distance 2 from v in GF,Li . The
idea behind this strategy is that high-scoring candidate variables are only useful if they
become free. Adding variables that occur together in a clause with the high-scoring
variables increases the chances of the high scoring candidate variables becoming free.
Fast Strategy: This strategy does not use a metric to avoid sorting and priority queues.
Let v ∈ Li be an arbitrary vertex and Nv be defined as in the Variable Strategy, then
Li+1 = Li ∪Nv. Hence, all variables occurring together with any variable in Li are added.

A. Schidler and S. Szeider 26:7

This strategy tries to maximize the speed with which local instances are constructed.
Which strategy is best depends on the structure of the instance, as we will discuss in our
experiments. We discuss further strategies and results in Appendix A.

Next, we will discuss the different metrics used by the strategies.

3.4 Metrics
The metrics try to identify variables and soft clauses that have a high probability of contrib-
uting to an improvement. For brevity, only some metrics are discussed here and more metrics
and results can be found in Appendix B. We heavily use the concept of units: variable v

is a unit of clause C with respect to an assignment τ if {v} = var(lit(τ) ∩ C). Hence, if
a clause has a unit, changing the unit’s assignment will make the clause unsatisfied. We
define unit(v) = {C ∈ Fs ∪ Fh : {v} = var(lit(τ) ∩ C) }. Hence, unit(v) are exactly those
clauses that become unsatisfied if we change the value of v. Particularly for instances with
homogenous soft clause weights, many soft clauses end up having the same metric score. For
this reason, we use arg minv∈C |unit(v)| – smaller is better – as a tie breaker, whenever the
score of two soft clauses is the same.

We consider the following metrics:
Unit Metric: For each variable v ∈ var(F) the score is

s(v) = −|unit(v) ∩ Fh| −
∑

C∈unit(v)∩Fs

w(C).

This metric prefers variables where changing the assigned value would unsatisfy as few
clauses as possible. For a soft clause Cs the score is minv∈var(Cs) s(v).
Satisfying Metric:

s(v) =
∑

Ch∈Fh,Cs∈Fs,
v∈var(Fh),

Ch∩τ={ℓ},¬ℓ∈Cs

0, if lit(τ) ∩ Cs ̸= ∅;
0, if v = var(ℓ);
w(Cs), otherwise.

This metric identifies variables in unsatisfied soft clauses that cannot be changed to a
different value, as they alone satisfy some hard clause. Giving the other variables in
these hard clauses a high score and thereby changing their value can enable MaxSLIM to
satisfy more soft clauses. For a soft clause Cs, s(Cs) =

∑
v∈var(Cs) s(v).

NuWLS Metric: This metric uses the initial weighting scheme of NuWLS [7]. For
unweighted instances, each soft clause Cs has score s(Cs) = 1000, for weighted instances,
with wa being the average weight over all soft clauses, s(Cs) = w(Cs) · 3000

wa
.

For the purposes of computing the variable score, let s(C) = 1 for all C ∈ Fh. The score
for a variable v is defined as

s(v) =
∑

Cs∈Fs,Cs∩lit(τ)=∅

s(Cs)−
∑

C∈unit(v)

s(v).

This metric weighs the clauses that will be satisfied by changing the variable’s value
against the clauses that will become unsatisfied.

Instead of using the metric scores directly as discussed, we use weighted random sampling,
similar to MaxSAT-LNS: We use a constant factor c such that s(x) + c > 0 for all x ∈
Fs ∪ var(F) and then, for each x ∈ var(F) ∪ Fs, we set s(x)← log ux · 1

s(x)+c , where ux is a
randomly generated number between 0 and 1. Sampling causes MaxSLIM to explore more
diverse local instances, leading to more improvements over time.

CP 2024

26:8 Structure-Guided Local Improvement for Maximum Satisfiability

Variables: a, b, c, d, e, f

Soft Clauses: a, b, c

c1 : ¬a ∨ ¬b c2 : ¬a ∨ ¬c

c3 : a ∨ d c4 : ¬d ∨ e

c5 : d ∨ ¬f c6 : e ∨ f

c7 : b ∨ ¬f c8 : c ∨ e

τ(a) = 1
τ(b) = 0
τ(c) = 0
τ(d) = 0
τ(e) = 1
τ(f) = 0

(a) An unweighted MaxSAT instance and ex-
ample assignment τ .

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

(b) The respective in-
cidence graph.

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

b|-1

a|-1
c1

(c) Initial iteration in
local instance selection.

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

b|-1

a|-1
c1 c2

c3
c|-1

d| 0

(d) Second iteration.

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

b|-1

a|-1
c1 c2

c3
c|-1

d| 0
c4

e|-2

(e) Third iteration.

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

b|-1

a|-1
c1 c2

c3
c|-1

d| 0
c4

e|-2

(f) Last iteration.

Variables: a, b, c, d

Soft Clauses: a, b, c

c1 :¬a ∨ ¬b

c2 :¬a ∨ ¬c

c3 :¬a ∨ d

π(a) = 0
π(b) = 1
π(c) = 1
π(d) = 0

(g) The corresponding local in-
stance and an optimal assign-
ment π.

Figure 1 Local instance selection using the Unit Metric, Variable Strategy, and a budget of 4. A
red edge indicates that the variable occurs negated in a clause and a blue edge indicates that the
variable occurs unnegated.

▶ Example 1. Figure 1 shows an example for local instance selection. Figure 1a shows an
unweighted MaxSAT instance with three unary soft clauses and a sub-optimal assignment τ .
The corresponding incidence graph is shown in Figure 1b. The graph also shows the polarity
of the variable using the edge color, blue for positive and red for negative. The example uses
the Unit Metric: the weight for the variables is given with the variable name in the graph
vertices. a has weight −1 as it alone satisfied c3 under τ , while d has weight 0 because it only
satisfies c4, which is also satisfied by e under τ . Local instance selection starts in Figure 1c
using the Variable Strategy, for clarity we do not use weighted random sampling. Initially,
b and c could be chosen as they occur in unsatisfied soft clauses and have highest weight.
Here, b is chosen arbitrarily as the initial soft clause and variable. The gray vertices have
been explored by the strategy and only the variables corresponding to explored vertices are
considered as candidate variables in the next iteration. Since a is the only such variable, it is
added next in Figure 1d. In the next two iteration, the variables with the highest weights
are selected, until we hit our budget of 4. We now have selected four candidate variables
that are also free variables and the corresponding local instance is shown in Figure 1g. The
improved assignment to the local instance can then be completed to a global assignment
using the original assignments to e and f .

3.5 Local Solvers
MaxSLIM can use any MaxSAT solver as the local solver, whether it is an anytime or an
exact solver. Next, we will discuss the advantages of different solver types and then discuss
our own solver developed for MaxSLIM.

A. Schidler and S. Szeider 26:9

Anytime solvers seem like a straightforward choice, as we only require improved solutions,
not necessarily optimal ones. Unfortunately, anytime solvers often struggle to show optimality.
Hence, they often run for the full local timeout, where an exact solver can determine within
seconds that no improvement is possible. While current implementations of anytime solvers
do not offer the option to start from a known solution, the underlying algorithms themselves
would support it in principle.

Exact solvers are indeed often faster in showing that no improvement is possible. The
main disadvantage when using exact solvers is that they often do not find (good) intermediate
solutions, whenever the local run does not finish. There are methods like stratification [2, 17]
that find upper bounds for weighted instances during solving, but the upper bounds are
often not tight until late in the solving process. Further, exact solvers cannot profit much
from an already known solution, apart from hardening [2] which only works for weighted
instances. Incremental exact solvers would support encoding the instance only once and
reusing learned information across multiple local instances. Unfortunately, our experiments
show that the large number of assumptions (up to hundreds of thousands and more) required
for expressing the local instances slows down an incremental solver. Further, the large
number of assumptions makes it hard for the solver to learn cores or clauses that are useful
for another local instance. We could not observe any improvement of using an incremental
solver over a non-incremental exact solver.

In MaxSLIM, we use our own exact solver based on the OLL algorithm [1, 19] with
some specific adaptations. For brevity, we discuss the main differences to a plain OLL
implementation, without giving the details of OLL itself. For this description, we assume
that each soft clause consists of only one literal, as this can always be achieved by introducing
auxiliary variables.

A simple method that works for all solvers is using the fact that any improved solution
has to satisfy at least one additional soft clause. Let FL,s be the set of soft clauses of a local
instance FL and FL,u = {C ∈ FL,s : C ∩ lit(τ) = ∅ }. We can now add a single disjunction
stating that at least one soft clause in FL,u has to be satisfied. This has at least one of
two effects: any solution the local solver finds is different from the current solution, which
can lead to improvements in subsequent local runs, and more often, adding this disjunction
increases the optimal cost of the local instance. The increase in optimal cost, in turn, makes
it easier and faster to determine whether no improvement is possible.

The second change is upper bound search, where our solver actively tries to find improved
non-optimal solutions. In each OLL iteration, we assume that exactly one additional soft
clause in FL,u is satisfied. If the subsequent SAT call returns satisfiable, we have reduced
our upper bound and found a better solution. Otherwise, we proceed as usual: we extract a
core and increase our lower bound. This way, we may find improved solutions, even if the
solver does not find an optimal solution.

4 Experimental Evaluation

In our experimental evaluation, we address several research questions:
Q1: Is there a benefit of a structured approach compared to an unstructured one like

MaxSAT-LNS? (Section 4.2)
Q2: Is there a benefit of local improvement compared to just running the initial solver for

the entire time? (Section 4.3)
Q3: How does MaxSLIM compare to other anytime solvers? (Section 4.4)
Q4: What strategies/metrics work best? (Section 4.5)

We first introduce our experimental setup and then examine the results concerning these
questions.

CP 2024

26:10 Structure-Guided Local Improvement for Maximum Satisfiability

4.1 Experimental Setup
4.1.1 Cluster
The experiments were run on servers with two AMD EPYC 7402 CPUs, each having 24 cores
running at 2.8 GHz, and using Ubuntu 18.04. Each run had 64 GB of memory. We used
GCC 11 to compile all the solvers. We use timeouts of 5, 30 and 60 minutes.

4.1.2 Comparison
We compare our implementation of MaxSLIM against MaxSAT-LNS2, as well as the MaxSAT
Evaluation 2023 solvers NuWLS-c (static), TT-Open-WBO-Inc (Glucose for unweighted,
IntelSAT for weighted), Loandra, and NoSAT MaxSAT3. We utilize the same scoring system
as the MaxSAT Evaluation: let cbest be the cost of the best known solution for the given
instance, and csolver be the cost of the solution the given solver found, the score is calculated
with cbest+1

csolver+1 . The solvers finding the best solution get a score of 1. The lowest cost among
all our experiments provides the baseline. Hence, values in different tables are comparable.

We perform three runs per solver and configuration, using three specific random seeds for
reproducibility, whenever the solver supports it. The random seeds themselves have been
initially randomly generated. If not stated otherwise, we give the average of the three runs.

We generate an initial solution using NuWLS-c, the winner of the MaxSAT Evaluation
2023, and aim for a comparability between MaxSLIM, MaxSAT-LNS, and NuWLS-c using
the following setup. Instead of running NuWLS-c separately for 5, 30, and 60 minutes, we
only run it for the 60 minute-runs and extract the current best solution after 1, 5, 30, and
60 minutes. These extracted solutions are then used as the initial solution for MaxSLIM
and MaxSAT-LNS: for the 5 minute runs, MaxSLIM and MaxSAT-LNS get NuWLS-c’s best
solution after one minute as an input; for 30 and 60 minute timeouts we give MaxSLIM
and MaxSAT-LNS the NuWLS-c’s best solution after 5 minutes as the initial solution. We
compensate for this by running MaxSLIM and MaxSAT-LNS for only 4, 25, and 55 minutes
instead of 5, 30 and 60 minutes. This setup means that MaxSLIM, MaxSAT-LNS, and
NuWLS-c always start from the same solution. Instances where no initial solution could be
computed are omitted from the results.

We note that it is common that anytime solvers use other anytime solvers: TT-Open-
WBO-Inc uses NuWLS-c, and NuWLS-c uses TT-Open-WBO-Inc [5]. Further, we did not
try to create the best anytime solver, but evaluate how well our structured approach works.
Interleaving our approach more with the other solvers would yield better results, but makes
it hard to identify how much our approach contributes. Possible improvements are using
NuWLS for those instances that do not allow local improvements, or optimizing the timeout
for the initial solution.

4.1.3 Instances
We used the instances from the 2023 MaxSAT Evaluation’s anytime track4. The set contains
179 unweighted and 160 weighted instances. Our experiments show that EvalMaxSAT-SCIP,
the winner of the unweighted track and close third-best solver in the weighted track, was able
to solve 39 of the unweighted instances and 48 of the weighted instances within one hour.

2 https://github.com/rgh000/MaxSAT_LNS
3 https://maxsat-evaluations.github.io/2023/descriptions.html
4 https://maxsat-evaluations.github.io/2023/benchmarks.html

https://github.com/rgh000/MaxSAT_LNS
https://maxsat-evaluations.github.io/2023/descriptions.html
https://maxsat-evaluations.github.io/2023/benchmarks.html

A. Schidler and S. Szeider 26:11

We restrict the results to those instances where we could find an initial solution. This
avoids giving NuWLS-c a better score on instances where NuWLS-c does not find an initial
solution, but later finds a solution within the timelimit. Hence, we avoid lowering MaxSLIM’s
and MaxSAT-LNS’s score in case of NuWLS-c’s poor performance.

4.1.4 Configuration
We solve local instances using our OLL solver limited to a local timeout of 55 seconds. This
admits local instance selection and solving the local instance to finish within a minute. As
the budget, we initially use |var(F)|

10 many variables, but not more than 25 000. Every five
consecutive failures of finding an improvement, we increase the budget by another |var(F)|

10 .
Whenever the budget reaches the total number of variables, we run the local solver without
a timeout on the whole instance. We use the Variable Strategy and either the Unit Metric
for unweighted, or the NuWLS Metric for weighted instances.

Table 1 Virtual best average scores for different combinations of solvers. Virtual best scores take
for each instance the best solution over the specified solvers.

Unweighted Weighted
Solvers 5 m 30 m 60 m 5 m 30 m 60 m

MaxSLIM 0.886 0.920 9.927 0.833 0.911 0.917
MaxSLIM & MaxLNS 0.896 0.930 0.936 0.849 0.927 0.933
MaxSLIM & NuWLS 0.901 0.937 0.940 0.888 0.928 0.933
All Solvers 0.929 0.970 0.980 0.947 0.976 0.981

4.2 Comparison of SLIM and LNS (Q1)
The comparison between MaxSAT-LNS and MaxSLIM in Tables 2 and 3 shows that MaxSLIM
performs overall better than MaxSAT-LNS for all timeouts and scores. This suggests that the
structured approach has an advantage over randomly selecting the local instances. In contrast
to all the other solvers, MaxSAT-LNS and MaxSLIM both have a large variance between
the runs. This suggests that weighted random sampling introduces a significant diversity
among the local instances. The virtual best results in Table 1 show that MaxSAT-LNS and
MaxSLIM are not very complementary. Interestingly, the difference between the virtual best
and MaxSLIM’s score is constant over the timeouts, suggesting that some improvements
were only found by MaxSAT-LNS.

4.3 Comparison of MaxSLIM and NuWLS-c (Q2)
One crucial question is whether MaxSLIM is better than running the anytime solver used
for the initial solution for the entire duration. The results in Table 2 show that MaxSLIM
performs better on unweighted instances, where it is better on all metrics for all timeouts.

The results are different for weighted instances as shown in Table 3. Here, MaxSLIM
performs worse for the 5-minute runs. The weighted instances contain on average three times
more variables and hard clauses, as well as ten times more soft clauses compared to the
unweighted instances. This increase in size decreases the performance of the solvers and leads
to a poor initial solution. NuWLS-c is then faster at finding improvements than MaxSLIM.
This is clearly visible in the much better results on higher timeouts, where MaxSLIM is able

CP 2024

26:12 Structure-Guided Local Improvement for Maximum Satisfiability

Table 2 Comparison between MaxSLIM, MaxSAT-LNS (MaxLNS), NuWLS-c (NuWLS), TT-
Open-WBO-Inc (TT-OpenWI), Loandra, and NoSAT MaxSAT (NoSAT) for unweighted instances.
The score is obtained by taking for each instance the best scoring run, the worst scoring run, and the
average over all three runs. Best shows on how many instances the solver found the best solution.

MaxLNS MaxSLIM NuWLS TT-OpenWI Loandra NoSAT

5-Minutes 164 Instances

Score Min 0.859 0.876 0.876 0.872 0.806 0.576
Score Average 0.871 0.887 0.885 0.876 0.820 0.589
Score Max 0.887 0.899 0.895 0.881 0.835 0.602
Best 32 42 33 32 42 15

30-Minutes 171 Instances

Score Min 0.895 0.902 0.910 0.896 0.884 0.577
Score Average 0.907 0.919 0.917 0.907 0.892 0.591
Score Max 0.928 0.937 0.925 0.917 0.900 0.606
Best 36 39 30 28 41 13

60-Minutes 171 Instances

Score Min 0.898 0.907 0.911 0.902 0.887 0.587
Score Average 0.912 0.923 0.918 0.913 0.900 0.601
Score Max 0.930 0.940 0.926 0.925 0.912 0.617
Best 39 41 30 29 41 14

to find improvements overlooked by NuWLS-c. Even on the 5-minute timeout, MaxSLIM
finds many improvements, overlooked by NuWLS-c, as highlighted by the high virtual best
score in Table 1.

The gap between the virtual best and the best score behaves similar to the comparison
with MaxSAT-LNS. Except for the 5-minute weighted run, the gap remains almost constant
over the timeouts, suggesting that some improvements are not found by MaxSLIM. One type
of instance where NuWLS-c performs better are instances, where improvements are only
possible on (almost) the full instance, since solving these instances with an exact solver is
slow.

4.4 Other Solvers (Q3)

Tables 2 and 3 also show the results for the other solvers from the 2023 MaxSAT Evaluation.
Striking is the large variance for every solver, showing that luck plays a significant role in the
score. MaxSLIM’s variance stays comparatively high even for the longer timeouts, indicating
that longer timeouts could result in further significant improvements.

In the unweighted case, MaxSLIM is the best solver over the different timeouts, but it
clearly distinguishes itself from NuWLS-c only for the best score, as the average score is only
better by a small margin.

The weighted case is similar to the comparison with NuWLS-c for the same reasons.
Hence, MaxSLIM performs best for the longer timeouts, where the improvements become
harder to find.

A. Schidler and S. Szeider 26:13

Table 3 Comparison between MaxSLIM, MaxSAT-LNS (MaxLNS), NuWLS-c (NuWLS), TT-
Open-WBO-Inc (TT-OpenWI), Loandra, and NoSAT MaxSAT (NoSAT) for weighted instances.
The score is from taking for each instance the best scoring run, the worst scoring run, and the
average over all three runs. Best shows on how many instances the solver found the best solution.

MaxLNS MaxSLIM NuWLS TT-OpenWI Loandra NoSAT

5-Minutes 154 Instances

Score Min 0.797 0.813 0.857 0.862 0.818 0.307
Score Average 0.818 0.833 0.868 0.872 0.843 0.319
Score Max 0.839 0.851 0.882 0.881 0.868 0.331
Best 32 29 31 22 35 0

30-Minutes 159 Instances

Score Min 0.877 0.895 0.889 0.881 0.882 0.327
Score Average 0.894 0.911 0.889 0.888 0.893 0.338
Score Max 0.914 0.929 0.912 0.895 0.906 0.348
Best 34 42 17 17 33 0

60-Minutes 159 Instances

Score Min 0.881 0.903 0.896 0.889 0.887 0.330
Score Average 0.899 0.917 0.906 0.897 0.898 0.341
Score Max 0.918 0.933 0.914 0.906 0.910 0.352
Best 35 41 19 20 34 0

Hence, MaxSLIM is generally competitive, but needs more local search for better perform-
ance on short weighted runs. The virtual best score over all solvers in Table 1 shows that
the approaches are quite complementary, as the virtual best for 5-minutes would outperform
the single best after one hour.

4.5 Impact of the Configuration (Q4)
An interesting question is how the hyperparameters impact MaxSLIM’s performance. We ran
the same configuration used in the previous experiments and varied only a single parameter.
The virtual best scores over all the configurations discussed in this section are 0.926 for
unweighted and 0.867 for weighted instances. Hence, a good dynamic configuration could
severely improve MaxSLIM’s performance.

Table 4 shows the results of disabling some of MaxSLIM’s features.
The upper bounding search does have a noticeable impact. Nonetheless, disabling it

yields better results on some instances. The varying performance comes from the fact that
the upper bounding search is slower than normal search whenever the local instance cannot
be improved.

Weighted random sampling performs in a similar manner, but improves the performance
overall more than upper bounding search. There is no clear indication as to when sampling
is beneficial and when it is not.

Local search has the biggest impact on the results. Whenever we take the first solution
from the initial solver, instead of letting it run the full minute, the performance degrades
significantly. This is particularly impactful on weighted instances. MaxSLIM is comparatively
slow, but can find improvements not visible to local search. Local search is complementary,

CP 2024

26:14 Structure-Guided Local Improvement for Maximum Satisfiability

Table 4 Performance of different disabled features of MaxSLIM over a 5-minute timelimit.
Improved shows how many input solutions were improved. Better and Worse show on how many
instances the configuration did better or worse than the baseline.

Unweighted Weighted
Configuration Score Improved Better Worse Score Improved Better Worse

Baseline 0.887 97 - - 0.833 105 - -

No Upper Bounding Search 0.878 94 16 32 0.825 101 16 33
No Weighted Sampling 0.875 88 22 40 0.819 103 15 40
No Initial NuWLS Solution 0.817 - 20 94 0.650 - 10 102

as it is very good at finding improvements fast, but often gets stuck when improvements
become hard to find. Hence, not running local search severely degrades the performance for
short runtimes.

Next, we discuss results on using different strategies and metrics.

4.5.1 Strategies
Table 5 shows the results of comparing different strategies. The results show that the Variable
Strategy is overall the best strategy, while the 5-Adjacency finds many solutions missed by
the Variable Strategy. The Fast Strategy performs overall worst, but performs better on
some very large instances. In general, different strategies perform complementarily.

Table 5 Performance of different strategies. Best Score shows on how many instances MaxSLIM
found the best solution using the given strategy. Unique Best shows on how many instances the
best solution could only be found using the given strategy. The timelimit was 5 minutes.

Unweighted Weighted
Strategy Score Improved Best Unique Score Improved Best Unique

Variable 0.887 97 44 5 0.833 105 34 14
5-Adjacency 0.887 94 48 13 0.822 107 40 18
Fast 0.873 79 28 5 0.817 99 24 10

In Table 6 are several statistics for each strategy. We can see that the relative time spent
on constructing local instances is indeed significantly lower for the fast strategy, and about
the same for all other strategies. Interestingly, the number of local instances is much higher
for the Variable and 5-Adjacency Strategy. This shows that the fast strategy extracts many
local instances that do not lead to an improvement, but require long solving times.

Another interesting observation is that neither the number of local instances, nor the
number of improved local instances is a good indicator for performance. According to both
results, the Variable Strategy would not be the best strategy.

4.5.2 Metrics
Table 7 shows the results of comparing different metrics. The score between the best and the
worst metric generally does not vary much. The Unit Metric is in the absence of weights
the best overall metric. Unsurprisingly, for weighted instances, those metrics that use the
weights work better.

A. Schidler and S. Szeider 26:15

Table 6 Strategy statistics averaged over all instances: average local instance size relative to the
full instance (LI Size), average ratio of free variables to candidate variable per local instance (F/C),
average fraction of runtime spent on local instance generation (LI Time Ratio), average fraction
of variables changed per improvement (Changes), average ratio of local instances that have been
solved optimally (Optimal Ratio), average number of local instances (#LI), average number of local
instances that led to an improvement (#Improved).

Strategy LI Size F/C LI Time Ratio Changes Optimal Ratio #LI #Improved

Unweighted

Variable 0.40 0.64 0.10 0.06 0.64 49.11 2.01
5-Adjacency 0.38 0.65 0.12 0.07 0.67 55.49 3.29
Fast 0.41 0.69 0.02 0.07 0.50 32.29 1.69

Weighted

Variable 0.23 0.52 0.21 0.12 0.42 33.33 3.27
5-Adjacency 0.28 0.57 0.24 0.10 0.44 29.71 3.55
Fast 0.35 0.60 0.12 0.12 0.35 23.16 1.54

The statistics in Table 8 show that the different metrics perform very similarly. Together
with the strategy statistics in Table 6 there are some interesting details regarding the
performance differences between weighted and unweighted instances. The local instances
for weighted instances are much smaller than for unweighted instances, while constructing
them takes significantly longer. The number of variables changed and optimal ratio also
show that it is harder to find the improvements for weighted instances. This further explains
the poorer performance on weighted instances compared to weighted instances.

Table 7 Performance of different metrics. Best Score shows on how many instances MaxSLIM
found the best solution using the given metric. Unique Best shows on how many instances the best
solution could only be found using the given metric. The timelimit was 5 minutes.

Unweighted Weighted
Metric Score Improved Best Unique Score Improved Best Unique

Unit 0.887 97 51 5 0.823 103 47 17
NuWLS 0.885 97 51 8 0.833 105 44 9
Satisfying 0.883 96 66 13 0.824 103 36 7

5 Conclusion

In this paper, we have proposed MaxSLIM as a structured approach to anytime MaxSAT
solving. It tackles the problem of anytime MaxSAT solving by iteratively extracting and
solving smaller subinstances whose selection is guided by the graphical structure of the
instance. This combines anytime and exact MaxSAT solvers in a novel way. Our experimental
evaluation shows the competitiveness of MaxSLIM as compared to state-of-the-art anytime
solvers which have been refined for several years, and other LNS approaches. MaxSLIM’s
trajectory of improvements over time is particularly attractive for applications with longer
runtimes.

CP 2024

26:16 Structure-Guided Local Improvement for Maximum Satisfiability

Table 8 Metric statistics averaged over all unweighted instances: average local instance size
relative to the full instance (LI Size), average ratio of free variables to candidate variable per local
instance (F/C), average fraction of runtime spent on local instance generation (LI Time Ratio),
average fraction of variables changed per improvement (Changes), average ratio of local instances
that have been solved optimally (Optimal Ratio), average number of local instances (#LI), average
number of local instances that led to an improvement (#Improved).

Metric LI Size F/C LI Time Ratio Changes Optimal Ratio #LI #Improved

Unweighted

Unit 0.40 0.64 0.10 0.06 0.64 49.11 2.01
NuWLS 0.40 0.63 0.10 0.07 0.63 49.78 2.16
Satisfying 0.42 0.66 0.11 0.06 0.57 47.00 1.78

Weighted

Unit 0.27 0.54 0.20 0.10 0.42 31.72 3.59
NuWLS 0.23 0.52 0.21 0.12 0.42 33.33 3.27
Satisying 0.27 0.57 0.22 0.10 0.39 30.87 3.40

Our evaluation uses a default configuration and our results show that choosing the
parameters – strategy, metric, timeouts – according to the application can significantly
improve MaxSLIM’s performance even further.

An interesting avenue for further research is to adapt other anytime solvers to integrate
better within MaxSLIM. This would allow us to interleave local improvement phases with
additional runs of the initial solver, starting from the best solution found so far. Such an
interleaved SLIM approach has shown to be surprisingly powerful for circuit minimization [30,
31]. The large variance when comparing the score of different runs for the same configuration,
as well as different configurations, indicates that interleaving MaxSLIM with itself, using
different strategies and metrics, may also be beneficial for the result. Although MaxSLIM can
be parallelized, results so far show that this is only beneficial on some instances, but further
improvements may be possible. As MaxSLIM can benefit from the tuning of its parameters,
we expect that further efficiency improvements can be obtained through automated algorithm
configuration, possibly even adjusting parameters during the run [3].

References
1 Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub. Unsatisfiability-

based optimization in clasp. In Agostino Dovier and Vítor Santos Costa, editors, Technical
Communications of the 28th International Conference on Logic Programming, ICLP 2012,
September 4-8, 2012, Budapest, Hungary, volume 17 of LIPIcs, pages 211–221. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.ICLP.2012.211.

2 Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving sat-based
weighted maxsat solvers. In Michela Milano, editor, Principles and Practice of Constraint
Programming - 18th International Conference, CP 2012, Québec City, QC, Canada, October
8-12, 2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 86–101.
Springer, 2012. doi:10.1007/978-3-642-33558-7_9.

3 Carlos Ansótegui, Josep Pon, Meinolf Sellmann, and Kevin Tierney. Reactive dialectic search
portfolios for MaxSAT. In Satinder Singh and Shaul Markovitch, editors, Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, pages 765–772. AAAI Press, 2017. URL: http://aaai.org/ocs/index.php/
AAAI/AAAI17/paper/view/14872.

https://doi.org/10.4230/LIPIcs.ICLP.2012.211
https://doi.org/10.1007/978-3-642-33558-7_9
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14872
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14872

A. Schidler and S. Szeider 26:17

4 Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. Core-boosted linear search for incomplete
MaxSAT. In Louis-Martin Rousseau and Kostas Stergiou, editors, Integration of Constraint
Programming, Artificial Intelligence, and Operations Research - 16th International Conference,
CPAIOR 2019, Thessaloniki, Greece, June 4-7, 2019, Proceedings, volume 11494 of Lecture
Notes in Computer Science, pages 39–56. Springer, 2019. doi:10.1007/978-3-030-19212-9_3.

5 Jeremias Berg, Matti Järvisalo, Ruben Martins, and Andreas Niskanen. Maxsat evaluation
2023: Solver and benchmark descriptions. Technical report, University of Helsinki, 2023.

6 Shaowei Cai and Zhendong Lei. Old techniques in new ways: Clause weighting, unit propagation
and hybridization for maximum satisfiability. Artif. Intell., 287:103354, 2020. doi:10.1016/J.
ARTINT.2020.103354.

7 Yi Chu, Shaowei Cai, and Chuan Luo. NuWLS: improving local search for (weighted) partial
MaxSAT by new weighting techniques. In Brian Williams, Yiling Chen, and Jennifer Neville,
editors, Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC,
USA, February 7-14, 2023, pages 3915–3923. AAAI Press, 2023. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/25505.

8 Aviad Cohen, Alexander Nadel, and Vadim Ryvchin. Local search with a SAT oracle for
combinatorial optimization. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings,
Part II, volume 12652 of Lecture Notes in Computer Science, pages 87–104. Springer, 2021.
doi:10.1007/978-3-030-72013-1_5.

9 Emir Demirovic and Nysret Musliu. MaxSAT-based large neighborhood search for high school
timetabling. Comput. Oper. Res., 78:172–180, 2017. doi:10.1016/j.cor.2016.08.004.

10 Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. Auto-
mated synthesis of semantic malware signatures using maximum satisfiability. In
24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet Soci-
ety, 2017. URL: https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/.

11 Johannes K. Fichte, Neha Lodha, and Stefan Szeider. SAT-based local improvement for finding
tree decompositions of small width. In Serge Gaspers and Toby Walsh, editors, Theory and
Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne,
VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in
Computer Science, pages 401–411. Springer Verlag, 2017. doi:10.1007/978-3-319-66263-3_
25.

12 Randy Hickey and Fahiem Bacchus. Large neighbourhood search for anytime MaxSAT solving.
In Lud De Raedt, editor, Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, pages 1818–1824. International Joint Conferences on Artificial
Intelligence Organization, July 2022. doi:10.24963/ijcai.2022/253.

13 Sepideh Khoshnood, Markus Kusano, and Chao Wang. ConcBugAssist: constraint solving for
diagnosis and repair of concurrency bugs. In Michal Young and Tao Xie, editors, Proceedings of
the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore,
MD, USA, July 12-17, 2015, pages 165–176. ACM, 2015. doi:10.1145/2771783.2771798.

14 Alexander S. Kulikov, Danila Pechenev, and Nikita Slezkin. SAT-based circuit local improve-
ment. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26,
2022, Vienna, Austria, volume 241 of LIPIcs, pages 67:1–67:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.67.

CP 2024

https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1016/J.ARTINT.2020.103354
https://doi.org/10.1016/J.ARTINT.2020.103354
https://ojs.aaai.org/index.php/AAAI/article/view/25505
https://ojs.aaai.org/index.php/AAAI/article/view/25505
https://doi.org/10.1007/978-3-030-72013-1_5
https://doi.org/10.1016/j.cor.2016.08.004
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/
https://doi.org/10.1007/978-3-319-66263-3_25
https://doi.org/10.1007/978-3-319-66263-3_25
https://doi.org/10.24963/ijcai.2022/253
https://doi.org/10.1145/2771783.2771798
https://doi.org/10.4230/LIPIcs.MFCS.2022.67

26:18 Structure-Guided Local Improvement for Maximum Satisfiability

15 Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. A SAT approach to branchwidth. In
Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing
- SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings,
volume 9710 of Lecture Notes in Computer Science, pages 179–195. Springer Verlag, 2016.
doi:10.1007/978-3-319-40970-2_12.

16 Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. SAT-encodings for special treewidth and
pathwidth. In Serge Gaspers and Toby Walsh, editors, Theory and Applications of Satisfiability
Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 -
September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer Science, pages
429–445. Springer Verlag, 2017. doi:10.1007/978-3-319-66263-3_27.

17 João Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce. Boolean lexicographic
optimization: algorithms & applications. Ann. Math. Artif. Intell., 62(3-4):317–343, 2011.
doi:10.1007/S10472-011-9233-2.

18 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT
solver,. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing
- SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in
Computer Science, pages 438–445. Springer, 2014. doi:10.1007/978-3-319-09284-3_33.

19 António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided MaxSAT with soft
cardinality constraints. In Barry O’Sullivan, editor, Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 564–573. Springer,
2014. doi:10.1007/978-3-319-10428-7_41.

20 António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João Marques-Silva.
Iterative and core-guided maxsat solving: A survey and assessment. Constraints An Int. J.,
18(4):478–534, 2013. doi:10.1007/s10601-013-9146-2.

21 Alexander Nadel. Solving MaxSAT with bit-vector optimization. In Olaf Beyersdorff and
Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT
2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in
Computer Science, pages 54–72. Springer, 2018. doi:10.1007/978-3-319-94144-8_4.

22 Alexander Nadel. Anytime weighted MaxSAT with improved polarity selection and bit-vector
optimization. In Clark W. Barrett and Jin Yang, editors, 2019 Formal Methods in Computer
Aided Design, FMCAD 2019, San Jose, CA, USA, October 22-25, 2019, pages 193–202. IEEE,
2019. doi:10.23919/FMCAD.2019.8894273.

23 Alexander Nadel. On optimizing a generic function in SAT. In 2020 Formal Methods in
Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, pages 205–213.
IEEE, 2020. doi:10.34727/2020/ISBN.978-3-85448-042-6_28.

24 Alexander Nadel. Polarity and variable selection heuristics for sat-based anytime maxsat. J.
Satisf. Boolean Model. Comput., 12(1):17–22, 2020. doi:10.3233/sat-200126.

25 David Pisinger and Stefan Ropke. Large neighborhood search. In Handbook of Metaheuristics,
pages 399–419. Springer Verlag, 2010.

26 Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. MaxSAT-based postprocessing for
treedepth. In Helmut Simonis, editor, Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,
Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 478–495. Springer,
2020. doi:10.1007/978-3-030-58475-7_28.

27 Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. Learning fast-inference bayesian
networks. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 17852–17863, 2021. URL: https://proceedings.neurips.
cc/paper/2021/hash/94e70705efae423efda1088614128d0b-Abstract.html.

https://doi.org/10.1007/978-3-319-40970-2_12
https://doi.org/10.1007/978-3-319-66263-3_27
https://doi.org/10.1007/S10472-011-9233-2
https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/s10601-013-9146-2
https://doi.org/10.1007/978-3-319-94144-8_4
https://doi.org/10.23919/FMCAD.2019.8894273
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_28
https://doi.org/10.3233/sat-200126
https://doi.org/10.1007/978-3-030-58475-7_28
https://proceedings.neurips.cc/paper/2021/hash/94e70705efae423efda1088614128d0b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/94e70705efae423efda1088614128d0b-Abstract.html

A. Schidler and S. Szeider 26:19

28 Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. Turbocharging treewidth-bounded
bayesian network structure learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pages 3895–3903. AAAI Press, 2021. doi:
10.1609/aaai.v35i5.16508.

29 Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. Learning large Bayesian networks
with expert constraints. In James Cussens and Kun Zhang, editors, Proceedings of the Thirty-
Eighth Conference on Uncertainty in Artificial Intelligence, volume 180 of Proceedings of
Machine Learning Research, pages 1592–1601. PMLR, 01–05 August 2022. URL: https:
//proceedings.mlr.press/v180/peruvemba-ramaswamy22a.html.

30 Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider. Circuit minimization with QBF-
based exact synthesis. In Brian Williams, Yiling Chen, and Jennifer Neville, editors, Thirty-
Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February
7-14, 2023, pages 4087–4094. AAAI Press, 2023. URL: https://ojs.aaai.org/index.php/
AAAI/article/view/25524.

31 Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider. eSLIM: Circuit minimization with
SAT based local improvement. In 27th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2024, August 21-24, 2024, Pune, India, 2024. to appear.

32 André Schidler. SAT-based local search for plane subgraph partitions (CG challenge). In Xavier
Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Geometry,
SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 74:1–74:8. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SoCG.2022.74.

33 André Schidler and Stefan Szeider. SAT-based decision tree learning for large data sets. In
Proceedings of AAAI’21, the Thirty-Fifth AAAI Conference on Artificial Intelligence. AAAI
Press, 2021. doi:10.1609/aaai.v35i5.16509.

34 André Schidler and Stefan Szeider. SAT-boosted tabu search for coloring massive graphs.
ACM J. Exp. Algorithmics, 28, July 2023. doi:10.1145/3603112.

35 André Schidler and Stefan Szeider. SAT-based decision tree learning for large data sets. J.
Artif. Intell. Res., 80:875–918, 2024.

36 Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Michael J. Maher and Jean-Francois Puget, editors, Principles and Practice of
Constraint Programming - CP98, 4th International Conference, Pisa, Italy, October 26-30,
1998, Proceedings, volume 1520 of Lecture Notes in Computer Science, pages 417–431. Springer,
1998. doi:10.1007/3-540-49481-2_30.

37 Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik. Maximum satisfiability in software
analysis: Applications and techniques. In Rupak Majumdar and Viktor Kuncak, editors,
Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part I, volume 10426 of Lecture Notes in Computer Science,
pages 68–94. Springer, 2017. doi:10.1007/978-3-319-63387-9_4.

38 Charlie Shucheng Zhu, Georg Weissenbacher, Divjyot Sethi, and Sharad Malik. Sat-based
techniques for determining backbones for post-silicon fault localisation. In Zeljko Zilic and
Sandeep K. Shukla, editors, 2011 IEEE International High Level Design Validation and Test
Workshop, HLDVT 2011, Napa Valley, CA, USA, November 9-11, 2011, pages 84–91. IEEE
Computer Society, 2011. doi:10.1109/HLDVT.2011.6113981.

CP 2024

https://doi.org/10.1609/aaai.v35i5.16508
https://doi.org/10.1609/aaai.v35i5.16508
https://proceedings.mlr.press/v180/peruvemba-ramaswamy22a.html
https://proceedings.mlr.press/v180/peruvemba-ramaswamy22a.html
https://ojs.aaai.org/index.php/AAAI/article/view/25524
https://ojs.aaai.org/index.php/AAAI/article/view/25524
https://doi.org/10.4230/LIPIcs.SoCG.2022.74
https://doi.org/10.1609/aaai.v35i5.16509
https://doi.org/10.1145/3603112
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-3-319-63387-9_4
https://doi.org/10.1109/HLDVT.2011.6113981

26:20 Structure-Guided Local Improvement for Maximum Satisfiability

A Strategies

We use the same definitions as in Section 3.3: given a global instance F = (Fh, Fs, w), a
global solution τ for F , and a metric s : var(F) ∪ Fs → R (which can depend on τ), we use
the following additional strategies for extending Li to Li+1, where ties are always broken
arbitrarily:

Adjacency Strategy: This strategy picks a variable v = arg maxv∈Li
s(v) and then extends

Li to Li+1 by adding all variables of distance 2 from v in GF,Li
. The idea behind this

strategy is that high scoring candidate variables are only useful if they become free.
Adding all variables that occur together in a clause with the high scoring variables,
increases the chances of the high scoring candidate variables becoming free.
Clause Strategy: This strategy picks an arbitrary clause C ∈ V (GF,Li

) with var(C)∩Li ̸= ∅
and then sets Li+1 = Li ∪ {arg maxv∈var(C)\Li

s(v)}. The idea here is that should we
change the assignment to any candidate variable, some clauses may become unsatisfied.
This strategy follows the chain of necessary assignment changes to ensure that all clauses
are satisfied.
Global Strategy: This strategy emulates MaxSAT-LNS’s neighborhood definition and does
not follow Algorithm 1: instead of starting from a soft clause, we use L0 = var(F) and
we stop once we are within our budget. In each iteration Li+1 = Li \ {arg minv∈Li

s(v)}.
This strategy ensures that the assignment of high scoring variables is preserved.

Different strategies explore the incidence graph differently and lead to different local
instances. Further, different strategies have different runtime complexities. The two factors
that influence runtime the most are sorting the variables to pick the variable of highest score
and how often we need to run unit propagation to calculate the number of free variables.
Hence, the Fast Strategy is indeed the fastest, followed by the Global Strategy, as the
latter requires sorting all variables only once. We will further discuss the runtimes in the
experimental results in the next section.

A.1 Strategy Results

Table 9 Performance of different strategies. Best Score shows on how many instances MaxSLIM
found the best solution using the given strategy. Unique Best shows on how many instances the
best solution could only be found using the given strategy. The timelimit was 5 minutes.

Unweighted Weighted
Strategy Score Improved Best Unique Score Improved Best Unique

Global 0.906 92 64 22 0.826 104 35 14
Variable 0.887 97 44 5 0.833 105 34 14
5-Adjacency 0.887 94 48 13 0.822 107 40 18
Clause 0.877 95 36 1 0.816 106 28 8
Adjacency 0.873 92 36 4 0.820 106 29 13
Fast 0.873 79 28 5 0.817 99 24 10

Table 9 shows the results of comparing different strategies. The results show that the
Variable Strategy is overall the best strategy, while the Global Strategy performs better for
unweighted instances. Nonetheless, every strategy has several instances where it is the only

A. Schidler and S. Szeider 26:21

Table 10 Strategy statistics averaged over all instances: average local instance size relative to the
full instance (LI Size), average ratio of free variables to candidate variable per local instance (F/C),
average fraction of runtime spent on local instance generation (LI Time Ratio), average fraction
of variables changed per improvement (Changes), average ratio of local instances that have been
solved optimally (Optimal Ratio), average number of local instances (#LI), average number of local
instances that led to an improvement (#Improved).

Strategy LI Size F/C LI Time Ratio Changes Optimal Ratio #LI #Improved

Unweighted

Global 0.40 - 0.02 0.07 0.73 77.79 4.25
Variable 0.40 0.64 0.10 0.06 0.64 49.11 2.01
5-Adjacency 0.38 0.65 0.12 0.07 0.67 55.49 3.29
Clause 0.33 0.61 0.11 0.07 0.65 55.35 2.13
Adjacency 0.36 0.66 0.10 0.07 0.69 50.11 2.65
Fast 0.41 0.69 0.02 0.07 0.50 32.29 1.69

Weighted

Global 0.24 - 0.09 0.11 0.50 46.59 4.30
Variable 0.23 0.52 0.21 0.12 0.42 33.33 3.27
5-Adjacency 0.28 0.57 0.24 0.10 0.44 29.71 3.55
Clause 0.24 0.54 0.23 0.06 0.48 34.06 3.33
Adjacency 0.20 0.57 0.24 0.09 0.45 28.09 3.28
Fast 0.35 0.60 0.12 0.12 0.35 23.16 1.54

one that could find the best solution. The difference in score is significantly larger among
unweighted instances compared to weighted instances. Hence, it is easier to give a good
default strategy for unweighted instances than for weighted instances.

In Table 10 are several statistics for each strategy. We can see that the relative time
spent on constructing local instances is low for the Global Strategy and the Fast Strategy,
and about the same for all other strategies. Nonetheless, the number of local instances is
much higher for the global strategy than for the fast strategy. This shows that the fast
strategy extracts many local instances that do not lead to an improvement, but require long
solving times. This also explains the good performance of the global strategy on unweighted
instances: the high number of local instances shows that MaxSLIM increases the budget faster
than with the other strategies. Further, the global strategy is good at finding many small
improvements, which has more overall impact on unweighted instances than on weighted
instances.

Generally, the statistics are more homogenous for unweighted instances than for weighted
instances, which also explains the results in Table 9. Another interesting observation is that
neither the number of local instances, nor the number of improved local instances is a good
indicator for performance. According to both results, the Variable Strategy would be among
the worst strategies.

B Metrics

We use the definitions from Section 3.4: a variable v is a unit of clause C with respect to an
assignment τ if {v} = var(lit(τ) ∩ C) and unit(v) = {C ∈ Fs ∪ Fh : {v} = var(lit(τ) ∩ C) }.

We define the following additional metrics:

CP 2024

26:22 Structure-Guided Local Improvement for Maximum Satisfiability

Random Metric: Assigns each variable and soft clause a random score. This causes
widespread exploration over consecutive local instances, but does not consider which
parts of the instance are more promising.
Counting Metric: The score of a variable is the negative number of times it was selected
as a candidate variable. For a clause C, the score s(C) =

∑
v∈var(C) s(v). This metric

encourages exploration of all variables over time.
LNS Metric: The metric used by MaxSAT-LNS [12]. For a variable v, we define

s(v) =
∑

C∈Fs,
v∈var(C)

−w(C), if v ∈ var(C ∩ lit(τ));
w(C), if C ∩ lit(τ) = ∅;
0, otherwise.

We extend this scoring to a clause C by setting s(C) =
∑

v∈var(C) s(v).
Ratio Metric: The score for a variable v is the number of clauses that would be satisfied
if v’s assigment were changed divided by the number of clauses that would become
unsatisfied by the change. For a clause C the score is minv∈var(C) s(v).

B.1 Metric Results

Table 11 Performance of different metrics. Best Score shows on how many instances MaxSLIM
found the best solution using the given metric. Unique Best shows on how many instances the best
solution could only be found using the given metric. The time limit was 5 minutes.

Unweighted Weighted
Metric Score Improved Best Unique Score Improved Best Unique

Unit 0.887 97 51 5 0.823 103 47 17
NuWLS 0.885 97 51 8 0.833 105 44 9
Satisfying 0.883 96 66 13 0.824 103 36 7
LNS 0.882 96 56 12 0.823 103 41 14
Counting 0.881 92 45 2 0.822 104 38 7
Random 0.881 91 39 0 0.823 102 32 5
Ratio 0.879 92 46 3 0.822 103 32 6

Table 11 shows the results of comparing different metrics. The score between the best
and the worst metric generally does not vary much. Nonetheless, apart from the Random
Metric, every metric achieves several unique best scores. The Unit Metric is in the absence
of weights the best overall metric. Unsurprisingly, for weighted instances, those metrics that
use the weights work better.

Table 12 shows various statistics for these metrics. In general, most statistics do not vary
much between metrics, except for the number of improving local instances.

A. Schidler and S. Szeider 26:23

Table 12 Metric statistics averaged over all unweighted instances: average local instance size
relative to the full instance (LI Size), average ratio of free variables to candidate variable per local
instance (F/C), average fraction of runtime spent on local instance generation (LI Time Ratio),
average fraction of variables changed per improvement (Changes), average ratio of local instances
that have been solved optimally (Optimal Ratio), average number of local instances (#LI), average
number of local instances that led to an improvement (#Improved).

Metric LI Size F/C LI Time Ratio Changes Optimal Ratio #LI #Improved

Unweighted

Unit 0.40 0.64 0.10 0.06 0.64 49.11 2.01
NuWLS 0.40 0.63 0.10 0.07 0.63 49.78 2.16
Satisfying 0.42 0.66 0.11 0.06 0.57 47.00 1.78
LNS 0.43 0.64 0.09 0.06 0.56 46.32 1.79
Counting 0.40 0.63 0.10 0.06 0.64 46.87 1.72
Random 0.40 0.63 0.10 0.06 0.63 46.79 1.76
Ratio 0.40 0.64 0.11 0.06 0.64 49.99 2.07

Weighted

Unit 0.27 0.54 0.20 0.10 0.42 31.72 3.59
NuWLS 0.23 0.52 0.21 0.12 0.42 33.33 3.27
Satisying 0.27 0.57 0.22 0.10 0.39 30.87 3.40
LNS 0.28 0.54 0.20 0.09 0.39 31.23 3.46
Counting 0.25 0.53 0.20 0.10 0.40 31.16 3.23
Random 0.25 0.53 0.20 0.08 0.38 30.40 3.15
Ratio 0.25 0.54 0.21 0.08 0.39 30.58 3.52

CP 2024

Efficient Implementation of the Global Cardinality
Constraint with Costs
Margaux Schmied #

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France

Jean-Charles Régin #

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France

Abstract
The success of Constraint Programming relies partly on the global constraints and implementation
of the associated filtering algorithms. Recently, new ideas emerged to improve these implementations
in practice, especially regarding the all different constraint.

In this paper, we consider the cardinality constraint with costs. The cardinality constraint is
a generalization of the all different constraint that specifies the number of times each value must
be taken by a given set of variables in a solution. The version with costs introduces an assignment
cost and bounds the total sum of assignment costs. The arc consistency filtering algorithm of this
constraint is difficult to use in practice, as it systematically searches for many shortest paths. We
propose a new approach that works with upper bounds on shortest paths based on landmarks. This
approach can be seen as a preprocessing. It is fast and avoids, in practice, a large number of explicit
computations of shortest paths.

2012 ACM Subject Classification Computing methodologies → Planning for deterministic actions;
Theory of computation → Constraint and logic programming

Keywords and phrases global constraint, filtering algorithm, cardinality constraints with costs, arc
consistency

Digital Object Identifier 10.4230/LIPIcs.CP.2024.27

Funding This work has been supported by the French government, through the 3IA Côte d’Azur
Investments in the Future project managed by the National Research Agency (ANR) with the
reference number ANR-19-P3IA-0002.

1 Introduction

In Constraint Programming (CP), a problem is defined on variables and constraints. Each
variable is provided with a domain defining the set of its possible values. A constraint
expresses a property that must be satisfied by a set of variables. CP uses a specific resolution
method for each constraint.

The success of CP relies on the use of high-performance filtering algorithms (also known as
propagators). These algorithms remove values from variable domains that are not consistent
with the constraint, i.e. that do not belong to a solution of the constraint’s underlying
sub-problem. The most well-known propagator is that of the all different (alldiff) constraint,
which specifies that a set of variables must all take different values. The efficiency in practice
of that propagator strongly depends on its implementation. Thus, algorithms proposing
practical improvements on Régin’s algorithm [15] are still appearing [22, 21].

In this article, we consider another constraint introduced by Régin that is also popular [3,
12, 18, 7, 4]: the cardinality constraint with costs [14]. We propose to try to speed up its
filtering algorithm when there is nothing to deduce. This is often the case at the start of the
search, particularly as the optimal value is far from known. In addition, at this stage, the
gains can be significant since few values have been removed from the domains, and so the
complexity of the algorithms is greater. This approach can be particularly interesting with

© Margaux Schmied and Jean-Charles Régin;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 27; pp. 27:1–27:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:margaux.schmied@icloud.com
https://orcid.org/0009-0002-0334-1612
mailto:jcregin@gmail.com
https://orcid.org/0000-0001-6204-5894
https://doi.org/10.4230/LIPIcs.CP.2024.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Efficient Implementation of the Global Cardinality Constraint with Costs

aggressive restarting methods and could simplify the use of CP: there is less need to worry
about the inference strength of constraints versus their cost. We can worry less about the
type of filtering to be used and consider the arc consistency right away.

The global cardinality constraint (gcc) [16] is a generalization of the alldiff constraint. A
gcc is specified in terms of a set of variables X = {x1, ..., xp} which take their values in a
subset of V = {v1, ..., vd}. It constrains the number of times a value vi ∈ V is assigned to
variables in X to belong to an interval [li, ui].

A gcc with costs (costgcc) is a generalization of a gcc in which a cost is associated with
each value of each variable. Then, each solution of the underlying gcc is associated with a
global cost equal to the sum of the costs associated with the assigned values of the solution.
In a costgcc constraint the global cost must be less than a given value, H.

Peter

Paul

Mary

John

Bob

Mike

Julia

1
4

1

4
3

1
3

1
1

1
1

1

A

B

C

D

E

[1, 2]

[1, 2]

[1, 1]

[0, 2]

[0, 2]

Peter

Paul

Mary

John

Bob

Mike

Julia

1
1

1

1

1
1

1
1

A

B

C

D

E

[1, 2]

[1, 2]

[1, 1]

[0, 2]

[0, 2]

Figure 1 Example of a global cardinality constraint with costs. Source [14]. The sum of
assignment costs must be less than or equal to 11. On the left, the original problem and on the
right, the same problem after deleting all arcs that cannot belong to a solution.

Cardinality constraints with costs has proved useful in many real-life applications, such
as routing, scheduling, rostering, or resource allocation problems. The total costs are often
used for expressing preferences, time or cost.

Figure 1 gives an example of a costgcc constraint and the associated filtering algorithm.
There are 7 workers represented by the variables Peter, Paul, Mary, John, Bob, Mike, Julia

and 5 tasks represented by the values A, B, C, D, E. Each worker has the ability to perform
certain tasks and must perform exactly one of them. There is an arc from a worker to
a task if the worker can perform the task, its cost corresponding to the time it takes the
worker to perform the task. A task has a capacity defining the number of times it must
be performed. For example, A must be performed between 1 and 2 times. The objective
is to find an assignment whose sum of costs is less than 11. The best possible assignment
has a cost of 7, so it is a solution. On the right-hand side of Figure 1, all arcs that cannot
belong to a solution have been removed. For example, the arc (Peter, B) can be deleted.
If B is assigned to Peter, then the maximum capacity of B will be exceeded, so the arc
(Mary, B) or (John, B) cannot be part of the solution. If (John, B) is kept, then a value
must be assigned to Mary, the only possibility is (Mary, A) with a cost of 3. The cost of
all assignments is now 12, which is more than 11, so this is not a solution. Similarly, if
(Mary, B) is kept, then the only possibility for John is (John, A) with a cost of 3 and the
total cost is 12, which is too high.

M. Schmied and J.-C. Régin 27:3

The filtering algorithm associated with a costgcc constraint [14] can be described as
repetitive. First, it computes a maximum flow at minimum cost to determine whether the
constraint is consistent (i.e., admits a solution). Then, to find out whether a variable x can
be instantiated with a value a, it tries to pass a unit of flow through the arc representing
the assignment of a to x so that the total cost of the flow is less than H. This operation
involves computing min-cost flow through an arc from a given min-cost flow. This can be
done by searching for a shortest path between x and a in the residual graph of the min-cost
flow. Furthermore, it has been shown that it is possible to avoid computing a shortest path
for each value of each variable and that computing one shortest path per assigned value
(which is less than the number of variables) is sufficient [14]. Unfortunately, the algorithm is
repeated for each assigned value, which often proves prohibitively expensive.

In this paper, we introduce a new approach avoiding this repetitive aspect as much as
possible. Our approach is based on several observations:

Finding a min-cost flow for each assignment is not necessary. Finding that there exists a
flow whose cost is less than H is enough.
It is not necessary to compute any path exactly because we are only interested in their
costs, not the path. Further, the exact value of the cost is not necessary either. An upper
bound below a maximum cost is sufficient.
The use of landmarks (i.e., particular nodes) have proved their worth in speeding up
computations of the shortest paths between large elements (millions of nodes) [6]. Let x

and y be two nodes of a graph and p be another node called landmark, then we have:
d(x, p) + d(p, y) ≥ d(x, y) where d(i, j) is the shortest path distance from i to j. Thus,
by selecting one or several good landmarks p we can find a good upper bound of d(x, y)
for each pair of nodes x, y.
Calls to the filtering algorithm often do not remove any value. This means that the
margin (i.e., slack between H and the min-cost flow value) is often large relative to the
data, so using the upper bound should give good results.

On the basis of the above, we propose to introduce preprocessing in order to reduce the
effective shortest path computations as proposed by Régin’s algorithm. Our approach is to
search for landmarks and use them to compute upper bounds on paths to avoid unnecessary
explicit shortest path computations. We consider several types of landmarks to integrate
the structure of the graph, such as landmarks at the periphery (outline) of the graph or at
the center. The advantage of this approach is its low cost because only two shortest paths
are required per landmark. We also introduce a way to quickly detect whether a costgcc
constraint is arc consistent.

The paper is organized as follows. Section 2 recalls some preliminaries on constraint
programming, graph and flow theory. Section 3 describes Régin’s algorithm because our
method is based on it. Section 4 introduces upper bounds on shortest paths based on
landmarks and, in Section 5, the arc consistency algorithm is accordingly adapted. Section 6
details some landmark selection methods. Section 7 gives some experiments on classical
problems showing that our approach dramatically reduces the number of computed shortest
paths.

2 Preliminaries

The following definitions, theorems and algorithms are based on the following papers and
books: [14, 2, 10, 17, 1].

CP 2024

27:4 Efficient Implementation of the Global Cardinality Constraint with Costs

Constraint Programming

A finite constraint network N is defined as a set of n ∈ N variables X = {x1, . . . , xn}, a set of
current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set of possible values for
variable xi, and a set C of constraints between variables. We introduce the particular notation
D0 = {D0(x1), . . . , D0(xn)} to represent the set of initial domains of N on which constraint
definitions were stated. A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir

)
is a subset T (C) of the Cartesian product D0(xi1) × · · · × D0(xir) that specifies the allowed
combinations of values for the variables xi1 , . . . , xir

. An element of D0(xi1) × · · · × D0(xir
)

is called a tuple on X(C) and is denoted by τ . In a tuple τ , the assignment of the ith

variable is denoted by τi. var(C, i) represents the ith variable of X(C). A value a for a
variable x is often denoted by (x, a). Let C be a constraint. A tuple τ on X(C) is valid if
∀(x, a) ∈ τ, a ∈ D(x). C is consistent iff there exists a tuple τ of T (C) which is valid. A
value a ∈ D(x) is consistent with C iff x ̸∈ X(C) or there exists a valid tuple τ of T (C) with
(x, a) ∈ τ .

The costgcc constraint is formally defined as follows.

▶ Definition 1 ([14]). A global cardinality constraint with costs is a constraint C

associated with a cost function on X(C) cost, an integer H and in which each value
ai ∈ D(X(C)) is associated with two positive integers li and ui

T (C) = { τ such that τ is a tuple on X(C)
and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui

and Σ|X(C)|
i=1 cost(var(C, i), τ [i]) ≤ H }

It is denoted by costgcc(X, l, u, cost, H).

To understand how arc consistency on a costgcc is established, some concepts from graph
theory and flow theory are required.

Graph theory

A directed graph or digraph G = (X, U) consists of a node set X and an arc set U , where
every arc (x, y) is an ordered pair of distinct nodes. We will denote by X(G) the node set
of G and by U(G) the arc set of G. The cost of an arc is a value associated with the arc.
When costs are associated with arcs, one should talk about weighted directed graphs.

A path from node x1 to node xk in G is a list of nodes [x1, ..., xk] such that (xi, xi+1) is
an arc for i ∈ [1..k − 1]. The path is called simple if all its nodes are distinct. The cost of a
path P , denoted by cost(P), is the sum of the costs of the arcs contained in P . A shortest
path from a node s to a node t is a path from s to t whose cost is minimum.

Flow theory

Let G be a digraph where each arc (x, y) is associated with three information: lxy the lower
bound capacity, uxy the upper bound capacity and cxy the cost of the arc.

A flow in G is a function f satisfying the following two conditions:
For any arc (x, y), fxy represents the amount of some commodity that can “flow” through
the arc. Such a flow is permitted only in the indicated direction of the arc, i.e., from x to
y. For convenience, we assume fxy = 0 if (x, y) ̸∈ U(G).
A conservation law is fulfilled at each node: ∀y ∈ X(G) :

∑
x fxy =

∑
z fyz.

The cost of a flow f is cost(f) =
∑

(x,y)∈U(G) fxycxy.

M. Schmied and J.-C. Régin 27:5

The feasible flow problem consists in computing a flow in G that satisfies the capacity
constraint. That is finding f such that ∀(x, y) ∈ U(G) lxy ≤ fxy ≤ uxy. The minimum cost
flow problem consists in finding a feasible flow f such that cost(f) is minimum.

A min cost flow can be computed thanks to the augmenting shortest path algorithm. The
main idea of the basic algorithms of flow theory is to proceed by successive improvement of
flows that are computed in a graph in which all the lower bounds are zero and the current
flow is the zero flow (i.e., the flow value is zero on all arcs).

First, assume that there is no lower capacity. So, consider that all the lower bounds are
equal to zero and suppose that you want to increase the flow value for an arc (x, y). In this
case, the zero flow is a feasible flow. Let P be a shortest path from y to x different from
(y, x), and val = min({uxy} ∪ {uab s.t. (a, b) ∈ P}). Then we can define the function f on
the arcs of G such that fab = val if (a, b) ∈ P or (a, b) = (x, y), and fab = 0 otherwise. This
function is a flow in G and fxy > 0. Now, from this flow we can define a particular graph
without any flow value and all lower bounds equal to zero, the residual graph.

▶ Definition 2. The residual graph for a given flow f , denoted by R(f), is the digraph
with the same node set as in G and with the arc set defined as follows:
∀(x, y) ∈ U(G):

fxy < uxy ⇔ (x, y) ∈ U(R(f)) and has cost rcxy = cxy and upper bound capacity
rxy = uxy − fxy.
fxy > lxy ⇔ (y, x) ∈ U(R(f)) and has cost rcyx = −cxy and upper bound capacity
ryx = fxy − lxy.

All the lower bound capacities are equal to 0.

Then, we can select an arc and apply the previous algorithm on this arc in order to
increase its flow value. By dealing only with shortest path we can guarantee that the
computed flow will have a minimum cost.

Now consider the lower capacities. In this case, we can use the algorithm mentioned by
Régin:

Start with the zero flow fo. This flow satisfies the upper bounds. Set f = fo, and apply
the following process while the flow is not feasible:
1) pick an arc (x, y) such that fxy violates the lower bound capacity in G (i.e., fxy < lxy).
2) Find P a shortest path from y to x in R(f) − {(y, x)}.
3) Obtain f ′ from f by sending flow along P ; set f = f ′ and goto 1)
If, at some point, there is no path for the current flow, then a feasible flow does not exist.
Otherwise, the obtained flow is feasible and is a minimum cost flow.

3 Filtering Algorithm

Our work builds on top of the original costgcc filtering (i.e., [14]). Before presenting how we
speed up the algorithm for costgcc, let us briefly review the original algorithm.

There is a relation between a costgcc and the search for min-cost flow in a particular
graph.

▶ Definition 3 ([14]). Given C = costgcc(X, l, u, cost, H). The value graph of C is the
bipartite graph GV (C) = (X(C), D(X(C)), U) where (x, a) ∈ U if a ∈ Dx. The value
network of C is the directed graph N(C) with lxy the lower bound capacity, uxy the upper
bound capacity and cxy the cost on arc from the node x to the node y. N(C) is obtained from
the value graph GV (C) by:

CP 2024

27:6 Efficient Implementation of the Global Cardinality Constraint with Costs

Orienting each edge of GV (C) from values to variables. ∀x ∈ X(C) : ∀a ∈ D(x) : lax = 0,
uax = 1 and cax = cost(x, a).
Adding a node s and an arc from s to each value. ∀a ∈ D(X(C)): lsa = la, usa = ua and
csa = 0.
Adding a node t and an arc from each variable to t. ∀x ∈ X(C) : lxt = 1, uxt = 1 and
cxt = 0.
Adding an arc (t, s) with lts= uts=|X(C)| and cts=0.

▶ Property 4 ([14]). A costgcc C is consistent iff there is a minimum cost flow in the value
network of C whose cost is less than or equal to H.

Figure 2 represents the residual graph of the value network of the costgcc constraint
defined in Figure 1. This is the graph computed from a flow resulting of the min cost
flow algorithm applied on the value network. In the residual graph, the optimal solution
corresponds to the arcs oriented from the variables to the values. The optimal cost value is 7.

For clarity, in the remainder, we consider that C = costgcc(X, l, u, cost, H) is a costgcc
constraint and that f is min cost flow in N(C). We also assume that the arc consistency of
the underlined gcc of C has been established.

The consistency of a value relates to the existence of a particular path in the residual
graph of the min cost flow.

▶ Property 5 ([14]). A value a of a variable x is not consistent with C iff the two following
properties hold:

fax = 0
dR(f)(x, a) > H − cost(f) − rcax

where dR(f)(x, a) is the shortest path between x and a in the residual graph of f , and rcax is
the residual cost of the arc (a, x).

To establish arc consistency, the previous property could be checked for each value of
each variable. However it is possible to reduce the number of computed shortest paths.

▶ Corollary 6 ([14]). Given any variable x and b the value of x such that fbx = 1. Then, the
value a of x is not consistent with C iff the two following properties hold:

fax = 0
dR(f)(b, a) > H − cost(f) − rcax − rcxb

An example of the application of Property 5 is given in Figure 2. The length of the shortest
path from Julia to E has a cost of −1 (see blue arcs) and the cost of the arc (E, Julia) is
rcEJulia = 1. Thus we have dR(f)(Julia, E) = −1 and H −cost(f)−rcEJulia = 11−7−1 = 3,
so we have −1 ≤ 3. From Property 5 it means that (E, Julia) is consistent. The shortest path
from Peter to B is dR(f)(Peter, B) = 1 and the cost of the arc (B, Peter) is rcBP eter = 4
(see red arcs). Hence, we have H − cost(f) − rcBP eter = 11 − 7 − 4 = 0, so 1 > 0. (B, Peter)
is inconsistent, the arc is then removed.

4 Upper Bounds of Shortest Paths

Although Corollary 6 reduces the number of computations required to establish the arc
consistency of the constraint, it systematically computes a large number of shortest paths.
Precisely, the algorithm involves computing the shortest path between each assigned value
and all other values which makes it difficult to use in practice. In addition, the constraint is
often arc consistent, rendering any computation useless. The aim of our approach is therefore
to reduce the number of operations computed unnecessarily.

M. Schmied and J.-C. Régin 27:7

t

Peter

Paul

Mary

John

Bob

Mike

Julia

-1

4
-1

4
3

-1
3

-1
-1

-1

-1

1

A

B

C

D

E

[1, 2]

[1, 2]

[1, 1]

[0, 2]

[0, 2]

s

Figure 2 Example of computation of the consistency for the arcs (E, Julia) and (B, P eter).
The value B is not consistent with P eter. Thus, the dotted arc can be removed from the graph.

We present a much more applied approach, based on the fact that Corollary 6 relies on
the existence of a path of length less than a given value. It is not necessary to know the path
precisely, or even to know its value. An upper bound is sufficient.

We can therefore immediately establish the following proposition:

▶ Proposition 7. Let B+(x, a) ≥ dR(f)(x, a) be any upper bound on the length of the shortest
path from x to a. If

B+(x, a) ≤ H − cost(f) − rcax

then the value a of a variable x is consistent with C.

A good way of obtaining an upper bound on a distance between two points is to use the
triangle inequality. Here we are talking about the triangle inequality with respect to the
shortest path distances in the graph, not an embedding in Euclidean space or some other
metric, which need not be present.

▶ Property 8. Let x, y, and p be three nodes of a graph. According to the triangle inequality
computed on shortest paths, we have:

d(x, p) + d(p, y) ≥ d(x, y)

Here, p is a particular node called landmark.

Upper bounds obtained by the triangular inequality have been shown to be useful for
guiding the computation of shortest paths. The ALT algorithm, yielding excellent results in
practice for computing shortest paths in a very large graph, is based on this technique [6].

Property 5 and Corollary 6 can be rewritten for landmarks:

▶ Proposition 9. Given any variable x such that fbx = 1, a any value of x and p any
landmark. If one of the two condition is satisfied

dR(f)(x, p) + dR(f)(p, a) ≤ H − cost(f) − rcax

dR(f)(b, p) + dR(f)(p, a) ≤ H − cost(f) − rcax − rcxb

then the value a of x is consistent with C.

CP 2024

27:8 Efficient Implementation of the Global Cardinality Constraint with Costs

Peter

Paul

Julia

A

B

D

E

Mary

John

s

-1
4
-1
4

3
-1
3
-1

-1

1

0

0

Figure 3 Example of landmark use. Nodes B and s, shown in red, are selected as landmarks.

The residual graph may have several strongly connected components. Each component
must be treated separately. Thus, at least one landmark per component must be selected.

Thanks to the use of upper bounds we can go even further. It is possible to compute the
consistency of all values of variables of a strongly connected component by checking a single
condition.

▶ Definition 10. Consider S a strongly connected component of R(f), p a landmark in S,
x ∈ S a variable, and a a value of x. We define:

dmax
R(f)(·, p) = maxx∈S(dR(f)(x, p))

dmax
R(f)(p, ·) = maxx∈S(dR(f)(p, x))

rcmax = maxx∈S,a∈D(x)(rcax)

This leads to the following proposition:

▶ Proposition 11. Given S a strongly connected component of R(f) and p a landmark in
S. If

dmax
R(f)(·, p) + dmax

R(f)(p, ·) ≤ H − cost(f) − rcmax

then all the values of all the variables involved in S are consistent with C.

The advantage of this method is that if the condition is satisfied, we can guarantee that
all the values of a strongly connected component are consistent by computing only two
shortest paths per landmark.

Figure 3 gives an example of a residual graph on which Proposition 9 or 11 can be
applied. There are 2 strongly connected components {Peter, A, Mary, Paul, B, John} and
{Julia, D, s, E}. At least 2 landmarks are required (one for each component). We select B

and s arbitrarily.
Thanks to Proposition 11 we see that the maximum shortest path through s is the

path from D to Julia with dmax
R(f)(·, S) = d(D, s) = 0 and dmax

R(f)(s, ·) = d(s, Julia) = 1.
Furthermore, the longest arc of this strongly connected component is rcmax = rcEJulia = 1.
Thus we have d(D, s) + d(s, Julia) = 1 and H − cost(f) − rcEJulia = 3, so we have 1 ≤ 3.
This confirms that all the values of variables in the strongly connected component of s are
consistent with the constraint. If the Proposition 11 can guarantee that all values of variables
are consistent in this strongly connected component then we can easily deduce that the
Proposition 9 can also do it.

For the first strongly connected component, Proposition 9 and 11 do not guarantee the
consistency of the values of the variables. It is therefore necessary to compute exact shortest
paths between values and variables.

M. Schmied and J.-C. Régin 27:9

Algorithm 1 Arc Consistency Algorithm for a Strongly Connected Component.
arcConsistencyWithLandmarks(f, Rf , S, P);
for p ∈ P do

d(p, ·)← shortestP athR(f)(p, ·) // shortest path in R(f) ;
d(·, p)← shortestP ath

R(f)(p, ·) // shortest path in R(f), the reverse graph of R(f) ;

// Check of Proposition 11 ;
rcmax ← maxx∈S,a∈D(x)(rcax) ;
for p ∈ P do

dmax
R(f)(·, p)← maxx∈S(dR(f)(x, p)) ;

dmax
R(f)(p, ·)← maxx∈S(dR(f)(p, x)) ;

if dmax
R(f)(·, p) + dmax

R(f)(p, ·) ≤ H − cost(f)− rcmax then
// all values of all variables of S are consistent ;
return ;

∆← {a such that fsa > 0} ;
for value b ∈ ∆ do

for x such that fbx = 1 do
δ(b)← {a such that a ∈ D(x) and a ̸= b} ;
computeP ath← false ;
// Check of Proposition 9 ;
for a ∈ D(x) while not computeP ath do

dpmin← minp∈P (dR(f)(x, p) + dR(f)(p, a));
if dpmin > H − cost(f)− rcax then

computeP ath← true ;

// Check for an explicit shortest path computation ;
if computeP ath then

dR(f)(b, ·)← shortestP ath(b, ·) ;
for a ∈ D(x) do

if dR(f)(b, a) > H − cost(f)− rcax − rcxb then remove a from D(x);

5 Improved Filtering Algorithm

We can now describe Algorithm 1, which eliminates values that are inconsistent with the
constraint. The algorithm takes as parameters a min cost flow f , its residual graph R(f), a
strongly connected component represented by its set of nodes S and P a set of landmarks
of S. This algorithm must therefore be called for each strongly connected component. The
algorithm begins by checking whether Proposition 11 holds. If true, then the algorithm
stops, since this means that all the values of the variables in the connected component S are
consistent. Otherwise, it is necessary to check each value potentially inconsistent individually.
So, for each of those values Proposition 9 is checked. If it is satisfied, then the value is
consistent, otherwise an explicit shortest path is computed to determine whether the value is
consistent or not.

When testing Corollary 6, we could refine the algorithm by identifying the nodes for which
we need to search for a shortest path from b to them, but this is not interesting in practice as
the shortest path algorithm will quickly find that they are at an acceptable distance from b.

Practical improvements

One can compute landmarks only when they are needed. This consideration is effective in
practice and a simple modified version of the basic algorithm is possible. This modification
proceeds by iteration over the landmarks. Consider V the set of values for which a shortest
path must be computed.

CP 2024

27:10 Efficient Implementation of the Global Cardinality Constraint with Costs

The following process is defined: The landmark p is considered. Proposition 11 is checked
according to p. If it is satisfied then V is emptied (all values are consistent) otherwise the
values V that satisfies Proposition 9 according to p are removed from V , because they are
consistent.

This process is repeated while V is not empty and some landmarks remain. In other
words, the landmarks are successively considered while the status of some values is not
determined.

If there are no more landmarks to compute, then, and only then, shortest paths are
explicitly computed for the value in V . In practice, it is frequent to find that all values are
consistent without using all the landmarks. This practical improvement means that not all
landmarks need to be systematically computed.

Note that the landmark approach subsumes all the practical improvements proposed by
Régin.

As far as the shortest path algorithm is concerned, it is interesting to remove the negative
costs from the residual graph in order to use Dijkstra’s algorithm, as mentioned by Régin. It
only requires one shortest path computation [14].

Complexity

Let SP be the complexity of computing a shortest path from one node to all others. Régin’s
algorithm has a complexity of Ω(δ × SP) in the best case and O(δ × SP) in the worst case,
where δ is the number of assigned values. With landmarks, the complexity in the best case is
in Ω(FindP + |P | × SP) where |P | is the number of landmarks and FindP is the complexity
of finding the landmarks. This complexity is obtained when Proposition 11 detects that every
value is consistent. Note that, this detection can happen on the first landmark and so we
can have |P | = 1. In the worst case, the complexity is the same as that of Régin’s algorithm,
provided that |P | is in O(δ) and FindP is in O(δ × SP). As with the ALT method, we
consider several landmarks in order to have a better chance of finding landmarks that avoid
explicit shortest path computations.

6 Landmark Selection

There are different methods for selecting landmarks.

Random

A landmark is randomly selected. This method is fast to find landmarks, so we used it to
compare to other methods.

Outline

The method is based on an approximation of the outlines of a graph.

▶ Definition 12. The outlines of a graph G are defined by one or more pairs of nodes
(x, y) with x, y ∈ X that maximize the minimum distance between x and y among all pairs
of nodes in the graph.

To find the pair of nodes representing the outline, we use a well-known 2-approximation.
First, we perform a shortest-path search starting from an arbitrary node x, then select the
node y, which is the furthest node from x, as a landmark. Next, the shortest paths from

M. Schmied and J.-C. Régin 27:11

y are computed, and z the node furthest from y is selected as the second landmark. The
outline is therefore (y, z) and the landmarks y and z. The complexity of finding a landmark
depends on the complexity of computing the two shortest paths, and is therefore in O(SP).

Center

The method is based on an approximation of the center of a graph.

▶ Definition 13. The center of a graph G is defined by one or more nodes x ∈ X that
minimize the maximum distance from them to any other node in the graph.

As the definition of the outlines and the center are similar, the selection of landmarks is also
similar. We search for the outlines (x, y) with x, y ∈ X and select as the center the node z

that lies halfway between x and y. The landmark is z. The complexity is the same as for the
previous method, O(SP).

Outline & center

The method is based on both outlines and center of a graph, that is a pair of outlines and a
center are selected as described earlier.

Maximum degree

The method is based on the node’s degree. We select as a landmark the node x ∈ X that
maximizes (deg+(x) + deg−(x)) × min(deg+(x), deg−(x)), where deg+(x) (resp. deg−(x)) is
the number of outgoing arcs of x (resp. incoming arcs to x). We used this formula to choose
nodes with a large number of predecessors and successors. We also expect to choose nodes
with a good balance between predecessors and successors. To find landmarks we traverse
every node once, giving a complexity of O(|X|).

All these methods must be applied for each strongly connected component.

7 Experimentation

The experiments were carried out on a computer with an Intel Core i7-3930K CPU 3,20
GHz processor, 64 GB of memory and running under Windows 10 Pro. All algorithms were
implemented in Java (openjdk-17) in an internal CP solver.

The results relate to the solving of four problems, the traveling salesman problem (TSP) [9],
the StockingCost problem [8], the flexible job shop scheduling problem (FJSSP) [13, 20] and
a problem of assigning child to activities (CHILD) [19]. The TSP data are the instances (77)
of the TSPLIB [5] having less than 1,500 cities. Some of them involve more than a million of
edges. The StockingCost data are those used in a Houndji’s paper [8], this is random data
distributed define as 100 instances with 500 periods. Precisely, the StockingCost instances
have 500 variables and 500 values. The FJSSP data come from two different sources, given
by Pelleau [13] and Weise [20]. There are 370 instances with between 5 and 20 variables
linked to a few values (between 5 and 10), and most instances have between 50 and 300 arcs.
The CHILD instance contains only real-life data from [19]. There are 623 children and 317
activities. Each child must be assigned to one activity. One activity can be associated with
multiple children.

For each instance of each problem, we measure the information relating to the establish-
ment of the arc consistency of the costgcc constraint at the root of the search tree. The
mean of the results for each data set are reported in the tables.

CP 2024

27:12 Efficient Implementation of the Global Cardinality Constraint with Costs

The H value of the TSP instances comes from the heuristic of Lin-Kernighan [11]. Most
of the time, this value is the optimal value. For the instances StockingCost, FJSSP and
CHILD the regular H is the smallest value such that there exists at least one solution and
the big H is twice as large as the regular H.

It is important to pay close attention to the relationship between the value of H and the
value of the minimum-cost flow. Indeed, the costgcc constraint sometimes represents a lower
bound of the optimal solution, and this lower bound can be more or less distant from the
optimal solution. So if H is the value of the optimal solution, then the min-cost flow may
well have a much lower value. This is particularly true for the TSP problem.

Shortest paths are computed by using Dijkstra’s algorithm and strongly connected
components are computed by using Tarjan’s algorithm.

The following abbreviations are used for the landmark selection methods: C for the center
selection, O for the outline selection, C & O for the combination between center and outline,
Deg for the selection based on the maximum degree and R for the random selection. In
addition, line 5+ contains the minimum values for a number of landmarks ranging from 5 to
10.

7.1 Results Tables
We consider a shortest path calculation to be the calculation of the shortest paths from one
node to all the others.

The number of shortest paths calculated is an important parameter for distinguishing
between algorithms. Some shortest path computations cannot be avoided, particularly those
required to detect inconsistent values. However, some shortest path computations are useless,
as they do not allow us to establish the inconsistency of any value. Precisely, if the shortest
path computation from b In Corollary 6 does not lead to any deletion of values then this
path computation is useless.

Table 1 compares the number of shortest path computations performed by Régin’s
algorithm and by our approach as a function of the number of landmarks allowed in. The
number of shortest paths required to compute landmarks are included.

Table 2 shows the average number of useless shortest path computations for each dataset.
We consider that shortest path computations for landmarks are always useless, so they are
always included. That is why there are never 0 computations with landmarks.

Table 3 gives the time required by each method.

7.2 Results Analysis
Table 1 shows that our approach generally computes significantly fewer shortest paths than
Régin’s algorithm for all landmarks selection methods. For the TSP instances, we compute on
average between 2 and 47 times fewer shortest paths than Régin’s algorithm. The difference
is significant for all instances except for the StockingCost instances with Regular H. It should
be noted that our approach is always better or equivalent and allows us to detect quickly
whether the constraint is arc consistent in certain cases.

In the best case, our approach does not compute any shortest paths other than those
required to determine landmarks. Our approach can compute more shortest paths only when
there is no inconsistent arc and the extra computation is due to the landmarks. The number
of useless path computations is also reduced by our method (See Table 2).

For computation times, we find the same kind of results as before (See Table 3). The
gain average factors evolve between 1 and 57.

M. Schmied and J.-C. Régin 27:13

Table 1 Establishment of the arc consistency of a costgcc constraint: average number of computed
shortest paths depending on the number of landmarks and the landmark selection method.

Régin Landmark
Number

C O C & O Deg R

TSP (≤ 100
cities)

57.6

1 31.7 36.3 36.2 27.7 27.7
2 35.3 39.9 39.8 32.5 29.5
3 38 42.7 42.5 32.5 28.5
4 41.6 46.3 46.1 32 30.1

5+ 44.8 50 50.2 32 32.2

TSP (> 100 &
< 250 cities)

163.3

1 42.2 45 47.9 40.5 40.5
2 44.4 47.4 46.3 41.6 41.6
3 46 49.3 48.2 41.2 41.2
4 48.6 51.9 50.8 42.3 42.3

5+ 50.2 54.1 52.2 43.1 43.3

TSP (≥ 250
cities)

662.7

1 18.1 19.8 19.8 17.8 17.8
2 18.5 21.4 21.4 18.1 18.1
3 18.5 21 19.3 16.3 16.2
4 18.8 21.6 19.9 16.4 16.3

5+ 19 21.8 20.1 16.7 16.4

StockingCost
(Regular H)

493.3

1 496.9 497.3 496.9 495.3 495.3
2 500.8 501.2 500.8 497.3 497.2
3 504.7 505.1 504.7 499.2 499.1
4 508.6 509 508.6 501.2 501

5+ 512.5 512.9 512.6 503.2 503

StockingCost
(Big H)

493.3

1 4 4 4 2 2
2 4 4 4 2 2
3 4 4 4 2 2
4 4 4 4 2 2

5+ 4 4 4 2 2

FJSSP
(Regular H)

10.4

1 8.3 5.1 4.8 2 6.3
2 8.3 5.1 4.8 2 5.3
3 8.3 5.1 4.8 2 4.6
4 8.3 5.1 4.8 2 4

5+ 8.3 5.1 4.8 2 4

FJSSP (Big H)
10.4

1 4.5 4.3 4.3 2 3.2
2 4.5 4.3 4.3 2 2.8
3 4.5 4.3 4.3 2 2.6
4 2.9 4.3 4.3 2 2.4

5+ 2.9 4.3 4.3 2 2.4

CHILD
(Regular H)

108

1 112 112 112 109 110
2 116 116 116 111 112
3 120 120 120 113 114
4 124 124 124 115 116

5+ 128 128 128 117 118

CHILD (Big
H)

108

1 4 4 4 2 2
2 4 4 4 2 2
3 4 4 4 2 2
4 4 4 4 2 2

5+ 4 4 4 2 2

7.2.1 Landmark Number and Selection Method

We can see that the results do not change much as a function of the number of landmarks.
The major part of problems have best or equivalent results with 4 landmarks, but the
difference is minimal. When it is not mentioned 4 landmarks are used.

CP 2024

27:14 Efficient Implementation of the Global Cardinality Constraint with Costs

Table 2 Establishment of the arc consistency of a costgcc constraint: number of average shortest
paths computed uselessly with 4 landmarks.

Régin C O C & O Deg R

TSP (≤ 100 cities) 35.8 19.7 24.4 24.3 8.3 8.2
TSP (> 100 & < 250 cities) 131.1 16 19.7 18.6 10.1 10.1

TSP (≥ 250 cities) 649.8 5.9 8.6 6.9 3.4 3.3
StockingCost (Regular H) 0 3.2 7.6 11.2 7.8 7.6

StockingCost (Big H) 493.3 4 4 4 2 2
FJSSP (Regular H) 0 8.3 5.1 4.8 4 4

FJSSP (Big H) 10.1 2.9 4.3 4.3 2 2.4
CHILD (Regular H) 0 16 16 16 8 8

CHILD (Big H) 108 4 4 4 2 2

Table 3 Establishment of the arc consistency of a costgcc constraint: computation times (in ms)
and ratio. Experimentation with 4 landmarks.

Régin C O C & O Deg R

TSP (≤ 100
cities)

Mean 7.3 5.9 6 6.6 5.7 4.5
Median 3.4 3.6 4.4 4.1 3.6 3.3
Ratio 1.2 1.2 1.1 1.3 1.6

TSP (> 100 &
< 250 cities)

Mean 76.6 29.8 30.6 30.2 28.6 31.1
Median 51.2 14.3 16 17 15.4 14.3
Ratio 2.6 2.5 2.5 2.7 2.5

TSP (≥ 250
cities)

Mean 12124.9 278.9 275.2 275.4 213 265
Median 2310.2 126.8 117.7 90.6 89.1 85.9
Ratio 43.5 44.1 44 56.9 45.8

StockingCost
(Regular H)

Mean 603.83 511.8 617.9 626.2 580.3 639.4
Median 585.7 553.3 186.9 186.4 248 166.4
Ratio 1.2 1 1 1 0.9

StockingCost
(Big H)

Mean 534.76 34.1 32.4 31.6 33.2 32.6
Median 519.1 33.8 32.4 31.9 32.8 30.1
Ratio 15.7 16.5 16.9 16 16.4

FJSSP
(Regular H)

Mean 0.4 0.5 0.3 0.4 0.4 0.5
Median 0.1 0.3 0.2 0.3 0.2 0.3
Ratio 0.8 1.7 0.75 1 0.8

FJSSP (Big H)
Mean 0.4 0.4 0.3 0.3 0.3 0.3

Median 0.1 0.2 0.2 0.2 0.2 0.2
Ratio 1 1.3 1.3 1.3 1.3

CHILD
(Regular H)

Time 65.1 69.2 54.4 67.6 75.9 65.4
Ratio 0.9 1.2 1 0.8 1

CHILD (Big
H)

Time 58.2 7 6.5 7.3 6 6
Ratio 8.3 9 8 9.7 9.7

Two methods of landmark selection appear to be more effective in practice: the method
based on maximum node degrees and the random node selection method. As there is little
difference between these two methods, and the former is more robust than the latter, we
recommend defining landmarks based on maximum degree nodes.

7.2.2 Impact of the practical improvement of Section 5

Thanks to this practical improvement all the authorized landmarks are not systematically used.
This is clearly seen for StockingCost and CHILD instances with big H. The computation of
a single landmark is sufficient to guarantee that all the values are consistent.

M. Schmied and J.-C. Régin 27:15

7.2.3 StockingCost, FJSSP and CHILD problems
For the StockingCost, FJSSP and CHILD problems, the results strongly depends on the
value of H.

For the Regular H value the results are similar to those of Régin’s algorithm. In these
problems, Regular H is close to the optimal value of the min cost flow of the underlined
costgcc. Thus, there is less margin and therefore more inconsistent values. FJSSP instances
are also small and do not allow us to highlight the usefulness of landmarks. Indeed, in a
small instance, computing a landmark gives us access to less information than in a large
instance. In addition, for practical use, it is more interesting to save time on large instances
since they take longer to resolve than on small instances which are already quick to resolve.

For a Big H value the landmark method clearly outperforms Régin’s algorithm.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

0.2

0.4

0.6

0.8

1
1.1 ·104

H multiplier

Av
er

ag
e

nu
m

be
r

of
re

m
ov

ed
ar

cs

(a) CHILD.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

20

40

60

80

100
110

H multiplier

(b) FJSSP.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

0.5

1

1.5

2

2.5

3

3.5
·104

H multiplier

(c) StockingCost.

Figure 4 Evolution of the average number of removed arcs for the CHILD, FJSSP and StockingCost
instances in function of the multiplier of H.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

20

40

60

80

100
110

H multiplierAv
er

ag
e

nu
m

be
r

of
us

el
es

s
pa

th
co

m
pu

ta
tio

ns

(a) CHILD.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

2

4

6

8

10

12

H multiplier

(b) FJSSP.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

100

200

300

400

500

H multiplier

Régin
C
O

C&O
Deg
R

(c) StockingCost.

Figure 5 Evolution of the average number of useless path computations for CHILD, FJSSP and
StockingCost instances in function of the multiplier of H. The experimentation involves 4 landmarks.

Figures 4 and 5 provide information on the relationship between H values and the number
of useless path computations. The landmark approach performs very well as soon as the
H value deviates a little from the optimal value, in other words, as soon as there is a little
margin and therefore fewer inconsistent values.

7.2.4 TSP results
The improvement brought about by our approach for instances from the TSP problem are
strong. This is mainly due to the relationship between the H value given by the TSP value
and the underlying costgcc constraint. In the case of the TSP, the optimal value of the min

CP 2024

27:16 Efficient Implementation of the Global Cardinality Constraint with Costs

0 100 300 500 700 900 1,100 1,300 1,500

1

2

3

4

5

6

7

8

9 ·1010

Number of cities

T
im

e
(m

s)

Régin
Landmarks

Figure 6 Evolution of the time in relation to the size of TSP instances. The landmarks are
selected with the degree method and 4 landmarks. The blue plot with circles is the time of the
Régin algorithm and the red with crosses is the time of the landmarks algorithm.

cost flow is lower than H, because the costgcc constraint only models a part of the problem
and in fact represents a real relaxation. So even with an optimal H value for TSP, there is a
margin for the costgcc constraint.

To better appreciate the performance of the landmarks, Figure 6 shows the evolution of
time in milliseconds as a function of the size of the TSP dataset instances. The blue plot
with circles shows the time taken by the Régin’s algorithm, while the red plot with crosses
shows the time taken by the algorithm using the maximum degrees and 4 landmarks. Clearly,
the use of landmarks is drastically faster than the Régin’s algorithm. The larger the instance,
the more useful landmarks become.

Figure 7 shows the evolution of the speed-up ratio (Régin time/Landmarks time) on
the instances of the TSP dataset. The landmark selection algorithm is based on maximum
degrees with 4 landmarks. We can also see in this graph that the more data there is, the
higher the gain factor. As mentioned above, this can be explained by the fact that in a large
structure, the landmarks contain a lot of information compared with a smaller structure.
In these experiments, note that if we omit the assigned variables there is only one strongly
connected component in the value network. Overall, we find that our algorithm significantly
speeds up the previous approach, up to about 80 times faster for large problems.

8 Conclusion

This paper proposes an efficient implementation of the arc consistency algorithm of the
cardinality constraint with costs. This constraint is present in many industrial problems and
the establishment of the arc consistency is often too slow to be used in practice, as it is based
on finding the shortest paths from the assigned values. We introduce a new method that
uses upper bounds on shortest paths based on triangular inequalities and landmarks. This
approach avoids the computation of many shortest paths and improves the computation time
of the arc consistency filtering algorithm. The larger the graph and the larger the margins,
the greater the improvement will be. In addition, we have introduced a sufficient condition,
which is quick to compute, for a costgcc constraint to be arc consistent.

M. Schmied and J.-C. Régin 27:17

0 100 300 500 700 900 1,100 1,300 1,5000

20

40

60

80

Number of cities

T
im

e
ra

tio
(R

ég
in

/L
an

dm
ar

ks
)

Figure 7 Evolution of the speedup ratio in relation to the size of TSP instances. The landmarks
are selected with the degree method and 4 landmarks.

References
1 R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice hall, 1993.
2 C. Berge. Graphs and Hypergraphs. Elsevier Science Ltd, 1985.
3 G. Demassey, S.and Pesant and L.-M. Rousseau. A Cost-Regular Based Hybrid Column

Generation Approach. Constraints, 11(4):315–333, December 2006. doi:10.1007/
s10601-006-9003-7.

4 S. Ducomman, H. Cambazard, and B. Penz. Alternative Filtering for the Weighted Circuit
Constraint: Comparing Lower Bounds for the TSP and Solving TSPTW. In AAAI 2016,
Phoenix, United States, February 2016. URL: https://hal.science/hal-01420964.

5 R. Gerhard. TSPLIB–a traveling salesman problem library. ORSA Journal on Computing,
3(4):376–384, 1991.

6 A. V. Goldberg and C. Harrelson. Computing the shortest path: A search meets graph theory.
In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’05, pages 156–165, USA, 2005. Society for Industrial and Applied Mathematics.

7 S. Gualandi and F. Malucelli. Constraint Programming-based Column Generation. Annals of
Operations Research, 204(1):11–32, April 2013. doi:10.1007/s10479-012-1299-7.

8 V. R. Houndji, P. Schaus, and L. Wolsey. The item dependent stockingcost constraint.
Constraints, 24(2):183–209, April 2019. doi:10.1007/s10601-018-9300-y.

9 N. Isoart. The traveling salesman problem in constraint programming. Theses, Université Côte
d’Azur, November 2021. URL: https://theses.hal.science/tel-03554009.

10 E. Lawler. Combinatorial optimization - networks and matroids. Holt, Rinehart and Winston,
New York, 1976.

11 S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem.
Oper. Res., 21:498–516, 1973. URL: https://api.semanticscholar.org/CorpusID:33245458.

12 P. Nightingale, Ö. Akgün, I. P. Gent, C. Jefferson, I. Miguel, and P. Spracklen. Automatically
improving constraint models in Savile Row. Artificial Intelligence, 251:35–61, 2017. doi:
10.1016/j.artint.2017.07.001.

13 M. Pelleau, A. Miné, C. Truchet, and F. Benhamou. A constraint solver based on abstract
domains. In Verification, Model Checking, and Abstract Interpretation, 14th International
Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings, pages 434–454,
2013. doi:10.1007/978-3-642-35873-9_26.

CP 2024

https://doi.org/10.1007/s10601-006-9003-7
https://doi.org/10.1007/s10601-006-9003-7
https://hal.science/hal-01420964
https://doi.org/10.1007/s10479-012-1299-7
https://doi.org/10.1007/s10601-018-9300-y
https://theses.hal.science/tel-03554009
https://api.semanticscholar.org/CorpusID:33245458
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1007/978-3-642-35873-9_26

27:18 Efficient Implementation of the Global Cardinality Constraint with Costs

14 J.-C. Régin. Cost-based arc consistency for global cardinality constraints. Constraints,
7(3/4):387–405, July 2002. doi:10.1023/A:1020506526052.

15 J.-C. Régin. Filtering algorithm for constraints of difference in csps. In Proceedings of the
National Conference on Artificial Intelligence, volume 1, July 1994.

16 J.-C. Régin. Generalized arc consistency for global cardinality constraint. In Proceedings
AAAI’96, pages 209–215, January 1996.

17 R. E. Tarjan. Data structures and network algorithms. Society for Industrial and Applied
Mathematics, USA, 1983.

18 W.-J. Van Hoeve, G. Pesant, and L.-M. Rousseau. On global warming: Flow-based soft
global constraints. Journal of Heuristics, 12(4):347–373, September 2006. doi:10.1007/
s10732-006-6550-4.

19 S. Varone and C. Beffa. Dataset on a problem of assigning activities to children, with various
optimization constraints. Data in Brief, 2019.

20 T. Weise. jsspinstancesandresults: Results, data, and instances of the job shop scheduling
problem, 2019–2020. A GitHub repository with the common benchmark instances for the
Job Shop Scheduling Problem as well as results from the literature, both in form of CSV
files as well as R program code to access them. URL: https://github.com/thomasWeise/
jsspInstancesAndResults.

21 X. Zhang, J. Gao, Y. Lv, and W. Zhang. Early and efficient identification of useless constraint
propagation for alldifferent constraints. In Christian Bessiere, editor, Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pages 1126–
1133. International Joint Conferences on Artificial Intelligence Organization, July 2020. Main
track. doi:10.24963/ijcai.2020/157.

22 X. Zhang, Q. Li, and W. Zhang. A fast algorithm for generalized arc consistency of the
alldifferent constraint. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI-18, pages 1398–1403. International Joint Conferences on
Artificial Intelligence Organization, July 2018. doi:10.24963/ijcai.2018/194.

https://doi.org/10.1023/A:1020506526052
https://doi.org/10.1007/s10732-006-6550-4
https://doi.org/10.1007/s10732-006-6550-4
https://github.com/thomasWeise/jsspInstancesAndResults
https://github.com/thomasWeise/jsspInstancesAndResults
https://doi.org/10.24963/ijcai.2020/157
https://doi.org/10.24963/ijcai.2018/194

CP for Bin Packing with Multi-Core and GPUs
Fabio Tardivo 1 #

Department of Computer Science, New Mexico State University, Las Cruces, NM, USA

Laurent Michel #

Synchrony Chair in Cybersecurity, School of Computing, University of Connecticut,
Storrs, CT, USA

Enrico Pontelli #

Department of Computer Science, New Mexico State University, Las Cruces, NM, USA

Abstract
The BinPacking constraint models the requirements of many logistics, resource allocation, and
production scheduling applications. This paper explores new avenues based on the impressive
computational power of modern GPUs to propagate the BinPacking constraint. This work showcases
how the perspective of massive parallelization can lead to novel approaches, such as the use of a
portfolio of lower bounds, to enhance the pruning of the BinPacking constraints. It delivers insights
into the design choices and challenges presented by GPU platform for constraint propagation.

The paper evaluates a GPU-accelerated propagator against both sequential and parallel CPU
versions, as well as state-of-the-art approaches. Comparisons across various benchmarks from the
literature show strong performances with respect to both CPU versions and the standard pruning
approach. When compared to techniques based on Linear Programming, our approach proves
valuable for large instances or when spending extensive time to obtain the best possible bound is
not convenient.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Massively parallel algorithms

Keywords and phrases Constraint Propagation, Bin Packing, Parallelism, GPU, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.CP.2024.28

Related Version Previous Version: https://arxiv.org/abs/2402.14821

Supplementary Material
Software: https://bitbucket.org/constraint-programming/fzn-minicpp/src/gpu

archived at swh:1:dir:b7e3d8e8a2f41b87654cd2e2a81a2622099a8cf0
Dataset: https://bitbucket.org/constraint-programming/minicpp-benchmarks [40]

archived at swh:1:dir:1dfa371fc284829abddc0a89d1e60251c07d6c84

Funding Enrico Pontelli and Fabio Tardivo: Supported by NSF grants 2151254, 1914635 and by a
contract from Wallaroo Inc.
Laurent Michel: Partially supported by Synchrony.

Acknowledgements We would like to thank François Clautiaux, Maxence Delorme, Jürgen Rietz for
their feedbacks, and Hadrien Cambazard for providing the Arc-Flow implementation.

1 Corresponding author

© Fabio Tardivo , Laurent Michel, and Enrico Pontelli;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 28; pp. 28:1–28:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ftardivo@nmsu.edu
https://orcid.org/0000-0003-3328-2174
mailto:laurent.michel@uconn.edu
https://orcid.org/0000-0001-7230-7130
mailto:epontell@nmsu.edu
https://orcid.org/0000-0002-7753-1737
https://doi.org/10.4230/LIPIcs.CP.2024.28
https://arxiv.org/abs/2402.14821
https://bitbucket.org/constraint-programming/fzn-minicpp/src/gpu
https://archive.softwareheritage.org/swh:1:dir:b7e3d8e8a2f41b87654cd2e2a81a2622099a8cf0;origin=https://bitbucket.org/constraint-programming/fzn-minicpp;visit=swh:1:snp:5f69954767b88da1c3a00e311fd998d8549c5397;anchor=swh:1:rev:7f2f9fe10049050177a5c478a0783a48bceeee25
https://bitbucket.org/constraint-programming/minicpp-benchmarks
https://archive.softwareheritage.org/swh:1:dir:1dfa371fc284829abddc0a89d1e60251c07d6c84;origin=https://bitbucket.org/constraint-programming/minicpp-benchmarks;visit=swh:1:snp:ab1c88a4704f35cd0e853f82e306bba6f8a14f9d;anchor=swh:1:rev:245ea5488d5503f63f63ac05a113084d9dab1e7d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 CP for Bin Packing with Multi-Core and GPUs

1 Introduction

The Bin Packing Problem (BPP) consists of packing a set of items into the minimal number
of bins, each with a fixed capacity. It has a fundamental role in logistics, resource allocation,
and production scheduling applications. Because of its relevance, the Bin Packing Problem
has been extensively studied over the last decades, both theoretically and practically. We
refer interested readers to [10, 36] for a comprehensive review.

The BPP is NP-Hard in the strong sense [17] and it is challenging to solve even for a
fixed number of bins [21] or a constant number of different item sizes [19]. Techniques based
on Integer Linear Programming (ILP) are highly effective and represent the state-of-the-art
for solving the BPP. When the BPP is a component of a larger problem, applying such
techniques becomes challenging, and Constraint Programming (CP) emerges as a valuable
alternative. There, the BPP often appears in its decision version, where the items must be
packed into a fixed number of bins.

The decision variant is modeled in CP using the BinPacking constraint [38]. Its filtering
algorithm employs an approximated knapsack reasoning to exclude or commit items to bins,
and a feasibility check to prune the search if the remaining unpacked items cannot fit in the
residual space. The check is performed using a lower bound on the number of bins necessary
to pack the items.

The contributions of this paper are as follows:
1. describe a propagator architecture based on parametric families of lower bounds and

their role in a portfolio setting;
2. demonstrate how the large number of bounds from those parametric families should be

computed in parallel to derive the most value. In particular, the paper demonstrates that
sampling bounds in a sequential or multi-core implementation is substantively weaker;

3. provide an implementation of a GPU-accelerated portfolio of lower bounds within a
constraint propagator of a standard CP solver;

4. deliver an empirical evaluation comparing sequential, multi-threaded, and GPU-
accelerated computation of those lower bounds, with other state-of-the-art approaches on
different benchmarks.

The rest of the paper is organized as follows. Section 2 contains some general background
about Constraint Satisfaction/Optimization Problems and General-Purpose computing on
Graphics Processing Units (GPGPU). Section 3 summarizes related works on the BinPacking
constraint, and on lower bounds for the Bin Packing Problem. Section 4 details the design pro-
cess and implementation of the BinPacking propagator enhanced with the GPU-accelerated
portfolio of lower bounds. Section 5 presents the results of our approach and the other
techniques in the literature. Finally, Section 6 concludes the paper.

2 Background

2.1 Constraint Satisfaction/Optimization Problems
A Constraint Satisfaction Problem (CSP) is defined as a triplet ⟨X, D, C⟩, where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is a set of domains, and C is a set of
constraints. Each domain Di ∈ D is a finite set of values. Each constraint c ∈ C involves a
subset of m variables vars(c) = {xi1 , . . . , xim

} ⊆ X, depending on its semantic. A constraint
defines a relation c ⊆ Di1×· · ·×Dim . A solution is an assignment σ : X →

⋃n
i=1 Di such that

σ(xi) ∈ Di holds for every variable, and ⟨σ(xi1), . . . , σ(xim
)⟩ ∈ c holds for every constraint.

F. Tardivo, L. Michel, and E. Pontelli 28:3

A Constraint Optimization Problem (COP) is a quadruplet ⟨X, D, C, f⟩ where ⟨XD, C⟩
is a CSP and f : D1 × · · · ×Dn → R is an objective function to be (w.l.o.g.) minimized. The
goal is to find a solution σ∗ that minimizes f(σ(x1), · · · , σ(xn)).

A constraint solver searches for solutions of a CSP/COP by alternating non-deterministic
choices and constraints propagation. The first is employed to choose the next variable and
which value, from its current domain, to assign to it. The second is a method to filter the
domain of the variables, removing values that are not part of any solution. Non-deterministic
choices are typically implemented through backtracking and heuristic decisions that follow
an ordering among variables and values. Constraint propagation is commonly implemented
through a queue that tracks constraints that need to be re-evaluated. When a value is
removed from a variable’s domain, the constraints involving such variable are enqueued. The
re-evaluation consists of extracting the constraint from the queue and applying the associated
filtering algorithm or propagator. This iterative cycle continues until the queue is empty [23].

Filtering algorithms offer trade-offs between filtering power and computational complexity.
Highly effective algorithms have been developed for global constraints. These constraints
model a substantial portion of a CSP/COP and naturally arise in many problems.

2.2 General-Purpose Computing on Graphics Processing Units
Performance in modern hardware is the by-product of parallel computing resources in the
form of multi-core central processing units (CPUs) and general purpose graphical processing
units (GPUs). Modern commodity hardware features CPUs with up to 64 cores (e.g., AMD
Ryzen Threadripper 7980X) and GPUs with up to 16384 cores per card (e.g., NVIDIA
GeForce RTX 4090). Yet, the number of cores in CPUs and GPUs are orders of magnitude
apart, the programming models are wildly different and GPUs impose restrictions on code
to deliver performance.

The massive parallelism of GPUs is a golden opportunity. To harness such computing
power, it is crucial to employ approaches and algorithms that align with the underlying
architecture of the GPU. Recent studies indicate that GPUs can be used for computational
logic, including applications like Satisfiability [8, 7], Answer Set Programming [12, 13], and
Constraint Programming [41, 42].

GPU-accelerated applications rely on APIs that expose parallel computing primitives.
The most prominent is CUDA, a C/C++ API, introduced by NVIDIA for its own GPUs [28].
In a typical GPU-accelerated application, the GPU handles only the most computationally
demanding tasks. The CPU executes the main application logic and choreographs the GPU(s)
activities such as data transfers as well as computing tasks known as kernels. The components
of an NVIDIA GPU utilized for general-purpose computing are depicted in Figure 1. A
current high-end GPU2 is equipped with 128 Streaming Multiprocessors (SM), each housing
128 computational units named CUDA Cores, and 128 KB of fast memory. This memory
serves as L1 cache and/or scratchpad memory, in which case it is referred to as shared
memory. In the middle and lower tiers of the memory hierarchy, there is an L2 cache of 72
MB and the global memory with a capacity of 24 GB.

The CUDA execution model is Single-Instruction Multiple-Thread (SIMT), where a
C/C++ function known as kernel is executed by many threads. Each thread utilizes its own
unique index to identify the data to use or to modify its control flow. When different threads
follow distinct control flows, it leads to thread divergence. In such scenarios, threads are

2 NVIDIA GeForce RTX 4090

CP 2024

28:4 CP for Bin Packing with Multi-Core and GPUs

...

L2 cache

Global memory

Streaming Multiprocessor

L1 cache \ Shared memory

CUDA Core

...

Figure 1 High level architecture of an NVIDIA GPU.

serialized, causing significant performance deterioration. Threads are organized into blocks,
which are dispatched to the Streaming Multiprocessors. Each Streaming Multiprocessor
executes the threads using its CUDA Cores, allowing efficient intra-block operations through
shared memory. Communication between blocks is possible only through the use of global
memory. To successfully leverage GPUs to accelerate expensive computations, it is essential
to understand that they are designed to heavily trades raw execution speed for massive
parallelization [20]. This often necessitates reformulating the problem to expose parallelism
or exploiting shared memory to reduce costly global memory accesses.

In contrast, execution on multi-core CPUs relies on a small number of independent
computing threads that execute fast, can have diverging behaviors with no performance
penalties. Such an architecture can more readily adopt sequential code with the trade-off
being the small number of threads (dozens rather than tens of thousands).

3 Bin Packing

Let I = (c, W) be an instance of the Bin Packing Problem (BPP) with n items of weights
W = [w1, . . . , wn], and bins of capacity c. The underling optimization problem can be
formalized as follows:

minimize
n∑

j=1
yj

subject to
n∑

i=1
wixij ≤ cyj j = 1, . . . , n

n∑
j=1

xij = 1 i = 1, . . . , n

yj ∈ {0, 1} j = 1, . . . , n

xij ∈ {0, 1} i, j = 1, . . . , n

where the variable yj indicates whether the jth bin is used and the variable xij indicates
whether the ith item is packed in the jth bin.

One of the most effective approaches to solving the BPP involves adopting a graph-
theoretical perspective. In the Arc-Flow method [9], a graph is constructed such that arcs
represent items, and a path from the source s to the sink t represents a set of items that
can be packed into a bin (see Figure 2). A solution corresponds to a minimum flow that
utilizes one arc for each item w ∈ W . This flow problem is formulated and solved using
an Integer Linear Programming (ILP) model with a robust linear relaxation, albeit with a
pseudo-polynomial number of variables and constraints.

F. Tardivo, L. Michel, and E. Pontelli 28:5

Algorithm 1 Simplified propagator for the BinPacking constraint.

Procedure: propagate(c, W, k, X, L)
1 for j ← 1 to k do
2 doLoadCoherence(j, X, W, L)
3 doBasicLoadTightening(j, X, W, L) // Basic filtering
4 for i ∈ {i | j ∈ xi ∧ |xi| > 1} do
5 doBasicItemEliminationCommitment(i, j, X, W, L)

6 for j ← 1 to k do // Knapsack filtering
7 if ¬isBinPackable(j, X, W, L) then Fail
8 doKnapsackLoadTightening(j, X, W, L)
9 for i ∈ {i | j ∈ xi ∧ |xi| > 1} do

10 doKnapsackItemEliminationCommitment(i, j, X, W, L)

11 lb← getLowerBound(c, W, k, X) // Feasibility check
12 if lb > k then Fail

In CP, the decision version of the BPP, where the items must be packed in at most k

bins, is modeled as:

xi = {1, . . . , k} i = 1, . . . , n

lj = {0, . . . , c} j = 1, . . . , k

BinPacking(W = [w1, . . . , wn], X = [x1, . . . , xn], L = [l1, . . . , lk])

where the variable xi represents the bins in which the ith item can be packed, and the
variable lj represents the loads that the jth bin can have. The BinPacking constraint was
introduced in [38] and a simplified version of its filtering algorithm is listed in Algorithm 1.
The following offers a brief description of each call in Algorithm 1:
doLoadCoherence Adjust the minimum/maximum load of a bin based on the total weight

of the items and the load of the other bins.
doBasicLoadTightening Adjust the minimum/maximum load of a bin based on the sum of

the items that are or can be packed in the bin.
doBasicItemEliminationCommitment An item is committed to a bin if it is needed to reach

a valid load. An item is excluded from a bin if packing it would lead to an excessive load.
isBinPackable Checks whether a bin is packable based on an approximated knapsack rea-

soning to reach an admissible load.
doKnapsackLoadTightening Adjust the minimum/maximum load of a bin with an approxi-

mated knapsack reasoning.

0 2 3 4 5 6 7 8 9

t

s

Figure 2 Graph underling Arc-Flow for an instance with c = 9 and W = [4, 4, 3, 3, 2, 2].

CP 2024

28:6 CP for Bin Packing with Multi-Core and GPUs

1
2

4
1

1

1

(a) Partial Solution.

2

4

1

3

(b) Reduced Solution
with R0 (merge items).

4

11

(c) Reduced Solution
with RMin (Reduce bins
by smallest virtual item).

4

1

4
5

(d) Reduced Solution
with RMax (Enlarge bins
and virtual items).

Figure 3 Illustrations of a partial packing of the instance I = (5, [4, 2, 1, 1, 1, 1]), and reductions
R0 = (5, [4, 3, 2, 1]), RMin = (3, [4, 1, 1]), RMax = (7, [5, 4, 4, 1]). Virtual items are colored in blue.

getLowerBound A partial packing is considered feasible if a lower bound on the number
of bins does not exceed the number of available bins. This lower bound, referred to as
L2 (see Section 3.2), is calculated on a reduced instance derived from the current partial
packing (see Section 3.1).

The literature contains various enhancement of the BinPacking constraint. The authors
of [35, 30, 11] introduced and refined a cardinality reasoning, well suited when there are
constraints on the number of items in each bin or when the items have similar weights. In [3],
it was employed a tight lower bound derived from the linear relaxation of the Arc-Flow
model.

3.1 Reductions
Given a partial packing of an instance I = (c, W), a reduction R provides an instance
IR = (cR, WR) such that a lower bound for IR is valid for the partial packing. Such partial
packing is inferred from the variables X.

The standard reduction, knows as R0, maintains the same capacity, all the unpacked
items, and introduces virtual items representing the items packed in each bin (see Figure 3b).
Other reductions similar to R0 are possible. For instance, [14] introduced RMin and RMax.
The first decreases the capacity of the bins and the virtual items by the size of the smallest
virtual item (see Figure 3c). The second increases the capacity of the bins and the virtual
items by a common quantity, so that two virtual items can not fit in the same bin. This is
achieved when each virtual item is bigger than half of the bin capacity (see Figure 3d).

3.2 Lower bounds
Given an instance, I = (c, W), a lower bound L(I) estimates the minimum number of bins
necessary to store the items. The simplest lower bound is referred to as L1, and is calculated
as follows:

L1(I) =
⌈

1
c

∑
w∈W

w

⌉

where the total weight of the items is divided by the bin capacity, and the ceiling function is
applied. This approach is equivalent to naively packing the items, cutting those that do not
entirely fit.

F. Tardivo, L. Michel, and E. Pontelli 28:7

cλ w

fMT(w, λ)

c

cλ w

fRAD2(w, λ)

c

Figure 4 fMT (left) and fRAD2 (right) for λ = c 4
15 . Weights that have been increased/decreased

are shown in green/red.

An improvement of L1, called L2, was introduced in [25] and addresses the cases where
big items cannot be packed together. It is defined as:

L2(I) = max
0≤λ≤ c

2

L2(I, λ)

where

L2(I, λ) = |W1|+ |W2|+ max

(
0,

⌈
1
c

(∑
w∈W3

w −

(
c |W2| −

∑
w∈W2

w

))⌉)
W1 = {w | w ∈W ∧ c− λ < w}
W2 = {w | w ∈W ∧ c

2 < w ≤ c− λ}
W3 = {w | w ∈W ∧ λ ≤ w ≤ c

2}

The lower bound L2(I, λ) classifies the items as big (W1), medium-big (W2), medium-small
(W3), while it ignores the smallest items. Note how the definition of the sets are parameterized
by λ. Then all the big and medium-big items are packed in different bins since they are all
bigger than c

2 . The medium-small items are packed as in L1, using the available space in
the bins where there is a medium-big item before considering other bins. Finally, the small
items are just dropped. A direct implementation of L2 is pseudo-polynomial, since L2(I, λ)
has to be calculated exactly once for each λ ∈

[
0, c

2
]
, i.e., Θ(c) times. A linear complexity

can be achieved when the items are sorted in decreasing weight [24, 22]. Note how L2(I)
defines a family of lower bounds, with one member for each λ ∈

[
0, c

2
]
.

A general approach to enhance L1, derived from duality theory, is based on Dual Feasible
Functions (DFFs) [1]. Intuitively, a function f : N0 → N0 is dual feasible if, for every subset
WS ⊆W , the following holds:∑

w∈WS

w ≤ c ⇒
∑

w∈WS

f(w) ≤ f(c)

Consider the fMT(w, λ) definition below that keeps the same capacity, while defining new
weights for items. It increases the weights of large items (c − λ < w) to c, decrease the
weights of small items (w < λ) to 0, and leave the weights of medium items unchanged
(λ ≤ w ≤ c − λ), i.e., they are w. Note that increasing the weight to c is equivalent to
allocating an entire bin for the item, while decreasing the weight to 0 disregards the item.
The function, shown in Figure 4, depends on an integer parameter λ:

fMT(w, λ)
0≤λ≤ c

2

=

c if c− λ < w

w if λ ≤ w ≤ c− λ

0 if w < λ

CP 2024

28:8 CP for Bin Packing with Multi-Core and GPUs

The lower bound obtained by combining L1 with fMT is:

LMT(I) = max
0≤λ≤ c

2

⌈
1

fMT(c, λ)
∑

w∈W

fMT(w, λ)
⌉

(1)

and it is equal to L2 [16]. Other DFFs have been proposed, each with a different design
for revising weights. For brevity, we report only some of them and refer interested readers
to [6, 1] for a comprehensive review, and to [31, 32] for further insights.

fRAD2(w, λ)
c
4 <λ≤ c

3

=

0 if w < λ⌊

c
3
⌋

if λ ≤ w ≤ c− 2λ⌊
c
2
⌋

if c− 2λ < w < 2λ

c− fRAD2(c− w, λ) if 2λ ≤ w

fFS1(w, λ)
1≤λ≤100

=

wλ if w(λ+1)
c ∈ N⌊

w(λ+1)
c

⌋
c otherwise

fCCM1(w, λ)
1≤λ≤ c

2

=

2
⌊

c
λ

⌋
− 2

⌊
c−w

λ

⌋
if w > c

2⌊
c
λ

⌋
if w = c

2

2
⌊

w
λ

⌋
if w < c

2

fVB2(w, λ)
2≤λ≤c

=

2 max

(
0,
⌈

cλ
c

⌉
− 1
)
− 2 max

(
0,
⌈

(c−w)λ
c

⌉
− 1
)

if w > c
2

max
(
0,
⌈

cλ
c

⌉
− 1
)

if w = c
2

2 max
(
0,
⌈

wλ
c

⌉
− 1
)

if w < c
2

fBJ1(w, λ)
1≤λ≤c

=
{⌊

w
λ

⌋
(λ− c mod λ) if w mod λ ≤ c mod λ⌊

w
λ

⌋
(λ− c mod λ) + w mod λ− c mod λ otherwise

Interestingly, these five definitions are all parametric in λ and define 5 additional families,
most with Θ(c) members (except fFS1). To get the best possible bound, one would need to
compute the bounds for each family and across all parameter values in that family. To reduce
the sequential computational burden, one could resort to only computing some families, or
computing only a subset of different λ values in each admissible range. Alternatively, one
can adopt parallel techniques as all families and all λ values can be computed independently.
The next section studies this tradeoff.

4 Design and Implementation

To determine the most convenient DFF to use, we examined the lower bounds derived from
various DFFs on the Falkenauer and Scholl instances (see Section 5). The results in Table 1
confirm fCCM1 as the best overall function [6], while the generally weak fRAD2 proves effective

Table 1 Statistics for different DFF-based lower bounds on the Falkenauer and Scholl instances.

DFF Only Opt Total Opt Only Best Total Best Sum
fMT 2 1151 0 55 120184

fRAD2 10 189 0 36 105345
fFS1 2 742 0 45 119504

fCCM1 40 1219 1 60 120270
fVB2 1 973 0 40 119786
fBJ1 47 1101 0 50 120039

F. Tardivo, L. Michel, and E. Pontelli 28:9

Algorithm 2 Sequential DFFs-based getLowerBound function.
Function: getLowerBound(c, W, k, X)→ lb

1 lb← 0
2 for R ∈ {R0, RMin, RMax} do
3 (cR, WR)← R(c, W, X)
4 for f ∈ {fCCM1, fMT, fBJ1, fVB2, fFS1, fRAD2} do
5 Lf ← 0
6 (λ, λ, δ)← getParametersMinMaxStep(f, cR, 256)
7 for λ← λ to λ by δ do
8 sum←

∑
wR∈WR

f(wR, λ)
9 Lf ← max(Lf ,

⌈
sum

f(cR,λ)

⌉
)

10 lb← max(lb, Lf)
11 if lb > k then return lb // Infeasibility detected, early return

12 return lb

when stronger functions are suboptimal [31]. Since no DFF family dominates, it is apparent
that restricting ourselves to choosing a single family is not productive. Instead, a portfolio of
independent DFFs should be computed with parallel resources to deliver stronger pruning at
virtually no cost (in term of wall-clock time). Recall that the calculation of a single family
of lower bound is still pseudo-polynomial and can be costly for large c values. Ideally, one
would consider only a minimal subset of parameters guaranteed to lead to the tightest bound,
but this is only possible for LMT [16]. In practice, for the CPU implementations, we consider
a sampling of 256 equispaced λ values for each family as it proved empirically adequate for
obtaining effective bounds.

Similar design considerations were done about the reduction(s) to employ. The analysis
in [14] suggest using both RMin and RMax. However, preliminary experiments showed that
R0 is beneficial in some instances, so we considered all of them.

4.1 Sequential CPU Implementation

A sequential DFFs-based implementation of the function getLowerBound (see Algorithm 1)
is listed in Algorithm 2. It has a nested loop structure where the loop at line 2 consider the
three reductions presented in Section 3.1, the loop at line 4 consider the six DFFs in the
portfolio, and the loop at line 7 samples the rage of parameters. That results in computation
that sequentially calculates 3 ∗ 6 ∗ 256 = 4608 lower bounds.

4.2 Parallel CPU Implementation

The nested loop structure of Algorithm 2 is easily parallelizable since all iterations are
independent. The only data that need to be atomically updated is the maximum lower bound
at line 10.

The outermost 2 loops execute the main body of the function (lines 5–10) 18 times (i.e.,
3 reductions and 6 DFFs). To easily run on commodity CPU with about 10 cores, it is
appropriate to use one thread per DFF to executes the main body sequentially for all 3
reductions. This approach uses 6 threads, each calculating 3 ∗ 256 = 768 lower bounds. It
provides a sublinear speedup of 2x when compared to the fully sequential implementation
(see Section 5). While it is possible to also parallelize all 3 reductions on a machine with at
least 18 cores, it did not seem to be a promising avenue.

CP 2024

28:10 CP for Bin Packing with Multi-Core and GPUs

The parallel implementation is obtained using OpenMP [29], a C/C++ API that enable
transparent multi-threading by simply adding annotations, or directives, to the loops. We
use the omp parallel for num_threads(6) to parallelize the DFF loop, and the directive
reduction(max:lowerbound) to correctly update the maximum lower bound.

4.3 Considerations for a GPU architecture

To successfully leverage GPUs it is fundamental to understand the weakness and strengths
of their architecture. The efficiency of a CPU stems from its low latency, which indicates
the time required to execute individual operations. Mechanisms such as branch prediction,
multiple levels of fast cache, and high clock speeds all contribute to making each of the “few”
CPU threads extremely fast. In contrast, the efficiency of a GPU is grounded in its high
throughput, which represents the number of operations executed per unit of time. The vast
number of threads, coupled with rapid context switching, makes the GPU highly effective in
performing extensive workloads, compensating for its high latency.

There are various approaches to accelerate propagation algorithms with GPUs. One
approach is to parallelize the most prominent algorithm(s). While this seems appealing,
it is hard to accomplish for two reasons. First, such algorithms are often designed with
a sequential model in mind, making them challenging to parallelize. Data dependencies
between iterations as well as the need to synchronize for data structure updates are at the
heart of the problem. The second reason is the GPUs high latency, mainly due to the “simple”
memory hierarchy where a L1 cache miss results in costly off-chip memory access, as well
as the time required to move data and control to and from the GPUs. The optimal point
to offload a computation to the GPU changes based on several factors, including hardware
characteristics. It is often the case that data transfer negates the benefits of parallelization.
This overhead disappears once the GPU workload is large enough. Empirically, it is generally
not helpful to offload the propagation of algorithms with a time complexity of O(n2) or lower.

Another strategy involves utilizing the GPU to reduce the computational cost of strong
filtering algorithms [42]. This idea can be applied to the BinPacking constraint by employing
the GPU to perform a complete knapsack reasoning instead of an approximated one. Using
the Dynamic Programming (DP) approach presented in [43] it is possible to obtain a stronger
filtering that replace all the basic and knapsack filtering in Algorithm 1. We developed a GPU-
accelerated implementation of this pseudo-polynomial method, leveraging bitwise operations
and processing each bin in parallel. Empirical results revealed no significant gains in terms of
explored nodes (within the time limits) compared to the approximated reasoning. Scalability
tests further indicate that the GPU-accelerated implementation becomes faster than an
optimized implementation of the approximated filtering when the number of bins is in the
order of hundreds. This evidence indicates that theoretically interesting implementations may
encounter overheads that outweigh the computational benefits. Ultimately, the disappointing
results pushed this second strategy aside.

GPUs can also enhance pruning. In the case of the BinPacking constraints, this translates
into improving the feasibility check to obtain the best possible lower bounds at a reduced
computational cost. The tightest available lower bound is derived from the linear relaxation
of the Arc-Flow model (see Section 3), which involves solving a sparse linear system. Since
this task is notoriously challenging to effectively accelerate with GPUs [20], we explored the
next option: considering all the parameters and all the DFF families.

F. Tardivo, L. Michel, and E. Pontelli 28:11

Algorithm 3 GPU-accelerated DFFs-based getLowerBound function.
Function: getLowerBound(c, W, k, X)→ lb

1 [IR0 , IRMin , IRMax]← calcReductions([R0, RMin, RMax] , (c, W, X))
2 lb← 0
3 cudaMemcpyCpuToGpu([lb, IR0 , IRMin , IRMax]) // Asynchronous API
4 for (cR, WR) ∈ {IR0 , IRMin , IRMax} do
5 for f ∈ {fCCM1, fMT, fBJ1, fVB2, fFS1, fRAD} do
6 (λ, λ)← getParametersMinMax(f, cR)
7 nT hreads← λ− λ + 1
8 cudaLaunchKernel(calcDffLowerBound, nThreads, [f, cR, WR, . . .]) // Async API

9 cudaMemcpyGpuToCpu(lb) // Asynchronous API
10 waitGpu() // Synchronous API
11 return lb

4.4 GPU Implementation

We handled each combination reduction-DFF with a separate kernel, and each of the λ−λ+1
parameter with a different thread (see Figure 5). The GPU-accelerated implementation
of the method getLowerBound is outlined in Algorithm 3. The first operation copies the
reduced instances and the initial lower bound into the GPU’s global memory. The amount
of transferred data is minimal, and encoded as an array of integers. After that, 18 kernels
are launched, each with the appropriate number of threads and several arguments, including
the DFF and reduction that they must consider. Finally, the highest lower bound is copied
back from the GPU and returned.

The heart of the parallelization is the kernel calcDffLowerBound, listed in Algorithm 4.
The line 2 shows how each thread uses its index to identify the parameter it works on. The
barrier at line 4 ensures the initialization of Lf , and prevents race conditions on its value.
Lines 5–6 calculates the value of Lf (cR, WR). Finally, the barrier at line 7 guarantees that
all parameters are considered before updating the best lower bound.

The pseudocode abstracts out some implementation details that are worth mentioning.
From Section 2.2, we recall that the threads of a kernel are organized into blocks, each
executing in a Streaming Multiprocessor with its own on-chip shared memory. This fast
memory reduces accesses to the slower global memory in two ways. First, it caches cR and
WR, ensuring fast access for subsequent lower bound calculations. Second, it maintains
Lf enabling faster atomic max operations (line 6) that run concurrently between blocks.
However, the final atomic max operation (line 8) must be performed on global memory, as it
is the only means of communication among blocks and kernels.

λ

calcDffLowerBound

· · · λ

· · ·

λ · · · λ

· · ·

λ · · · λ

· · ·

· · ·

λ

Thread

· · · λ

· · ·

λ · · · λ

· · ·

λ · · · λ

· · ·

LRAD2(IRMax)LRAD2(IRMin)LRAD2(IR0)LCCM1(IRMax)LCCM1(IRMin)LCCM1(IR0)

Figure 5 Parallelism of the GPU accelerated getLowerBound.

CP 2024

28:12 CP for Bin Packing with Multi-Core and GPUs

Algorithm 4 Pseudocode of the calcDffLowerBound kernel.

Procedure: calcDffLowerBound(f, cR, WR, k, lb, λ, λ)
1 if lb ≤ k then
2 λ← λ + getThreadIdx()
3 Lf ← 0 // Only one thread
4 threadsBarrier()
5 sum←

∑
wR∈WR

f(wR, λ)
6 Lf ← max(Lf ,

⌈
sum

f(cR,λ)

⌉
) // Atomic operation

7 threadsBarrier()
8 lb← max(lb, Lf) // Only one thread, atomic operation

4.5 Solver integration

There are no limitations that prevent the GPU-accelerated getLowerBound to be used in the
BinPacking propagator of a standard CP solver. However, there are a couple of aspects that
facilitates such task. Unsurprisingly, it is easiest to integrate in solvers written in C/C++
since CUDA is a C/C++ API, and no wrappers or bindings are needed. Moreover, kernels
can be compiled with(in) the solver, without the need to compile them separately and load
them at runtime. From the usability prospective, it would be convenient that the solver is
compatible with the high-level constraint modelling language MiniZinc [27]. By using its
annotation mechanism, it is possible to communicate to the solver which implementation
of getLowerBound to use. For example, when a BinPacking constraint is added, it can
be annotated with ::parallel to use the CPU parallel version, or with ::gpu to use the
GPU-accelerated implementation.

We implemented the different versions of getLowerBound, along with the relative annota-
tions, within a solver compatible with MiniZinc [39]. Such solver is based on MiniCPP [18],
a C++ implementation of MiniCP [26]. We choose MiniCP(P) because it is open-source,
well documented, and reasonably simple to modify.

5 Experiments

This section presents a comparison between propagators that use different lower bounds for
the feasibility check. We evaluate our linear time complexity implementation of L2 (i.e, L2),
our sequential (i.e., DFFs-CPU-Seq), parallel (i.e., DFFs-CPU-Par), and GPU (i.e., DFFs-GPU)
DFFs-based implementations, and the implementation from [3] which uses the Arc-Flow
based lower bound (i.e., Arc-Flow). We select two BPP benchmarks from the literature
[15, 37], and generate new instances similar to the ones proposed in [5] and [4]. This results
in a total of 2072 instances [40] organized as follows:
Falkenauer This benchmark has two classes of 80 instances each. The ‘U’ instances have

items with weights uniformly distributed in [20, 100], n ∈ {120, 250, 500, 1000} and c = 150.
The ‘T’ instances are characterized by triplets of items that must be packed in the same
bin in any optimal solution. For this class n ∈ {60, 120, 249, 501} and c = 1000.

Scholl These instances are divided into three sets of 720, 480, and 10 instances. The
instances in Set 1 have weights uniformly distributed to expect a number of items
per bin not larger than three, n ∈ {50, 100, 200, 500}, c ∈ {100, 120, 150}. For the
instances in Set 2 the number of expected items per bin is between three and nine items,
n ∈ {50, 100, 200, 500}, c = 1000. Set 3 contains big instances with weights uniformly
distributed in the range [20000, 35000], n = 200 and c = 100000.

F. Tardivo, L. Michel, and E. Pontelli 28:13

Weibull These instances are based on the Weibull probability distribution. It can model
various distributions found in different problem domains by adjusting the shape parameter
k > 0 and the scale parameter λ > 0. Similarly to [5], we generated 92 sets of weights W

with the parameters n ∈ {100, 200}, k ∈ {0.5, 0.6, . . . , 5.0}, and λ = 1000. For each set
W , we generate 6 instances (c, W) with c = σ ·max(W) for σ ∈ {1.0, 1.2, . . . , 2.0}. The
total number of instances is 552, with capacity ranging between 1300 and 92500.

Scaled Non-IRUP These instances are derived from instances which do not satisfy the
Integer Round-Up Property (IRUP). Intuitively, an instance is IRUP if the roundup value
of the (strongest) linear relaxation yields to the optimal number of bins. We considered
50 of the instances in [4]. For each instance (c, W) and s ∈ {3, 4, 5}, we derived (cs, Ws)
such that cs = s ∗ c and Ws is the list containing s times the set {s ∗ w | w ∈W}. The
total number of instances is 150, with n ∈ {45, 60, 75} and c in the range [921, 5240].

The model and search heuristic are the same as in previous works [38, 3], where a
minimum number of bins is established and an attempt to find a solution is made. If such a
solution does not exist, the number of bins is increased, and a new attempt is made. All
implementations use the decreasing best fit search heuristic. In this strategy, the items are
considered in descending order of weight and assigned to the first bin within their domain
that has the smallest residual capacity sufficient to accommodate the item. Additionally,
two symmetry-breaking rules are applied on backtracking: first, the bin is removed from the
domain of all items of the same size, and second, all the bins with the same load are removed
from the domains of these items. Finally, a dominance rule is applied before a choice point:
if an item completely fills the remaining capacity of a bin, it is assigned to that bin.

The implementations L2, DFFs-CPU-Seq, DFFs-CPU-Par, and DFFs-GPU include a couple
of additional techniques. First, another dominance rule is applied before a choice point:
if among the set of candidate items that can be packed in a bin, only one can be packed,
then the heaviest item is assigned to the bin [34]. Second, the symmetry breaking described
in [33] is enforced with an additional constraint. Cardinality reasoning was considered but set
aside in preliminary experiments, as it did not yield notable differences in terms of explored
nodes while adding some overhead. This can be attributed to the combined effects of strong
pruning and the absence of cardinality constraints in our benchmarks

The experiments are performed with 10 minutes timeout to ensure a reasonable benchmark
time. The test system features an Intel Core i7-10700K (8 Cores), 32 GB of RAM, and an
NVIDIA GeForce RTX 3080 (8704 CUDA Cores). The system operates on Ubuntu Linux
22.04 LTS and uses CUDA 11.8 and GCC 11.4 for our implementations, along with OpenJDK
11.0 and CPLEX 22.1 for Arc-Flow.

Results and Analysis

The analysis focuses on instances solved within the 10 minutes time limit. Table 2 reports,
for each approach and benchmark, the number of solved instances, the average time per
instance, the total solving time, and the total number of visited nodes. Instances that time
out are not contributing anything to the total time, average time or nodes column.

Global Analysis. Falkenauer T instances highlight the contrast between fast and slow
pruning. DFF-GPU quickly solved 73% of the instances, while Arc-Flow solved 85% of them
taking, on average, 3x more time. The other DFFs-based approaches fall in the middle, and
L2 is last.

CP 2024

28:14 CP for Bin Packing with Multi-Core and GPUs

Table 2 Statistics for the solved instances of different lower bound methods.

Benchmark (Instances) Lower Bound Solved Avg Time [s] Time [s] Nodes
L2 38 19 733 623305

DFFs-CPU-Seq 46 44 2045 105856
DFFs-CPU-Par 47 28 1315 154440

DFFs-GPU 58 11 650 448780
Arc-Flow 68 31 2120 5235

L2 30 17 496 481984
DFFs-CPU-Seq 56 43 2382 106646
DFFs-CPU-Par 57 39 2198 122521

DFFs-GPU 60 31 1888 357108
Arc-Flow 79 16 1303 16012

L2 637 6 4057 7126695
DFFs-CPU-Seq 696 6 3961 593028
DFFs-CPU-Par 698 5 3398 1361855

DFFs-GPU 703 3 1952 3997093
Arc-Flow 717 6 4097 116135

L2 332 2 771 2777677
DFFs-CPU-Seq 391 8 3035 273011
DFFs-CPU-Par 391 4 1421 273011

DFFs-GPU 440 2 827 1235237
Arc-Flow 423 69 29287 278014

L2 – – – –
DFFs-CPU-Seq – – – –
DFFs-CPU-Par – – – –

DFFs-GPU 3 1 4 4322
Arc-Flow – – – –

L2 371 6 2350 13082358
DFFs-CPU-Seq 395 6 2381 342116
DFFs-CPU-Par 397 4 1782 669801

DFFs-GPU 417 6 2636 18149205
Arc-Flow 286 105 30046 11103

L2 82 52 4303 63979492
DFFs-CPU-Seq 82 71 5836 4214685
DFFs-CPU-Par 90 61 5520 8329009

DFFs-GPU 116 52 6071 41873760
Arc-Flow 108 7 1866 6388

Falkenauer T (80)

Falkenauer U (80)

Scholl 1 (720)

Scholl 2 (480)

Scholl 3 (10)

Weibull (552)

Scaled Non-IRUP (150)

In the Falkenauer U instances, Arc-Flow demonstrates a good balance between speed and
strength, solving almost all instances in a short amount of time. The DFFs-based approaches
have similar performance, suggesting that the computation of lower bounds is negligible.
This happens when failures occur earlier in the propagation, during the knapsack reasoning.

In the Scholl 1 instances, the gap between Arc-Flow and the DFF-based approaches
diminishes notably. DFFs-GPU outpaces the CPU approaches by a factor of 2x and 1.7x on
average. Notably, while achieving tighter bounds, DFFs-GPU explores, on average, 14x and
5x more nodes per second compared to the CPU implementations. It has the lowest runtime
per instance and completes 703 instances in half the time of all other contenders.

On Scholl 2, DFFs-GPU clearly dominates the field. It solves the most instances (440 out
of 480), completes 35 times faster than the second best (Arc-Flow) and clearly improves on
its parallel and sequential brethren (2x to 4x faster).

Scholl 3 instances are characterized by huge capacities and highlight the benefits of the
GPU approach. It was the only method able to solve any instance leveraging tighter bounds
than L2, DFFs-CPU-Seq, and DFFs-CPU-Par, while also being faster than Arc-Flow.

The Weibull instances, whose capacities range from medium to large, favor faster compu-
tation over strong pruning. In terms of instances solved, DFFs-GPU comes first, followed by
the other DFFs-based approaches, then L2, and Arc-Flow last. While DFFs-CPU-Par ekes
out a win on time per instance, it solves 10% fewer instances than its GPU version. Such
instances account for the higher DFFs-GPU average solving time. Considering the exploration
speed, DFFs-GPU visited, on average 48x more nodes than the sequential version and 18x
more nodes than the multi-core version.

F. Tardivo, L. Michel, and E. Pontelli 28:15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100

S
ol

ve
d

In
st

an
ce

s

To
ta

l I
ns

ta
nc

es

DFFs−CPU−Seq

DFFs−CPU−Par

DFFs−GPU

L2

Arc−Flow

FalkenauerT

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100

S
olved Instances

Total Instances

FalkenauerU

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100

S
ol

ve
d

In
st

an
ce

s

To
ta

l I
ns

ta
nc

es

Scholl1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100

S
olved Instances

Total Instances

Scholl2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100

Solve Time [s]

S
ol

ve
d

In
st

an
ce

s

To
ta

l I
ns

ta
nc

es

Weibull

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100

Solve Time [s]

S
olved Instances

Total Instances

ScaledNonIRUP

Figure 6 Plots of the empirical cumulative distribution for the benchmarks.

The Scaled Non-IRUP instances stress-tests the lower bound capabilities of solvers. While
DFFs-GPU solves the most instance and is followed by Arc-Flow, observe that the hardness is
not a function of the number of items. Indeed, Arc-Flow times-out on small instance with 45
items, but takes the crown on instances with 60 or 75 items. The remaining contenders are
much weaker as an additional 22% of the instance solved by DFFs-GPU remain out of reach
for L2 and the sequential DFF implementation, further highlighting the value of a GPU.

Cumulative Analysis. Instance hardness in each benchmark suite is far from uniform. All
methods can quickly solve some instances, yet they sharply diverge on others. Cumulative
plots for six benchmark classes appear in Figure 6 (School 3 is omitted as DFF-GPUs alone
could solve instances). The logarithmic horizontal axis is the solving time, while the vertical
axis indicates the percentage of instances solved in that time. The DFFs-GPU is the green
curve and it is readily apparent that it is the north-most, left-most curve in the plots. Indeed,
it generally solves more instances significantly faster. The Scaled Non-IRUP instances exhibit
an interesting behavior where DFFs-GPU and Arc-Flow switch roles twice as the most effective
technique. DFF-GPUs is the top-most curve for most values along the x axis.

CP 2024

28:16 CP for Bin Packing with Multi-Core and GPUs

Table 3 Statistics for DFFs-GPU without optimizations.

Version Solved Time [s] Nodes

DFFs-GPU 1571 1359 1582808
DFFs-GPU-NoDom 1544 2457 83559849

DFFs-GPU-NoSymBrk 1526 3970 143491180

Ablation Analysis. An ablation study was conducted on instances solved by DFFs-GPU in
less than 60 seconds (see Table 3). The most effective technique is the symmetry breaking
constraint derived from [33], which is quite general as it applies to variations of the BPP.

6 Conclusions and Future works

This paper revisits the BinPacking constraint from a parallel prospective and demonstrates
how a parallel mindset leads to novel approaches. It presents a feasibility check based
on a portfolio of lower bounds derived from Dual Feasible Functions (DFFs). Sequential,
multi-threaded, and GPU-accelerated implementations are described and compared.

The results highlight the role of GPUs and how to achieve an effective balance between
computational cost and pruning strength. It allows to handle large instances or situations
where it is not practical to spend excessive time at nodes of the search tree. From an
analytical standpoint, it would be interesting to identify DFFs that lead to tight bounds in
cases where the current ones fall short. Practically, a valuable extension is to explore the
effectiveness of multidimensional DFFs [2] on 2D, 3D and Vector Packing Problems.

References
1 Cláudio Alves, Francois Clautiaux, José Valério de Carvalho, and Jürgen Rietz. Dual-feasible

functions for integer programming and combinatorial optimization. EURO Advanced Tutorials
on Operational Research. Springer International Publishing, Basel, Switzerland, 2016.

2 Cláudio Alves, José M. Valério de Carvalho, François Clautiaux, and Jürgen Rietz. Multidi-
mensional dual-feasible functions and fast lower bounds for the vector packing problem. Eur.
J. Oper. Res., 233(1):43–63, 2014. doi:10.1016/J.EJOR.2013.08.011.

3 Hadrien Cambazard and Barry O’Sullivan. Propagating the bin packing constraint using linear
programming. In David Cohen, editor, Principles and Practice of Constraint Programming -
CP 2010 - 16th International Conference, CP 2010, St. Andrews, Scotland, UK, September
6-10, 2010. Proceedings, volume 6308 of Lecture Notes in Computer Science, pages 129–136.
Springer, 2010. doi:10.1007/978-3-642-15396-9_13.

4 Alberto Caprara, Mauro Dell’Amico, José Carlos Díaz Díaz, Manuel Iori, and Romeo Rizzi.
Friendly bin packing instances without integer round-up property. Math. Program., 150(1):5–17,
2015. doi:10.1007/S10107-014-0791-Z.

5 Ignacio Castiñeiras, Milan De Cauwer, and Barry O’Sullivan. Weibull-based benchmarks for
bin packing. In Michela Milano, editor, Principles and Practice of Constraint Programming
- 18th International Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012.
Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 207–222. Springer,
2012. doi:10.1007/978-3-642-33558-7_17.

6 François Clautiaux, Cláudio Alves, and José M. Valério de Carvalho. A survey of dual-feasible
and superadditive functions. Ann. Oper. Res., 179(1):317–342, 2010. doi:10.1007/S10479-0
08-0453-8.

7 Michele Collevati, Agostino Dovier, and Andrea Formisano. GPU parallelism for SAT solving
heuristics. In Roberta Calegari, Giovanni Ciatto, and Andrea Omicini, editors, Proceedings of
the CILC’22, volume 3204 of CEUR Workshop Proceedings, pages 17–31. CEUR-WS.org, 2022.

https://doi.org/10.1016/J.EJOR.2013.08.011
https://doi.org/10.1007/978-3-642-15396-9_13
https://doi.org/10.1007/S10107-014-0791-Z
https://doi.org/10.1007/978-3-642-33558-7_17
https://doi.org/10.1007/S10479-008-0453-8
https://doi.org/10.1007/S10479-008-0453-8

F. Tardivo, L. Michel, and E. Pontelli 28:17

8 Alessandro Dal Palù, Agostino Dovier, Andrea Formisano, and Enrico Pontelli. CUD@SAT:
SAT solving on GPUs. J. Exp. Theor. Artif. Intell., 27(3):293–316, 2015. doi:10.1080/0952
813X.2014.954274.

9 José M. Valério de Carvalho. Exact solution of bin-packing problems using column generation
and branch-and-bound. Ann. Oper. Res., 86:629–659, 1999. doi:10.1023/A\%3A10189521126
15.

10 Maxence Delorme, Manuel Iori, and Silvano Martello. Bin packing and cutting stock problems:
Mathematical models and exact algorithms. European Journal of Operational Research,
255(1):1–20, November 2016. doi:10.1016/j.ejor.2016.04.030.

11 Guillaume Derval, Jean-Charles Régin, and Pierre Schaus. Improved filtering for the bin-
packing with cardinality constraint. Constraints An Int. J., 23(3):251–271, 2018. doi:
10.1007/S10601-017-9278-X.

12 Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Parallel answer set programming.
In Youssef Hamadi and Lakhdar Sais, editors, Handbook of Parallel Constraint Reasoning,
pages 237–282. Springer, 2018. doi:10.1007/978-3-319-63516-3_7.

13 Agostino Dovier, Andrea Formisano, and Flavio Vella. GPU-Based Parallelism for ASP-Solving.
In Petra Hofstedt, Salvador Abreu, Ulrich John, Herbert Kuchen, and Dietmar Seipel, editors,
Declarative Programming and Knowledge Management, volume 12057 of Lecture Notes in
Computer Science, pages 3–23. Springer, 2019. doi:10.1007/978-3-030-46714-2_1.

14 Julien Dupuis, Pierre Schaus, and Yves Deville. Consistency check for the bin packing
constraint revisited. In Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, pages 117–122. Springer Berlin Heidelberg, 2010.
doi:10.1007/978-3-642-13520-0_15.

15 Emanuel Falkenauer. A hybrid grouping genetic algorithm for bin packing. J. Heuristics,
2(1):5–30, 1996. doi:10.1007/BF00226291.

16 Sándor P. Fekete and Jörg Schepers. New classes of fast lower bounds for bin packing problems.
Math. Program., 91(1):11–31, 2001. doi:10.1007/S101070100243.

17 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

18 Rebecca Gentzel, Laurent Michel, and W.-J. van Hoeve. HADDOCK: A language and architec-
ture for decision diagram compilation. In Lecture Notes in Computer Science, pages 531–547.
Springer International Publishing, Cham, 2020. doi:10.1007/978-3-030-58475-7_31.

19 Michel X. Goemans and Thomas Rothvoss. Polynomiality for bin packing with a constant
number of item types. J. ACM, 67(6):38:1–38:21, 2020. doi:10.1145/3421750.

20 Wen-Mei W Hwu, David B Kirk, and Izzat El Hajj. Programming Massively Parallel Processors:
A Hands-on Approach. Morgan Kaufmann, 2022. URL: https://shop.elsevier.com/books/
programming-massively-parallel-processors/hwu/978-0-323-91231-0.

21 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number
of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013. doi:10.1016/j.jcss.2012.04.004.

22 Richard E. Korf. A new algorithm for optimal bin packing. In Rina Dechter and Michael
J. Kearns andRichard S. Sutton, editors, Proceedings of the Eighteenth National Conference
on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial
Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada, pages 731–736. AAAI Press
/ The MIT Press, 2002. URL: http://www.aaai.org/Library/AAAI/2002/aaai02-110.php.

23 Alan K. Mackworth. Consistency in networks of relations. Artif. Intell., 8(1):99–118, 1977.
doi:10.1016/0004-3702(77)90007-8.

24 Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Inc., 1990.

25 Silvano Martello and Paolo Toth. Lower bounds and reduction procedures for the bin packing
problem. Discret. Appl. Math., 28:59–70, 1990. doi:10.1016/0166-218X(90)90094-S.

CP 2024

https://doi.org/10.1080/0952813X.2014.954274
https://doi.org/10.1080/0952813X.2014.954274
https://doi.org/10.1023/A%3A1018952112615
https://doi.org/10.1023/A%3A1018952112615
https://doi.org/10.1016/j.ejor.2016.04.030
https://doi.org/10.1007/S10601-017-9278-X
https://doi.org/10.1007/S10601-017-9278-X
https://doi.org/10.1007/978-3-319-63516-3_7
https://doi.org/10.1007/978-3-030-46714-2_1
https://doi.org/10.1007/978-3-642-13520-0_15
https://doi.org/10.1007/BF00226291
https://doi.org/10.1007/S101070100243
https://doi.org/10.1007/978-3-030-58475-7_31
https://doi.org/10.1145/3421750
https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0
https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0
https://doi.org/10.1016/j.jcss.2012.04.004
http://www.aaai.org/Library/AAAI/2002/aaai02-110.php
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1016/0166-218X(90)90094-S

28:18 CP for Bin Packing with Multi-Core and GPUs

26 L. Michel, P. Schaus, and P. Van Hentenryck. MiniCP: a lightweight solver for constraint
programming. Mathematical Programming Computation, pages 133–184, 2021. doi:10.1007/
s12532-020-00190-7.

27 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In Christian Bessiere,
editor, Principles and Practice of Constraint Programming - CP 2007, 13th International
Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume 4741
of Lecture Notes in Computer Science, pages 529–543. Springer, 2007. doi:10.1007/978-3-5
40-74970-7_38.

28 Nvidia Team. CUDA. URL: https://developer.nvidia.com/cuda-toolkit.
29 OpenMP Team. OpenMP. URL: https://www.openmp.org/.
30 François Pelsser, Pierre Schaus, and Jean-Charles Régin. Revisiting the cardinality reasoning

for binpacking constraint. In Christian Schulte, editor, Principles and Practice of Constraint
Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September 16-20,
2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 578–586. Springer,
2013. doi:10.1007/978-3-642-40627-0_43.

31 Jürgen Rietz, Cláudio Alves, and José M. Valério de Carvalho. Theoretical investigations on
maximal dual feasible functions. Oper. Res. Lett., 38(3):174–178, 2010. doi:10.1016/J.ORL.
2010.01.002.

32 Jürgen Rietz, Cláudio Alves, and José M. Valério de Carvalho. Worst-case analysis of maximal
dual feasible functions. Optim. Lett., 6(8):1687–1705, 2012. doi:10.1007/S11590-011-0359-2.

33 Khadija Hadj Salem and Yann Kieffer. An experimental study on symmetry breaking con-
straints impact for the one dimensional bin-packing problem. In Maria Ganzha, Leszek A.
Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2020 Federated Conference on
Computer Science and Information Systems, FedCSIS 2020, Sofia, Bulgaria, September 6-9,
2020, volume 21 of Annals of Computer Science and Information Systems, pages 317–326,
2020. doi:10.15439/2020F19.

34 Pierre Schaus. Solving Balancing and Bin-Packing problems with Constraint Programming.
PhD thesis, University of Louvain, 2009. URL: http://cp2013.a4cp.org/sites/default/fi
les/pierre_schaus_-_mr.pdf.

35 Pierre Schaus, Jean-Charles Régin, Rowan Van Schaeren, Wout Dullaert, and Birger Raa.
Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem. In
Michela Milano, editor, Principles and Practice of Constraint Programming - 18th International
Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings, volume
7514 of Lecture Notes in Computer Science, pages 815–822. Springer, 2012. doi:10.1007/97
8-3-642-33558-7_58.

36 Guntram Scheithauer. Introduction to Cutting and Packing Optimization. Springer Interna-
tional Publishing, 2018. doi:10.1007/978-3-319-64403-5.

37 Armin Scholl, Robert Klein, and Christian Jürgens. Bison: A fast hybrid procedure for exactly
solving the one-dimensional bin packing problem. Comput. Oper. Res., 24(7):627–645, 1997.
doi:10.1016/S0305-0548(96)00082-2.

38 Paul Shaw. A constraint for bin packing. In Principles and Practice of Constraint Programming
– CP 2004, pages 648–662. Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540-30201
-8_47.

39 Fabio Tardivo. Fzn-MiniCPP. URL: https://bitbucket.org/constraint-programming/f
zn-minicpp.

40 Fabio Tardivo. MiniCPP-Benchmarks. URL: https://bitbucket.org/constraint-program
ming/minicpp-benchmarks.

41 Fabio Tardivo, Agostino Dovier, Andrea Formisano, Laurent Michel, and Enrico Pontelli.
Constraint propagation on GPU: A case study for the AllDifferent constraint. Journal of Logic
and Computation, page exad033, June 2023. doi:10.1093/logcom/exad033.

https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://developer.nvidia.com/cuda-toolkit
https://www.openmp.org/
https://doi.org/10.1007/978-3-642-40627-0_43
https://doi.org/10.1016/J.ORL.2010.01.002
https://doi.org/10.1016/J.ORL.2010.01.002
https://doi.org/10.1007/S11590-011-0359-2
https://doi.org/10.15439/2020F19
http://cp2013.a4cp.org/sites/default/files/pierre_schaus_-_mr.pdf
http://cp2013.a4cp.org/sites/default/files/pierre_schaus_-_mr.pdf
https://doi.org/10.1007/978-3-642-33558-7_58
https://doi.org/10.1007/978-3-642-33558-7_58
https://doi.org/10.1007/978-3-319-64403-5
https://doi.org/10.1016/S0305-0548(96)00082-2
https://doi.org/10.1007/978-3-540-30201-8_47
https://doi.org/10.1007/978-3-540-30201-8_47
https://bitbucket.org/constraint-programming/fzn-minicpp
https://bitbucket.org/constraint-programming/fzn-minicpp
https://bitbucket.org/constraint-programming/minicpp-benchmarks
https://bitbucket.org/constraint-programming/minicpp-benchmarks
https://doi.org/10.1093/logcom/exad033

F. Tardivo, L. Michel, and E. Pontelli 28:19

42 Fabio Tardivo, Agostino Dovier, Andrea Formisano, Laurent Michel, and Enrico Pontelli.
Constraint propagation on GPU: A case study for the cumulative constraint. In André A.
Ciré, editor, Integration of Constraint Programming, Artificial Intelligence, and Operations
Research - 20th International Conference, CPAIOR 2023, Nice, France, May 29 - June 1, 2023,
Proceedings, volume 13884 of Lecture Notes in Computer Science, pages 336–353. Springer,
2023. doi:10.1007/978-3-031-33271-5_22.

43 Michael A. Trick. A dynamic programming approach for consistency and propagation for
knapsack constraints. Ann. Oper. Res., 118(1-4):73–84, 2003. doi:10.1023/A:1021801522545.

CP 2024

https://doi.org/10.1007/978-3-031-33271-5_22
https://doi.org/10.1023/A:1021801522545

Mutational Fuzz Testing for Constraint Modeling
Systems
Wout Vanroose #

DTAI, KU Leuven, Belgium

Ignace Bleukx #

DTAI, KU Leuven, Belgium

Jo Devriendt #

DTAI, KU Leuven, Belgium

Dimos Tsouros #

DTAI, KU Leuven, Belgium

Hélène Verhaeghe #

DTAI, KU Leuven, Belgium

Tias Guns #

DTAI, KU Leuven, Belgium

Abstract
Constraint programming (CP) modeling languages, like MiniZinc, Essence and CPMpy, play a
crucial role in making CP technology accessible to non-experts. Both solver-independent modeling
frameworks and solvers themselves are complex pieces of software that can contain bugs, which
undermines their usefulness. Mutational fuzz testing is a way to test complex systems by stochastically
mutating input and verifying preserved properties of the mutated output. We investigate different
mutations and verification methods that can be used on the constraint specifications directly. This
includes methods proposed in the context of SMT problem specifications, as well as new methods
related to global constraints, optimization, and solution counting/preservation. Our results show
that such a fuzz testing approach improves the overall code coverage of a modeling system compared
to only unit testing, and is able to find bugs in the whole toolchain, from the modeling language
transformations themselves to the underlying solvers.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases fuzz testing, Constraint modeling language, bugs, mutational testing, model-
ing, constraint reformulation

Digital Object Identifier 10.4230/LIPIcs.CP.2024.29

Supplementary Material Software: https://github.com/CPMpy/fuzz-test
archived at swh:1:dir:2da6f1206cfd0e1e23c66548ea83f455bafc569c

Funding This research received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (Grant No. 101002802, CHAT-
Opt).

1 Introduction

Constraint solving is a declarative AI reasoning technique that is used in a variety of high-
stakes applications ranging from scheduling production lines [19] to automated verification
of computer programs [21] and aerospace applications [34]. All of these applications require
constraint solvers to provide correct and reliable solutions to the constraint specifications.

© Wout Vanroose, Ignace Bleukx, Jo Devriendt, Dimos Tsouros, Hélène Verhaeghe, and Tias Guns;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 29; pp. 29:1–29:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wout.vanroose@kuleuven.be
https://orcid.org/0009-0004-8945-0442
mailto:ignace.bleukx@kuleuven.be
https://orcid.org/0000-0001-7810-8351
mailto:jo.devriendt@kuleuven.be
https://orcid.org/0000-0002-6346-3665
mailto:dimos.tsouros@kuleuven.be
https://orcid.org/0000-0002-3040-0959
mailto:helene.verhaeghe@kuleuven.be
https://orcid.org/0000-0003-0233-4656
mailto:tias.guns@kuleuven.be
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2024.29
https://github.com/CPMpy/fuzz-test
https://archive.softwareheritage.org/swh:1:dir:2da6f1206cfd0e1e23c66548ea83f455bafc569c;origin=https://github.com/CPMpy/fuzz-test;visit=swh:1:snp:6980ff6c626540ef8e7fce03449d65bb48598b78;anchor=swh:1:rev:38ef9993efe62a738387e9aa621b239be30d3ee0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Mutational Fuzz Testing for Constraint Modeling Systems

To leverage the power of modern constraint solvers, it is common for users to write down
the problem specification in a high level, declarative constraint modeling language such as
MiniZinc [26], XCSP [33], Essence [2] or CPMpy [17]. These modeling languages play a
fundamental role in enabling the wider adoption of CP technology across various domains as
they provide high-level, expressive, and intuitive methods for users to define complex problem
constraints. They offer an abstraction from the details of encoding high-level constraints
into the specific constraints supported by a solver, allowing users to focus on the problem at
hand rather than the specifics of the solvers.

Modeling systems then reformulate the high-level user-constraints into solver-specific
expressions such as clauses, linear constraints or unnested global constraints. For this,
the code base of modeling systems typically contains multiple reformulation and encoding
algorithms.

Modeling systems are also made more complex by optimizations such as Common
Subexpression Elimination (CSE) [27, 28, 30], used to reduce the number of generated low-
level constraints. In some cases, these transformations are mixed-and-matched in different
ways for different solvers.

Like all complex software, modeling systems and constraint solvers can contain bugs. In
the case of modeling systems, bugs can cause a range of undesired behavior: from experiencing
crashes of the system itself to returning an invalid or non-optimal solution to the constraints
stated by the user. Especially the latter can have a major impact on the user and the
application at hand. Moreover, it can also decrease the trust of users towards the underlying
solving techniques.

To mitigate the number of bugs in computer programs, it is good practice to use some
kind of automated testing during software development. Unit testing [13] is such a technique
to test isolated parts of the code using small test cases. While unit testing is very useful to
verify the intended behavior of a program, it is time-consuming for developers to write as it
necessitates testing for both expected and unexpected inputs. Therefore, tricky edge cases
may be overlooked when designing the test suite. In constraint solving, this is especially the
case for non-trivial combinations of constraints that share variables.

Fuzz testing is a family of techniques that automatically test computer programs on
randomly constructed inputs. These techniques can either be generation-based or mutation-
based: the former generates input from scratch, while the latter uses existing inputs and applies
mutations to them in order to construct a valid new input. Fuzz testing has proved to be
extremely successful in finding bugs in a variety of computer programs: from testing Android
apps [43], to crashes of Unix command-line utilities [25], and SMT solvers [23, 42]. Although
fuzz testing has been used to test several solver-specific algorithms such as propagation
routines [3, 10, 23, 29, 42], it has not yet been applied to solver-independent constraint
modeling languages, despite their rapid development in recent years.

In this paper, we draw inspiration from systems such as STORM [23] and YinYang [42]
tailored to test SMT solvers, and propose HURRICANE, a method to use mutational fuzz
testing for generic constraint modeling systems. The input that will be mutated in this case,
are entire CP constraint specifications.

New opportunities for fuzz testing arise, because of the rich constraint specification
that CP modeling languages allow. These include the use of global constraints and their
decompositions [38], the use of n-ary aggregate functions, the possibility of arbitrarily nested
expressions (even global constraints) that may require flattening, the use of objective functions,
and the changing transformation flows that are used for different available backend solvers.

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:3

Our contributions are the following:
1. We propose a generic, mutation-based, automated testing framework, HURRICANE, for

verifying the correctness of solver-independent CP modeling languages and their solvers;
2. We investigate the use of 3 families of mutations; as well as 5 methods to verify the

mutated models do not contain bugs; and
3. We evaluate HURRICANE by mutating and testing CP problems modelled in the CPMpy

constraint modeling system [17], and show its effectiveness at finding bugs in the system
itself as well as its underlying solvers.

2 Related work

Automated testing of computer programs finds its roots in unit testing [13]. A unit test
consists of a small use case of a part of the software as envisioned by the developers. The
technique was made popular by the JUnit testing framework in Java [36].

In recent years, researchers have studied ways to automatically synthesize unit tests in
order to improve code coverage of the test suite [22]. Code coverage quantifies the number of
lines of code in a program that is executed by a (set of) tests. While this is not a foolproof
metric [40], it is a reasonable proxy to evaluate how thoroughly a system is tested.

Fuzz testing has been used in combinatorial solving before. An early form of testing
SAT-solvers uses generation-based techniques [11], and more recently, several solvers who
entered the 2022 edition of the Max-SAT competition were subjected to fuzz testing [29]. In
the field of CP, generation-based fuzz testing has already been adopted as an automatic testing
technique for solvers. For example, the propagation algorithms present in the MINION
solver have been automatically fuzz tested throughout its development [3]. The input used
for testing such propagation routines is a randomly generated set of constraints within the
relatively simple grammar supported by the solver. The output of the solver is verified
using simpler, but equivalent algorithms. A hybrid approach between fuzzing and formal
specifications for testing CP solvers has also been used by the SolverCheck system [14].

Compared to the API of a constraint solver, CP modeling languages allow for a much
richer set of expressions to be written down by a user (e.g., nested constraints). This
makes stochastic generation of inputs more complex [35], hence we turn our attention to
mutational fuzz testing techniques that mutate existing constraint specifications. The idea of
mutating constraint specifications has previously been explored for satisfiability checking
SMT solvers [23, 42, 9]. These techniques can generate deeply nested expressions in the
language that SMT solvers natively accept as input. While also applicable to high-level
constraint modeling languages, we propose new mutations and verification methods based on
the richer input CP modeling languages allow.

Finally, a very different kind of technique to detect bugs in combinatorial solvers is
through the use of proof logging. Proof logging requires a system to write down the result of
its algorithms as relatively simple mathematical reasoning steps. Such proofs are then verified
automatically by a third-party checker [15, 16, 18]. SAT solvers are required to output proof
logs (mathematical search certificates) in order to enter the yearly SAT competition1. In
recent years, proof logging has successfully found its way to other combinatorial search
algorithms such as those used in (Max-)SAT-, ASP-, SMT- and CP [4, 5, 8, 24, 31, 39].
However, proof logging for now remains a low-level technique that is not directly applicable
to algorithms that translate any high-level expressions into multiple equivalent low-level
solver constraints.

1 https://satcompetition.github.io/

CP 2024

https://satcompetition.github.io/

29:4 Mutational Fuzz Testing for Constraint Modeling Systems

3 Preliminaries

A Constraint Satisfaction Problem (CSP) is a triple (X ,D, C) [32] with
X a set of decision variables;
D a set of domains of values for each variable in X ;
C a set of constraints, each over some subset of X .

An assignment maps variables in X to a value in their domain. A constraint maps
assignments to true or false. An assignment satisfies a constraint if the constraint maps it to
true. We make no assumption on the structure of a constraint, that is, it can be a nested
expression as we will see below. A solution to a CSP is an assignment for all variables in
X that satisfies all constraints in C. The set of solutions of a set of constraints, projected
to a set of variables X is written as solsX (C). E.g., given the following set of constraints
C = {p + q + z ≤ 2, p < q} and positive domains for p, q and z, we observe the following sets
of solutions:

sols(C) = {{p 7→ 0, q 7→ 1, z 7→ 0}, {p 7→ 0, q 7→ 1, z 7→ 1}, {p 7→ 0, q 7→ 2, z 7→ 0}}
sols{p,q}(C) = {{p 7→ 0, q 7→ 1}, {p 7→ 0, q 7→ 2}}

A CSP allowing no solutions is unsatisfiable. In CP it is common to use an objective
function to quantify the quality of a solution. A Constraint Optimization Problem (COP) is
a quadruple (X ,D, C, f) with f a function that maps assignments to a numeric value. An
optimal solution is a solution to the COP such that no solution exists with a lower/higher
objective value for minimization/maximization problems.

It is common to use the term constraint network for what we call a CSP. A CSP would
then be the problem of finding solutions to the constraint network. In this paper we will use
the term CSP for both. In the context of constraint modeling languages, a CSP could be
called a model, we use these terms interchangeably.

Global constraints are one of the essential features of constraint programming and capture
high-level relations between a (non-fixed) number of variables [38]. Well-known examples of
global constraints are the AllDifferent [37] constraint or the Cumulative [1] constraint.
More examples can be found in the global constraint catalog [6].

Typically, constraints and objectives are represented by expressions in some formal syntax.
E.g., the constraint ¬AllDifferent(x1, x2 + x3, Max(x4, 0)) maps those assignments to
true where x1, x2 + x3, and the maximum of x4 and zero do not all take different values.
Equivalently, constraints can be inductively defined as expression trees. Its leaf nodes are
variables or values. Its non-leaf nodes are formed by applying operators, global constraints,
functions, and comparisons to other expressions. The expression tree representing the
previously mentioned complex expression is shown in Figure 1a.

¬

AllDifferent
x1 +

x2 x3

Max
x4 0

(a) Expression tree.

¬b1

b1 ↔ AllDifferent(x1, n1, n2)
n1 = x1 + x2

n2 = max(x4, 0)

(b) Flattened version.

Figure 1 Expression tree and flattened version of ¬AllDifferent(x1, x2 + x3, Max(x4, 0)).

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:5

3.1 Solvers and modeling systems

CSPs are solved by constraint solvers: highly optimized combinatorial search systems that
accept a set of constraints and return (optimal) solutions or report that none exist. Constraint
solvers do not accept arbitrary expression trees as constraints. Instead, they have a restricted
input and rarely a solver would accept a complex expression like the one given in Figure 1a
as an input constraint.

Instead of having to manually transform a problem to the format of each solver, a model
and solve approach is used, where a user specifies the constraints in an expressive, high-level
modeling language. Then, an underlying compiler translates these constraints to simpler,
low-level constraints that are passed to a solver. The translation involves multiple complex
transformation steps, with flattening (unnesting of nested expressions) and global constraint
decomposition (decomposition of unsupported global constraint) as notable examples [30].
Because different solvers can accept different inputs, distinct transformation paths are
necessary for different solvers. When using MIP solvers, the constraints have to be linearised
into mixed integer linear inequalities [7], for SAT solvers only propositional clauses should
be left, or for CP solvers non-nested constraints over variables, where globals constraints
that are not supported are decomposed. Note that such transformations, like flattening, can
introduce auxiliary variables, that are not visible to the user but necessary for obtaining an
equivalent set of constraints that the solver accepts. When presenting a solution to the user,
the solution the solver found has to be projected back to the original variables that the user
knows about.

▶ Example 1 (Flattening). In Figure 1b, we show the flattened version of the expression
¬AllDifferent(x1, x2 + x3, Max(x4, 0)). The flat output is constructed by traversing the
expression tree in Figure 1a and introducing auxiliary variables n1, n2 and b1 for every non
leaf-node. n1 and n2 are numerical variables while b1 is Boolean. Additional transformations
might be needed, depending on the constraints supported by a solver.

3.2 CPMpy

As a concrete modeling system, we will use CPMpy [17], a constraint modeling library
embedded in the Python programming language. It translates high-level expressions written
by a user, to different constraint solvers using a sequence of generic transformations. A list
of these internal transformation can be found in Appendix B. Multiple solvers are supported,
including CP, SAT, MIP, SMT and Pseudo-Boolean solvers.

CPMpy’s input language allows arithmetic operations (+,−, /,× . . .), comparisons (=
, ̸=, <, >,≤,≥), logical operations (¬,∧,∨,→,⊕), functions (Max, Count, Abs . . .) and
global constraints (AllDifferent, Cumulative . . .). Expressions in CPMpy are either
of Boolean or integer type. With B we denote the Boolean expressions, with N the integer
ones. Any Boolean expression in CPMpy can also be used as an integer expression (with
true treated as 1 and false as 0). In other words, B ⊆ N .

CPMpy allows users to arbitrarily nest expressions. For example, a disjunction can be
used as a constraint or as an argument to an operator, a function or even a global constraint.
Similarly, global constraints can be arbitrarily nested and used as any Boolean expression.
E.g., Max(10 · Circuit(x1, x2, x3), x1/x4) ̸= 7 is a valid CPMpy expression. Therefore,
we avoid the use of the word “constraint” to represent a Boolean expression, as such a
Boolean expression might be used as a subexpression instead. We use the concept of top-level
expression to denote that the expression was given to the solver as a constraint.

CP 2024

29:6 Mutational Fuzz Testing for Constraint Modeling Systems

4 Mutational testing

We now introduce HURRICANE, a framework for mutational fuzz testing of constraint
modeling systems, inspired by the STORM [23] and YinYang [42] systems for testing SMT-
solvers. A high-level overview is shown in Algorithm 1.

Algorithm 1 HURRICANE.

Input: set of m CSP models {(Xj ,Dj , Cj)}, set of mutations M, a verification
method V and n, a number of mutations to apply to each instance

1 while true do
2 (X ,D, C)← pick an instance from the input set
3 for i = 1 . . . n do
4 M ← pick a mutation from M
5 C ← C ∪M(C)
6 if V(C) does not succeed then
7 yield bug with constraints C

Our method takes as input a set of m constraint satisfaction or optimization problems
that are known to be satisfiable. In each iteration of the algorithm, we randomly pick
one of the models and apply a number of mutations to its constraints. A mutation is a
function M that takes as input a set of constraints and outputs a set of new constraints
M(C). We investigate different mutations in Section 5. These newly generated constraints are
then added to the model. Notice this allows to generate weaker constraints without altering
the set of solutions of the model. After applying these mutations, we verify whether the
resulting set of constraints satisfies certain properties, e.g., whether the mutated model is
still satisfiable. Whenever this check fails, the algorithm has found a bug in the system and
this is logged to the user. Section 6 discusses the methods that can be used in order to verify
the mutated models. When a verification step fails, we know there is a bug somewhere in
the system. However, because the system consists of different components (internal CPMpy
transformations, solver interfaces, backend solvers, the mutations and the verification step),
further investigation will be required to identify which part contains the bug.

As our algorithm involves several random components, it is common to (re-)discover the
same error or bug with multiple combinations of mutations. In an attempt to minimize this
to some extent, we exclude any mutation-model combinations which have already produced
a bug, without showing this explicitly in the pseudocode.

Input models

To construct a varied dataset of feasible input models, we extract the constraint models
used for the unit tests of the given modeling language. We only use those that have at
least one constraint, and at least one solution, since our verification step will rely on this.
From a practical point of view, this is useful as unit test models are readily available and
kept up-to-date. Many of models used in unit tests also tend to be small and fast to solve.
Moreover, unit tests are highly diverse and it is reasonable to assume these models will
contain all language constructs (such as global constraints and functions). Finally, additional
test cases are often added to the unit tests as part of a bug-fix, hence a fix is tested more
rigorously by applying fuzz testing on the newly added test-model too.

Throughout this paper we use the following input model as a running example.

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:7

▶ Example 2 (Running example). Consider the following constraint satisfaction problem with
integer variables x, y, z, p and q with domains [1..5] and a Boolean variable b.

AllDifferent(x, y, z), y + Min(p, q) > 3, 2 · (x + p) ≤ 7

5 Mutations

We consider three families of mutations. The first of which is based on the reformulation
methods built into constraint modeling systems such as flattening, or linearization of con-
straints. Second, we focus on top-level mutations which combine existing top-level expressions
to create a new expression, and lastly, we consider sub-expression-level mutations which can
replace nodes at arbitrary depth in the expression tree. All of these mutations generate
constraints which do not disallow any of the solutions of the original constraints. Because
we also leave the original constraints in the mutated model (see Algorithm 1), this means
the set of solutions projected to the original variables should remain unchanged after any
mutation. This property of our mutations is exploited in Section 6 to verify the output of
the modeling system after mutating the constraint model.

5.1 Reformulation mutations
Constraint modeling systems implement reformulation methods in order to rewrite constraints
into semantically equivalent ones. For example, when a modeling system interfaces a MIP
solver, it implements some procedure to linearize constraints. That is, to rewrite any
constraint into weighted sums and linear comparisons. Similary, CP modeling systems
decompose unsupported global constraints or flatten complex expression trees.

CPMpy provides this functionality as standalone transformation functions which take
as input a set of constraints and output a set of (simpler) constraints that imply the input
constraints2. As these transformations are supposed to create sets of constraints that leave
the solutions of the CSP unaltered, we can directly use each of them as a candidate mutation
in the mutational testing framework. By re-using these transformation functions, we are
able to test these core components of the modeling language on a wide range of expressions,
even if the backend solver does not require that specific transformation. The full list of the
transformation functions used and their description can be found in Appendix B.

5.2 Top-level mutations
The first set of mutations we use in our framework is based on logical operations with the
main idea being the following: given two Boolean expressions from the top-level of the
constraint model, combine them to create an implied expression. As both input expressions
will be enforced to be satisfied by the constraint solver, the newly generated expressions do
not alter the set of solutions when added to the model and can be considered redundant from
a logical point of view.

We compile a set of top-level mutations as summarized in Section 5.2. They are inspired
by the mutations described in [23] and derived from the truth table of the logical operation
relation whose name is shown as subscript in the function descriptions below. We repeat

2 https://github.com/CPMpy/cpmpy/tree/master/cpmpy/transformations

CP 2024

https://github.com/CPMpy/cpmpy/tree/master/cpmpy/transformations

29:8 Mutational Fuzz Testing for Constraint Modeling Systems

that these operations are only done on top-level constraints, so they are all implied under
the condition of a∧ b being enforced. Hence, all these constraints can be added to the model
without changing the set of solutions.

Mneg(a) = {a,¬(¬a)} (1a)
Mconj(a, b) = {(a ∧ b),¬(a ∧ ¬b),¬(¬a ∧ b),¬(¬a ∧ ¬b)} (1b)
Mdisj(a, b) = {(a ∨ b), (a ∨ ¬b), (¬a ∨ b),¬(¬a ∨ ¬b)} (1c)

Mimpl(a, b) = {(a→ b), (¬a→ b), (b→ a), (¬b→ a),
¬(a→ ¬b), (¬a→ ¬b),¬(b→ ¬a), (¬b→ ¬a)} (1d)

Mxor(a, b) = {(a⊕ ¬b), (¬a⊕ b),¬(a⊕ b),¬(¬a⊕ ¬b)} (1e)

Note that we add all these constraints as is, e.g. we do not simplify ¬(a∧¬b) to (¬a∨ b) but
leave this expression for future mutations to manipulate further, and for the transformations
and solvers to handle correctly.

Our proposed mutation will randomly pick one of the above mutations and add the
corresponding sets of implied constraints to the model.

▶ Example 3. Given the constraint model shown in Example 2. Imagine HURRICANE
selects the constraints a := AllDifferent(x, y, z) and b := Min(p, q) > 3 and the top-level
mutation derived from the disjunction operator, Mdisj . Then the following set of constraints
is generated and added to the model, resulting in a CSP with seven constraints.

{(AllDiff(x, y, z)) ∨ (2 · (x + p) ≤ 7), ¬
(
¬AllDiff(x, y, z) ∨ ¬(2 · (x + p) ≤ 7)

)
,

(¬AllDiff(x, y, z)) ∨ (2 · (x + p) ≤ 7), (AllDiff(x, y, z)) ∨ ¬(2 · (x + p) ≤ 7)}

5.3 Subexpression mutations
The mutations described in the previous section operate on top-level Boolean expressions.
However, we can also modify the expression trees themselves by replacing any of the nodes
(e.g. an argument of an expression) with an equivalent one. Such modified expression trees
may trigger different code paths, for example during flattening if the modified argument was
a variable and is now a nested expression instead.

In order to find a set of subexpressions to use for the mutation, we first recursively traverse
the expression tree of each of the top-level constraints. Whenever we find a (sub)expression
of the required type – e.g., a numeric subexpression/argument – we add that subexpression
to the set of candidates to sample from. Once this set of candidate expressions is found, we
sample the required amount of expressions to use in the mutation. In the remainder of this
section we discuss two types of subexpression mutations.

Semantic fusion

As a way to combine numeric sub-expressions, semantic fusion was introduced in the context
of testing SMT-solvers [42]. The key idea is to fuse two expressions and create an auxiliary
variable for it, and then replace the original expressions with an equivalent one involving
that variable.

In general, semantic fusion requires a fusion function f(a, b) which takes as input two
numeric expressions; an auxiliary variable v and two inversion functions ra(v, b) and rb(v, a).
We can then mutate constraints in which a and b occur, by replacing the occurrences of a

and b by their now equivalent ra(v, b) and rb(v, a) expressions.

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:9

▶ Example 4. We sample two numeric subexpressions from the CSP given in Example 2. For
example, we take a := Min(p, q) and b := 2 · (x + p), which are sampled from the second and
third constraint in the CSP respectively. Using the fusion function f(a, b) = a + b, we now
define a new auxiliary variable v to link the new fused expression as v = Min(p, q)+2 · (x+p).
We can now define a relation from a to b and vice versa involving the auxiliary variable. E.g.,
we replace Min(p, q) with v− 2 · (x + p) and the occurrences of 2 · (x + p) with v−Min(p, q).

This yields the two constraints y + (v − 2 · (x + p)) > 3 and v −Min(p, q) ≤ 7 which are
then added to the model.

Multiple operations can be used for the fusion function, even Boolean operators (in which
case boolean sub-expressions should be selected), though an appropriate inverse function must
exist. For example f(a, b) = a ∨ b and f(a, b) = a ∧ b do not allow constructing appropriate
inversion functions. In practice, we make use of the fusion functions shown in Table 1.

Table 1 Functions which can be used in semantic fusion of arithmetic expressions.

Origin Fusion Function Inverse Functions

Sum f(a, b) = a + b
ra(v, b) = v − b

rb(v, a) = v − a

Weigthed sum f(a, b) = c1 · a + c2 · b + c3
ra(v, b) = (v − c2 · b − c3)/c1

rb(v, a) = (v − c1 · a − c3)/c2

Substract f(a, b) = a − b
ra(v, b) = v + b

rb(v, a) = a − v

Equivalent comparisons

The second type of subexpression mutators generates equivalent comparisons. This is done
by selecting a random comparison in the expression tree of the constraint model and applying
the same operation to both its sides. These operations can either add a constant, subtract
a constant or apply multiplication by a constant. The constant itself is picked at random.
Although this mutation is based on a straightforward idea, we did not find any mention of it
in literature.

▶ Example 5. Imagine the algorithm picks the second constraint of the running Example 2:
y + Min(p, q) > 3 and the multiply by a constant mutator. If the constant used is “5”, then
applying the mutation results in the expression 5 · (y + Min(p, q)) > 5 · 3.

Depending on the exact grammar allowed by the modeling language, the same could in
principle be done with a fresh variable or even an existing numeric subexpression from
another constraint, but in this case we just use an integer constant.

6 Verification methods

To detect whether a bug has occurred, we need to verify that certain properties hold for
the mutated constraints. In fuzz testing for SMT research [9, 23, 42], the authors check
if, after mutations, the model still admits a solution. However, more elaborate checks are
possible as well. In particular, as the mutations presented in Section 5 should not alter the
set of solutions projected to the original variables. The verification methods presented in
the following sections are all methods which check whether indeed this set of solutions is
preserved. Different trade-offs between efficiency, code coverage, and thoroughness of the
verification present themselves. We compare and evaluate them experimentally in Section 9.

CP 2024

29:10 Mutational Fuzz Testing for Constraint Modeling Systems

6.1 All-solutions
A first method to check whether the set of solutions is unchanged is to enumerate the solutions
of the original model and those of the mutated model and checking for equivalence of solution
sets. Some of the mutations presented in Section 5 can introduce auxiliary variables. E.g.,
semantic fusion introduces a fusion variable but also the built-in reformulations such as
flattening can introduce new variables into the model. Therefore, in order to compare both
sets of solutions, we need to project them to the original set of decision variables X . I.e.,
this verification method checks whether the following equivalence holds:

solsX (C) ≡ solsX (C ∪M(C))

Note that enumeration of all solutions is a costly operation – #P-complete in general [12] –
but solvers oftentimes have built-in methods for doing so. CPMpy implements enumeration
of all solutions using the solveAll function. This in turn calls the built-in enumeration
method of the solver if available, otherwise it implements the enumeration using repeated
solve calls and blocking clauses. Clearly, using this verification method does not only allow
for a theoretically strong verification of the mutations, but can also trigger different code
paths in either the modeling system or the solver itself.

6.2 Solution count
Apart from checking whether projected sets of solutions are equivalent, we also want to
check whether new solutions are introduced by the mutations, with respect to auxiliary
variables. E.g., if a mutation introduces an unconstrained Boolean auxiliary variable, the
total number of solutions will be doubled. While this behaviour is unwanted for any of
the mutations presented in this paper, it is undetected by the All-solutions verification
method as the sets of solutions are projected to the original variables. This is however not
the case when counting the number of solutions without enumerating them, because this
count is provided by the back-end solver that operates on the model with auxiliary variables.
Therefore, we propose to also check whether the total number of solutions of the mutated
model is unchanged to the original number of solutions. I.e., we check whether whether

|sols(C)| ≡ |sols(C ∪M(C))|

Similar to enumeration of all solutions, counting solutions is also a costly operation, but
may trigger new code paths in modeling systems or solvers. Note that solution counting and
checking equivalence of projected solutions sets are complementary to one another. While
solution counting discovers bugs related to auxiliary variables, All-solutions can discover
bugs related to assigned values of the decision variables.

6.3 1-solution
Instead of checking whether all solutions remain for the mutated constraints, we can check
whether a predefined solution is preserved by the mutations. Conceptually, we check for a
given solution θ whether

θ ∈ sols(C ∪M(C))

In practice, we implement this by adding the assignment of a pre-computed solution to
the set of mutated constraints and asking the solver if the resulting constraints are satisfiable.
E.g., for the CSP from Example 2, we can test if after mutation of the constraints, the
assignment {b 7→ false, x 7→ 2, y 7→ 3, z 7→ 1, p 7→ 2, q 7→ 1} is still a solution of the CSP.

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:11

Notice that checking satisfiability can be extremely fast here, as the solver does not
require any search when all variables are fixed! Naturally, finding a solution for the original
CSP requires invoking a solver nevertheless.

6.4 Satisfiability

A weaker verification method than checking whether a computed assignment is a solution of
the mutated model, is to check whether the mutated model admits a solution at all. This
verification method is similar to the work on fuzz testing SMT-solvers [9, 23, 42]. Naturally,
this check does not detect subtle changes in the set of solutions of the mutated model, but
rather checks if the sets of solutions is non-empty.

6.5 Optimization

In constraint programming, it is common to use an objective function in order to quantify
the quality of a solution. E.g., when scheduling a set of tasks on a machine, it is common to
find a schedule which runs in the least amount of time or requires the smallest amount of
energy. When such an objective function is set in a constraint model, we can check whether
solving the mutated model to optimality yields the same objective value.

This verification is conceptually stronger compared to checking the satisfiability of the
model, and solving to optimality will trigger different code paths. There are two disadvantages:
First, it requires the existence of an objective function in the model and second, finding an
optimal solution to a CSP is harder than finding any satisfying solution to the constraints, and
hence will take more time compared to checking the satisfiability of the mutated constraints.

7 Dealing with bugs

Computer programs can exhibit several types of bugs. Similar to the authors of [23], we
define three classes of bugs that occur in constraint modeling systems. Section 7.1 discusses
errors in the logic of modeling systems and solvers, while Section 7.2 and Section 7.3 focus
on bugs which impact the runtime environment of modeling systems. Lastly, in Section 7.4,
we discuss a practical method to minimise bugged models.

7.1 Soundness bugs

The first type of bug are those where the modeling system returns a wrong answer to a
verification check from Section 6. Such bugs are critical as the user is given a wrong answer
to the constraints, without any indication that something went wrong, like an error message.
E.g., the solver returns a non-optimal solution to an optimization problem or declares a set
of constraints to be unsatisfiable when in fact they admit a solution.

Soundness bugs can be caused by either the solver itself, or by the modeling system. For
example, when a solver’s propagation function for a (global) constraint removes values from
a domain which allowed a solution, the root-cause of the bug lies with the solver.

When the bug is caused by the modeling system this could be due to a flawed interface
to the solver or an improper reformulation of the constraints.

Overall, soundness bugs are critical but difficult to detect in day-to-day use of a modeling
language, as this usage rarely includes verifying the result in a later stage.

CP 2024

29:12 Mutational Fuzz Testing for Constraint Modeling Systems

7.2 Crashes
During the execution of HURRICANE, it is possible the runtime of the modeling system
crashes. We identify two main points of possible failure: applying a mutation and verifying
the mutated model.

We noticed crashes or errors occurring during the mutation of set of constraints are often
triggered when a reformulation mutation is chosen. For example, during linearization of a set
of constraints, an assertion error was thrown because certain edge cases were not covered.

When a crash occurs during verification of the set of mutated constraints, this can
be caused by either the backend solver or the modeling system. For example, during the
development of our tool, a crash in a solver was caused by an integer overflow error – causing
the solver to return an error message. An example when CPMpy was identified to be the
cause of a crash happened when one of the interfaces to a solver did not implement all
primitive constraints properly.

Most crashes are easy to detect in the day-to-day use of modeling systems as a user
always receives an error message. Still, the severity of a crash can vary widely as it mostly
depends on how the system is used. E.g., when the modeling system crashes when used in
an integrated system of a manufacturing plant, the crash has likely far greater implications
compared to when it is used in an interactive session.

7.3 Performance issues
The last type of bugs we identified are related to the performance and efficiency of the library.
For example, when we verify whether the mutated model satisfies at least one solution,
the time it takes for the modeling system to receive an answer from the solver may be
significantly higher compared to the original model. This can again have several reasons
caused by either the modeling system or the solver. For example, the mutated model may
contain global constraints which get decomposed in a particularly inefficient way when nested
by HURRICANE. Sometimes, either the solver or modeling system may even get stuck in an
infinite loop! In practice we overcome this by setting a hard time-limit on the call to the
verification method. Naturally, this may trigger false-positives as the mutated model may
simply be harder to solve due to the surplus in variables and constraints. Still, we log these
bugs as it may uncover interesting inefficiencies in the code.

7.4 Minimizing buggy models
The mutations defined in this paper can result in very large and deeply nested constraint
models. However, often only a (small) subset of the constraints are the root cause of the
bug. In our work, we utilize a simple deletion-based method that iteratively removes a single
constraint from the model as long as the remaining model exhibits the bug. This method
is similar to delta-debugging and is often used in combination with fuzz testing [44]. It
should be noted that a crash of the system often gives some sort of message pointing to
the expressions that caused the crash. Therefore, we deem delta debugging to be especially
useful when dealing with a soundness bug.

Another way to simplify the debugging process is by automatically detecting bugs that
are already identified. HURRICANE will keep logging a bug until it is fixed, so the same bug
will be logged many times over. A first way to find out which of the bugged models are cause
by Bug X, is to fix Bug X and then simply check which buggy models do no longer exhibit a
bug. It’s of course not always possible to quickly fix a bug, even after it is identified. We
then turn to matching the error messages and location of the error in the code, as well as

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:13

the input model or transformation that lead to the bug. For soundness bugs we can compare
the results of multiple solvers to see if they match. This is enough information to confidently
categorise most bugs in a semi-automated process.

8 Summary of found bugs

We coded up HURRICANE in Python 3.11 for CPMpy using the mutations and verification
methods described previously. During development, which covers a period of about 1.5 years,
we discovered 52 unique bugs in total. This includes 19 bugs found in CPMpy during
a master thesis that preceded this work [20]. Out of all bugs discovered, 13 bugs where
soundness bugs, 5 of which had their origin in backend solvers. In particular, we found 2
soundness bugs in the OR-tools solver and three in the MiniZinc system. The vast majority
of bugs (29) were crashes of the CPMpy runtime environment. One of these crashes was
traced back to a backend solver crashing. Lastly, we found three performance issues, one of
which was again found in a backend solver.

Out of these 52 bugs, 14 remained at the time of the experiments described in the next
section: 6 bugs in backend solvers and 8 in CPMpy. We shortly discuss these bugs in
Appendix A. Full experimental data is also shown there.

9 Experimental evaluation

In this section, we investigate each of the components of our fuzz testing framework. In
particular, we aim to answer the following experimental questions:
EQ1. What are the tradeoffs between increasing the number of mutations on each model

and increasing the number of models being tested?
EQ2. How effective are the different verification methods for finding bugs in constraint

modeling systems?
EQ3. To what extend does fuzz testing improve the overall coverage of tested code, compared

to CPMpy’s builtin suite of unit tests?

We configure HURRICANE to use different numbers of mutations and different types of
verification methods. We test each of the five verification methods described in Sections 6.4 -
6.5 separately. For each of the verification methods, we employ four numbers of mutations
applied to the input model before verification: n = {1, 2, 5, 10}. As backend solvers, we test
the OR-Tools CP-SAT solver v.9.9 and MiniZinc v.2.8.3 with Gecode version 6.3.0. This
combination of settings results in a total of 40 configurations, each of which was ran for 10
hours on an Ubuntu 20.04.6 LTS machine with an Intel Core i7-2600 CPU@3.40Ghz and
16GB of RAM. During these experiments, we keep track of which lines in CPMpy’s code-base
are executed using the coverage utility in Python.

We used 1240 constraint models as input, 7 of which are optimization problems. As
discussed in Section 4, the models were extracted from the unit tests of CPMpy3. In the
following sections, we aggregate the results of the above evaluation in order to answer the
experimental questions.

3 all code and input data can be found at https://github.com/CPMpy/fuzz-test

CP 2024

https://github.com/CPMpy/fuzz-test

29:14 Mutational Fuzz Testing for Constraint Modeling Systems

9.1 EQ1: effect of number of mutations
In this first experiment, we investigate the influence of the number of mutations (n) used
in Algorithm 1 before verifying the mutated models. The more mutations used, the more
diverse the output can be, and the more likely it is for a bug to be found. This can clearly
be seen from the #unique column in Table 2 where we notice a steady increase in number of
unique bugs found, with respect to the number of applied mutations. Notice this number
of unique bugs is not in direct correlation with the number of errors reported. E.g., when
testing OR-Tools and using two mutations before verification, many errors with the same
root-cause (bug) are found by HURRICANE.

Mutations can increase the size of a model hyper-linearly: when applying a transformation
such as flattening or decomposing global constraints, a single constraint can easily become a
large set of constraints. Hence, it is likely the subsequent mutations will be slower as they
have to run on bigger input, as does the verification check. From the #models column in
Table 2, we can indeed conclude more mutations will result in less models tested for the
given time-frame of ten hours.

The optimal value for n will of course depend on the time HURRICANE is ran for, since
for smaller n we can find bugs more quickly, but for big n we expect to find those bugs
eventually. We therefore propose that the best way of using HURRICANE would be to
increase n over time, causing the easily detected bugs to get found quickly while making it
possible to find the more obscure bugs later on.

Table 2 Number of mutations for each iteration compared to the number of bugs found and
number of models handled. (Aggregated over the different verification methods).

OR-Tools MiniZinc Total
#mutations #models #errors #unique #models #errors #unique #unique

1 9166418 5747 1 218377 289 3 3
2 6672588 11002 3 216527 723 6 6
5 2270441 8975 5 128884 1495 8 11
10 344710 2783 7 57191 423 9 13

9.2 EQ2: effect of verification methods
The next dimension of our algorithm we investigate is the different types of verification
methods. We aggregate the results for this experiment for all number of mutations. I.e., the
results as reported in Table 3 result from testing the algorithm with all settings of n.

First of all, we notice a big difference in the amount of models that the different methods
can verify. The results for the optimization verification method should be interpreted
cautiously, because they run on a smaller subset of input models that have an objective
function. These models happen to be small, explaining why the optimization verification
solves more models than we would expect it to. More interesting is the difference in the number
of models checked for the satisfiability and 1-solution verifications compared to counting
and equivalence. This however does not translate to a large advantage in discovered bugs,
indicating the usefulness of the computationally more expensive counting and equivalence
verifications.

The 1-Solution verification performs best, regarding the number of unique bugs. This
can be understood because it is a stronger check than the satisfiability check, but seems
even faster. This is due to the fact that we send the instantiated solution to the solver when
verifying the mutated model, leading to faster propagation.

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:15

Interestingly we observe that the solution counting, 1-solution and optimization methods
all found at least 1 bug that was not detected by any of the other methods. This was not
the case for All-solutions or satisfiability checking, and we could consider those redundant in
the context of our experiments. Although verifying All-solutions is theoretically a stronger
check than solution counting, and they can test models at a similar speed, both methods
found bugs that the other did not. For example in an earlier experiment a bug was found in
the solveAll routine of CPMpy, only detected using solution count. This highlights the
advantage of using different verification methods to cover all aspects of the toolchain.

Table 3 Number of verification steps and errors found for different verification methods in 40
hours. (Aggregated over the different values of n).

OR-Tools MiniZinc Total
verification #models #errors #unique #models #errors #unique #unique

All sol 13441 460 4 11167 312 7 8
Counting 14551 539 5 11623 325 6 8
One sol 4095185 25695 5 194495 1983 8 10

Sat 3679400 180 4 186119 116 5 8
Opt 10651580 1633 2 217575 194 3 4

9.3 EQ3: effect on code coverage
As mentioned in Section 2, code coverage is a common proxy to measure the efficacy of
a test suite. In this experiment, we compare the code coverage of running all unit test
models (unit-models), running HURRICANE for 400 hours with these unit test models
(200 hours for each backend solver) (HURRICANE), running all unit tests (not just the
models that appear in them) (unit-tests), and the combined code coverage (combined) of
HURRICANE and unit-tests.

The results are presented in Table 4. The data in this table is shown for the different
solvers, with each sub-row representing a part of the code base. expressions contains the
construction and evaluation code for all expressions (operators, functions, global constraints,
etc.), transformations the internal transformation routines, and ortools.py and minizinc.py
contain the solver-specific interfacing code

The results show that HURRICANE improves code coverage over just solving the unit
models, but not over running all unit tests. Still, HURRICANE does cover new parts of
the code, as the combined coverage is higher than just unit tests on its own. Because
HURRICANE uses the internal transformations as mutations, we see a high code coverage
on transformations too, even when using a solver like MiniZinc that requires only a few of
the transformations in CPMpy.

Table 4 Segmented code coverage for different components of CPMpy.

Solver files unit-models HURRICANE unit-tests combined

OR-Tools
expressions 54.6% 64.6% 87.3% 88.6%

transformations 59.3% 83.6% 86.4% 88.2%
ortools.py 64.1% 81.5% 90.4% 91.5%

MiniZinc
expressions 51.1% 64.0% 87.3% 88.6%

transformations 22.1% 82.6% 86.4% 88.2%
minizinc.py 70.6% 84.3% 83.0% 89.2%

CP 2024

29:16 Mutational Fuzz Testing for Constraint Modeling Systems

10 Discussion and future work

We presented a method to automatically test constraint modeling languages given a set
of input CSPs and COPs. We show that a sufficiently diverse set of input models can be
obtained from the unit tests of the modeling language. Based on recent work in SMT-testing,
we proposed a set of mutations to use over these models, in order to generate new and more
complex inputs to CP modeling languages.

As shown in Section 9, our method is able to find a significant number of bugs for the
CPMpy framework and its solvers, ranging from crashes to soundness bugs and finding
downstream bugs in MiniZinc and OR-Tools. Moreover, using our framework improves
the code coverage compared to the unit testing implemented in the library. Our proposed
fuzz testing techniques also neatly allows continuous integration with modeling language
development: when new features and bug fixes are added to a modeling language, the fuzz
testing framework can just continue with the latest version on some remote server, testing
the codebase 24/7.

While our methods are highly effective in finding bugs, one of the major difficulties
remains how to avoid re-finding similar bugs, and producing minimal bug instances. We
leave this topic for future investigation. Compared to testing SMT-solvers, CP offers several
interesting dimensions on which we only briefly touched in this paper. These features include
optimization, which can be tested more thoroughly in the future by also mutating objective
functions. Another key feature of CP is the notion of global constraints. Based on [9], we
would like to include mutations which can introduce new global constraints into the models
as currently we rely on the global constraints already being present in the input.

Recent work in SMT-solving showcases the power of using voting between multiple solvers
to verify the answer any of the solvers produce [41]. Crucially, solver voting allows to use
mutations where the result of the solver does not have to be known upfront, i.e., one does
not have to know what properties the mutations have. Using multiple solvers perfectly suits
the testing of constraint modeling languages, as their core function is to translate constraint
specifications to multiple solvers and solving paradigms. We are optimistic that this work
will remain useful in the future, by applying it to more solvers, adding more mutations, and
encouraging more developers to make use of it.

References

1 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve complex
scheduling and placement problems. In Jean-Paul Delahaye, Philippe Devienne, Philippe
Mathieu, and Pascal Yim, editors, JFPL’92, 1ères Journées Francophones de Programmation
Logique, 25-27 Mai 1992, Lille, France, page 51, 1992.

2 Özgür Akgün, Alan M. Frisch, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter
Nightingale. Conjure: Automatic generation of constraint models from problem specifications.
Artif. Intell., 310:103751, 2022. doi:10.1016/j.artint.2022.103751.

3 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Meta-
morphic testing of constraint solvers. In John N. Hooker, editor, Principles and Practice of
Constraint Programming - 24th International Conference, CP 2018, Lille, France, August
27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science, pages 727–736.
Springer, 2018. doi:10.1007/978-3-319-98334-9_46.

4 Mario Alviano, Carmine Dodaro, Johannes Klaus Fichte, Markus Hecher, Tobias Philipp, and
Jakob Rath. Inconsistency proofs for ASP: the ASP - DRUPE format. Theory Pract. Log.
Program., 19(5-6):891–907, 2019. doi:10.1017/S1471068419000255.

https://doi.org/10.1016/j.artint.2022.103751
https://doi.org/10.1007/978-3-319-98334-9_46
https://doi.org/10.1017/S1471068419000255

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:17

5 Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Arjun Viswanathan, Scott Viteri, Yoni Zohar, Cesare
Tinelli, and Clark W. Barrett. Flexible proof production in an industrial-strength SMT solver.
In Jasmin Blanchette, Laura Kovács, and Dirk Pattinson, editors, Automated Reasoning - 11th
International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings,
volume 13385 of Lecture Notes in Computer Science, pages 15–35. Springer, 2022. doi:
10.1007/978-3-031-10769-6_3.

6 Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global constraint catalog,
(revision a), 2012.

7 Gleb Belov, Peter J. Stuckey, Guido Tack, and Mark Wallace. Improved linearization of
constraint programming models. In Michel Rueher, editor, Principles and Practice of Constraint
Programming - 22nd International Conference, CP 2016, Toulouse, France, September 5-9,
2016, Proceedings, volume 9892 of Lecture Notes in Computer Science, pages 49–65. Springer,
2016. doi:10.1007/978-3-319-44953-1_4.

8 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry
and dominance breaking for combinatorial optimisation. In Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages
3698–3707. AAAI Press, 2022. URL: https://ojs.aaai.org/index.php/AAAI/article/view/
20283, doi:10.1609/AAAI.V36I4.20283.

9 Mauro Bringolf. Fuzz-testing smt solvers with formula weakening and strengthening. Master’s
thesis, ETH Zurich, 2021.

10 Robert Brummayer and Armin Biere. Fuzzing and delta-debugging smt solvers. In Proceedings
of the 7th International Workshop on Satisfiability Modulo Theories, pages 1–5, 2009.

11 Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of
SAT and QBF solvers. In Ofer Strichman and Stefan Szeider, editors, Theory and Applications
of Satisfiability Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh,
UK, July 11-14, 2010. Proceedings, volume 6175 of Lecture Notes in Computer Science, pages
44–57. Springer, 2010. doi:10.1007/978-3-642-14186-7_6.

12 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting problems.
Inf. Comput., 125(1):1–12, 1996. doi:10.1006/inco.1996.0016.

13 Ermira Daka and Gordon Fraser. A survey on unit testing practices and problems. In 25th
IEEE International Symposium on Software Reliability Engineering, ISSRE 2014, Naples,
Italy, November 3-6, 2014, pages 201–211. IEEE Computer Society, 2014. doi:10.1109/ISSRE.
2014.11.

14 Xavier Gillard, Pierre Schaus, and Yves Deville. Solvercheck: Declarative testing of con-
straints. In Thomas Schiex and Simon de Givry, editors, Principles and Practice of
Constraint Programming, pages 565–582, Cham, 2019. Springer International Publishing.
doi:10.1007/978-3-030-30048-7_33.

15 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Veripb: The easy way to
make your combinatorial search algorithm trustworthy. In workshop From Constraint
Programming to Trustworthy AI at the 26th International Conference on Principles and
Practice of Constraint Programming (CP’20). Paper available at http://www. cs. ucc.
ie/bg6/cptai/2020/papers/CPTAI_2020_paper_2. pdf, 2020.

16 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Christine Solnon, editor, 28th International Conference on Principles and Practice
of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, volume
235 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CP.2022.25.

CP 2024

https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-319-44953-1_4
https://ojs.aaai.org/index.php/AAAI/article/view/20283
https://ojs.aaai.org/index.php/AAAI/article/view/20283
https://doi.org/10.1609/AAAI.V36I4.20283
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1006/inco.1996.0016
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1007/978-3-030-30048-7_33
https://doi.org/10.4230/LIPIcs.CP.2022.25

29:18 Mutational Fuzz Testing for Constraint Modeling Systems

17 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.

18 Marijn J. H. Heule. Proofs of unsatisfiability. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336
of Frontiers in Artificial Intelligence and Applications, pages 635–668. IOS Press, 2021.
doi:10.3233/FAIA200998.

19 Ahmet B. Keha, Ketan Khowala, and John W. Fowler. Mixed integer programming formulations
for single machine scheduling problems. Comput. Ind. Eng., 56(1):357–367, 2009. doi:
10.1016/j.cie.2008.06.008.

20 Ruben Kindt and Mattias Guns. Fuzz testing of constraint programming. Master’s thesis, KU
Leuven, 2023. URL: https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=
alma9993364582101488&context=L&vid=32KUL_KUL:KULeuven&search_scope=All_Content&
tab=all_content_tab&lang=en.

21 Shuvendu K. Lahiri and Shaz Qadeer. Back to the future: revisiting precise program verification
using SMT solvers. In George C. Necula and Philip Wadler, editors, Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2008, San Francisco, California, USA, January 7-12, 2008, pages 171–182. ACM, 2008.
doi:10.1145/1328438.1328461.

22 Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. Automated unit test generation for
python. CoRR, abs/2007.14049, 2020. arXiv:2007.14049.

23 Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang.
Detecting critical bugs in SMT solvers using blackbox mutational fuzzing. In Prem Devanbu,
Myra B. Cohen, and Thomas Zimmermann, editors, ESEC/FSE ’20: 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020, pages 701–712. ACM, 2020. doi:
10.1145/3368089.3409763.

24 Matthew J. McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints.
In Roland H. C. Yap, editor, 29th International Conference on Principles and Practice of
Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada, volume 280 of
LIPIcs, pages 26:1–26:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.CP.2023.26.

25 Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of UNIX
utilities. Commun. ACM, 33(12):32–44, 1990. doi:10.1145/96267.96279.

26 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In Christian Bessiere,
editor, Principles and Practice of Constraint Programming - CP 2007, 13th International
Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume
4741 of Lecture Notes in Computer Science, pages 529–543. Springer, 2007. doi:10.1007/
978-3-540-74970-7_38.

27 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, and Ian Miguel. Auto-
matically improving constraint models in savile row through associative-commutative common
subexpression elimination. In Barry O’Sullivan, editor, Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 590–605. Springer,
2014. doi:10.1007/978-3-319-10428-7_43.

28 Peter Nightingale, Patrick Spracklen, and Ian Miguel. Automatically improving SAT en-
coding of constraint problems through common subexpression elimination in savile row.
In Gilles Pesant, editor, Principles and Practice of Constraint Programming - 21st Inter-
national Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceed-
ings, volume 9255 of Lecture Notes in Computer Science, pages 330–340. Springer, 2015.
doi:10.1007/978-3-319-23219-5_23.

https://doi.org/10.3233/FAIA200998
https://doi.org/10.1016/j.cie.2008.06.008
https://doi.org/10.1016/j.cie.2008.06.008
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9993364582101488&context=L&vid=32KUL_KUL:KULeuven&search_scope=All_Content&tab=all_content_tab&lang=en
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9993364582101488&context=L&vid=32KUL_KUL:KULeuven&search_scope=All_Content&tab=all_content_tab&lang=en
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9993364582101488&context=L&vid=32KUL_KUL:KULeuven&search_scope=All_Content&tab=all_content_tab&lang=en
https://doi.org/10.1145/1328438.1328461
https://arxiv.org/abs/2007.14049
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.1145/96267.96279
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-319-10428-7_43
https://doi.org/10.1007/978-3-319-23219-5_23

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:19

29 Tobias Paxian and Armin Biere. Uncovering and classifying bugs in maxsat solvers through
fuzzing and delta debugging. Update reference when published, 2022. URL: http://www.
pragmaticsofsat.org/2023/live/POS23_paper_4.pdf.

30 Andrea Rendl. Effective compilation of constraint models. PhD thesis, University of St
Andrews, UK, 2010. URL: https://hdl.handle.net/10023/973.

31 Robert Robere, Antonina Kolokolova, and Vijay Ganesh. The proof complexity of SMT solvers.
In Hana Chockler and Georg Weissenbacher, editors, Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in
Computer Science, pages 275–293. Springer, 2018. doi:10.1007/978-3-319-96142-2_18.

32 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. URL:
https://www.sciencedirect.com/science/bookseries/15746526/2.

33 Olivier Roussel and Christophe Lecoutre. XML representation of constraint networks: Format
XCSP 2.1. CoRR, abs/0902.2362, 2009. arXiv:0902.2362.

34 Gilles Simonin, Christian Artigues, Emmanuel Hebrard, and Pierre Lopez. Scheduling scientific
experiments for comet exploration. Constraints An Int. J., 20(1):77–99, 2015. doi:10.1007/
S10601-014-9169-3.

35 Hussain Bilal Syed. Model selection and testing for an automated constraint modelling toolchain.
PhD thesis, University of St Andrews, UK, 2017. URL: https://hdl.handle.net/10023/
10328.

36 Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JUnit in Action, 2nd
Edition. Manning Publications Company, 2011. URL: https://www.manning.com/books/
junit-in-action-second-edition.

37 Willem Jan van Hoeve. The alldifferent constraint: A survey. CoRR, cs.PL/0105015, 2001.
URL: https://arxiv.org/abs/cs/0105015.

38 Willem-Jan van Hoeve and Irit Katriel. Global constraints. In Francesca Rossi, Peter van Beek,
and Toby Walsh, editors, Handbook of Constraint Programming, volume 2 of Foundations of
Artificial Intelligence, pages 169–208. Elsevier, 2006. doi:10.1016/S1574-6526(06)80010-6.

39 Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. Qmaxsatpb: A certified maxsat solver.
In Georg Gottlob, Daniela Inclezan, and Marco Maratea, editors, Logic Programming and
Nonmonotonic Reasoning - 16th International Conference, LPNMR 2022, Genova, Italy,
September 5-9, 2022, Proceedings, volume 13416 of Lecture Notes in Computer Science, pages
429–442. Springer, 2022. doi:10.1007/978-3-031-15707-3_33.

40 T.W. Williams, M.R. Mercer, J.P. Mucha, and R. Kapur. Code coverage, what does it mean
in terms of quality? In Annual Reliability and Maintainability Symposium. 2001 Proceedings.
International Symposium on Product Quality and Integrity (Cat. No.01CH37179), pages
420–424, 2001. doi:10.1109/RAMS.2001.902502.

41 Dominik Winterer, Chengyu Zhang, and Zhendong Su. On the unusual effectiveness
of type-aware operator mutations for testing SMT solvers. Proc. ACM Program. Lang.,
4(OOPSLA):193:1–193:25, 2020. doi:10.1145/3428261.

42 Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating SMT solvers via semantic
fusion. In Alastair F. Donaldson and Emina Torlak, editors, Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pages 718–730. ACM, 2020. doi:10.1145/
3385412.3385985.

43 Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. Droidfuzzer: Fuzzing the android
apps with intent-filter tag. In René Mayrhofer, Luke Chen, Matthias Steinbauer, Gabriele
Kotsis, and Ismail Khalil, editors, The 11th International Conference on Advances in Mobile
Computing & Multimedia, MoMM ’13, Vienna, Austria, December 2-4, 2013, page 68. ACM,
2013. doi:10.1145/2536853.2536881.

CP 2024

http://www.pragmaticsofsat.org/2023/live/POS23_paper_4.pdf
http://www.pragmaticsofsat.org/2023/live/POS23_paper_4.pdf
https://hdl.handle.net/10023/973
https://doi.org/10.1007/978-3-319-96142-2_18
https://www.sciencedirect.com/science/bookseries/15746526/2
https://arxiv.org/abs/0902.2362
https://doi.org/10.1007/S10601-014-9169-3
https://doi.org/10.1007/S10601-014-9169-3
https://hdl.handle.net/10023/10328
https://hdl.handle.net/10023/10328
https://www.manning.com/books/junit-in-action-second-edition
https://www.manning.com/books/junit-in-action-second-edition
https://arxiv.org/abs/cs/0105015
https://doi.org/10.1016/S1574-6526(06)80010-6
https://doi.org/10.1007/978-3-031-15707-3_33
https://doi.org/10.1109/RAMS.2001.902502
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/2536853.2536881

29:20 Mutational Fuzz Testing for Constraint Modeling Systems

44 Andreas Zeller. Yesterday, my program worked. today, it does not. why? In Oscar Nier-
strasz and Michel Lemoine, editors, Software Engineering - ESEC/FSE’99, 7th European
Software Engineering Conference, Held Jointly with the 7th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Toulouse, France, September 1999, Proceed-
ings, volume 1687 of Lecture Notes in Computer Science, pages 253–267. Springer, 1999.
doi:10.1007/3-540-48166-4_16.

A Overview of bugs found during experimental evaluation

We identify 2 OR-Tools bugs, 4 MiniZinc bugs and 8 CPMpy bugs, and give a short description
in this section.

Bug 1

Some mutated models are declared unsatisfiable when solving them using Gecode through
its MiniZinc interface. Solving with another solver confirms that the models are in fact
satisfiable. This is a critical soundness bug.4

Bug 2 & 3

The next 2 bugs are also considered soundness bugs in MiniZinc but are not as severe as
the first one. There are some models where MiniZinc does not output a value for all the
variables after solving. This happens for most but not all of the available solvers within
MiniZinc. The reason we count 2 different bugs is that a third similar bug has already been
solved after HURRICANE found it earlier on, but this didn’t resolve the ones we found here.
Further distinction lies in the fact that Bug 2 occurs when solving to satisfiability and Bug 3
happens when solving to optimality.5

Bug 4

When using MiniZinc Python some models do not respect the given time limit when solving.
This is due to the compiler optimisation phase getting stuck.6

Bug 5

A bug in CPMpy’s MiniZinc interface, that causes a crash when a nested sum appears in the
arguments of the global constraint: AllDifferentExcept0.7

Bug 6

A bug in CPMpy’s MiniZinc interface, that causes a crash when the Count global constraint
appears as an argument in a weighted sum.8

4 https://github.com/MiniZinc/MiniZincIDE/issues/199
5 https://github.com/MiniZinc/libminizinc/issues/803
6 https://github.com/MiniZinc/libminizinc/issues/805
7 https://github.com/CPMpy/cpmpy/issues/460
8 https://github.com/CPMpy/cpmpy/issues/461

https://doi.org/10.1007/3-540-48166-4_16
https://github.com/MiniZinc/MiniZincIDE/issues/199
https://github.com/MiniZinc/libminizinc/issues/803
https://github.com/MiniZinc/libminizinc/issues/805
https://github.com/CPMpy/cpmpy/issues/460
https://github.com/CPMpy/cpmpy/issues/461

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:21

Bug 7

The helper function canonical_comparison contained a bug where weighted sums were
incorrectly transformed. This is a soundness bug.

Bug 8

Inconsistent implementation of the relational semantics for constraint modeling languages
meant that handling of partial functions such as Element leads to missing solutions where
the constraint is undefined, but occurs in a nested context.

Bug 9

CPMpy’s helper function is_bool did not recognise a specific datatype to be Boolean.9

Bug 10

The internal transformation canonical_comparison can create weighted sums with zero
arguments, leading to a crash later in the transformation pipeline.

Bug 11

An assertion error gets triggered in the internal function canonical_comparison, when a
CPMpy sum operator is encountered that only contains integers and no variables.

Bug 12

An equation between an integer and a Boolean expression was treated as reification by the
flatten transformation of CPMpy.10

Bug 13

Crash in the OR-Tools solver causing the Python runtime environment to crash.11

Bug 14

A soundness bug in OR-Tools’ presolve where the ordering of constraints influences whether
a model was declared to be satisfiable or not. 12

A.1 Occurrences of each bug

In Table 5 and Table 6, we show the unaggregated data of how many times each bug was
found by HURRICANE during our experimental evaluation.

9 https://github.com/CPMpy/cpmpy/issues/452
10 https://github.com/CPMpy/cpmpy/issues/442
11 https://github.com/google/or-tools/issues/4169
12 https://github.com/google/or-tools/issues/4168

CP 2024

https://github.com/CPMpy/cpmpy/issues/452
https://github.com/CPMpy/cpmpy/issues/442
https://github.com/google/or-tools/issues/4169
https://github.com/google/or-tools/issues/4168

29:22 Mutational Fuzz Testing for Constraint Modeling Systems

Table 5 Bugs found by different verification methods when running with MiniZinc.

Verif #mut B1 B2 B3 B4 B5 B6 B7 B8 B9 #bugs #models

All sol

1 - - - - 1 - - 23 - 24 3492
2 - - - - 2 - - 59 - 61 3594
5 2 - - - 5 1 36 86 13 143 3242
10 - - - 1 1 - 38 28 16 84 839

counting

1 - - - - 1 - - 24 - 25 3633
2 - - - - - - - 61 - 61 3655
5 2 - - - 3 1 40 94 15 155 3496
10 1 - - - 1 - 39 28 15 84 839

One sol

1 - - 66 - 15 - - 133 - 214 65029
2 - - 68 - 29 4 1 429 2 533 64725
5 2 - 91 - 108 8 12 903 32 1156 61554
10 - - 6 1 7 - 3 60 3 80 3187

sat

1 - - - - 26 - - - - 26 88981
2 - - - - 61 6 - - 1 68 87419
5 1 - - 1 6 1 - - 2 11 6554
10 1 - - - 6 1 - - 3 11 3165

opt

1 - - - - - - - - - - 57242
2 - - - - - - - - - - 57134
5 2 - - - - - 28 - - 30 54038
10 2 7 - - - - 155 - - 164 49161

Table 6 Bugs found by different verification methods when running with OR-Tools.

Verif #mut B7 B8 B9 B10 B11 B12 B13 B14 #bugs #models

All sol

1 - 26 - - - - - - 26 4102
2 - 64 - - - - - - 64 3786
5 37 95 13 - - - - - 145 3332
10 116 70 38 - - - - 1 225 2221

Counting

1 - 26 - - - - - - 26 4152
2 - 69 - - - - - - 69 4128
5 42 117 16 - - - 1 1 177 3718
10 139 78 43 - - - - 7 267 2553

One sol

1 - 5695 - - - - - - 5695 2226130
2 6 10761 79 - - - - - 10846 1400180
5 84 7449 212 1 - - - - 7746 412874
10 71 1250 80 1 6 - - - 1408 56001

Sat

1 - - - - - - - - - 1958248
2 4 - 19 - - - - - 23 1292747
5 40 - 55 1 - - - - 96 379361
10 28 - 29 1 3 - - - 61 49044

Opt

1 - - - - - - - - - 4973786
2 - - - - - - - - - 3971747
5 811 - - - - - - - 811 1471156
10 820 - - - - 2 - - 822 234891

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:23

B Reformulations as mutations

We summarize the constraint reformulations implemented in CPMpy which are used in our
mutational testing framework.

Unnesting and normalization of lists

This transformation is the first in the transformation pipeline of any solver implemented in
CPMpy and all subsequent transformation expect as input a flat list of constraints. This
Additionally any conjunction at the top-level of the constraint model will be split up into
separate constraints

Munnest([c1, [c2, c3], [c4 ∧ c5]])

with cn, n ∈ 1..5 being arbitrary constraints, results in

[c1, c2, c3, c4, c5]

Flattening

Makes sure no nested constraints remain in the expression tree. This reformulation introduces
a fresh variable to be equated with a (numerical) expression and un-nests each constraint
accordingly. The output of this reformulation is a set of Boolean expressions within a
restricted grammar defined by CPMpy’s developers. For example, given the expression list

[AllDifferent(Min(w, x), y, z)] (2)

the result of the flattening is

[AllDifferent(e, y, z), e = Min(w, x)] (3)

with e an auxiliary variable with the right bounds.

Decomposing global constraints

This function is one of the elementary operations in constraint modeling languages. While
many CP-solvers support a variety of global constraints, these advanced relations between
variables are oftentimes not supported by solvers from other solving paradigms. Hence,
when a model containing a global constraint has to be solved by for example an SMT-solver,
it needs to be decomposed into simpler expressions first. This reformulation does exactly
that. For example, if AllDifferent is not supported by the solver, it is decomposed to a
conjunction of pairwise disequality constraints.

Unnesting of reified constraints

This transformation is applied to ensure no unsupported expressions remain reified. For some
of the backend solvers in the CPMpy library, reification is only supported on a subset of
expressions. This reformulation is applied after flattening, and ensures further unnesting such
that only reifications of supported constraints remain. For example, given the unsupported
expression b →Max(x, y, z) ≤ 10, a valid transformation in order to remove the reification
of the Max is

(b → a ≤ 10) ∧ (Max(x, y, z) = a) (4)

with a an auxiliary variable with the appropriate bounds. Input constraints must not contain
unsupported global constraints, and must be flattened first.

CP 2024

29:24 Mutational Fuzz Testing for Constraint Modeling Systems

Only half-reification

It removes all “full reification constraints” from the expression tree and ensures all reifications
end up in the form b → bexpr . This transformation always has to be preceded by the previous
only boolean variables reify transformation. For each constraint of the type b ↔ bexpr , two
half-reification constraints are introduced: b → bexpr and ¬b → ¬bexpr . This transformation
also simplifies the negated Boolean expression whenever possible. For example, given b↔ x∧y

as input, the transformation returns {b→ x ∧ y and ¬b→ (¬x ∨ ¬y)}.

Normalization of reifications

This transformation rewrites any reification such that the Boolean variable occurs on the
left hand side. E.g., constraints of the type bexpr → b are rewritten to ¬b → ¬bexpr ,
full-reification constraints bexpr ↔ b are swapped to b ↔ bexpr . Similar to the previous
transformation, negated Boolean expressions are simplified when possible. Input constraints
must be flat.

Linearize

It ensures any flattened constraint is transformed into a canonicalized linear constraint, i.e.,
a comparison with a weighted sum of integer or Boolean variables on the left-hand side and
a constant on the right-hand side. The ouput is thus always of the form∑

wixi ⟨cmp⟩ c

where ⟨cmp⟩ is the one of the comparison operator allowed (=,≤ or ≥), the wi are the
integer weights and xi the Boolean/integer variables. Before linearizing, unsupported global
constraints must be decomposed, and must contain only boolean implications.

Normalized numerical expressions

This transformation is targeted to be used with solvers that don’t support comparisons (<,
≤, ≥, >, ̸=) between an expression and a constant. An auxiliary variable is thus required to
transform it into a simple comparison. For example, if Max(x, y, z) ≤ 10 is not supported,
it will be transformed into

(Max(x, y, z) = e) ∧ (e ≤ 10) (5)

by using the auxiliary variable e (with appropriate bounds). Input constraints must be flat.

Converting negated Boolean variables

After linearization of a set of constraints, it helps make the constraints more compatible
with the API of a typical Mixed Integer Programming solver. Pseudo-Boolean constraints
(weighted-sum over Boolean variables) are converted such that only positive Boolean variables
remain on the left-hand side of the comparisons. For example, the expression ¬p + q + r ≥ 1
is re-written as −p + q + r ≥ 0 by creating a negative weight and allowing no negation
operator in the formula. Input constraints must be linear.

W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 29:25

Conversion of flat expressions to CNF

It is required when using SAT-solvers as backend solvers. This transformation rewrites any
Boolean operator with Boolean variables as arguments to CNF. For example, (w∧x)∨ (y∧ z)
is re-written in

(w ∨ y) ∧ (w ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) (6)

Input must ensure only boolean implications

Push negation to leaves

This one simplifies the number of nodes in the expression tree. The reformulation applies
simple equivalence rules such as DeMorgan’s laws to make sure the only negation operators
left in the tree are bound to Boolean variables or global constraints. For example, it would
transform the expression ¬(a ∨ b) into ¬a ∧ ¬b, or the expression ¬(a ≤ b) into a > b.
The negation of a global constraint such as ¬AllDifferent(a, b, c) can not be simplified
any further, except by decomposing the global constraint first. This will happen in the
“decomposing globals” transformation, depending on solver support.

Simplification of Boolean comparisons

This operation can be done when a Boolean expression is compared to a constant. In that
case, it is trivial to convert the Boolean expression at hand to itself or to its negation. For
example, comparison b < 1, where b is a Boolean variable, can be simplified to ¬b. And
b ≥ True can be converted to just the literal b.

CP 2024

Learning Precedences for Scheduling Problems
with Graph Neural Networks
Hélène Verhaeghe1 # Ñ

DTAI, KU Leuven, Belgium

Quentin Cappart # Ñ

Polytechnique Montréal, Canada

Gilles Pesant #

Polytechnique Montréal, Canada

Claude-Guy Quimper #

Université Laval, Quebec, Canada

Abstract
The resource constrained project scheduling problem (RCPSP) consists of scheduling a finite set of
resource-consuming tasks within a temporal horizon subject to resource capacities and precedence
relations between pairs of tasks. It is N P-hard and many techniques have been introduced to
improve the efficiency of CP solvers to solve it. The problem is naturally represented as a directed
graph, commonly referred to as the precedence graph, by linking pairs of tasks subject to a precedence.
In this paper, we propose to leverage the ability of graph neural networks to extract knowledge from
precedence graphs. This is carried out by learning new precedences that can be used either to add
new constraints or to design a dedicated variable-selection heuristic. Experiments carried out on
RCPSP instances from PSPLIB show the potential of learning to predict precedences and how they
can help speed up the search for solutions by a CP solver.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Computing
methodologies → Machine learning; Mathematics of computing → Combinatorial optimization

Keywords and phrases Scheduling, Precedence graph, Graph neural network

Digital Object Identifier 10.4230/LIPIcs.CP.2024.30

Funding This research received funding from IVADO and the Canada First Research Excellence Fund
/ Apogée fund PostDoc-2022-2378128196 and in part by NSERC Discovery Grants 218028/2017. It
also received funding from the European Union’s Horizon 2020 research and innovation program
under grant agreement No 101070149, project Tuples.

Acknowledgements We thank the anonymous reviewers for their constructive criticism which helped
us improve the original version of the paper.

1 Introduction

Scheduling problems arise in many fields, from assembling planes to scheduling maintenance
tasks. Constraint programming (CP) has been successfully used to solve many types of
scheduling problems [35, 29]. This is mainly due to the combination of global constraints
and efficient dedicated heuristics used when solving such problems. When they are subject to
precedence constraints, scheduling problems are often N P-hard [20]. Nevertheless, every such
precedence may help to improve the inferences made by global constraints. Precedences are
naturally represented as a directed graph by linking two tasks subject to a precedence. Graph
neural networks (GNNs) [28] are designed to learn from graph-structured data, including

1 The first author was affiliated to Polytechnique Montréal during the majority of this work.

© Hélène Verhaeghe, Quentin Cappart, Gilles Pesant, and Claude-Guy Quimper;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:helene.verhaeghe@kuleuven.be
https://hverhaeghe.bitbucket.io/
https://orcid.org/0000-0003-0233-4656
mailto:quentin.cappart@polymtl.ca
https://qcappart.github.io/
https://orcid.org/0000-0002-8742-0774
mailto:gilles.pesant@polymtl.ca
https://orcid.org/0000-0001-9797-0780
mailto:claude-guy.quimper@ift.ulaval.ca
https://orcid.org/0000-0002-5899-0217
https://doi.org/10.4230/LIPIcs.CP.2024.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Learning Precedences for Scheduling Problems with GNNs

deciding whether an edge is present. A natural question our paper tries to answer is then:
Can GNNs help us identify additional precedences? And as a follow-up question: How useful
can these learned precedences be?

Following this idea, this paper proposes to leverage the ability of GNNs to learn new
precedences between tasks for the standard resource constrained project scheduling problem
(RCPSP) [26]. These precedences are used to enhance the solving process of a CP solver,
both by adding new constraints in the model and by designing a dedicated variable-selection
heuristic. The learning is carried out from a precedence graph representation of the RCPSP
and the GNN is trained using best-so-far solutions found by solving, up to a fixed time limit,
a set of instances specially considered for training. The models are trained and evaluated
on RCPSP instances from PSPLIB [19]. The results obtained show the promise of learning
to predict precedences and their relevance for speeding up the search for solutions by a CP
solver.

Our approach shows that it is possible to learn precedences using a simple GNN architec-
ture. In synergy with the dynamic metaheuristic SBPS [9, 36] and VSIDS [24], the learned
precedences manage to improve our baseline (i.e., solving the problem without any additional
precedences). Using the learned preferences as additional constraints allows to get better
bounds, but comes with the drawback of potentially deteriorating the optimum for each
wrong precedence added. Using the preferences as a piece of information to drive the search
preserves the optimum while leading to better first solutions.

The paper is structured as follows. The next section presents the technical background
regarding existing solving processes for the RCPSP, graph neural networks, and the learning
of heuristics. Then the methodology we introduce to learn and leverage precedences is
described. Finally the experiments carried out and the results obtained are discussed.

2 Technical Background and Related Work

2.1 Resource Constrained Project Scheduling Problem
An instance of the resource constrained project scheduling problem (RCPSP) [26] consists
of a finite set of n tasks (or activities) T to be executed with the help of a finite set of m

resources R. Each resource r ∈ R has a finite capacity Cr, and each task i ∈ T has a starting
time si, an ending time ei, and is executed without interruption during pi units of time
(i.e. we have si + pi = ei) while using cir units of each resource r. In addition, there are
precedences between some pairs of tasks. We say that task i precedes task j if the execution
of i should be finished before starting the execution of j (i.e., we have ei ≤ sj).

We call precedence graph of an RCPSP instance the directed graph P = (V, E) where
there exists an injective function M : T → V mapping each task to a vertex. If and only if
task i precedes task j, there exists an arc going from M(i) to M(j). We call the transitive
closure of an RCPSP instance the set of precedences which also contains all the transitive
precedences: given task i, j and k, if the instance defines that i precedes j and j precedes k,
we know by transitivity that i precedes k. We call “i precedes k” a transitive precedence. The
transitive closure precedence graph is thus the precedence graph representing the transitive
closure of the instance. The cumulative constraint is one of the main components of solving
RCPSP problems using CP. Its filtering algorithms [35, 29] prevent the resources from being
overloaded.

Many heuristics are efficient in solving the RCPSP problem [8]. The most effective
are variable state independent decaying sum (VSIDS) [24] and solution-based phase saving
(SBPS) [9, 36]. The heuristic VSIDS uses counters for each variable. Each counter is

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:3

incremented when a constraint involving the variable is generated. The choice of variable
and value is based on the values of these counters. On the other hand, SBPS is only a
value-selection heuristic. Each time a solution is found, the values are stored and when a
variable is selected, the value to branch on is the one used in the last solution found. We
note that both heuristics can be used together.

2.2 Graph Neural Network

A graph neural network (GNN) [28] is a specific neural network architecture dedicated to
computing a vector representation, also referred to as embedding, for each node of a graph
given as input [28, 38] (e.g., a precedence graph). This is carried out by aggregating several
times information from neighboring nodes. Each aggregation operation is referred to as
a layer of the GNN and involves weights that must be learned. This operation can be
performed in many ways, and there exist in the literature different variants of GNNs, such
as graph attention network [34] or gated graph sequence neural network [21]. Our work
is based on the well-known GraphSAGE architecture [15], which can efficiently generate
representations for graphs unseen during the training phase. Formally, let G = (V, E) be a
graph where V is the set of vertices, and where E is the set of edges. A GNN is composed of
K layers. Let hk

v ∈ Rd be a d-dimensional vector representation of a node v ∈ V at layer
k, and let hk+1

v ∈ Rl be a l-dimensional vector representation of v at the next layer. We
highlight that the dimension of the representation can be different at each layer (d for the
layer k, and l for the layer k + 1). The inference process of a GNN consists in computing the
next representation (hk+1

v) from the previous one (hk
v) for each node v. The fundamental

equations of GraphSAGE are given in Equations (1) to (3):

ak+1
v = AGGREG

(
hk

u

∣∣∣ u ∈ N(v)
)

∀v ∈ V (1)

ck+1
v = g

(
Θk × CONCAT

(
hk

v , ak+1
v

))
∀v ∈ V (2)

hk+1
v = ck+1

v

∥ck+1
v ∥2

∀u ∈ V (3)

Three operations are carried out. First, Eq. (1) aggregates information from neighbors for
each node. This is often done by taking the mean of each value (mean-pooling) or their sum
(sum-pooling). A key aspect of GraphSAGE aggregation is that the neighborhood function
N(v) gives a fixed-size random subset of nodes sampled from the whole neighborhood of
node v. A new subset is randomly sampled at each layer. Second, Eq. (2) concatenates the
current representation of a node hk

v ∈ Rd with the aggregated representation of its neighbors
ak+1

v ∈ Rd. This vector is then linearly transformed by weight matrix Θk ∈ Rl×2d which is
learned during the training phase through backpropagation. A non-linear transformation g

such as ReLU is subsequently performed [13]. Third, the value obtained (ck+1
v) is normalized

using the Euclidean norm, and the node representation at layer k + 1 is obtained (hk+1
v).

The process terminates after K layers, and a final representation (hK
v) is obtained for each

node v in the graph. Such representations can after that be used for different graph-related
tasks, such as classification [11], link prediction [22, 39, 2], or combinatorial tasks [3]. In
another context, GNNs are increasingly considered in combinatorial optimization [3], either
directly as an end-to-end solver [17], or as a mechanism to enhance existing solvers [12, 4].

CP 2024

30:4 Learning Precedences for Scheduling Problems with GNNs

Task pi cir1 cir2 succ

A 2 1 2 B C D
B 3 2 2 E
C 1 1 2
D 2 2 1 C
E 1 1 1 C A

D

C

B
E

2 .33 .5

2 .66.25

1 .33 .5

3 .66 .5 1 .33.25

G
N
N
+
M
L
P

A

D

C

B
E

2 .33 .5

2 .66.25

1 .33 .5

3 .66 .5 1 .33.25

S
o
l
u
t
i
o
n

(a) (b) (c) (d) (e)

Figure 1 Overview of the methodology introduced (on a toy example with |R| = 2). (a) An
RCPSP instance, with Cr1 = 3 and Cr2 = 4. (b) The instance is transformed into a graph with the
features of each node (time, normalized usage of r1, and r2). The blue arcs are the candidate arcs.
(c) The GNN takes the graph as input and outputs an embedding used by the MLP to provide the
prediction. (d) New predicted edges for the graph. (e) Prediction is used to find a solution.

2.3 Learning Heuristics in Constraint Programming
Designing branching heuristics for CP thanks to machine learning has already been considered
in related works, either to learn a variable-selection or a value-selection heuristic. For
instance, [30] proposed to combine reinforcement learning and graph neural networks to
learn the next variable to branch for constrained satisfaction problems. In [32], graph
neural networks were leveraged to initialize such a heuristic for a hybrid CP-SAT solver.
Learning has also been considered for online settings by [10]. Concerning the value-selection
heuristic, [4] introduced a framework able to leverage models trained with reinforcement
learning inside a CP solver. It is done thanks to a recursive formalization. This idea has
been further extended by [5, 23] who proposed to carry out the learning inside the solver. A
general framework for learning value heuristics, and relevant features for training the model,
has been also introduced by [7]. Compared to these works that aim to generate heuristics for
a large range of problems and do not achieve state-of-the-art performance, our contribution is
focused on scheduling problems and strive to improve upon competitive CP models. To do so,
features specific in scheduling (i.e., precedence graphs) are leveraged. Recently, [31] proposed
an approach close to ours. In their paper, they construct a graph with nodes representing
either a task or a resource. Using GNNs, they predict the starting time of each of the tasks,
then construct an ordering of the tasks based on these predicted starting times and finally
use an algorithm (serial schedule generation scheme) to construct a feasible solution with
respect to this ordering. They tackle classical RCPSPs and stochastic RCPSPs.

3 Enhancing CP with Learned Precedences

This section introduces the core contribution of the paper. It describes the complete
methodology we designed to learn relevant precedences and how they can be used to speed up
a CP solver. The methodology is based on the hypothesis that the knowledge of precedences
belonging to a high-quality solution is information that is relevant to solving instances
faster. Inside a CP solver, this can be achieved by enabling additional propagation (e.g.,
with additional constraints), or by directing the search. An overview of the methodology is
illustrated in Fig. 1. The following sections describe each part of the methodology.

3.1 Step 1: Training Set Construction
The first step is to build a relevant dataset to train the model. To do so, the main idea is
to: (1) solve a large number of RCPSP instances with an expensive solving process (e.g.,
a CP solver), (2) consider all the precedences obtained in the solutions generated, (3) use

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:5

A

D

C

B

E

(a) Instance.
A

D

C

B

E

(b) T(Instance).
A

D

C

B

E

(c) Solution.
A

D

C

B

E

(d) T(Solution).

A

D

C

B

E

(e) Neutral arcs.
A

D

C

B

E

(f) Avoided arcs.
A

D

C

B

E

(g) Positive arcs.
A

D

C

B

E

(h) Negative arcs.

Figure 2 Example of all the types of arcs for the same toy example as in Figure 1.

this information as data to train the model. The expected outcome is to obtain quickly
precedences occurring in high-quality solutions of unseen instances, without requiring the
execution of the expensive solving process. The learning is supervised as it requires a
ground truth. Let P = (V, E) be a precedence graph as defined previously (for example, the
precedence graph defined in Fig. 2a), and let D : {(x(i), y(i)), . . . , (x(n), y(n))} be the training
set we need to build to train the model. In the machine learning terminology, x(i) corresponds
to a specific input (i ∈ {1, . . . , n}), and y(i) corresponds to the target value associated to
that input.

Let sP be a solution of P , obtained by any solving process (Fig. 2c is the optimal solution
in our example). We note that this solution corresponds to a more constrained precedence
graph than P , with the same number of nodes, and more edges. A first important design
choice is to determine which solutions should be considered for the training?

A natural idea is to take the optimal solution of previously solved instances. However, this
is barely feasible in practice, as it assumes that there exists a solving process able to prove
the optimality of these solutions in a reasonable time, which is intractable for challenging
instances. For such a reason, we relaxed this idea and considered the best solution obtained
instead, up to a predetermined timeout as the base for our first training set.

Then, we define T (sP) as the transitive closure of sP (for example, Fig. 2d). This
corresponds to a precedence graph P ′ = (V ′, E′) where V ′ = V and E′ ⊇ E. Before their
integration in the training set, the solutions are transformed by their transitive closure (for
example, Fig. 2d). This is done to reduce the diameter of the graphs. The intuition behind
this design choice is that high-diameter graphs usually require deeper and more expensive
GNNs to be efficient [6]. Each node V ′ is decorated with two types of features, recording
information about the instances. They are as follows:
1. The processing time pi of the task linked to node i ∈ V ′.
2. The normalized usage of each resource r, i.e. the usage of the task i (cir) divided by the

total availability of this resource within the instance (Cr).
As the instances we considered involve four resources each, we have five features for each
node. Other features were considered (e.g., the proportion of the different resources used) but
were not selected in the final model as they did not improve the performance. Finally, let us
consider the set of pairs between vertices in P ′. Each pair corresponds to a specific relation
between two tasks in a solution. We identified four possible relations. Given P = (V, E) (i.e.,

CP 2024

30:6 Learning Precedences for Scheduling Problems with GNNs

the transitive closure precedence graph of the instance) and P ′ = (V ′, E′) (i.e., the graph
corresponding to the transitive closure precedence graph of a solution sP , also referred to as
T (sP)), the four relations are as follows:
1. Neutral arcs (e.g., Fig. 2e): these arcs correspond to the ones included in E. Intuitively,

such arcs relate to specific settings of the problem. They define the structure of the graph
but are not relevant for computing the training loss.

2. Avoided arcs (e.g., Fig. 2f): considering all the arcs (v, u) ∈ E, the avoided arcs correspond
to the set of arcs (u, v). Intuitively, we know that these arcs will never be part of a
feasible solution because of the structure of the problem. Such arcs are not relevant for
the loss either.

3. Positive arcs (e.g., Fig. 2g): these arcs correspond to the ones included in the set E′ \ E.
It corresponds to the additional precedences that are present in the solution obtained
and missing in the initial graph. They are the arcs we want to be able to predict and
should be used for the training.

4. Negative arcs (example Fig. 2h): these arcs correspond to all the other arcs that do not
belong to any of the last three sets. Such arcs represent negative samples that can be
used for training. The model should be able to predict that these arcs should not be part
of a good solution.

In our first experiments, we considered only two categories and every arc was part of the
loss computation. However, it quickly became evident that neutral and avoided arcs degraded
the stability of the learning loss. This is what led us to consider these four categories. Only
considering part of the arcs (i.e., the positive and negative ones) for the computation of loss
is referred to as masking in the machine learning community [16]. It helps reduce the impact
of noisy data. In our case, neutral and avoided arcs are arcs from which no information is
learned and for which no prediction will be asked. However, they cannot be discarded totally
as they are an inherent part of the problem and must be considered for the optimization
phase. This forms our first training set, based on one best-so-far solution per instance
considered.

In our experiments, we also considered a second training set based on multiple best-so-far
solutions. This one is an extension of the previous one. Based on the first best-so-far gathered
after a first time-out, we let the solver run for a second time-out, searching for at most
K solutions with the same (or better, in case it was only a best-so-far) optimum. These
solutions are then aggregated by keeping the precedences present in a majority of the solution
(majority defined by a given threshold percentage). This aggregated solution allows us to get
rid of the potentially noisy precedences, created by some tasks that have room to move a
bit within the schedule, and focus on the ones more mandatory in an optimal solution. In
this training set, the neutral and avoided arcs are the same, the positive arcs are the ones
presents in the majority of the solutions and the negative are the remaining ones.

In summary, to perform the learning, a specific input x(i) corresponds to the graph
obtained from the transitive closure of a precedence graph of a solution (or aggregate
solution), with features associated to each vertex, and the related target y(i) is a real value
0 (negative) and 1 (positive) for each unmasked pair of vertices (i.e., a possible learnable
precedence link).

3.2 Step 2: Link Prediction with GNNs
Provided with training data and supervised labels, the next step is to build a function
f : P (V, E) → [0, 1]V ×V taking a precedence graph annotated with the node features as
input and giving as output a probability for each link (u → v) ∈ V × V to correspond to a

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:7

precedence occurring in a high-quality solution of the instance. We designed this function
using two neural networks: (1) a graph neural network computing an embedding for each
node, and (2) a fully connected neural network computing a probability for each link.

First, the graph neural network is a function f1 : P (V, E) → V × Rd which computes a
d-dimensional vectorized representation for each vertex v ∈ V . The architecture is based on
three SAGEConv layers (Equations (1) to (3)). The hidden dimension of each layer has a
fixed size of d, and a ReLU non-linearity is used for the first two layers. The result is a graph
where each node is represented by an d-dimensional embedding. We set d = 16.

Second, the link prediction is carried out by a function f2 : Rd × Rd → [0, 1] which
computes a value for a pair of vertices (u → v). This value corresponds to the probability
of this link being part of a good solution. The function is parametrized as a simple 2-layer
fully-connected neural network with a ReLU activation for the hidden layer. The hidden
dimension also has a size of 16. A sigmoidal transformation is finally applied to the output
of the last layer to obtain a value between 0 and 1 (i.e., a probability).

Both networks are trained together with standard backpropagation using Adam optim-
izer [18]. Once trained, the model is used to predict new arcs from a precedence graph of an
RCPSP instance. A confidence threshold θ ∈ [0, 1] is then used to determine whether a new
precedence should be added. Let ŷ(u→v) be the prediction obtained for a pair (u → v) that
is not neutral nor avoided. For each pair we consider the arc to be positive if the prediction
is greater than the threshold (i.e., ŷ(u→v) ≥ θ).

3.3 Step 3: Solving the RCPSP with New Precedences
We propose two uses of the learned preferences: (1) as new constraints in the CP model, and
(2) as an information for directing the search.

First, each learned precedence (between task i and j) can be directly integrated into
the model as an additional constraint (ei ≤ sj). This practice is ubiquitous in constraint
programming. The expected goal is to reduce the search space. It relates to streamlined
constraint reasoning [14] where a partition of the search space is done using additional cutting
constraints. Despite the simplicity of this approach, it comes with the critical drawback that
we have no mechanism to recover from prediction errors, as adding incorrect precedence
as constraints may prune the optimal solution. Consequently, the solution obtained with
this first option corresponds only to an upper bound, and we lose the ability to obtain an
optimality proof.

A second option is to use the new precedences to direct the search. We propose to do it
by introducing an easy ad-hoc problem dedicated to finding an appropriate task ordering
(i.e. a topological order on the precedence graph). The problem is defined as follows. A
variable oi is defined for each task i, with a domain ranging from 0 to n − 1. For each
precedence from the instance (i.e., the neutral arcs) and each precedence learned, a constraint
enforcing the precedence is added (oi < oj if i precedes j). All the variables are also subject
to an allDifferent constraint. Solving this problem gives an ordering satisfying all the
precedences learned. By integrating randomness within the search heuristic, bias toward
some solutions can be removed [33]. This ordering can then be used as a static variable
ordering heuristic to solve the instance. As no additional constraint is added to the initial
model, there is no risk to prune the optimal solution, and we are still able to prove optimality.

However, both options are subject to a critical concern. They are consistent only if there
is no cycle obtained from the learned precedences (i.e., a < b, b < c, and c < a). In such a
situation, the model obtained (either with additional constraints or with the ad-hoc problem)
is unsatisfiable. We addressed this difficulty by adding each precedence in a graph structure

CP 2024

30:8 Learning Precedences for Scheduling Problems with GNNs

maintaining the transitive closure in polynomial time. Candidate precedences are tested
one by one, in order of decreasing score, and added only if they do not create a cycle. This
ensures that a solution is always possible whether we add the learned precedences to the
model or we use them to construct a topological order.

4 Experiments

For our experiments, we used the instances available on the PSPLIB website2. The best
bound found so far by the community (referred by UB in our figures3) can be found on the
website. PSPLIB is composed of four sizes of instances (30, 60, 90, or 120 tasks). For each
size, the instances were generated by varying a given number of parameters [19] (min/max
durations of the tasks, min/max number of successors, etc.). For a given set of settings, 10
instances were generated by the benchmark authors. It is thus composed of four sizes times
48 (60 for the 120 tasks) combinations of values for the parameters times 10 generations per
set of parameters, yielding a total of 2040 instances. We split the instances as follows:
1. The SEEN set, composed of all but 5 of the 48 (60 for the 120 tasks) series for each of

the four sizes. Among these, we select 8 instances among the 10 composing each series
(1472 instances) in total. The positive and negative arcs of the best-so-far solutions of
these instances are split by a k-cross-validation to train the GNN and the MLP.

2. The UNSEEN sent, composed of the remaining 2 among the 10 instances from the series
selected for the SEEN set. They form the validation set as they are similar to the ones
seen by the learning process but still unseen.

3. The UNKNOWN set, composed of the 5 remaining series of 10 instances for each of the
four sizes (200 instances in total). They constitute the generalization set as the learning
process has not seen them and has seen no other instances generated with the same set
of parameters.

In some cases, we analyzed the results by size. It is then indicated within the name, i.e.
UNSEENJ90 is the instances of 90 tasks within the UNSEEN group or UNSEEN≤J60 for the
instances of 60 tasks or less. We note that the results we report always use the same splits
for comparison purposes, e.g. if a specific instance belongs to UNSEENJ90, it is included
in UNSEENJ90 in every experiment. We also used the same split for each solution in the
dataset, e.g. an instance solved with a specific timeout and options will always have the
same k folds for the cross-validation.

Our neural architecture is implemented in Python using Deep Graph Library [37] and
Pytorch [25]. Our experiments were run on a computing cluster equipped with a AMD Rome
7532 CPU. For reproducibility purposes, the environment, the splits, the models, and the
outputs of the runs have been stored and added to a publicly available repository4.

4.1 Baseline CP Model for the RCPSP and Training Set
Our base CP model to solve the RCPSP is the following. For each task, the start time of
task i is represented by variable5 si, whose domain spans from 0 to horizon6. For each
resource, we add a cumulative constraint. In addition, a precedence constraint (si + pi ≤ sj

2 https://www.om-db.wi.tum.de/psplib/
3 as of March 2024
4 https://github.com/363734/LearningPrecRCPSP
5 The PSPlib files define two additional dummy tasks: 0 and n + 1. We do not define variables for them.
6 We used the horizon defined within the PSPlib files.

https://www.om-db.wi.tum.de/psplib/
https://github.com/363734/LearningPrecRCPSP

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:9

if task i precedes task j) is added to the model for each precedence. The CP solver used is
Chuffed (branch develop, commit b2152f3). The cumulative constraint used is the global
one implemented within chuffed with the parameters tt_filt_on, ttef_check_on and
ttef_filt_on. These parameters activate the timetabling filtering algorithm, the time-table-
edge-finder check, and the time-table-edge-finder filtering algorithm [35]. The search heuristic
used is min-min-value which corresponds to selecting the variable with the smallest minimal
value and selecting its minimal value first (i.e., selecting the task that could be scheduled the
earliest). We also consider two options influencing the search heuristic: sbps and vsids.

Using this model and options we generated, for each instance of PSPLIB, the best-so-far
(bsf) solution after several timeouts (1 second, 1 minute, 10 minutes, and 1 hour) to be able
to compare the influence of the quality of the dataset over the whole process. As expected,
for a given fixed timeout, the solver manages to solve smaller instances to optimality. For a
timeout of 1 second, the simple model (i.e., without sbps/vsids) manages to get the best bsf
in general. The trend reverses when increasing the timeout to 10 minutes or more, where the
model with sbps and vsids leads to better bsf solutions and more optimal solutions proven.
This difference is due to the overhead of the sbps and vsids techniques. The sbps option
alone allows to reach good solutions rapidly but has difficulties to prove optimality (chuffed
is even warning the user when using sbps that it must be used with an activity-based search
to optimize its efficiency). Using both options is also better at closing instances when a
bigger timeout is allowed. In the rest of our experiments, we will focus on the solutions
from the model with both or no options used. These best-so-far solutions are used both as
training data and for comparing the methods.

4.2 Performance of the Training
We tried multiple configurations to train our model.

Training with one best-so-far per instance
Concerning the training set with one best-so-far solution per instance, we have: the timeout
used to generate the dataset (1 second, 1 minute, 10 minutes or 1 hour), the options chosen
(with or without sbps/vsids), and the subset of graphs chosen for training (SEEN≤J30,
SEEN≤J60, SEEN≤J90 or SEEN≤J120). The learning rate is also tuned to 10−2, 10−3 or
10−4. The training is carried out for 1, 000 epochs. We performed a k-cross-validation with
k = 10. For each of the k runs, the one with the best loss is selected. The final model is the
one with the best loss among the k runs. Training takes from around k × 10 min (smallest
training set) to k× 1-2 hours (bigger ones). The evaluation of our training is done using the
following metrics.

Precision (prec): fraction of predicted positive arcs that are truly positive;
Recall (rec): percentage of positive arcs correctly predicted as positive;
True negative (tn): percentage of negative arcs correctly predicted negative;
F1-score (f1): harmonic mean of the precision and recall.

As a general observation, there are generally more negative arcs than positive ones.
Discarding some negative ones (at random) to reach equality between the two sets improves
the precision of our method by a few percent (up to 3 − 4%). This technique is commonly
referred to as under-sampling.

A preliminary analysis of the learning curves and evolution of the metrics on the training
set and testing set along the learning allowed us to discard some parameters. The learning
rate of 10−4 led to a too-slow learning and bad metrics value even after 1000 epochs compared

CP 2024

30:10 Learning Precedences for Scheduling Problems with GNNs

Table 1 Validation metrics of the two chosen models. Learning rate 10−2, training set SEEN≤J120

generated with a timeout of 1 hour, without Sbps/Vsids for model A, with Sbps/Vsids for model B.

Model A (“without”) Model B (“with”)
f1 prec rec tn f1 prec rec tn

SEENJ120 0.79 0.89 0.71 0.91 0.71 0.82 0.62 0.87
UNSEENJ120 0.78 0.89 0.70 0.92 0.71 0.83 0.62 0.87

UNKNOWNJ120 0.80 0.90 0.72 0.92 0.72 0.84 0.64 0.87
ALLJ120 0.79 0.89 0.71 0.91 0.71 0.83 0.62 0.87

Table 2 Validation metrics of models trained on smaller instances. Same training characteristic
as Model B, except training set (SEEN≤J60 and SEEN≤J90). (to be compared with second column
of Tab. 1).

Model B-SEEN≤J60 Model B-SEEN≤J90

f1 prec rec tn f1 prec rec tn

SEENJ120 0.72 0.82 0.64 0.86 0.71 0.83 0.62 0.87
UNSEENJ120 0.72 0.83 0.64 0.87 0.71 0.83 0.62 0.88

UNKNOWNJ120 0.73 0.83 0.65 0.87 0.73 0.83 0.64 0.87
ALLJ120 0.72 0.83 0.64 0.87 0.71 0.83 0.62 0.87

to the others. The learning rate of 10−2 and 10−3 led to very similar results. While the
learning curves of 10−2 oscillated more, the validation metrics were generally slightly better
(1% increase). The datasets generated with Sbps/Vsids require fewer epochs to start
stabilizing (i.e., having a loss close to the best loss among all the epochs) compared to the
models generated on datasets without it.

Table 1 displays the result of the validation of the two most promising models. The table
is organized into four rows for the evaluation of each subset of graphs (SEEN, UNSEEN,
UNKNOWN and ALL) and each main column corresponds to one model. The same learning
rate (10−2), the same timeout (1h) for the dataset, and the same dataset (SEEN≤J120) are
used in both models, the only distinction being the model used to create the dataset (without
sbps/vsids for Model A and with for Model B).

In this table, we can first see that our model provides good precision but a weaker recall.
In other words, the model does not make many false positives but more false negatives. This
is a good prospect for our application as only predicted positive arcs lead to an impact on
the model. A second observation is that the models trained with the dataset generated using
the options sbps/vsids are globally worse than their counterparts. This is probably due
to the quality of the solution. As our problem is N P-hard [1], it is expected that learning
true optimal solutions is difficult. When examining the validation results of the other models
(the ones trained on benchmarks with a smaller timeout to generate the instances), we could
observe the same trend as during learning, where using the 1-hour benchmarks provides
better results.

We also look at the generalization capabilities of our architecture. Table 2 displays the
results of two models against Model B, trained with the same characteristics as Model B,
except for the instances size of the training sets, either only using the SEEN≤J60 or the
SEEN≤J90. The metrics are computed for all sub-groups of different sizes. We can see that
the models have good generalization capacities and have similar metrics to the one trained
on SEEN≤J120.

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:11

Table 3 Validation metrics of Model C-SEEN≤J60, trained on multi-solution aggregate instances.
Same training characteristic as Model C-SEEN≤J60, except the training set is not composed of
one solution per instance, but, for each instance, of the precedences present in 70% of at most 100
solutions generated using an additional 10 minutes timeout.

Model C-SEEN≤J60

f1 prec rec tn

ALLJ30 0.67 0.80 0.57 0.86
ALLJ60 0.68 0.79 0.59 0.84
ALLJ90 0.67 0.78 0.59 0.83
ALLJ120 0.72 0.83 0.64 0.87

One can also notice a large gap between the metrics of smaller size compared to the
j120 ones. This gap is not only present for these models with these characteristics but also
present for all models trained with the “with spbs/vsids” training set but not in the one
without. We speculate it is due to the accuracy of the solutions in the training set. In the
“with spbs/vsids” benchmark, a majority of the solutions of instances with up to 90 tasks are
optimal ones, while on the 120-task instances, it is no longer the case. Precedences within
optimal solutions seem harder to predict, as the results of Table 1 were already showing.

Training with an aggregate of multiple best-so-far per instance

A natural question is to ask if choosing only one solution per instance impacts the prediction
as often, there exist multiple optimal solutions for such problems. In general, there can exist
multiple optimal solutions when not all the paths in the precedence graphs are critical (i.e.,
paths where each task starts exactly when the one preceding it ends). If the resources allow
it, starting these tasks a little bit later can lead to another optimal solution. For some of
these solutions, this does not change the precedences, but in some cases, it could slightly
modify some of them.

To test whether our predictions had a bias while trained on a single solution for each
instance, we generated, for the J30 and J60 instances, up to 100 optimal solutions (we gave
an additional time out of 10 minutes to generate up to 100 solutions with the same best so
far optimal value as the one found after 1 hour). From these 100 solutions, we keep only
the precedences present in a majority (70%) of the solutions and trained on this subset. We
thus have precedences most likely present in many solutions. We choose to focus on the
smaller instances as they have shown to generalize well in training (Tab. 2). Also, as for
most of them, the initial timeout of 1 hour reached the optimal solution. This training set
is composed of real optimal solutions and not best-so-far solutions. Furthermore, as they
are the easiest instances to solve, the 10-minute timeout allowed for the computation of 100
solutions was enough for a majority of them.

We trained a Model C-SEEN≤J60 on this benchmark, using the same configuration as
Model B and Model B-SEEN≤J60 (learning rate of 0.001, 10-fold cross-validation, under-
sampling and training set generated using Sbps/Vsids active). The validation metrics
(Tab. 3) are very similar to the ones present in Tab. 2. From a training point of view, there
does not seem to be an impact.

CP 2024

30:12 Learning Precedences for Scheduling Problems with GNNs

0.0 0.2 0.4 0.6 0.8 1.0
predicted value

0.0

0.2

0.4

%
 o

f i
ns

ta
nc

es
J120

Model A

(a) Edges predicted by Model A.

0.0 0.2 0.4 0.6 0.8 1.0
predicted value

0.0

0.2

0.4

%
 o

f i
ns

ta
nc

es

J120
Model B

(b) Edges predicted by Model B.

Figure 3 Distribution of the learned edges.

Table 4 Number of improvements/deteriorations compared to the baselines (J120 instances only).

θ
Predictions used as constraints Predictions used for ordering

to=1s to=1m to=10m to=1h to=1s to=1m to=10m to=1h

Predictions from Model A used on a model without Sbps/Vsids
0.5 0/600 0/600 0/600 0/600 24/391 4/373 6/360 8/349
0.55 0/600 0/600 0/600 0/600 28/387 4/367 2/358 7/348
0.75 0/599 0/600 0/599 1/598 26/394 4/370 4/362 3/357
0.95 1/585 0/584 2/584 3/582 22/405 5/372 9/357 8/350
0.99 4/559 6/557 5/554 4/553 27/399 6/371 5/359 7/350

Predictions from Model B used on a model without Sbps/Vsids
0.5 0/600 0/600 0/599 0/599 31/392 7/371 7/365 7/355
0.55 0/600 0/599 1/599 0/598 21/404 6/367 6/363 9/360
0.75 1/597 0/597 2/594 3/594 31/388 6/372 7/358 7/352
0.95 5/554 4/556 2/553 3/550 23/404 9/365 11/357 9/349
0.99 21/487 5/497 7/495 6/493 25/393 7/373 5/362 8/356

Predictions from Model A used a model with Sbps/Vsids
0.5 480/94 124/476 7/593 4/596 439/0 185/6 5/0 1/0
0.55 483/98 122/478 9/590 7/592 440/11 188/5 6/3 1/3
0.75 470/114 116/480 13/586 12/587 431/3 186/5 7/4 2/5
0.95 416/163 106/474 17/564 24/561 413/50 166/50 6/20 2/12
0.99 411/163 108/454 24/533 28/526 413/45 172/39 6/25 1/13

Predictions from Model B used a model with Sbps/Vsids
0.5 475/110 116/484 10/590 8/590 445/0 186/4 5/1 2/2
0.55 447/127 116/483 11/588 10/590 421/25 176/19 7/7 2/4
0.75 457/113 114/481 15/580 14/577 454/0 191/1 7/1 2/2
0.95 413/159 111/449 26/525 21/532 433/26 179/27 6/14 2/8
0.99 419/152 125/386 26/469 34/459 433/26 179/25 8/17 2/8

4.3 Performance for Solving the RCPSPs
We decided to focus the presentation of our results on the ALLJ120 as it contains the most
open instances and thus the most interesting. We analyzed the results split among the
SEENJ120, UNSEENJ120, and UNKNOWNJ120 and did not find a significant difference
between them, allowing us to confirm no sign of overfitting, as hinted by Tab. 1, hence why
we present the results on ALLJ120 only.

Distribution of predictions
We analyzed first the distribution of the prediction done among the edges of the J120 case in
Fig. 3, for both Model A (Fig. 3a) and Model B (Fig. 3b). We can see that our process is
confident on the outcome for most of the edges. Normally, we select as a positive prediction

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:13

Table 5 Generalization ability (to be compared with the last line of Tab. 4).

θ
Model B-SEEN≤J60

1s 1m 10m 1h 1s 1m 10m 1h

0.99 Predictions used as constraints Predictions used for ordering
421/141 119/398 27/484 35/481 430/17 187/18 6/10 1/4

the precedence with a prediction score of at least 0.5. Given the distribution of the edges
and the fact that the recall score is not that high, we would want to verify if increasing the
threshold of the selected prediction could impact the final results. To this end, we decided to
test multiple thresholds θ: 0.5, 0.55, 0.75, 0.95, and 0.99.

Comparison to Baseline

We run Model A and Model B to predict the edges of the full J120 benchmark. These
predictions are then filtered given the threshold and then used either as additional constraints
or to create an ordering-based heuristic, both to be used with the model with the Sbps/Vsids
options or without the options (Tab. 4). The tables gather, for each threshold, each timeout,
each usage, and each generative model, the number of instances among the 600 where there
is an improvement/deterioration of the bound compared to the baseline (i.e., the model with
the same options used and the same timeout but without the learned approach).

Multiple observations can be made by comparing these numbers. First, using our ordering-
based technique without a Sbps/Vsids heuristics does not provide good results. This can
be explained by the fact it has already been observed that static ordering performs generally
slower than dynamic ones [27], allowing an easier deterioration of the bound. Another
observation is that using precedence as an additional constraint leads to many deterioration.
This is a logical consequence of the fact that adding new constraints creates a restriction and
thus, if one of these constraints is wrong, removes the optimum. We can see that increasing
the threshold mitigates this effect, as expected. Solutions based on the use of prediction
from Model A are also generally a bit less good than when using Model B. A model trained
on a more qualitative training set is thus preferable.

Interestingly, we can also notice that with shorter timeouts, using the ordering-based
method manages to improve more bounds, as it can guide the search towards better solutions
first. The restriction-based one improves more bounds with bigger timeouts, as by reducing
the search space, it can potentially reach part of the search space that was not reached
before within the timeout. This, however, works only if the restriction does not select bad
precedences, as shown by the important number of deteriorations.

Generalization Ability

Figure 5 compares the results of Model B against Model B-SEEN≤J60. Our validation results
on this model show that it had similar accuracy to Model B. To confirm it, we made the
predictions on all J120 instances and solved them using the model with Sbps/Vsids. Our
results show that it generalizes very well as the results are comparable to the ones of Model B
with the same other parameters (last line of Tab. 4).

CP 2024

30:14 Learning Precedences for Scheduling Problems with GNNs

100 200 300 400 500
obj

0.0

0.2

0.4

0.6

0.8

1.0
%

 o
f i

ns
ta

nc
es

Subset of J120 (112 instances)

UB
Sirene
orde + SGS 0.5
orde + SGS 0.55
orde + SGS 0.75
orde + SGS 0.95
orde + SGS 0.99

Figure 4 SGS-based solution.

100 200 300
obj

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f i
ns

ta
nc

es

Subset of J120 (112 instances)

UB
Sirene
model B with orde 0.50
model B with prec 0.99

Figure 5 Comparison with Sirene [31].

Schedule Generation Scheme (SGS)
A third way to use the prediction is to use an SGS, as done in [31]. Given an ordered set
of tasks, the SGS greedily constructs a schedule, ensuring the resources and precedences
constraints are respected. Fed with an ordering corresponding to the optimal solution, the
SGS can reconstruct the optimal solution. Figure 4 displays, in a cactus plot, the bound
of the solutions found after applying the SGS on our ordering produced by the prediction
of Model B with the various thresholds. We compare to the Sirene algorithm [31], using
the same SGS. For the comparison, we used the results stored on their public repository.
These bounds are available for 408 instances among the Psplib benchmark and were used
to generate Figures 4 and 5 of their paper. Figure 4 focuses on the J120 among these (112
among the 600). The discrepancy between their method and our use of the SGS can be
explained by the fact that their method works on a global view. By extracting an ordering
from a close-to-a-solution, they guarantee that if some part of the schedule is right, it will
stay the same after using the SGS. In our case, it only works if there are no errors within the
predicted arcs. Observing that there is not much improvement in the solutions after using
the SGS on our ordering with different thresholds confirms that there are predictive errors
even when the learning process is sure of its prediction.

Comparison to Sirene
Sirene [31] is the closest approach also using GNN found in the literature. While the two
methods are very close to each other, they are in fact complementary. Sirene focuses on a
more global type of prediction (i.e., a potential solution to be corrected) while we focus on a
more local prediction (i.e., new precedence between tasks to be used). Another conclusion
we share is that improving the bounds obtained in our training set is difficult. In their
case, they improve drastically the runtime while obtaining no bound improvement (Fig. 5)
compared to their baseline. In our case, we managed to improve a few bounds (Tab. 4), and
especially improve the quality of early solutions. It confirms the potential of GNNs to replicate
statistical distribution (here the distribution of solutions provided in our training sets) but
not to be able to solve the problem given and reason on it. Another limitation compared to
Sirene is that our current approach as our model is targeted to 4-resource problems. In our
opinion, for instances with more features, we think an aggregation of multiple predictions for
multiple sub-problems defined by selecting four features of the instance is a possible solution
to get around this limitation. Fig. 5 shows a cactus plot, comparing the best-known upper
bound (UB) to the makespan (from PSPLIB website), Sirene, the predictions of Model

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:15

Table 6 Results when training on an aggregate of multiple solutions (to be compared with Fig.5).

θ
Model C-SEEN≤J60

1s 1m 10m 1h 1s 1m 10m 1h

0.99 Predictions used as constraints Predictions used for ordering
436/108 154/332 46/427 48/424 451/0 193/1 7/2 0/2

B with θ = 0.5 used for ordering on a model using Sbps/Vsids and time of 1 hour and
the predictions of Model B with θ = 0.99 used for additional constraint on a model using
Sbps/Vsids and timeout of 1 hour.

Impact of multiplicity of optimal solution
Table 6 shows the result when Model C-SEEN≤J60 is used to predict precedences on the J120
instances. We also used them either in addition to the model either to create an ordering,
both being used with the Sbps/Vsids generic heuristics when solving. When comparing to
Fig. 5, one can see that using an aggregate of multiple solutions can help to improve the
results. This comes from the fact that the precedences learned are the ones present in many
optimal solution at once thus directing to any of these solutions the same way.

However, the drawback of this training set is that it requires multiple solutions. By using
the generalization abilities of our model we were able to keep the additional computations
cost relatively low. However, doing the same with bigger instances in the training set (by
training on SEEN≤J120 like Model A and Model B) would be intractable as for many of the
bigger instances, generating one good solution sometimes takes up to one hour, generating
several of them would then be too tedious.

5 Conclusion and Perspective

This paper proposed a novel approach based on graph neural networks to predict new
precedences for the resource-constrained project scheduling problem. The learned precedences
can then be used either as additional constraints to get a stronger filtering or as a heuristic
to drive the search. A high precision in the precedences learned has been obtained after the
training. Our experiment on the PSPLIB benchmark confirms that, due to the N P-hardness
of the problem, a high recall is difficult to reach, but that we can nevertheless speed up
the solving process when using a dynamic ordering. An improvement of our baseline (i.e.,
best-so-far after given time-out) has been observed in our experiment but remains difficult
to achieve. The quality of the prediction depends on the quality of the training set. Using
aggregates of multiple solutions allows learning of more crucial precedences. Our experiments
shows also a good generalization as models trained on instances with less or equal than 60
tasks can achieved similar results on instances with 120 tasks as models trained on instances
with less or equal than 120 tasks. Our method is solver agnostic and could even be combined
with other metaheuristics such as a large neighborhood search.

One of our perspectives is to study whether the learned precedences are dependent on
the training benchmark. Another is to reflect on how we can make predictions on instances
with a different number of resources than trained for. Among our perspectives is also to
apply this methodology to other variants of scheduling problems such as the RCPSP with
time windows and the job shop scheduling problem. We also expect this could generalize to
other combinatorial problems with an underlying graph structure such as job-shop scheduling
problems.

CP 2024

30:16 Learning Precedences for Scheduling Problems with GNNs

References
1 Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. Scheduling subject to resource

constraints: classification and complexity. Discrete applied mathematics, 5(1):11–24, 1983.
2 Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5103–5113, 2021.
3 Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and

Petar Velickovic. Combinatorial optimization and reasoning with graph neural networks.
Journal of Machine Learning Research, 24(130):1–61, 2023.

4 Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Andre A Cire. Combining reinforcement learning and constraint programming for combinatorial
optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

5 Félix Chalumeau, Ilan Coulon, Quentin Cappart, and Louis-Martin Rousseau. Seapearl: A
constraint programming solver guided by reinforcement learning. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 18th International Conference,
CPAIOR 2021, Vienna, Austria, July 5–8, 2021, Proceedings 18, pages 392–409. Springer,
2021.

6 Mark Cheung. Geometric Deep Learning: Impact of Graph Structure on Graph Neural Networks.
PhD thesis, Carnegie Mellon University, 2022.

7 Geoffrey Chu and Peter J Stuckey. Learning value heuristics for constraint programming.
In Integration of AI and OR Techniques in Constraint Programming: 12th International
Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Proceedings 12, pages 108–123.
Springer, 2015.

8 Bert De Reyck et al. A branch-and-bound procedure for the resource-constrained project
scheduling problem with generalized precedence relations. European Journal of Operational
Research, 111(1):152–174, 1998.

9 Emir Demirović, Geoffrey Chu, and Peter J Stuckey. Solution-based phase saving for cp: A
value-selection heuristic to simulate local search behavior in complete solvers. In Principles
and Practice of Constraint Programming: 24th International Conference, CP 2018, Lille,
France, August 27-31, 2018, Proceedings 24, pages 99–108. Springer, 2018.

10 Floris Doolaard and Neil Yorke-Smith. Online learning of variable ordering heuristics for
constraint optimisation problems. Annals of Mathematics and Artificial Intelligence, pages
1–30, 2022.

11 Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

12 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in neural
information processing systems, 32, 2019.

13 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

14 Carla Gomes and Meinolf Sellmann. Streamlined constraint reasoning. In International
Conference on Principles and Practice of Constraint Programming, pages 274–289. Springer,
2004.

15 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

16 Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, and Masashi
Sugiyama. Masking: A new perspective of noisy supervision. Advances in neural information
processing systems, 31, 2018.

17 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:17

18 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

19 Rainer Kolisch and Arno Sprecher. Psplib-a project scheduling problem library: Or software-
orsep operations research software exchange program. European journal of operational research,
96(1):205–216, 1997.

20 Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22–35, 1978.

21 Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence
neural networks. In International Conference on Learning Representations, 2016.

22 Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A:
statistical mechanics and its applications, 390(6):1150–1170, 2011.

23 Tom Marty, Tristan François, Pierre Tessier, Louis Gautier, Louis-Martin Rousseau, and
Quentin Cappart. Learning a generic value-selection heuristic inside a constraint programming
solver. In 29th International Conference on Principles and Practice of Constraint Programming
(CP 2023). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

24 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual Design Automation
Conference, pages 530–535, 2001.

25 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

26 A Alan B Pritsker, Lawrence J Waiters, and Philip M Wolfe. Multiproject scheduling with
limited resources: A zero-one programming approach. Management science, 16(1):93–108,
1969.

27 Patrick Prosser. The dynamics of dynamic variable ordering heuristics. In Principles and
Practice of Constraint Programming—CP98: 4th International Conference, CP98 Pisa, Italy,
October 26–30, 1998 Proceedings 4, pages 17–23. Springer, 1998.

28 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

29 Andreas Schutt, Thibaut Feydy, and Peter J Stuckey. Explaining time-table-edge-finding
propagation for the cumulative resource constraint. In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems: 10th International
Conference, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings 10,
pages 234–250. Springer, 2013.

30 Wen Song, Zhiguang Cao, Jie Zhang, Chi Xu, and Andrew Lim. Learning variable ordering
heuristics for solving constraint satisfaction problems. Engineering Applications of Artificial
Intelligence, 109:104603, 2022.

31 Florent Teichteil-Königsbuch, Guillaume Povéda, Guillermo González de Garibay Barba, Tim
Luchterhand, and Sylvie Thiébaux. Fast and robust resource-constrained scheduling with graph
neural networks. In Sven Koenig, Roni Stern, and Mauro Vallati, editors, Proceedings of the
Thirty-Third International Conference on Automated Planning and Scheduling, July 8-13, 2023,
Prague, Czech Republic, pages 623–633. AAAI Press, 2023. doi:10.1609/ICAPS.V33I1.27244.

32 Ronald van Driel, Emir Demirović, and Neil Yorke-Smith. Learning variable activity initialisa-
tion for lazy clause generation solvers. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research: 18th International Conference, CPAIOR 2021, Vienna,
Austria, July 5–8, 2021, Proceedings 18, pages 62–71. Springer, 2021.

CP 2024

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1609/ICAPS.V33I1.27244

30:18 Learning Precedences for Scheduling Problems with GNNs

33 Mathieu Vavrille, Charlotte Truchet, and Charles Prud’homme. Solution sampling with
random table constraints. Constraints, pages 1–33, 2022.

34 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning Repres-
entations, 2018.

35 Petr Vilím. Timetable edge finding filtering algorithm for discrete cumulative resources.
In Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems: 8th International Conference, CPAIOR 2011, Berlin, Germany, May
23-27, 2011. Proceedings 8, pages 230–245. Springer, 2011.

36 Julien Vion and Sylvain Piechowiak. Une simple heuristique pour rapprocher dfs et lns pour
les cop. Proceedings of JFPC’17, pages 39–45, 2017.

37 Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

38 Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Le Song. Graph neural networks. Springer,
2022.

39 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
neural information processing systems, 31, 2018.

Inverting Step-Reduced SHA-1 and MD5 by
Parameterized SAT Solvers
Oleg Zaikin #

ISDCT SB RAS, Irkutsk, Russia

Abstract
MD5 and SHA-1 are fundamental cryptographic hash functions proposed in 1990s. Given a message
of arbitrary finite size, MD5 produces a 128-bit hash in 64 steps, while SHA-1 produces a 160-bit
hash in 80 steps. It is computationally infeasible to invert MD5 and SHA-1, i.e. to find a message
given a hash. In 2012, 28-step MD5 and 23-step SHA-1 were inverted by CDCL solvers, yet no
progress has been made since then. The present paper proposes to construct 31 intermediate inverse
problems for any pair of MD5 or SHA-1 steps (i, i + 1), such that the first problem is very close to
inverting i steps, while the 31st one is almost inverting i + 1 steps. We constructed SAT encodings
of intermediate problems for MD5 and SHA-1, and tuned a CDCL solver on the simplest of them.
Then the tuned solver was used to design a parallel Cube-and-Conquer solver which for the first
time inverted 29-step MD5 and 24-step SHA-1.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases cryptographic hash function, MD5, SHA-1, preimage attack, SAT, Cube-
and-Conquer

Digital Object Identifier 10.4230/LIPIcs.CP.2024.31

Funding This study was funded by the Ministry of Education of the Russian Federation, project
No. 121041300065-9.

1 Introduction

A cryptographic hash function maps a message of arbitrary finite size to a hash of a fixed
size [25]. A secure cryptographic hash function must be resistant to preimage attacks, i.e.
it must be computationally infeasible to invert it by finding a message for a given hash.
MD5 [37] and SHA-1 [11] are among the most influential and widespread cryptographic hash
functions. Given a message, MD5 produces a 128-bit hash. MD5’s core component is a
compression function that operates on a 128-bit internal state in 64 steps. On each step, the
state is modified by mixing with one 32-bit message word. SHA-1 has a similar design, but
it produces a 160-bit hash, while its compression function operates in 80 steps. Nowadays
both MD5 and SHA-1 are used in practice, e.g. to verify the data integrity. Partially this is
because they are still preimage resistant.

It is well known that a cryptographic hash function’s resistance can be practically analyzed
by algorithms for solving the Boolean satisfiability problem (SAT) [6]. Since it is infeasible
to invert MD5 and SHA-1, their weakened versions are usually considered, where some
last steps are omitted. In 2007, 26-step MD5 was inverted [10], while for 27- and 28-step
MD5 it was done in 2012 [22]. In 2008 and 2012, 22- and 23-step SHA-1 were inverted,
respectively [42, 22]. In all these cases it was done via Conflict-Driven Clause Learning [24]
(CDCL) solvers. Since 2012, no further progress has been made towards inverting 29-step
MD5 or 24-step SHA-1 because the corresponding computational problems are extremely
hard. This paper aims to fill these gaps.

When the number of steps of a cryptographic hash function is reduced, the inverse
problem can be further simplified by reducing the number of known hash bits [35, 4]. For
example, in case of MD5, 29 steps and 64 known hash bits instead of 128 can be considered.

© Oleg Zaikin;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 31; pp. 31:1–31:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oleg.zaikin@icc.ru
https://orcid.org/0000-0002-0145-5010
https://doi.org/10.4230/LIPIcs.CP.2024.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Inverting Step-Reduced SHA-1 and MD5

However, even if this inverse problem is solved, it is not clear if any progress compared to
inversion of 28-step MD5 has been made as a result. It is also possible to weaken an inverse
problem by partially assigning some bits in a message [8]. However, again, it is unclear
whether such weakening contributes to progress or not.

This paper proposes a new type of intermediate inverse problems. Consider an arbitrary
cryptographic hash function such that its compression function is divided into steps and on
each step a k-bit message word m is mixed with an internal state. Note that most existing
cryptographic hash functions, including MD5 and SHA-1, match this condition. Consider
a pair (i, i + 1) of steps. The idea is to construct k − 1 intermediate inverse problems by
simplifying step i + 1, while the first i steps are not modified. In the first problem, in step
i + 1 the k-bit message word m is replaced by a k-bit word, where k − 1 rightmost bits are
0s, while the remaining bit is equal to the leftmost bit in m. In the second problem, k − 2
rightmost bits are 0s, while 2 remaining bits are equal to that in m and so on. Finally, in
the (k − 1)-th problem, only the rightmost bit in m is replaced by 0. As a result, for a
state-of-the-art CDCL solver the first intermediate problem is slightly harder than inverting
i steps, then the hardness gradually increases towards inverting i + 1 steps.

We construct SAT encodings of 31 intermediate inverse problems between 28- and 29-step
MD5 for one regular hash. Some of them are solved via the CDCL solver Kissat on a
computer in reasonable time. Kissat’s parameters are tuned on several simplest problems,
and as a result more intermediate problems are solved. A parallel Cube-and-Conquer solver
based on the same tuned Kissat inverts 29-step MD5. For SHA-1, its own tuning is
performed, and as a result the parallel solver inverts 24 steps.

The paper is organized as follows. Preliminaries on MD5 and SHA-1 are given in Section 2.
Intermediate inverse problems are proposed in Section 3. SAT encodings are presented in
Section 4. Experiments on the default Kissat are discussed in Section 5. Section 6 presents
an algorithm for tuning Kissat. Section 7 describes how Cube-and-Conquer based on the
tuned Kissat inverted 24-step SHA-1 and 29-step MD5. Finally, related work is discussed
and conclusions are drawn.

2 Preliminaries

This section gives preliminaries on the cryptographic hash functions MD5 and SHA-1.

Cryptographic Hash Function

A cryptographic hash function h maps a message of arbitrary finite size to a hash of finite
size [25]. An obligatory property of any cryptographic hash function is that the mapping
must be easy to compute, but hard to invert. Consider the following types of resistance.
1. Collision resistance: it is infeasible to find any two messages x and x′ such that x ̸=

x′, h(x) = h(x′).
2. Preimage resistance: for any given hash y, it is infeasible to find such a message x′ that

h(x′) = y.
3. Second-preimage resistance: for any given message x, it is infeasible to find x′ such that

x′ ̸= x, h(x) = h(x′).

A secure cryptographic hash function must possess all three properties. There are two
types of preimage attacks: (i) practical preimage attack implies solving an inverse problem,
i.e. finding a preimage (message) for a certain hash; (ii) theoretical preimage attack is an
algorithm for solving an inverse problem with lower complexity than brute force.

O. Zaikin 31:3

The main component of most cryptographic hash functions is a compression function
that maps an input of fixed size to a shorter output of fixed size. In order to show that
such a cryptographic hash function is not secure, it is sufficient to break the resistance of its
compression function. In this paper we focus on studying the practical preimage resistance
of compression functions of cryptographic hash functions MD5 and SHA-1.

MD5

The Message Digest 5 (MD5) cryptographic hash function was proposed in 1992 [37]. It is
a more secure version of MD4 proposed in 1990 [36]. Given a message of arbitrary finite
size, padding is applied to obtain a message that can be divided into 512-bit blocks. Then a
128-bit hash is produced in accordance with the Merkle-Damgard construction [26, 9], i.e.
the compression function is iteratively applied to the blocks.

Given a 512-bit message block, MD5 compression function produces a 128-bit output.
The function consists of four rounds, sixteen steps each, and operates by transforming data
in four 32-bit registers A, B, C, D. For the first message block, the registers are initialized
with the constants specified in the standard. Otherwise, the registers are initialized with an
output produced at the previous iteration. The message block is divided into sixteen 32-bit
words. In each step, three registers are updated by permuting the current values, while the
remaining register is updated by mixing one message word, the current values of all four
registers, an additive constant, and a result of the previous step. The mixing is partially
done by a round-specific function, while additive constants are step-specific. As a result,
all sixteen words take part in each round. When all steps are executed, the registers are
incremented by the values they had after the initialization, and the output is produced as a
concatenation of A, B, C, D.

Consider a pseudocode of an MD5 step in Algorithm 1. Here g, 0 ≤ g ≤ 15 is a message
word index, 1 ≤ i ≤ 64 is a step number, ⊞ is addition modulo 232, and ≪ is circular left
bit rotation.

Algorithm 1 The i-th step of MD5.
Input: Current registers’ values A, B, C, D; step number i; message word index g; shift
amount s; round function Func.
Output: Updated values A, B, C, D.

1: temp← Func(B, C, D) ⊞ A ⊞ K[i− 1] ⊞ M [g]
2: A← D

3: D ← C

4: C ← B

5: B ← B + (temp ≪ s)

Inputs for all 64 steps are specified in [37]. The round functions are as follows: (x ∧ y) ∨
(¬x ∧ z); (x ∧ z) ∨ (y ∧ ¬z); x⊕ y ⊕ z; y ⊕ (x ∨ ¬z).

In 2004, the first MD5 collisions were published [44]. Regardless, it is still preimage
resistant and second-preimage resistant.

SHA-1

The Secure Hash Algorithm 1 (SHA-1) cryptographic hash function was proposed in 1995
as another more secure extension of MD4 [11]. The main differences compared to MD5 are
listed below.

CP 2024

31:4 Inverting Step-Reduced SHA-1 and MD5

1. A 160-bit hash is produced.
2. The compression function operates in 80 steps (4 rounds, 20 steps each) and returns a

160-bit output.
3. Five 32-bit internal registers A, B, C, D, E.
4. Additive constants are round-specific.
5. New round functions: (x ∧ y) ∨ (¬x ∧ z); x⊕ y ⊕ z; (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z); x⊕ y ⊕ z.
6. Instead of using parts of the message M directly in transformations, W is used such that

W [t] = M [t], 0 ≤ t ≤ 15, and W [t] = (W [t− 3]⊕W [t− 8]⊕W [t− 14]⊕W [t− 16]) ≪ 1
if 16 ≤ t ≤ 79.

Consider a pseudocode of a SHA-1 step in Algorithm 2.

Algorithm 2 The i-th step of SHA-1.
Input: Current registers’ values A, B, C, D, E; step number i; round index q; round function
Func.
Output: Updated values A, B, C, D, E.

1: temp← (A ≪ 5) ⊞ Func(B, C, D) ⊞ E ⊞ K[q] ⊞ W [i− 1]
2: E ← D

3: D ← C

4: C ← B ≪ 30
5: B ← A

6: A← temp

In 2017, the first SHA-1 collisions were published [43], but it is still preimage resistant
and second-preimage resistant.

3 Intermediate Inverse Problems for MD5 and SHA-1

This section first proposes a new type of intermediate inverse problems for cryptographic
hash functions, then it describes how such problems can be constructed for MD5 and SHA-1.

Intermediate Inverse Problems

Consider an arbitrary cryptographic hash function h such that its compression function f

is divided into r steps, and on each step an internal state is mixed with a k-bit word m,
where m is either a message word (like in MD5) or a mix of messages’ words (like in SHA-1).
Besides MD5 and SHA-1, most existing cryptographic hash functions match this condition,
e.g. MD4, RIPEMD-160, and SHA-256.

During preliminary experiments, for different triples (cryptographic hash function, SAT
encoding, CDCL solver) we attempted to invert modified step-reduced functions, where
the last step was weakened in different ways. It turned out that if m is not used, then the
last step does not really make the inverse problem harder for the solver. Based on this
observation, let us propose the following notation.

Consider i-step and (i + 1)-step reduced versions of h, where 1 ≤ i ≤ r − 1. Construct
k − 1 intermediate step-reduced cryptographic hash functions, where the first i steps are
used as usual, while step i + 1 is weakened as follows. In the j-th intermediate function,
1 ≤ j ≤ k−1, the word m in step i+1 is replaced by the word mweak such that the rightmost
k− j bits in mweak are equal to 0s, while the remaining j bits are equal to the leftmost j bits
in m. Note that this is not the same as replacing m by mweak in the whole h – if m is used

O. Zaikin 31:5

in several steps, then the proposed action affects only step i + 1. In the j-th intermediate
inverse problem it is needed to find a message given a hash produced by the j-th intermediate
step-reduced hash function.

The intention behind this approach is that for a state-of-the-art CDCL solver the first
intermediate problem will be slightly harder than the inversion of i steps, then the hardness
gradually increases towards the inversion of i + 1 steps.

Note that if for the j-th intermediate inverse problem between steps i and i+1 a preimage
is found for a hash, then with probability 1

2k−j the preimage inverts the same hash produced
by unmodified i + 1 steps because k − j bits of the corresponding word m can be considered
as random bits that can coincide with k − j 0s with the mentioned probability. This is the
first take away of the proposed approach – sometimes it is sufficient to solve an intermediate
inverse problem to invert i + 1 steps.

Intermediate Inverse Problems for MD5

During preliminary experiments, we tried to weaken step i + 1 of the MD5 compression
function for different values of i by deleting Func(B, C, D) from the sum in the first line of
Algorithm 1. However, it did not lead to simpler inverse problems from a state-of-the-art
CDCL SAT solver point of view. It was also tried to delete other addends in the first line’s
sum, to delete the addend B from the fifth line’s sum, and to omit shifting in the fifth line.
It turned out, that the only action that significantly decreases the hardness is deleting the
addend M [g] in the first line. Moreover, if M [g] is deleted, then inverting i + 1 steps is
almost similar to inverting i steps for a CDCL solver.

A pseudocode of an MD5 step weakened according to the proposed idea is presented in
Algorithm 3. Here weakM is a 32-bit word, and as a result of two shifts in the first line its
rightmost 32 − j bits are equal to 0, while the remaining j bits are equal to the leftmost
j bits in M [g]. Then weakM is used instead of M [g]. Therefore, to form 31 intermediate
inverse problems with increasing hardness, j should be varied from 1 to 31.

Algorithm 3 The (i + 1)-th weakened step of MD5.
Input: Current registers’ values A, B, C, D; step number i; message word index g; shift
amount s; round function Func; intermediate hash function number j.
Output: Updated values A, B, C, D.

1: weakM ← (M [g]≫ (32− j))≪ (32− j)
2: temp← Func(B, C, D) ⊞ A ⊞ K[i] ⊞ weakM

3: A← D

4: D ← C

5: C ← B

6: B ← B + (temp ≪ s)

In the rest of the paper, the j-th intermediate hash function between MD5 steps i and
i + 1, 1 ≤ i ≤ 63, is called (i j/32)-step MD5. Note, that according to this notation j = 32
corresponds to (i + 1)-step MD5.

Intermediate Inverse Problems for SHA-1

Consider a pair (i, i + 1), 1 ≤ i ≤ 79, of SHA-1 steps. Similar to the previous subsection, the
idea is to weaken step i + 1, while the first i steps are used as usual. During preliminary
experiments, it was tried to omit operations in Algorithm 2 for different values of i. The

CP 2024

31:6 Inverting Step-Reduced SHA-1 and MD5

picture is the same as for MD5 – when the usage of W is omitted, from the SAT solving
point of view the inverse problem becomes the same as the inverse of the first i steps. Yet
omitting any other operation, including the usage of the round function, does not make the
problem easier. Based on these results, intermediate inverse problems are formed in the same
way as for MD5, see Algorithm 4.

Algorithm 4 The (i + 1)-th weakened step of SHA-1.
Input: Current registers’ values A, B, C, D, E; step number i; round index q; round function
Func; intermediate hash function number j.
Output: Updated values A, B, C, D, E.

1: weakW ← (W [i]≫ (32− j))≪ (32− j)
2: temp← (A ≪ 5) ⊞ Func(B, C, D) ⊞ E ⊞ K[q] ⊞ weakW

3: E ← D

4: D ← C

5: C ← B ≪ 30
6: B ← A

7: A← temp

4 SAT Encoding

In this study, inverse problems for step-reduced SHA-1 and MD5 compression functions are
considered as was done earlier in [22, 35]. This section describes the corresponding SAT
encodings.

SHA-1 Encoding

Several SAT encodings of the SHA-1 compression function have been proposed so far [42,
35, 22, 28]. However, it is well known that at the moment the best one is Vegard Nossum’s
encoding [35]. Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers [35]. That is why Nossum’s encoding has been used in many further
studies, e.g. [34, 43].

Recall that in each SHA-1 step 5-ary addition is performed, see Section 2. In the Nossum’s
encoding, the column addition algorithm is applied, and each column sum is expressed via a
pseudo-Boolean constraint which in turn is encoded in the clausal form using the ESPRESSO
logic minimizer. Vegard Nossum implemented his encoding in the form of the program
sha1-sat, which is available online1. Given the number of SHA-1 steps and a hash, the
program produces the corresponding inverse problem in the CNF form.

For the present study, sha1-sat was extended to maintain intermediate inverse problems
proposed in Section 3. Assume that (i + 1)-step SHA-1 is considered, where a combination
of message words, the word W [i], is used as an addend, see Section 3, and the corresponding
CNF is produced by sha1-sat. To encode the j-th intermediate inverse problem between
steps i and i + 1, the following additional actions are performed:
1. An additional 32-bit word weakW is introduced in the form of 32 Boolean variables.
2. The rightmost 32 − j bits of weakW are assigned to 0 via adding unit clauses to the

CNF.

1 https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat

O. Zaikin 31:7

3. The equality conditions for the leftmost j bits of weakW and the corresponding j bits of
W [i] are added in the form of j × 2 binary clauses.

4. 32 Boolean variables of weakW are used instead of W [i]’s 32 variables in the clauses
where the addition is encoded in step i + 1.

By using the modified program, CNFs for intermediate inverse problems were constructed
between the following pairs of SHA-1 steps: (21, 22), (22, 23), and (23, 24) for 10 hashes: 160
0s, 160 1s, and 8 random ones. Also, for 21, 22, 23, and 24 steps, CNFs for standard inverse
problems were generated for the same 10 hashes. In Table 1, the characteristics of CNFs for
23, 23 16/32, and 24 steps are shown.

Table 1 Characteristics of CNFs that encode inverse problems for the main considered step-
reduced versions of SHA-1 and MD5.

Hash Steps Variables Clauses Literals
SHA-1 23 4 288 132 672 873 727
SHA-1 23 16/32 4 480 138 812 913 700
SHA-1 24 4 448 138 764 913 620
MD5 28 7 168 92 520 506 320
MD5 28 16/32 7 424 95 818 524 312
MD5 29 7 392 95 770 524 232

MD5 Encoding

Recently, several SAT encodings of the MD5 compression function have been proposed. The
encodings from [10, 22] are not available. The encodings from [40, 46] are available, but we
decided to extend sha1-sat to support MD5.

In MD5, in each step 4-ary addition is performed, so the corresponding pseudo-Boolean
constraint were constructed and encoded in the clausal form using ESPRESSO. As for the
round functions (see Section 2), clausal forms of three of them were taken from the SHA-1
encoding, while for the remaining one the clausal form was constructed manually.

CNFs for intermediate inverse problems were constructed between steps (27, 28) and
(28, 29) for the same 10 hashes as for SHA-1. In Table 1, the characteristics of main CNFs
are shown.

5 Solving Intermediate Inverse Problems by Kissat

First, we decided to study how a state-of-the-art sequential CDCL solver behaves on inter-
mediate inverse problems in case of MD5 and SHA-1. Kissat of version 3.0 [5] was chosen
because this solver and its modifications have showed excellent results in the last three SAT
Competitions. Of course, other CDCL solver can be also tried, for example, those which are
oriented on cryptanalysis [41, 32, 21]. All described experiments were performed on a PC
equipped with the 16-core CPU AMD 3950X and 64 Gb of RAM.

It turned out that inverse problems for 22-step SHA-1 are simple for Kissat, while for 23
steps the problems are quite hard, but still can be solved in reasonable time. That is why 33
inverse problems were considered: the one for 22 steps, 31 intermediate problems between
steps 22 and 23, and the one for 23 steps. As stated in Section 4, we generated 10 instances
for each problem – 1 for 160 1s hash, 1 for 160 0s hash, and 8 for random hashes, i.e. 330
instances in total. With the time limit of 24 hours, 303 SHA-1 instances out of 330 were

CP 2024

31:8 Inverting Step-Reduced SHA-1 and MD5

22

22
 2

/3
2

22
 4

/3
2

22
 6

/3
2

22
 8

/3
2

22
 1

0/
32

22
 1

2/
32

22
 1

4/
32

22
 1

6/
32

22
 1

8/
32

22
 2

0/
32

22
 2

2/
32

22
 2

4/
32

22
 2

6/
32

22
 2

8/
32

22
 3

0/
32 23

Steps

2 min

10 min

1 h

5 h

24 h

CP
U

tim
e

(lo
ga

rit
hm

ic
sc

al
e)

Figure 1 Boxplots of Kissat3 runtimes on intermediate inverse problems for SHA-1.

solved. Figure 1 shows the runtimes for SHA-1 in the logarithmic scale, where the unsolved
instances’ values were set to 24 hours. In the figure, the five-number statistics is presented
in the form of boxplots: outliers are plotted as small circles, whiskers correspond to the
minimum and the maximum (excluding outliers), the median is plotted in green, while a box
is plotted from the first quartile to the third quartile.

As for MD5, 330 instances between steps 27 and 28 were generated in the same way.
With the time limit of 24 hours, all MD5 instances were solved, see Figure 2.

According to the results, in case of MD5 the hardness of the intermediate inverse problems
grows almost linearly. In case of SHA-1 there is a clear leap between steps 22 1/32 and 22
2/32, then the hardness remains more or less the same, and finally the second leap happens
between steps 22 27/32 and 22 28/32. Note, that 24 out of 27 unsolved instances were parts
of the last 5 series, i.e. starting from 22 28/32 steps. Similar experiments were held between
steps 21-22 of SHA-1 and 26-27 of MD5 and the patterns were the same there.

Based on these results, the second take away of the approach, proposed in Section 3, is
formulated: a runtime estimation for an unreachable step can be calculated by extrapolating
runtimes of the previous step and (some) intermediate problems.

As mentioned in Section 2, it is sufficient to invert any hash to break the preimage
resistance of a cryptographic hash function. However, in practice this should be a regular
hash, say all 0s or all 1s, otherwise it may be hard to justify this choice and prove that it
was not done for a random pair of input and output. In this paper, 128 1s and 160 1s are
chosen for MD5 and SHA-1, respectively. Further they are called 1-hashes. Instances of
intermediate inverse problems between steps 28-29 of MD5 and steps 23-24 of SHA-1 were
generated for 1-hashes. Recall that at most 28-step MD5 and 23-step SHA-1 are inverted in
the literature. Out of 31 intermediate problems, 6 were solved by Kissat within the time
limit of 24 hours in case of MD5. In particular, the intermediate problems with j of 1, 3,
5, 8, 9, and 10 were solved. Yet only one intermediate problem with j = 20 was solved for
SHA-1. It means that (28 10/32)-step MD5 and (23 20/32)-step SHA-1 are inverted, and
this is already a clear progress compared to the literature, but in the next sections we are
going further.

The third take away is as follows: by solving intermediate inverse problems, some progress
can be achieved compared to the state of the art.

O. Zaikin 31:9

27

27
 2

/3
2

27
 4

/3
2

27
 6

/3
2

27
 8

/3
2

27
 1

0/
32

27
 1

2/
32

27
 1

4/
32

27
 1

6/
32

27
 1

8/
32

27
 2

0/
32

27
 2

2/
32

27
 2

4/
32

27
 2

6/
32

27
 2

8/
32

27
 3

0/
32 28

Steps

1 sec

10 sec

2 min

30 min

12 h

CP
U

tim
e

(lo
ga

rit
hm

ic
sc

al
e)

Figure 2 Boxplots of Kissat3 runtimes on intermediate inverse problems for MD5.

6 Parameterization Algorithm

A hypothesis behind the proposed method is that simple intermediate inverse problems can
be leveraged to parameterize Kissat (or, in other words, tune its parameters’ values) to
solve hard intermediate problems faster or just solve within the time limit if it is not yet
so. On the one hand, the tuning simplifies problems which are already simple, and it is not
guaranteed that it will help solving hard problems. On the other hand, all corresponding
CNFs have a very similar structure. We decided to test this hypothesis in practice.

Parameterization of SAT solvers is a well-developed field, see [18]. Formally, the general
problem is to automatically identify a parameter configuration (a set of parameters’ values)
that maximizes the performance of a SAT solver across a set of instances [18]. Among the
main parameterization algorithms for SAT are: ParamILS [20], SMAC [19], and GGA [2]. A
recent implementation of GGA is PyDGGA [1] while that for SMAC is SMAC3 [23]. In this
study, for this purpose an extension of a simple yet powerful (1+1) evolutionary optimization
algorithm ((1+1)-EA [30]) is used to have a full control over the tuning process. Another
reason is that evolutionary optimization algorithms have been successfully applied recently
to speed up parallel SAT solving [39, 47].

In short, (1+1)-EA works as follows: a Boolean vector of size k is given, and a series
of k independent Bernoulli trials [29] with the success probability 1/k is performed. If
i ∈ {0, . . . , k − 1} corresponds to a successful trial, then the i-th value is flipped. The
obtained vector is compared with the best one via an objective function, then a new vector
is generated and so on. It is clear that only binary parameters can be tuned via (1+1)-EA.

We propose an integer extension of (1+1)-EA that is further called (1+1)-EA-Int. The
pseudocode is presented in Algorithm 5. This algorithm operates with parameters of arbitrary
finite sizes by applying the categorical distribution – a discrete probability distribution that
describes the possible results of a random variable that can take on one of n possible
categories, each with specified probability [31]. Assume that P is a set of parameters
values. To choose a new value for the i-th parameter, the function categ_dist(xi, Pi) is
called, where xi is the current value of the i-th parameter and Pi, |Pi| = k is a set of
possible values of the i-th parameter. In this function, a weights vector w of length k is

CP 2024

31:10 Inverting Step-Reduced SHA-1 and MD5

formed. First, wi is assigned to 0. Assume that maxdist = max(i − 1, k − i − 2), then
wi−1 = wi+1 = 2maxdist, wi−2 = wi+2 = 2maxdist−1 and so on. As a result, at least one
of two elements w0, wk−1 becomes 1. Finally, the probabilities are assigned to parameters
values as follows: (w0∑k−1

j=0
wj

, w1∑k−1
j=0

wj

, . . . , wk−1∑k−1
j=0

wj

). The idea is that the closer a value to

the current one, the higher the probability is, yet any value (except the current one) can be
chosen with non-zero probability.

Algorithm 5 (1+1)-EA-Int.

Input: parameters values P , a start configuration x0, an objective function f .
Output: the best found configuration xbest with the objective function’s value f best.

1: n← param_num(x0)
2: ⟨xbest, f best⟩ ← ⟨x0, f(x0)⟩
3: checked_conf ← {}
4: while not termination criteria do
5: xcur ← xbest

6: for i← 0 to n− 1 do
7: with probability 1

n xcur
i ← categ_dist(xcur

i , Pi).
8: if xcur in checked_conf then
9: continue

10: f cur ← f(xcur)
11: checked_conf.add(xcur)
12: if f cur < f best then
13: ⟨xbest, f best⟩ ← ⟨xcur, f cur⟩
14: return ⟨xbest, f best⟩

Consider an example. Assume that a parameter has possible values 1, 2, 5, 10, 25, while its
current value is 10. Since maxdist = max(3−1, 5−3−2) = 2, it follows that w = (1, 2, 4, 0, 4),
and the probabilities are (1

11 , 2
11 , 4

11 , 0, 4
11).

Note, that additionally in Algorithm 5 all checked configurations are remembered to avoid
redundant calculations since the objective function is costly.

In all experiments, given a sample of CNFs and a parameter configuration, the objective
function f is the sum of Kissat’s runtimes on the CNFs, when the configuration is applied
to the solver. The goal is to minimize the function on the space of parameter configurations.

7 Inverting by Parameterized Solvers

In this section, the parameterization algorithm proposed in Section 6 is applied to tune
Kissat on simple intermediate inverse problems to invert 24-step SHA-1 and 29-step MD5.

Experimental Setup

We implemented the parameterization algorithm from Section 6 in Python, where the objective
function is calculated in parallel – 1 configuration per CPU core. The implementation is
available online2. The extended version of sha1-sat (see Section 4) and all generated CNFs

2 https://github.com/olegzaikin/paramsat

https://github.com/olegzaikin/paramsat

O. Zaikin 31:11

are available online as well3. The same PC as in Section 5 was used in the experiments.
The termination criteria were as follows: at most 24 (or 72 in some cases) hours and 1 000
calculations of the objective function.

There are 90 parameters in Kissat 3.0, yet 50 of them were excluded from the consideration
since in preliminary experiments they did not affect the performance. The remaining 40
parameters are presented in Table 2. All these parameters are integer, and their ranges are
specified in the solver’s documentation [5]. As a start configuration x0 in Algorithm 5 the
default Kissat’s configuration was leveraged.

Table 2 Varied parameters of Kissat.

backbone eliminateclslim reluctantlim sweepdepth
backbonerounds eliminateocclim restartint sweepfliprounds
bumpreasonslimit eliminaterounds restartmargin sweepmaxclauses
bumpreasonsrate emafast shrink sweepmaxdepth
chronolevels emaslow stable sweepvars
compactlim mineffort substituteeffort target
decay minimizedepth substituterounds tier1
definitioncores modeinit subsumeclslim tier2
definitionticks reducefraction subsumeocclim vivifytier1
eliminatebound reluctantint sweepclauses vivifytier2

Inverting 24-step SHA-1

In preliminary experiments it turned out that a training set must contain at least 10 CNFs
to obtain a configuration that works better on harder intermediate inverse problems. For
SHA-1, the training set consisted of 16 CNFs: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash. These CNFs were chosen
because the objective function’s value on them is reasonable: 1 hour 58 minutes on 1 CPU
core. For comparison, on the first 16 intermediate inverse problems between steps 22-23 the
corresponding value is 44 hours.

The parameterization algorithm was run three times with seeds 0, 1, and 2 and the time
limit of 24 hours. It stopped after 11, 12, and 16 hours, respectively, because the limit on
the objective function calculations (1 000) had been reached. The best result was found with
seed of 1: the best configuration was updated 13 times, and on the final one the objective
function’s value was 22 minutes (compared to 1 hour 58 minutes on the default configuration).
Table 3 contains those 12 parameters which changed their values in the found configuration.

The tuned and the default Kissat3 were run with the time limit of 24 hours on 64 CNFs:
31 intermediate ones between steps 22-23, 1 for 23 steps, 31 intermediate ones between
steps 23-24, and 1 for 24 steps. The results are presented as a cactus plot in Figure 3. The
default version solved 30 intermediate problems between steps 22-23, while the tuned version
solved all 31 of them. Both versions inverted 23 steps. Out of 31 intermediate problems
between steps 23-24, the default version solved 1 problem, while the tuned one coped with 5
problems. All in all, the tuned version solved 5 more problems, and on most problems it was
significantly faster.

3 https://github.com/olegzaikin/sha1-sat

CP 2024

https://github.com/olegzaikin/sha1-sat

31:12 Inverting Step-Reduced SHA-1 and MD5

Table 3 The best Kissat’s configuration found for SHA-1.

Parameter Default value Found value
backbonerounds 100 10
definitionticks 1 000 000 100
eliminatebound 16 32
eliminateclslim 100 10
emafast 33 10
minimizedepth 1 000 100
restartmargin 10 20
stable 1 2
sweepfliprounds 1 5
sweepmaxclauses 4 096 2 147 483 647
sweepvars 128 64
vivifytier1 3 2

5 10 15 20 25 30 35 40
instances

0

10000

20000

30000

40000

50000

60000

70000

80000

CP
U

tim
e

(s
)

kissat3_tuned
kissat3

Figure 3 Comparison of the default Kissat with its tuned version on intermediate inverse
problems for steps 22-24 of SHA-1, 1-hash.

According to Figure 3, the hardness of the intermediate inverse problems increases quite
smoothly in case of SHA-1, that is why it was decided not to run any additional tuning
since 5 out of 31 intermediate inverse problems between steps 23-24 were already solved by
the tuned solver. To invert 24-step SHA-1, experiments were run on the supercomputer
“Akademik V.M. Matrosov”4. Each supercomputer’s node is equipped with a 36-core CPU
and 128 Gb RAM. At most 5 nodes (180 cores) were taken for one task.

To parallelize hard intermediate problems, the Cube-and-Conquer [13] approach was
applied, where a given problem is split via lookahead into subproblems, which are solved by
a CDCL solver. The lookahead solver march_cu [14] was used to split the inverse problem
for 24-step SHA-1 into 166 subproblems via the cutoff parameter n=3467. Then the same
tuned Kissat was run on the subproblems in the form of a 167-core task with the time limit
of 3 days. For this purpose, the MPI program conquer_mpi was run5, which used 1 core

4 Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru
5 https://github.com/olegzaikin/EnCnC

http://hpc.icc.ru
https://github.com/olegzaikin/EnCnC

O. Zaikin 31:13

for the master process and 166 cores for computing processes. Table 4 presents a solution
that was found in 23 hours. The default Kissat was also run on the same subproblems on
the supercomputer, yet no solution was found within 3 days.

Table 4 A preimage of 160 1s produced by 24-step SHA-1.

0xa6c5c463 0x182655e0 0x2c5ba5f0 0xe0028033
0x8c3779b1 0x98635880 0xc5b822e 0x297efce7
0x59987038 0xd764eca9 0x7ed9801d 0xdde4f1e0
0x524e678 0xa8ce47dc 0xa813fd76 0x8b58e09f

Inverting 29-step MD5

For MD5 as a training set the first 16 intermediate inverse problems between steps 27-28 were
chosen. The parameterization algorithm was run with seeds 0, 1, and 2 with the time limit
of 24 hours, and it stopped after 4, 3, and 2 hours, respectively. The best result was achieved
on seed 0: the best configuration was updated 8 times, and on the final one the objective
function’s value was 4 minutes (compared to 14 minutes on the default configuration).

The tuning was run one more time starting from the found configuration. This time
the training set contained the last 15 intermediate problems between steps 27-28, and the
problem for 28 steps. The reason was that on these 16 CNFs on the found configuration the
objective function value was 5 hours 27 minutes, that is still reasonable, while on the default
configuration it was 18 hours 37 minutes. The time limit was increased to 3 days, and the
algorithm was run three times with seeds 3, 4, and 5. In all cases the time limit was reached:
the objective function was calculated 584, 698, and 973 times, respectively. The best result
was found with seed 5: the best configuration was updated 8 times, and the final objective
function’s value was 1 hour 30 minutes. Table 5 contains those 16 parameters which changed
their values in the found configuration compared to the default one.

Table 5 The best Kissat’s configuration found for MD5.

Parameter Default value Found value
chronolevels 100 1 000
decay 50 32
definitionticks 1 000 000 100
eliminatebound 16 2
eliminateocclim 2 000 1 000
emaslow 100 000 75 000
minimizedepth 1 000 100
restartmargin 10 20
shrink 3 0
stable 1 2
substituterounds 2 32
subsumeclslim 1 000 10 000
sweepmaxclauses 4 096 2 048
target 1 2
tier2 6 10
vivifytier2 6 5

CP 2024

31:14 Inverting Step-Reduced SHA-1 and MD5

The tuned and the default Kissat3 were run on the PC with the time limit of 24 hours
on 32 CNFs: 31 intermediate inverse problems between steps 28-29, and the inverse problem
for 29 steps. The results are presented as a cactus plot in Figure 4. The default version
solved 6 intermediate problems for j of 1, 3, 5, 8, 9, and 10, while the tuned one solved 10
problems for j of 1, 2, 3, 5, 6, 7, 8, 9, 11, and 13. As a result, (28 13/32)-step MD5 was
inverted. The figure clearly shows that the tuned version’s performance is much better.

2 4 6 8 10
instances

0

10000

20000

30000

40000

50000

60000

70000

80000

CP
U

tim
e

(s
)

kissat3_tuned
kissat3

Figure 4 Comparison of the default Kissat with its tuned version on intermediate inverse
problems for steps 28-29 of MD5, 1-hash.

On the next stage, intermediate inverse problems with j of 20, 24, and 28 between steps
28-29, as well as the inverse problem for 29 steps were considered. For each problem, at most
180 cubes were generated, a 180-core task was formed, and the tuned Kissat was run on
each subproblem with the time limit of 24 hours on the supercomputer. On the first two
problems solutions were found in 4 and 7 hours, respectively, yet nothing was found for the
remaining two ones. It became clear that the inverse problem for 29 steps is quite hard,
so this problem was split via march_cu into 74 470 cubes using the threshold n = 5493.
These cubes were divided into 10 parts to form 10 7-days 180-core tasks with the time limit
of 15 000 seconds for each subproblem. The first two task were completed with no found
solution, yet in the third task a solution was found in 37 hours. The corresponding preimage
is presented in Table 6.

Table 6 A preimage of 128 1s produced by 29-step MD5-1.

0xe1051a9e 0x48120773 0x996a5457 0xaaa1d815
0x37d8149c 0x5f999c05 0x182ba14b 0xdfff1673
0xc5db0a2f 0x44430b2a 0xa269f5a2 0x69781b85
0x2b7f0939 0xc1ff3c22 0xc55e990f 0x96ba3fb8

Discussion

According to the results, the hypothesis proposed in Section 6 is experimentally confirmed,
and it gives the fourth take away: tuning a state-of-the-art CDCL solver’s parameters
on simple intermediate inverse problems allows faster solving of hard intermediate inverse
problems.

O. Zaikin 31:15

Two found configurations for SHA-1 and MD5 differ quite a lot, but the following values
exist in both of them: definitionticks=100, minimizedepth=100, restartmargin=20, and
stable=2.

It seems realistic to invert 25-step SHA-1 via the proposed approach, but for 30-step
MD5 it is likely that additional effective algorithmic techniques are required.

Reproducibility

The preimages were hard to find, but their verification via direct computations takes a fraction
of a second. The correctness in case of 24-step SHA-1 was verified via the tool verify-
preimage from Nossum’s repository sha1-sat. As for MD5, it was done by modifying the
reference implementation from [37] written in C. First, padding (see Section 2), as well as all
steps but the first 29 ones must be deleted. Then the preimage should be given as an input.
As a result, 128 1s are produced.

8 Related Work

SAT-based cryptanalysis has been applied to cryptographic hash functions of the MD family
as follows. In [27], practical collision attacks on MD4 and MD5 were performed. In [10],
39-step MD4 was inverted, while for steps 40-43 it was done in [45]. 26-step MD5 was inverted
in [10], while for 27- and 28-step versions it was done in [22, 46]. As for the SHA family, the
situation is as follows. Step-reduced versions of SHA-0, SHA-256, and SHA-3 were inverted
in [22, 17, 34]. 22- and 23-step SHA-1 were inverted in [42, 22]. In [4], a weakened 24-step
SHA-1 was inverted, such that the number of known hash bits was reduced from 160 to
128. In [35], full-step version of SHA-1 was inverted, but most message bits were assigned
randomly, yet in [8] a similar result was achieved for SHA-256. Algebraic fault attacks on
SHA-1 and SHA-256 were proposed in [33]. Collisions for SHA-1 were found in [43].

The aforementioned SAT-based preimage attacks on step-reduced MD5 and SHA-1 are
practical. Also, theoretical preimage attacks on 62-step SHA-1 and full MD5 exist [12, 38].

Recently, Cube-and-Conquer has been successfully used to solve the Boolean Pythagorean
Triples problem [16], the Schur number five problem [15], Lam’s problem [7], and in model
finding [3].

9 Conclusions and Future Work

This paper proposed a new type of intermediate inverse problems between any two steps
(i, i + 1) of a cryptographic hash function from a wide class. First, these problems are useful
to make some progress if i steps can be inverted in reasonable time while the inversion of i + 1
steps is infeasible. Second, the simplest intermediate problems can be used to tune a CDCL
solver so it can cope with previously unattainable problems. Third, if some intermediate
inverse problems are solved, a runtime estimation for inverting i+1 steps can be calculated, so
the corresponding computational resources can be allocated for this purpose. Fourth, in some
cases it is not even needed to invert i + 1 steps directly since solutions of the intermediate
inverse problems can be simultaneously preimages of i + 1 steps.

The main result of the paper is inverting 29-step MD5 and 24-step SHA-1 for the first
time, thus making a clear progress in solving two hard computational problems.

In the future we are going to use more sophisticated parametrization algorithms and
apply the proposed technique to analyze other cryptographic hash functions.

CP 2024

31:16 Inverting Step-Reduced SHA-1 and MD5

References
1 Carlos Ansótegui, Josep Pon, Meinolf Sellmann, and Kevin Tierney. Pydgga: Distributed

GGA for automatic configuration. In Chu-Min Li and Felip Manyà, editors, Theory and
Applications of Satisfiability Testing - SAT 2021 - 24th International Conference, Barcelona,
Spain, July 5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer Science, pages
11–20. Springer, 2021. doi:10.1007/978-3-030-80223-3_2.

2 Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A gender-based genetic algorithm for
the automatic configuration of algorithms. In Ian P. Gent, editor, Principles and Practice of
Constraint Programming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal,
September 20-24, 2009, Proceedings, volume 5732 of Lecture Notes in Computer Science, pages
142–157. Springer, 2009. doi:10.1007/978-3-642-04244-7_14.

3 João Araújo, Choiwah Chow, and Mikolás Janota. Symmetries for cube-and-conquer in finite
model finding. In Roland H. C. Yap, editor, 29th International Conference on Principles
and Practice of Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada,
volume 280 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.CP.2023.8.

4 Emanuele Bellini, Alessandro De Piccoli, Rusydi H. Makarim, Sergio Polese, Lorenzo Riva,
and Andrea Visconti. New records of pre-image search of reduced SHA-1 using SAT
solvers. In Debasis Giri, Kim-Kwang Raymond Choo, Saminathan Ponnusamy, Weizhi
Meng, Sedat Akleylek, and Santi Prasad Maity, editors, Proceedings of the Seventh Inter-
national Conference on Mathematics and Computing - ICMC 2021, Shibpur, India, volume
1412 of Advances in Intelligent Systems and Computing, pages 141–151. Springer, 2021.
doi:10.1007/978-981-16-6890-6_11.

5 Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors,
SAT Competition 2022 – Solver and Benchmark Descriptions, volume B-2022-1 of Department
of Computer Science Series of Publications B, pages 10–11. University of Helsinki, 2022.

6 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2021. doi:10.3233/FAIA336.

7 Curtis Bright, Kevin K. H. Cheung, Brett Stevens, Ilias S. Kotsireas, and Vijay Ganesh.
A sat-based resolution of lam’s problem. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pages 3669–3676. AAAI Press,
2021. doi:10.1609/AAAI.V35I5.16483.

8 Davin Choo, Mate Soos, Kian Ming Adam Chai, and Kuldeep S. Meel. Bosphorus: Bridging
ANF and CNF solvers. In Jürgen Teich and Franco Fummi, editors, Design, Automation &
Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019,
pages 468–473. IEEE, 2019. doi:10.23919/DATE.2019.8715061.

9 Ivan Damgård. A design principle for hash functions. In Gilles Brassard, editor, Advances in
Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer, 1989. doi:10.1007/0-387-34805-0_39.

10 Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion
attacks on secure hash functions using satsolvers. In João Marques-Silva and Karem A. Sakallah,
editors, Theory and Applications of Satisfiability Testing - SAT 2007, 10th International
Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings, volume 4501 of Lecture Notes in
Computer Science, pages 377–382. Springer, 2007. doi:10.1007/978-3-540-72788-0_36.

11 Donald E. Eastlake and Paul E. Jones. US secure hash algorithm 1 (SHA1). RFC, 3174:1–22,
2001. doi:10.17487/RFC3174.

12 Thomas Espitau, Pierre-Alain Fouque, and Pierre Karpman. Higher-order differential
meet-in-the-middle preimage attacks on SHA-1 and BLAKE. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual

https://doi.org/10.1007/978-3-030-80223-3_2
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.4230/LIPICS.CP.2023.8
https://doi.org/10.1007/978-981-16-6890-6_11
https://doi.org/10.3233/FAIA336
https://doi.org/10.1609/AAAI.V35I5.16483
https://doi.org/10.23919/DATE.2019.8715061
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-540-72788-0_36
https://doi.org/10.17487/RFC3174

O. Zaikin 31:17

Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part
I, volume 9215 of Lecture Notes in Computer Science, pages 683–701. Springer, 2015.
doi:10.1007/978-3-662-47989-6_33.

13 Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:
Guiding CDCL SAT solvers by lookaheads. In Kerstin Eder, João Lourenço, and Onn
Shehory, editors, Hardware and Software: Verification and Testing - 7th International Haifa
Verification Conference, HVC 2011, Haifa, Israel, December 6-8, 2011, Revised Selected
Papers, volume 7261 of Lecture Notes in Computer Science, pages 50–65. Springer, 2011.
doi:10.1007/978-3-642-34188-5_8.

14 Marijn Heule and Hans van Maaren. March_dl: Adding adaptive heuristics and a new
branching strategy. J. Satisf. Boolean Model. Comput., 2(1-4):47–59, 2006. doi:10.3233/
SAT190016.

15 Marijn J. H. Heule. Schur number five. In Sheila A. McIlraith and Kilian Q. Weinberger,
editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 6598–6606. AAAI Press, 2018.
doi:10.1609/AAAI.V32I1.12209.

16 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the Boolean
Pythagorean triples problem via Cube-and-Conquer. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in
Computer Science, pages 228–245. Springer, 2016. doi:10.1007/978-3-319-40970-2_15.

17 Ekawat Homsirikamol, Pawel Morawiecki, Marcin Rogawski, and Marian Srebrny. Security
margin evaluation of SHA-3 contest finalists through sat-based attacks. In Agostino Cortesi,
Nabendu Chaki, Khalid Saeed, and Slawomir T. Wierzchon, editors, Computer Information
Systems and Industrial Management - 11th IFIP TC 8 International Conference, CISIM 2012,
Venice, Italy, September 26-28, 2012. Proceedings, volume 7564 of Lecture Notes in Computer
Science, pages 56–67. Springer, 2012. doi:10.1007/978-3-642-33260-9_4.

18 Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown. Automated configuration and
selection of SAT solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
editors, Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial
Intelligence and Applications, pages 481–507. IOS Press, 2021. doi:10.3233/FAIA200995.

19 Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Carlos A. Coello Coello, editor, Learning and Intelligent
Optimization - 5th International Conference, LION 5, Rome, Italy, January 17-21, 2011.
Selected Papers, volume 6683 of Lecture Notes in Computer Science, pages 507–523. Springer,
2011. doi:10.1007/978-3-642-25566-3_40.

20 Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic algorithm configuration
based on local search. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages 1152–1157. AAAI
Press, 2007. URL: http://www.aaai.org/Library/AAAI/2007/aaai07-183.php.

21 Stepan Kochemazov. Exploring the limits of problem-specific adaptations of SAT solvers
in SAT-based cryptanalysis. In Leonid Sokolinsky and Mikhail Zymbler, editors, Parallel
Computational Technologies, pages 149–163. Springer International Publishing, 2021. doi:
10.1007/978-3-030-81691-9_11.

22 Florian Legendre, Gilles Dequen, and Michaël Krajecki. Encoding hash functions as a SAT
problem. In IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI
2012, Athens, Greece, November 7-9, 2012, pages 916–921. IEEE Computer Society, 2012.
doi:10.1109/ICTAI.2012.128.

23 Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng,
Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A versatile bayesian
optimization package for hyperparameter optimization. J. Mach. Learn. Res., 23:54:1–54:9,
2022. URL: http://jmlr.org/papers/v23/21-0888.html.

CP 2024

https://doi.org/10.1007/978-3-662-47989-6_33
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.3233/SAT190016
https://doi.org/10.3233/SAT190016
https://doi.org/10.1609/AAAI.V32I1.12209
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-642-33260-9_4
https://doi.org/10.3233/FAIA200995
https://doi.org/10.1007/978-3-642-25566-3_40
http://www.aaai.org/Library/AAAI/2007/aaai07-183.php
https://doi.org/10.1007/978-3-030-81691-9_11
https://doi.org/10.1007/978-3-030-81691-9_11
https://doi.org/10.1109/ICTAI.2012.128
http://jmlr.org/papers/v23/21-0888.html

31:18 Inverting Step-Reduced SHA-1 and MD5

24 João Marques-Silva and Karem Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999. doi:10.1109/12.769433.

25 Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Crypto-
graphy. CRC Press, 1996. doi:10.1201/9781439821916.

26 Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 218–238. Springer, 1989. doi:10.1007/0-387-34805-0_21.

27 Ilya Mironov and Lintao Zhang. Applications of SAT solvers to cryptanalysis of hash functions.
In Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing
- SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,
volume 4121 of Lecture Notes in Computer Science, pages 102–115. Springer, 2006. doi:
10.1007/11814948_13.

28 Pawel Morawiecki and Marian Srebrny. A SAT-based preimage analysis of reduced Keccak hash
functions. Inf. Process. Lett., 113(10-11):392–397, 2013. doi:10.1016/J.IPL.2013.03.004.

29 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995. doi:10.1017/CBO9780511814075.

30 Heinz Mühlenbein. How genetic algorithms really work: Mutation and hillclimbing. In
Reinhard Männer and Bernard Manderick, editors, Parallel Problem Solving from Nature 2,
PPSN-II, Brussels, Belgium, September 28-30, 1992, pages 15–26. Elsevier, 1992.

31 Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive computation and
machine learning series. MIT Press, 2012.

32 Saeed Nejati and Vijay Ganesh. CDCL(Crypto) SAT solvers for cryptanalysis. In Tima
Pakfetrat, Guy-Vincent Jourdan, Kostas Kontogiannis, and Robert F. Enenkel, editors,
Proceedings of the 29th Annual International Conference on Computer Science and Software
Engineering, CASCON 2019, Markham, Ontario, Canada, November 4-6, 2019, pages 311–316.
ACM, 2019. doi:10.5555/3370272.3370307.

33 Saeed Nejati, Jan Horácek, Catherine H. Gebotys, and Vijay Ganesh. Algebraic fault attack
on SHA hash functions using programmatic SAT solvers. In John N. Hooker, editor, Principles
and Practice of Constraint Programming - 24th International Conference, CP 2018, Lille,
France, August 27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science,
pages 737–754. Springer, 2018. doi:10.1007/978-3-319-98334-9_47.

34 Saeed Nejati, Jia Hui Liang, Catherine H. Gebotys, Krzysztof Czarnecki, and Vijay Ganesh.
Adaptive restart and CEGAR-based solver for inverting cryptographic hash functions. In Andrei
Paskevich and Thomas Wies, editors, Verified Software. Theories, Tools, and Experiments -
9th International Conference, VSTTE 2017, Heidelberg, Germany, July 22-23, 2017, Revised
Selected Papers, volume 10712 of Lecture Notes in Computer Science, pages 120–131. Springer,
2017. doi:10.1007/978-3-319-72308-2_8.

35 Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.

36 Ronald L. Rivest. The MD4 message digest algorithm. In Alfred Menezes and Scott A. Vanstone,
editors, Advances in Cryptology - CRYPTO ’90, 10th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture
Notes in Computer Science, pages 303–311. Springer, 1990. doi:10.1007/3-540-38424-3_22.

37 Ronald L. Rivest. The MD5 message-digest algorithm. RFC, 1321:1–21, 1992. doi:10.17487/
RFC1321.

38 Yu Sasaki, Wataru Komatsubara, Yasuhide Sakai, Lei Wang, Mitsugu Iwamoto, Kazuo
Sakiyama, and Kazuo Ohta. Meet-in-the-middle preimage attacks revisited - new results on
MD5 and HAVAL. In Pierangela Samarati, editor, SECRYPT 2013 - Proceedings of the 10th
International Conference on Security and Cryptography, Reykjavík, Iceland, 29-31 July, 2013,
pages 111–122. SciTePress, 2013. URL: https://ieeexplore.ieee.org/document/7223160/.

https://doi.org/10.1109/12.769433
https://doi.org/10.1201/9781439821916
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/11814948_13
https://doi.org/10.1007/11814948_13
https://doi.org/10.1016/J.IPL.2013.03.004
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.5555/3370272.3370307
https://doi.org/10.1007/978-3-319-98334-9_47
https://doi.org/10.1007/978-3-319-72308-2_8
https://doi.org/10.1007/3-540-38424-3_22
https://doi.org/10.17487/RFC1321
https://doi.org/10.17487/RFC1321
https://ieeexplore.ieee.org/document/7223160/

O. Zaikin 31:19

39 Alexander A. Semenov, Daniil Chivilikhin, Artem Pavlenko, Ilya V. Otpuschennikov, Vladimir
Ulyantsev, and Alexey Ignatiev. Evaluating the hardness of SAT instances using evolutionary
optimization algorithms. In Laurent D. Michel, editor, 27th International Conference on
Principles and Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual
Conference), October 25-29, 2021, volume 210 of LIPIcs, pages 47:1–47:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CP.2021.47.

40 Alexander A. Semenov, Ilya V. Otpuschennikov, Irina Gribanova, Oleg Zaikin, and Stepan
Kochemazov. Translation of algorithmic descriptions of discrete functions to SAT with
applications to cryptanalysis problems. Log. Methods Comput. Sci., 16(1), 2020. doi:10.
23638/LMCS-16(1:29)2020.

41 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic
problems. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 244–257. Springer,
2009. doi:10.1007/978-3-642-02777-2_24.

42 Marian Srebrny, Mateusz Srebrny, and Lidia Stepien. SAT as a programming environment for
linear algebra and cryptanalysis. In International Symposium on Artificial Intelligence and
Mathematics, ISAIM 2008, Fort Lauderdale, Florida, USA, January 2-4, 2008, 2008. URL:
http://isaim2008.unl.edu/PAPERS/SS1-AI+Logic/MSrebrny-ss1.pdf.

43 Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The first
collision for full SHA-1. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer
Science, pages 570–596. Springer, 2017. doi:10.1007/978-3-319-63688-7_19.

44 Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald
Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer Science, pages
19–35. Springer, 2005. doi:10.1007/11426639_2.

45 Oleg Zaikin. Inverting 43-step MD4 via Cube-and-Conquer. In Luc De Raedt, editor,
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI
2022, Vienna, Austria, 23-29 July 2022, pages 1894–1900. ijcai.org, 2022. doi:10.24963/
IJCAI.2022/263.

46 Oleg Zaikin. Inverting cryptographic hash functions via Cube-and-Conquer. J. Artif. Intell.
Res., in press.

47 Oleg Zaikin and Stepan Kochemazov. On black-box optimization in divide-and-conquer SAT
solving. Optim. Methods Softw., 36(4):672–696, 2021. doi:10.1080/10556788.2019.1685993.

CP 2024

https://doi.org/10.4230/LIPICS.CP.2021.47
https://doi.org/10.23638/LMCS-16(1:29)2020
https://doi.org/10.23638/LMCS-16(1:29)2020
https://doi.org/10.1007/978-3-642-02777-2_24
http://isaim2008.unl.edu/PAPERS/SS1-AI+Logic/MSrebrny-ss1.pdf
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/11426639_2
https://doi.org/10.24963/IJCAI.2022/263
https://doi.org/10.24963/IJCAI.2022/263
https://doi.org/10.1080/10556788.2019.1685993

Solving LBBD Master Problems with Constraint
Programming and Domain-Independent Dynamic
Programming
Jiachen Zhang #

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

J. Christopher Beck #

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

Abstract
We investigate using Constraint Programming (CP) and Domain-Independent Dynamic Programming
(DIDP) to solve the master problem in Logic-based Benders Decomposition (LBBD) models, in
particular addressing the challenge of feasibility cut formulation. For CP, we exploit key variable
manipulation, constraint-based expressions, and global constraints to construct three combinatorial
cut encodings. For the state-based DIDP model, we propose two cut encoding approaches: using
additional preconditions of state transitions or adding state constraints. Each of these approaches
can be modeled using integer numeric variables or set variables, resulting in four novel encodings.
We apply the three CP variants and four DIDP variants to simple assembly line balancing problems
with sequence-dependent setup times type-1 (SUALBP-1). Experimental results show all approaches
outperform a mixed-integer programming (MIP) based master problem and the state-of-the-art
monolithic MIP model, with the three CP variants being superior to all of the DIDP approaches.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases constraint programming, domain-independent dynamic programming, logic-
based Benders decomposition, assembly line balancing, sequence-dependent setup

Digital Object Identifier 10.4230/LIPIcs.CP.2024.32

Funding J. Christopher Beck: Natural Sciences and Engineering Research Council of Canada.

1 Introduction

Logic-Based Benders Decomposition (LBBD) is one of the most powerful and convenient
patterns of problem decomposition for solving combinatorial optimization problems [15].
While the most common combination within the Constraint Programming (CP) literature uses
Mixed Integer Programming (MIP) for master problems and CP for subproblems [14], LBBD
is compatible with various modeling and solving techniques. For example, subproblems have
been modeled and solved with Satisfiability Modulo Theories (SMT) [22], Binary Decision
Diagrams [11], and problem-specific algorithms [10, 29]. However, work investigating modeling
and solution methods other than MIP for master problems in LBBD is sporadic [8]. In this
paper, we explore the modeling and solving LBBD master problems with methods different
from MIP.

As a constraint-based formalism, CP can readily accept cuts encoded as linear constraints.
However, linear constraints tend to propagate weakly, resulting in poor master problem
performance. The encoding methods proposed in this paper are more combinatorial and
focus on key decision variables in the global constraints of the master problem CP model.
As CP is competitive with MIP across a number of optimization problems [21], when the
master problem is of the form that is better solved with CP, a CP-based master problem may
outperform a corresponding MIP master problem if a good cut formulation can be achieved.

© Jiachen Zhang and J. Christopher Beck;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 32; pp. 32:1–32:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jasonzjc@mie.utoronto.ca
https://orcid.org/0000-0002-3305-4983
mailto:jcb@mie.utoronto.ca
https://orcid.org/0000-0002-4656-8908
https://doi.org/10.4230/LIPIcs.CP.2024.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Solving LBBD Master Problems with CP and DIDP

Domain-Independent Dynamic Programming (DIDP) is a recent exact framework to
model and solve combinatorial optimization problems [19, 20]. Its success on well-known
problems motivates us to investigate using DIDP for master problems in the LBBD framework.
Since a DIDP model is defined as a state-transition system, encoding Benders cuts in DIDP
differs fundamentally from the constraint-based encoding in MIP and CP.

As a case study, we use assembly line balancing problems with sequence-dependent setup
times type-1 (SUALBP-1) [9]. The natural decomposition for this problem is to solve the
Simple Assembly Line Balancing Problem type-1 (SALBP-1) as the master problem and to
solve a traveling salesman problem with precedence constraints as a subproblem. Previous
work shows that both CP and DIDP can outperform MIP for SALBP-1 [21], thus this choice
allows us to test whether cuts can be formulated to maintain this advantage.

Our contributions are summarized as follows.
1. We formulate three alternative representations of feasibility cuts for SUALBP-1 for a

CP-based master problem.
2. We propose four approaches to encode Benders feasibility cuts in a DIDP model of LBBD

master problems based on using integer or set variables to encode preconditions or state
constraints. We apply these approaches to SUALBP-1 and develop four feasibility cut
encodings for a DIDP-based master problem.

3. We obtain superior results for SUALBP-1 in solving master problems with CP and DIDP
rather than MIP, with CP outperforming DIDP. We provide statistical analysis and
insights on our seven novel cut formulations.

This paper is organized as follows. The background is covered in Section 2. The three
novel CP feasibility cut formulations for SUALBP-1 are introduced in Section 3. The four
encoding methods of Benders feasibility cuts in DIDP and their instantiations for SUALBP-1
are presented in Section 4. The experimental results are presented in Section 5. We discuss
the proposed approaches and results in Section 6, followed by our conclusions.

2 Background

2.1 Logic-Based Benders Decomposition
Logic-Based Benders Decomposition (LBBD) applies to problems that can be formulated as

min
x,y

{f(x, y)|C(x, y), x ∈ Dx, y ∈ Dy} (1)

where x and y are decision variables in the domains Dx and Dy, while f(x, y) and C(x, y)
represent the objective function and a set of constraints for these variables, respectively [13].
The variables are divided into two groups and, once some of the variables are fixed by solving
a master problem and setting x = x, the remaining subproblem is defined, often in the form
of multiple independent subproblems. The subproblem (SP) has the form

SP (x) = min
y

{f(x, y)|C(x, y), y ∈ Dy}. (2)

LBBD analyzes the SP solution to infer a function Bx(x) that provides a lower bound on
f(x, y) for any given x ∈ Dx. The bound is sharp for x = x, i.e., Bx(x) = SP (x) [15].

Each iteration of LBBD begins by solving a Master Problem (MP):

MP (X) = min
x,β

{β|β ≥ Bx(x), ∀x ∈ X, x ∈ Dx} (3)

where the inequalities β ≥ Bx(x) are Benders cuts obtained from the subproblem solutions
given x = x. X is the set of master problem solutions and is usually empty initially.

J. Zhang and J. C. Beck 32:3

Defining ϕ∗ as the optimal value of the original problem (1), the optimal MP value MP (X)
is a lower bound on ϕ∗. If x is an optimal MP solution, the corresponding subproblem is
then solved to obtain SP (x) as an upper bound on ϕ∗, and a Benders cut β ≥ Bx(x) for the
master problem, with x added to X. The process repeats until the lower and upper bounds
converge, i.e., until MP (X) = minx∈X SP (x). The convergence is guaranteed after a finite
number of iterations, if Dx is finite [13].

In general, there are two LBBD variants, distinguished by subproblem types. When
a subproblem is an optimization problem, we deduce a lower bound on ϕ∗ in the form of
a Benders optimality cut [31]. When a subproblem is a feasibility problem, a set of MP
solutions are pruned by the corresponding Benders feasibility cut [1] according to the SP
solution associated with x. In this work, we focus on encoding Benders feasibility cuts.

2.2 Domain-Independent Dynamic Programming
A DIDP model is described by Dynamic Programming Description Language (DyPDL), a
solver-independent formalism to define a dynamic programming (DP) model [20]. In DyPDL,
a problem is represented by states and transitions between states. A solution of the problem
corresponds to a sequence of transitions satisfying particular conditions.

A DyPDL model is a tuple ⟨V , S0, T , B, C, h⟩, where V is the set of state variables, S0

is a state called the target state, T is the set of transitions, B is the set of base cases, C is
the set of state constraints, and h is the set of dual bounds. A state variable is either an
element, set, or numeric variable. A numeric state variable v may have a preference such as
less (more), i.e., a state having smaller (larger) v dominates another state if the other state
variables have the same value in the two states. Such a variable is called a resource variable.

Given a set of state variables V = {v1, ..., vn}, a state is a tuple of values S = (d1, ..., dn)
where di ∈ Dvi

for i = 1, ..., n, i.e., a state is a complete assignment to state variables. We
denote the value di of variable vi in state S by S[vi]. Intuitively, the target state is the start
of the state transition system and a base state is a goal, i.e., the end of the state transition
system. State constraints are relations on state variables that must be satisfied by all states.

A transition τ is a 4-tuple ⟨effτ , costτ , preτ , forcedτ ⟩ where effτ is the set of effects,
costτ is the cost, preτ is the set of preconditions, and forcedτ ∈ {⊤, ⊥}, where ⊤ represents
true and ⊥ represents false. The preconditions of a transition define when we can use it
while the effects of a transition define what the state variables become if the transition
fires. For detailed DIDP models of various optimization problems, please see existing DIDP
papers [20, 21].

2.3 SUALBP-1
The Simple Assembly Line Balancing Problem (SALBP) is a well-studied production planning
problem [5]. As setup operations such as tool changes, curing, or cooling processes are often
required between consecutive tasks in real production lines [18], SUALBP incorporates setup
times into SALBP [2], as shown in Fig. 1.

Problem Definition

SUALBP-1 consists of n assembly tasks, partially ordered with precedence constraints,
that require processing on m ordered assembly stations. The tasks on a machine must all
sequentially execute within the cycle time c. In SUALBP-1, the cycle time c is fixed and
the objective is to minimize the number of stations m. Though all stations can perform all
assembly tasks, if a task is assigned to station j, all its successors as defined by the precedence

CP 2024

32:4 Solving LBBD Master Problems with CP and DIDP

Figure 1 Example of SUALBP-1.

constraints must be assigned to the same or subsequent stations (i.e., j, j + 1, j + 2, ..., m).
Tasks assigned to the same station must also be sequenced to satisfy the precedence constraints,
if any. The deterministic processing time of a task is provided a priori. However, the setup
before a task (forward setup) is dependent upon the previous task in the processing sequence
of the station it is assigned to. There is also a sequence-dependent setup (backward setup)
from the last task on a machine to the first task on the same machine to model the setup
required between the end of a cycle and the start of the next one.

The setups are not symmetric, i.e., the setup time from task i to j might be different from
that from task j to i. Nevertheless, the setups satisfy the triangle inequality. The decisions
to be made for SUALBP-1 are (i) the assignment of tasks to stations; and (ii) the sequence
of the tasks assigned to each station. We use the notation proposed by Esmaeilbeigi et al. [9],
as shown in the Table 1 for SUALBP-1. To obtain all the parameters in the table, we adapt
the preprocessing techniques in the literature [20, 9, 31].

SUALBP-1 has been solved with a number of approaches including MIP [9] and heurist-
ics [25]. The state-of-the-art MIP model is the Second Station-Based Formulation (SSBF) [9]
defined in Appendix A. The model uses two-indexed binary variables to encode task assign-
ment, three-indexed binary variables to represent the precedence relations of pairs of tasks
on a station, and auxiliary variables to help express the objective and constraints.

There is no existing LBBD approach specifically designed for SUALBP-1. The closest
work is an LBBD algorithm for mixed-model assembly line balancing problem with sequence-
dependent setups [1] that can be adapted (with significant simplification) to SUALBP-1. We
discuss this model in Section 5.

In our parallel work currently under review [30], new state-of-the-art results are found
with a monolithic DIDP model. Since our focus is on cut encoding in LBBD, we return to
these results in the discussion.

Table 1 Notation and definition for SUALBP-1 [9].

Notation Definition
i, j ∈ V index and set of tasks
k ∈ K index and set of stations
ti execution time for task i ∈ V

Pi (P ∗
i) set of direct (all) predecessors of task i ∈ V

Si (S∗
i) set of direct (all) successors of task i ∈ V

c the cycle time
m (m) upper (lower) bound on the number of stations
τij (µij) forward (backward) setup times from task i ∈ V to task j

τ i (µ
i
) the smallest forward (backward) setup time from any task to task i ∈ V

ti a lower bound of the time contribution by task i, i.e., ti = ti + min(τ i, µ
i
)

J. Zhang and J. C. Beck 32:5

3 CP-LBBD for SUALBP-1

In this section, we present three LBBD formulations for SUALBP-1 with CP master problems
and Benders feasibility cuts.

3.1 CP Master Problem
SUALBP-1 fixes the cycle time (maximum station time) and seeks to minimize the number
of stations used. In the LBBD framework, we decompose the problem to an assignment
master problem and a scheduling subproblem for each station.

In all our approaches, the master problem assigns tasks to stations, minimizing the
number of stations used, and ensuring that the precedence constraints between tasks and the
cycle time limit are not violated. Without any Benders cuts, this master problem is identical
to the Simple Assembly Line Balancing Problem type-1 (SALBP-1) [4].

For SALBP-1, Kuroiwa and Beck [20] improved the CP model proposed by Bukchin
and Raviv [6] by using Pack global constraint. Our models differ from theirs in two ways:
(1) ti is replaced by ti for task i to model a subproblem relaxation in the master problem
and (2) three different combinatorial formulations of Benders feasibility cuts are used, one
formulation in each model.

We define Ei as a lower bound on the number of stations required to schedule task i, Li

as a lower bound on the number of stations between the station of task i and the last station,
inclusive, and dij as a lower bound on the number of stations between the stations of tasks i

and j, inclusive:

Ei =
⌈ ti +

∑
j∈P ∗

i
tj

c

⌉
, Li =

⌊ ti − 1 +
∑

j∈S∗
i

tj

c

⌋
, dij =

⌈ ti + tj − 1 +
∑

v∈S∗
i

∩P ∗
j

tv

c

⌉
.

Let z be an integer decision variable representing the number of stations, xi be an integer
decision variable for the station that task i is assigned to, and yk be an integer decision
variable for the sum of the lower bound time contribution of tasks scheduled in station k.
Then the CP model for the master problem, CP-MP, is as follows:

min z (4a)
s.t. Pack({yk|k ∈ K}, {xi|i ∈ V }, {ti|i ∈ V }), (4b)

0 ≤ yk ≤ c, ∀k ∈ K, (4c)
Ei − 1 ≤ xi ≤ z − 1 − Li, ∀i ∈ V, (4d)
xi + dij ≤ xj , ∀j ∈ V, ∀i ∈ P ∗

j , ∄v ∈ S∗
i ∩ P ∗

j : dij ≤ div + dvj . (4e)

The Pack global constraint [27] ensures that for tasks “packed” onto stations, yk =∑
i∈V,xi=k ti. Constraints (4c) and (4d) state the domains of yk and xi. Constraint (4b) and

(4c) together ensure that the total task time on each station does not exceed the cycle time.
Constraint (4e) is an enhanced version of the precedence constraint using dij .

3.2 CP Formulations for Benders Feasibility Cuts
For SUALBP-1, we develop three combinatorial CP formulations for Benders feasibility cuts
by using key variable manipulation, a Count_Different expression, and a Pack constraint.

Let J be the set of subproblems leading to Benders cuts. Consider subproblem j ∈ J
corresponding to station k, let Ij be the set of tasks assigned to the station that cannot all be
scheduled within the cycle time, then the j-th Benders feasibility cut based on manipulation
of the key decision variables, i.e., the station assignment specified by xi, is as follows:

CP 2024

32:6 Solving LBBD Master Problems with CP and DIDP

∑
i∈Ij

(xi = k) ≤ |Ij | − 1, ∀k ∈ K. (5)

Chu and Xia defined a valid Benders cut as a logical expression having two properties [7]:
Property 1: The cut must exclude the current MP solution if it is not globally feasible.
Property 2: The cut must not remove any globally feasible solutions.

Property 1 ensures finite convergence if the MP variables have finite domains. Property 2
assures optimality since the cut never removes globally feasible solutions.

▶ Proposition 1. Cut (5) is valid.

Proof. As xi = k specifies the station assignment and there are |Ij | tasks in Ij , the cut
prevents the tasks in Ij from being all assigned to the same station and satisfies Property 1.
Since the solutions removed by this encoding are all infeasible globally with the set of tasks
Ij assigned to any station, Property 2 is satisfied. ◀

The constraint-based expression Count_Different takes a list of (more than one) variables
as input and returns the number of distinct values of these variables [17]. The j-th cut based
on Count_Different is as follows:

Count_Different({xi|i ∈ Ij}) ≥ 2. (6)

▶ Proposition 2. Cut (6) is valid.

Proof. This constraint guarantees that the number of distinct values in {xi|i ∈ Ij} is at
least 2 and implies (5). Thus, Properties 1 and 2 are satisfied. ◀

The j-th cut based on the global constraint Pack is as follows:

Pack({wk|k ∈ K}, {xi|i ∈ Ij}, {1i|i ∈ Ij}), (7)

where 0 ≤ wk ≤ |Ij | − 1 and 1i = 1, ∀i ∈ Ij .

▶ Proposition 3. Cut (7) is valid.

Proof. Since 1i has unit length and wk ≤ |Ij |−1, this cut assures that no more than |Ij |−1
tasks in Ij are assigned to any station and satisfies Property 1. Similar to the proof for
Proposition 1, Property 2 is satisfied. ◀

The CP-LBBD models with cut (5), (6), and (7) are referred to as CP-LBBDa, CP-LBBDc,
and CP-LBBDp, corresponding to “assignment”, “count”, and “pack”, respectively.

4 DIDP-LBBD for SUALBP-1

In this section, we present the DIDP model for the master problem for SUALBP-1, four
general encoding methods for Benders feasibility cuts, and their instantiation to the Benders
cuts for SUALBP-1.

4.1 Master Problem
As stated in Section 3.1, the master problem is equivalent to the SALBP-1. Our DIDP
formulations for the master problem (with Benders cuts) of SUALBP-1 are inspired by an
existing DIDP model for SALBP-1 [20], which is defined as follows.

J. Zhang and J. C. Beck 32:7

State variables.
U : set variable for unscheduled tasks. In the target state (i.e., the initial state), U = V .
r: integer resource variable for the remaining time (cycle time minus used time) of the
current station. In the target state, r = 0. A larger r is better.

Base case. A base case is a set of conditions to terminate the recursion. The base case of
the DIDP model is U = ∅.

Transitions.
Assigni = ⟨U → U\{i} ∧ r → r − ti, 0, i ∈ U ∧ ti ≤ r ∧ U ∩ P ∗

i = ∅, ⊥⟩: assign task
i to the current station.
Open = ⟨r → c, 1, (i /∈ U ∨ r < ti ∨ U ∩ P ∗

i ̸= ∅) | ∀i ∈ V, ⊥⟩: open a new station.

Note that we use ti instead of ti in the master problem to estimate the setup times that
are exactly calculated in the subproblems.

Theoretically, the transition Open can be used at any state. However, a state with a
closed station that can accommodate an unscheduled task is dominated by an otherwise
identical one that schedules such a task. Thus, a dominance rule, stating that a station
can only be opened if no task can be assigned to the current station, is encoded in the
preconditions for transition Open. This dominance rule plays an important role in the
efficiency of the DIDP model [20] but presents a complication for our cut formulations (see
Section 4.3.2).

Recursive function. We use f(U, r) to represent the cost of a state. Let U1 = {i ∈ U | r ≥
ti ∧ U ∩ P ∗

i = ∅} be the set of tasks with all their predecessors scheduled that can fit on the
current station. The recursive function of the DIDP model is as follows:

compute f(V, 0) (8a)

f(U, r) =

0 if U = ∅, (i)
1 + f(U, c) else if U1 = ∅, (ii)
mini∈U1 f(U\{i}, r − ti) else, (iii)

(8b)

f(U, r) ≤ f(U, r
′
), if r ≥ r

′
, (8c)

f(U, r) ≥ max

⌈

∑
i∈U

ti−r

c ⌉, (i)∑
i∈U w2

i + ⌈
∑

i∈U w
′2
i − l2⌉, (ii)

⌈
∑

i∈U w3
i − l3⌉. (iii)

(8d)

The term (8a) is to compute the cost of the target state. Equation (8b) is the main
recursion of the DIDP model. Specifically, (8b-i) refers to the base case, while (8b-ii)
corresponds to opening a new station and (8b-iii) refers to assigning task i to the current
station. Inequality (8c) formulates state domination due to the resource variable: if other

Table 2 Numeric constants for calculating a knapsack-based dual bound.

ti (0, c/2) c/2 (c/2, c] ti (0, c/3) c/3 (c/3, c/2) 2c/3 (2c/3, c]

w2
i 0 0 1 w3

i 0 1/3 1/2 2/3 1
w

′2
i 0 1/2 0

CP 2024

32:8 Solving LBBD Master Problems with CP and DIDP

variables are equal, a state with a larger remaining time dominates. (8d-i), (8d-ii), and (8d-iii)
are valid dual bounds proposed by Scholl and Klein [26] with numeric constants w2, w

′2, w3

indexed by a task i and depending on ti, as shown in Table 2.

4.2 Feasibility Cut Encoding in DIDP-LBBD
Let x be the decision variables in the master problem and let x be the optimal solution
of the latest MP iteration. Let Ij be the set of MP variable indices that appear in the
j-th subproblem, then the Benders feasibility cut obtained from this subproblem is of the
following form:∑

i∈Ij

(xi = xi) ≤ |Ij | − 1. (9)

This form is often formulated as a linear constraint in the MIP master problem and we call
it the j-th cut.

In DIDP, however, a cut of form (9) cannot be directly represented with state variables.
Thus, instead of adding only a constraint to the DIDP model, we add a new state variable
for each cut, with relevant transitions updating the variable value. New preconditions or
state constraints are also added.

4.2.1 Counting-based Encoding
Our first two encoding methods are based on integer numeric variables in DIDP. Let gj be
an integer numeric variable that counts the active variable-value pairs in the left-hand side
(LHS) of the cut (9), i.e., gj =

∑
i∈Ij (xi = xi). In the target state, the value of gj is 0. Let

F j be the function that updates the value of gj according to transitions. If the effects effτ

of transition τ imply that xi = xi for some i ∈ Ij and xk ̸= xk for some k ∈ Ij , we have
F j(τ) = |U j

τ | − |Dj
τ |, where U j

τ (Dj
τ) is the set of the variable indices of the variable-value

pairs that are changed from inactive (active) to active (inactive) by transition τ with respect
to the j-th cut, with i ∈ U j

τ and k ∈ Dj
τ . Let S be the state where the preconditions of

transition τ are satisfied, and let S′ = S[[τ]] be the state reachable from S by τ , we have
S′[gj] = S[gj] + F j(τ).

In practice, the implementation of F depends on the problem and we define the encoding
for SUALBP-1 later in Section 4.3. With the LHS of cut (9) modeled, we use preconditions
or state constraints to model the right-hand side (RHS).

Precondition-based Encoding. Our first method for modeling the RHS of (9) is based on
preconditions. Specifically, for the cut with the form (9), we add a precondition for each
transition in the DIDP model that can modify the LHS variables as follows:

S[gj] + F j(τ) ≤ |Ij | − 1, (10)

where τ is the transition. If the precondition is violated, the transition τ is not permitted.

State Constraint-based Encoding. Our second method for modeling the RHS of (9) is
based on state constraints that need to be satisfied by all states. The state constraint for the
j-th cut is as follows:

S[gj] ≤ |Ij | − 1, (11)

where S is any state. A state constraint is evaluated after a state is created but a precondition
would prevent the state from being created.

J. Zhang and J. C. Beck 32:9

4.2.2 Set-based Encoding
Our second two encoding methods are based on set variables in DIDP. Let Ωj be a set
variable that keeps track of the active variable-value pairs in the LHS of the cut (9). More
specifically, the set variable Ωj contains an element ei iff xi = xi is satisfied in a state. In
the target state, Ωj = ∅. Let Oj be the function that updates the value of Ωj according
to transitions. If the effects effτ of transition τ imply that xi = xi for some i ∈ Ij and
xk ̸= xk for some k ∈ Ij , let U j

τ be the set containing all such i and Dj
τ be the set containing

all such k, we have Oj(τ) = (S[Ωj] ∪ U j
τ)\Dj

τ . Let S be a state and S′ = S[[τ]] be the state
reachable from S by τ , we have S′[Ωj] = Oj(τ). Similar to the counting-based encoding, we
use preconditions or state constraints to model the RHS.

Precondition-based Encoding. For the cut (9), we add a precondition for each transition
that can modify Oj(τ) in the DIDP model as follows:

Ij ⊈ Oj(τ), (12)

where τ is the transition. Oj(τ) gives the value of Ωj after the transition and may contain
items that are not in Ij . The precondition prevents Ωj from including all the items in Ij .

State Constraint-based Encoding. The state constraint for the j-th cut is as follows:

Ij ⊈ S[Ωj], (13)

where S is any state.

4.2.3 Weakness of the DIDP Encoding
There is a fundamental weakness in the aforementioned DIDP encodings compared to
constraint-based models: adding a cut expands the search space. All four DIDP encoding
methods rely on adding a new state variable to the MP to keep track of the changes to the
LHS of (9) caused by transitions. After adding a new state variable corresponding to the
j-th cut, the original state space size is multiplied by the cardinality of the Ij . We return to
this point in Section 6.

4.3 Encoding DIDP-LBBD Cuts for SUALBP-1
The formulations above can be used for any cut of the form (9). Here we formally present
four cut formulations for SUALBP-1.

4.3.1 Counting-based Precondition Encoding
For cut j ∈ J , recall that Ij is the set of tasks assigned to the station that cannot be
scheduled within the cycle time. Define function F j such that F j(i) = 1 if i ∈ Ij and 0
otherwise. In order to encode this cut, we add a new state variable gj with its value being 0
at the target state. We then modify the recursive formulation (8b) as follows.

f(U, r, {gj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {0 | ∀j ∈ J}) else if U2 = ∅, (ii)
mini∈U2 f(U\{i}, r − ti, {gj + F j(i) | ∀j ∈ J}) else. (iii)

(14)

where U2 = {i ∈ U | r ≥ ti ∧ U ∩ P ∗
i = ∅ ∧ (∀j ∈ J , gj + F j(i) ≤ |Ij | − 1)}.

CP 2024

32:10 Solving LBBD Master Problems with CP and DIDP

▶ Proposition 4. The counting-based precondition encoding is valid.

Proof. For any cut j ∈ J , gj counts the number of variable-value pairs that appear in the
current station. With transition Open, the current station changes to the next station and
gj = 0, as shown in (14-ii). As shown in (14-iii), with transition Assigni for any i, since
F j is non-negative and gj + F j(i) ≤ |Ij | − 1 is the precondition stated in U2, we have
S[gj] ≤ |Ij | − 1 at any state S of the DIDP model. This guarantees that the same set of
tasks are never assigned to the same station and satisfies Property 1. Since the solutions
removed by this encoding are the solutions with the set of tasks Ij assigned to any station,
they are all infeasible globally as the task processing times and setup times are independent
of stations, and thus Property 2 is satisfied. ◀

4.3.2 Counting-based State Constraint Encoding
We keep the modified effects and use state constraints instead of preconditions to enforce the
logic of feasibility cuts. The recursive formulation (8b) becomes:

f(U, r, {gj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {0 | ∀j ∈ J}) else if U2 = ∅, (ii)
mini∈U1 f(U\{i}, r − ti, {gj + F j(i) | ∀j ∈ J}) else if U1 ̸= ∅. (iii)

(15)

In (15-iii), there is no precondition preventing a task assignment that violates Benders cut.
Instead, state constraints are added to prune the resulting states as follows:

gj ≤ |Ij | − 1, ∀j ∈ J . (16)

However, as noted, there is an interaction between the cut and the dominance rule associated
with the preconditions of transition Open: if we maintain the original precondition on Open

(i.e., U1 = ∅), then a state where only tasks that violate the cut can be scheduled will result
in a dead-end. The transitions satisfying (15-iii) will fire and the resulting states will all
violate the state constraints. Thus, no state is reachable from the current state. However,
a new station should be opened in the state when no tasks can be scheduled. To ensure
the correctness of the model, either we remove the dominance and allow Open at any time,
or we maintain it by allowing Open when no tasks, including those violating cuts, can be
scheduled (the new preconditions become U2 = ∅). We select the latter option to maintain
the efficiency of the proposed DIDP model.

▶ Proposition 5. The counting-based state constraint encoding is valid.

Proof. Similar to the proof for Proposition 4, we have S[gj] ≤ |Ij | − 1 at any state S of the
DIDP model. Property 1 and Property 2 are hence satisfied. ◀

4.3.3 Set-based Precondition Encoding
To encode this cut, we add a new state variable Ωj with its value being ∅ at the target state.
We then modify the recursive formulation (8b) in the DIDP model of the master problem to
address all the Benders feasibility cuts:

f(U, r, {Ωj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {∅ | ∀j ∈ J}) else if U3 = ∅, (ii)
mini∈U3 f(U\{i}, r − ti, {Ωj ∪ {i} | ∀j ∈ J}) else. (iii)

(17)

where U3 = {i ∈ U | r ≥ ti ∧ U ∩ P ∗
i = ∅ ∧ (∀j ∈ J , Ij ⊈ Ωj ∪ {i})}.

J. Zhang and J. C. Beck 32:11

▶ Proposition 6. The set-based precondition encoding is valid.

Proof. For any cut j ∈ J , Ωj keeps track of the variable-value pairs that appear in the
current station. With transition Open, the current station changes to the next station and
Ωj = ∅, as shown in (17-ii). As shown in (17-iii), with transition Assigni for any i, since the
effects never remove any element from Ωj and Ij ⊈ Ωj ∪ {i} is the precondition stated in U3,
we have Ij ⊈ S[Ωj] at any state S of the DIDP model. This guarantees that the same set of
tasks would never appear in the same station and satisfies Property 1. Similar to the proof
for Proposition 4, Property 2 is satisfied. ◀

4.3.4 Set-based State Constraint Encoding
The recursive formulation (8b) becomes:

f(U, r, {Ωj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {∅ | ∀j ∈ J}) else if U3 = ∅, (ii)
mini∈U1 f(U\{i}, r − ti, {Ωj ∪ {i} | ∀j ∈ J}) else if U1 ̸= ∅. (iii)

(18)

The added state constraint is:

Ij ⊈ Ωj , ∀j ∈ J . (19)

Similar to (15), we maintain the dominance specified by the preconditions of the transition
Open by inserting the case violating state constraints (19) into the preconditions (the new
preconditions become U3 = ∅).

▶ Proposition 7. The set-based state constraint encoding is valid.

Proof. Similar to the proof for Proposition 6, Property 1 and Property 2 are satisfied. ◀

The DIDP-LBBD models with recursive formulation (14), (15), (17), and (18) re-
placing (8b) are referred as DIDP-LBBDcP re, DIDP-LBBDcCon, DIDP-LBBDsP re, and
DIDP-LBBDsCon, respectively, where “c” and “s” correspond to “count” and “set” and “Pre”
and “Con” map to “precondition” and “constraint”.

5 Experimental Evaluation

In this section, we compare the performance of our CP-LBBD, DIDP-LBBD, and MIP-LBBD
models against the state-of-the-art MIP model [9] (see Appendix A) on the 788 instances of
the SBF2 data set [25].1

5.1 MIP-LBBD Master Problem
We use a MIP-LBBD model as the baseline LBBD approach. For the master problem, instead
of a simplified MIP formulation proposed by Akpinar et. al [1] we use the state-of-the-art
NF4 MIP formulation [23] for SALBP-1 and replace ti by ti to express the subproblem

1 https://assembly-line-balancing.de/sualbsp/data-set-of-scholl-et-al-2013/

CP 2024

https://assembly-line-balancing.de/sualbsp/data-set-of-scholl-et-al-2013/

32:12 Solving LBBD Master Problems with CP and DIDP

relaxation. For the Benders cuts, linear constraints [1] are directly applied. As Ij is the
set of MP variable indices that appear in the j-th subproblem, the corresponding Benders
feasibility cut in the MIP form is as follows:∑

i∈Ij

xik ≤ |Ij | − 1, ∀k ∈ K, (20)

where xik is the decision variable used in the MP MIP formulation and xik = 1 if task i is
assigned to station k and 0 otherwise.

5.2 Solving the Subproblem
In the LBBD framework for SUALBP-1, the MP solution assigns tasks to each station.
Thus, each subproblem is a constraint satisfaction problem to find a schedule of the tasks,
considering the precedence relation between tasks, the sequence-dependent setup times,
and the cycle time. The task processing times are not included in the subproblem as they
are constant after the task assignment is given; the sum of processing times is therefore
subtracted from the cycle time when evaluating feasibility. The subproblem has the structure
of the Travelling Salesman Problem (TSP) with precedence constraints. For this constrained
TSP variant, our preliminary investigations showed that DIDP outperforms CP and MIP
and we hence use DIDP as the sole subproblem solver. The state variables, base cases, and
the recursive function are as follows.

State variables. For station j, the DIDP model has the following state variables:
U : set variable for unscheduled tasks. In the target state, U = Ij .
s: element variable for the current task, with its value in Ij . In the target state, s = ds,
where ds is a dummy task with setup times from and to any other tasks set to zero.
f : element variable for the first task, with its value in Ij . In the target state, f = ds.

Base cases. The base case of the DIDP model is: U = ∅ ∧ s = ds.

Recursive function. We use V(U, s, f) to represent the cost of a state. Let P j∗
i be the set

of predecessors of task i on station j. Let U4 = {i ∈ Ij | Ij ∩ P j∗
i = ∅}.

compute V(Ij , ds, ds) (21a)

V(U, s, f) =

0 if U = ∅ ∧ s = ds, (i)
µsf + V(U, ds, ds) else if U = ∅ ∧ s ̸= ds, (ii)
µsi + mini∈U4 V(U\{i}, i, f) else if U4 ̸= ∅ ∧ s ̸= ds, (iii)
mini∈U4 V(U\{i}, i, i) else, (iv)

(21b)

V(U, s, f) ≥ max
{

µ
f

+
∑

i∈U τ i, if s = ds, (i)
0, else. (ii)

(21c)

Case (21b-i) refers to the base case, while (21b-iv) corresponds to assigning the first task
to the current empty station. Case (21b-iii) represents assigning the next task to the current
station and adding the corresponding setup time. (21b-ii) represents closing the station and
adding the setup time to the first task. (21c) is the dual bound [20].

Although this DIDP model is designed for optimization problems, since some DIDP
solvers support anytime solving [21], by setting a primal bound, the search can be stopped
after a solution satisfying all the constraints and having a total cost no greater than the
cycle time minus the total processing time is found.

J. Zhang and J. C. Beck 32:13

Figure 2 Ratio of instances solved and proved optimal over time for SUALBP-1.

5.3 Experiment Setting
We use the SBF2 data set proposed by Zohali et al. [31] and follow their clustering of the
instances into four classes:

Data set A: small (132 instances) with up to 25 tasks.
Data set B: medium (140 instances) with 28 to 35 tasks.
Data set C: large (188 instances) with 45 to 70 tasks.
Data set D: extra-large (328 instances) with 75 to 111 tasks.

Each class has four different settings according to a parameter α that specifies the ratio of
the average setup time to the average task processing time: 0.25, 0.50, 0.75, and 1.00.

For the DIDP models, we use the state-of-the-art solver based on CABS [21] in didp-rs
v0.7.3.2 For the CP models, we use CP Optimizer 22.1.1 [17]. For the MIP models, we use
Gurobi 11.0.1 [12]. All the experiments are implemented in Python 3.10.11. Each instance is
run for 1800 seconds on a single thread on a Ubuntu 22.04.2 LTS machine with Intel Core i7
CPU and 16 GB memory.

5.4 Experiment Results
The results on SUALBP-1 are shown in Fig. 2.3 Better performance is indicated by curves
closer to the top left corner of the graph. First note that all of our proposed techniques
outperform the current state of the art. CP-LBBDa achieves the best performance at the
time limit with 69% of instances proved to optimality. CP-LBBDc performs best before 1500
seconds. In particular, CP-LBBDc achieves 63% in 300 seconds while CP-LBBDa is two
times slower to achieve that level. This performance difference indicates the speedup brought
by the constraint-based expression Count_Different. CP-LBBDp, though trailing the other
two CP-LBBD models significantly, performs better than DIDP-LBBD, MIP-LBBD, and
MIP approaches. These results imply that direct manipulation of core decision variables xi

in the CP model is advantageous compared to global constraints, especially when using a
global constraint requires extra variables such as wk in the Pack constraint.

2 https://didp.ai/
3 Disaggregated results for datasets A, B, C, and D are presented in Fig. 7-10 in Appendix B.

CP 2024

https://didp.ai/

32:14 Solving LBBD Master Problems with CP and DIDP

Figure 3 Mean cumulative number of cuts
added over iterations. Figure 4 Mean MP runtime over iterations.

The DIDP-LBBD models find and prove optimal solutions for more instances in a shorter
computation time than MIP-LBBD and MIP. In 60 seconds, all four DIDP-LBBD models find
and prove optimality on 50% of the instances. MIP cannot achieve the same performance in
1100 seconds. At 1800 seconds, DIDP-LBBD has found and proved optimality for around 60%
of the problem instances compared to 57% and 54% for MIP-LBBD and MIP, respectively.

Focusing on the LBBD models, the relative rankings are: CP-LBBD, DIDP-LBBD, and
MIP-LBBD, which demonstrates the promise of CP-LBBD and DIDP-LBBD. Though the
three CP-LBBD variants differ substantially in Fig. 2, there is no significant performance
difference among the four DIDP-LBBD variants. Note that the subproblem solve time is
very short, e.g., 0.001s.

5.5 Algorithm Analysis

For the SBF2 data set, 394 of the 788 instances are proved optimal by each of the eight
LBBD models. The mean cumulative numbers of cuts added for the 394 instances are shown
in Fig. 3.4 We can see that DIDP-LBBD models have significantly fewer iterations and cuts
than CP-LBBD and MIP-LBBD. We believe that this difference is due to the existence of
multiple optimal solutions of the master problem: different models find different optimal
solutions and different Benders cuts, leading to different numbers of MP runs. While CP and
DIDP models require many fewer iterations on average, we found no evidence that this is a
systematic difference but rather the arbitrary impact of which optimal solutions are found.

The mean MP runtimes of the 394 instances over iterations for all the eight LBBD models
are shown in Fig. 4. CP-LBBD and MIP-LBBD have relatively consistent MP runtime
across different iterations. For DIDP-LBBD models, although starting from small magnitude,
the MP runtimes increase drastically as the iterations increase. As discussed in Section 4.2.3,
with more state variables added to the DIDP model of the master problem, the state space
of the model is enlarged and needs more search effort to find and prove optimality, hence
the MPs become more time-consuming to solve. This performance degradation can partially
explain the worse results of DIDP-LBBD compared to CP-LBBD.

4 The behaviors of DIDP-LBBDcP re and DIDP-LBBDcCon are exactly the same in terms of cuts added.
The behaviors of DIDP-LBBDsP re and DIDP-LBBDsCon are the same, too. Thus, their plots overlap.

J. Zhang and J. C. Beck 32:15

(a) CP-LBBDc and CP-LBBDa. (b) CP-LBBDp and CP-LBBDa.

Figure 5 Number of nodes of the MPs in CP-LBBD models for the SBF2 dataset.

(a) CP-LBBDc and CP-LBBDa. (b) CP-LBBDp and CP-LBBDa.

Figure 6 Runtime of the MPs in CP-LBBD models for the SBF2 dataset.

In order to investigate the differences among the three CP-LBBD models, for all 788
instances in the SBF2 dataset, we added the cuts generated by CP-LBBDa model at each
MP iteration to all models, in the corresponding cut forms, with a time limit of 3600
seconds. Thus for each MP iteration, the three models solve identical problems except for
the differences in the form of the cuts.

Fig. 5 and 6 show scatter plots for the number of nodes and the runtimes. All four
graphs show a substantial cluster in the lower-left corner demonstrating broadly similar
performance. However, both CP-LBBDc and, to a greater extent, CP-LBBDp exhibit a
number of instances with a large number of nodes and large runtimes when CP-LBBDa has
relatively small values of these measures.

These graphs are consistent with the overall results of the CP models in Figure 2. In
terms of the number of nodes generated, the graphs suggest that the difference comes less
from a systematic performance difference among the models and more from a small number
of outliers with large node counts for CP-LBBDc and CP-LBBDp. In contrast, the runtime

CP 2024

32:16 Solving LBBD Master Problems with CP and DIDP

graphs for CP-LBBDp and, to a lesser extent, CP-LBBDc show vertical clusters of instances
with relatively low CP-LBBDa runtimes implying that the higher computational effort of
the global constraint based models does not pay off in terms of performance.

A different perspective on the results in Fig. 5 and 6, is shown by the runtime vs. number
of nodes of the MPs in three CP-LBBD models in Fig. 11 in Appendix C. Since the three
models solve identical problems except for cut forms, the results reflect the runtime each of
the three CP-LBBD models needs for exploring the same number of nodes and also coincide
with the performance rankings of CP-LBBD models from a regression perspective.

6 Discussion

Global constraints in CP can increase domain propagation and the overall solving performance
but have a limit, after which the improved propagation, if any, is not worth the effort
required [24]. This dynamic may be observed by the worse results of CP-LBBDp compared
to CP-LBBDa and CP-LBBDc. By contrast, CP-LBBDa and CP-LBBDc manipulate the
main decision variables more directly while not inducing much larger constraint models.

The validity of the proposed four DIDP cut encoding methods depends on the effective
extraction of the useful information, i.e., the change of the variable-value pairs in the Benders
cuts. Such information is often hidden in the transitions of DIDP models. Thus, it is difficult
to create a cut encoding using the existing state variables. An important question is to
understand if this state-space expansion is an inherent weakness for DIDP and, indeed,
state-based models in general. There exists similar work examining the addition of trajectory
constraints to AI planning problems which similarly expand the state space [16, 3].

In a parallel work, a monolithic DIDP model for SUALBP-1 performs better than all the
LBBD models presented here [30]. This is a surprising result as the state of the art for similar
problems with sequence-dependent setup times is typically based on decomposition [31, 28].
Further research is required to understand why DIDP models for SUALBP-1 do not follow
this pattern. We speculate that the relaxation of the setup time in the MP hurts performance
compared to the monolithic DIDP model because setup time can be directly accounted for
in the transitions.

7 Conclusions

In this paper, we proposed novel logic-based Benders decomposition (LBBD) models with
master problems modeled and solved with constraint programming (CP) and domain-
independent dynamic programming (DIDP), using simple assembly line balancing problem
with sequence-dependent setup times type-1 (SUALBP-1) as a testbed. We developed three
CP-based master problem formulations with Benders feasibility cuts formulated as key variable
manipulation, constraint-based expressions, and global constraints. In the state transition
system of DIDP, we proposed four encoding methods for Benders feasibility cuts by exploiting
the integer or set variables and preconditions or state constraints. Experimental results on
SUALBP-1 show superior performance for the CP-LBBD models and good performance of
the four DIDP-LBBD models, compared to MIP-LBBD and monolithic MIP models. This
work demonstrates the promise of decomposition-based approaches employing CP and DIDP
approaches.

J. Zhang and J. C. Beck 32:17

References
1 Sener Akpinar, Atabak Elmi, and Tolga Bektaş. Combinatorial benders cuts for assembly line

balancing problems with setups. European Journal of Operational Research, 259(2):527–537,
2017.

2 Carlos Andres, Cristobal Miralles, and Rafael Pastor. Balancing and scheduling tasks in
assembly lines with sequence-dependent setup times. European Journal of Operational Research,
187(3):1212–1223, 2008.

3 Jorge A Baier, Fahiem Bacchus, and Sheila A McIlraith. A heuristic search approach to
planning with temporally extended preferences. Artificial Intelligence, 173(5-6):593–618, 2009.

4 Ilker Baybars. A survey of exact algorithms for the simple assembly line balancing problem.
Management science, 32(8):909–932, 1986.

5 Christian Becker and Armin Scholl. A survey on problems and methods in generalized assembly
line balancing. European journal of operational research, 168(3):694–715, 2006.

6 Yossi Bukchin and Tal Raviv. Constraint programming for solving various assembly line
balancing problems. Omega, 78:57–68, 2018.

7 Yingyi Chu and Quanshi Xia. Generating benders cuts for a general class of integer pro-
gramming problems. In Jean-Charles Régin and Michel Rueher, editors, Proceedings of the
First International Conference on the Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR 2004), volume 3011, pages
127–136. Springer, Berlin Heidelberg, 2004.

8 Maryam Daryalal, Hamed Pouya, and Marc Antoine DeSantis. Network migration problem: A
hybrid logic-based benders decomposition approach. INFORMS Journal on Computing, 2023.

9 Rasul Esmaeilbeigi, Bahman Naderi, and Parisa Charkhgard. New formulations for the setup
assembly line balancing and scheduling problem. OR spectrum, 38:493–518, 2016.

10 Michael Forbes, Mitchell Harris, Marijn Jansen, Femke van der Schoot, and Thomas Taimre.
Combining optimisation and simulation using logic-based benders decomposition. arXiv
preprint arXiv:2107.08390, 2021.

11 Cheng Guo, Merve Bodur, Dionne M Aleman, and David R Urbach. Logic-based benders de-
composition and binary decision diagram based approaches for stochastic distributed operating
room scheduling. INFORMS Journal on Computing, 33(4):1551–1569, 2021.

12 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021. Accessed on 2024-04-10.
URL: http://www.gurobi.com.

13 John Hooker. Logic-Based Methods for Optimization: Combining Optimization and Constraint
Satisfaction. John Wiley & Sons, Inc., New York, 2000.

14 John N Hooker. Planning and scheduling by logic-based benders decomposition. Operations
research, 55(3):588–602, 2007.

15 John N Hooker and Greger Ottosson. Logic-based benders decomposition. Mathematical
Programming, 96(1):33–60, 2003.

16 Chih-Wei Hsu, Benjamin W Wah, Ruoyun Huang, and Yixin Chen. Constraint partitioning
for solving planning problems with trajectory constraints and goal preferences. In Proceedings
of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pages
1924–1929, 2007.

17 IBM. IBM ILOG CPLEX Optimizer. Accessed on 2024-04-20. URL: https://www.ibm.com/
products/ilog-cplex-optimization-studio/cplex-cp-optimizer.

18 Naveen Kumar and Dalgobind Mahto. Assembly line balancing: a review of developments
and trends in approach to industrial application. Global Journal of Researches in Engineering
Industrial Engineering, 13(2):29–50, 2013.

19 Ryo Kuroiwa and J. C. Beck. Domain-independent dynamic programming. arXiv preprint
arXiv:2401.13883, 2024.

20 Ryo Kuroiwa and J Christopher Beck. Domain-independent dynamic programming: Generic
state space search for combinatorial optimization. In the 33rd International Conference on
Automated Planning and Scheduling (ICAPS), 236–244., 2023.

CP 2024

http://www.gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer

32:18 Solving LBBD Master Problems with CP and DIDP

21 Ryo Kuroiwa and J Christopher Beck. Solving domain-independent dynamic programming
problems with anytime heuristic search. In the 33rd International Conference on Automated
Planning and Scheduling (ICAPS), 245–253., 2023.

22 Florin Leutwiler and Francesco Corman. A logic-based benders decomposition for microscopic
railway timetable planning. European Journal of Operational Research, 303(2):525–540, 2022.

23 Marcus Ritt and Alysson M Costa. Improved integer programming models for simple assembly
line balancing and related problems. International Transactions in Operational Research,
25(4):1345–1359, 2018.

24 Francesca Rossi, Peter Van Beek, and Toby Walsh. Constraint programming. Foundations of
Artificial Intelligence, 3:181–211, 2008.

25 Armin Scholl, Nils Boysen, and Malte Fliedner. The assembly line balancing and scheduling
problem with sequence-dependent setup times: problem extension, model formulation and
efficient heuristics. OR spectrum, 35:291–320, 2013.

26 Armin Scholl and Robert Klein. Salome: A bidirectional branch-and-bound procedure for
assembly line balancing. INFORMS journal on Computing, 9(4):319–334, 1997.

27 Paul Shaw. A constraint for bin packing. In International conference on principles and practice
of constraint programming, pages 648–662. Springer, 2004.

28 Tony T Tran, Arthur Araujo, and J Christopher Beck. Decomposition methods for the parallel
machine scheduling problem with setups. INFORMS Journal on Computing, 28(1):83–95,
2016.

29 Tony T Tran and J Christopher Beck. Logic-based benders decomposition for alternative
resource scheduling with sequence dependent setups. In ECAI 2012, pages 774–779. IOS Press,
2012.

30 Jiachen Zhang and J. C. Beck. Domain-independent dynamic programming and constraint
programming approaches for assembly line balancing problems with setups. arXiv preprint
arXiv:2403.06780, 2024.

31 Hassan Zohali, Bahman Naderi, and Vahid Roshanaei. Solving the type-2 assembly line
balancing with setups using logic-based benders decomposition. INFORMS Journal on
Computing, 34(1):315–332, 2022.

A Monolithic MIP Model of SUALBP-1

Table 3 Additional parameters for SUALBP-1 [9].

Notation Definition
E set of all precedence relations

Ei earliest station for task i ∈ V , e.g., Ei = ⌈
ti+

∑
j∈P ∗

i

tj

c
⌉

Li latest station for task i ∈ V , e.g., Li = m + 1 − ⌈
ti+

∑
j∈F ∗

i

tj

c
⌉

KD(KP) set of definite (possible) stations, i.e., KD = {1, ..., m}, KP = {m + 1, ..., m}, and
K = KD ∪ KP

F Si set of stations to which task i ∈ V can be assigned, i.e., F Si = {Ei, Ei + 1, ..., Li}
F Tk set of tasks which can be assigned to station k ∈ K, i.e., F Tk = {i ∈ V |k ∈ F Si}
Ai set of tasks that cannot be assigned to the station to which task i is assigned, e.g.,

Ai = {j ∈ V |F Sj ∩ F Si = ∅}
F F

i (P F
i) set of tasks which may directly follow (precede) task i in forward direction, i.e.,

F F
i = {j ∈ V − (F ∗

i − Fi) − P ∗
i − Ai − {i}} and P F

i = {j ∈ V |i ∈ F F
j }

F B
i (P B

i) set of tasks which may directly follow (precede) task i in backward direction, i.e.,
F B

i = {j ∈ V − F ∗
i − Ai} and P B

i = {j ∈ V |i ∈ F B
j }

J. Zhang and J. C. Beck 32:19

To present the monolithic MIP model of SUALBP-1, additional parameters are required,
as shown in Table 3. Since the SSBF model can be adapted to both SUALBP-1 and
SUALBP-2, we name it SSBF-1 [9]. The decision variables are:

xik: binary variable with value 1, iff task i ∈ V is assigned to station k ∈ FSi.
zi: integer variable for encoding the index of the station task i ∈ V is assigned to.
uk: binary variable with value 1, iff any task is assigned to station k.
gijk: binary variable = 1, iff task i is performed immediately before task j on station k.
hijk: binary variable = 1, iff task i is the last and task j is the first task on station k.
ri: integer variable representing the rank of task i in a sequence of all tasks. The sequence
is composed of the task sequences on all the active stations.

The SSBF-1 MIP model proposed by Esmaeilbeigi et al. [9] is as follows.

min
∑

k∈KP

uk + m (22a)

s.t.
∑

k∈F Si

xik = 1, ∀i ∈ V, (22b)

∑
k∈F Si

k · xik = zi, ∀i ∈ V, (22c)

∑
i∈F Tk∩F F

i

gijk +
∑

i∈F Tk∩F B
i

hijk = xik, ∀i ∈ V, ∀k ∈ FSi, (22d)

∑
i∈F Tk∩P F

j

gijk +
∑

i∈F Tk∩P B
j

hijk = xjk, ∀j ∈ V, ∀k ∈ FSj , (22e)

∑
i∈F Tk

∑
j∈(F Tk∩F B

i
)

hijk = 1, ∀k ∈ KD, (22f)

∑
i∈F Tk

∑
j∈(F Tk∩F B

i
)

hijk = uk, ∀k ∈ KP, (22g)

ri + 1 + (n − |F ∗
i | − |P ∗

j |) · (
∑

k∈(F Si∩F Sj)

gijk − 1) ≤ rj , ∀i ∈ V, ∀j ∈ F F
i , (22h)

ri + 1 ≤ rj , ∀(i, j) ∈ E , (22i)
zi ≤ zj , ∀(i, j) ∈ E , (22j)∑
i∈F Tk

tixik +
∑

i∈F Tk

∑
j∈(F Tk∩F F

i
)

τijgijk +
∑

i∈F Tk∩P B
i

µijhijk ≤ c, ∀k ∈ KD, (22k)

∑
i∈F Tk

tixik +
∑

i∈F Tk

∑
j∈(F Tk∩F F

i
)

τijgijk +
∑

i∈F Tk∩P B
i

µijhijk ≤ c · uk, ∀k ∈ KP, (22l)

∑
i∈F Tk\{j}

xik ≤ (n − m + 1) · (1 − hjjk), ∀k ∈ K, ∀j ∈ FTk, (22m)

uk+1 ≤ uk, ∀k ∈ KP\{m}. (22n)
gijk ∈ {0, 1}, ∀k ∈ K, ∀i ∈ FTk, ∀j ∈ (FTk ∩ F F

i), (22o)
hijk ∈ {0, 1}, ∀k ∈ K, ∀i ∈ FTk, ∀j ∈ (FTk ∩ F B

i), (22p)
|P ∗

i | + 1 ≤ ri ≤ n − |F ∗
i |, ∀i ∈ V, (22q)

xik ∈ {0, 1}, ∀i ∈ V, ∀k ∈ FSi, (22r)
ri, zi ∈ Z+, ∀i ∈ V, (22s)

CP 2024

32:20 Solving LBBD Master Problems with CP and DIDP

The objective (22a) minimizes the number of stations. Constraint (22b) ensures that a
task is assigned to a station. Constraint (22c) links xik and zi. Constraints (22d) and (22e)
assure that a task on station k is followed and preceded by exactly one other task in the
cyclic sequence of this station. According to constraints (22f) and (22g), in each cycle exactly
one of the relations is a backward setup. Constraints (22h) and (22i) establish the precedence
relations among the tasks within each station. Note that the constraint (22h) is inactive if
tasks i and j are assigned to different stations. We add the constraint (22j) to make sure
that the precedence relations among the tasks of different stations are satisfied. Knapsack
constraints (22k) and (22l) ensure that no station time exceeds the cycle time. Constraint
(22m) guarantees that only task j is allocated to station k when hjjk = 1. Constraint (22n)
guarantees that stations are used in the correct order and no empty station is in the middle
of used stations. Constraints (22o) to (22s) specify the domain of the variables.

Note that the decision variables ri and zi are set to continuous in [9]. However, doing
so results in infeasible solutions being labeled as feasible for some problem instances. In
addition to the MIP model, Esmaeilbeigi et al. [9] developed pre-processing techniques to
reduce the number of variables and constraints. We implement all these techniques, as well.

B Approach Performances for Separate Datasets

The performance of each approach on datasets A, B, C, and D separately are presented in
Fig. 7 - 10, respectively. As shown in Fig. 7, all approaches except MIP solve all problems
in dataset A to proved optimality in a few seconds. For dataset B (Fig. 8), all approaches,
including MIP, are competitive and behave similarly. For dataset C, MIP-LBBD has the
worst performance while surprisingly it outperforms all DIDP-LBBD approaches and MIP
for dataset D, as shown in Fig. 9 and 10. We can also see the performance degradation of
DIDP-LBBD when solving larger problems.

Figure 7 Ratio of instances solved and proved
optimal over time for dataset A.

Figure 8 Ratio of instances solved and proved
optimal over time for dataset B.

C Analysis of CP-LBBD

In Section 5.5, for all 788 instances in the SBF2 dataset, we added the cuts generated by
CP-LBBDa model at each MP iteration to all models, in the corresponding cut forms, with a
time limit of 3600 seconds. The runtime over the number of nodes of the MPs in CP-LBBD

J. Zhang and J. C. Beck 32:21

Figure 9 Ratio of instances solved and proved
optimal over time for dataset C.

Figure 10 Ratio of instances solved and
proved optimal over time for dataset D.

models for the SBF2 dataset is shown in Fig. 11. The regression lines demonstrate the
performance rankings of the three CP-LBBD models in terms of the runtime required to
explore the same number of nodes.

Figure 11 Runtime vs. number of nodes of the MPs in CP-LBBD models for the SBF2 dataset.

CP 2024

Ex-Ante Constraint Elicitation in Incomplete
DCOPs
Roie Zivan #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Shiraz Regev #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

William Yeoh #

Washington University in St. Louis, MO, USA

Abstract
Distributed Constraint Optimization Problems (DCOPs) is a framework for representing and solving
distributed combinatorial problems, where agents exchange messages to assign variables they own,
such that the sum of constraint costs is minimized. When agents represent people (e.g., in meeting
scheduling problems), the constraint information that the agents hold may be incomplete. For such
scenarios, researchers proposed Incomplete DCOPs (I-DCOPs), which allow agents to elicit from
their human users some of the missing information. Existing I-DCOP approaches evaluate solutions
not only by their quality, but also the elicitation costs spent to find them (ex-post). Unfortunately,
this may result in the agents spending a lot of effort (in terms of elicitation costs) to find high-quality
solutions, and then ignoring them because previous lower-quality solutions were found with less
effort.

Therefore, we propose a different approach for solving I-DCOPs by evaluating solutions based
on their quality and considering the elicitation cost beforehand (ex-ante). Agents are limited in
the amount of information that they can elicit and, therefore, need to make smart decisions on
choosing which missing information to elicit. We propose several heuristics for making these decisions.
Our results indicate that some of the heuristics designed produce high-quality solutions, which
significantly outperform the previously proposed ex-post heuristics.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Constraint Optimization Problems, Preference Elicitation, Multi-
Agent Optimization

Digital Object Identifier 10.4230/LIPIcs.CP.2024.33

Funding This research is partially supported by US-Israel Binational Science Foundation (BSF)
grant #2022189 and by a J.P. Morgan Faculty Research Award.

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) formulation is widely used
for representing and solving combinatorial optimization problems that are distributed by
nature [5, 7, 15]. It includes agents holding variables, which are constrained with variables
held by other agents (their neighbors) and attempt to find an optimal assignment to their
variables that minimizes constraint costs, while exchanging messages with their neighbors.

When agents represent humans, such as in meeting scheduling problems [4, 1], the
information held by agents regarding the preferences of the humans that they represent may
be incomplete. Agents can elicit information from the humans by introducing queries to
their human users, However, humans might find that answering these queries is a tedious
task and may abandon the use of the system if the burden is too heavy. Thus, there is a
clear need to limit the amount of queries that the human users need to answer.

© Roie Zivan, Shiraz Regev, and William Yeoh;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zivanr@bgu.ac.il
https://orcid.org/0000-0002-1410-8368
mailto:shiraze@post.bgu.ac.il
mailto:wyeoh@wustl.edu
https://orcid.org/0000-0002-2617-870X
https://doi.org/10.4230/LIPIcs.CP.2024.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Ex-Ante Constraint Elicitation in Incomplete DCOPs

In order to represent such situations and allow agents to select high-quality assignments
to their variables, while taking into consideration incomplete information, and make a limited
use of elicitation queries, the Incomplete DCOP (I-DCOP) model was proposed [10, 11, 12].
I-DCOP enables the representation of partial information by having agents hold constraint
tables in which some entries include the costs for the corresponding combination of assignments
and some do not. The agents can use elicitation queries to fill some of the empty entries and
then use the information available to them in order to select the solution to the problem.

Tabakhi et al. [11, 12] proposed limiting the use of elicitation queries by evaluating the
outcome of the I-DCOP solving process as a weighted sum of the quality of the selected
solution and the effort (e.g., number of queries asked) for producing it. Thus, the agents
aimed to find a solution that has not only a high quality, but also a low effort to find it.
While this evaluation of outcomes incentivizes the algorithm to make efficient use of the
human query resources, from a practical point of view, this method for evaluating possible
outcomes does not make sense.

For example, imagine that an agent is searching for a hotel for the next trip of the person
it represents. After a small search effort c1, the agent finds a decent hotel with solution
quality q1. Then, the agent decides to spend more effort, searching for a better hotel and,
after a costly effort c2 >> c1, it manages to find one that is slightly better q2 > q1. According
to the evaluation method proposed [11, 12], the agent will choose the first hotel because
c1 − q1 < c2 − q2.1 In other words, the second hotel is not as good because the marginal
increase in quality is not worth the large amount of effort spent for it. However, intuitively,
since the search effort was already spent, it does not make sense to not use the better solution
found.

The key issue with the prior approach is that the search effort considered is done ex-post –
after the effort was spent – when it should be done ex-ante – before the effort was spent.
With this insight in mind, we propose a different approach for solving incomplete DCOPs.
Inspired by others [3], we limit the amount of queries that agents can use (i.e., a query
“budget”) and propose different heuristic strategies for the agents to follow when they decide
what information to elicit. We compare the success of the proposed strategies in comparison
with the existing ex-post approach, in combination with a complete SyncBB algorithm [2]
and two incomplete DSA and MGM [15, 17] algorithms.

Our results indicate that all the ex-ante heuristic strategies we proposed outperformed
the existing ex-post heuristic. Moreover, the heuristics that spend effort in identifying parts
of the search space that have higher probability to be part of a high-quality solution are
more successful.

2 Background

In this section, we present DCOPs and three algorithms for solving them: SyncBB, DSA,
and MGM.

2.1 Distributed Constraint Optimization Problems
Without loss of generality, in the rest of this paper, we will assume that all problems are
minimization problems, as it is common in the DCOP literature [1]. Thus, we assume that
all constraints define costs and not utilities.

1 We assume that we are minimizing costs in this paper.

R. Zivan, S. Regev, and W. Yeoh 33:3

A DCOP is defined by a tuple ⟨A, X , D, R⟩. A is a finite set of agents {A1, A2, . . . , An}.
X is a finite set of variables {X1, X2, . . . , Xm}. Each variable is held by a single agent, and
an agent may hold more than one variable. D is a set of domains {D1, D2, . . . , Dm}. Each
domain Di contains the finite set of values that can be assigned to variable Xi. We denote
an assignment of value x ∈ Di to Xi by an ordered pair ⟨Xi, x⟩. R is a set of relations
(constraints). Each constraint Rj ∈ R defines a non-negative cost for every possible value
combination of a set of variables, and is of the form Rj : Dj1 ×Dj2 × . . .×Djk

→ R+ ∪{0}. A
binary constraint refers to exactly two variables and is of the form Rij : Di × Dj → R+ ∪ {0}.
We say that a variable is involved in a constraint if it is one of the variables the constraint
refers to and that an agent is involved in a constraint if one of its variables is involved
in the constraint. We assume that agents hold all constraints that they are involved in.
For each binary constraint Rij , there is a corresponding cost table Tij with dimensions
|Di| × |Dj | in which the cost in every entry exy is the cost incurred when x is assigned
to Xi and y is assigned to Xj . A binary DCOP is a DCOP in which all constraints are
binary. A partial assignment is a set of value assignments to variables, in which each variable
appears at most once. vars(PA) is the set of all variables that appear in partial assignment
PA (i.e., vars(PA) = {Xi | ∃x ∈ Di ∧ ⟨Xi, x⟩ ∈ PA}). A constraint Rj ∈ R of the
form Rj : Dj1 × Dj2 × . . . × Djk

→ R+ ∪ {0} is applicable to PA if each of the variables
Xj1 , Xj2 , . . . , Xjk

is included in vars(PA). The set of constraints that are applicable to
a partial assignment PA will be denoted by RP A. Rj(PA) is the cost of incurred which
corresponds to Rj with respect to PA. When Rj does not apply to (PA), Rj(PA) = 0. The
cost of a partial assignment C(PA) is the sum of costs of all constraints that are applicable
to PA, i.e., C(PA) =

∑
Rj∈RP A

Rj(PA). A complete assignment (or a solution) is a partial
assignment that includes all the DCOP’s variables (i.e., vars(PA) = X). An optimal solution
is a complete assignment with minimal cost.

For simplicity, we make the common assumption that each agent holds exactly one variable
(i.e., n = m) and we concentrate on binary DCOPs. These assumptions are common in the
DCOP literature [7, 13]. That being said, we emphasize that all methods and heuristics we
propose in this paper apply to k-ary constraints as well, for 2 ≤ k ≤ n.

2.2 Synchronous Branch-and-Bound (SyncBB)
Synchronous Branch-and-Bound (SyncBB) [2] is a complete, synchronous, search-based
algorithm that can be considered as a distributed version of a standard branch-and-bound
algorithm. It uses a complete ordering of the agents to extend a Current Partial Assignment
(CPA) via a synchronous communication process. The CPA is exchanged by the agents
according to the order. Agents add the assignments to their variables before sending the
CPA forward and remove their assignments before sending it backwards. The CPA also
functions as a mechanism to propagate bound information. The algorithm prunes those
parts of the search space whose solution quality is sub-optimal by exploiting the bounds that
are updated at each step of the algorithm. In other words, an agent backtracks when the
cost of the CPA is not smaller than the cost of the best complete solution found so far.

The algorithm begins by the first agent in the order, which generates the CPA, assigns it a
value and forwards it to the next in the order. The CPA includes a lower bound, which is the
current cost of the partial assignment carried by the CPA and an upper bound (UB), which
is the cost of the best solution found so far by the algorithm (initially infinity), When an
agent Ai receives a CPA, it attempts to assign its variable Xi with one of the values x ∈ Di

and send it forward. When it is received back from the agent following it in the order (Ai+1,
it attempts to reassign Xi with a different value from Di. A CPA is sent back when the agent

CP 2024

33:4 Ex-Ante Constraint Elicitation in Incomplete DCOPs

Figure 1 Example of a search tree.

cannot assign a value to the CPA that has not been assigned to the CPA with the specific
context (the partial assignment) before, or that does not cause a breach of UB. When the
last agent in the order manages to assign its variable, without breaching UB, a new solution
is generated and stored, and UB is updated with its cost. The algorithm terminates when
the first agent sends the CPA back. The solution reported is the last complete assignment
(solution) that caused an update of UB.

In order to analyze the performance of complete search algorithms, such as SyncBB, when
solving constraint reasoning problems, such as DCOPs, it is common to use a search tree.
The search tree is a tool that allows one to follow the advancement of the search process and
analyze its properties. The root of the search tree is the first variable in the order, and each
of the edges connecting it to its children represents a possible value assignment. Similarly the
second layer represents the possible assignments of the second variable in the order and so
forth, until the leaves of the tree, which represent the value assignments of the last variable
in the order [14]. Thus, each value assignment is the root of a sub-tree in this search tree.

Figure 1 presents an example of a search tree with three agents A1, A2, and A3, each
holding one variable with two values in its domain a and b.

2.3 Distributed Stochastic Algorithm (DSA)
The Distributed Stochastic Algorithm (DSA) [15] is a simple distributed local search algorithm
in which, following an initial step where agents (randomly) choose an initial value for their
variable, the agents perform a series of steps (looped iteratively) until some termination
condition is met. In every step, an agent sends its value assignment to its neighbors in
the constraint graph and collects the value assignments of its neighbors. Once the value
assignments of all its neighbors have been collected, an agent decides whether to keep its
value assignment or to modify it. This decision has a significant effect on the performance
of the algorithm. If an agent in DSA cannot upgrade its current state by substituting its
present value, it does not do so. On the other hand, if the agent can improve (or maintain,
depending on the version used) its current state, it decides whether to replace its value
assignment using a stochastic strategy.

R. Zivan, S. Regev, and W. Yeoh 33:5

2.4 Maximum Gain Message (MGM)
Like DSA, Maximum Gain Message (MGM) is a distributed synchronous local search
algorithm, in which agents perform in iterations. In each iteration the agents send messages
to all their neighbors, receive messages from all of them and perform computation. The main
difference from DSA is that, for each decision whether to replace an assignment, two iterations
are performed. In the first, like in DSA, the agents exchange their value assignments. In
the second, the agents exchange the maximal improvement they can achieve by replacing
assignments. Only agents that suggested a positive improvement that is greater than all their
neighbors (ties are broken deterministically according to the agents’ identifying indexes),
replace their assignments.

3 Ex-Ante Incomplete DCOP

An Ex-Ante Incomplete DCOP (EAI-DCOP) is defined by a tuple ⟨A, X , D, R, R̃, E , B⟩,
where A, X , D and R are defined the same as in DCOP. For each constraint Rj ∈ R, there
is a corresponding incomplete constraint R̃j ∈ R̃, where R̃j ∈ R̃ : Dj1 × Dj2 × . . . × Djk

→
R+ ∪ {0, ?}, where each of the Djq

in R̃j is also a member in Rj and ? is a special element
denoting that the cost for a given combination of value assignments is not known to the
agent. In I-DCOP, it is assumed that an agent does not hold the set of constraints that it is
involved in, but rather the set of incomplete constraints that it is involved in.

For every incomplete constraint R̃j , there is an elicitation cost function Ej ∈ E , such that
for each unknown cost of a combination of assignments r ∈ Rj there is a positive elicitation
cost in e(r) ∈ Ej that the agent will need to “pay” for eliciting this constraint. An explored
solution space x̃ is the union of all solutions explored so far by a particular algorithm. x̃P A

is the explored solution space at the time that PA was generated. The cumulative elicitation
cost E(x̃) (and E(x̃P A) respectively) is

∑
r∈R e(r) such that r is an unknown constraint in

R̃, but it is not an unknown constraint in x̃. In other words, it is the sum of the elicitation
costs of all elicitation queries conducted while exploring x̃.

In standard (Ex-Post) I-DCOP [12], the cost C(PA) of a partial assignment is calculated
as follows: C(PA) =

∑
Rj∈RP A

C(Rj) + E(x̃P A), where RP A is the set of constraints whose
variables are in vars(PA). In an Ex-Ante I-DCOP, the solution cost, like in standard DCOP,
is C(PA) =

∑
Rj∈RP A

C(Rj). However, agents are limited in the amount of information
they can elicit. We formulate this limitation using a budget B = {B1, B2, ..., Bn}, where Bi

is the amount of elicitation cost agent Ai may spend. These are taken into consideration
during the search process and, thus, the agents take the budget limitations into consideration
before they decide whether to elicit some information.

Figure 2 includes an example of an EAI-DCOP with seven agents. Each agent holds one
variable with three values in its domain, and has an elicitation budget (we only present the
budgets of A2 and A7, which are relevant to the example). On the right hand side the cost
table and the elicitation cost table of constraint R2,7 are presented. There are three unknown
costs in the cost table. Agent A2’s budget allows it to elicit the cost for ⟨X2 = a, X7 = a⟩ or
⟨X2 = b, X7 = a⟩. Agent X7 can afford to elicit any of the three missing costs, and even to
elicit the costs for both ⟨X2 = a, X7 = a⟩ and ⟨X2 = b, X7 = a⟩.

4 Solving EAI-DCOPs

We propose ex-ante elicitation heuristics for three algorithms solving EAI-DCOPs – Syn-
cBB [2], DSA [15], and MGM [4]. These well-known algorithms were selected for their
simplicity, in order to emphasize the effect of the selected elicitation heuristic on the search
process. SyncBB and MGM were also used in the previous I-DCOP studies [11, 12].

CP 2024

33:6 Ex-Ante Constraint Elicitation in Incomplete DCOPs

Budgets
A2: 15
A7: 30

Figure 2 Example of an EAI-DCOP.

4.1 Solving EAI-DCOPs with SyncBB
The main difference between agents performing SyncBB to solve EAI-DCOPs from the agents
performing SyncBB to solve standard DCOPs is that, in EAI-DCOPs, agents do not attempt
to assign all values to their variables. Instead, when an agent that has partial information
regarding the constraint costs of its variable receives a CPA, it needs to decide whether
to elicit missing information and which missing information to elicit. We will assume that
regardless of the heuristic being used, an agent will first attempt to assign values to its
variable, for which it knows all costs of constraints with the value assignments included in
the CPA. For the values in its domain for which it does not know all the constraint costs,
the agent can decide either to elicit this information, and pay the corresponding cost (which
is deducted from its budget), or to avoid eliciting this information. Obviously, if its budget
is smaller than the elicitation cost, the first option is ruled out. After eliciting the constraint
costs corresponding to a value x ∈ Di, agent Ai treats x as any other value in its domain
for which it has complete knowledge regarding its constraints, that is, it tries to assign x

to Xi and send the CPA forward. On the other hand, if Ai decides not to elicit the costs
that correspond to x, the subtree rooted by x (in the search tree) will not be explored. We
propose the following heuristics for deciding whether to elicit the cost information by agents
solving EAI-DCOPs with SyncBB.

Depth Dependent (DD). The decision whether to elicit the cost information for a value is
decided stochastically. The probability for an agent Ai to elicit the costs of a value in its
domain is calculated using the Sigmoid function: p(i) = ei

en/2+ei , where i is the depth of the
agent’s variable in the search tree and n is the number of agents.2 Note that this function
does not distinguish between the values within a domain of a variable held by some agent
and, thus, if the decision is to elicit, the agent will elicit the constraint cost information for
all its values, until the budget is exhausted.

2 Sigmoid functions are used as activation functions in neural networks [9], but are not related to their
use here.

R. Zivan, S. Regev, and W. Yeoh 33:7

The intuition that led to the design of this heuristic was that the deeper an agent is in
the search tree, the larger is the chance that a solution improving on former solutions will be
found. This is because every layer in the search tree can require additional elicitation.

Distance from Bound (DB). The decision whether to elicit the cost information for a
value x ∈ Di is based on its distance ∆x of the cost of the CPA from the upper bound (UB)
maintained by SyncBB and a threshold t(i) of the agent ai. Specifically, the costs for x are
elicited if ∆x > t(i).

The distance from the upper bound ∆x for each value x ∈ Di is calculated as follows:
∆x = UB − (C(PA) + δx), where C(PA) is the cost of the current partial assignment and
δx is the lowest cost that was generated from constraints with assignments of variables held
by agents that come after Ai in the order, in previous attempts to assign x to Xi. If there
were no previous attempts, δx = 0.

The threshold t(i) is calculated as follows: t(i) = g ·
(

1 − ei

en/2+ei

)
, where g is a constant

that is dependent on the distribution of constraint costs in the problem.
The intuition is that when the distance from the upper bound is larger, there is more

chance that this part of the search tree will include relevant solutions, since for a small
distance an additional cost is expected to breach the bound and cause a backtrack.

Elicitation Required in Subtree (ERS). The decision whether to elicit the costs corres-
ponding to a value assignment is done according to the number of unknown constraints in
the subtree (of the search tree) rooted by this value. The intuition is that there is a larger
chance that in a subtree with a small number of unknown constraints, complete solutions
will be found with low elicitation cost.

In EAI-DCOPs, it is possible to count the number of unknown constraints in each such
subtree. The process is performed bottom up, having the last agent in the order count the
unknown constraints for each of the values in its domain, and sending this information up
to the agent preceding it in the order. This agent adds the amount of constraints for each
of its value and sends it up to the agent preceding it, and so forth. The process ends when
the first agent in the order, holding the root variable of the subtree, updates the number of
unknown constraints in each of the subtrees rooted by the values in its domain.

In more details, after an agent Ai receives a message that includes a number Ci+1 of
unknown constraints from the agent following it in the order, it can calculate, for each value
x ∈ Di, the number of constraints it is involved in among them. Thus, in order to calculate
the number of unknown constraints in the subtree rooted by x, it reduces from Ci+1 the
number of constraints that all values x′ ∈ Di, x′ ̸= x are involved in. To this number, it adds
the number of unknown constraints that x is involved in with variables held by agents that
are before Ai in the order. The total number of unknown constraints that Ai sends to Ai−1
is then calculated as follows: Ci =

∑
x∈Di

Cx.
Each agent performs the initial calculations of Cx for every value x in the domain of its

variables before the algorithm begins as a prepossessing procedure. After the algorithm starts,
these parameters are updated following each elicitation as follows: When agent Ai elicits
the unknown constraints for a value x ∈ Di, it updates the number of unknown constraints
for this value, and updates each of the agents involved in the constraints that were elicited.
These agents reduce the corresponding number of unknown constraints for the subtrees of
the corresponding values.

CP 2024

33:8 Ex-Ante Constraint Elicitation in Incomplete DCOPs

10% 50% 90%
100

150

200

250

300

%Known Constraints

So
lu

tio
n/

O
pt

im
um

(%
)

IDCOP DD DB ERS CAC CACBudget

Figure 3 Solution costs when agents have a total budget of 105.

4.2 Solving EAI-DCOPs with DSA and MGM
Like in the case of SyncBB, the main challenge when solving EAI-DCOPs using distributed
local search algorithms, such as the DSA and MGM, is in deciding which constraints to elicit.
However, in contrast to SyncBB, DSA and MGM are incomplete and, thus, not all values
with known constraints need to be assigned. Therefore, the decision whether to elicit needs
to take into consideration the amount of uncertainty regarding the cost of a possible value
assignment and the potential improvement it offers. In more details, we propose a heuristic
that we incorporated in both DSA and MGM, according to which the elicitation decision for
value x ∈ Di is performed if the following two conditions hold:
1. The number of unknown constraints that x is involved in is smaller than q · CNx, where

CNx is the total number of constraints that x is involved in and 0 ≤ q ≤ 1.
2. The difference between the sum of the known constraints that x is involved in and the

cost of the current partial assignment is larger than g · ei

en/2+ei . Here, g is a constant as
defined above for the formula in SyncBB and i is the iteration number.

5 Experimental Evaluation

In order to evaluate the success of our approach for generating high-quality I-DCOP solutions,
under different elicitation “budget” restrictions, we performed experiments in which we
compared the different heuristics that we proposed for solving EAI-DCOPs incorporated in
DCOP algorithms, with the previous proposed approach for solving I-DCOP [12]. All our
experiments were performed on a simulator, implemented in Python, on a Lenovo Carbon
X1 Gen 9 computer with an 11th Generation Intel(R) Core (TM) i7-1165G7 @ 2.80GHz 2.80
GHz processor.

The complete algorithms solved I-DCOPs including seven agents, each holding one
variable with four values in its domain. The average number of neighbors that agents had
was 3. Constraint costs for combinations of assignments of neighboring agents were selected
uniformly between 2 and 5. The percentage of unknown constraints varied. We generated
problems in which the fraction of known constraints was 10%, 50%, and 90%. For each
unknown cost, an elicitation cost was selected uniformly from the range [0, 20].

R. Zivan, S. Regev, and W. Yeoh 33:9

10% 50% 90%
100

150

200

250

300

%Known Constraints

So
lu

tio
n/

O
pt

im
um

(%
)

IDCOP DD DB ERS CAC CACBudget

Figure 4 Solution costs when agents have a total budget of 525.

10% 50% 90%
100

150

200

250

300

%Known Constraints

So
lu

tio
n/

O
pt

im
um

(%
)

IDCOP DD DB ERS CAC CACBudget

Figure 5 Solution costs when agents have a total budget of 1050.

5.1 SyncBB with Global Budgets

Previous I-DCOP approaches [12] with SyncBB assumed agents considered global elicitation
costs, which are summations of elicitation costs over all agents. Therefore, to fairly compare
against them, we also consider a variant, where agents have access to a global budget that
can be accessed by all agents. Specifically, we set the global budget to either 105, 525, or
1050, so that the highest budget was an order of magnitude more than the lowest and they
are easy to split among the agents in the personal budget version, which will be presented
next. (We consider the variant where agents have personal budgets in the next section.)

Figure 3 depicts the average overhead in the solution quality with respect to the optimal
solution (when all information is known), of solutions that the different algorithms produced
when solving the problems with SyncBB, when agents were allocated the smallest global
elicitation budget (105). The figure includes three batches of bars, one for each percentage
of knowledge known to the agents in the beginning of the run of the algorithm (from left

CP 2024

33:10 Ex-Ante Constraint Elicitation in Incomplete DCOPs

10% 50% 90%
100

150

200

250

300

%Known Constraints

So
lu

tio
n/

O
pt

im
um

(%
)

IDCOP DD DB ERS CAC CACBudget

Figure 6 Solution costs when agents have a personal budget of 15.

10% 50% 90%
100

150

200

250

300

%Known Constraints

So
lu

tio
n/

O
pt

im
um

(%
)

IDCOP DD DB ERS CAC CACBudget

Figure 7 Solution costs when agents have a personal budget of 75.

to right: 10%, 50%, and 90%). The two bars on the right in each batch are the results of
the I-DCOP algorithm using the CAC heuristic proposed previously [12]. In one version
(labeled CACbudget), the algorithm was limited by a budget, similar to the amount used by
the EAI-DCOP heuristics (i.e., 105). In the second (labeled CAC), the algorithm was not
bounded by a budget. Surprisingly, the version that was limited by a budget produced better
results on average. We assume that a limited budget limits also the elicitation cost that is
taken into consideration in the lower bound of the algorithm and, thus, the agents explore
more solutions when they have a limited budget. It is apparent that both of these versions
produce solutions with much greater costs than the solutions produced by the other versions.
Among them, the bar on the left (labeled IDCOP) is a version of the algorithm that does not
perform elicitation at all, while the three others present the average results of the algorithm
using the limited budget according to the three heuristics described in Section 4.1.

R. Zivan, S. Regev, and W. Yeoh 33:11

10% 50% 90%
100

150

200

250

300

%Known Constraints

So
lu

tio
n/

O
pt

im
um

(%
)

IDCOP DD DB ERS CAC CACBudget

Figure 8 Solution costs when agents have a personal budget of 150.

The results clearly indicate that it is enough to solve the I-DCOP using SyncBB with
no elicitation, in order to get a much better solution in comparison with the solutions
produced by the algorithm implementing the ex-post approach and heuristic suggested by
the literature [12]. Yet, performing elicitation using the allocated budget can reduce costs
further. The best result is achieved by the ERS heuristic. However, its advantage over DD
and DB is not significant. Figures 4 and 5 present similar results produced by scenarios in
which agents had larger budgets (525 and 1050 respectively). While the trends seem similar,
it is clear that the advantage of the proposed heuristics over the I-DCOP version without
elicitation, is more apparent (as expected).

5.2 SyncBB with Personal Budgets
Figures 6, 7, and 8 present results for the same algorithms solving the same problems, only
in this case the EAI-DCOP heuristics, that is, DD, DB, and ERS use personal budgets
instead of a global budget as used in the experiments presented above. We divided the
global costs such that there will be no difference in the total budget used by the agents.
However, these scenarios present the more realistic case where an agent represents a user,
and the budget limits the effort a user must spend in replying to queries during search.
In these personal budget scenarios, the versions using the EAI-DCOP heuristics produced
solution with a more significant advantage in general over the vanilla I-DCOP version. The
difference was most apparent when the agents had medium or high budgets, and the initial
knowledge available was 50%. The EAI-DCOP heuristics were able to produce solutions with
a significant advantage over the vanilla I-DCOP version, and for the 150 budget per agent,
the DD and ERS heuristics produce solutions that their quality was close to optimal. It
seems that, besides being a more realistic scenario in a multi-agent environment, the budget
per agent settings allows the algorithm to use elicitation in different parts of the search space
and explore high quality solutions.

Figures 9, 10, and 11 present the runtimes in a logarithmic scale, of the algorithms in
terms of NCLOs [16, 6]. In each figure, the budget allocated to the agents were different.
The differences between the complete DCOP version and the I-DCOP version is identical
in all figures because it is not affected by the budget. It is however affected by the amount

CP 2024

33:12 Ex-Ante Constraint Elicitation in Incomplete DCOPs

10% 50% 90%
100

101

102

103

104

105

106

107

108

109

%Known Constraints

N
C

LO

DCOP IDCOP DD DB ERS CAC CACBudget

Figure 9 Runtime in terms of NCLOs with a budget of 105.

10% 50% 90%
100

101

102

103

104

105

106

107

108

109

%Known Constraints

N
C

LO

DCOP IDCOP DD DB ERS CAC CACBudget

Figure 10 Runtime in terms of NCLOs with a budget of 525.

of knowledge known to agents: In the 10% scenario, the algorithm solving I-DCOP is
much faster than the algorithm solving the complete DCOP while, in the 90% scenario,
the runtimes are much closer. It is also apparent that the CAC and ERS versions of the
algorithms are much slower than all other versions. The reason is that these heuristics require
exponential computation before the algorithm begins its search (preparing the heuristic data
in preprocessing). Moreover, unlike the SyncBB algorithms that performs some level of
pruning, the preprocessing heuristics aggregate information from the entire search space
and thus, their runtime is orders of magnitude larger. On the other hand, The DD and DB
heuristics are much faster. Additionally, their advantage over the ERS heuristic in runtime
is much more significant than the advantage that ERS provides in solution quality. Similar
results were obtained when agents used personal budget as presented in Figures 12, 13 and 14.

5.3 MGM and DSA with Personal Budgets
In the second set of experiments we performed, we compared incomplete algorithms, that is,
MGM and DSA, which were implemented in the ALS framework [17], in order to produce
the anytime solutions as was done previously in the literature [12]. In this set of experiments,
the problems included 50 agents, each holding a single variable with 10 values in its domain.
Agents had 20 neighbors in average. The costs of constraints were randomly selected between
2 and 5. We present the solution costs of the algorithms in the first 50 iterations, because

R. Zivan, S. Regev, and W. Yeoh 33:13

10% 50% 90%
100

101

102

103

104

105

106

107

108

109

%Known Constraints

N
C

LO

DCOP IDCOP DD DB ERS CAC CACBudget

Figure 11 Runtime in terms of NCLOs with a budget of 1050.

10% 50% 90%
100

101

102

103

104

105

106

107

108

109

%Known Constraints

N
C

LO

DCOP IDCOP DD DB ERS CAC CACBudget

Figure 12 Runtime in terms of NCLOs when each agent had a personal budget of 15.

that was the number of iterations that were required for the algorithms to converge.
We first discuss the MGM results, since this was the algorithm that was implemented

in the literature [12]. Figure 15 presents the solution cost as a function of the number of
iterations performed by the algorithms. The DCOP version is the omniscient algorithm that
knows all constraints. The dashed lines are the versions implementing the NHC heuristic [12].
The different lines represent the amount of initial knowledge. The other solid lines represent
the results of the EAI-DCOP version in which the elicitation was performed according to
the heuristic presented in Section 4.2. Each agent was allocated 180 elicitation queries. The
significant advantage of the EAI-DCOP version is apparent regardless of the amount of initial
knowledge the agents had.

Figure 16 presents the results of MGM and DSA performing the EAI-DCOP heuristic for
deciding on elicitation, with an allocation 180 queries per agent (with 50% initial knowledge
available). Surprisingly, the EAI-DCOP version of MGM is more successful than the DSA
version. This is in contrast to the well-known advantage that DSA has over MGM when
solving standard DCOPs.

Figure 17 presents the EAI-DCOP versions of MGM and DSA, when allocated fewer
(120) queries per agent. Again, it is apparent that the MGM versions outperform the DSA
versions, except for the versions solving problems with 10% initial knowledge, where both

CP 2024

33:14 Ex-Ante Constraint Elicitation in Incomplete DCOPs

10% 50% 90%
100

101

102

103

104

105

106

107

108

109

%Known Constraints

N
C

LO

Constraint IDCOP DD DB ERS CAC CACBudget

Figure 13 Runtime in terms of NCLOs when each agent had a personal budget of 70.

10% 50% 90%
100

101

102

103

104

105

106

107

108

109

%Known Constraints

N
C

LO

DCOP IDCOP DD DB ERS CAC CACBudget

Figure 14 Runtime in terms of NCLOs when each agent had a personal budget of 150.

0 10 20 30 40 50
1850

1900

1950

2000

2050

2100

2150

Iteration

So
lu

tio
n

C
os

t

DCOP
IDCOP10%

IDCOP50%

IDCOP90%

IDCOP NHC10%

IDCOP NHC50%

IDCOP NHC90%

Figure 15 Solution cost as a function of the number of iterations.

algorithms struggle. Moreover, the versions that solved problems with 50% initial knowledge
outperform the versions that solved problems with 90% knowledge. We assume that less
knowledge resulted in a positive exploration effect, as was reported for environments with
imperfect communication [8].

R. Zivan, S. Regev, and W. Yeoh 33:15

0 10 20 30 40 50
1800

1900

2000

2100

2200

Iteration

So
lu

tio
n

C
os

t

IDCOP DSA 50%

IDCOP MGM50%

DCOP MGM

IDCOP MGM NHC50%

DCOP DSA

Figure 16 Solution cost as a function of the number of iterations.

0 10 20 30 40 50
1800

1900

2000

2100

2200

Iteration

So
lu

tio
n

C
os

t IDCOP MGM10%

IDCOP MGM50%

DCOP MGM

IDCOP MGM90%

DCOP DSA

IDCOP DSA10%

IDCOP DSA50%

IDCOP DSA90%

Figure 17 Solution cost as a function of the number of iterations.

6 Conclusions

We introduced a novel approach for solving I-DCOPs in this paper. In contrast to previous
studies on I-DCOPs in which elicitation costs were considered after elicitations were made,
we consider the costs before the elicitations in EAI-DCOPs.

The EAI-DCOP approach is not only more realistic, as it is not reasonable that agents
will not use a high-quality solution after spending much effort to find it, it is also better in
finding higher quality solutions and finding them with less runtime. These empirical results
were shown on both complete and incomplete algorithms that are commonly used in the
literature. Therefore, this seems to be one of the rare occasions where the new approach
outperforms prior work on all three key relevant dimensions – practicality, solution quality,
and runtime.

References

1 Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization
problems and applications: A survey. Journal of Artificial Intelligence Research, 61:623–698,
2018.

2 Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint satisfaction problem.
In Proceedings of the International Conference on Principles and Practice of Constraint
Programming (CP), pages 222–236, 1997.

CP 2024

33:16 Ex-Ante Constraint Elicitation in Incomplete DCOPs

3 Tiep Le, Atena M. Tabakhi, Long Tran-Thanh, William Yeoh, and Tran Cao Son. Preference
elicitation with interdependency and user bother cost. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 1459–1467, 2018.

4 Rajiv Maheswaran, Jonathan Pearce, and Milind Tambe. Distributed algorithms for DCOP:
A graphical game-based approach. In Proceedings of the International Conference on Parallel
and Distributed Computing Systems (PDCS), pages 432–439, 2004.

5 Pragnesh J. Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1–
2):149–180, 2005.

6 Arnon Netzer, Alon Grubshtein, and Amnon Meisels. Concurrent forward bounding for
distributed constraint optimization problems. Artificial Intelligence, 193:186–216, 2012.

7 Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint optimization. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
1413–1420, 2005.

8 Ben Rachmut, Roie Zivan, and William Yeoh. Communication-aware local search for distributed
constraint optimization. Journal of Artificial Intelligence Research, 75:637–675, 2022.

9 Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural
networks. International Journal of Engineering Applied Sciences and Technology, 4(12):310–316,
2020.

10 Atena M. Tabakhi, Tiep Le, Ferdinando Fioretto, and William Yeoh. Preference elicitation
for DCOPs. In Proceedings of the International Conference on Principles and Practice of
Constraint Programming (CP), pages 278–296, 2017.

11 Atena M. Tabakhi, Yuanming Xiao, William Yeoh, and Roie Zivan. Branch-and-bound heur-
istics for incomplete DCOPs. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 1677–1679, 2021.

12 Atena M. Tabakhi, William Yeoh, and Roie Zivan. Incomplete distributed constraint op-
timization problems: Model, algorithms, and heuristics. In Proceedings of the International
Conference on Distributed Artificial Intelligence (DAI), pages 64–78, 2021.

13 William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence Research, 38:85–133, 2010.

14 William Yeoh, Pradeep Varakantham, Xiaoxun Sun, and Sven Koenig. Incremental DCOP
search algorithms for solving dynamic DCOP problems. In Proceedings of the International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), pages 257–264,
2015.

15 Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed stochastic
search and distributed breakout: Properties, comparison and applications to constraint
optimization problems in sensor networks. Artificial Intelligence, 161(1–2):55–87, 2005.

16 Roie Zivan and Amnon Meisels. Message delay and DisCSP search algorithms. Annals of
Mathematics and Artificial Intelligence, 46:415–439, October 2006.

17 Roie Zivan, Steven Okamoto, and Hilla Peled. Explorative anytime local search for distributed
constraint optimization. Artificial Intelligence, 212:1–26, 2014.

Minimizing Working-Group Conflicts in Conference
Session Scheduling Through Maximum
Satisfiability
Sami Cherif #

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Heythem Sattoutah #

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Chu-Min Li #

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Corinne Lucet #

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Laure Brisoux-Devendeville #

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Abstract
This paper explores the application of Maximum Satisfiability (Max-SAT) to the complex problem of
conference session scheduling, with a particular focus on minimizing working-group conflicts within
the context of the ROADEF conference, the largest French-speaking event aimed at bringing together
researchers from various fields such as combinatorial optimization and operational research. A
Max-SAT model is introduced then enhanced with new variables, and solved through state-of-the-art
solvers. The results of applying our formulation to data from ROADEF demonstrate its ability
to effectively compute session schedules, while enabling to reduce the number of conflicts and
the maximum number of parallel sessions compared to the handmade solutions proposed by the
organizing committees. These findings underscore the potential of Max-SAT as a valuable tool for
optimizing conference scheduling processes, offering a systematic and efficient solution that ensures
a smoother and more productive experience for attendees and organizers alike.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; Computing
methodologies → Logic programming and answer set programming

Keywords and phrases Maximum Satisfiability, Scheduling, Modeling

Digital Object Identifier 10.4230/LIPIcs.CP.2024.34

Category Short Paper

Supplementary Material Other (Source Code, Data, Benchmark):
https://github.com/satoutahhaithem/ROADEF_SCHEDULING [12]

archived at swh:1:dir:7083377094f69163d37d30b77d740c72c562139d

1 Introduction

The Maximum Satisfiability (Max-SAT) problem is a natural optimization extension of the
well-known satisfiability (SAT) problem [9]. While SAT consists in verifying whether all
the clausal constraints in a given propositional formula can be satisfied by an assignment
of the variables, the goal in Max-SAT shifts to determining the maximum number of
clausal constraints that can be satisfied. Although Max-SAT is NP-hard, the last decade
has known major breakthroughs in Max-SAT theory and solving. Indeed, SAT-based
algorithms [2, 18, 27] are able to harness the power of modern SAT solvers and particularly
their ability to effectively compute cores, i.e. unsatisfiable subsets of the formula. More

© Sami Cherif, Heythem Sattoutah, Chu-Min Li, Corinne Lucet, and Laure Brisoux-Devendeville;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 34; pp. 34:1–34:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sami.cherif@u-picardie.fr
https://orcid.org/0000-0003-4646-9982
mailto:heythem.sattoutah@u-picardie.fr
https://orcid.org/0009-0004-0258-3446
mailto:chu-min.li@u-picardie.fr
https://orcid.org/0000-0002-6886-8434
mailto:corinne.lucet@u-picardie.fr
https://orcid.org/0000-0002-8634-7237
mailto:laure.devendeville@u-picardie.fr
https://orcid.org/0009-0003-2618-0660
https://doi.org/10.4230/LIPIcs.CP.2024.34
https://github.com/satoutahhaithem/ROADEF_SCHEDULING
https://github.com/satoutahhaithem/ROADEF_SCHEDULING
https://archive.softwareheritage.org/swh:1:dir:7083377094f69163d37d30b77d740c72c562139d;origin=https://github.com/satoutahhaithem/ROADEF_SCHEDULING;visit=swh:1:snp:c34fc60c52e7d5289f8e1c049ce6ba5e0adc48d2;anchor=swh:1:rev:92a1a45786ba37797dda7d78f7d02347f6f2a0a8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Minimizing Working-Group Conflicts in Conference Scheduling Through Max-SAT

recently, Branch and Bound algorithms for Max-SAT have also gained a huge leap in
competitiveness with respect to other approaches through the introduction of a foundational
learning process tailored to Max-SAT [11, 22, 23]. This was coupled with new insights and
understanding of Max-SAT proof theory, paving the way for efficient solver certification for
Max-SAT [7, 29].

These recent advancements have made Max-SAT a powerful formalism that can be used
to model and effectively solve many real-world problems. In particular, Max-SAT has been
used to tackle applications in various domains such as security [31], hardware and software
debugging [25], data analysis [8] and bio-informatics [19] among many others. In particular,
in the context of scheduling, Max-SAT has been used for tackling Curriculum-based Course
Timetabling in [4] and [14], mainly for optimizing isolated lectures or resources in the schedule.
It was also used in [10] to avoid idle time periods in the scheduling of bilateral meetings as
well as in [15] to solve staff scheduling problems while taking into account requested and
unpreferred shifts. A Max-SAT formulation for scheduling tasks in overloaded real-time
systems by enforcing task deadlines as soft constraints is introduced in [24]. More recently, an
iterative and incremental Max-SAT approach has been introduced to solve train scheduling
optimization problems in [20]. These successful applications show the high potential of
Max-SAT as an effective paradigm to solve problems in the context of scheduling and beyond.

In this paper, we address a conference scheduling problem through the lens of Max-
SAT. In particular, we aim to tackle a problem which has arisen during the organization
of the ROADEF conference, the largest French-speaking event aimed at bringing together
researchers from various domains, mainly the combinatorial optimization and operational
research communities. Our work addresses a crucial gap in the organization of the esteemed
conference where, despite its status as a gathering of premier scheduling experts, the planning
process remains reliant on manual efforts, requiring significant human and time resources,
even after 25 editions. Our objective is thus to provide an effective way for optimizing the
conference scheduling process, thus enhancing the overall experience for conference attendees
and organizers alike. To this end, we introduce a Max-SAT model to minimize the working-
group conflicts in the scheduling of parallel sessions during the conference. Furthermore,
we show how our model can be enhanced by introducing new variables. Our experimental
evaluation shows that our formulation offers a systematic and efficient solution to the intricate
challenges associated with our problem, ensuring a smoother and more productive experience
for attendees and organizers as it enables to reduce the number of conflicts as well as the
maximum number of parallel sessions compared to the handmade solutions proposed by the
organizing committees.

This paper is organized as follows. Section 2 includes the necessary definitions and
notations. The problem context and parameters are presented in Section 3. Our dedicated
Max-SAT model and its enhanced formulation are introduced in Section 4. An experimental
evaluation on data from ROADEF is presented in Section 5. Finally, we conclude and discuss
future work in Section 6.

2 Preliminaries

Let V be the set of propositional variables. A literal l is a variable x ∈ V or its negation
x. A clause is a disjunction of literals. A formula in Conjunctive Normal Form (CNF)
is a conjunction of clauses. An assignment α : V → {true, false} maps each variable to
a Boolean value and can be represented as a set of literals. A literal l is satisfied by an
assignment α if l ∈ α, else it is falsified by α. A clause is satisfied by an assignment α if

S. Cherif, H. Sattoutah, C.-M. Li, C. Lucet, and L. Brisoux-Devendeville 34:3

at least one of its literals is satisfied by α, otherwise it is falsified by α. The cost of an
assignment α, denoted costα(ϕ), is the number of clauses in the formula ϕ falsified by α.
Solving the (plain) Max-SAT problem [6] consists in determining the maximum number of
clauses that can be satisfied by an assignment of a given CNF formula ϕ or, equivalently, the
minimum number of clauses that each assignment must falsify, i.e. opt(ϕ) = min

α
costα(ϕ).

In our formulation, we will particularly rely on the partial Max-SAT problem [21], which is
a well-known variant taking as input a partial CNF formula, i.e. a bipartite set of clauses
ϕ = H ∪ S where H is the set of hard clauses that must be satisfied and S is the set of soft
clauses to be optimized as in plain Max-SAT. The goal thus shifts to computing opt(S) such
that all the clauses in H are satisfied. Finally, we note that, in the subsequent Max-SAT
formulation, we will use Pseudo-Boolean (PB) constraints which enforce a constant bound
on a weighted sum of literals as in (

∑h
i=1 ai ∗ li) ◦ k where ai, k ∈ N and ◦ ∈ {≤, =, ≥}. In

the case where all literals in the sum are variables in V and all the weights are set to 1
(and thus can be discarded), such constraints are more commonly referred to as cardinality
constraints. PB and cardinality constraints can be efficiently encoded in CNF form [30] and
are typically used in Max-SAT solvers to enforce relevant bounds during the search [21]. For
instance, the sorting network encoding [16] enables to encode PB and cardinality constraints
using O(

∑h
i=1 ai log2(

∑h
i=1 ai)) new variables and clauses, i.e. O(h log2(h)) for cardinality

constraints as m = h. Independently, the cardinality network encoding [3] can be more suited
for cardinality constraints as it is in O(h log2(k)) while the BDD encoding [1], which is in
O(h3 log(max1≤i≤hai)), can be more suitable for PB constraints.

3 ROADEF Scheduling

The ROADEF1 conference is the largest French-speaking event aimed at bringing together
researchers from various domains, including combinatorial optimization, operational research,
constraint programming and industrial engineering. This event is organized annually and
welcomes around 600 participants, with the aim to foster exchanges and collaborations
between researchers and industry professionals, as well as to contribute to the training of
young researchers and encourage them to present their work to the national community.
ROADEF includes plenary sessions, tutorials in semi-plenary sessions, multiple parallel
sessions, industrial experience feedback sessions and the ROADEF general assembly. The
conference also involves many working groups consisting of researchers collaborating on a
national and potentially international level on specific themes covered by the conference,
with each parallel session usually being organized by one or more of these working groups. In
this paper, we focus on the scheduling of ROADEF parallel sessions into available time slots
while avoiding clashes among research working groups. This problem arises each year during
the event organization as each parallel session is usually scheduled to occur simultaneously
with others, potentially causing overlaps and conflicts. Indeed, such overlaps not only prevent
researchers from assisting to the sessions organized by their respective working groups but
they may also pose constraints regarding session chair assignments.

Let S be the set of conference sessions, G be the set of working groups and C be the set of
available slots2. A parallel session can be allocated to multiple slots with a different number
of papers allocated to each slot. We denote L the set of authorized quantity of papers that
can be allocated to a specific slot for each parallel session. We set n as the maximum number

1 https://www.roadef.org/roadef-le-congres-annuel
2 To simplify, each session, slot, or working group is referred to by a unique natural number identifier.

CP 2024

https://www.roadef.org/roadef-le-congres-annuel

34:4 Minimizing Working-Group Conflicts in Conference Scheduling Through Max-SAT

Table 1 Summary of ROADEF Data for the last four years. #X denotes the number of X.

Year 2024 2023 2022 2021
#Sessions 40 47 42 27

#Working-groups 20 24 24 17
#Slots 7 7 8 11

Paper range L {3,4,5,6} {3,4,5}
#Papers 307 358 311 182

of parallel sessions for the available slots, which is fixed each year depending on the available
resources. Note that, in general, a higher value for this parameter entails more complex
logistics and more resources to manage the parallel sessions. For each session s ∈ S, we
denote np(s) and W (s) ⊆ G respectively the number of papers and the set of working groups
associated to session s. Finally, for each slot c ∈ C, we denote npMax(c) the maximum
number of authorized papers for each parallel session in slot c.

For instance, in 2024, the 25th edition of ROADEF3 was organized over three days in the
city of Amiens. The conference comprised 40 programmed sessions4. It also involved the
participation of 20 distinct working groups. Over the course of the three-day conference, there
were seven parallel session slots. The organizing committee has decided that each parallel
session was required to host at least three papers and at most six. Indeed, since the allocated
presentation and question time per paper is 20 minutes, a session with less than 3 papers, i.e.
less than one hour, would be too short while, one with more than 6 would be too long since
a break would be expected after 2 hours. The maximum number of parallel sessions per slot
can go up to 15 with respect to the available resources and mainly the available rooms in the
conference site. For the lack of space, we do not report the maximum number of authorized
papers for each slot nor the values of np(s) and W (s) for s ∈ S. However, we mention
that there were a total of 307 papers accepted in the 2024 edition, split over the different
sessions. To give an example, for session s = 40 dedicated to constraint programming, we
have np(s) = 8 and W (s) = {7, 15}. The summary of Data from ROADEF over the last four
years is reported in Table 1. Finally, we note that additional constraints for specific sessions
may arise. In particular, the chairs of session 34 in the 2024 edition requested to assign their
session presentations on the last day of the conference covered by slots 5, 6 and 7.

4 Maximum Satisfiability for Conference Session Scheduling

4.1 Basic Model

Our aim is to minimize the conflicts among working groups in the conference schedule while
respecting all the schedule-related constraints. We start first by defining our main variables.
More specifically, we set two types of variables to represent the allocation of parallel sessions
and to compute the conflicts as follows:

x(s,c,l) is set to true if session s ∈ S is allocated to slot c ∈ C with l ∈ L papers
y(s1,s2,c,g) is set to true if there is a conflict in slot c ∈ C for working group g ∈ G

associated to the pair of sessions (s1, s2) ∈ S2 such that s1 < s2 and g ∈ W (s1) ∩ W (s2)

3 https://roadef2024.sciencesconf.org/
4 50 parallel sessions were initially programmed in 2024 but 6 were canceled for lack of submissions and 4

were merged with other sessions for insufficient number of submissions.

https://roadef2024.sciencesconf.org/

S. Cherif, H. Sattoutah, C.-M. Li, C. Lucet, and L. Brisoux-Devendeville 34:5

Since we want to reduce the number of group conflicts in the conference, we clearly need to
minimize the number of satisfied y variables. We can therefore define the set of soft clauses
accordingly as follows:

ϕsoft =
∧

(s1,s2,c,g)∈S×S×C×G
s1<s2

g∈W (s1)∩W (s2)

y(s1,s2,c,g)

Next, we state the constraints that will be added to the hard clause set ϕhard of the formula:

At most one quantity of papers can be chosen for each (session , slot) pair:∑
l∈L

x(s,c,l) ≤ 1 ∀(s, c) ∈ S × C (1)

The subdivision of a session into slots covers all the papers in the session:∑
c∈C
l∈L

x(s,c,l) ∗ l = np(s) ∀s ∈ S (2)

The allocation of a session to a slot c is valid if npMax(c) is not exceeded:∧
l∈L

l>npMax(c)

x(s, c, l) ∀(s, c) ∈ S × C (3)

The maximum number of parallel sessions per slot is not exceeded:∑
s∈S
l∈L

x(s,c,l) ≤ n ∀c ∈ C (4)

Two sessions associated to the same group and allocated to the same slot generate a
conflict:∧

(l1,l2)∈L2

x(s1,c,l1) ∨ x(s2,c,l2) ∨ y(s1,s2,c,g) (5)

∀(s1, s2, c, g) ∈ S2 × C × G s.t s1 < s2 and g ∈ WG(s1) ∩ WG(s2)

Session-specific constraints such as the one which arose for session 34 in the 2024 edition
can be written as follows:∧

c∈C\{5,6,7}
l∈L

x(34,c,l) (6)

4.2 Enhanced Model
In order to enhance our model, we first remark that Constraint (5) can be written differently
as stated in the following proposition which can be easily proven by the distributive properties
of logical conjunction and disjunction.

▶ Proposition. Constraint (5) is logically equivalent to the following constraint:

(
∧
l∈L

x(s1,c,l)) ∨ (
∧
l∈L

x(s2,c,l)) ∨ y(s1,s2,c,g)

∀(s1, s2, c, g) ∈ S2 × C × G s.t s1 < s2 and g ∈ WG(s1) ∩ WG(s2)

CP 2024

34:6 Minimizing Working-Group Conflicts in Conference Scheduling Through Max-SAT

As such, we can clearly observe that the information represented by the conjunctions in
the clauses may occur redundantly in the constraint. Note that, for a given (session,slot)
pair, these conjunctions represent the absence of a session from a given slot. Using these
observations, we introduce new variables to our model as follows:

z(s,c) is set to true if session s ∈ S is not allocated to slot c ∈ C

To enforce the semantic meaning of these variables, we add the following constraint which
can be easily rewritten in CNF form using the CNF rewriting of logical equivalence and the
distributivity laws:

When a session is not allocated to a given slot, the corresponding z variable is set to true,
otherwise to false:

z(s,c) ⇔
∧
l∈L

x(s,c,l) ∀(s, c) ∈ S × C (7)

Now, we can rewrite some of the previous constraints as shown below.

We can optimize the left-hand side of constraint (4) through the z variables as follows:∑
s∈S

z(s,c) ≤ n ∀c ∈ C (4∗)

We can also simply remodel constraint (5) based on the rewriting established in the
proposition above and by relying on the newly introduced z variables:

z(s1,c)∨z(s2,c)∨y(s1,s2,c,g) ∀(s1, s2, c, g) ∈ S2×C×G, s1 < s2 and g ∈ W (s1)∩W (s2) (5∗)

Finally, the z variables can be also used to effectively encode session-specific constraints
as follows:∧

c∈C\{5,6,7}

z(34,c) (6∗)

5 Experimental Evaluation

We have encoded our Max-SAT models5 using the PySAT6 library [17]. To compare our
enhanced formulation to the basic model, we used the Sorting Network (SortN) encoding
which is available for both PB and cardinality constraints in PySAT. Furthermore, to show
that our enhanced model can be further improved, we also test a CardN+PBbest combination,
with a cardinality encoding for cardinality constraints and the “best” option set for PB
constraints in PySAT, which typically invokes the BDD encoding. Using data extracted
from the last four years of ROADEF, we have generated a total of 72 instances, by choosing
7 varying values of n for each year. This enables us to not only minimize the number of
working-group conflicts for a given n value but to also seek an optimal value for the maximum
number of parallel sessions. The features of the generated instances in terms of number
of variables and clauses are reported in Table 2. We have solved the generated instances
using different state-of-the-art Max-SAT solvers including RC2 [18], OpenWBO (WBO) [26],
MaxCDCL [23] and MaxHS [13]; all first-ranked solvers in previous Max-SAT evaluations.

5 Our code, data and benchmark are available in the following GitHub repository
6 https://pysathq.github.io/

https://github.com/satoutahhaithem/ROADEF_SCHEDULING
https://pysathq.github.io/

S. Cherif, H. Sattoutah, C.-M. Li, C. Lucet, and L. Brisoux-Devendeville 34:7

Table 2 Summary of instance features and computed optimal values for the whole benchmark.
X denotes number of X. An interval is indicated when there are several values possibles. For
the sake of comparison, we report the values obtained through the handmade scheduling by the
organizing committees between “()” in the last two rows.

Year 2024 2023 2022 2021
Encoding SortN CardN+PBbest SortN CardN+PBbest SortN CardN+PBbest SortN CardN+PBbest

Var 45112 11007 49917 [12309-15235] 44212 [15810-12466] 44612 [9337-10173]
Hard 67754 20208 74926 [22640-27029] 65950 [26122-21106] 66807 [16209-17463]
Soft 308 518 880 264

Conflicts 4 (6) 9 (35) 29 (38) 0 (3)
Optimum n 10 (11) 13 (14) 11 (11) 5 (5)

For the sake of comparison, we have also implemented our models using OR-Tools to perform
tests with the constraint programming solver CP-SAT [28]. The tests were performed on
a machine equipped with an Intel Core i7 processor clocked at 3.80GHz, under Ubuntu
22.04. A timeout of 3600s was set for each instance. The results in terms of solving time are
described in Table 3.

First, it is crucial to highlight the substantial enhancements our solutions have achieved
over the manually crafted schedules by the organizing committees in recent years. More
specifically, our models have remarkably enabled to improve both the number of conflicts
and the management of parallel sessions. Indeed, for the years 2024 to 2021, our automated
solutions reduced the number of working-group conflicts respectively by 2, 26, 9, and 3. This
reduction emphasizes the relevance of our computational approach over traditional manual
methods. Furthermore, our formulation has successfully decreased the maximum number of
parallel sessions required in the 2024 and 2023 schedules, by reducing it from 11 to 10 in
2024 and from 14 to 13 in 2023. These results enable to significantly lessen the operational
complexity and the resources required for organizing the conference and to ensure a smoother
and more productive experience for attendees and organizers alike.

Next, we compare our enhanced formulation to the basic one. As showcased in Table 3,
the comparison between the two models with Max-SAT solvers for a similar encoding (SortN)
clearly supports the relevance of introducing z variables into the model. Across all years, the
enhanced model consistently outperforms the basic one in terms of solving times. Notably, in
terms of total solving time across all MaxSAT solvers, it achieves a gain of 62.9%, 67.2% and
44.7% respectively for years 2024, 2023 and 2021, with a total gain of 66.3% over the three
years. In particular, the solving times were significantly improved for specific solvers as, for
instance, more than 93% gain in solving time is achieved for the solver RC2 in 2023 with our
enhanced formulation. Furthermore, the enhanced model’s ability to produce better feasible
solutions is particularly pronounced. Indeed, for the instances of 2023, the model not only
enables the MaxCDCL solver to solve some instances within the timeout but also to achieve
a feasible solution (which is optimal) for the remaining ones, unlike the basic model where it
fails on all the instances. For the instances of 2022, although the optimal solutions are not
found within the timeout7, it is crucial to emphasize that the enhanced model consistently
improves the best feasible solutions compared to the basic model. In fact, the optimal values
for the number of conflicts is in [27,29] with n = 11 showing that the enhanced model is able
to achieve a tight optimal solution interval for 2022, with a feasible solution of 29 achieved by

7 Note that we did not change the internal behavior of the solvers and, in particular, MaxHS which may
stop and return the best feasible solution before the timeout if it finds the problem hard to solve and
does not manage to achieve optimality

CP 2024

34:8 Minimizing Working-Group Conflicts in Conference Scheduling Through Max-SAT

Ta
bl

e
3

So
lv

in
g

tim
es

in
se

co
nd

s
fo

r
th

e
B

as
ic

M
od

el
w

ith
So

rt
N

an
d

th
e

En
ha

nc
ed

M
od

el
w

ith
So

rt
N

an
d

C
ar

dN
+

PB
be

st
.

Fo
r

ea
ch

on
e,

th
e

be
st

so
lv

in
g

tim
e

fo
r

ea
ch

in
st

an
ce

is
hi

gh
lig

ht
ed

in
bo

ld
.

T
he

be
st

ov
er

al
lr

es
ul

ts
fo

r
ea

ch
in

st
an

ce
ar

e
al

so
un

de
rli

ne
d.

T
de

no
te

s
th

e
oc

cu
rr

en
ce

of
a

tim
eo

ut
.

If
th

e
so

lv
er

is
no

t
ab

le
to

co
m

pu
te

th
e

op
ti

m
al

so
lu

ti
on

,t
he

be
st

ob
ta

in
ed

fe
as

ib
le

so
lu

ti
on

is
re

po
rt

ed
be

tw
ee

n
“(

)”
an

d,
if

a
lo

w
er

bo
un

d
is

pr
ov

id
ed

,i
t

is
in

di
ca

te
d

be
tw

ee
n

“[
]”.

B
as

ic
M

o d
el

E
nh

an
ce

d
M

od
el

E
nh

an
ce

d
M

od
el

w
it

h
C

ar
dN

+
P

B
be

st
Y

ea
r

n
R

C
2

W
B

O
M

ax
C

D
C

L
M

ax
H

S
C

P
-S

A
T

R
C

2
W

B
O

M
ax

C
D

C
L

M
ax

H
S

C
P

-S
A

T
R

C
2

W
B

O
M

ax
C

D
C

L
M

ax
H

S

20
24

15
3.

42
8

7.
81

1
5.

35
8

16
.0

86
26

.8
00

1.
25

9
1.

18
0

0.
98

9
17

.9
33

7.
68

3
0.

76
7

0.
30

0
0.

46
7

9.
92

5
14

3.
05

4
12

.0
95

5.
71

6
46

.3
08

26
.2

91
1.

30
0

1.
13

0
0.

81
8

14
.6

33
6.

67
7

0.
71

6
0.

30
1

0.
29

0
11

.2
36

13
3.

28
8

6.
98

9
5.

59
1

46
.2

06
20

.6
22

1.
19

9
1.

40
4

0.
99

2
18

.5
85

7.
71

3
0.

77
0

0.
27

9
0.

35
3

12
.4

76
12

3.
54

0
6.

03
6

5.
14

7
95

.2
41

22
.6

91
1.

31
5

1.
74

2
0.

80
5

20
.6

07
10

.0
56

0.
71

8
0.

30
9

0.
31

3
5.

97
2

11
3.

65
2

12
.3

84
8.

74
6

15
3.

33
5

22
.5

94
1.

28
7

2.
47

2
1.

10
0

71
.6

55
10

.3
90

0.
70

7
0.

39
2

0.
39

5
26

.6
09

10
9.

90
2

13
98

.1
11

51
1.

04
3

86
9.

11
9

88
.8

31
9.

70
7

34
1.

22
5

15
0.

41
6

27
1.

44
0

35
.4

60
1.

54
4

41
1.

76
6

21
3.

25
7

50
0.

96
4

20
23

17
19

7.
51

5
11

9.
67

4
T

(-
)

11
87

.3
25

T
(-

)
9.

68
7

17
.7

69
T

(9
)

35
7.

90
6

T
(9

)
10

.3
70

6.
13

6
33

71
.3

04
35

3.
51

5
16

35
5.

62
7

71
.4

72
T

(-
)

75
5.

97
5

T
(9

)
12

.6
02

20
.7

01
30

58
.4

18
39

5.
71

6
T

(9
)

12
.1

45
4.

79
2

28
66

.8
53

42
6.

96
5

15
13

9.
62

5
99

.3
32

T
(-

)
11

06
.2

81
T

(9
)

23
.4

67
41

.0
42

T
(9

)
40

8.
85

4
T

(9
)

15
.2

47
6.

69
6

26
86

.4
84

40
5.

92
3

14
10

7.
20

2
10

2.
94

7
T

(-
)

10
36

.9
48

T
(9

)
14

.0
11

22
.6

83
T

(9
)

41
3.

16
0

T
(9

)
19

.7
51

6.
70

6
T

(9
)

41
7.

69
3

13
25

0.
30

8
19

9.
54

9
T

(-
)

85
3.

87
6

T
(9

)
8.

00
6

14
.9

62
31

36
.0

08
43

9.
81

2
T

(9
)

8.
73

3
4.

16
2

T
(9

)
43

8.
87

7
12

T
[1

0]
T

(-
)

T
(-

)
T

(2
8)

[8
]

T
(-

)
T

(-
)[1

0]
T

(-
)

T
(-

)
T

(2
3)

[8
]

T
(1

0)
T

[1
0]

T
(-

)
T

(-
)

T
(3

0)
[9

]

20
22

16
T

(-
)[2

4]
T

(1
27

)
T

(2
9)

38
5.

62
5

(4
6)

[1
8]

T
(2

9)
T

(-
)[2

5]
T

(1
46

)
T

(2
9)

49
6.

06
1

(4
2)

[2
2]

T
(2

9)
T

(-
)[2

2]
T

(8
3)

T
(2

9)
10

24
.7

85
(4

0)
[2

5]
15

T
(-

)[2
4]

T
(1

61
)

T
(2

9)
38

0.
04

8
(3

7)
[2

6]
T

(2
9)

T
(-

)[2
4]

T
(1

34
)

T
(2

9)
32

2.
62

7
(5

1)
[1

8]
T

(2
9)

T
(-

)[2
4]

T
(5

8)
T

(2
9)

10
59

.2
00

(3
3)

[2
5]

14
T

(-
)[2

5]
T

(1
96

)
T

(2
9)

T
(3

7)
[2

6]
T

(2
9)

T
(-

)[2
7]

T
(1

32
)

T
(2

9)
47

3.
50

4
(3

8)
[2

3]
T

(2
9)

T
(-

)[2
4]

T
(4

7)
T

(2
9)

44
8.

61
3

(2
9)

[2
3]

13
T

(-
)[2

4]
T

(2
22

)
T

(2
9)

39
2.

29
9

(5
3)

[1
8]

T
(2

9)
T

(-
)[2

7]
T

(1
46

)
T

(2
9)

34
8.

25
6

(5
6)

[1
7]

T
(2

9)
T

(-
)[2

5]
T

(5
0)

T
(2

9)
33

0.
28

4
(5

9)
[1

8]
12

T
(-

)[2
4]

T
(3

24
)

T
(2

9)
85

6.
92

3
(5

0)
[2

4]
T

(2
9)

T
(-

)[2
6]

T
(1

35
)

T
(2

9)
98

0.
69

2
(3

0)
[2

5]
T

(2
9)

T
(-

)[2
4]

T
(7

1)
T

(2
9)

32
8.

65
8

(5
9)

[1
8]

11
T

(-
)[2

5]
T

(5
43

)
T

(2
9)

T
(4

0)
[2

7]
T

(2
9)

T
(-

)[2
7]

T
(4

36
)

T
(2

9)
71

3.
46

6
(5

6)
[1

8]
T

(2
9)

T
(-

)[2
4]

T
(2

87
)

T
(2

9)
65

0.
51

7
(4

8)
[1

8]

20
21

10
0.

67
0

1.
39

7
0.

50
3

0.
65

3
1.

35
6

0.
65

6
0.

74
8

0.
17

9
0.

13
2

1.
30

7
0.

17
8

0.
13

9
0.

05
0

0.
02

7
9

1.
21

0
1.

38
0

0.
27

6
0.

68
5

1.
32

4
0.

30
9

0.
81

2
0.

17
0

0.
15

5
1.

31
6

0.
13

3
0.

13
6

0.
03

8
0.

02
6

8
1.

23
2

1.
35

2
0.

43
7

0.
68

2
1.

32
7

0.
65

4
0.

77
5

0.
27

8
0.

45
4

1.
27

2
0.

13
2

0.
14

8
0.

03
9

0.
03

0
7

1.
18

9
1.

36
4

0.
26

2
0.

61
9

1.
33

3
0.

64
9

0.
79

1
0.

25
6

0.
44

8
1.

27
6

0.
12

6
0.

13
2

0.
03

5
0.

03
0

6
0.

64
6

1.
38

4
0.

41
4

0.
69

5
1.

30
7

0.
35

0
0.

77
6

0.
28

1
0.

47
0

1.
27

4
0.

13
5

0.
14

6
0.

03
5

0.
03

1
5

1.
14

2
1.

72
4

0.
42

5
0.

69
6

1.
34

7
0.

66
1

0.
88

5
0.

27
9

0.
45

9
1.

28
0

0.
14

2
0.

20
0

0.
03

5
0.

02
7

S. Cherif, H. Sattoutah, C.-M. Li, C. Lucet, and L. Brisoux-Devendeville 34:9

MaxCDCL. Overall, the results provide strong empirical evidence supporting the importance
of introducing z variables in the scheduling model. This observation remains true for the
CP-SAT solver which also shows superior performance with the enhanced formulation.

Note how CP-SAT achieves a timeout on all the instances of 2022 and 2023 both with the
basic and enhanced models and does not manage to outperform the best MaxSAT solver in
2021 and 2024 for all the instances, which highlights the relevance of our MaxSAT approach
in managing large-scale scheduling tasks. In addition, for the sake of enhancing MaxSAT
solver performance, we have tested the CardN+PBbest combination with the enhanced
model and we have obtained promising outcomes. Specifically, this combination demonstrates
notable improvements in the best solving times compared to SortN, with a gain of 67.5%,
59.9% and 88.2% respectively for 2024, 2023 and 2021, thus averaging to more than 70%
gain over the three years. Finally, note how the instances become particularly difficult for
the smallest n within each year. In fact, the choices of the n values were not arbitrary as
a formal lower bound can be established by calculating an upper bound of the number of
papers for a given n as follows: UBPn =

∑
c∈C n ∗ npMax(c). For instance, in 2024, we have

UBP9 = 288 <
∑

s∈S np(s) = 307 and, therefore, the the set of hard constraints becomes
unsatisfiable for n = 9 as it is impossible to schedule all the sessions so as to achieve the total
amount of papers. In fact, we have also generated the instances for n = 9 in 2024, n = 11 in
2023, n = 10 in 2022 and n = 4 in 2021 totaling to 12 unsatisfiable instances. Unsurprisingly,
while CP-SAT is able to prove the infeasibility of these instances, all the MaxSAT solvers
failed within the timeout as these solvers are scarcely confronted to instances where the
set of hard clauses is unsatisfiable [5]. This underscores the importance of enlarging the
benchmarks in Max-SAT evaluations with such instances and, specifically, ones extracted
from real-life scenarios such as ours to keep up the driving force in improving modern solvers.

6 Conclusion

In this paper, we addressed an optimization problem in conference session scheduling. More
specifically, we presented a Max-SAT formulation for the minimization of working-group
conflicts in the ROADEF conference, which we then enhanced by introducing new variables.
Our results indicate that the number of conflicts and the maximum number of parallel
sessions could be reduced and a scheduling could be computed in an effective time frame.
Our work thus holds great promise in simplifying the scheduling task, streamlining logistics
and optimizing resources in subsequent editions of the conference. As future work, we plan
to expand our research by conducting experiments on additional datasets, both within and
beyond the scope of ROADEF. Additionally, we aim to enhance our scheduling approach
by incorporating considerations for author conflicts so as to develop a more comprehensive
optimization framework that accounts for the intricate relationships among participants.

References
1 Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. BDDs for

Pseudo-Boolean Constraints - Revisited. In Karem A. Sakallah and Laurent Simon, editors,
14th International Conference on Theory and Applications of Satisfiability Testing - SAT
2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, volume 6695 of Lecture Notes in
Computer Science, pages 61–75. Springer, 2011. doi:10.1007/978-3-642-21581-0_7.

2 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms. Artif.
Intell., 196:77–105, 2013. doi:10.1016/J.ARTINT.2013.01.002.

3 Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. Cardin-
ality Networks and Their Applications. In Oliver Kullmann, editor, Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK,
June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages
167–180. Springer, 2009. doi:10.1007/978-3-642-02777-2_18.

CP 2024

https://doi.org/10.1007/978-3-642-21581-0_7
https://doi.org/10.1016/J.ARTINT.2013.01.002
https://doi.org/10.1007/978-3-642-02777-2_18

34:10 Minimizing Working-Group Conflicts in Conference Scheduling Through Max-SAT

4 Roberto Javier Asín Achá and Robert Nieuwenhuis. Curriculum-based course timetabling with
SAT and MaxSAT. Ann. Oper. Res., 218(1):71–91, 2014. doi:10.1007/S10479-012-1081-X.

5 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. MaxSAT Evaluation 2018: New
Developments and Detailed Results. J. Satisf. Boolean Model. Comput., 11(1):99–131, 2019.
doi:10.3233/SAT190119.

6 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiability. In Armin
Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability
- Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages
929–991. IOS Press, 2021. doi:10.3233/FAIA201008.

7 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.
Certified Core-Guided MaxSAT Solving. In Brigitte Pientka and Cesare Tinelli, editors,
Automated Deduction - CADE 29 - 29th International Conference on Automated Deduction,
Rome, Italy, July 1-4, 2023, Proceedings, volume 14132 of Lecture Notes in Computer Science,
pages 1–22. Springer, 2023. doi:10.1007/978-3-031-38499-8_1.

8 Jeremias Berg, Antti Hyttinen, and Matti Järvisalo. Applications of MaxSAT in Data Analysis.
In Daniel Le Berre and Matti Järvisalo, editors, Proceedings of Pragmatics of SAT 2015,
Austin, Texas, USA, September 23, 2015 / Pragmatics of SAT 2018, Oxford, UK, July 7, 2018,
volume 59 of EPiC Series in Computing, pages 50–64. EasyChair, 2018. doi:10.29007/3QKH.

9 A. Biere, M. Heule, and H. van Maaren. Handbook of Satisfiability: Second Edition. Frontiers
in Artificial Intelligence and Applications. IOS Press, 2021. URL: https://books.google.fr/
books?id=dUAvEAAAQBAJ.

10 Miquel Bofill, Marc Garcia, Josep Suy, and Mateu Villaret. MaxSAT-Based Scheduling of
B2B Meetings. In Laurent Michel, editor, Integration of AI and OR Techniques in Constraint
Programming - 12th International Conference, CPAIOR 2015, Barcelona, Spain, May 18-22,
2015, Proceedings, volume 9075 of Lecture Notes in Computer Science, pages 65–73. Springer,
2015. doi:10.1007/978-3-319-18008-3_5.

11 Mohamed Sami Cherif, Djamal Habet, and André Abramé. Understanding the power of
max-sat resolution through up-resilience. Artif. Intell., 289:103397, 2020. doi:10.1016/J.
ARTINT.2020.103397.

12 Sami Cherif, Heythem Sattoutah, Chu-Min Li, Corinne Lucet, and Laure Brisoux-Devendeville.
ROADEF_SCHEDULING. Software, swhId: swh:1:dir:7083377094f69163d37d30b77d
740c72c562139d (visited on 2024-08-16). URL: https://github.com/satoutahhaithem/
ROADEF_SCHEDULING.

13 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming
- CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.
Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer,
2011. doi:10.1007/978-3-642-23786-7_19.

14 Emir Demirovic and Nysret Musliu. MaxSAT-based large neighborhood search for high school
timetabling. Comput. Oper. Res., 78:172–180, 2017. doi:10.1016/J.COR.2016.08.004.

15 Emir Demirovic, Nysret Musliu, and Felix Winter. Modeling and solving staff schedul-
ing with partial weighted maxSAT. Ann. Oper. Res., 275(1):79–99, 2019. doi:10.1007/
S10479-017-2693-Y.

16 Niklas Eén and Niklas Sörensson. Translating Pseudo-Boolean Constraints into SAT. J. Satisf.
Boolean Model. Comput., 2(1-4):1–26, 2006. doi:10.3233/SAT190014.

17 Alexey Ignatiev, António Morgado, and João Marques-Silva. PySAT: A Python Toolkit for
Prototyping with SAT Oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors,
Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,
Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 428–437. Springer,
2018. doi:10.1007/978-3-319-94144-8_26.

https://doi.org/10.1007/S10479-012-1081-X
https://doi.org/10.3233/SAT190119
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.29007/3QKH
https://books.google.fr/books?id=dUAvEAAAQBAJ
https://books.google.fr/books?id=dUAvEAAAQBAJ
https://doi.org/10.1007/978-3-319-18008-3_5
https://doi.org/10.1016/J.ARTINT.2020.103397
https://doi.org/10.1016/J.ARTINT.2020.103397
https://archive.softwareheritage.org/swh:1:dir:7083377094f69163d37d30b77d740c72c562139d;origin=https://github.com/satoutahhaithem/ROADEF_SCHEDULING;visit=swh:1:snp:c34fc60c52e7d5289f8e1c049ce6ba5e0adc48d2;anchor=swh:1:rev:92a1a45786ba37797dda7d78f7d02347f6f2a0a8
https://archive.softwareheritage.org/swh:1:dir:7083377094f69163d37d30b77d740c72c562139d;origin=https://github.com/satoutahhaithem/ROADEF_SCHEDULING;visit=swh:1:snp:c34fc60c52e7d5289f8e1c049ce6ba5e0adc48d2;anchor=swh:1:rev:92a1a45786ba37797dda7d78f7d02347f6f2a0a8
https://github.com/satoutahhaithem/ROADEF_SCHEDULING
https://github.com/satoutahhaithem/ROADEF_SCHEDULING
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1016/J.COR.2016.08.004
https://doi.org/10.1007/S10479-017-2693-Y
https://doi.org/10.1007/S10479-017-2693-Y
https://doi.org/10.3233/SAT190014
https://doi.org/10.1007/978-3-319-94144-8_26

S. Cherif, H. Sattoutah, C.-M. Li, C. Lucet, and L. Brisoux-Devendeville 34:11

18 Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an Efficient MaxSAT
Solver. J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019. doi:10.3233/SAT190116.

19 Gerold Jäger, Sharlee Climer, and Weixiong Zhang. The complete parsimony haplotype
inference problem and algorithms based on integer programming, branch-and-bound and
Boolean satisfiability. J. Discrete Algorithms, 37:68–83, 2016. doi:10.1016/J.JDA.2016.06.
001.

20 Alexandre Lemos, Filipe Gouveia, Pedro T. Monteiro, and Inês Lynce. Iterative Train
Scheduling under Disruption with Maximum Satisfiability. J. Artif. Intell. Res., 79:1047–1090,
2024. doi:10.1613/JAIR.1.14924.

21 Chu Min Li and Felip Manyà. MaxSAT, Hard and Soft Constraints. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 903–927. IOS Press,
2021. doi:10.3233/FAIA201007.

22 Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun He. Combining
clause learning and branch and bound for maxsat. In Laurent D. Michel, editor, 27th
International Conference on Principles and Practice of Constraint Programming, CP 2021,
Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages
38:1–38:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
CP.2021.38.

23 Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun He. Boosting
branch-and-bound MaxSAT solvers with clause learning. AI Commun., 35(2):131–151, 2022.
doi:10.3233/AIC-210178.

24 Xiaojuan Liao, Hui Zhang, Miyuki Koshimura, Rong Huang, and Wenxin Yu. Maximum
Satisfiability Formulation for Optimal Scheduling in Overloaded Real-Time Systems. In
Abhaya C. Nayak and Alok Sharma, editors, PRICAI 2019: Trends in Artificial Intelligence
- 16th Pacific Rim International Conference on Artificial Intelligence, Cuvu, Yanuca Island,
Fiji, August 26-30, 2019, Proceedings, Part I, volume 11670 of Lecture Notes in Computer
Science, pages 618–631. Springer, 2019. doi:10.1007/978-3-030-29908-8_49.

25 Hratch Mangassarian, Andreas G. Veneris, and Farid N. Najm. Maximum circuit activity
estimation using pseudo-boolean satisfiability. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., 31(2):271–284, 2012. doi:10.1109/TCAD.2011.2169259.

26 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A Modular MaxSAT
Solver. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing
- SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in
Computer Science, pages 438–445. Springer, 2014. doi:10.1007/978-3-319-09284-3_33.

27 António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João Marques-Silva.
Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints An Int. J.,
18(4):478–534, 2013. doi:10.1007/S10601-013-9146-2.

28 Laurent Perron and Frédéric Didier. Cp-sat. URL: https://developers.google.com/
optimization/cp/cp_solver/.

29 Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Proofs and Certificates for Max-SAT.
J. Artif. Intell. Res., 75:1373–1400, 2022. doi:10.1613/JAIR.1.13811.

30 Olivier Roussel and Vasco M. Manquinho. Pseudo-Boolean and Cardinality Constraints.
In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications,
pages 1087–1129. IOS Press, 2021. doi:10.3233/FAIA201012.

31 Ahmad Shabani and Bijan Alizadeh. PMTP: A MAX-SAT-Based Approach to Detect Hardware
Trojan Using Propagation of Maximum Transition Probability. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., 39(1):25–33, 2020. doi:10.1109/TCAD.2018.2889663.

CP 2024

https://doi.org/10.3233/SAT190116
https://doi.org/10.1016/J.JDA.2016.06.001
https://doi.org/10.1016/J.JDA.2016.06.001
https://doi.org/10.1613/JAIR.1.14924
https://doi.org/10.3233/FAIA201007
https://doi.org/10.4230/LIPICS.CP.2021.38
https://doi.org/10.4230/LIPICS.CP.2021.38
https://doi.org/10.3233/AIC-210178
https://doi.org/10.1007/978-3-030-29908-8_49
https://doi.org/10.1109/TCAD.2011.2169259
https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.1007/S10601-013-9146-2
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://doi.org/10.1613/JAIR.1.13811
https://doi.org/10.3233/FAIA201012
https://doi.org/10.1109/TCAD.2018.2889663

On the Complexity of Integer Programming with
Fixed-Coefficient Scaling
Jorke M. de Vlas # Ñ

Linköping Universitet, Sweden

Abstract
We give a polynomial time algorithm that solves a CSP over Z with linear inequalities of the form
ca1 x − ca2 y ≤ b where x and y are variables, a1, a2 and b are parameters, and c is a fixed constant.
This is a step in classifying the complexity of CSP(Γ) for first-order reducts Γ from (Z, <, +, 1).
The algorithm works by first reducing the infinite domain to a finite domain by inferring an upper
bound on the size of the smallest solution, then repeatedly merging consecutive constraints into new
constraints, and finally solving the problem using arc consistency.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Complexity theory and logic

Keywords and phrases constraint satisfaction problems, integer programming, CSP dichotomy

Digital Object Identifier 10.4230/LIPIcs.CP.2024.35

Category Short Paper

Funding This work is partially supported by the Swedish Research Council (VR) under grant
VR-2021-04371.

Acknowledgements I wish to thank P. Jonsson and G. Osipov for discussions and feedback.

1 Introduction

Many computational problems in theoretical computer science can be formulated as a
Constraint Satisfaction Problem or CSP. In these problems the goal is to find an assignment
of values to a set of variables from a given domain that satisfies some given constraints that
impose relations on subsets of variables. After fixing a domain and the allowed constraint
types, we are left with a computational problem and want to determine its computational
complexity. In general, we are interested in determining whether a given CSP is solvable in
polynomial time or NP-hard.

For Boolean domains, Schaefer’s dichotomy theorem gives a full classification [9]. This
result has recently been extended to arbitrary finite domains [3, 12]. For infinite domains,
there is no known dichotomy and this is an area of active research [1]. We focus on TVPI,
the infinite-domain CSP which consists of linear inequalities with two variables per inequality.
In general, this CSP is NP-complete [6, Theorem F], but it admits many subclasses whose
tractability is unknown.

Inequalities in TVPI consist of the form ax + by ≤ d for variables x, y and integer
coefficients a, b, d. Several tractable subclasses of TVPI focus on restricting the linear
coefficients a and b. Restricting to {±1}, we obtain the tractable UTVPI [5]. Restricting to
{±1, ±2}, we obtain the class BTVPI, which was recently shown to also be tractable [10].

An intractable subclass of TVPI is the CSP that concerns monotone inequalities, where
the coefficients a and b have different signs [6]. This class admits a pseudo-polynomial time
algorithm using a rounded version of a technique known as Fourier-Motzkin elimination,
which iteratively combines pairs of inequalities into new inequalities [4]. Another technique
used in constraint programming is arc consistency, which iteratively reduces variable domains
until a fixed state is found. Similarly to FM-elimination, finding a fixed state is NP-hard in
general [2] but admits a pseudo-polynomial time algorithm [11].

© Jorke M. de Vlas;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 35; pp. 35:1–35:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jorke.de.vlas@liu.se
http://www.liu.se
https://doi.org/10.4230/LIPIcs.CP.2024.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 On the Complexity of Integer Programming with Fixed-Coefficient Scaling

Our contribution is an algorithm that combines these techniques into a polynomial-time
algorithm for another subclass of TVPI. Our class concerns monotone inequalities whose
coefficients are restricted to powers of c for some fixed constant c > 0. That is, inequalities
of the form ca1x − ca2y ≤ b. After dividing by cmin(a1,a2), we may assume that a1 or a2 is
zero. Formally, for any c ∈ N we define Rc as the set of inequalities of the form x ≤ cay + b

or cax + b ≤ y with a ∈ N and b ∈ Z, and then consider CSP(Z; Rc). In order to keep the
size of the coefficients polynomial, we require that each a is given in unary. To simplify some
arguments, we view the CSP(Z, Rc) instance as a directed, weighted graph with colored arcs.
We model a constraint of the form x ≤ cay + b as a red arc from x to y with weight −a, and
a constraint of the other form as a blue arc from x to y with weight a.

The paper is structured as follows. In Section 2 we give a high-level outline of the
algorithm and its main ideas. In Section 3 we give a detailed explanation of all the substeps.
Finally, in Section 4 we combine all these steps to show that our algorithm is correct and
satisfies the claimed runtime. To begin, we fix a value for c and an instance of CSP(Z, Rc).
For this instance, let n be the number of variables, m the number of constraints, and W the
maximal value of any coefficient in any constraint. Since each a is given in unary, log(W) is
polynomial in the input size.

2 Algorithm outline

The algorithm consists of four main ideas. The first one is boundedness: if the instance
admits an integer solution, then the size of the “smallest” integer solution will not be too
large. More precisely, we will prove that there exists an integer Ω, whose size is polynomial
in the input, such that: if there exists an integer solution to the CSP, then there exists an
integer solution where every variable is bounded in absolute value by 2Ω. In particular, this
implies that to solve the CSP we only need to look for solutions in a bounded subset of Z.
Let IΩ := {−2Ω, −2Ω + 1, . . . , 2Ω} be this subset.

The second idea is to use arc consistency. If we know a domain of possible values for some
variable x, then any arc between x and some other variable y translates this into a domain
of possible values for y. By starting with the initial domain x ∈ IΩ for every variable x and
repeatedly checking consistency along all arcs, we will eventually settle in a state where some
domain is empty or where all arcs are consistent. Now, the instance has a solution if and only
if all domains are nonempty: if a domain is empty the instance is obviously unsolvable, and
if all domains are nonempty then we can set every variable to the smallest remaining value.
This is a solution, since the smallest remaining value on the larger side of the inequality is
(by arc consistency) larger than some remaining value on the smaller side of the inequality,
and thus also larger than the smallest remaining value of that side. In more technical terms,
min is a polymorphism.

Since the complete domains can be exponentially large, we only keep track of a description
of them. It suffices to only consider integer lower bounds, so for every variable x we keep
track of a lower bound x ≥ ℓ, ℓ ∈ Z which increases during the arc consistency steps. A
domain is now considered empty if we find a lower bound of at least 2Ω. One arc consistency
step now goes as follows: loop over every arc (x, y). The current lower bound at the starting
vertex x implies a new lower bound on the end vertex y. If this lower bound is stricter then
the bound we had for y, update y with the new bound.

This arc consistency procedure terminates in at most n2Ω+1 iterations: every iteration
increases one of the n lower bounds by at least one, and each lower bound is contained in IΩ.
Unfortunately, this is still exponentially many. To reduce the required number of iterations,
we introduce the third main idea: edge shortening.

J. M. de Vlas 35:3

If we have an arc from x to y and an arc from y to z, then any lower bound on x implies
a lower bound on y which in turn gives a lower bound on z. In some cases (but not all!)
we could have obtained this lower bound on z directly from the one on x by adding a new
constraint between x and z which is functionally equivalent to the path from x to z via y.
This means that if we would have added this new arc before applying the arc consistency
procedure, we would have needed one iteration less to obtain the lower bound on z.

By this reasoning, we see that the arc consistency algorithm improves if we first preprocess
the graph to introduce as many new arcs as possible. We do this by performing multiple
edge shortening iterations. In one iteration we check every pair of consecutive arcs and,
if possible, add a new arc. We will later show how to determine when this arc exists and
what its parameters are. We will also prove that one edge shortening iteration reduces the
required number of arc consistency steps by (roughly) one third and that after enough edge
shortening iterations, the required number of arc consistency steps reduces to just two.

The problem with edge shortening is that we might introduce exponentially many new
arcs and that the arcs might have exponentially large parameters. To solve this, we apply
the fourth main idea: compression. We will show that any set of constraints S can be
transformed into a new set S′ whose total bitsize is polynomial in Ω such that any variable
assignment s ∈ (IΩ)n satisfies S if and only if it satisfies S′. The intuition is that since we
only concern solutions bounded by 2Ω, then the set of variable assignments that satisfy an
arc whose coefficients are much larger that 2Ω can also be described using an arc with smaller
coefficients. Furthermore, we only need at most one arc of each weight between every two
variables: if there are multiple arcs of the same weight, we only need the one with the most
restrictive constant term.

Overall, we obtain the following algorithm:
1. Perform the boundedness step: compute Ω.
2. Alternate between edge shortening iterations and compression steps polynomially many

times (we later specify exactly how many).
3. Perform two arc consistency steps.
4. If there is a lower bound of at least 2Ω, output NO SOLUTION. Otherwise, output the

current values of the lower bounds.

In the next section, we will describe the four main steps in more detail and prove why
they work.

3 Main steps

Boundedness

We will first show how to construct the global bound Ω using results from literature. Our
goal is to apply the main theorem of [8], which states that if a CSP consisting of linear
equations over the integers has n variables, m constraints, and coefficients bounded by a,
and admits a solution consisting of positive integers, then it admits one where each integer
in the solution is at most n(ma)2m+1.

CSP(Rc) is different: our constraints are inequalities instead of equalities and the solution
may contain negative integers. Fortunately, we can easily transform it into this standard form
[7, Section 2.2] by using slack variables for the inequalities and expressing each unbounded
variable as the difference between two positive variables. This modification adds m + n

additional variables and n additional constraints, so the resulting CSP has 2n + m variables,
m + n constraints, and coefficients bounded by W .

CP 2024

35:4 On the Complexity of Integer Programming with Fixed-Coefficient Scaling

We can now apply the above theorem and find a new solution to the modified instance
where each variable is positive and bounded by Ω′ := (2n + m)((m + n)W)2(m+n)+1. This
translates into a solution of the original instance where each variable may be negative
again but still has an absolute value of at most Ω′. We conclude that Ω := log(Ω′) =
O((m + n)(log(W (m + n)) suffices. Overall, we obtain the following proposition.

▶ Proposition 1. There exists an integer Ω ∈ N, which only depends on and is polynomial
in n, m and log(W), such that: if our CSP(Z, Rc) instance has at least one integer solution,
then there exists an integer solution where each variable has an absolute value of at most 2Ω.

Arc consistency

The second step is to apply arc consistency by propagating lower bounds along the constraint
arcs. On a blue arc cax + b ≤ y, a lower bound x ≥ ℓ implies a lower bound y ≥ caℓ + b. On
a red arc x ≤ cay + b a lower bound x ≥ ℓ implies a lower bound y ≥

⌈
ℓ−b
ca

⌉
. This chains

across consecutive arcs: for any path p, a lower bound on the starting vertex results in a
lower bound on the ending vertex. In general, we can identify any path with a valid lower
bound by propagating the trivial lower bound x ≥ −2Ω on the starting vertex x along the
path.

Conversely, every lower bound that can be obtained using arc consistency corresponds to
a path; every arc consistency step effectively appends one arc to the path. Hence, we obtain
an equivalence between paths and lower bounds. When viewing a path in the context of a
lower bound chain, we will refer to it as a propagation path. We now give some properties of
propagation paths.

▶ Proposition 2. Propagation paths satisfy the following properties.
(i) Let x ≥ ℓ be some lower bound reachable by propagation paths. The length of the

shortest propagation path resulting in this lower bound (or a better one) is at most
n2Ω+1.

(ii) Let p be a propagation path of length k ending in some lower bound x ≥ ℓ. Then, the
arc consistency procedure will find this lower bound (or a better one) in at most k

iterations.

Proof. We prove the parts in order.
(i) If a propagation path of minimal length contains a vertex multiple times, then the

corresponding lower bound on that vertex should increase otherwise the subcycle
between these occurences is redundant and the path is not minimal. So, every vertex
occurs at most |IΩ| = 2Ω+1 times, which bounds the length of the path to n2Ω+1.

(ii) We use induction on the length of p. If p has length zero, then the lower bound must
be the initial lower bound x ≥ −2Ω which is found before any arc consistency iteration.
Now suppose p has length k > 0. Let x′ ≥ ℓ′ be the bound that corresponds to p with
the final constraint removed. By the induction hypothesis, after k − 1 steps of the arc
consistency procedure we will have found a bound x′ ≥ ℓ′ or better. One more arc
consistency iteration will then propagate this lower bound into a lower bound of at
least ℓ for x. ◀

A corollary of this proposition is termination of the arc consistency procedure: every
lower bound that can be found by lower bound propagation will be found in at most n2Ω+1

iterations, so after at most this many iterations the procedure terminates.

J. M. de Vlas 35:5

Edge shortening

We will now describe in which cases we can concatenate consecutive arcs into a new arc.

▶ Proposition 3. Let e1 and e2 be two consecutive arcs. Let x, y, z be their endpoints such
that e1 runs from x to y and e2 runs from y to z. Suppose that e1 and e2 are colored in one
of the following ways: (red, red), (blue, blue), or (blue, red). Then there exists an arc e3
from x to z such that the set of integer values for x and z that satisfy the constraint from e3
is the same as the set of integer values for x and z for which there exists an integer value for
y such that both the constraints e1 and e2 are satisfied.

Proof. We begin with the case where e1 and e2 are both red. Let x ≤ ca1y + b1 and
y ≤ ca2z + b2 be the inequalities associated with e1 and e2, respectively. These inequalities
combine into

x ≤ ca1y + b1 ≤ ca1 (ca2z + b2) + b1 = ca1+a3z + ca1b2 + b1

We now define e3 as this constraint: a3 := a1 + a2 and b3 = ca1b2 + b1. One direction is
easy: if for some tuple of integer values for x and z there exists a y such that e1 and e2 are
satisfied, then this tuple by construction satisfies e3 as well. For the inverse direction, let
(vx, vz) be a tuple of integer values for x and z that satisfy e3. Then, we can set y to the
value vy := ca2vz + b2 which is integer. Now, the triplet (vx, vy, vz) satisfies e1 and e2: e1
rewrites to the inequality for e3 and e2 is satisfied by construction.

The other two cases are very similar. If e1 and e2 are both blue, we have the inequalities
ca1x + b1 ≤ y and ca2y + b2 ≤ z which merge into ca1+a2x + ca2b1 + b2 ≤ z, so we set e3 to
this inequality. If (vx, vz) is a tuple of integer assignments for x and z that satisfies e3, then
we can set vy := ca1vx + b1 to find a triplet of integer assignments for e1 and e2.

Finally, if e1 is blue and e2 is red, then we have the inequalities ca1x + b1 ≤ y and
y ≤ ca2z + b2. These merge into ca1x + b1 ≤ ca2z + b2. This is not yet the proper form to
become a valid constraint, but we can modify it a bit. We consider two cases: either a1 > a2
or a1 ≤ a2. In the first case, we can rewrite the inequality to ca1−a2x + b1−b2

ca2 ≤ z. Since z

and ca1−a2x are always integer, this inequality is equivalent to ca1−a2x +
⌈

b1−b2
ca2

⌉
≤ z. This

inequality has the proper form for a blue edge: a3 := a1 − a2 is a nonnegative integer and
b3 :=

⌈
b1−b2

ca2

⌉
is integer as well.

In the case where a1 ≤ a2 we can do something analogous: we instead rewrite the equation
to x ≤ ca2−a1y +

⌊
b2−b1

ca1

⌋
to obtain an equation for a red edge. The correctness proof of the

(blue, red) case is also analogous: if vx and vz are integer values for x and z that satisfy e3,
then we can set y to ca1x + b1 or ca2z + b2 (both work!) to obtain a triple that satisfies e1
and e2. ◀

▶ Remark 4. The case (red,blue) does not work since we cannot always set y to an integer
value. For example, in the case c = 2 one might think that the arcs x ≤ 2y and 2y ≤ z

combine into the arc x ≤ z, but this does not satisfy the requirements: setting x and z both
to 1 satisfies the inequality x ≤ z but there is no integer value for y that satisfies x ≤ 2y ≤ z.

We will now consider the effect of edge shortening on the length of propagation paths.

▶ Proposition 5. Let x ≥ ℓ be a lower bound that is reachable by a propagation path of length
k. Then, apply one iteration of the edge shortening procedure. Now, the bound x ≥ ℓ will be
reachable by a propagation path of length at most ⌈2k/3⌉.

CP 2024

35:6 On the Complexity of Integer Programming with Fixed-Coefficient Scaling

Proof. The main idea is the following observation: for any three consecutive arcs, the edge
shortening iteration will shorten at least one pair. Indeed, if the first pair is (red, blue),
the only configuration in which we cannot apply edge shortening, then the second pair will
be (blue, blue) or (blue, red) which are both shortable. Now let p be the path of length k

used to reach the lower bound and partition it into triplets of consecutive arcs. Then, after
applying the edge shortening operation, we can replace every triplet with just two arcs: the
arc obtained from the shortening and the arc not used in the shortening. Overall, this will
reduce p to a path of length ⌈2k/3⌉, where the ceiling function is required to account for the
(at most two) leftover arcs that do not fit in the triplets. ◀

▶ Corollary 6. Let x ≥ ℓ be a lower bound that is reachable by a propagation path. After poly-
nomially many edge shortening iterations, this lower bound will be reachable by a propagation
path of length at most 2.

Proof. Let k be the length of the initial propagation path used to obtain the lower bound
x ≥ ℓ. By Proposition 2(i), k is at most n2Ω+1. Every edge shortening iteration replaces
k with ⌈2k/3⌉. In particular, if k ≥ 3 then ⌈2k/3⌉ ≤ 2k/3 + 2/3 ≤ 2k/3 + 2k/9 = 8k/9.
So, after log9/8(n2Ω+1) iterations, k will be reduced to at most 3. One more iteration
then reduces k to at most 2. This shows that after log9/8(n2Ω+1) + 1 iterations, which is
polynomially many, the lower bound x ≥ ℓ is reachable by a path of length 2. ◀

▶ Remark 7. We cannot apply more edge shortening iterations to reduce the length even
further: if a propagation path of length 2 is colored in the colors (red, blue) then additional
edge shortening iterations have no effect on this path.

Compression

We now show how to bound the number and size of parallel edges.

▶ Proposition 8. Let S be a set of constraints. If we restrict each variable x to the domain
x ∈ IΩ, then we can modify S into an equivalent set of constraints S′ satisfying:

(i) The (absolute) weight of each edge is bounded by Ω + 1.
(ii) There is at most one edge of each weight between any two variables.
(iii) The constant coefficient of each constraint is at most 22Ω+2.

In particular, the total bitsize of S′ is polynomially bounded in Ω.

Proof. We only consider red arcs; blue arcs are analogous but with the direction of the
inequalities reversed. Let e be a red arc, say x ≤ cay + b. We perform three simplification
steps on e to satisfy the three required properties.

(i) Suppose e satisfies a > Ω + 1. If c = 1, the value of a does not matter so we can set
it to 0. If c ≥ 2, then there is at most one value of y such that the right hand side
cay + b falls in the interval |x| ≤ 2Ω. Let vy be this value, and let vx := cavy + b be
the corresponding upper bound for x. The set of pairs (x, y) satisfying the constraint
can now be described as: y < vy is impossible, y = vy implies x ≤ vx, and if
y > vy, there are no restrictions on x. This can also be achieved with the constraint
x ≤ 2Ω+1(y − vy) + vx = 2Ω+1y − 2Ω+1vy + vx which does have weight Ω + 1 so we
simply replace e with this new constraint. This argument is visualized in Figure 1: it
shows the shape of the feasible region for some constraints, and in particular it shows
that the feasible region for a constraint with a > Ω + 1 has the same shape as one with
a = Ω + 1.

J. M. de Vlas 35:7

(ii) Suppose there is another edge e′ of the same weight, say x ≤ cay + b′. Assume without
loss of generality that b ≤ b′. Then the inequality for e′ follows directly from the one
for e, so e′ is redundant and can be removed from S.

(iii) Suppose that |b| ≥ 22Ω+2, and recall that |x| ≤ 2Ω, |y| ≤ 2Ω and 0 ≤ a ≤ 2Ω+1. We
find that the left hand side of x ≤ cay + b is at most 2Ω in absolute value while the
right hand side is at least 22Ω+2 − 2Ω+1 · 2Ω = 22Ω+1 in absolute value. This shows that
the constraint is either always satisfied or always unsatisfied (depending on the sign of
b). So, we find that either the instance is infeasible or the constraint can be removed
without affecting feasibility. ◀

x

y

x

y

x

y

Figure 1 Some possible shapes for the feasible region of a single constraint. The square is the
domain (IΩ)2 and the wiggled line is the inequality. From left to right, the coefficients satisfy
1 < a < Ω + 1, a = Ω + 1 and a > Ω + 1.

4 Combining the parts

We will now give a formal proof of correctness for the algorithm described in Section 1 using
the propositions from Section 3. This is split into two theorems, one for correctness and one
for the runtime.

▶ Theorem 9. The algorithm described in Section 1 returns an integer solution to the
CSP(Rc) instance if one exists. Otherwise, it will output NO SOLUTION.

Proof. We first show that if the algorithm returns some variable assignment, then this is
indeed a solution. The final step asserts that all values of this assignment are at most 2Ω, so
by Proposition 8 the correctness is not affected by the compression steps. We now claim that
the returned variable assignment satisfies all constraints of the modified instance obtained
from the edge shortening iterations and compression steps: suppose to the contrary that
there is an unsatisfied constraint. This means that one additional arc consistency step would
have updated some lower bound to a new value, and most importantly that this new lower
bound is a bound reachable by propagation paths. Propositions 3 and 8 show that this lower
bound is also reachable in the original instance. Proposition 2(i) shows that the length of
the shortest propagation path to reach this lower bound is at most n2Ω+1. Corollary 6 now
shows that the edge shortening steps reduce it to one of length at most 2. Proposition 2(ii)
then shows that this lower bound was already found in the two arc consistency steps. This is

CP 2024

35:8 On the Complexity of Integer Programming with Fixed-Coefficient Scaling

a contradiction: we conclude that the returned variable assignment satisfies all constraints of
the modified instance. Since all original constraints are either still present in the modified
instance or replaced by an equivalent or stricter constraint, the solution must also satisfy the
original instance. This completes the first half of the proof.

We now show that if a solution exists, the algorithm will find it. By the corollary after
Proposition 2, just using the arc consistency procedure would determine existence of a
solution in n2Ω+1 steps. In particular, the assigned values in this solution are the result of a
propagation path of length at most n2Ω+1. By Corollary 6, the edge shortening iterations
reduce all these propagation paths to paths of length at most two, so by Proposition 2(ii),
every assigned value will be found in the two arc consistency steps. Therefore, the solution
will be found by the algorithm. This completes the second half of the proof, and consequently
the full proof. ◀

▶ Theorem 10. The algorithm described in Section 1 runs in polynomial time.

Proof. We first note that Ω is polynomial in the size of the input. After each compression
step, Proposition 8 shows that the current instance contains at most 2Ω + 3 constraints
between any two variables, so at most (2Ω + 3)n2 in total, which is polynomially many.
Denote this value by N . Furthermore, the coefficients of every constraint have polynomial
bitsize of O(Ω), so most arc operations takes O(Ω) time.

Each edge shortening iteration adds at most one new arc for any two consecutive arcs,
taking O(Ω) time per arc pair and resulting in at most N2 new arcs after this step. The
compression step afterwards takes O(Ω) time per arc to reduce the number of arcs back down
to N again. Together, one edge shortening iteration and compression step take O(N2Ω)
time. One exception is the first compression step: since there are initially m arcs instead of
at most N , and coefficients are initially bounded by W instead of 2Ω, the first step takes
O(log(W)m2) time. Since these two steps are repeated log9/8(n2Ω+1) + 1 = O(Ω log(n))
times, the overall runtime of these steps is O(Ω2 log(n)N2 + log(W)m2); still polynomial.

Finally, each arc consistency step checks every arc at most once, so this adds an-
other O(NΩ) time to the computation. Overall, we conclude that the algorithm runs
in O(Ω2 log(n)N2 + log(W)m2) time. When transformed back to the original input pa-
rameters, this becomes O(Ω2 log(n)(Ωn2)2 + log(W)m2) = O(Ω4n4 log(n) + log(W)m2).
Since Ω = O((m + n) log(W (m + n))) the log(W)m2 vanishes and the total runtime is
O((m + n)4 log(W (m + n))4n4 log(n)). ◀

5 Discussion

To conclude the paper, we have shown that the CSP with constraints of the form cax + b ≤ y

and x ≤ cay + b is solvable in polynomial time. We stress that the given time complexity is
far from optimal; a better runtime analysis and some optimizations will reduce the runtime
significantly.

We end with some possible future research directions.
1. What are the implications on the infinite domain CSP-dichotomy over Z? In particular,

does our method generalize to CSPs whose parameters are restricted to a larger domain?
2. What is the complexity of the optimization variant of this CSP? The current algorithm

outputs a solution where all variable assignments are minimal and can easily be modified
into an algorithm where these are maximal. However, there is no simple reduction to find
the optimal solution where we want some variables to be large and others to be small.

3. How far can we reduce the time complexity of this algorithm?

J. M. de Vlas 35:9

References
1 Manuel Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Lecture Notes in

Logic. Cambridge University Press, 2021.
2 Lucas Bordeaux, George Katsirelos, Nina Narodytska, and Moshe Vardi. The complexity

of integer bound propagation. J. Artif. Intell. Res. (JAIR), 40:657–676, October 2011.
doi:10.1613/jair.3248.

3 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 319–330, 2017. doi:10.1109/
FOCS.2017.37.

4 Dorit S. Hochbaum and Joseph (Seffi) Naor. Simple and fast algorithms for linear and integer
programs with two variables per inequality. SIAM Journal on Computing, 23(6):1179–1192,
1994. doi:10.1137/S0097539793251876.

5 Joxan Jaffar, Michael J. Maher, Peter J. Stuckey, and Roland H. C. Yap. Beyond finite
domains. In Alan Borning, editor, Principles and Practice of Constraint Programming, pages
86–94, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

6 J. C. Lagarias. The computational complexity of simultaneous diophantine approximation
problems. SIAM J. Comput., 14(1):196–209, 1985. doi:10.1137/0214016.

7 K.G. Murty. Linear Programming. Wiley, 1983.
8 Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–768,

October 1981. doi:10.1145/322276.322287.
9 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth

Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York, NY,
USA, 1978. Association for Computing Machinery. doi:10.1145/800133.804350.

10 Piotr Wojciechowski and K. Subramani. A faster algorithm for determining the linear feasibility
of systems of btvpi constraints. In Leszek Gąsieniec, editor, SOFSEM 2023: Theory and
Practice of Computer Science, pages 313–327, Cham, 2023. Springer International Publishing.

11 Zhang Yuanlin and Roland H. C. Yap. Arc consistency on n-ary monotonic and linear
constraints. In Rina Dechter, editor, Principles and Practice of Constraint Programming – CP
2000, pages 470–483, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

12 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pages 331–342, October 2017. doi:10.1109/
FOCS.2017.38.

CP 2024

https://doi.org/10.1613/jair.3248
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1137/S0097539793251876
https://doi.org/10.1137/0214016
https://doi.org/10.1145/322276.322287
https://doi.org/10.1145/800133.804350
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1109/FOCS.2017.38

Black-Box Value Heuristics for Solving
Optimization Problems with Constraint
Programming
Augustin Delecluse #

TRAIL, ICTEAM, UCLouvain, Belgium

Pierre Schaus #

ICTEAM, UCLouvain, Belgium

Abstract
Significant research efforts have focused on black-box variable selection, with less attention given
to value heuristics. An ideal value heuristic enables depth-first-search to prioritize high-quality
solutions first. The Bound-Impact Value Selection achieves this goal through a look-ahead strategy,
trying every value of the selected variable and ranking them based on their impact on the objective.
However, this method is generally too computationally intensive for the entire search tree. We
introduce two simple yet powerful modifications to improve its scalability. First, a lighter fix point
computation involving only the constraints on the shortest path in the constraint graph between the
variable and the objective. Second, a reverse look-ahead strategy optimistically fixes the objective
variable to its minimum in order to prioritize the remaining values. These two ideas have been
empirically validated on a range of academic problems and in the XCSP3 competition, demonstrating
significant improvements in scalability.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Programming, Value Selection, Look-Ahead, Optimization

Digital Object Identifier 10.4230/LIPIcs.CP.2024.36

Category Short Paper

Supplementary Material Software (Source Code): https://github.com/augustindelecluse/
choco-solver, archived at swh:1:dir:6ef58dcd7be2a19c98a7dbb0cdaafa41f134f2ab

Funding Augustin Delecluse: This work was supported by Service Public de Wallonie Recherche
under grant n°2010235 – ARIAC by DIGITALWALLONIA4.A.

1 Introduction

The Constraint Programming (CP) paradigm enables to solve combinatorial problems in
a declarative way. The Holy Grail vision of CP is that the user simply has to state the
problem [5]. However, for practical efficiency, this vision has been adjusted to the long-
standing CP mantra: CP = Model + Search. The capability to program problem-specific
searches remains crucial in CP to minimize the search tree size. Over time, the emphasis on
search programming has diminished due to the development of effective black-box search
strategies by the CP community [7, 4, 13, 20, 27]. A common search procedure involves a
two-step decision-making process at each node: selecting an undecided variable and then
choosing a value to assign from the domain on the left branch, which is removed upon
backtracking. Despite extensive work on deriving efficient problem-independent variable
selection heuristics based on the first-fail principle, few black-box strategies have been
proposed for value selection. In the context of optimization problems, a simple yet effective
generic method is the Bound-Impact Value Selector (BIVS) [12]. This look-ahead heuristic
iterates over each value in the domain of a variable, successively assigning the variable to

© Augustin Delecluse and Pierre Schaus;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 36; pp. 36:1–36:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:augustin.delecluse@uclouvain.be
https://orcid.org/0000-0001-6285-6515
mailto:pierre.schaus@uclouvain.be
https://orcid.org/0000-0002-3153-8941
https://doi.org/10.4230/LIPIcs.CP.2024.36
https://github.com/augustindelecluse/choco-solver
https://github.com/augustindelecluse/choco-solver
https://archive.softwareheritage.org/swh:1:dir:6ef58dcd7be2a19c98a7dbb0cdaafa41f134f2ab;origin=https://github.com/augustindelecluse/choco-solver;visit=swh:1:snp:0a19e5aca9a74377237dab521a9700eee387b037;anchor=swh:1:rev:6a86c3f27558d8e932cb2b079a3863e835c0fdb0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Black-Box Value Heuristics for Solving Optimization Problems with CP

each of these values. After each assignment is made, the fixpoint filtering by the constraints
is computed. The impact on the objective–specifically, the lower bound increase in the case of
a minimization problem–is then measured. The value that yields the to the smallest increase
for minimization problem is selected for the left assignment.1

Although BIVS finds solutions of better quality compared to other naive strategies, such
as picking the minimum value in the domain of a variable, its computational cost does not
always compensate its benefits in guiding the search toward promising directions. This is
especially true for problems with large domain sizes or when a large number of constraints
are involved in the fixpoint computation. To overcome this shortcoming, one tradeoff is
to consider only the smallest and largest values from the domain, instead of every value,
especially if the domain size is too large. This is the default value selection performed in
Choco-solver [26].

Our contribution introduces two ideas to reduce the computational cost of BIVS. The first,
called the Restricted Fixpoint is to compute the fixpoint on a restricted set of constraints.
Specifically, we measure the impact only on a fixpoint that involves the constraints along
the shortests paths from the selected variable to the objective variable in a constraint graph,
where node constraints are connected to node variables in their scope.

The second improvement, called Reverse Look-Ahead starts from the objective assignment.
Instead of sequentially fixing the selected variable to each value, we suggest optimistically
setting the objective variable to its lower bound (assuming minimization) and then computing
the fixpoint. The selected value is one of those that remain. If infeasibility is detected, we
increase the objective bound and continue until no domain is empty.

The two proposed improvements are designed to be non-intrusive, meaning that they can
be implemented without necessitating modifications to the solver’s architecture.

The paper is organized as follows. Section 2 presents first the main concepts necessary to
understand BIVS, before introducing the two ideas to lower the cost of BIVS, namely the
Restricted Fixpoint and Reverse Look-Ahead. Their performances are assessed in section 3.

2 Reducing BIVS Cost

The search heuristic is generally decomposed in two stages for efficiency reason: the variable
is selected, then the value in the domain of the variable. For the variable selection, many
ideas inspired by the first-fail principle “to succeed, try first where you are most likely to
fail” [16] have been proposed such as choosing the variable with the smallest ratio of size
of domain versus number of failures when running the fixpoint on them (dom/wdeg) [7, 4],
the variable involved in the most recent failures [13, 20, 21], the variable whose assignment
has the largest estimated search space reduction [27], the variable with the most frequent
domain changes [24, 4] etc.

Once the variable to branch on has been selected, a value must be assigned to it. In
opposition to the first-fail principle, the succeed-first principle is used instead [14, 10]. The
idea is to select the value being most likely to participate in a solution. Compared to variable
selection, only a few generic selectors have been proposed for picking a value, which is why
choosing the smallest value from the domain of a variable remains a popular default choice
[19, 29]. Two exceptions are Belief Propagation (BP) [25], aimed at driving the search
towards areas with a large number of solutions, or Bound-Impact Value Search (BIVS) [12],
choosing the value with the best impact on the objective. Even though those two methods

1 This idea is similar to Strong Branching in Mixed-Integer Linear Programming solvers [2].

A. Delecluse and P. Schaus 36:3

do reduce a lot of the search space, their computational cost is too large to make them the
default choice in most solver during the whole search procedure. Moreover, BP is better
suited for constraint satisfaction problems rather than optimization problems. Research on
machine learning for value selection heuristics [22, 9] is limited by extensive data requirements
for lengthy training phases. While Objective Landscapes methods [18] collecting pre-search
impacts work well in stable settings like scheduling, they falter in dynamic scenarios where
impacts fluctuate with other assignments. An effective alternative is phase-saving, selecting
values from previous solutions [11], though it relies on a default heuristic when no prior value
is applicable.

Our work revisits the BIVS algorithm, detailed in Algorithm 1, to reduce its computational
cost while maintaining its effectiveness in finding high-quality solutions. BIVS examines
each value v in the domain of the selected variable x ∈ X (line 3), assigning v to x (line 5)
and running the fixpoint algorithm (line 6). If the fixpoint is error-free and improves the
objective’s lower bound (⌊D(obj)⌋), the value is considered for retention (line 7). The process
is encapsulated within saveState(X , C) and restoreState(X , C) operations (lines 4 and 10),
ensuring that the solver’s state is reset before each new trial2. While this method is effective
in steering the search towards high-quality solutions, the time complexity for selecting a
value for variable x in the BIVS algorithm is Θ(F · |D(x)|), with F as the fixpoint algorithm’s
complexity. As [4] notes, controlling this high computation cost is challenging. We propose
two methods to reduce this complexity: one by lowering the cost of the fixpoint algorithm
and the other by reducing the frequency of its calls. However, these changes do not guarantee
identical outcomes as the original BIVS.

Algorithm 1 Bound-Impact Value Selector (assuming minimization), adapted from [12].

Input :X : variables, C: constraints, x: branching variable, obj: objective variable
Ouput : bestV, the value to assign to the variable x.

1 bestV ← ⌊D(x)⌋
2 bestBound ←∞
3 for v ∈ D(x) do
4 saveState(X , C)
5 D(x)← {v}
6 success ← fixpoint(X , C)
7 if success and ⌊D(obj)⌋ < bestBound then
8 bestBound ← ⌊D(obj)⌋
9 bestV ← v

10 restoreState(X , C)
11 return bestV

2.1 Restricted Fixpoint Computation
The Restricted Fixpoint (RF) approach assesses the impact on the objective by focusing
solely on a limited set of constraints. Specifically, it considers only the constraints that are
located on the shortest paths from the selected variable to the objective variable within a
bipartite variables-constraints graph. In this graph, variables and constraints are nodes,

2 See [23] for state saving and restoration with a trail.

CP 2024

36:4 Black-Box Value Heuristics for Solving Optimization Problems with CP

connected by edges if the variable is within the scope of the constraint. For each variable,
we precompute all constraints on these paths. This method reduces computation costs as it
involves fewer constraints, but it may be less informative and risk missing potential failures.

▶ Example 1. Consider the Traveling Salesman Problem (TSP), where a salesman needs
to visit a set of cities, each city being visited exactly once, while minimizing the traveled
distance. Given n cities and a distance matrix d ∈ Zn×n, a commonly used CP model
is minimize TotD such that Circuit(S), Di = Element(di,∗, Si) ∀i ∈ {0..n − 1}, and
TotD = Sum(D). It introduces two variables per city: Si is the visit occurring after the city
i in the tour, and Di the distance between city i and its successor Si. The circuit constraint
enforces every city to be visited within a single tour. The distance Di between a city i and
its successor Si corresponds to the Si-th entry within the line i in the distance matrix d,
enforced with an element constraint. The sum of traveled distance TotD is the objective
to minimize. A TSP with 4 cities is shown in Figure 1 and the graph in Figure 3. When
selecting values for S0 using RF with BIVS, only 2 constraints are considered per iteration,
compared to 6.

0 3

12

20
12

16

Figure 1 A TSP instance with 4 cities to visit.
The distances are shown on the edges.

0 3

12

Figure 2 When fixing D(T otD) to {48}, all
successors points towards their nearest city. This
violates the Circuit constraint.

S0 S1 S2 S3 D0 D1 D2 D3 TotD

Circuit Element0 Element1 Element2 Element3 Sum

Figure 3 Constraints and variables of the TSP instance from Figure 1. Variables and constraints
in blue are located on the shortest path to the objective T otD when considering variable S0.

2.2 Reverse Look-Ahead
The Reverse Look-Ahead (RLA) strategy reduces the number of calls to the fixpoint com-
putation by restricting optimistically the domain of the objective and observing the effects
on the variable to D(x), rather than fixing x directly. It is similar to the Destructive Lower
Bound used in scheduling [17] and can also tighten bounds on the objective.

Algorithm 2 outlines RLA. A value δ controls the domain size of the objective variable
during the fixpoint computation, starting with a value of 1 to fix the objective to its minimum
value. Several iterations may be performed, each increasing δ until the fixpoint computation
succeeds. At this point, the minimum value from the domain of x is returned at line 11. The
value of δ doubles at each iteration, resulting in an exponential evolution. Note that when
the fixpoint computation fails, the lower bound of the domain of the objective variable can
be safely increased (line 14).

A. Delecluse and P. Schaus 36:5

Algorithm 2 Reverse Look-Ahead (assuming minimization).

Input :X : variables, C: constraints, x: branching variable, obj: objective variable
Ouput : success: boolean indicating node expandability, v: assigned value for x

1 δ ← 1
2 success ← true
3 while success do
4 saveState(X , C)
5 ⌈D(obj)⌉ ← min(⌈D(obj)⌉, ⌊D(obj)⌋ − 1 + δ)
6 success ← |D(obj)| > 0
7 if success then
8 if fixpoint(X , C) then
9 v ← ⌊D(x)⌋

10 restoreState(X , C)
11 return (true, v)
12 else
13 restoreState(X , C)
14 ⌊D(obj)⌋ ← ⌊D(obj)⌋+ δ

15 success ← |D(obj)| > 0
16 δ ← δ ∗ 2
17 else
18 restoreState(X , C)
19 return (false, 0)

▶ Example 2. Consider the same situation as Example 1, shown in Figure 1. The initial
fixpoint yields D(Di) = {12, 16, 20} ∀i ∈ {0..n − 1} and D(TotD) = {48, . . . , 60}. When
using RLA to choose a value for S0, the following iterations occur:
1. The fixpoint is triggered with D(TotD) = {48}. This means that the successor of every

city must be the closest city, violating the Circuit constraint (cf Figure 2). The iteration
fails and the lower bound of the objective is now set to 49 for the sub-tree to consider.

2. δ = 2 and D(TotD) = {49, 50}. Similarly, this fails and sets the lower bound to 51.
3. δ = 4 and D(TotD) = {51, . . . , 54}. The fixpoint proceeds without failure, resulting in
D(S0) = {2, 3}. Value 2, the nearest neighbor, is picked and the state is restored while
keeping the lower bound of the objective to 51. Finally, 2 is returned (lines 9 to 11).

The time complexity of RLA is Ω(F) in the best case, if only one iteration needs to be
performed, and O(F · log2 |D(obj)|) in the worst case. Moreover, RF can also be used with
RLA, meaning that the complexity of the fixpoint can be lowered.

▶ Example 3. We reuse the model from Example 2. Initially, RLA restricts D(TotD) = {48}
and runs the RF. This scenario suggests all successors should be nearest neighbors, which is
infeasible given the Circuit constraint (see Figure 2). However, when considering only the
shortest path constraints (the Sum constraint and one Element constraint, cf Figure 3), the
failure is missed. Consequently, the domain of S0 becomes {2} (its closest neighbor), and 2
is returned. Compared to the scenario in Example 2, only one iteration has been performed
(being less costly) but the heuristic itself could not tighten the bounds of the objective.

CP 2024

36:6 Black-Box Value Heuristics for Solving Optimization Problems with CP

3 Experiments

To assess the performances of our methods, we consider two main settings. The first one
analyzes three classical discrete problems easily modeled with CP. The second one reports the
performances on various optimization problems, using the XCSP3 2023 competition [8, 3].

All experiments were conducted using two Intel(R) Xeon(R) CPU E5-2687W. The
implementation was done in Java in the Choco-Solver (version 4.10.5), a state-of-the-art
general purpose constraint programming solver [26]. In all settings, instances needing more
than 32GB were discarded. The variable selection used is DomWDeg [7] combined with last
conflict [20], a popular default selection. The timeout was set to 30 minutes.

3.1 Fundamental Problems
Three fundamental problems are studied. (i) The TSP and the instances from TSPLib [28].
(ii) The JobShop and the instances from [30]. (iii) The Quadratic Assignment Problem and
the instances from [1]. For each model, the standard models are used. The JobShop model
branches on precedences like in [15]. For each model a custom white-box value heuristic is
used called Greedy in the results. In total, the value selectors analyzed are:
Min choosing the smallest value in the domain of the variable.
BIVS the original algorithm as proposed in [12], using the author’s implementation in

Choco-solver. In this implementation, when the domain size of a variable is larger than
100, only the minimum and maximum values of the domain are considered by BIVS.

BIVS+RF indicates BIVS but with the restricted fixpoint, presented in section 2.1.
RLA depicts the Reverse Look-Ahead.
RLA+RF depicts the Reverse Look-Ahead using the restricted fixpoint.
One criterion used to compare the value selection heuristics is the primal gap introduced
in [6]. It gives a value between 0 and 1 measuring the gap between the value of a solution
found obj and the best found solution objopt. A value close to 0 means that the solution
found is the best one found, while a value of 1 indicates that no solution was found.

10−1 100 101 102 103

Time (s)

0

25

50

75

100

P
ri
m
a
l
G
a
p
(%

)

TSP

10−1 100 101 102 103

Time (s)

0

25

50

75

100

QAP

100 101 102 103

Time (s)

0

25

50

75

100

JobShop

RLA RLA+RF Min Greedy BIVS BIVS+RF

Figure 4 Primal gap in percentage over time.

Heuristic performance varies by problem (Figure 4). For TSP, RLA+RF matches the
greedy heuristic, while BIVS+RF lags slightly due to considering bounds for domain sizes
over 100; without this restriction, BIVS+RF performs comparably to RLA+RF. In QAP,
BIVS and its RF variant outperform others, with RF significantly speeding up BIVS. For
JobShop, RLA surpasses BIVS but is less effective than MIN due to the cost of fixpoint calls.

A. Delecluse and P. Schaus 36:7

10−1 101 103

BIVS+RF

10−1

100

101

102

103

B
IV

S
TSP

10−1 101 103

BIVS+RF

10−1

100

101

102

103

QAP

100 101 102 103

BIVS+RF

100

101

102

103

JobShop

0 25 50 75 100

BIVS+RF

0

25

50

75

100

B
IV

S

0 25 50 75 100

BIVS+RF

0

25

50

75

100

0 25 50 75 100

BIVS+RF

0

25

50

75

100

0.0k

0.7k

1.3k

2.0k

2.6k

0.2k

11.8k

23.5k

35.1k

46.7k

0.6k

6.8k

13.1k

19.3k

25.6k
#

va
ria

b
les

0.0k

0.7k

1.3k

2.0k

2.6k

0.2k

11.8k

23.5k

35.1k

46.7k

0.6k

6.8k

13.1k

19.3k

25.6k

#
va

ria
b
les

Figure 5 Comparison of BIVS and BIVS+RF regarding the time to find the first feasible solution
(top, in seconds) and its corresponding gap (bottom, in percentage). Each dot represents an instance
across problems: TSP (left), QAP (center), and JobShop (right). Dots on the diagonal indicate
equal performance between methods. Dots above the diagonal show that BIVS was slower or found
poorer solutions. Crosses denote timeouts by at least one method, resulting in a 100% gap.

The addition of RF to BIVS results in speedups for TSP and QAP, maintaining average
solution quality across instance sizes, as shown in Figure 5 and supported by Figure 4
where BIVS falls behind BIVS+RF. Conversely, RF slows performance on JobShop. On
this problem, the cost of scanning all constraints and potentially deactivating some, to save
time on the two iterations performed by BIVS (as the precedence variables have a domain of
size 2) does not offer benefits compared to considering all constraints.

3.2 XCSP3

We consider instances from the XCSP3 COP 2023 competition [8, 3]. The instances requiring
more than 32GB were discarded, leaving 18 problems and 232 instances.

Table 1 displays gap and number of solutions found per problem, with the average gap
over time shown in Figure 6. Performance varies greatly across problems, with no single
heuristic outperforming others universally. However, adding RF to BIVS reduces the average
gap and aids in finding solutions missed otherwise. Similar benefits, though smaller, are
observed with RLA. On average, RLA outperforms BIVS, with RF enhancing both methods.
Min excels in finding feasible solutions, mostly attributed to its constant time complexity,
allowing for better learning from variable selection.

Moreover, Figure 6 presents two Virtual Best Solver entries: “VBS (old)” computed
from previous selectors available in Choco (BIVS, Min, middle, Max and random domain
selection) and “VBS (new)” adding RLA and RF-based methods. The 3.87% increase in
the final gap demonstrates that RLA and RF explore the search space differently than
traditional heuristics, enhancing portfolio efficiency. The figure also compares BIVS(+RF)
with BIVS⋆(+RF), where the latter considers all domain values – not just the bounds when
the domain size exceeds 100 – showing improved performance with RF, suggesting the
removal of the domain size consideration. Both BIVS+RF and BIVS⋆+RF outperform their
non-RF versions, indicating their superior efficiency. Notably, the average gap by BIVS+RF
at 100.0s is matched by BIVS only at 938.32s, demonstrating its significant speed advantage.

CP 2024

36:8 Black-Box Value Heuristics for Solving Optimization Problems with CP

Table 1 Performances between the methods for each problem. Each column shows the average
primal gap over all instances, in percentage, and the instances where at least one feasible solution was
found, in parentheses. Best results are highlighted in bold if at least one heuristic was outperformed.

Problem (#instances) Min BIVS BIVS+RF RLA RLA+RF
AircraftAssemblyLine (20) 95.00 (1) 90.00 (2) 100.00 (0) 95.00 (1) 95.00 (1)
CarpetCutting (20) 61.29 (9) 57.17 (9) 65.48 (8) 62.67 (8) 54.48 (11)
GBACP (20) 78.86 (11) 61.43 (8) 79.69 (10) 69.54 (9) 85.51 (9)
GeneralizedMKP (15) 49.74 (15) 6.78 (14) 6.81 (14) 26.57 (12) 20.26 (13)
HCPizza (10) 33.56 (10) 34.91 (10) 34.43 (10) 34.67 (10) 34.62 (10)
Hsp (18) 0.00 (18) 5.56 (17) 5.56 (17) 5.56 (17) 0.00 (18)
KMedian (15) 50.84 (8) 57.32 (7) 43.96 (9) 56.01 (7) 50.84 (8)
KidneyExchange (14) 44.63 (14) 85.71 (3) 51.11 (10) 43.68 (13) 52.79 (10)
LargeScaleScheduling (9) 66.76 (6) 66.83 (6) 66.83 (6) 45.56 (5) 34.44 (6)
PSP1 (8) 100.00 (0) 100.00 (0) 87.50 (1) 100.00 (0) 100.00 (0)
PSP2 (8) 87.50 (1) 87.50 (1) 87.62 (1) 87.50 (1) 87.66 (1)
ProgressiveParty (7) 57.14 (3) 57.14 (3) 57.14 (3) 57.14 (3) 57.14 (3)
RIP (12) 5.06 (12) 6.31 (12) 4.59 (12) 3.24 (12) 4.78 (12)
Rulemining (9) 100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0)
SREFLP (15) 7.27 (15) 3.08 (15) 7.44 (15) 8.78 (15) 7.72 (15)
Sonet (16) 1.40 (16) 2.28 (16) 3.42 (16) 2.42 (16) 3.15 (16)
TSPTW1 (8) 87.81 (1) 100.00 (0) 87.84 (1) 87.81 (1) 87.50 (1)
TSPTW2 (8) 75.19 (2) 87.50 (1) 75.19 (2) 75.42 (2) 75.24 (2)
All (232) 52.02 (142) 51.04 (124) 50.23 (135) 49.85 (132) 49.52 (136)

10−1 100 101 102 103

Time (s)

20

40

60

80

100

P
ri

m
a
l

G
a
p

(%
) BIVS

Min

RLA

BIVS+RF

RLA+RF

VBS (old)

VBS (new)

10−1 100 101 102 103

Time (s)

60

80

100
BIVS?

BIVS

BIVS+RF

BIVS?+RF

Figure 6 Average primal gap over time on the XCSP3 instances, in percentage. The right part
shows only 4 selectors compared to the left part, and their y-scale differs.

4 Conclusion

Deriving effective, generic value heuristics that balance speed and informativeness remains
challenging. Bound-Impact Value Search (BIVS) stands out among these approaches, yet its
cost limited its applicability in certain scenarios. By incorporating a restricted fixpoint in
the look-ahead process and employing a reverse look-ahead strategy, we significantly reduced
costs, making previous restrictions on BIVS usage less relevant. The methods we proposed
do not require any training, are well suited for black-box settings, and substantially improve
performance. When utilized alone or within a portfolio approach, these strategies continue
to enhance the efficiency of solving constrained optimization problems.

A. Delecluse and P. Schaus 36:9

References
1 QAPLIB-Problem Instances and Solutions – COR@L, April 2024. [Online; ac-

cessed 5. Apr. 2024]. URL: https://coral.ise.lehigh.edu/data-sets/qaplib/
qaplib-problem-instances-and-solutions.

2 David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the tsp (a
preliminary report), 1995.

3 Gilles Audemard, Christophe Lecoutre, and Emmanuel Lonca. Proceedings of the 2023 xcsp3
competition. arXiv preprint arXiv:2312.05877, 2023.

4 Gilles Audemard, Christophe Lecoutre, and Charles Prud’Homme. Guiding backtrack search
by tracking variables during constraint propagation. In International Conference on Principles
and Practice of Constraint Programming. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023.

5 Roman Barták. Constraint programming: In pursuit of the holy grail. In Proceedings of the
Week of Doctoral Students (WDS99), volume 4, pages 555–564. MatFyzPress Prague, 1999.

6 Timo Berthold. Measuring the impact of primal heuristics. Operations Research Letters,
41(6):611–614, 2013.

7 Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting system-
atic search by weighting constraints. In ECAI, volume 16, page 146, 2004.

8 Frédéric Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette. Xcsp3: an
integrated format for benchmarking combinatorial constrained problems. arXiv preprint
arXiv:1611.03398, 2016.

9 Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Andre A Cire. Combining reinforcement learning and constraint programming for combinatorial
optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 3677–3687, 2021.

10 Rina Dechter and Judea Pearl. Network-based heuristics for constraint-satisfaction problems.
Artificial intelligence, 34(1):1–38, 1987.

11 Emir Demirović, Geoffrey Chu, and Peter J Stuckey. Solution-based phase saving for cp: A
value-selection heuristic to simulate local search behavior in complete solvers. In Principles
and Practice of Constraint Programming: 24th International Conference, CP 2018, Lille,
France, August 27-31, 2018, Proceedings 24, pages 99–108. Springer, 2018.

12 Jean-Guillaume Fages and Charles Prud’Homme. Making the first solution good! In 2017
IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pages
1073–1077. IEEE, 2017.

13 Steven Gay, Renaud Hartert, Christophe Lecoutre, and Pierre Schaus. Conflict ordering
search for scheduling problems. In Principles and Practice of Constraint Programming: 21st
International Conference, CP 2015, Cork, Ireland, August 31–September 4, 2015, Proceedings
21, pages 140–148. Springer, 2015.

14 P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems. In
Proceedings of ECAI’92, pages 31–35, 1992.

15 Diarmuid Grimes, Emmanuel Hebrard, and Arnaud Malapert. Closing the open shop: Con-
tradicting conventional wisdom. In International conference on principles and practice of
constraint programming, pages 400–408. Springer, 2009.

16 Robert M Haralick and Gordon L Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial intelligence, 14(3):263–313, 1980.

17 Robert Klein and Armin Scholl. Computing lower bounds by destructive improvement: An
application to resource-constrained project scheduling. European Journal of Operational
Research, 112(2):322–346, 1999.

18 Philippe Laborie. Objective landscapes for constraint programming. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 15th International Conference,
CPAIOR 2018, Delft, The Netherlands, June 26–29, 2018, Proceedings 15, pages 387–402.
Springer, 2018.

CP 2024

https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions
https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions

36:10 Black-Box Value Heuristics for Solving Optimization Problems with CP

19 Christophe Lecoutre. Ace, a generic constraint solver. arXiv preprint arXiv:2302.05405, 2023.
20 Christophe Lecoutre, Lakhdar Saïs, Sébastien Tabary, and Vincent Vidal. Reasoning from last

conflict (s) in constraint programming. Artificial Intelligence, 173(18):1592–1614, 2009.
21 Hongbo Li, Minghao Yin, and Zhanshan Li. Failure based variable ordering heuristics for

solving csps (short paper). In 27th International Conference on Principles and Practice of
Constraint Programming (CP 2021). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2021.

22 Tom Marty, Tristan François, Pierre Tessier, Louis Gautier, Louis-Martin Rousseau, and
Quentin Cappart. Learning a Generic Value-Selection Heuristic Inside a Constraint Pro-
gramming Solver. In Roland H. C. Yap, editor, 29th International Conference on Principles
and Practice of Constraint Programming (CP 2023), volume 280 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 25:1–25:19, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CP.2023.25.

23 Laurent Michel, Pierre Schaus, and Pascal Van Hentenryck. Minicp: a lightweight solver for
constraint programming. Mathematical Programming Computation, 13(1):133–184, 2021.

24 Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box constraint
programming solvers. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems: 9th International Conference, CPAIOR 2012, Nantes,
France, May 28–June1, 2012. Proceedings 9, pages 228–243. Springer, 2012.

25 Gilles Pesant. From support propagation to belief propagation in constraint programming.
Journal of Artificial Intelligence Research, 66:123–150, 2019.

26 Charles Prud’homme and Jean-Guillaume Fages. Choco-solver: A java library for constraint
programming. Journal of Open Source Software, 7(78):4708, 2022. doi:10.21105/joss.04708.

27 Philippe Refalo. Impact-based search strategies for constraint programming. In Principles
and Practice of Constraint Programming–CP 2004: 10th International Conference, CP 2004,
Toronto, Canada, September 27-October 1, 2004. Proceedings 10, pages 557–571. Springer,
2004.

28 Gerhard Reinelt. TSPLIB–a traveling salesman problem library. ORSA Journal on Computing,
3(4):376–384, 1991.

29 Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. Modeling and programming with
gecode. Schulte, Christian and Tack, Guido and Lagerkvist, Mikael, 1, 2010.

30 Eva Vallada, Rubén Ruiz, and Jose M Framinan. New hard benchmark for flowshop scheduling
problems minimising makespan. European Journal of Operational Research, 240(3):666–677,
2015.

A Additional overview of the XCSP3 results

Figure 7 shows the cumulated number of instances solved to optimality over time. Table 2
shows the number of optimality proven and best bound founds, for each problem. We can
also see that the best heuristic changes depending on the problems, highly impacting the
overall readings (for instance BIVS being the best methods regarding the number of best
bounds is mostly due to its good performances on the SREFLP problem).

For ranking the solvers in the XCSP3 competition, one criterion used is a score, telling
the number of times a method gave the best known results, compared to its competitors.
For each instance and each heuristic:

1 point is awarded for proving the unsatisfiability of an instance;
0 point is won for proving a solution with a worse bound than its competitors
1 point for proving the optimality of a solution
1 point is won for providing (a solution with) the best bound on an instance without
proving optimality. In case where another solver proved the optimality of this bound,
only 0.5 points are granted.

https://doi.org/10.4230/LIPIcs.CP.2023.25
https://doi.org/10.21105/joss.04708

A. Delecluse and P. Schaus 36:11

100 101 102 103

Time (s)

0

5

10

15

20

25

30
N

u
m

b
er

o
f

in
st

a
n
ce

s
RLA

RLA+RF

BIVS+RF

Min

BIVS

Figure 7 Cactus plot showing the cumulated number of XCSP3 instances solved to optimality
for each method.

Table 2 Performances between the methods for each problem. Each column shows first the
number of instances where optimality was proven, and then number of best bounds found, in
parentheses.Best results are highlighted in bold if at least one heuristic was outperformed.

Problem (#instances) Min BIVS BIVS+RF RLA RLA+RF
AircraftAssemblyLine (20) 0 (1) 0 (2) 0 (0) 0 (1) 0 (1)
CarpetCutting (20) 2 (4) 4 (9) 2 (4) 3 (6) 2 (4)
GBACP (20) 0 (1) 0 (7) 0 (1) 0 (2) 0 (0)
GeneralizedMKP (15) 0 (1) 0 (10) 0 (12) 0 (0) 0 (1)
HCPizza (10) 0 (9) 0 (3) 0 (4) 0 (2) 0 (3)
Hsp (18) 17 (18) 16 (17) 17 (17) 17 (17) 17 (18)
KMedian (15) 0 (2) 0 (2) 0 (5) 0 (1) 0 (3)
KidneyExchange (14) 2 (3) 1 (2) 2 (8) 2 (4) 2 (4)
LargeScaleScheduling (9) 0 (0) 0 (0) 0 (0) 0 (3) 0 (3)
PSP1 (8) 0 (0) 0 (0) 0 (1) 0 (0) 0 (0)
PSP2 (8) 0 (1) 0 (1) 0 (0) 0 (1) 0 (0)
ProgressiveParty (7) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3)
RIP (12) 2 (4) 2 (3) 3 (6) 3 (6) 3 (5)
Rulemining (9) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
SREFLP (15) 1 (3) 1 (12) 1 (1) 1 (2) 1 (1)
Sonet (16) 1 (13) 1 (11) 1 (8) 1 (11) 1 (8)
TSPTW1 (8) 0 (0) 0 (0) 0 (0) 0 (0) 0 (1)
TSPTW2 (8) 1 (1) 0 (1) 1 (1) 1 (1) 1 (1)
All (232) 29 (64) 28 (83) 30 (71) 31 (60) 30 (56)

The evolution of the score over time is shown in Figure 8. The score of an heuristic at time t

may decrease, for instance if the method provided the best bound to an instance before time
t, but a better solution was provided at t by another selector.

CP 2024

36:12 Black-Box Value Heuristics for Solving Optimization Problems with CP

10−1 100 101 102 103

Time (s)

0

10

20

30

40

50

60

70

X
C

S
P

3
S
co

re

BIVS

BIVS+RF

Min

RLA

RLA+RF

Figure 8 XCSP3 score over time on the XCSP3 instances, for each method.

B TSP, QAP and JobShop description

This section describes the models used for the TSP, the QAP and the Jobshop, as well as
the decision variables considered and the greedy heuristics that were implemented.
TSP: the model is the same as in Example 1
JobShop: a scheduling problem where jobs must be planned, each job being decomposed

into tasks having precedence between them, and each tasks being assigned to a given
machine. No task can overlap on a machine and the goal consists in minimizing the
completion time of the latest task.

QAP: an assignment problem where facilities must be opened at given locations, in order to
minimize the sum of distances multiplied by the flow between facilities.

Note that, for all those problems, a first solution satisfying the constraints can always
be easily derived. In the case of the TSP, any permutation of nodes corresponds to a valid
tour for the salesman. The same reasoning holds for any permutation of facility location
for the QAP. Regarding the JobShop, it suffices to provide a timing horizon long enough
so that a schedule can always be constructed. Those first solutions being easy to construct,
we have implemented a custom greedy value selection heuristic for those problems in order
to compare white-box approaches to our own black-box approaches. More precisely, the
variables considered for selection and the greedy value selection are as follows:
TSP: the decision variables are the n successor variables in a TSP tour. The greedy value

selection consists in visiting the closest city.
JobShop: the decision variables to consider are the precedences between two tasks executed

on the same machine. Each variable is a boolean telling, for a given machine, whether a
tasks comes before of after another one. Once all precedences between tasks are fixed, the
makespan can be assigned to its lower bound in order to produce a valid solution. Given
a precedence variable, the greedy heuristic consists in choosing the value producing the
most slack, the slack describing how much time is still available between the two tasks.

QAP: with n facilities, the n decision variables are the locations where the facilities will
be opened. Given a facility not assigned to a location, the greedy heuristic choose its
location as the one minimizing the weighted flow with the other facilities already placed.

Computing Small Rainbow Cycle Numbers with
SAT Modulo Symmetries
Markus Kirchweger # Ñ

Algorithms and Complexity Group, TU Wien, Austria

Stefan Szeider # Ñ

Algorithms and Complexity Group, TU Wien, Austria

Abstract
Envy-freeness up to any good (EFX) is a key concept in Computational Social Choice for the fair
division of indivisible goods, where no agent envies another’s allocation after removing any single
item. A deeper understanding of EFX allocations is facilitated by exploring the rainbow cycle
number (Rf (d)), the largest number of independent sets in a certain class of directed graphs. Upper
bounds on Rf (d) provide guarantees to the feasibility of EFX allocations (Chaudhury et al., EC
2021).

In this work, we precisely compute the numbers Rf (d) for small values of d, employing the SAT
modulo Symmetries framework (Kirchweger and Szeider, CP 2021). SAT modulo Symmetries is
tailored specifically for the constraint-based isomorph-free generation of combinatorial structures.
We provide an efficient encoding for the rainbow cycle number, comparing eager and lazy approaches.
To cope with the huge search space, we extend the encoding with invariant pruning, a new method
that significantly speeds up computation.

2012 ACM Subject Classification Mathematics of computing → Extremal graph theory; Software
and its engineering → Constraint and logic languages; Hardware → Theorem proving and SAT
solving; Mathematics of computing → Graph enumeration

Keywords and phrases EFX, rainbow cycle number, SAT modulo Symmetries, combinatorial search

Digital Object Identifier 10.4230/LIPIcs.CP.2024.37

Category Short Paper

Supplementary Material
Software (Source Code): https://github.com/markirch/sat-modulo-symmetries/
Software (Documentation): https://sat-modulo-symmetries.readthedocs.io/

Funding The authors acknowledge the support from the Austrian Science Fund (FWF), project
10.55776/P36688, and the Vienna Science and Technology Fund (WWTF), project ICT19-065.

1 Introduction

The quest for a fair division of indivisible goods, a fundamental challenge in economics,
computer science, and social choice theory, hinges on developing allocation protocols that
balance fairness and efficiency. Envy-freeness is among the most celebrated concepts in
this domain, a criterion that ensures no agent prefers another’s allocation over their own.
However, the indivisibility of goods often precludes the possibility of genuinely envy-free
allocations, prompting researchers to explore various relaxations of this ideal. Envy-freeness
up to any good (EFX) is a particularly prominent and well-studied relaxation, which requires
that no agent should envy another’s allocation after the hypothetical removal of any single
good from the latter’s allocation [2, 4, 5, 6, 7, 8].

Despite its conceptual appeal, the existence of EFX allocations remains unresolved in
general settings, marking it as one of the most intriguing open problems in discrete fair
division. This has led to a vibrant area of study that seeks to establish the existence of

© Markus Kirchweger and Stefan Szeider;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 37; pp. 37:1–37:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mk@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/markus.kirchweger
https://orcid.org/0000-0002-1838-8344
mailto:sz@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/szeider
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2024.37
https://github.com/markirch/sat-modulo-symmetries/
https://sat-modulo-symmetries.readthedocs.io/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

such allocations and explores the combinatorial structures underlying these problems. A key
development in this research trajectory is the exploration of the rainbow cycle number Rf (d).
This combinatorial constant, which will be defined more formally in Section 2, is the largest
integer k such that a directed k-partite graph exists in which every vertex of each block has
an incoming edge from any other block, each block has size at most d and the whole graph
contains no rainbow cycle, i.e., a cycle that runs through every block at most once. Bounds
on Rf (d) directly influence the feasibility and construction of approximate EFX allocations
with minimal discarded goods. Variants Ri(d) and Rp(d) of the rainbow cycle number (see
Section 2 for definitions) have also been studied [3].

Determining Rf (d) and its variants is a natural question of extremal graph theory, in
particular to zero-sum combinatorics, independently of its application to EFX-allocations [1, 7].
The first upper bound Rf (d) ∈ O(d4) was shown by Chaudhury et al. [7]. This bound was
later improved to d2+o(1) [3], and O(d · log(d)) [1, 17].

It is known that for all d, Ri(d) ≤ Rp(d) ≤ Rf (d), Ri(d) ≥ d, and it has been conjectured
that Rf (d) = d; however, this conjecture has only been established so far for d ≤ 3 in the
general setting, and for d ≤ 6 for Ri(d) [23]. Computing Rf (d) for d > 3 is challenging since
the number of combinatorial objects to consider explodes.

In this paper, we develop a constraint-based approach within the SAT modulo Symmetries
(SMS) framework to obtain the upper bounds of Rf (d), which allows us to show Rf (4) = 4 and
Rp(5) = 5. SMS is a recently proposed framework for graph generation modulo isomorphisms
under constraints [21]. SMS combines a conflict-driven (CDCL) SAT solver with a custom
propagator (since recently via the IPASIR-UP interface [12]) to determine whether a partial
assignment encoding a graph can be extended to a canonical, fully defined graph. By
employing dynamic symmetry breaking, SMS efficiently searches the vast combinatorial
space, avoiding the exploration of isomorphic copies.

We provide an efficient propositional encoding for the rainbow cycle numbers, comparing
eager and lazy approaches to ensure the absence of rainbow cycles. The eager approach
adds constraints to the encoding at the beginning, while the lazy approach uses a custom
propagator to check for the presence of rainbow cycles during the search.

To cope with the huge search space, we introduce the novel technique of invariant pruning,
which significantly speeds up the computation by strengthening the encoding with graph
invariants not known a priori. Invariant pruning exploits the fact that one can observe a
significant speedup if a graph invariant is explicitly stated in the encoding and proceeds along
a complete decision tree on values for the invariant under consideration (in our concrete
setting, it is the maximum degree).

We also employ further symmetry-breaking techniques within the SMS framework to
avoid exploring isomorphic copies of graphs in the search space. The applicable permutations
for symmetry breaking are described, and the set of all such permutations is represented
using ordered partitions. When invariant pruning is applied, the permutations used for
symmetry breaking are further restricted to maintain the invariant properties.

Experimental results demonstrate the effectiveness of our approach, with invariant pruning
providing a speedup of almost two orders of magnitude in some cases. The time spent in
the propagator to ensure the absence of rainbow cycles is only a small fraction of the total
computation time. The results also indicate that restricting the functions to permutations
significantly decreases the search space compared to the general case.

M. Kirchweger and S. Szeider 37:3

2 Preliminaries

For a positive integer n, we write [n] = {1, 2, . . . , n}, Fn for the set of all functions from [n]
to [n], and Sn for the set containing all permutations over [n]. We assume familiarity with
fundamental notions of propositional logic [22].

Graphs. We review basic notions from graph theory that are relevant to our discussion.
All considered graphs are directed and simple (i.e., without parallel edges or self-loops, but
pairs of edges in the opposite direction are allowed). A graph G consists of a set V (G) of
vertices and a set E(G) of edges; we denote the edge from u ∈ V (G) to v ∈ V (G) by (u, v).
The order of a graph G is the number of its vertices, |V (G)|. We write Gn to denote the
class of all graphs with V (G) = [n]. The adjacency matrix of a graph G ∈ Gn, denoted
by AG, is the n × n matrix where the element AG(v, u) at row v and column u is 1 if
(v, u) ∈ E(G) and 0 otherwise. We write N−

G (v) for the in-neighborhood of a vertex v in G,
i.e., N−

G (v) = { u ∈ V (G) | (u, v) ∈ E(G) }. The indegree is given by d−
G(v) = |N−

G (v)|.

Fixed point cycles and rainbow cycles. A function f ∈ Fd has a fixed point if f(x) = x

for some x ∈ [d]. A d-labeled graph is a pair (G, f) such that G ∈ Gn and fe ∈ Fd for each
e ∈ E(G); f is an edge labeling of G. A fixed point cycle of a d-labeled graph (G, f) is a
simple cycle (v1, v2, . . . , vk), i.e., (v1, v2), (v2, v3), . . . , (vk, v1) ∈ E(G) and vi ≠ vj for i ̸= j,
such that f(vk,v1) ◦ · · · ◦ f(v2,v3) ◦ f(v1,v2) has a fixed point.

A graph G ∈ Gn is ℓ-partite if there is a partition B = {B1, . . . , Bℓ} of V (G) such that no
edge of G has both its ends in the same B ∈ B. We call the sets in B blocks. Let G ∈ Gn be
an ℓ-partite graph and B the corresponding partition of V (G). A rainbow cycle is a directed
cycle that contains at most one vertex of each block in B.

Next, we describe the connection between d-labeled graphs with fixed point cycles and
ℓ-partite graphs with rainbow cycles allowing us to focus on the latter. Each d-labeled graph
(G, f) with G ∈ Gℓ can be transformed into an ℓ-partite graph H ∈ Gℓ·d such that (G, f) has
a fixed point cycle if and only if H has a rainbow cycle. The idea is to introduce for each
vertex in V (G) a block with d vertices representing the set [d]. The edges in E(H) indicate
the mapping, i.e., if f(i,j)(x) = y then there is an edge from the vertex associated with y in
the j-th block to the vertex associated with x in the i-th block. More formally

E(H) = { ((j − 1) · d + f(i,j)(x) , (i − 1) · d + x) | (i, j) ∈ E(G), x ∈ [d] }

with the partition Bd,ℓ := { {d · (i − 1) + 1, . . . , d · i} | i ∈ [ℓ] }.

▶ Example 1. We give an example for d = 2 and ℓ = 3. There, we have B2,3 =
{{1, 2}, {3, 4}, {5, 6}}.

1

2 3

1
7→

1,
2

7→
2 1

7→
2

, 2
7→

2

1 7→ 1, 2 7→ 1

1 7→ 2, 2 7→ 1

1
7→

1
, 2

7→
11

7→
2,

2
7→

2

1

2

3

4

5

6

CP 2024

37:4 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

On the left side, we see a d-labeled graph. The graph itself is the complete directed graph
on 3 vertices. On the right side, we see the corresponding 3-partite graph. The rectangles
indicate the blocks. The cycle (2, 5) forms a rainbow cycle because at most one vertex of
each block is in the cycle. This also indicates that f(3,1) ◦ f(1,3) has 2 as a fixed point.

The number Rf (d) is the largest integer, such that the edges of the complete directed
graph of order Rf (d) can be labeled with fe ∈ Fd without a fixed point cycle. Equivalently,
there exists an Rf (d)-partite graph such that each block has size d, each vertex has exactly
one incoming edge from each other block, and there is no rainbow cycle [3]. Rf (d) is also
known as a rainbow cycle number. Rp(d) and Ri(d) are defined similarly, except for Rp(d), the
edge labelings are restricted to permutations and for Ri(d), the edge labelings are restricted
to functions of the form x 7→ x + k mod d for k ∈ N. These numbers are related as follows:
Ri(d) ≤ Rp(d) ≤ Rf (d) [3]. Further, it is known that Ri(d) ≥ d [7], given by the edge
labeling f :

f(i,j)(x) =
{

x if i < j,

x + 1 mod d otherwise.

EFX. Let [n] be the set of agents, M the set of indivisible goods, and vi : 2M → R≥0 an
evaluation function for each i ∈ [n]. An allocation A = (A1, . . . , An) assigns the goods to
the agents, i.e., Ai ⊆ 2M for i ∈ [n] such that Ai ∩ Aj = ∅ for i = j and

⋃
i∈[n] Ai = M .

An allocation A is envy-free if vi(Ai) ≥ vi(Aj) for all i, j ∈ [n], in other words, no agent
prefers the goods of another agent. An EFX (envy-freeness up to any good) allocation is an
allocation such that vi(Ai) ≥ vi(Aj \ {g}) for all i, j ∈ [n], g ∈ Aj . An α-EFX allocation for
some α ∈ (0, 1] is an allocation A such that vi(Ai) ≥ α · vi(Aj \ {g}) for all i, j ∈ [n], g ∈ Aj .
In a partial-EFX allocation, not all goods need to be assigned, i.e.,

⋃
i∈[n] Ai ⊆ M .

The relation between the rainbow cycle number and partial α-EFX allocations is given
by the following theorem:

▶ Theorem 2 ([7]). Let ε ∈ (0, 1/2] and let g(y) be the smallest integer d such that
d·Rf (d) ≥ y. Then, there is always a partial (1−ε)-EFX allocation with at most 4n/(ε·g(2nε))
many unallocated items.

SAT modulo Symmetries. SAT Modulo Symmetries (SMS) [21] is a recently proposed
framework for graph generation modulo isomorphisms under constraints. The original work
is restricted to undirected graphs, but later work extends it to directed graphs [20]. SMS
combines a conflict-driven (CDCL) SAT solver with a custom propagator to determine
whether a partial assignment (which encodes a graph) can be extended to a canonical
fully defined graph; if not, the solver immediately backtracks. A canonical graph is a
distinguished member of its isomorphism class – in SMS, this is typically the graph with the
lexicographically smallest adjacency matrix1. SMS thus employs what is known as dynamic
symmetry breaking [11, 24]. For undirected graphs, prior work has addressed static symmetry
breaking [9, 10, 15, 16].

An important concept in the context of SMS are partially defined graphs. A partially
defined graph is a graph G where E(G) is split into two disjoint sets D(G) and U(G). D(G)
contains the defined edges, U(G) contains the undefined edges. A (fully defined) graph is

1 We refer to the original work [20] for the precise canonical form.

M. Kirchweger and S. Szeider 37:5

a partially defined graph G with U(G) = ∅. Similarly to Gn, let Pn denote the class of all
partially defined graphs G with V (G) = [n]. During solving, the presence or absence of
some edges is not known, hence a partially defined graph is a suitable way to represent the
current solver state. Based on that, the SMS framework additionally enables adding custom
propagators to refute partially defined graphs during search.

3 Encoding

In this section, we describe propositional encodings Fd,ℓ which are satisfiable if and only if
Rf (d) ≥ ℓ for d, ℓ ∈ N. In the satisfiable case, we can extract a directed graph from a model
of the formula. Using these formulas, we compute the exact number Rf (d) using several SAT
calls. In this work, we are only interested in validating the conjecture Rf (d) = d for small d.
For that, showing unsatisfiability of Fd,d+1 is sufficient.

Given d, ℓ ∈ N, the number of vertices in the searched-for directed graph is nd,ℓ := d · ℓ.
The variables ei,j for i, j ∈ [nd,ℓ], i ̸= j, denote whether the edge (i, j) is present.
First, we ensure that the resulting graph is ℓ-partite with respect to the partition Bd,ℓ:

partitiond,ℓ =
∧

B∈Bd,ℓ

∧
i,j∈B,

i<j

¬ei,j .

Each vertex in each block has exactly one incoming edge from each other block. In our
encoding, the direction of edges is reversed, as it is faster in our experiments in combination
with SMS. We encode that each vertex in each block has exactly one outgoing edge to each
other block as follows:

functiond,ℓ :=
∧

B1∈Bd,ℓ

∧
i∈B1

∧
B2∈Bd,ℓ,
B1 ̸=B2

(
∨

j∈B2

ei,j ∧
∧

j1,j2∈B2,
j1<j2

(¬ei,j1 ∧ ¬ei,j2)).

To ensure that no rainbow cycle is present, we distinguish between an eager and a lazy
approach. In the first case, we add an encoding to the formula Fd,ℓ at the beginning. We
also refer to this as the static approach. The lazy approach uses a propagator to ensure the
absence of a rainbow cycle during search.

3.1 Using a propagator to ensure acyclicity
Given a partially defined graph G ∈ Pd·ℓ and the partition Bd,ℓ, we want to decide whether
a rainbow cycle is present. We use a second SAT solver to check the presence of a rainbow
cycle. In the satisfiable case, we use the model to compute a rainbow cycle, which is then
excluded by a single clause, ensuring that at least one of the directed edges in the cycle is
not present. We design the encoding dependent on the edge variables and use assumptions
to fix the graph we want to test. We consider all undefined edges to be absent, because this
doesn’t introduce additional cycles.

We use variables si for i ∈ [nd,ℓ] to indicate whether vertex i is part of the selected cycle.
Only one vertex of each block can be selected:∧

B∈Bd,ℓ

∧
i,j∈B,i<j

(¬si ∨ ¬sj).

Additionally, we ensure that each selected vertex has exactly one incoming and one outgoing
edge to another selected vertex. This is done by using additional variables sei,j , which
indicate whether the directed edge (i, j) is present and both vertices are selected:

sei,j ↔ (ei,j ∧ si ∧ sj).

CP 2024

37:6 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

With these additional variables, we ensure that the indegree and outdegree of the induced
subgraph given by the selected vertices is exactly 1. Selecting a minimal rainbow cycle
results in a model of the formula. Note that the encoding allows multiple disjoint cycles to
be selected, but in this case, we only select one cycle from the model.

We use the IPASIR-UP [12] interface to integrate this propagator.

3.2 Static encoding
We present an encoding exponential in size to ensure that no rainbow cycle is present. One
possibility is enumerating all potential cycles and, for each, add a clause to ensure that at
least one edge is not present. We use a more compact version using additional variables
pu,v,B′ for Bu, Bv ∈ Bd,ℓ, u ∈ Bu, v ∈ Bv, Bu ≠ Bv, and B′ ⊆ Bd,ℓ \ {Bu, Bv}. The variables
indicate whether there is a colorful path from u to v, i.e., a path only using at most one
vertex from each block, only containing vertices in Bu ∪ Bv ∪

⋃
B∈B′ B.

We have the following constraints using Bv as shorthand for indicating the block containing
vertex v:

pu,v,∅ ↔ eu,v: this is the base case.
(eu,v ∧ pv,w,B′) → pu,w,B′∪{Bv} if Bu ̸∈ B′: this ensures that if there is a directed edge
from u to v and a colorful path from v to w not using the block containing u, then there
is a colorful path from u to w additionally using block Bv.
pu,v,B′ → pu,v,B′∪{B} for B ∈ B′ \ {Bu, Bv}: adding additional blocks preserves rainbow
paths.
¬eu,v ∨ ¬pv,u,B′\{Bu,Bv}: this guaranties that no rainbow cycle is present.

For very small values of d and ℓ, the static approach is still valid, although the number of
variables and clauses is exponential.

3.3 Invariant pruning
We introduce the new technique of invariant pruning in the context of SMS. A graph invariant
is a property of a graph invariant under graph isomorphisms. Examples of invariants are the
maximum indegree and the maximum outdegree. The goal is to strengthen the formula by
computing invariants that are unknown beforehand.

We explain invariant pruning for the rainbow cycle problem regarding the invariant
maximum indegree. Let ∆ be an upper bound on the maximum indegree, for example, the
number of vertices. Instead of solving the formula directly, we fix the first vertex, i.e., the
vertex with label 1, to have exactly indegree ∆ and all other vertices indegree ≤ ∆ in addition
to the standard formula Fd,ℓ. If this formula is unsatisfiable, then the maximum indegree is
at most ∆ − 1, since for any vertex v, there is permutation mapping the vertex v to the first
vertex and preserving the partition.

Now, either one solves Fd,ℓ with the restriction that the maximum indegree is at most
∆ − 1 or again tries to refute the case of a vertex having indegree exactly ∆ − 1 by fixing the
first to have indegree ∆ − 1.

In our experiments, we continue pruning the invariant until we reach a certain value at
which solving the formula becomes fast. As we see in the experiments in Section 4, this gives
a tremendous speedup.

It is intriguing that explicitly demonstrating the impossibility of certain invariants using
a SAT solver and then solving the formula proves faster than solely running the solver on the
original formula. This phenomenon might stem from the solver finding it easier to identify a
“bad” property when it is already associated with a vertex and does not appear arbitrarily.

M. Kirchweger and S. Szeider 37:7

Table 1 Results for computing Rf (d) and Rp(d) in seconds. For “prop”, we additionally provide
the fraction of time spent in the cycle-propagator.

Rf (d) Rp(d)

d static prop static prop
3 0.03 0.07 (23%) 0.01 0.02 (13%)
4 1603.10 1374.23 (22%) 0.23 1.30 (18%)
5 t.o. t.o. 1160.23 1236.24 (14%)

3.4 Symmetry breaking
An important part of solving graph search problems with constraint-based methods is
symmetry breaking to avoid isomorphic copies in the search space. The vertices can be
permuted arbitrarily except the partition Bd,ℓ must be preserved. The applicable permutations
can be described as follows:

{ π ∈ Snd,ℓ
| ∀B ∈ Bd,ℓ ∃B′ ∈ Bd,ℓ : π(B) = B′ }.

In other words, the image of each block maps to another block.
We break all these symmetries using SMS. Let O = [B1, . . . , Bm] be an ordered partition,

li =
∑

j<i Bi and ui =
∑

j≤i Bi. We associate with an ordered partition O the set of
permutations

Perm(O) = { π ∈ Snd,ℓ
| li ≤ π(i) ≤ ui for all i ∈ [nd,ℓ] }.

An ordered partition describes a range to which each vertex can be mapped. For example
Perm([{2, 3}, {1}]) = {{2 7→ 1, 3 7→ 2, 1 7→ 3}, {2 7→ 2, 3 7→ 1, 1 7→ 3}}.

SMS allows breaking symmetries given by a set of ordered partitions. The set of all
applicable permutations for d, ℓ ∈ N can be represented as follows:

{ [{(π(1) − 1) · d + 1, . . . , π(1) · d}, . . . , {(π(ℓ) − 1) · d + 1, . . . , π(ℓ) · d}] | π ∈ Sℓ }.

The permutation π ∈ Sℓ describes how the blocks are swapped; the vertices within the block
can be permuted arbitrarily.

Note that the presented symmetry breaking is not necessarily compatible with invariant
pruning and needs to be adapted slightly. For the example of fixing the indegree of the first
vertex, we must further restrict the permutations applicable for symmetry breaking. The
first vertex is restricted to map to itself, which also fixes the first block.

4 Experimental Results

In this section, we present the results of our computations. We perform several experiments
on a cluster of machines with Intel Xeon E5-2640 v4 processors at 2.40GHz, running Ubuntu
18.04 on Linux 4.15. The source code is available on GitHub2 and the documentation on
Read the Docs3. All experiments are executed with a single thread.

2 https://github.com/markirch/sat-modulo-symmetries
3 https://sat-modulo-symmetries.readthedocs.io/applications/#computing-small-rainbow-

cycle-numbers

CP 2024

https://github.com/markirch/sat-modulo-symmetries
https://sat-modulo-symmetries.readthedocs.io/applications/#computing-small-rainbow-cycle-numbers
https://sat-modulo-symmetries.readthedocs.io/applications/#computing-small-rainbow-cycle-numbers

37:8 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

56789101112
Maximum indegree

10 1

100

Ru
nn

in
g

tim
e

in
 se

co
nd

s

Results for invariant pruning for d=4
static
prop

7891011121314151617181920
Maximum indegree

10 1

100

101

102

103

104

105

Ru
nn

in
g

tim
e

in
 se

co
nd

s

Results for invariant pruning for d=5
static
prop

Figure 1 Results for computing Rf (d) using invariant pruning.

Table 1 summarizes the duration in seconds for computing Rf (d) and Rp(d), i.e., showing
unsatisfiability for Fd,d+1. “prop” refers to the version using an external propagator for
ensuring the absence of a rainbow cycle (Section 3.1) and “static” to the static encoding
(Section 3.2). The results Rf (4) = Rp(4) = 4, and Rp(5) = 5 were not known before.

As a sanity check, we also enumerate all graphs up to isomorphism encoded by F3,3. It
results in 64 graphs, two of which encode permutations. For F4,4 we stop after enumerating
more than 3 million graphs. This also means that there are many extremal graphs. To
highlight the importance of symmetry breaking, we run the SAT encoding for Rp(4) without
SMS, which doesn’t terminate within a day, whilst with SMS, the computation terminates in
less than 3 seconds.

We see that the time spent in the propagator is not a bottleneck of the computation. For
both Rf (d) and Rp(d), the static and propagator version perform relatively similar for the
hardest solved case. The result also shows that restricting the functions only to permutations
decreases the search drastically.

Next, we provide results computing Rf (d) using invariant pruning. As invariant, we use
the maximum indegree. Note that the outdegree is already known to be ℓ − 1, i.e., exactly d

for the case ℓ = d + 1. The results are summarized in Figure 1. The figure gives for given
fixed maximum indegree the time in seconds to refute this case. We use a logarithmic y-axis.
We see that the cases with high indegree are refuted relatively quickly.

For d = 4, we can determine within 0.95 seconds that the maximum indegree is strictly
smaller than 5 using the static approach and 2.99 seconds using the propagator. The case
where the maximum indegree is ≤ 4 is solved in 36.17 and 31.25 seconds, respectively. This
means we have a speedup of almost two orders of magnitude using invariant pruning. For
d = 5, we can restrict the indegree to ≤ 6 within 5 days, but refuting the remaining cases is
not feasible yet.

We test a second invariant with invariant pruning, namely the maximum indegree of a
vertex with respect to only one block, i.e.,

max
v∈V (G)

max
B∈Bd,ℓ\{Bv}

|{ u | (u, v) ∈ E(G) }|.

We call this the block degree. If the block degree is determined to be 1, then this is equivalent
to the edge labelings being permutations. For d = 5, using the previous results that the
maximum indegree is ≤ 6, we compute that the block degree is ≤ 2 within 5 days.

Following previous work [18, 19], we verify the reasoning of the solver using DRAT
proofs [14] for all our experiments and check the correctness of the symmetry-breaking clauses
with a separate script. This is done by first letting the solver run, including propagators, and

M. Kirchweger and S. Szeider 37:9

storing all additionally produced clauses. Next, we feed the original formula, enhanced with
the additional clauses, to a SAT solver to produce a DRAT proof, which can then be checked
by a DRAT proof checker [25]. Note that it is also possible to use a recently introduced
incremental proof format [13] to produce proofs including clauses from propagators without
the necessity of running a SAT solver twice.

5 Conclusion

We have investigated the computation of exact rainbow numbers using a constraint-based
approach with SAT modulo Symmetries, focusing on the efficacy of invariant pruning to
expedite the search process. While our study has primarily examined two invariants, further
exploration could uncover additional invariants that might prove beneficial in efficiently
handling the case d = 5.

A point of improvement for invariant pruning is reusing learned clauses from different
invariants by using assumptions for asserting a certain invariant and using one solver
incrementally.

An interesting avenue for future research is to evaluate the impact of invariant pruning
on various graph generation and enumeration problems. Additionally, we see a potential for
the applicability of invariant pruning techniques to solve other highly symmetric formulas
not directly tied to graphs.

References
1 Hannaneh Akrami, Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, and Ruta Mehta.

EFX allocations: Simplifications and improvements. CoRR, abs/2205.07638, 2022. doi:
10.48550/arXiv.2205.07638.

2 Georgios Amanatidis, Evangelos Markakis, and Apostolos Ntokos. Multiple birds with one
stone: Beating 1/2 for EFX and GMMS via envy cycle elimination. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pages 1790–1797. AAAI Press, 2020. doi:10.1609/AAAI.V34I02.5545.

3 Benjamin Aram Berendsohn, Simona Boyadzhiyska, and László Kozma. Fixed-point cycles and
approximate EFX allocations. In 47th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of
LIPIcs, pages 17:1–17:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPICS.MFCS.2022.17.

4 Ben Berger, Avi Cohen, Michal Feldman, and Amos Fiat. Almost full EFX exists for four
agents. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event,
February 22 - March 1, 2022, pages 4826–4833. AAAI Press, 2022. doi:10.1609/AAAI.V36I5.
20410.

5 Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum Nash welfare. ACM Trans. Economics
and Comput., 7(3):12:1–12:32, 2019. doi:10.1145/3355902.

6 Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. EFX exists for three agents. J.
ACM, 71(1):4:1–4:27, 2024. doi:10.1145/3616009.

7 Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, and Pranabendu Misra.
Improving EFX guarantees through rainbow cycle number. In EC ’21: The 22nd ACM
Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021, pages
310–311. ACM, 2021. doi:10.1145/3465456.3467605.

CP 2024

https://doi.org/10.48550/arXiv.2205.07638
https://doi.org/10.48550/arXiv.2205.07638
https://doi.org/10.1609/AAAI.V34I02.5545
https://doi.org/10.4230/LIPICS.MFCS.2022.17
https://doi.org/10.4230/LIPICS.MFCS.2022.17
https://doi.org/10.1609/AAAI.V36I5.20410
https://doi.org/10.1609/AAAI.V36I5.20410
https://doi.org/10.1145/3355902
https://doi.org/10.1145/3616009
https://doi.org/10.1145/3465456.3467605

37:10 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

8 Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A
little charity guarantees almost envy-freeness. SIAM J. Comput., 50(4):1336–1358, 2021.
doi:10.1137/20M1359134.

9 Michael Codish, Graeme Gange, Avraham Itzhakov, and Peter J. Stuckey. Breaking symmetries
in graphs: The nauty way. In Principles and Practice of Constraint Programming - 22nd
International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings,
volume 9892 of Lecture Notes in Computer Science, pages 157–172. Springer Verlag, 2016.
doi:10.1007/978-3-319-44953-1_11.

10 Michael Codish, Alice Miller, Patrick Prosser, and Peter J. Stuckey. Constraints for sym-
metry breaking in graph representation. Constraints, 24(1):1–24, 2019. doi:10.1007/
s10601-018-9294-5.

11 Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher Mears. Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In IEEE 24th International
Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9,
2012, pages 49–56. IEEE Computer Society, 2012. doi:10.1109/ICTAI.2012.16.

12 Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan Szeider, and
Armin Biere. IPASIR-UP: user propagators for CDCL. In Meena Mahajan and Friedrich
Slivovsky, editors, 26th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume 271 of LIPIcs, pages 8:1–8:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SAT.2023.8.

13 Katalin Fazekas, Florian Pollitt, Mathias Fleury, and Armin Biere. Certifying incremental
SAT solving. In LPAR 2024: Proceedings of 25th Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Port Louis, Mauritius, May 26-31, 2024, volume 100 of
EPiC Series in Computing, pages 321–340. EasyChair, 2024. doi:10.29007/PDCC.

14 Marijn J. H. Heule. The DRAT format and DRAT-trim checker. CoRR, abs/1610.06229, 2016.
URL: http://arxiv.org/abs/1610.06229.

15 Marijn J. H. Heule. Optimal symmetry breaking for graph problems. Math. Comput. Sci.,
13(4):533–548, 2019. doi:10.1007/S11786-019-00397-5.

16 Avraham Itzhakov and Michael Codish. Breaking symmetries with high dimensional graph
invariants and their combination. In Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research - 20th International Conference, CPAIOR 2023, Nice, France,
May 29 - June 1, 2023, Proceedings, volume 13884 of Lecture Notes in Computer Science,
pages 133–149. Springer, 2023. doi:10.1007/978-3-031-33271-5_10.

17 Shayan Chashm Jahan, Masoud Seddighin, Seyed Mohammad Seyed Javadi, and Mohammad
Sharifi. Rainbow cycle number and EFX allocations: (almost) closing the gap. In Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023,
19th-25th August 2023, Macao, SAR, China, pages 2572–2580. ijcai.org, 2023. doi:10.24963/
IJCAI.2023/286.

18 Markus Kirchweger, Tomáš Peitl, and Stefan Szeider. Co-certificate learning with SAT modulo
symmetries. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 1944–1953.
ijcai.org, 2023. doi:10.24963/IJCAI.2023/216.

19 Markus Kirchweger, Manfred Scheucher, and Stefan Szeider. A SAT attack on Rota’s Basis
Conjecture. In Theory and Applications of Satisfiability Testing - SAT 2022 - 25th International
Conference, Haifa, Israel, August 2-5, 2022, Proceedings, 2022. doi:10.4230/LIPIcs.SAT.
2022.4.

20 Markus Kirchweger, Manfred Scheucher, and Stefan Szeider. SAT-based generation of planar
graphs. In Meena Mahajan and Friedrich Slivovsky, editors, The 26th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2023), July 04-08, 2023, Alghero,
Italy, LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
SAT.2023.14.

https://doi.org/10.1137/20M1359134
https://doi.org/10.1007/978-3-319-44953-1_11
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1109/ICTAI.2012.16
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.29007/PDCC
http://arxiv.org/abs/1610.06229
https://doi.org/10.1007/S11786-019-00397-5
https://doi.org/10.1007/978-3-031-33271-5_10
https://doi.org/10.24963/IJCAI.2023/286
https://doi.org/10.24963/IJCAI.2023/286
https://doi.org/10.24963/IJCAI.2023/216
https://doi.org/10.4230/LIPIcs.SAT.2022.4
https://doi.org/10.4230/LIPIcs.SAT.2022.4
https://doi.org/10.4230/LIPICS.SAT.2023.14
https://doi.org/10.4230/LIPICS.SAT.2023.14

M. Kirchweger and S. Szeider 37:11

21 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation and
enumeration. ACM Trans. Comput. Log., 25(3), 2024. doi:10.1145/3670405.

22 Hans Kleine Büning and Theodor Lettman. Propositional logic: deduction and algorithms.
Cambridge University Press, Cambridge, 1999.

23 Tamás Mészáros and Raphael Steiner. Zero sum cycles in complete digraphs. Eur. J. Comb.,
98:103399, 2021. doi:10.1016/J.EJC.2021.103399.

24 Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. CDCLSym: in-
troducing effective symmetry breaking in SAT solving. In Tools and Algorithms for the
Construction and Analysis of Systems - 24th International Conference, TACAS 2018, vol-
ume 10805 of Lecture Notes in Computer Science, pages 99–114. Springer, 2018. doi:
10.1007/978-3-319-89960-2_6.

25 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Theory and Applications of Satisfiability Testing –
SAT 2014, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer Verlag,
2014. doi:10.1007/978-3-319-09284-3_31.

CP 2024

https://doi.org/10.1145/3670405
https://doi.org/10.1016/J.EJC.2021.103399
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-319-09284-3_31

Frugal Algorithm Selection
Erdem Kuş # Ñ

School of Computer Science, University of St Andrews, UK

Özgür Akgün # Ñ

School of Computer Science, University of St Andrews, UK

Nguyen Dang # Ñ

School of Computer Science, University of St Andrews, UK

Ian Miguel # Ñ

School of Computer Science, University of St Andrews, UK

Abstract
When solving decision and optimisation problems, many competing algorithms (model and solver
choices) have complementary strengths. Typically, there is no single algorithm that works well for
all instances of a problem. Automated algorithm selection has been shown to work very well for
choosing a suitable algorithm for a given instance. However, the cost of training can be prohibitively
large due to running candidate algorithms on a representative set of training instances. In this work,
we explore reducing this cost by choosing a subset of the training instances on which to train. We
approach this problem in three ways: using active learning to decide based on prediction uncertainty,
augmenting the algorithm predictors with a timeout predictor, and collecting training data using
a progressively increasing timeout. We evaluate combinations of these approaches on six datasets
from ASLib and present the reduction in labelling cost achieved by each option.

2012 ACM Subject Classification Theory of computation → Active learning; Theory of computation
→ Constraint and logic programming

Keywords and phrases Algorithm Selection, Active Learning

Digital Object Identifier 10.4230/LIPIcs.CP.2024.38

Category Short Paper

Supplementary Material Other (Source code, data, experimental results and appendix):
https://doi.org/10.5281/zenodo.13294528 [24]

Funding The experiments made use of Cirrus, a UK National Tier-2 HPC Service at EPCC
(http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).
Ian Miguel: Ian Miguel is funded by EPSRC grant EP/V027182/1.

1 Introduction

Solving combinatorial optimisation problems is a challenging task, where often multiple
approaches compete to offer the most effective solution. In many cases, these problems
require large amounts of computational resource. Typically, different algorithms (model and
solver choices) are better suited for different problem instances and new potential approaches
are continuously developed. Identifying the most suitable algorithm for a particular problem
instance has the potential to provide significant efficiency gains.

Machine learning (ML) has emerged as a powerful tool for automating algorithm selection,
effectively learning to predict which algorithm is most likely to perform well on a given problem
instance. By analysing the features of various problem instances and the corresponding
performance of different algorithms, ML models can be trained to recommend the most
suitable algorithm for a specific problem [23, 21]. This approach has proven highly effective,

© Erdem Kuş, Özgür Akgün, Nguyen Dang, and Ian Miguel;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ek232@st-andrews.ac.uk
https://www.st-andrews.ac.uk/computer-science/people/ek232/
https://orcid.org/0000-0001-7775-5610
mailto:ozgur.akgun@st-andrews.ac.uk
https://www.st-andrews.ac.uk/computer-science/people/oa86/
https://orcid.org/0000-0001-9519-938X
mailto:nttd@st-andrews.ac.uk
https://www.st-andrews.ac.uk/computer-science/people/nttd/
https://orcid.org/0000-0002-2693-6953
mailto:ijm@st-andrews.ac.uk
https://www.st-andrews.ac.uk/computer-science/people/ijm/
https://orcid.org/0000-0002-6930-2686
https://doi.org/10.4230/LIPIcs.CP.2024.38
https://doi.org/10.5281/zenodo.13294528
https://doi.org/10.5281/zenodo.13294528
http://www.cirrus.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Frugal Algorithm Selection

often leading to significant improvements in computational efficiency and overall problem-
solving capability (e.g., [45, 46, 5]). Despite the success of ML-based algorithm selection
techniques, there is a notable drawback: the high computational cost associated with running
candidate algorithms on a large and representative set of training instances. In order to
generate a robust model, it is necessary to evaluate the performance of each algorithm on
numerous problem instances. However, this process can be time-consuming and resource-
intensive, limiting the scalability and practicality of current algorithm selection methods.

Herein we propose to select instances for training AS models iteratively. This setting is
called Active Learning (AL) [8], and is popular for cost-effective training in ML. We focus
on AS scenarios that aim at optimising the runtime of the predicted algorithm on a specific
instance, a common setting in CP and SAT domains. In these scenarios, each run of an
algorithm on a problem instance is limited by a typically large cutoff time. Full information
about performance data of timeout cases is expensive to collect but not necessarily useful.

In a typical AL scenario, the labelling cost (in our context the cost of running an algorithm
to solve a selected instance) is assumed to be uniform. Our situation is further complicated
by the fact that, within the cutoff, there is typically significant variance in the cost of running
an algorithm. Therefore, we propose two strategies within the active learning setting to
reduce labelling cost, thus improving learning efficiency. We evaluate the proposed strategies
in combination with two methods for selecting new instances in the active learning setting:
an uncertainty-based and a naive random selection method (see Section 3.1 for details).
Experimental results on six scenarios from ASLib [6], the standard benchmarking library
for algorithm selection, are presented, showing the effectiveness of applying active learning
setting to the AS context: in most cases, we can achieve 100% of the predictive power of an
AS method that uses all of the training data, while requiring less than 60% of total labelling
cost. This is further reduced to as low as 10% of the labelling cost in some scenarios, thanks
to a combination of using a timeout predictor and dynamic timeouts.

The primary contributions of our work are:
1. Novel use of timeout predictors and dynamic timeouts for cost-effective algorithm selection.
2. A thorough empirical evaluation across six benchmarks from ASLib, validating the

effectiveness of the proposed timeout aware active learning approach.

2 Background

This section provides background for our work, covering three key areas: Automated Al-
gorithm Selection, where the primary challenge is to optimally select an algorithm from a
portfolio based on specific instance characteristics and desired performance outcomes; ASLib,
a pivotal resource for benchmarking algorithm selection; and Active Learning, a method for
organising the training process by strategically choosing informative data points to label.

2.1 Automated Algorithm Selection
The automated algorithm selection (AS) problem can be defined as follows. Given a portfolio
of n algorithms A = {a1, a2, ..., an} with complementary strengths, an instance distribution
DI where each instance i ∼ DI is described as a feature vector v(i), a metric c(i, ak) that
measures the performance of algorithm ak ∈ A on instance i, the AS problem involves
building an automated selector f(v(i)) to select the best algorithm a ∈ A for an instance
i. More formally, we want to find f such that Ei∼DI [c(i, f(v(i))] is optimised. There is
sometimes an extra cost associated with the extraction of instance features, which must be
taken into account in our optimisation objective. In practice, we are often given in advance

E. Kuş, Ö. Akgün, N. Dang, and I. Miguel 38:3

a set of training instances, their feature vectors, the cost of extracting such features, and the
performance of each algorithm in the portfolio on each given instances. This data is used for
training a machine learning model to predict the best algorithm for an unseen instance.

The first AS problem was described in 1976 by Rice [35]. Over the last two decades, several
AS approaches have been proposed and the applications of such techniques have provided a
significant boost in state-of-the-art performance across a wide range of computational areas,
such as Constraint Programming [32, 39], propositional satisfiability (SAT) solving [45, 46],
AI planning [42, 36, 37], and combinatorial optimisation [22]. A wide range of machine
learning-based techniques were adopted in those AS approaches. Some examples include
empirical performance models [45], k-nearest neighbours [9], clustering-based methods [20, 5],
and cost-sensitive pairwise classification approaches [46]. In addition to building a machine
learning model to predict the best performing algorithm, modern AS systems often adopt an
extra component called a pre-solving schedule [46, 17, 25, 15], a static schedule of algorithms
run for a small amount of time before (expensive) feature extraction and algorithm selection
are conducted. Another related approach is algorithm scheduling, where instead of selecting
a single algorithm for given instance, we build a schedule of algorithms [3, 4, 26]. For detailed
overviews of AS approaches and their applications, we refer to [21, 23].

In constraint programming, alternative algorithms typically arise from different models
for the same problem or from the use of various solvers. Alternative models can be created
manually or generated using automated modelling tools such as Conjure [2]. Tools like Savile
Row [31, 13] and Minizinc [30] can automatically target multiple alternative solvers.

2.2 The Algorithm Selection Library (ASLib)

The Algorithm Selection Library [6] (ASLib) is a widely-used benchmarking library for
automated algorithm selection. It provides a standard format for representing algorithm
selection scenarios across a wide range of algorithms and problems, currently consisting of
44 datasets from multiple application domains, including SAT, Quantified Boolean Formula
(QBF), Maximum Satisfiability (MAX-SAT), Constraint Satisfaction Problems, Answer Set
Programming (ASP), and combinatorial optimisation problems. In these scenarios, the
performance metric is either the algorithm running time (for solving a given instance) or the
solution quality obtained within a time limit.

The process of data labelling, i.e. obtaining the target output labels for all training data
points, is a critical task in machine learning as it is an essential component for building
effective models. However, this process is not free of cost, and it can be a time-intensive
endeavour, often requiring more resources than training the machine learning model itself.
In automated algorithm selection, the cost of collecting performance data can be substantial.
As an example, several scenarios in ASLib require more than 100 CPU days to collect the
full performance data on the given instance sets (some may require up to 3 CPU years). Our
hypothesis is that we can significantly reduce this cost by only collecting partial information
about the performance data without sacrificing algorithm selection quality.

2.3 Active Learning for querying informative instances

Active learning is a methodology that maintains machine learning accuracy with fewer
labelled data points by allowing incremental labelling of training data [38, 19]. This iterative
process comprises training a model on a small set of labelled data, using the model to identify
and query the most uncertain unlabelled data points, obtaining labels for these queried
points, and then retraining the model with the newly labelled data.

CP 2024

38:4 Frugal Algorithm Selection

Several methods exist for querying in active learning [47, 44, 10, 33]. Herein, we use pool-
based sampling (we maintain a list of candidate training data points that can be queried) and
two methods for querying from this pool: uncertainty-based and random instance selection.
These are widely regarded as effective methods for active learning, particularly suitable for
our context. See Appendix B for more about the behaviour of alternative query methods.

3 Frugal Algorithm Selection

In this section, we first explain the underlying AS model. We then describe how to use active
learning to select a subset of instances for labelling during the training (Section 3.1) and the
two additional strategies we propose, namely timeout predictors (Section 3.2) and dynamic
timeout (Section 3.3), to reduce labelling cost during the instance selection process.

The AS model used in our experiment follows a pairwise classification approach, as it has
been shown to be effective for several AS scenarios (e.g. [46]). The approach is a collection
of binary classifiers, each designed to compare a pair of algorithms to determine which one
is faster for a given instance. The algorithm with the highest number of votes across all
classifiers is chosen as the best option. Following previous work [46], we use a random forest
for each classifier. This setup is also advantageous for our goal of minimising resource usage,
as it allows selective training of classifiers on specific subsets of instances. The sequence
diagram overview of our approach can be found in Appendix A.

Passive learning. an AS model trained using the entire training set. This is the baseline for
investigating the effectiveness of our frugal AS methods: we want the frugal AS to achieve
the same performance as this passive learning model, while using a significantly less amount
of training data.

Frugal methods. We explore three configuration options, each offering two alternatives,
to create a range of strategies for frugal algorithm selection. The first configuration option
is instance selection, which involves comparing uncertainty-based selection (focusing on
potentially informative instances) with random selection. The second configuration option
is whether we use timeout predictors and the third configuration option is whether we use
dynamic timeouts. In the rest of this section we explain these three configuration options.
In Section 4 we empirically evaluate all 8 combinations of these configuration settings.

3.1 Selecting Instances: Uncertainty-based vs random
In our frugal algorithm selection methods, we begin by training all machine learning classifiers
on a small number of randomly selected instances. The remaining instances in the training set
are kept in a pool of candidates. For each classifier we maintain a separate pool of candidates:
this allows us to run an instance on a subset of the algorithms instead of necessarily running
it on all algorithm options. This flexibility can be particularly useful when some algorithms
tend to timeout very often and hence take up a lot of resources unnecessarily.

At each step of our algorithm, we select N samples from the available unlabelled set
of instances. One option for the selection process is employing an uncertainty-based query
strategy. Based on an “informativeness” measure, this strategy aims to prioritise the instances
that are most likely to yield valuable insights when annotated. We perform uncertainty-based
querying by using the predictive model we have partially trained so far. We predict a class
for each candidate instance in the pool. The machine learning predictor returns a confidence
level in addition to a class prediction. We then query the instances where the predictor is

E. Kuş, Ö. Akgün, N. Dang, and I. Miguel 38:5

least confident. Uncertainty-based querying is based on the premise that, by focusing on
the data points where the model’s predictions are least confident, the model is expected to
learn from the most uncertain data points. We also allow different machine learning models
to make different numbers of queries, based on the confidence levels. For each predictive
model we create a table of requested data points and the associated confidence level. We
then combine these tables into a single table, sort the table by confidence level and select
top N requests. This approach enables predictive models with a high level of uncertainty to
query more instances in comparison to those with very low levels of uncertainty.

Uncertainty-based querying can be expensive because it requires feature extraction for
all instances in the candidate pool at the start of the procedure. It also only considers
informativeness without taking labelling cost into account. To evaluate whether uncertainty-
based querying is effective in our work, we compare it with a random query order.

3.2 Timeout Predictor
Instances that time out with a given algorithm are particularly costly in automated algorithm
selection. This is partly because if an instance cannot be solved by two algorithms within the
timeout, we spend considerable time running these algorithms but gain no new information.
Furthermore, when one algorithm solves an instance quickly and another times out, we gain
no additional information by allowing the slower algorithm to run to completion. The binary
classifiers are provided information only about which algorithm is faster.

We enhance our base machine learning architecture of binary classifiers for all algorithm
pairs with dedicated timeout predictors: additional random forest classifiers, one per al-
gorithm, whose task is to predict whether an unseen instance will time out for a specific
algorithm. The hypothesis is that training a timeout predictor is a simpler learning task,
and this classifier can be trained without requiring additional data. We adjust our voting
mechanism to take the timeout predictors into account. If an algorithm is predicted to time
out, we exclude it from the options before calculating the votes using the pairwise predictors.
An exception is in instances where all algorithms are predicted to time out; in such cases, we
do not eliminate any of the options and continue to use pairwise predictors for the entire
set. The timeout predictors are also used during the instance selection process: any pair
of algorithms and instances predicted to be timeout will be pushed to the end of selection
queue, ensuring that we focus on instances that are more likely to provide useful information.

3.3 Dynamic Timeout
The dynamic timeout strategy begins with an initially defined timeout period and increment-
ally increases it up to a maximum of one hour. After the initial training phase in active
learning, the algorithms selected for querying are executed on the selected data within the
current time limit. An algorithm that fails to solve the example within this specified time
is classified as a timeout for the active time limit. This approach is intended to minimise
labelling costs by initially running instances with a short time limit. Hence, resources are
not wasted on instances that both algorithms are likely to fail to solve in the early stages. In
single timeout cases, where one of the two algorithms can solve the instance, samples can be
labelled at a lower cost. The condition for increasing the timeout is determined based on the
performance of the model predictions on the validation set. If the model predictions reach a
plateau on the validation set, we increase the timeout at the specified rate.

When timeout predictors and dynamic timeouts are used in combination we train the
timeout predictors with respect to the particular timeout value at a given moment.

CP 2024

38:6 Frugal Algorithm Selection

0.0 0.5 1.0
Runtime Ratio

0.05

0.10

0.15

0.20

0.25
M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.05

0.10

0.15

0.20

0.25

0.30

M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

0.4

M
in

 In
st

an
ce

 C
os

t

Uncertainty Random Without TO With TO Without DT With DT

Figure 1 Results aggregated by configuration option. Instance selection (random vs uncertainty-
based) does not make a big difference, timeout predictor (TO) improves runtime ratio slightly,
dynamic timeout (DT) improves runtime ratio significantly.

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

AS
P-

PO
TA

SS
CO

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

CP
M

P-
20

15

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

CS
P-

20
10

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

M
AX

SA
T1

2-
PM

S
 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

M
AX

SA
T1

9-
UC

M
S

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

0.6

QB
F-

20
11

 M

in
 In

st
an

ce
 C

os
t

Without TO & Without DT TO DT TO+DT

Figure 2 Performance of different timeout configurations (aggregated by instance selection).
Notably, the combination of timeout predictor and dynamic timeouts (TO+DT) and the standalone
dynamic timeout option exhibit significantly better performance.

4 Experimental Results

We evaluate the performance of all eight configurations of the frugal algorithm selection
methods using six datasets from ASLib, chosen for their diverse characteristics. These
datasets include various problem-solving domains: one from Answer Set Programming (ASP),
two from Constraint Programming (CP), two from propositional satisfiability (SAT), and
one from Quantified Boolean Formula (QBF) solving. The datasets vary significantly in
complexity and size, with between 2 to 11 algorithm options, 22 to 138 features, and 527 to
2024 instances. Appendix E presents detailed descriptive statistics of the selected datasets.

Experimental setup. To evaluate our methodology we split each dataset into three subsets:
training, validation, and test. We allocate 10% of the instances to the test set and perform
10-fold cross-validation to ensure thorough evaluation, running each fold five times with

E. Kuş, Ö. Akgün, N. Dang, and I. Miguel 38:7

0.0 0.5 1.0
Runtime Ratio

0.000

0.025

0.050

0.075

0.100
AS

P-
PO

TA
SS

CO

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.00

0.05

0.10

CP
M

P-
20

15

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.00

0.05

0.10

0.15

CS
P-

20
10

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.00

0.05

0.10

0.15

M
AX

SA
T1

2-
PM

S
 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.00

0.05

0.10
M

AX
SA

T1
9-

UC
M

S
 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

QB
F-

20
11

 M

in
 In

st
an

ce
 C

os
t

Uncertainty (TO+DT) Random (TO+DT)

Figure 3 TO+DT options (best in Figure 2) and disaggregating by approach. No clear winner.

different random seeds. An additional 10% of the training set is used as the validation set,
used to decide when to increase the timeout (discussed in Section 3.3). At each step, we
label 1% of the training data. Appendix D provides full details of the experimental setup.

We present our results in a series of plots designed to compare the configurations at
different aggregation levels. All have the same structure. The horizontal axis is the ratio of the
performance of passive learning to that of the frugal method, where performance is measured
as the total runtime of the predicted algorithms on all test instances. This metric serves as
a proxy for predictive performance, indicating how closely the frugal method approaches
the benchmark established by passive learning. The vertical axis is the minimum amount
of training data (as a ratio of the entire training set) required to achieve the performance
indicated on the horizontal axis. The representation highlights the efficiency of the frugal
method in terms of data utilisation. We plot the mean and a ribbon showing standard error.

All source code, data, experimental results and the appendix are available at https:
//github.com/stacs-cp/CP2024-Frugal

Key findings. Even the worst configuration of frugal algorithm selection is able to reduce the
labelling cost without sacrificing predictive performance relative to passive learning (Figure 2).
In several cases training effort is reduced to 10% of the labelling cost of passive learning.
It is clear that our frugal approaches are able to reduce the training cost independent of
configuration.

Figure 1 presents an overview of the entire set of experiments. The results are aggregated
one configuration option at a time, combining results of all configurations that share, for
example, Uncertainty as the instance selection method in the first plot. Overall, instance
selection strategy does not make a big difference, using timeout predictors (TO) improves
performance slightly, and using dynamic timeouts (DT) improves performance significantly.

Since instance selection strategy does not make a big difference and we observe an
interesting interaction between TO and DT, we aggregate over instance selection strategy
and plot 4 options in Figure 2. Using TO slightly improves performance, while DT improves
performance significantly. Moreover the best configurations use TO and DT together.

CP 2024

https://github.com/stacs-cp/CP2024-Frugal
https://github.com/stacs-cp/CP2024-Frugal

38:8 Frugal Algorithm Selection

In Figure 3 we focus on the configurations that include TO+DT and compare the effect
of instance selection of the best configuration setting found in Figure 2. We further validate
that there is not a clear winner among uncertainty-based instance selection and random
instance selection. This finding is consistent across all combinations of strategies, as detailed
in Appendix C, which includes raw data plots for all eight configurations.

The observation that uncertainty-based instance selection is not better than random
may be unexpected, but selecting instances purely based on informativeness (via prediction
uncertainty) does not take the cost of running an instance on a particular algorithm into
account. Where there is a uniform cost across all candidates, uncertainty-based selection
may perform better than random. In our setting, however, sample cost varies. Hence, we
wish to maximise how much information is gained per time spent. Therefore having explicit
timeout predictors and a dynamic timeout strategy makes a more significant contribution.

5 Related work

Selecting a representative subset of benchmark instances from a large pool for a reliable and
cost-effective comparison of algorithms has been investigated across different domains, includ-
ing SAT [18, 27, 14], CP [28], combinatorial optimisation [29], evolutionary computation [7],
and machine learning [34]. While a majority focuses on selecting a subset of instances in a
static setting (i.e., all instances are chosen at once), some recent work has proposed selecting
instances iteratively. Matricon et al. [28] present a statistical-based method to incrementally
select instances for comparing two solvers. Fuchs et al. [14] propose an active learning-based
approach for cost-effective benchmark instance selection. The key difference between the
approaches above and our work is that they focus on identifying the algorithm with the best
overall performance across a given problem instance distribution, while our work focuses on
algorithm selection, where the aim is to predict the best instance-specific algorithm.

The closest work to ours is Volpato and Song [43], where three commonly-used active
learning techniques were evaluated in an AS scenario for SAT1. However, they did not
consider the significantly varying labelling costs among algorithms and instances, a common
characteristic of SAT scenarios. Consequently, the effectiveness of active learning for instance
selection was reported based on the percentage of labelled data being saved only.

Although the majority of active learning techniques assume uniform labelling cost, there
is work on non-uniform labelling cost settings (e.g., [38, 40, 41]). A common approach is to
predict the labelling cost and to strive for a balance between informativeness and the predicted
cost of a new data point. We adopt a similar technique in our work, where timeout predictors
are used for identifying costly (unlabelled) data points. It can be considered a “softened”
version of the cost estimation approach, as predicting the precise runtime of algorithms in
the domain of combinatorial optimisation is often difficult: most AS techniques focus on
learning the ranking among algorithms instead of trying to predict runtime directly [16].

Effective algorithm selection relies on the availability of a representative set of instances
for a problem. When such instances are not available, automated methods can generate
discriminating instances [1, 11]. These methods aim to find instances that one algorithm can
solve quickly while another algorithm struggles, and vice versa.

1 These three methods result in the same set of selected instances when the prediction model is binary
classification as in our work – see Appendix B.

E. Kuş, Ö. Akgün, N. Dang, and I. Miguel 38:9

6 Conclusion

We have proposed and evaluated several approaches to frugal algorithm selection, an active
learning method that reduces labelling cost by using only a subset of the training data,
together with a dynamic timeout strategy that uses incomplete information about the
performance of algorithms in the portfolio. Our results confirm the utility of the proposed
approach and our analysis offers insights into the contribution of each of its components.
Interestingly, the standard active learning data selection technique contributes little to
performance, while our proposed dynamic timeout mechanism results in significant savings.

In future, we plan to incorporate enhancement techniques in AS into the proposed active
learning framework, including the use of a pre-solving schedule [45] and cost-sensitive pairwise
classification AS models [46, 25]. Other important avenues include investigating the impact
of hyper-parameter tuning in the active learning setting, and developing an early-stopping
mechanism to terminate the learning process once diminishing returns are observed.

References
1 Özgür Akgün, Nguyen Dang, Ian Miguel, András Z Salamon, Patrick Spracklen, and Chris-

topher Stone. Discriminating instance generation from abstract specifications: A case study
with cp and mip. In Integration of Constraint Programming, Artificial Intelligence, and Oper-
ations Research: 17th International Conference, CPAIOR 2020, Vienna, Austria, September
21–24, 2020, Proceedings 17, pages 41–51. Springer, 2020.

2 Özgür Akgün, Alan M Frisch, Ian P Gent, Christopher Jefferson, Ian Miguel, and Peter
Nightingale. Conjure: Automatic generation of constraint models from problem specifications.
Artificial Intelligence, 310:103751, 2022.

3 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Sunny: a lazy portfolio approach
for constraint solving. Theory and Practice of Logic Programming, 14(4-5):509–524, 2014.

4 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Sunny-cp: a sequential cp portfolio
solver. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, pages
1861–1867, 2015.

5 Carlos Ansótegui, Joel Gabas, Yuri Malitsky, and Meinolf Sellmann. Maxsat by improved
instance-specific algorithm configuration. Artificial Intelligence, 235:26–39, 2016.

6 Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre
Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin
Vanschoren. Aslib: A benchmark library for algorithm selection. Artificial Intelligence,
237:41–58, 2016. doi:10.1016/j.artint.2016.04.003.

7 Gjorgjina Cenikj, Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter Korošec,
and Tome Eftimov. Selector: selecting a representative benchmark suite for reproducible stat-
istical comparison. In Proceedings of The Genetic and Evolutionary Computation Conference,
pages 620–629, 2022.

8 David Cohn. Active Learning, pages 10–14. Springer US, Boston, MA, 2010. doi:10.1007/
978-0-387-30164-8_6.

9 Marco Collautti, Yuri Malitsky, Deepak Mehta, and Barry O’Sullivan. Snnap: Solver-based
nearest neighbor for algorithm portfolios. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September
23-27, 2013, Proceedings, Part III 13, pages 435–450. Springer, 2013.

10 Nguyen Viet Cuong, Wee Sun Lee, Nan Ye, Kian Ming A. Chai, and Hai Leong Chieu. Active
learning for probabilistic hypotheses using the maximum gibbs error criterion. In Proceedings
of the 26th International Conference on Neural Information Processing Systems - Volume 1,
NIPS’13, pages 1457–1465, Red Hook, NY, USA, 2013. Curran Associates Inc.

11 Nguyen Dang, Özgür Akgün, Joan Espasa, Ian Miguel, and Peter Nightingale. A framework
for generating informative benchmark instances. arXiv preprint arXiv:2205.14753, 2022.

CP 2024

https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1007/978-0-387-30164-8_6
https://doi.org/10.1007/978-0-387-30164-8_6

38:10 Frugal Algorithm Selection

12 Tivadar Danka and Péter Horváth. modal: A modular active learning framework for python.
CoRR, abs/1805.00979, 2018. arXiv:1805.00979.

13 Ewan Davidson, Özgür Akgün, Joan Espasa, and Peter Nightingale. Effective encodings of
constraint programming models to smt. In Principles and Practice of Constraint Programming:
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7–11, 2020,
Proceedings 26, pages 143–159. Springer, 2020.

14 Tobias Fuchs, Jakob Bach, and Markus Iser. Active learning for sat solver benchmarking.
In Tools and Algorithms for the Construction and Analysis of Systems: 29th International
Conference, TACAS 2023, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Paris, France, April 22–27, 2023, Proceedings, Part I,
pages 407–425. Springer, 2023.

15 François Gonard, Marc Schoenauer, and Michèle Sebag. Algorithm selector and prescheduler
in the icon challenge. Bioinspired heuristics for optimization, pages 203–219, 2019.

16 Jonas Hanselle, Alexander Tornede, Marcel Wever, and Eyke Hüllermeier. Hybrid ranking and
regression for algorithm selection. In German Conference on Artificial Intelligence (Künstliche
Intelligenz), pages 59–72. Springer, 2020.

17 Holger Hoos, Marius Lindauer, and Torsten Schaub. claspfolio 2: Advances in algorithm
selection for answer set programming. Theory and Practice of Logic Programming, 14(4-5):569–
585, 2014.

18 Holger H Hoos, Benjamin Kaufmann, Torsten Schaub, and Marius Schneider. Robust bench-
mark set selection for boolean constraint solvers. In Learning and Intelligent Optimization:
7th International Conference, LION 7, Catania, Italy, January 7-11, 2013, Revised Selected
Papers 7, pages 138–152. Springer, 2013.

19 Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying informative and
representative examples. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(10):1936–1949, 2014. doi:10.1109/TPAMI.2014.2307881.

20 Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. Isac–instance-specific
algorithm configuration. In ECAI 2010, pages 751–756. IOS Press, 2010.

21 Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm
selection: Survey and perspectives. Evolutionary computation, 27(1):3–45, 2019.

22 Pascal Kerschke, Lars Kotthoff, Jakob Bossek, Holger H Hoos, and Heike Trautmann. Lever-
aging tsp solver complementarity through machine learning. Evolutionary computation,
26(4):597–620, 2018.

23 Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. Data mining
and constraint programming: Foundations of a cross-disciplinary approach, pages 149–190,
2016.

24 Erdem Kuş. stacs-cp/CP2024-Frugal. Other, version 1.1. (visited on 2024-08-20). URL:
https://doi.org/10.5281/zenodo.13294528.

25 Marius Lindauer, Holger H Hoos, Frank Hutter, and Torsten Schaub. Autofolio: An automat-
ically configured algorithm selector. Journal of Artificial Intelligence Research, 53:745–778,
2015.

26 Tong Liu, Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. sunny-as2: Enhancing
sunny for algorithm selection. Journal of Artificial Intelligence Research, 72:329–376, 2021.

27 Norbert Manthey and Sibylle Möhle. Better evaluations by analyzing benchmark structure.
Proc. PoS, 2016.

28 Théo Matricon, Marie Anastacio, Nathanaël Fijalkow, Laurent Simon, and Holger H Hoos.
Statistical comparison of algorithm performance through instance selection. In 27th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2021). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

29 Mustafa Mısır. Benchmark set reduction for cheap empirical algorithmic studies. In 2021
IEEE Congress on Evolutionary Computation (CEC), pages 871–877. IEEE, 2021.

https://arxiv.org/abs/1805.00979
https://doi.org/10.1109/TPAMI.2014.2307881
https://doi.org/10.5281/zenodo.13294528

E. Kuş, Ö. Akgün, N. Dang, and I. Miguel 38:11

30 Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and
Guido Tack. Minizinc: Towards a standard cp modelling language. In International Conference
on Principles and Practice of Constraint Programming, pages 529–543. Springer, 2007.

31 Peter Nightingale, Özgür Akgün, Ian P Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in savile row. Artificial Intelligence,
251:35–61, 2017.

32 Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry O’Sullivan.
Using case-based reasoning in an algorithm portfolio for constraint solving. In Irish conference
on artificial intelligence and cognitive science, pages 210–216, 2008.

33 Mijung Park and Jonathan W. Pillow. Bayesian active learning with localized priors for fast
receptive field characterization. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’12, pages 2348–2356, Red Hook, NY, USA,
2012. Curran Associates Inc.

34 João Luiz Junho Pereira, Kate Smith-Miles, Mario Andrés Muñoz, and Ana Carolina Lorena.
Optimal selection of benchmarking datasets for unbiased machine learning algorithm evaluation.
Data Mining and Knowledge Discovery, 38(2):461–500, 2024.

35 John R Rice. The algorithm selection problem. In Advances in computers, volume 15, pages
65–118. Elsevier, 1976.

36 Mattia Rizzini, Chris Fawcett, Mauro Vallati, Alfonso E Gerevini, and Holger H Hoos. Portfolio
methods for optimal planning: an empirical analysis. In 2015 IEEE 27th International
Conference on Tools with Artificial Intelligence (ICTAI), pages 494–501. IEEE, 2015.

37 Mattia Rizzini, Chris Fawcett, Mauro Vallati, Alfonso E Gerevini, and Holger H Hoos. Static
and dynamic portfolio methods for optimal planning: An empirical analysis. International
Journal on Artificial Intelligence Tools, 26(01):1760006, 2017.

38 Burr Settles. Active learning literature survey, 2009. URL: https://api.semanticscholar.
org/CorpusID:324600.

39 Patrick Spracklen, Nguyen Dang, Özgür Akgün, and Ian Miguel. Automated streamliner
portfolios for constraint satisfaction problems. Artificial Intelligence, 319:103915, 2023.

40 Katrin Tomanek and Udo Hahn. A comparison of models for cost-sensitive active learning. In
Coling 2010: Posters, pages 1247–1255, 2010.

41 Yu-Lin Tsou and Hsuan-Tien Lin. Annotation cost-sensitive active learning by tree sampling.
Machine Learning, 108(5):785–807, 2019.

42 Mauro Vallati, Lukáš Chrpa, and Diane Kitchin. Asap: an automatic algorithm selection
approach for planning. International Journal on Artificial Intelligence Tools, 23(06):1460032,
2014.

43 Riccardo Volpato and Guangyan Song. Active learning to optimise time-expensive algorithm
selection. arXiv preprint arXiv:1909.03261, 2019.

44 Liantao Wang, Xuelei Hu, Bo Yuan, and Jianfeng Lu. Active learning via query synthesis and
nearest neighbour search. Neurocomputing, 147:426–434, 2015. Advances in Self-Organizing
Maps Subtitle of the special issue: Selected Papers from the Workshop on Self-Organizing
Maps 2012 (WSOM 2012). doi:10.1016/j.neucom.2014.06.042.

45 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based
algorithm selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

46 Lin Xu, Frank Hutter, Jonathan Shen, Holger H Hoos, and Kevin Leyton-Brown. Satzilla2012:
Improved algorithm selection based on cost-sensitive classification models. Proceedings of SAT
Challenge, pages 57–58, 2012.

47 Jingbo Zhu, Huizhen Wang, Benjamin K. Tsou, and Matthew Ma. Active learning with
sampling by uncertainty and density for data annotations. IEEE Transactions on Audio,
Speech, and Language Processing, 18(6):1323–1331, 2010. doi:10.1109/TASL.2009.2033421.

CP 2024

https://api.semanticscholar.org/CorpusID:324600
https://api.semanticscholar.org/CorpusID:324600
https://doi.org/10.1016/j.neucom.2014.06.042
https://doi.org/10.1109/TASL.2009.2033421

38:12 Frugal Algorithm Selection

A Appendix A: Sequence Diagram Overview

Figure 4 The diagram depicts the process of passive learning, which includes preprocessing,
splitting the dataset, and training multiple binary Random Forest (RF) algorithm classifiers and
timeout classifiers, followed by a hard voting mechanism to finalize predictions. Timeout predictors
are used for filtering algorithm predictors in the voting mechanism. All models are included in the
voting mechanism where the timeout predictor configuration is not applied.

Figure 5 The diagram illustrates the steps in the proposed approach. It starts with splitting the
training set into an initial training set and a pool for each model. Multiple binary Random Forest
(RF) algorithm and timeout classifiers are then trained. The instance selection process involves
identifying the most uncertain data points across all models and excluding instances predicted to
time out by the timeout predictors. A dynamic timeout is applied during the labeling process, which
is increased when there is no performance enhancement on the validation set. After labeling, the
iterative process begins again, continuously refining the models.

E. Kuş, Ö. Akgün, N. Dang, and I. Miguel 38:13

0.5 0.6 0.7 0.8 0.9 1.0
Highest Class Probability x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Un
ce

rta
in

ty
 M

ea
su

re

Min Value -0.50

Min Value 0.00

Min Value -1.00

Uncertainty Measurements as a Function of Highest Class Probability
Least Confidence
Margin Sampling
Entropy-based Sampling

Figure 6 Uncertainty measurements as a function of the highest class probability. The red curve
represents the Least Confidence uncertainty (LC) calculated as LC = x − 1, the green curve denotes
Margin Sampling (MS) using the formula MS = x − (1 − x), and the blue curve illustrates the
Entropy-based method (H(x) = −[x log2(x) + (1 − x) log2(1 − x)]). Critical minimum values for each
method are marked with black circles and annotated to emphasise the points where the uncertainty
function is minimised.

B Appendix B: Analysis of Uncertainty Measurement Behaviours in
Active Learning for Binary Classification

There are three main approaches for uncertainty sampling in active learning. However, in a
binary classification setting (which is what we use) these approaches perform identically to
each other. We explain the different approaches here. Figure 6 shows the behaviour of these
uncertainty sampling methods graphically.

We implement “Least Confidence” in our approach.

Least Confidence: for a given input x and an output label ŷ, we can measure the posterior
probability P (ŷ|x; θ) of observing ŷ given x via the current model (parameterised by
θ). The Least Confidence method selects data points x∗ with the smallest maximum
posterior probability across all labels:

x∗ = argmin
x

max
ŷ

P (ŷ|x; θ) (1)

Margin-based: this approach takes the two highest posterior probability values for each
input data point x and calculates their difference. The smaller the difference, the less
certain the model is about its prediction and vice versa. More formally, let ŷ1 and ŷ2
the output labels with the highest and second-highest posterior probabilities for a given
input x, respectively, the queried points x∗ are chosen as:

x∗ = argmin
x

P (ŷ1|x; θ) − P (ŷ2|x; θ) (2)

CP 2024

38:14 Frugal Algorithm Selection

Entropy-based: this approach takes into account the posterior probability values across
all output classes. The idea is to select the data points x∗ where there is a high entropy
among the predicted output labels:

x∗ = argmax
x

−
∑

i

P (ŷ|x; θ) log P (ŷ|x; θ) (3)

C Appendix C: Performance of 8 individual configurations

Figure 7 illustrates a side-by-side comparison of the following eight active learning strategies
in binary classification without aggregation across configurations:

Uncertainty Sampling without Timeout Predictor & without Dynamic Timeout (NO TO
& NO DT)
Uncertainty Sampling with Timeout Predictor (TO)
Uncertainty Sampling with Dynamic Timeout (DT)
Uncertainty Sampling with Timeout Predictor and Dynamic Timeout (TO+DT)
Random Sampling without Timeout Predictor & without Dynamic Timeout (NO TO &
NO DT)
Random Sampling with Timeout Predictor (TO)
Random Sampling with Dynamic Timeout (DT)
Random Sampling with Timeout Predictor and Dynamic Timeout (TO+DT)

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

AS
P-

PO
TA

SS
CO

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

CP
M

P-
20

15

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

CS
P-

20
10

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

0.6

M
AX

SA
T1

2-
PM

S
 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

0.4

M
AX

SA
T1

9-
UC

M
S

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

0.6

QB
F-

20
11

 M

in
 In

st
an

ce
 C

os
t

Uncertainty (NO TO & NO DT)
Uncertainty (DT)
Uncertainty (TO)

Uncertainty (TO+DT)
Random (NO TO & NO DT)
Random (DT)

Random (TO)
Random (TO+DT)

Figure 7 Comparison of performance across eight configurations as described in the paper. Each
configuration was normalised according to the passive learning prediction performance ratio.

E. Kuş, Ö. Akgün, N. Dang, and I. Miguel 38:15

D Appendix D: Experimental Setup

This study used a Random Forest classifier configured with 100 estimators and the Gini
impurity measure to determine the best splits. Each tree is limited to using up to the square
root of the number of features, and the depth of the decision trees is practically unlimited
(with a maximum depth set to 231). Nodes require at least two samples before splitting, and
bootstrapping is enabled for sampling data when building each decision tree. These settings
were determined through experimentation in the passive learning setup and were consistently
used throughout the study.

We also addressed missing data by removing features where more than 20% of the
instances had missing values and applied a median imputer to fill the remaining gaps.

We employed a cross-validation approach with 10 splits to validate the robustness of our
study. To ensure reproducibility, we used 5 distinct seeds (7, 42, 99, 123, 12345) across our
experiments, ensuring consistent generalization across multiple runs.

To determine when to increase the timeout in configurations where dynamic timeout is
used, 10% of the training set was allocated as the validation set. Throughout the experiments,
timeout values were scaled by a factor of 10, following the PAR10 measure.

Additional Parameters and Configurations.
Timeout Predictor Usage: This parameter determines whether the timeout predictor is

used on the system.
Timeout Limit: Sets the initial time for the dynamic timeout. We used an initial timeout of

100 seconds when employing dynamic timeout, and a fixed timeout of 3600 seconds when
not using dynamic timeout.

Timeout Increase Rate: Adjusts the dynamic timeout when there is no improvement in
prediction performance on the validation set. We set this rate to increase by 100 seconds
when no improvement was observed.

Initial Train Size: Determines the size of the initial training set for uncertainty selection.
The initial training set was created by randomly selecting 20 data points from the overall
training set.

Query Size: Refers to the percentage of the dataset queried in each iteration. We set this
to 1%, meaning 1% of the total pool of candidates was queried in each iteration of our
experiments.

For active learning, we utilized the modAL framework [12], which facilitated the implement-
ation of uncertainty sampling and other active learning strategies in our experiments.

E Appendix E: Description Table of Selected Datasets

Table 1 shows key information about the datasets used in this study. It includes the time it
took for the algorithms to run, the Virtual Best Solver(VBS) representing the best algorithm
for each problem, and the Single Best Solver (SBS) as the best overall algorithm. While VBS
is the hypothetical best, SBS serves as a benchmark for comparison against other algorithms.

CP 2024

38:16 Frugal Algorithm Selection

Table 1 Descriptive statistics of selected datasets. Times rounded to the nearest whole number.

Dataset Instances Algorithms Features Total Time VBS SBS
ASP-POTASSCO 1294 11 138 2,085h 8h 112h
CPMP-2015 527 4 22 682h 33h 134h
CSP-2010 2024 2 86 435h 49h 82h
MAXSAT12-PMS 876 6 37 1,472h 8h 85h
MAXSAT19-UCMS 572 7 54 545h 20h 52h
QBF-2011 1368 5 46 352h 28h 300h

F Appendix F: Timeout (TO) Configuration Impact on Passive
Learning

ASP-P
OTA

SSCO

CPMP-20
15

CSP-20
10

MAXSAT12
-P

MS

MAXSAT19
-U

CMS

QBF-20
11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

…
R

un
tim

e

Passive…Learning
Passive…Learning…(TO)

Figure 8 Comparison of Timeout (TO) Configuration Impact on Passive Learning: The graph
illustrates that implementing the TO configuration in passive learning on the test set does not
significantly enhance performance, yet importantly, it does not compromise prediction accuracy
either.

An Investigation of Generic Approaches to Large
Neighbourhood Search
Filipe Souza # Ñ

Insight SFI Research Centre for Data Analytics, National University of Ireland Galway, Ireland
SFI Centre for Research Training in Artificial Intelligence, Cork, Ireland
School of Computer Science & IT, University College Cork, Ireland

Diarmuid Grimes Ñ

Munster Technological University, Cork, Ireland
SFI Centre for Research Training in Artificial Intelligence, Cork, Ireland

Barry O’Sullivan Ñ

Insight SFI Research Centre for Data Analytics, National University of Ireland Galway, Ireland
SFI Centre for Research Training in Artificial Intelligence, Cork, Ireland
School of Computer Science & IT, University College Cork, Ireland

Abstract
A bottleneck in the more wide-spread use of approaches such as Large Neighborhood Search is the
need for domain-specific knowledge. To this end, a number of generic LNS methods have previously
been proposed that automate the selection of variables in the neighborhood with the aim of reducing
the expertise requirement. Recently a new generic approach, Improved Variable-Relationship Guided
LNS (iVRG), was proposed that showed promising initial results. This method combines static
information regarding problem structure and dynamic information from search performance in its
neighborhood selection.

In this work, we first show the generalisability of the approach by comparing it on two widely
studied problems, car sequencing and steel mill slab, where it outperformed existing generic ap-
proaches. We then provide a detailed examination of iVRG, investigating its key components
(static/dynamic information, the use of a Tournament Selection operator) to assess their individual
impact and provide insight into iVRGs overall behavior.

2012 ACM Subject Classification Computing methodologies → Heuristic function construction

Keywords and phrases Combinatorial Optimization, Metaheuristics, Large Neighborhood Search
(LNS), Machine Reassignment Problem, Car Sequencing Problem, Steel Mill Slab Problem

Digital Object Identifier 10.4230/LIPIcs.CP.2024.39

Category Short Paper

Supplementary Material Software (Source Code): https://github.com/filipesouzait/iVRG-LNS

Funding Supported by SFI Centre for Research Training in Artificial Intelligence under Grant No.
18/CRT/6223 and SFI under Grant No. 12/RC/2289-P2, co-funded under the European Regional
Development Fund.

1 Introduction

Large neighborhood search [15] is a metaheuristic approach that works by iteratively improv-
ing an initial solution through optimising subsets of variables. Each iteration involves the
selection and relaxation (unassignment) of a neighborhood of variables (destroy phase). The
problem is then optimised (repair phase) with the neighborhood restricted to only those
variables that can be searched over, all other variables are fixed to their values in the current
solution. This has led to significant advances in terms of problem size that can be handled
by such optimisation algorithms, enabling them to explore vast solution spaces efficiently.

© Filipe Souza, Diarmuid Grimes, and Barry O’Sullivan;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 39; pp. 39:1–39:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:F.desouza@cs.ucc.ie
https://www.crt-ai.ie
https://orcid.org/0009-0008-3153-1898
https://www.crt-ai.ie
https://orcid.org/0000-0001-5551-6504
http://osullivan.ucc.ie
https://orcid.org/0000-0002-0090-2085
https://doi.org/10.4230/LIPIcs.CP.2024.39
https://github.com/filipesouzait/iVRG-LNS
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 An Investigation of Generic Approaches to LNS

There are a number of components that must be chosen for a given implementation
of the basic LNS framework: the method to select the variables in a given neighborhood,
the size of the neighborhood, and the solution approach (typically an exact method such
as CP/MIP). However, the more general applicability of LNS to a wide range of problem
domains remains a challenge as it often requires domain-specific insights to effectively design
the neighborhood selection mechanism. To address this limitation a number of domain-
independent neighbourhood selection approaches have been proposed down through the
years [12, 7, 6, 10]. These approaches involve strategies that can adapt to various problem
domains without relying on domain-specific knowledge.

Despite the importance of domain-independent neighbourhood selection approaches recent
research in the area of generic neighborhood selection operators has been relatively scarce
with much of the focus on adaptive LNS approaches [13, 5, 20]. These approaches use a
portfolio of heuristics with the system adapting weights based on search performance to
decide on the probability of selecting a given heuristic in the next iteration. The quality of
these approaches is sensitive to the diversification of heuristics included in the portfolio. More
recently there has also been a focus on machine learning approaches for learning neighborhood
selection, albeit primarily restricted to mixed integer programming (MIP) [10, 22].

In this paper, we present an analysis of a recently proposed domain-independent neigh-
bourhood selection approach, Improved Variable-Relationship Guided LNS (iVRG) [19]. This
approach showed promising results, albeit only evaluated on Google’s Machine Reassign-
ment Problem (MRP). We delve into its key components, including the use of structural
relationships, search state information, and a tournament selection mechanism.

To provide a robust comparative analysis, we empirically compare iVRG with two state-of-
the-art generic neighbourhood selection approaches: Propagation Guided LNS (PG-LNS) [12]
and Cost Impact Guided LNS [6]. The former was originally evaluated using the Car
Sequencing Problem (CSP), while the latter was tested on the Steel Mill Slab Problem
(SMSP). We extend our previous analysis [19] to these two problem domains to assess the
generalisability of iVRG. We then investigate the impact of the different components of the
iVRG approach, the use of structural information, the use of search state information, and
finally the use of tournament selection within the heuristic.

2 Related Work

2.1 Propagation Guided Large Neighbourhood Search

Perron et al. [12] proposed using propagation information to identify strongly connected
neighbourhoods. To generate this information the basic PG-LNS approach starts from all
variables unassigned and initially chooses a variable at random. It then repeatedly chooses a
variable to assign until a predefined neighborhood size is reached. The variable to assign
is chosen randomly from the top ten variables ranked according to their domain reduction
after assigning the previously selected variable. If this list is empty, selection reverts to a
random choice from the remaining relaxed variables.

A complementary approach, Reverse PG-LNS, was also proposed. This starts from all
variables being assigned and repeatedly unassigns a variable until the desired neighborhood
size is achieved. The variable to unassign is chosen randomly from a list of the ten variables
with the highest closeness score accumulated from the previous selected variables. This score
is based on the impacts computed in PG-LNS.

F. Souza, D. Grimes, and B. O’Sullivan 39:3

2.2 Cost-Impact Guided LNS
Cost-Impact Guided Large Neighbourhood Search (CIG-LNS) [6] selects variables for relaxa-
tion based on their impact on the cost (objective function). This cost impact is determined
by observing the variations in the lower bound that occur when each variable is assigned a
value. These variations are captured through dives, where a dive is the re-application of the
current solution in a rearranged order. An additional parameter α is incorporated into each
variable’s score to control the level of diversification. The parameter value is in the range
[0, 1], with 0 equating to pure random selection and 1 being that the cost alone is used.

3 Improved Variable-Relationship Guided LNS

Improved Variable-Relationship Guided LNS [19] is a neighborhood selection operator that
uses the structural relationships between variables to guide search towards connected neighbor-
hoods. It combines this static information with dynamic information from search to prioritize
variables with a higher likelihood of enhancing the solution, and uses tournament selection
to only consider a subset of variables for selecting the next variable for the neighborhood.
The latter serves to both increase diversification, and to reduce computational effort (since
heuristic information is only computed for the subset of variables).

3.1 Structural Relationship
The structural relationship is incorporated in neighborhood selection by considering only
variables linked to the most recently relaxed variable. Specifically, the probability of selecting
a variable j subsequent to the relaxation of variable i is determined by the following formula:

1
|Ci|

∗
∑

c∈Ci,j

1
|Vc|

where Ci,j denotes the set of constraints involving both variables j and i, while |Vc| is the
arity of constraint c, and |Ci| is the number of constraints involving variable i. The logic of
using constraint arity is that the relevance of the relationship between any two variables due
to a constraint diminishes as the number of variables sharing that constraint increases. At
its most extreme, when a constraint includes all variables, it fails to offer meaningful insight
into the strengths of the relationships between those variables. Note since these are static
values, this need only be computed once at the start of an LNS run on an instance.

However, there are also problems where variables without such a direct relationship can
still contribute greatly to solution improvement when selected together (e.g. swapping their
bins in a bin packing problem). For these problems, forcing all neighborhood variables to be
connected may impede performance. Therefore, iVRG uses the combination of structural
relationship and search state information (SSI) for half of the neighborhood variables, and
otherwise only uses SSI.

3.2 Search State Information
There are a number of different forms of search state information (SSI) that could be used,
e.g. variables that are in conflict during search, variables whose selection resulted in large
improvements during search, etc. In previous work on iVRG [19], two aspects of SSI were
combined. The first is the Variable Cost, that centered on the principle that the most
impactful neighborhood selections involve high-cost variables. This heuristic measures a

CP 2024

39:4 An Investigation of Generic Approaches to LNS

variable’s contribution to the overall cost by computing the impact on the objective function of
its removal from the current solution. The second SSI component is focused on diversification,
maintaining a count of the number of iterations the variable was relaxed in. The heuristic
considers the Variable Cost divided by the frequency of selection across previous iterations.

3.3 Tournament Selection

Tournament selection within the iVRG framework selects the variable with best SSI value
from a subset of variables. This subset can be either selected based on their structural
relationship to the previously relaxed variable (using the formula defined in Section 3.1), or
randomly selected. As previously mentioned, variables that don’t share a constraint can also
contribute to solution improvement when selected together. Therefore, half the tournaments
have the subset of variables selected randomly for the tournament, and the other half use
the relationship to the previously relaxed variable.

4 Problem Description

The Steel Mill Slab Problem (SMSP) [8, 14] involves assigning steel orders to slabs while
minimising slab wastage. Each slab has a maximum weight capacity, and orders have specific
weight and colour. The challenge is to efficiently group orders onto slabs in a way that we
have a maximum of two colours per slab while minimising the total waste.

The Car Sequencing Problem (CSP) was initially formulated as a satisfaction problem [1,
16], involving the assignment of a sequence of cars to a limited number of slots in a production
line where each bay installs specific options and has a limited capacity. Many optimisation
variants with different objective functions have since been proposed (e.g. [11, 3]). In this
work we consider the variant proposed by Souza et al. [18] that defines the objective function
in terms of minimising the total number of options in the cars not placed in the production
line.

The Machine Reassignment Problem (MRP) considered here was proposed by Google
for the 2012 Roadef Challenge.1 The problem requires optimising the reallocation of a set
of processes to a set of machines with the goal of minimising a multi-objective function:
weighted sum of objective function components. The problem further involves a number
of constraints related to capacity, conflicting subsets of processes, as well as spread and
dependency amongst groups of processes. Due to its complexity and specificity, the MRP
has been the focus of many works [2].

The problem type instances were chosen based on what each approach (PG-LNS, CiG-
LNS and iVRG) had used for their evaluation in their respective publications. They also
represent a diverse set of combinatorial optimisation challenges with varying constraints
and complexities (the low propagation of the SMSP, the higher constrained solutions of the
CSP, and the density and size of the MRP instances). This variety ensures a comprehensive
evaluation of each heuristic’s adaptability and scalability. Figure 1 shows the structure of a
sample instance for each of the problem types. We note that the SMSP is very sparse, with
disconnected components. The MRP on the other hand is extremely dense, while the CSP is
somewhat in the middle of the other two problem types in terms of its density.

1 https://www.roadef.org/challenge/2012/files/problem_definition_v1.pdf

https://www.roadef.org/challenge/2012/files/problem_definition_v1.pdf

F. Souza, D. Grimes, and B. O’Sullivan 39:5

(a) SMSP. (b) CSP. (c) MRP.

Figure 1 Problem structure (variable relationship) of sample instances: (a) Steel Mill Slab
Problem, (b) Car Sequencing Problem, and the (c) Machine Reassignment Problem.

5 Experimental Setup

The experiments were run on a machine running Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-
70-generic) with 16 cores and 32Gb of RAM. All runs had a runtime cutoff of 2 minutes per
instance for the 2 smaller problem types: the Car Sequencing Problem and the Steel Mill
Slab Problem. While for the more complex Machine Reassignment Problem, the cutoff was 5
minutes per instance. Those runtimes were chosen to be consistent with the values used in
previous literature. The MRP was introduced in the ROADEF 2012 with a runtime cutoff of
5 minutes and most of the papers that addressed this problem focused on this setting. The
runtime used in the original PG-LNS paper [12] for their CSP experiments was 2 minutes. In
the paper that introduced CIG-LNS [6] the authors used an iteration-limit of 1000 for their
SMSP experiments rather than a time-limit, therefore we used 2 minutes for the SMSP in
these experiments, which generated more than 2000 iterations on average for each approach.

Gecode2 was the CP solver used for subproblem optimisation in the two smallest instance
types. However as it could not handle the large MRP, a dedicated solver was implemented
for this problem type. Furthermore, as the approaches have stochastic components, the
presented results are the average of 10 runs with different seeds. Table 1 presents the
parameter configurations that were used to run the experiments. The failure threshold / first
solution improvement were the stopping conditions used by the CP solver per iteration.

Table 1 Configurations parameters for the benchmark experiments.

Parameter Value

Runtime 120 seconds (SMSP, CSP); 300 seconds (MRP)
Neighbourhood Size 10 variables
Tournament Size 10 variables
Failure Threshold 200

It should be noted that for PG-LNS we implemented the best configuration presented
in [12], that iterates through the following three neighborhood operators: Propagation
Guided; Reverse Propagation Guided; and purely random selection. However, we defined the

2 https://www.gecode.org

CP 2024

https://www.gecode.org

39:6 An Investigation of Generic Approaches to LNS

neighbourhood size based on the number of relaxed variables instead of the search space size,
in order to compare all approaches on the same neighbourhood size. Similarly for CIG-LNS,
we implemented the optimal configuration identified in [6]. In particular the value of α

was set to 0.5, and a dive was performed after every 10 unsuccessful LNS iterations and
subsequent to each improve solution.

5.1 Benchmark Instances
For the MRP, the three sets of instances from the 2012 Roadef challenge [9] were used (A,B
and X), where each set has 10 instances. The A instance set is composed of smaller instances
with a maximum of 1k variables and domains of size 100. The other two sets of instances are
more complex and larger, with up to 50k variables and domains of up to 5k. For the CSP,
three sets of hard instances proposed by Caroline Gagne and available on the CSPLib [16]
were used. There are 10 instances in each set and the total number of cars per instance
(equal to the number of variables, and to domain size -1) is 200, 300 and 400, respectively,
for the three sets. Finally, for the Steel Mill Slab Problem, the same set of instance used
in [6] was used. This set involves 80 instances, each with 111 variables and domain size 111,
divided into four groups based on the number of slab capacities available (2,3,4 and 5).

5.2 Evaluation Metrics
The metrics used for our evaluation on the three different problem types are a normalized
scoring metric to assess the quality of the solution, and a similarity metric to assess the
diversity of the neighborhoods. Note all three problem types are minimisation.

The score metric is that used in ROADEF’12 [9]. The metric measures the distance the
solution found is from the best known solution, but also considers how much improvement
was made from the initial solution. It is calculated ((Cost − BK)/initialCost) ∗ 100,
where Cost denotes the cost of the solution found, BK is the best known cost for the problem
instance [21, 2, 17, 4], and initialCost is the cost of the initial solution. For fair comparison,
note that the same initial solution was used for all algorithms for a given run on a given
instance. This score was chosen because the solution costs have a huge difference in the scale,
e.g. the best known solution for MRP instance A2_1 is 151 and for A2_2 is 720671511.

The similarity metric represents the average percentage of intersection (common variables
in neighborhoods) observed across the first 1,000 iterations of the LNS, as illustrated in the
equation below. In the case where an approach did not manage to perform 1,000 iterations
in the defined runtime (which occurred only for PG-LNS on the largest MRP problem sets),
the metric represents the average percentage of intersection in all iterations.

Similarity = 1(1000
2

) 999∑
i=0

999∑
j=i+1

|N [i] ∩ N [j]|
|N [i]| .

6 Results

6.1 Comparison of different domain-independent neighborhood
operators for LNS

We first investigated if the performance previously shown on MRP [19] would hold on the
SMSP and the CSP. We compared the three generic neighborhood selection heuristics and a
pure random approach (Rand), in terms of average score, similarity and number of iterations

F. Souza, D. Grimes, and B. O’Sullivan 39:7

across problem sets. The results are given in Table 2, showing that iVRG consistently
outperformed the other approaches on all problem sets. CIG-LNS and PG-LNS had varying
performance across the problem types, with the latter outperforming the former on the CSP
but the opposite the case for the other two problem types. Indeed in our experiments the
random approach outperformed both on the SMSP, albeit by a small amount.

Somewhat surprisingly we find that iVRG has the highest similarity in the two smallest
problem types. However, we note that it was not significantly higher than the other approaches.
Indeed all approaches contain a strong random component, but a very low similarity is
not necessarily a good characteristic, for example to try to maintain a balance between
diversification and intensification of search.

An analysis of the number of iterations performed by the different approaches also provides
insights. Firstly, PG-LNS and CIG-LNS suffered from scalability. In particular for the MRP,
the number of iterations performed on the instance sets B and X, which had instances with
up to 50k variables and domains of maximum size 5k, were more than 80% less than on the
A set. In comparison, Rand and iVRG had less than 50% drop in iterations. The cost of
computing the cost-impact / propagation-impact was prohibitive for these large instances.

The iterations on the other two problem sets demonstrate the two extreme cases in
neighborhood selection that we wish to avoid, both of which are heavily influenced by a
lack of relationship amongst variables in the selected neighborhood. In one case there is no
search space to search, as the only consistent values the relaxed variables can take are the
values they take in the current solution. Therefore, there are many iterations performed,
with few nodes explored. This can be seen for the CSP, with Rand and CIG-LNS performing
nearly an order of magnitude more iterations than PG-LNS and iVRG. Indeed analysis of
the average nodes explored per iteration shows that Rand and CIG-LNS explored around
10 nodes per iteration on average, compared to 200-300 for PG-LNS and iVRG. We also
note that both the latter two approaches were significantly better in terms of score on this
problem type compared to the former two.

The opposite case is where there is too large a search space, due to lack of propagation
when values assigned. This is the case for the SMSP where the variables are not strongly
connected, as shown in Figure 1a. Here, iVRG performed many more iterations than the
others, with average nodes per iteration of 100 for iVRG compared to approximately three
times as many by the other approaches. Given the failure threshold of 200, this shows that
the solver was able to improve most neighborhoods chosen by iVRG, but rarely was able to
improve any of the neighborhoods chosen by the other methods for the SMSP.

Table 2 Comparison of iVRG, PG-LNS, CIG-LNS, and Random Selection on the three problem
types: Steel Mill Slab (SMSP), Car Sequencing (CSP), and Machine Reassignment (MRP).

Problem Group Score Similarity #Iterations (x1000)
Rand PG CIG iVRG Rand PG CIG iVRG Rand PG CIG iVRG

SMSP

2 10.23% 10.24% 10.79% 5.51% 9.01% 10.10% 9.62% 10.24% 1.7 1.7 1.6 4.4
3 10.80% 11.81% 11.59% 5.17% 9.01% 10.06% 9.76% 10.26% 2.0 1.9 1.9 4.3
4 5.51% 5.97% 5.68% 2.81% 9.01% 10.11% 9.85% 10.12% 2.3 2.3 2.3 7.6
5 4.78% 5.57% 4.58% 2.13% 9.01% 10.17% 10.05% 10.08% 2.7 2.7 2.6 7.6
Overall 7.83% 8.40% 8.16% 3.91% 9.01% 10.11% 9.82% 10.17% 2.2 2.1 2.1 6.0

CSP

200 9.71% 5.36% 8.97% 4.43% 5.00% 5.01% 5.26% 5.51% 78.2 12.7 131.7 18.4
300 10.36% 5.46% 9.57% 3.83% 3.33% 3.34% 3.44% 3.64% 52.4 9.1 87.3 12.8
400 11.58% 5.67% 10.11% 3.86% 2.50% 2.50% 2.55% 2.72% 32.9 6.3 55.5 9.1
Overall 10.55% 5.50% 9.55% 4.04% 3.61% 3.61% 3.75% 3.95% 54.5 9.3 91.5 13.4

MRP

A 3.69% 5.25% 3.17% 2.33% 4.56% 5.11% 8.80% 5.06% 87.3 7.6 98.7 70.1
B 0.31% 0.94% 0.36% 0.26% 0.26% 0.26% 3.14% 0.35% 52.2 0.8 13.6 44.0
X 0.46% 0.62% 0.41% 0.34% 0.29% 0.25% 3.69% 0.38% 53.9 0.8 15.7 34.9
Overall 1.49% 2.27% 1.31% 0.98% 1.70% 1.87% 5.21% 1.93% 64.5 3.0 42.7 49.7

CP 2024

39:8 An Investigation of Generic Approaches to LNS

6.2 Analysis of iVRG Components

Given the performance of iVRG in the previous section, we next investigated the contribution
of each of its three main components to this performance. In particular we compared iVRG
against the following iVRG versions: without tournament selection (NonT); without using
search information (NonS); and finally without using the structural relationship (NonR).
For NonS, variables were chosen randomly, albeit maintaining the structural relationship
with previously selected variables in the neighborhood.

The results are presented in Table 3, and show that overall the use of structural rela-
tionship had the biggest impact. NonR consistently had the biggest drop in performance
compared to iVRG. Tournament selection was the next most important, with significant
drops in performance on the CSP and the MRP. Somewhat surprisingly, the results of NonS
demonstrate that the search state information has only a relatively small impact on iVRG
performance across all three problem sets, compared to the other two components.

Interestingly, we find a stronger correlation between similarity and performance here than
in the previous table. NonR has consistently higher similarity than iVRG. This indicates
a more diverse neighborhood selection in iVRG due to the effect of variable relationships,
which restrict the variables available to relax to a different group (based on relationships of
the first chosen variable) every iteration.

NonT also had higher similarity for all except the sparse SMSP problems, with these
problems being the only ones where NonT had comparable performance with iVRG. Of
course, tournament selection has less impact on smaller instances. Note that under the
current settings of 10 for both neighborhood size and tournament size, 100 variables are
considered in each LNS iteration when choosing the neighborhood, and SMSP instances had
only 111 variables.

The average iterations metric reveals the importance of the relationship information
in neighborhood selection in iVRG. Without this, iVRG suffers from the same pitfalls as
discussed in Table 2. The sparseness of the SMSP results in searching a large search space,
even with just 10 variables in the neighborhood, due to the lack of propagation. On the other
hand, it performs a much greater number of iterations on the two other problem sets, but
many of these required little or no search as again disconnected neighborhood variables in
much more constrained instances resulting in most variables being assigned without search.

Table 3 iVRG compared to iVRG without: Tournament Selection (NonT), search state informa-
tion (NonS), and variable-relationship (NonR).

Problem Group Score Similarity #Iterations (x1000)
iVRG NonT NonS NonR iVRG NonT NonS NonR iVRG NonT NonS NonR

SMSP

2 5.51% 6.23% 6.24% 10.38% 10.24% 9.92% 9.82% 22.42% 4.4 4.3 4.1 1.8
3 5.17% 4.93% 5.34% 14.41% 10.26% 10.03% 9.96% 21.57% 4.3 4.5 4.4 2.1
4 2.81% 2.79% 2.82% 13.68% 10.12% 9.88% 9.85% 21.27% 7.6 7.9 8.0 2.1
5 2.13% 2.06% 2.28% 17.38% 10.08% 9.90% 9.84% 20.97% 7.6 8.0 7.4 1.9
Overall 3.91% 4.00% 4.17% 13.96% 10.17% 9.93% 9.87% 21.56% 6.0 6.2 6.0 2.0

CSP

200 4.43% 10.47% 4.50% 9.59% 5.51% 12.57% 5.02% 6.03% 18.4 14.1 14.2 86.8
300 3.83% 11.11% 4.28% 10.71% 3.64% 10.92% 3.35% 4.02% 12.8 9.7 9.9 56.1
400 3.86% 9.57% 3.87% 11.32% 2.72% 7.21% 2.50% 3.06% 9.1 6.1 7.4 34.9
Overall 4.04% 10.38% 4.22% 10.54% 3.95% 10.23% 3.62% 4.37% 13.4 10.0 10.5 59.3

MRP

A 2.33% 6.04% 2.66% 5.85% 5.06% 23.83% 4.75% 10.90% 70.1 65.4 63.1 91.2
B 0.26% 0.74% 0.29% 0.39% 0.35% 20.10% 0.28% 0.61% 44.0 8.5 44.9 57.0
X 0.34% 0.90% 0.37% 0.46% 0.38% 20.83% 0.31% 0.67% 34.9 7.2 40.8 89.2
Overall 0.98% 2.56% 1.11% 2.23% 1.93% 21.59% 1.78% 4.06% 49.7 27.0 49.6 79.1

F. Souza, D. Grimes, and B. O’Sullivan 39:9

The advantages of tournament selection is particularly prominent on the large MRP
B and X instances, where the cost of computing heuristic values and sorting across 1000s
of variables is prohibitive. Here, in the worst case, the SSI must be calculated for 50,000
variables, compared to 100 variables with tournament selection. This demonstrates that the
benefit of tournament selection is not only in terms of diversification, as shown by NonT
similarity scores, but also in terms of scalability.

7 Conclusion

We have demonstrated the generalisability of the recently proposed iVRG. It was shown to
significantly outperform similar approaches (PG-LNS and CIG-LNS) on three challenging
problem types of different characteristics. Additional analysis revealed that it is able to avoid
two of the main pitfalls of neighborhood selection, unlike the comparison approaches. The
main iVRG component from this respect was the use of static information regarding the
relationship of variables, in order to select neighborhoods with a high degree of connectivity.

An ablation study of the main components was then performed, considering the use
by iVRG of: static structural information; dynamic search state information; and finally
the use of tournament selection within the neighborhood operator. The results revealed
that the problem structure was the most important aspect, followed closely by tournament
selection. The former contributes to the algorithm’s ability to adapt for distinct problem
characteristics, effective even for problem such as Steel Mill Slab with a low level of relationship
between decision variables. Tournament selection was shown to be effective in increasing
diversification, and scalability. While, the search state information had relatively low impact
in iVRG compared to the other two components, it still yielded consistent improvements
over random selection. Indeed these two components are generic and could possibly result in
improved performance if plugged into other LNS approaches.

References
1 Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger, Mohamed Siala, and Toby

Walsh. Sat and hybrid models of the car sequencing problem. In International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pages
268–283. Springer, 2014.

2 Dario Canales, Nicolas Rojas-Morales, and Maria-Cristina Riff. A survey and a classification
of recent approaches to solve the google machine reassignment problem. IEEE Access, 8:88815–
88829, 2020.

3 Jens Gottlieb, Markus Puchta, and Christine Solnon. A study of greedy, local search, and ant
colony optimization approaches for car sequencing problems. In Applications of Evolutionary
Computing: EvoWorkshops 2003, pages 246–257. Springer, 2003.

4 Stefan Heinz, Thomas Schlechte, Rüdiger Stephan, and Michael Winkler. Solving steel mill
slab design problems. Constraints, 17(1):39–50, 2012.

5 Philippe Laborie and Daniel Godard. Self-adapting large neighborhood search: Application to
single-mode scheduling problems. Proceedings MISTA-07, Paris, 8, 2007.

6 Michele Lombardi and Pierre Schaus. Cost impact guided lns. In International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pages
293–300. Springer, 2014.

7 Jean-Baptiste Mairy, Yves Deville, and Pascal Van Hentenryck. Reinforced adaptive large
neighborhood search. In The Seventeenth International Conference on Principles and Practice
of Constraint Programming (CP 2011), page 55. Springer Berlin/Heidelberg, Germany, 2011.

8 Ian Miguel. CSPLib problem 038: Steel mill slab design. http://www.csplib.org/Problems/
prob038.

CP 2024

http://www.csplib.org/Problems/prob038
http://www.csplib.org/Problems/prob038

39:10 An Investigation of Generic Approaches to LNS

9 H Murat Afsar, Christian Artigues, Eric Bourreau, and Safia Kedad-Sidhoum. Machine
reassignment problem: the roadef/euro challenge 2012, 2016.

10 Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020.

11 Laurent Perron and Paul Shaw. Combining forces to solve the car sequencing problem. In
International Conference on Integration of Artificial Intelligence (AI) and Operations Research
(OR) Techniques in Constraint Programming, pages 225–239. Springer, 2004.

12 Laurent Perron, Paul Shaw, and Vincent Furnon. Propagation guided large neighborhood
search. In International Conference on Principles and Practice of Constraint Programming,
pages 468–481. Springer, 2004.

13 Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science, 40(4):455–472, 2006.

14 Pierre Schaus, Pascal Van Hentenryck, Jean-Noël Monette, Carleton Coffrin, Laurent Michel,
and Yves Deville. Solving steel mill slab problems with constraint-based techniques: Cp, lns,
and cbls. Constraints, 16:125–147, 2011.

15 Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In International conference on principles and practice of constraint programming,
pages 417–431. Springer, 1998.

16 Barbara Smith. CSPLib problem 001: Car sequencing. http://www.csplib.org/Problems/
prob001.

17 Filipe Souza, Diarmuid Grimes, and Barry O’Sullivan. A large neighborhood search approach
for the data centre machine reassignment problem. In Irish Conference on Artificial Intelligence
and Cognitive Science, pages 397–408. Springer, 2022.

18 Filipe Souza, Diarmuid Grimes, and Barry O’Sullivan. Variable-relationship guided lns for the
car sequencing problem. In Irish Conference on Artificial Intelligence and Cognitive Science,
pages 437–449. Springer, 2022.

19 Filipe Souza, Diarmuid Grimes, and Barry O’Sullivan. Improved variable-relationship guided
lns for the data centre machine reassignment problem. In Irish Conference on Artificial
Intelligence and Cognitive Science, page to appear. Springer, 2023.

20 Charles Thomas and Pierre Schaus. Revisiting the self-adaptive large neighborhood search. In
International Conference on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research, pages 557–566. Springer, 2018.

21 Ayad Turky. Bi-level hyper-heuristic approaches for combinatorial optimisation problems. PhD
thesis, RMIT University, 2019.

22 Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search
policy for integer programming. Advances in Neural Information Processing Systems, 34:30075–
30087, 2021.

http://www.csplib.org/Problems/prob001
http://www.csplib.org/Problems/prob001

Encoding the Hamiltonian Cycle Problem into SAT
Based on Vertex Elimination
Neng-Fa Zhou #

CUNY Brooklyn College and the Graduate Center, NY, USA

Abstract
This paper presents a SAT encoding, called vertex elimination encoding (VEE), for the Hamiltonian
Cycle Problem (HCP). The encoding maps a Hamiltonian cycle in the reduced graph after vertex
elimination to a Hamiltonian cycle in the original graph. While VEE is not competitive for large
dense graphs due to its large encoding sizes, it can be utilized to reduce graphs when they are sparse.
This paper compares VEE with the distance encoding, and shows that the hybridization of these
two encodings is effective for the benchmarks. For the knight’s tour problem, in particular, the
hybrid encoding solves some middle-sized instances that were beyond the reach for previous eager
SAT encodings.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning; Computing methodologies → Planning and scheduling; Hardware → Theorem proving
and SAT solving

Keywords and phrases Graph constraints, the Hamiltonian cycle problem, SAT encoding, Vertex
elimination, Graph synthesis

Digital Object Identifier 10.4230/LIPIcs.CP.2024.40

Category Short Paper

Acknowledgements The author would like to thank Ruiwei Wang, Roland Yap Hock Chuan, and
the anonymous reviewers for helpful comments.

1 Introduction

The Hamiltonian Cycle Problem (HCP), a classic problem in graph theory, seeks to find
a cycle in a given directed graph that includes each and every vertex exactly once. With
the availability of fast Satisfiability (SAT) solvers, various studies have been conducted to
encode the HCP into SAT to leverage the solving power[2, 3, 6, 9, 10, 11]. The HCP can
be encoded with degree and no-sub-cycle constraints. Most of the reported SAT encodings
focus on how to translate no-sub-cycle constraints into SAT. Despite some successes, current
SAT-based solvers are not yet competitive on many problems with other solvers, such as
Constraint Programming (CP) and Answer Set Programming (ASP) solvers.

Vertex elimination [8] is a problem-solving technique used in various graph problems. The
idea of the technique is to simplify complex graphs by removing certain vertices from a graph
while preserving important properties. Recently, an encoding based on vertex elimination has
been proposed for encoding acyclicity of directed graphs into SAT [7]. While this encoding is
effective for sparse graphs, it is infeasible for large dense graphs due to its explosive encoding
sizes. An improved encoding, which combines the vertex elimination encoding and the leaf
elimination encoding, has been found to outperform both encodings on various types of
graphs [13].

The vertex elimination technique can be applied to the HCP based on the observation
that, if there exists a Hamiltonian cycle in a graph, then there must also exist a Hamiltonian
cycle in a smaller graph obtained by removing a vertex. This paper proposes an encoding
based on vertex elimination, called VEE, for the HCP. Let G be a directed graph, v be a
vertex of G, and G′ be the graph obtained after v is eliminated from G. While the existence

© Neng-Fa Zhou;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 40; pp. 40:1–40:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhou@sci.brooklyn.cuny.edu
https://orcid.org/0000-0003-2507-7031
https://doi.org/10.4230/LIPIcs.CP.2024.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Encoding the Hamiltonian Cycle Problem into SAT Based on Vertex Elimination

of a Hamiltonian cycle in G guarantees the existence of a Hamiltonian cycle in G′, it is not
inversely true, as vertex elimination may introduce cycles into G′. VEE generates constraints
to ensure that the existence of a Hamiltonian cycle in G′ guarantees the existence of a
Hamiltonian path in G between two adjacent vertices of the eliminated vertex v.

The encoding size of VEE is prohibitively huge for a large dense graph. In the worst case,
it requires O(n3) variables and generates O(n4) clauses. Following the idea of the hybrid
encoding for acyclicity of graphs [13], this study also compares a hybrid encoding, which
combines VEE and the distance encoding [11]. The hybrid encoding iteratively applies VEE
as long as the graph meets a certain sparsity threshold, and switches to distance encoding
when the smallest degree exceeds the threshold. The experimental results show that the
hybrid encoding has the best overall performance, and solves some problems that were beyond
the reach for previous eager SAT encodings.

2 The HCP and Distance Encoding

Given a base directed graph G = (V, E), where V is a set of vertices, and E is a set of
directed edges, called arcs, the HCP seeks to find a subgraph HG = (HV , HE), where
HV ⊆ V , HE ⊆ E, and the arcs in HE form one cycle that connects all the vertices in HV .
To represent HG, this paper uses a binary variable, called a characteristic variable, for each
vertex v in V , denoted as bv, and each arc (u, v) in E, denoted as buv. A vertex v is said to
be an in-vertex if bv = 1. Similarly, an arc (u, v) is said to be an in-arc if buv = 1.

The graph HG is completely determined by the characteristic variables as follows:

HV = {v | v ∈ V, bv = 1}
HE = {(u, v) | (u, v) ∈ E, buv = 1}

If an arc is in, then both of its incident vertices must also be in: for each arc (u, v) ∈ E,
buv → bu ∧ bv.

The modeling of HCP with characteristic variables on vertices and arcs is generic, and
the circuit(L) and subcircuit(L) constraints available in CP systems [1], where L is
a list of domain variables representing the base graph, can be converted to constraints on
characteristic variables. Let the length of L be n. In circuit(L), all the vertices are
assumed to be included in the resulting Hamiltonian cycle, therefore, bv = 1 for each vertex
in 1..n. In subcircuit(L), the vth variable in L is bound to v iff bv = 0 for v ∈ 1..n.

The HCP can be decomposed into degree constraints and no-sub-cycle constraints. Let
k be the cardinality of HV : k =

∑
v∈V bv. The degree and no-sub-cycle constraints are

only enforced when k > 1. Various encodings are possible based on the framework. The
following gives an adapted distance encoding [11], which can be traced back to the standard
decomposer used in MiniZinc [5] and the integer programming formulation [4].

The degree constraints require every vertex to be in a cycle if k > 1:

For each v ∈ V :

k > 1 ∧ bv →
∑

(u,v)∈E

buv = 1 (D-1)

k > 1 ∧ bv →
∑

(v,w)∈E

bvw = 1 (D-2)

For each vertex in HV , constraint (D-1) forces it to have exactly one incoming arc, and
constraint (D-2) forces it to have exactly one outgoing arc.

N.-F. Zhou 40:3

With constraints (D-1) and (D-2), the graph represented by the characteristic variables
may contain sub-cycles. One well-known technique used in MIP and SAT encodings for HCP
to prevent sub-cycles is to map vertices to different positions. The distance encoding chooses
a vertex as the starting vertex, and treats each vertex’s position as the distance from the
starting vertex. For each vertex v, the distance encoding uses a binary variable sv to indicate
if v is the starting vertex, and an integer-domain variable dv (0 ≤ dv ≤ n − 1) to indicate v’s
distance from the starting vertex, where n is the number of vertices in the base graph G.
The following constraints are imposed on the variables:

k > 1 →
∑
v∈V

sv = 1 (D-3)

For each v ∈ V :
sv → bv (D-4)
sv → dv = 0 (D-5)

Constraint (D-3) ensures that there is a unique starting vertex if k > 1. Constraint (D-4)
states that the starting vertex is an in-vertex, and constraint (D-5) forces the starting vertex’s
distance to be 0.

In addition to the above constraints, constraint D-6, given below, ensures that vertices
are positioned successively:

For each (u, v) ∈ E: buv ∧ ¬sv → dv = du + 1 (D-6)

For each in-arc (u, v), if v is not the starting vertex, then v is the successor of u. There are
several different ways to encode the successor constraint dv = du + 1 [11]. The binary adder
encoding is used in this study.

Constraints (D-1) through (D-6) guarantee that the last-positioned vertex is connected
back to the starting vertex, as the last vertex must have distance k − 1 and the degree
constraints force it to be connected back to the starting vertex.

3 Vertex Elimination Encoding for HCP

Let G = (V, E) be a directed graph with no self-loops and v be a vertex in V , the vertex
elimination operation on v produces a directed graph G′ = (V ′, E′):

V ′ = V \ {v}
E′ = E \ {(u, v) | (u, v) ∈ E}

\ {(v, w) | (v, w) ∈ E}
∪ {(u, w) | u ∈ nbs−(v), w ∈ nbs+(v), u ̸= w}

where
nbs−(v) = {u | (u, v) ∈ E}
nbs+(v) = {w | (v, w) ∈ E}.

The operation eliminates v’s incident arcs, and adds the arc (u, w) into E′ for each u in
nbs−(v) and each w in nbs+(v) (u ̸= w) if the arc is not contained in E. An arc in E′ is said
to be new if it is not in E and is newly added by vertex elimination.

As the resulting graph G′ preserves the acyclicity of G [7], vertex elimination has the
following properties:

CP 2024

40:4 Encoding the Hamiltonian Cycle Problem into SAT Based on Vertex Elimination

Figure 1 Vertex elimination introduces a new cycle.

If there exists a Hamiltonian cycle in the original graph G, then there must also exist a
Hamiltonian cycle in the resulting graph G′ after vertex elimination.
The existence of a Hamiltonian cycle in the resulting graph G′ does not guarantee the
existence of a Hamiltonian cycle in the original graph G as vertex elimination may
introduce cycles. Figure 1 gives an example, where graph G has no Hamiltonian cycles,
but the resulting graph G′ has Hamiltonian cycles after v is eliminated from G.1

Recall that a Hamiltonian cycle HG of a graph G is represented by characteristic variables
associated with the vertices and the arcs. Let G′ = (V ′, E′) be the graph obtained after
vertex v is eliminated from graph G = (V, E), and let the characteristic variables for G′ be
b′

z, where z is a vertex or an arc. The characteristic variables for vertices are unchanged after
a vertex is eliminated, so for each vertex v ∈ V ′, b′

v = bv. For each arc (u, w) ∈ E′ ∩ E, if
(u, v) /∈ E or (v, w) /∈ E, then buw = b′

uw. This means that for arcs that are not incident to
the eliminated vertex v, G′ inherits the characteristic variables from G.

Let k be the cardinality of HG and k′ be the cardinality of HG′ . The following constraint
must hold: k = k′ + bv. A Hamiltonian cycle H ′

G can be mapped to a Hamiltonian cycle HG

if and only iff HG′ corresponds to a Hamiltonian path in G between a neighbor w in nbs+(v)
and a neighbor u in nbs−(v) of the eliminated vertex v (u ̸= w). The vertex elimination
encoding (VEE) ensures the mapping from HG′ to HG with constraints.

In HG, there must be exactly one incoming arc to the eliminated vertex v and exactly one
outgoing arc from v if k > 1 and v is in HV . This is ensured by the degree constraints (VE-1)
and (VE-2):

k > 1 ∧ bv →
∑

(u,v)∈E

buv = 1 (VE-1)

k > 1 ∧ bv →
∑

(v,w)∈E

bvw = 1 (VE-2)

Also, there cannot exist cycles of size 2 involving v if k′ > 1.

For each (u, v) ∈ E, if (v, u) ∈ E:
k′ > 1 → ¬buv ∨ ¬bvu (VE-3)

Constraint (VE-3) ensures that the existence of HG′ entails the existence of a Hamiltonian
path in G between two distinct adjacent vertices of v.

1 The edges are assumed to be doubly directed.

N.-F. Zhou 40:5

A new arc (u, w) that is included in E′ but not in E indicates a path from u to w via the
eliminated vertex v. The following constraints are imposed on the newly added arcs.

For each (u, w) ∈ (E′ \ E): b′
uw → buv ∧ bvw (VE-4)∑

(u,w)∈E′−E

b′
uw ≤ 1 (VE-5)

Constraint (VE-4) ensures that, if an arc (u, w) in E′ −E is included in HG′ , then both (u, v)
and (v, w) must be included in HG. Constraint (VE-5) bans multiple such paths, making
the case in Figure 1 impossible.

If there is an incoming arc (u, v) to the eliminated vertex v and an outgoing arc (v, w)
from v in HG, then the arc (u, w) must occur in HG′ but not in HG.

For each (u, v) ∈ E, (v, w) ∈ E, u ̸= w:
buv ∧ bvw → b′

uw (VE-6)
buv ∧ bvw → ¬buw (VE-7)

Constraints (VE-6) and (VE-7) ensure that a Hamiltonian cycle HG′ can be mapped to a
Hamiltonian cycle HG by removing the arc (u, w) from HG′ and adding the arcs (u, v) and
(v, w).

Recall that G′ inherits the characteristic variables from G for the arcs that are not
incident to the eliminated vertex v. The following constraint constrains the characteristic
variables of the arcs that are incident to v:

For each (u, v) ∈ E, (v, w) ∈ E, u ̸= w:
¬buv ∨ ¬bvw → buw = b′

uw (VE-8)

Constraint (VE-8) ensures the correspondence of HG′ to a Hamiltonian path in G.
The correctness of VEE is guaranteed by the fact that a Hamiltonian cycle in G′

corresponds to a Hamiltonian path from a neighbor w in nbs+(v) to a neighbor u in nbs−(v)
of the eliminated vertex v (u ≠ w), and the path can be extended to a cycle by adding the
arcs (u, v) and (v, w).

The encoding size, which is dominated by constraint (VE-8), depends on the sparsity of
the graph. In the worst case, which happens when the graph is complete, VEE generates
O(n2) new variables for the characteristic variables of E′2 and adds O(n3) clauses in each
step, where n is the size of V . Overall, VEE requires O(n3) variables and O(n4) clauses.

4 Hybrid Encoding

Due to the formidable encoding sizes of VEE for large dense graphs, VEE is generally not a
feasible encoding for HCP. Nevertheless, VEE can be utilized to reduce a graph when the
graph is sparse, and a compact encoding can be employed to encode the resulting dense
graph. This idea follows the hybrid encoding for acyclicity of graphs [13].

Any encoding for HCP can be hybridized with VEE. This paper uses the distance encoding
(DIST). The hybrid encoding iteratively applies VEE until a sparsity condition becomes false,
and after then, it switches to DIST.

2 As every vertex is incident to the eliminated vertex, E′ inherits no variables from E.

CP 2024

40:6 Encoding the Hamiltonian Cycle Problem into SAT Based on Vertex Elimination

The sparsity condition can be defined in many different ways. Let n be the number of
vertices in the original base graph, d be the smallest out-degree of the vertices in the current
graph,3 and σ be the total number of eliminated vertices so far. The sparsity condition used
in the experiment is: d × σ ≤ n. For instance, when d = 1, the condition is always true, and
VEE is used; when d = 2, the condition becomes false when more than half of the vertices
have been eliminated.

5 Experimental Results

All the encodings presented in the paper have been implemented in Picat4 (version 3.6#3),
which employs Kissat5 as the underlying SAT solver. This experiment uses the same
elimination ordering as the one used in [7, 13], namely, choosing a vertex with the smallest
degree. The SAT encodings of the basic constraints can be found in [11, 12].

This study has compared VEE, DIST, the hybrid encoding (HYBRID) on the benchmark
suite used in [11], which consists of several instances of the knight’s tour problem and several
HCP instances taken from the Flinders challenge set6 with numbers of vertices ranging
from 338 to 1584. For these benchmarks, k, which indicates the cardinality of the resulting
Hamiltonian cycle, is set to be n, the number of vertices in the base graph. All the CPU
times reported below were measured on Linux Ubuntu with an Intel i7 3.30GHz CPU and
32G RAM. The time limit used was 20 minutes per instance.

Table 1 compares the encodings on CPU time, which includes both the translation and
solving times (the entry TO indicates timeout). The column instance shows the instances,
where ktxx are knight’s tour instances, and graphxxx are the instances taken from the
Flinders challenge set. The other three columns give the times taken by the three encodings
for the instances.

It can be seen that, among the three encodings, HYBRID performs the best on the
knight’s tour instances, while DIST performs the best on all of the Flinders instances, except
for graph254 and graph48. While VEE fails to solve 8 of the instances (6 of the kt instances
and 2 of the Flinders instances) and DIST fails to solve 4 of the instances (3 of the kt
instances and 1 of the Flinders instances), HYBRID solves every instance within the time
limit.

VEE is not competitive on the knight’s tour instances because of the large encoding
sizes. For example, for kt30, the 30×30 instance, the generated CNF code by VEE contains
23,299,909 clauses with 7,648,642 variables. For the Flinders instances, on the other hand,
VEE is quite competitive, winning on two of the instances, because the graphs are much
more sparse than the kt graphs. One of the reasons why HYBRID performs better on the
knight’s tour graphs than the Flinders graphs could be the structures of the graphs. While
the knight’s tour graphs are quite dense when the encoder switches from VEE to DIST,
the Flinders graphs remain quite sparse at the switching times. For instance, for kt30, the
smallest degree is 8 at the switching time after 120 out of the 900 vertices are eliminated; for
graph237, the smallest degree is 3 at the switching time after 493 out of the 1476 vertices
are eliminated.

3 As the graphs in all the benchmarks are undirected, a vertex’s degree is defined as its out-degree.
4 http://picat-lang.org
5 https://github.com/arminbiere/kissat
6 http://fhcp.edu.au/fhcpcs

http://picat-lang.org
https://github.com/arminbiere/kissat
http://fhcp.edu.au/fhcpcs

N.-F. Zhou 40:7

Table 1 A comparison on CPU times(seconds).

Instance VEE DIST HYBRID
kt12 28.75 7.11 0.32
kt14 135.80 5.77 1.23
kt16 614.23 118.45 2.72
kt18 1050.80 16.55 3.65
kt20 TO 20.70 6.16
kt22 TO 19.60 19.21
kt24 TO 76.31 46.03
kt26 TO TO 116.14
kt28 TO TO 192.73
kt30 TO TO 200.98

graph162 TO 33.89 39.47
graph171 45.38 5.35 50.29
graph197 78.64 13.16 488.38
graph223 TO 80.05 200.71
graph237 125.66 12.27 237.51
graph249 62.48 1.89 61.04
graph252 182.27 18.57 468.85
graph254 84.55 TO 338.34
graph255 245.61 31.30 66.49
graph48 0.75 217.88 64.96

HYBRID is able to solve some middle-sized instances of the knight’s tour problem that
were beyond the reach for eager SAT encodings.7 For example, it solves the 40×40 instance
in 2711 seconds. In contrast, DIST fails to solve the 40×40 instance in 24 hours, and VEE
fails to translate the instance to CNF. While HYBRID clearly advances the state of the art
for the knight’s tour problem, it is still not comparable with CP and ASP solvers, which can
solve much larger instances than 40×40, thanks to their reachability-checking capabilities
during search.

6 Discussion and Conclusion

This paper presents a SAT encoding, called vertex elimination encoding (VEE), for the HCP.
The encoding maps a Hamiltonian cycle in the reduced graph after vertex elimination to a
Hamiltonian cycle in the original graph. While VEE, in its current form, is not competitive
for large dense graphs due to its large encoding sizes, it can be utilized to reduce graphs
when they are sparse. This paper compares VEE with the distance encoding, and shows that
the hybridization of these two encodings is effective for the benchmarks. For the knight’s
tour problem, in particular, the hybrid encoding solves some middle-sized instances that
were beyond the reach for previous eager SAT encodings.

The HCP is significant due to its broad applications across various disciplines, and
researchers continue to explore various techniques to encode HCP into SAT in order to
leverage the solving power of the cutting-edge SAT solvers. Most of the previous SAT
encodings focus on how to translate no-sub-cycle constraints into SAT. VEE is novel in the
sense that it is the first encoding based on vertex elimination for the HCP, and, unlike the
previous encodings, it does not need to deal with no-sub-cycle constraints.

7 Lazy encodings (e.g., [3, 9]), which incrementally generate sub-cycle elimination clauses, may be able to
solve some large instances.

CP 2024

40:8 Encoding the Hamiltonian Cycle Problem into SAT Based on Vertex Elimination

VEE sheds new light on future explorations in encoding the HCP into SAT. The encoding
presented in the paper generates O(n4) clauses for a complete graph with n vertices. One
future exploration is to improve the encoding so that it has a lower order of an encoding size.
Another future exploration is to hybridize multiple encodings with VEE. Once a graph is
reduced by vertex elimination, the resulting graph can be encoded with any encoding. For
very dense graphs, the bijection encoding [2], which uses an edge constraint for each non-arc
pair of vertices, could be more efficient. It is always a challenge to devise the best heuristic
for switching from VEE to another encoding. While the simple heuristic used in this paper
has achieved encouraging results, it is not meant to be the best. As training data can be
easily generated by running the solver under different settings, it could be viable to devise a
near-optimal switching heuristic using machine learning.

References
1 Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global constraint catalog, 2021.

URL: http://sofdem.github.io/gccat/gccat/.
2 Alexander Hertel, Philipp Hertel, and Alasdair Urquhart. Formalizing dangerous SAT encod-

ings. In SAT, volume 4501, pages 159–172, 2007. doi:10.1007/978-3-540-72788-0_18.
3 Marijn J. H. Heule. Chinese remainder encoding for hamiltonian cycles. In SAT, pages 216–224,

2021. doi:10.1007/978-3-030-80223-3_15.
4 C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling

salesman problems. J. ACM, 7(4):326–329, 1960.
5 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and

Guido Tack. MiniZinc: Towards a standard CP modelling language. In CP, pages 529–543,
2007. doi:10.1007/978-3-540-74970-7_38.

6 Steven David Prestwich. SAT problems with chains of dependent variables. Discret. Appl.
Math., 130(2):329–350, 2003. doi:10.1016/S0166-218X(02)00410-9.

7 Masood Feyzbakhsh Rankooh and Jussi Rintanen. Propositional encodings of acyclicity and
reachability by using vertex elimination. In Thirty-Sixth AAAI Conference, pages 5861–5868.
AAAI Press, 2022. URL: https://ojs.aaai.org/index.php/AAAI/article/view/20530,
doi:10.1609/AAAI.V36I5.20530.

8 Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput., 5(2):266–283, 1976. doi:10.1137/0205021.

9 Takehide Soh, Daniel Le Berre, Stéphanie Roussel, Mutsunori Banbara, and Naoyuki Tamura.
Incremental SAT-based method with native Boolean cardinality handling for the Hamiltonian
cycle problem. In Logics in Artificial Intelligence (JELIA), pages 684–693, 2014.

10 Miroslav N. Velev and Ping Gao. Efficient SAT techniques for absolute encoding of permutation
problems: Application to Hamiltonian cycles. In SARA. AAAI, 2009. URL: http://www.aaai.
org/ocs/index.php/SARA/SARA09/paper/view/837.

11 Neng-Fa Zhou. In pursuit of an efficient SAT encoding for the Hamiltonian cycle problem. In
CP, pages 585–602, 2020. doi:10.1007/978-3-030-58475-7_34.

12 Neng-Fa Zhou and Håkan Kjellerstrand. Optimizing SAT encodings for arithmetic constraints.
In CP, pages 671–686, 2017. doi:10.1007/978-3-319-66158-2_43.

13 Neng-Fa Zhou, Ruiwei Wang, and Roland H. C. Yap. A comparison of SAT encodings for
acyclicity of directed graphs. In 26th International Conference on Theory and Applications of
Satisfiability Testing, SAT, pages 30:1–30:9, 2023. doi:10.4230/LIPICS.SAT.2023.30.

http://sofdem.github.io/gccat/gccat/
https://doi.org/10.1007/978-3-540-72788-0_18
https://doi.org/10.1007/978-3-030-80223-3_15
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1016/S0166-218X(02)00410-9
https://ojs.aaai.org/index.php/AAAI/article/view/20530
https://doi.org/10.1609/AAAI.V36I5.20530
https://doi.org/10.1137/0205021
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/837
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/837
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.4230/LIPICS.SAT.2023.30

	p000-Frontmatter
	Preface
	Senior Program Committee
	Program Committee
	Additional Reviews

	p001-Gent
	p002-Rossi
	p003-Anders
	1 Introduction
	2 Preliminaries
	2.1 Boolean Circuits and Satisfiability
	2.2 Permutation Groups
	2.3 Graph Isomorphism and String Canonization
	2.4 Notions of Symmetry Breaking

	3 Row-Column Symmetries
	3.1 Hardness of Breaking Row-Column Symmetries
	3.2 A Decision Version of String Canonization
	3.3 Hardness of Symmetry Breaking with Additional Variables

	4 Johnson Actions
	4.1 Johnson Groups and Relational Structures
	4.2 Johnson Families of Fixed Arity are Hard
	4.3 Subgroups of Small Index and Large Primitive Groups

	5 Upper Bounds
	6 Conclusion and Future Work
	A Proof of Theorem 13
	B Proof of Theorem 5
	C Proof of Theorem 16

	p004-Berg
	1 Introduction
	1.1 Proof Logging for MaxSAT Solving
	1.2 Solution-Improving ``Without Loss of Generality'' Reasoning
	1.3 Discussion of Our Contribution
	1.4 Outline of This Paper

	2 Preliminaries
	2.1 Pseudo-Boolean Constraints and Proofs
	2.2 MaxSAT, Incremental SAT Solving, and Solution-Improving Search

	3 The Dynamic Polynomial Watchdog Encoding for SIS
	3.1 Initialization
	3.2 Coarse Convergence Phase
	3.3 Fine Convergence Phase
	3.4 Stratification

	4 Certifying Solution-Improving MaxSAT with the DPW Encoding
	4.1 Proof Logging for Clauses of the DPW Encoding
	4.2 Proofs Without Loss of Generality Using Shadow Circuits
	4.3 Stratification
	4.4 Limiting the Use of Shadow Circuits
	4.5 Discussion of an Even Simpler Approach and Why It Does Not Work

	5 Experimental Evaluation
	6 Conclusion
	A Formalization of the Proof Logging of SIS with the DPW
	A.1 Coarse Convergence
	A.2 Fine Convergence
	A.3 Conclusion of Optimality

	B Proof Logging of Additional Techniques Implemented in Pacose
	B.1 TrimMaxSAT
	B.2 Hardening

	C Additional Experimental Evaluation
	C.1 Binary Adder Encoding and Encoding Selection Heuristic
	C.2 Coarse Convergence with Assumptions Instead of Unit Clauses
	C.3 Proof Logging Overhead Analysis

	p005-Chen
	1 Introduction
	2 Preliminaries
	2.1 Pseudo-Boolean Optimization
	2.2 A Review of LS-PBO Solver

	3 Improving LS-PBO Solver with Dynamic Scoring Mechanism
	4 Parallel Local Search Solver for Pseudo-Boolean Optimization
	4.1 Framework of ParLS-PBO Solver
	4.2 Maintaining the Solution Pool
	4.3 Using the Solution Pool to Guide the Search
	4.3.1 Solution Sharing Strategy
	4.3.2 Polarity Density Weight

	5 Experiments
	5.1 Benchmark
	5.2 Candidate Methods to Compare
	5.3 Experimental Settings
	5.4 Performance Evaluations
	5.4.1 The Sequential Track
	5.4.2 The Parallel Track

	5.5 Effectiveness Analysis
	5.6 Scalability Analysis

	6 Conclusions

	p006-Chen
	1 Introduction
	2 Preliminary
	2.1 Preliminaries Definitions and Notations
	2.2 Local Search and Unit Propagation

	3 Main contribution
	3.1 Deep Cooperation of Local Search and Unit Propagation
	3.2 Invocation of Hybrid Local Search
	3.3 Picking Candidate Starting Variables
	3.4 Flipping Based on Unit Propagation
	3.5 Acceptance Criteria

	4 Experiment Results
	4.1 Experiment Settings
	4.2 Experiment Results on MaxSAT Benchmarks
	4.3 Experiment Results on PBO benchmarks
	4.4 Sensitivity analysis
	4.5 Validation of Acceptance Criteria

	5 Related Works
	6 Conclusion

	p007-Cloutier
	1 Introduction
	2 Background
	2.1 Cumulative Scheduling
	2.2 The Time-Tabling Rule
	2.3 Augmentation With Calendars
	2.3.1 Calendars Associated to Resources
	2.3.2 Calendars Associated to Tasks
	2.3.3 Other Approaches

	3 Calendar Constraints With Overtime
	3.1 The CalendarOvertime Constraint
	3.2 The CumulativeOvertime Constraint

	4 Decomposition of the New Constraints
	4.1 Decomposition of the CalendarOvertime Constraint
	4.2 Decomposition of the CumulativeOvertime Constraint

	5 Filtering Algorithms for the New Constraints
	5.1 Propagation of the CalendarOvertime Constraints
	5.1.1 Explaining the Propagation

	5.2 Propagation of the CumulativeOvertime Constraints
	5.2.1 Explaining the Propagation

	6 Experimentation
	6.1 Experimentation Model
	6.2 Experimentation Details

	7 Results
	7.1 Comparing the Decomposition and CalendarOvertime Models
	7.2 Comparing the CalendarOvertime and CumulativeOvertime Models

	8 Conclusion

	p008-Cortes
	1 Introduction
	2 Preliminaries
	2.1 Boolean Satisfiability
	2.2 Single and Multi-Objective Combinatorial Optimization
	2.3 Encoding of Pseudo-Boolean Functions
	2.4 SAT-based algorithms for MOCO

	3 Upper and Lower Bound Sets
	4 Slide&Drill, an Upper-Bound Set Improver
	4.1 Algorithm Description
	4.2 Algorithm Properties
	4.3 Tandem Slide&Drill

	5 Results and Analysis
	5.1 Benchmark Sets and Experimental Setup
	5.2 Evaluated Algorithms
	5.3 Evaluation Metrics
	5.4 Slide and Drill Variants
	5.5 Comparison with Other MOCO Solvers

	6 Conclusions and Future Work

	p009-Demirovic
	1 Introduction
	2 Background
	2.1 Pseudo-Boolean Preliminaries
	2.2 The VeriPB Proof System
	2.3 A Framework for Proofs for Backtracking Search

	3 Proofs Involving States and Transitions
	3.1 Knapsack as a Dynamic Programming Problem
	3.2 A General Framework
	3.3 Knapsack as a Constraint

	4 Implementations and Evaluation
	5 Conclusion
	A Proofs Under Implications
	A.1 Notation
	A.2 Constructing Proofs Under Implications

	p010-Dubray
	1 Introduction
	2 Technical Background
	3 Related Work
	4 Anytime Projected Weighted Model Counting with Bounds
	4.1 Computing Bounds During the Search
	4.2 Limited Discrepancy Search for Weighted Model Counting
	4.3 From Bounds to an Epsilon Guarantee

	5 Experimental Results
	6 Conclusion

	p011-Flippo
	1 Introduction
	2 Preliminaries
	2.1 Constraint Satisfaction Problems
	2.2 Constraint Programming
	2.3 Proof Logging for Black-Box Solvers
	2.4 Proof Logging for SAT

	3 Related Work
	4 Our Contribution: A Multi-Stage Framework for CP Proof Logging
	4.1 Verification Flow
	4.2 Proof Format
	4.3 Proof Processor
	4.4 Checking Proofs
	4.4.1 FlatZinc Encoding
	4.4.2 Atomic Constraint Encoding
	4.4.3 Proof Encoding

	5 Evaluation
	5.1 Proof Logging Overhead
	5.2 Proof Processing
	5.3 Proof Checking

	6 Conclusion and Future Work

	p012-FrancisGreen
	1 Introduction
	2 Background
	2.1 Temporal Planning
	2.2 Constraint Satisfaction Problems
	2.3 Planning through Decomposition

	3 Building a CP model from pi'
	4 Abstracting Semaphores and Envelopes
	4.1 Abstracting Semaphore Facts
	4.2 Abstracting Envelope Facts

	5 Improving Feedback to the Planner
	6 Evaluation
	6.1 Reduction in States Generated
	6.2 Coverage
	6.3 Search Time
	6.4 IPC Benchmark Score
	6.5 Makespan
	6.6 Evaluating Individual Abstractions

	7 Conclusion

	p013-Ge
	1 Introduction
	2 Background
	2.1 Notations and Preliminaries
	2.2 Approximating Lattice Counts via Polytope's Volume
	2.3 Sampling in Polytopes

	3 Our Approach
	3.1 The Framework of Bounds Approximation Algorithm
	3.2 Sampling in Unions of Integer-cubes
	3.3 Efficient Cube Checking
	3.4 Extending to Mixed-Integer Cases

	4 Implementation
	5 Evaluation
	5.1 Experimental settings
	5.2 Experimental results

	6 Related Works
	7 Conclusion

	p014-Iosif
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 ILP Model for the pCD
	5 CP Models for the pCD
	6 Enhancing a Heuristic CP-Based Method Through LS
	6.1 pDD
	6.2 pCD

	7 Experiments
	7.1 Problem Generation Models
	7.2 Experiments with the pDD
	7.3 Experiments with the pCD

	8 Conclusion

	p015-Jonsson
	1 Introduction
	2 Preliminaries
	3 Applications of Alien Constraints
	3.1 The Redundancy Problem and its Relatives
	3.2 Model Checking

	4 General Tools for Alien Constraints
	4.1 Alien Constraints and Algebra
	4.2 Fixed-Parameter Tractability

	5 Finite-Domain Languages
	5.1 Parameterized Dichotomy
	5.2 Classification of Boolean Languages

	6 Infinite-Domain Languages
	6.1 Orbits and Infinite-Domain CSPs
	6.2 Classification of Equality Languages

	7 Discussion

	p016-Jung
	1 Introduction
	2 Terminology
	3 Optimization Model
	4 Symmetry-Breaking Constraints
	5 Computational Experiments
	6 Conclusion
	A Nomenclature
	B Proof Proposition 1
	C New Best-Known Circuits

	p017-Kaznatcheev
	1 Introduction
	2 Background
	3 Steepest Ascent Simulation of Ordered Ascents
	3.1 Domain Expansion
	3.2 Steepest Ascent Simulation
	3.3 Boolean Encoding of Expanded Domains

	4 Pair of 2-by-3 Constraints with Long Ordered Ascent
	5 Steepest Ascent Simulation of 2-by-3 Ordered Ascent
	6 Low-arity Boolean Encoding for 3-by-5 Steepest Ascent
	7 Summary and Future Directions
	A No naive decomposition into arity-5 constraints for P

	p018-Le
	1 Introduction
	2 Related Works
	3 HM-RCPSP/L-C
	3.1 Problem Inputs
	3.2 Schedule, Solution and Optimality

	4 Symmetry Breaking
	5 Solving HM-RCPSP/L-C
	5.1 Building a CP Model
	5.2 Using Squeaky Wheel Optimization

	6 Experimentation
	6.1 Benchmarks
	6.2 Solving Approaches
	6.3 Experimental Results

	7 Conclusion
	A Lemma 4
	B Lemma 6
	C Lemma 7
	D Lemma 11

	p019-Lin
	1 Introduction
	2 Preliminaries and Notation
	2.1 Formulations of MIP
	2.2 Local Search Algorithm

	3 New Operators Tailored for MIP
	3.1 Breakthrough Move
	3.2 Mixed Tight Move

	4 Weighting Scheme and Scoring Functions
	4.1 Weighting Scheme for MIP
	4.2 Two-level Scoring Function Structure
	4.2.1 First Level: Progress Score as the Base Scoring Function
	4.2.2 Second Level: Bonus Scoring Function

	5 The Local-MIP Algorithm
	6 Experimental Evaluations
	6.1 Experiment Preliminaries
	6.1.1 Benchmarks
	6.1.2 State-of-the-art Competitors
	6.1.3 Experiment Setup

	6.2 Comparison with State-of-the-art MIP Solvers
	6.3 New Records to Open Instances
	6.4 Analysis on the Proposed Ideas
	6.5 Stability with Repetitive Experiments

	7 Conclusions and Future Work

	p020-Michailidis
	1 Introduction
	2 Background
	2.1 Constraint Programming
	2.2 Large Language Models

	3 Methodology
	3.1 Problem Formulation
	3.2 LLMs as CP Solvers
	3.3 LLMs as CP Modellers
	3.3.1 Blueprint Model Generation
	3.3.2 Named Entity Recognition

	3.4 In-Context Examples Selection

	4 Experiments
	4.1 Setup & Datasets
	4.2 Data Annotations Generation
	4.3 Evaluation
	4.4 Results
	4.4.1 Intermediate Representations
	4.4.2 Examples Selection Strategy
	4.4.3 Number of In-Context Examples
	4.4.4 Mixed CP Dataset

	5 Conclusion & Future Work
	A Various LLMs
	B Model Equivalence Algorithm
	C Errors in the generated CP model
	C.1 0-shot
	C.2 4-shot

	D Mixed CP Dataset: Supplementary Results
	E Datasets Metadata
	F An LGP example

	p021-Nafar
	1 Introduction
	2 Exact and Approximate Decision Diagrams
	3 Decision Diagrams for the Maximum Independent Set Problem
	3.1 The Maximum Independent Set Problem
	3.2 Relaxed Decision Diagrams for the MISP

	4 A New Dynamic Variable Ordering for the MISP
	4.1 Standard Strategy: Minimum Number of States (MIN)
	4.2 A New Strategy: Current Degree Sum (CDS)

	5 A New Merge Heuristic
	5.1 Standard Strategy: SortObj Merging (SO)
	5.2 A new Strategy: Border Tie Merging (BT)

	6 Computational Results
	6.1 Results on Dual Bounds
	6.2 Performance within a DD-based Branch-and-Bound

	7 Conclusion

	p022-Parjadis
	1 Introduction
	2 Held-Karp Lagrangian Relaxation
	3 Learning Held-Karp Multipliers
	3.1 Training Set Construction
	3.2 Graph Neural Network Architecture

	4 Experimental Evaluation
	4.1 Experimental Protocol
	4.1.1 Datasets
	4.1.2 Implementation
	4.1.3 Training
	4.1.4 Hyperparameters
	4.1.5 Evaluation Metrics

	4.2 Empirical Results
	4.2.1 Main Results: Quality of the Learned Bounds
	4.2.2 Analysis: Focus on Individual Instances
	4.2.3 Analysis: Addressing the Optimality Proof
	4.2.4 Analysis: Generalization Ability
	4.2.5 Discussion: Application to Non-Euclidean Instances
	4.2.6 Discussion: Considering the Training Time

	5 Conclusion

	p023-Pucel
	1 Introduction
	2 Related Work
	2.1 Multi-manned ALB with Walking Workers
	2.2 ALB and RCPSP Applied to Aircraft Manufacturing

	3 Aircraft Assembly Line Description
	4 Assembly Line Model
	4.1 Formal Definitions
	4.2 Constraint Programming Representation

	5 Experimentation
	5.1 Results for PSPLib-based Benchmarks
	5.2 Industrial Assembly Line
	5.3 Assembly Line Design Use Case

	6 Conclusion
	A PSPLib Benchmarks Results

	p024-Rachmut
	1 Introduction
	2 Background
	2.1 Distributed Constraint Optimization Problems (DCOPs)
	2.2 k-opt and Region-opt Algorithms
	2.3 Communication-Aware DCOPs (CA-DCOPs)
	2.4 Latency-Aware Monotonic Distributed Local Search (LAMDLS)

	3 LAMDLS-2
	3.1 Ordering Phase
	3.2 Pair Selection Phase
	3.3 Demonstration of LAMDLS-2
	3.4 Theoretical Properties

	4 Extension to a Region-Optimal Algorithm
	5 Experimental Evaluation
	5.1 Experimental Design
	5.2 Experimental Evaluation

	6 Conclusions

	p025-Regin
	1 Introduction
	2 Background
	2.1 LLM Predictions Strategies
	2.1.1 Decoding Strategies Combined with LLMs
	2.1.2 Greedy Decoding
	2.1.3 Beam Search
	2.1.4 Perplexity

	2.2 Constraint Programming
	2.2.1 Avoiding Static Definition of the CSP

	3 Method: LLM alongside OTFS
	3.1 New version of OTFS: GenCP
	3.1.1 Generative Functions
	3.1.2 LLM integration
	3.1.3 Helping Functions
	3.1.4 Description of the new approach
	3.1.5 Enforce variability
	3.1.6 Ordering

	3.2 Modeling Example
	3.3 Illustrated Example

	4 Experiments
	4.1 Experimental Conditions
	4.1.1 Baseline
	4.1.2 Hardware & Implementation
	4.1.3 LLM choice
	4.1.4 Beam Search Technical Remarks
	4.1.5 Benchmarks Settings

	4.2 Result Analysis
	4.2.1 Beam Search
	4.2.2 GenCP
	4.2.3 Variability and Perplexity

	5 Discussion & Perspectives
	5.1 GPU and CPU Interplay
	5.2 Token Management
	5.3 CSP Modeling

	6 Conclusion

	p026-Schidler
	1 Introduction
	2 Preliminaries
	3 MaxSLIM
	3.1 Local Instances
	3.2 Local Instance Selection
	3.3 Strategies
	3.4 Metrics
	3.5 Local Solvers

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.1.1 Cluster
	4.1.2 Comparison
	4.1.3 Instances
	4.1.4 Configuration

	4.2 Comparison of SLIM and LNS (Q1)
	4.3 Comparison of MaxSLIM and NuWLS-c (Q2)
	4.4 Other Solvers (Q3)
	4.5 Impact of the Configuration (Q4)
	4.5.1 Strategies
	4.5.2 Metrics

	5 Conclusion
	A Strategies
	A.1 Strategy Results

	B Metrics
	B.1 Metric Results

	p027-Schmied
	1 Introduction
	2 Preliminaries
	3 Filtering Algorithm
	4 Upper Bounds of Shortest Paths
	5 Improved Filtering Algorithm
	6 Landmark Selection
	7 Experimentation
	7.1 Results Tables
	7.2 Results Analysis
	7.2.1 Landmark Number and Selection Method
	7.2.2 Impact of the practical improvement of Section 5
	7.2.3 StockingCost, FJSSP and CHILD problems
	7.2.4 TSP results

	8 Conclusion

	p028-Tardivo
	1 Introduction
	2 Background
	2.1 Constraint Satisfaction/Optimization Problems
	2.2 General-Purpose Computing on Graphics Processing Units

	3 Bin Packing
	3.1 Reductions
	3.2 Lower bounds

	4 Design and Implementation
	4.1 Sequential CPU Implementation
	4.2 Parallel CPU Implementation
	4.3 Considerations for a GPU architecture
	4.4 GPU Implementation
	4.5 Solver integration

	5 Experiments
	6 Conclusions and Future works

	p029-Vanroose
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Solvers and modeling systems
	3.2 CPMpy

	4 Mutational testing
	5 Mutations
	5.1 Reformulation mutations
	5.2 Top-level mutations
	5.3 Subexpression mutations

	6 Verification methods
	6.1 All-solutions
	6.2 Solution count
	6.3 1-solution
	6.4 Satisfiability
	6.5 Optimization

	7 Dealing with bugs
	7.1 Soundness bugs
	7.2 Crashes
	7.3 Performance issues
	7.4 Minimizing buggy models

	8 Summary of found bugs
	9 Experimental evaluation
	9.1 EQ1: effect of number of mutations
	9.2 EQ2: effect of verification methods
	9.3 EQ3: effect on code coverage

	10 Discussion and future work
	A Overview of bugs found during experimental evaluation
	A.1 Occurrences of each bug

	B Reformulations as mutations

	p030-Verhaeghe
	1 Introduction
	2 Technical Background and Related Work
	2.1 Resource Constrained Project Scheduling Problem
	2.2 Graph Neural Network
	2.3 Learning Heuristics in Constraint Programming

	3 Enhancing CP with Learned Precedences
	3.1 Step 1: Training Set Construction
	3.2 Step 2: Link Prediction with GNNs
	3.3 Step 3: Solving the RCPSP with New Precedences

	4 Experiments
	4.1 Baseline CP Model for the RCPSP and Training Set
	4.2 Performance of the Training
	4.3 Performance for Solving the RCPSPs

	5 Conclusion and Perspective

	p031-Zaikin
	1 Introduction
	2 Preliminaries
	3 Intermediate Inverse Problems for MD5 and SHA-1
	4 SAT Encoding
	5 Solving Intermediate Inverse Problems by Kissat
	6 Parameterization Algorithm
	7 Inverting by Parameterized Solvers
	8 Related Work
	9 Conclusions and Future Work

	p032-Zhang
	1 Introduction
	2 Background
	2.1 Logic-Based Benders Decomposition
	2.2 Domain-Independent Dynamic Programming
	2.3 SUALBP-1

	3 CP-LBBD for SUALBP-1
	3.1 CP Master Problem
	3.2 CP Formulations for Benders Feasibility Cuts

	4 DIDP-LBBD for SUALBP-1
	4.1 Master Problem
	4.2 Feasibility Cut Encoding in DIDP-LBBD
	4.2.1 Counting-based Encoding
	4.2.2 Set-based Encoding
	4.2.3 Weakness of the DIDP Encoding

	4.3 Encoding DIDP-LBBD Cuts for SUALBP-1
	4.3.1 Counting-based Precondition Encoding
	4.3.2 Counting-based State Constraint Encoding
	4.3.3 Set-based Precondition Encoding
	4.3.4 Set-based State Constraint Encoding

	5 Experimental Evaluation
	5.1 MIP-LBBD Master Problem
	5.2 Solving the Subproblem
	5.3 Experiment Setting
	5.4 Experiment Results
	5.5 Algorithm Analysis

	6 Discussion
	7 Conclusions
	A Monolithic MIP Model of SUALBP-1
	B Approach Performances for Separate Datasets
	C Analysis of CP-LBBD

	p033-Zivan
	1 Introduction
	2 Background
	2.1 Distributed Constraint Optimization Problems
	2.2 Synchronous Branch-and-Bound (SyncBB)
	2.3 Distributed Stochastic Algorithm (DSA)
	2.4 Maximum Gain Message (MGM)

	3 Ex-Ante Incomplete DCOP
	4 Solving EAI-DCOPs
	4.1 Solving EAI-DCOPs with SyncBB
	4.2 Solving EAI-DCOPs with DSA and MGM

	5 Experimental Evaluation
	5.1 SyncBB with Global Budgets
	5.2 SyncBB with Personal Budgets
	5.3 MGM and DSA with Personal Budgets

	6 Conclusions

	p034-Cherif
	1 Introduction
	2 Preliminaries
	3 ROADEF Scheduling
	4 Maximum Satisfiability for Conference Session Scheduling
	4.1 Basic Model
	4.2 Enhanced Model

	5 Experimental Evaluation
	6 Conclusion

	p035-DeVlas
	1 Introduction
	2 Algorithm outline
	3 Main steps
	4 Combining the parts
	5 Discussion

	p036-Delecluse
	1 Introduction
	2 Reducing BIVS Cost
	2.1 Restricted Fixpoint Computation
	2.2 Reverse Look-Ahead

	3 Experiments
	3.1 Fundamental Problems
	3.2 XCSP^3

	4 Conclusion
	A Additional overview of the XCSP^3 results
	B TSP, QAP and JobShop description

	p037-Kirchweger
	1 Introduction
	2 Preliminaries
	3 Encoding
	3.1 Using a propagator to ensure acyclicity
	3.2 Static encoding
	3.3 Invariant pruning
	3.4 Symmetry breaking

	4 Experimental Results
	5 Conclusion

	p038-Kus
	1 Introduction
	2 Background
	2.1 Automated Algorithm Selection
	2.2 The Algorithm Selection Library (ASLib)
	2.3 Active Learning for querying informative instances

	3 Frugal Algorithm Selection
	3.1 Selecting Instances: Uncertainty-based vs random
	3.2 Timeout Predictor
	3.3 Dynamic Timeout

	4 Experimental Results
	5 Related work
	6 Conclusion
	A Appendix A: Sequence Diagram Overview
	B Appendix B: Analysis of Uncertainty Measurement Behaviours in Active Learning for Binary Classification
	C Appendix C: Performance of 8 individual configurations
	D Appendix D: Experimental Setup
	E Appendix E: Description Table of Selected Datasets
	F Appendix F: Timeout (TO) Configuration Impact on Passive Learning

	p039-Souza
	1 Introduction
	2 Related Work
	2.1 Propagation Guided Large Neighbourhood Search
	2.2 Cost-Impact Guided LNS

	3 Improved Variable-Relationship Guided LNS
	3.1 Structural Relationship
	3.2 Search State Information
	3.3 Tournament Selection

	4 Problem Description
	5 Experimental Setup
	5.1 Benchmark Instances
	5.2 Evaluation Metrics

	6 Results
	6.1 Comparison of different domain-independent neighborhood operators for LNS
	6.2 Analysis of iVRG Components

	7 Conclusion

	p040-Zhou
	1 Introduction
	2 The HCP and Distance Encoding
	3 Vertex Elimination Encoding for HCP
	4 Hybrid Encoding
	5 Experimental Results
	6 Discussion and Conclusion

