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Abstract
Correlation clustering is a classic model for clustering problems arising in machine learning and
data mining. Given a set of data elements represented as vertices of a graph and pairwise similarity
represented as edges, the goal is to find a partition of the vertex set so as to minimize the total
number of edges across the parts plus the total number of non-edges within the parts.

Introduced in the early 2000s [2], correlation clustering has received a large amount of attention
through the years. A natural linear programming relaxation was shown to have an integrality gap of
at least 2 and at most 2.5 [1] in 2005, and in 2015 at most 2.06 [4].

In 2021, motivated by large-scale application new structural insights allowed to derive a simple,
practical algorithm that achieved an O(1)-approximation in a variety of models (Massively Parallel,
Sublinear, Streaming or Differentially-private) [6, 5]. These new insights turned out to be a key
building block in designing better algorithms: It serves as a pre-clustering of the input graph that
enables algorithm with approximation guarantees significantly better than 2 [7, 8]. It is a key
component in the new algorithm that achieves a 1.44-approximation [3] and in the new local-search
based 1.84-approximation for the Massively Parallel, Sublinear, and Streaming models [9]. This talk
will review the above recent development and what are the main open research directions.
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