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Abstract
An outerstring graph is the intersection graph of curves lying inside a disk with one endpoint on the
boundary of the disk. We show that an outerstring graph with n vertices has treewidth O(α log n),
where α denotes the arboricity of the graph, with an almost matching lower bound of Ω(α log(n/α)).
As a corollary, we show that a t-biclique-free outerstring graph has treewidth O(t(log t) log n).
This leads to polynomial-time algorithms for most of the central NP-complete problems such as
Independent Set, Vertex Cover, Dominating Set, Feedback Vertex Set, Coloring for
sparse outerstring graphs. Also, we can obtain subexponential-time (exact, parameterized, and
approximation) algorithms for various NP-complete problems such as Vertex Cover, Feedback
Vertex Set and Cycle Packing for (not necessarily sparse) outerstring graphs.
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1 Introduction

The intersection graph of a family F of geometric objects is the graph G = (V, E) such that
every vertex of G corresponds to an object of F , and two vertices of G are connected by an
edge if and only if their corresponding objects intersect. In this case, F is called a geometric
representation of G. Notice that a geometric representation of an intersection graph is not
necessarily unique. There are several popular classes of intersection graphs such as string
graphs, unit disk graphs, and disk graphs. In the case that F is a family of curves in the
plane, its intersection graph is called a string graph. Similarly, the intersection graph of a
family of unit disks (or disk graphs) is called a unit disk graph (or a disk graph). Notice that
a unit disk graph is a disk graph, and a disk graph is a string graph1.

Geometric intersection graphs have been studied extensively as early as in the 1960s,
motivated by the connection with integrated RC circuits [19, 44]. Most NP-complete problems
on general graphs remain NP-complete in geometric intersection graphs (or even in unit
disk graphs). However, recently, it is known that lots of NP-complete problems can be
solved in subexponential time on geometric intersection graphs [3, 4, 5, 9, 16, 17, 30, 36, 40].
For instance, Vertex Cover, 3-Coloring and Feedback Vertex Set can be solved

1 We can represent each disk as a densely spiral-shaped string that covers the interior of the disk.
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Figure 1 (a) A
√

n ×
√

n grid is a unit disk graph of treewidth Θ(
√

n). (b) A sparse axis-parallel
segment graph of treewidth Θ(

√
n). It does not contain K2,2 as a subgraph. The horizontal segments

form
√

n rows, and each row consists of Θ(
√

n) horizontal segments.

in 2O(n2/3polylog n) time for string graphs with n vertices [9]. In the case of disk graphs
and unit disk graphs, one can obtain even stronger results. There are subexponential-time
parameterized algorithms for numerous NP-complete problems in this case. For instance,
one can solve Vertex Cover and Feedback Vertex Set in 2O(

√
k)nO(1) time for unit

disk graphs [4, 16], and in 2O(kc)nO(1) time for disk graphs [3, 36] for some constant c < 1,
where k denotes the output size.

All of the algorithms mentioned above use the fact that string graphs have treewidth
sublinear in the number of vertices if they do not have a large clique (or biclique).2 For
a string graph G with n vertices that does not contain a biclique of size t has a balanced
separator of size O(

√
t(log t)n) [35], and thus its treewidth is O(

√
t(log t)n). For most

central NP-complete problems, there are 2O(tw)nO(1)-time algorithms for any graphs of
treewidth tw. For subexponential-time algorithms for string graphs given in [9], the authors
produce several instances of sparse string graphs using the branching technique. Then they
apply 2O(tw)nO(1)-time algorithms to the instances. The subexponential-time parameterized
algorithms for unit disk graphs and disk graphs mentioned above use similar approaches.
Using branching, they produce several instances of sparse disk graphs. In this case, using
the sparsity and the geometric properties of disk graphs, they show that the treewidth of the
disk graph depends only on the parameter and the measure for the sparsity of the graph.

Motivated by these algorithmic applications, an optimal bound on the treewidth of a
sparse string graph has been studied extensively for the last two decades [22, 35, 37, 38].
A t-biclique-subgraph-free (Kt,t-free) string graph with n vertices has treewidth Ot(

√
n),

while a general (not necessarily sparse) string graph with m edges has treewidth O(
√

m).
These bounds are tight for string graphs [35]. One might hope to obtain a better bound
for a special subclass of string graphs, which might lead to faster algorithms for central
NP-hard problems. However, this bound is tight even for sparse unit disk graphs and the
intersection graph of axis-parallel segments. In particular, a

√
n ×

√
n grid is a unit disk

graph of treewidth Θ(
√

n). Also, there is an axis-parallel segment graph of treewidth Θ(
√

n)
which does not contain a K2,2 as a subgraph. See Figure 1.

In this paper, we focus on outerstring graphs. An outerstring graph is the intersection
graph of curves lying inside a disk with one endpoint on the boundary of the disk. Outerstring
graphs have been studied for about 30 years since they were introduced by Kratochvíl [33].
There are numerous works on the combinatorial properties of outerstring graphs [7, 12, 23, 24,
27, 42], and efficient algorithms for outerstring graphs [6, 10, 29]. Basically, Recognition is

2 The definition of the treewidth is given in Section 2.
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NP-hard for outerstring graphs [33, 39], and all combinatorial properties and algorithms of [6]
are applicable to outerstring graphs without explicitly provided geometric representation. On
the other hand, the algorithms presented in [10, 29] run in time polynomial in the complexity
of a geometric representation. Despite these efforts, we are not able to find any (exact,
parameterized, or approximation) polynomial-time algorithms for central NP-hard problems
specialized to outerstring graphs.

As the concept of the treewidth is a key to obtaining efficient algorithms for geometric
intersection graphs, a natural direction for this problem is to analyze a tight bound on the
treewidth of an outerstring graph. Fox and Pach [23] showed that an outerstring graph
with m edges has treewidth O(min{∆,

√
m}), where ∆ denotes the maximum degree of the

graph.3 Moreover, they showed that this bound is tight for outerstring graphs as a split
graph containing a clique of size Θ(m) has treewidth Θ(m), and the Cayley graph with
vertex set Zn such that any two vertices of cyclic distance at most ∆/2 are adjacent has
treewidth Θ(∆). A split graph and such a Cayley graph are all outerstring graphs. Although
these examples show that the bound of O(min{∆,

√
m}) is tight, these are dense graphs

that contain a clique of size Θ(
√

m). Indeed, what we need for algorithmic applications is a
bound on the treewidth of sparse outerstring graphs, for instance, t-biclique-free outerstring
graphs. There is still room for the improvement of the bound in the sparse regime.

Our results. In this paper, we show that an outerstring graph G has treewidth O(α log n),
where α is the arboricity of G. The arboricity of G is defined as the maximum average degree
of the subgraphs of G. Using the previous structural results about outerstring graphs [24, 35],
we show that an outerstring graph which does not contain Kt,t as a subgraph has arboricity
O(t log t). Thus our main result implies that a t-biclique-free outerstring graph G has
treewidth O(t(log t) log n). We emphasize that all of our algorithmic applications mentioned
below work even without a geometric representation of an outerstring graph.

First, we can obtain polynomial-time algorithms for any problem that admits a single-
exponential-time algorithm parameterized by treewidth, including Independent Set, Hamil-
tonian Cycle, Dominating Set, and Feedback Vertex Set, for t-biclique-free out-
erstring graphs for a fixed constant t. All algorithms but the algorithm for Independent
set are the first polynomial-time algorithms for these problems in t-biclique-free outerstring
graphs. Moreover, the algorithm for Independent set is the first polynomial-time robust
algorithm that does not require the geometric representation of the graph4.

Our main result can be used for obtaining various algorithms for (possibly dense) out-
erstring graphs. We design subexponential-time FPT algorithms for Vertex Cover and
Feedback Vertex Set on general outerstring graphs work in 2O(

√
k log2 k)nO(1) time, where

k is the solution size. It is known that Vertex Cover can be solved in time polynomial
in the complexity of a geometric representation of an outerstring graph [6, 10, 29]. But the
complexity of a geometric representation of an outerstring graph can be exponential in the
number of vertices [7]. For string graphs, Vertex Cover can be solved in 2O(k2/3)nO(1)

time [9]. On the other hand, Feedback Vertex Set can be solved in 2O(n2/3) time for
string graphs, and no subexponential-time algorithm parameterized by the solution size was
known for this problem on string graphs and outerstring graphs prior to our work.

3 Precisely, they showed that an outerstring has a balanced separator of size O(min{∆,
√

m}). By [18],
this implies that the treewidth of an outerstring graph is O(min{∆,

√
m}).

4 Our algorithms for the other problems are also robust. There is an FPT algorithm on Independent
Set parameterized by the complexity of the geometric representation of an outerstring graph [29].
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In addition, we can obtain (non-parameterized) 2O(
√

n log2 n)-time algorithms for Maxi-
mum Induced Matching and List 3-Coloring on (general) outerstring graphs. These
improve the algorithms for these problems running in 2O(n2/3) time [9]. (But the algorithms
in [9] also work for string graphs.) Finally, we can design a 4-approximation algorithm
for Cycle Packing works in nO(log log n) time. Prior to this work, neither approximation
nor parameterized algorithms for Cycle Packing on outerstring graphs were known. For
general graphs, Cycle Packing admits an O(

√
log n)-approximation algorithm [34], and it

is quasi-NP-hard to approximate within a factor of O(log1/2−ε n) for any ε > 0 [25].
We believe that our result can serve as a starting point for designing efficient algorithms

for outerstring graphs. Apart from these applications, we also believe that the main result
itself is interesting. Only a few natural classes of graphs such as sparse Ok-free graphs,
even-hole-free graphs of bounded degree, even-hole-free graphs of bounded clique number,
and (theta, triangle)-free graphs are known to have logarithmic treewidth [1, 2, 8, 13].

Related work. Outerstring graphs were introduced by [33]. The class of outerstring graphs
is a broad subclass of string graphs, which includes split graphs (graphs whose vertex
set can be decomposed into a clique and an independent set), incomparability graphs
(graphs representing the incomparability of elements in a partially ordered set), circle graphs
(intersection graphs of chords of a circle), and ray graphs (intersection graph of rays starting
from the x-axis). Moreover, several real-world problems such as PCP routing and railway
dispatching can be stated in terms of outerstring graphs [20, 31].

Lots of NP-hard problems remain NP-hard on outerstring graphs. For instance, Minimum
Clique Cover, Coloring, and Dominating Set, and Hamiltonian Cycle are NP-
hard even on circle graphs [15, 26, 28]. Also, Maximum Clique is NP-hard even on ray
graphs [11]. Recognition is also NP-hard for outerstring graphs [33, 39]. On the other
hand, Independent Set can be solved in time polynomial in the complexity of a geometric
representation of an outerstring graph if its geometric representation is given [29]. However,
there is an outerstring graph that does not admit geometric representation of polynomial
complexity [7]. It is still unknown if Independent Set can be solved in time polynomial in
the number of vertices in the case that geometric representation is not given.

2 Preliminaries

A curve is the image of a continuous function from a unit interval to R2. Under this definition,
note that the union of pairwise intersecting curves is also a curve. A simple closed curve
C partitions the plane into two disjoint regions. We call the bounded region the interior
of C and denote it by int(C). We say a collection Γ of curves are grounded on a simple
closed curve C if every curve is contained in the closure of int(C), and one of its endpoints is
contained in C. In this case, we say C is a ground of the collection of curves. Also, for a
curve of Γ, one of its endpoints lying on C is called a ground point of the curve. For an index
set I = {1, 2, 3 . . .} and a collection Γ = {γi}i∈I of curves grounded on C, we say a graph G

as an outerstring graph if it is identical to the intersection graph of Γ. In this case, we say Γ
is a geometric representation of G. Throughout this paper, we assume the general position
assumption that no three curves of Γ intersect at a single point, and two curves of Γ cross at
their intersection points. These assumptions can be achieved by slightly adjusting the curves
without changing the intersection graph. See Figure 2. In the following, to distinguish the
curves of Γ from other curves not necessarily in Γ, we call the curves of Γ the strings of Γ.
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(a) (b)

Figure 2 We can always assume the general position assumption.

An induced subgraph of an outerstring graph is an outerstring graph as an outerstring
graph is a geometric intersection graph. Similarly, an induced minor of an outerstring
graph is an outerstring graph although a minor of an outerstring graph is not necessarily an
outerstring graph. An induced minor of a graph G is a graph that can be obtained from G

by deleting vertices and contracting edges. Whenever we deal with an induced subgraph of
G, we assume that its underlying geometric representation is a subset of Γ. Similarly, the
underlying geometric representation of an induced minor of G is a set of curves obtained
from Γ by removing curves and taking the union of curves. In the case that several curves
are merged into a single curve, we choose the ground point of any of them as the ground
point of the new curve.

Let G be the intersection graph of a collection Γ of grounded curves. For a subset Γ′ of
Γ, the intersection graph of Γ′ is an induced subgraph of G by curves in Γ′. We use G[Γ′] to
denote the intersection graph of Γ′. Recall that a vertex of G corresponds to a curve of Γ.
For any subset U of the vertex set of G, the geometric representation of U is defined as the
union of the curves corresponding to the vertices of U .

Treewidth and brambles. A key notion we use in this paper is the treewidth of a graph,
which is defined as follows. A tree decomposition of an undirected graph G = (V, E) is defined
as a pair (T, β), where T is a tree and β is a mapping from nodes of T to subsets of V (we
call β(t) of t ∈ T bag) with the following conditions.

For any vertex u ∈ V , there is at least one bag which contains u.
For any edge (u, v) ∈ E, there is at least one bag which contains both u and v.
For any vertex u ∈ V , the nodes of T containing u in their bags are connected in T .

The width of (T, β) is defined as the size of its largest bag minus one, and the treewidth
of G is the minimum width of a tree decomposition of G. Notice that the treewidth of Kt,t

is Θ(t), and thus any graph containing Kt,t as a subgraph has treewidth Ω(t).
Although our main focus is to analyze a tight bound of the treewidth of an outerstring

graph, we do not use this definition directly. Instead, we use an alternative characterization
of treewidth using the notion of brambles. A bramble X of a graph G is a family of connected
subgraphs of G that all touch each other. Here, we say a subgraph X of G touches a subgraph
X ′ of G if there is a common vertex in V (X) ∩ V (X ′), or there is an edge with one endpoint
in V (X) and one endpoint in V (X ′). A subset Y of V (G) is a hitting set of the bramble
if V (X) ∩ V (Y ) contains a common vertex for each subgraph X of X . Then the order of
bramble is defined as the smallest size of a hitting set of the bramble. Let X be a bramble of
G of maximum order. It is known that the order of X is the treewidth of G plus one [14].

Sparse outerstring graphs. Our main result focuses on sparse outerstring graphs. There
are several different definitions of the sparsity of a graph. As the measure for the sparsity of
a graph, we mainly use the arboricity, which is defined as the minimum number of forests
into which its edges can be partitioned. Equivalently, it is half of the maximum average
degree of the subgraphs of the graph.

ESA 2024



10:6 Sparse Outerstring Graphs Have Logarithmic Treewidth

Other measures about the sparsity of graphs are biclique-freeness and degeneracy. For an
integer t, we say a graph is t-biclique-free if it does not contain a (not necessarily induced)
subgraph isomorphic to Kt,t. We say t as the size of the biclique Kt,t. We say a graph
G is t-degenerate if every subgraph of G has a vertex of degree at most t. In the case of
outerstring graphs, all concepts mentioned above are equivalent up to log factors as we
will see in Lemma 1. Moreover, the bounds stated in the following lemma are all tight up
to constant factors. For the first two statements, as mentioned in [22], the construction
of [21, 41] shows that there are t-biclique-free incomparability graphs with n vertices and
Θ((t log t)n) edges. Moreover, every vertex in this graph has degree Ω(t log t). It is known
that an incomparability graph is an outerstring graph [23], and thus the first two bounds in
the following lemma are tight. We give a tight lower bound for the last two cases in Section 4.

▶ Lemma 1. For an outerstring graph G, the following statements hold.
If G is t-biclique-free, then G is O(t log t)-degenerate.
If G is t-biclique-free, G has arboricity O(t log t).
If G has arboricity t, then G is 2t-biclique-free.
If G is t-degenerate, then G is 2t-biclique-free.

Proof. For the first two statements, assume that G is t-biclique-free. Consider an induced
subgraph H of G. Note that H is also a t-biclique-free outerstring graph. By [24] and [35], the
number of edges of H is O(t(log t)|V (H)|). Therefore, the average degree of H is O(t log t),
and thus H has a vertex of degree O(t log t). Hence, G is O(t log t)-degenerate and it has
arboricity O(t log t).

Now we consider the contrapositives of the last two statements. If G contains a subgraph
H isomorphic to K2t,2t, the average degree of H is large than t. Therefore, G has arboricity
greater than t, and thus the third statement holds. Moreover, it does not contain a vertex of
degree at most t, and thus G is not t-degenerate. Therefore, the lemma holds. ◀

3 Upper Bound on the Treewidth of an Outerstring Graph

In this section, we show that an outerstring graph G has treewidth O(α log n), where α

denotes the arboricity of G. Let Γ be a geometric representation of G, which is a collection
of curves grounded on a ground C. A key of our proof lies in defining a new notion, called
the crossing-level, which is a variant of the level in an arrangement. The arrangement of Γ
is the subdivision of int(C) formed by the curves of Γ into vertices, edges, and faces. Note
that the degree of each vertex of the arrangement is at most four by the general position
assumption. For an illustration of the crossing-level, see Figure 3(a).

▶ Definition 2. For a point p in int(C), the crossing-level of p in Γ is the smallest number of
different strings that one must cross to reach the ground from p.5 The maximum crossing-level
of Γ is the maximum of the crossing-levels of all points of int(C).

Our proof consists of three steps. We first show that the maximum crossing-level of Γ is
at most 3α log n. In the second step, we show that an outerstring graph G contains a clique
minor of size Ω(tw), where tw denotes the treewidth of G. Then in the third step, using the
result of the second step, we show that the maximum crossing-level of Γ is at least Ω(tw).
By combining the two claims, we conclude that the treewidth of G is O(α log n).

5 In the case that p lies on a curve of Γ, the starting point p is not considered as a crossing point.
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p

Ri−4α

Ri

(a) (b)

p

Figure 3 (a) The red region depicts U2. Jordan curve R2 consists of the parts of four strings. (b)
All black strings are contained in both Γi and Γi−4α, and the red string is contained in Γi only.

3.1 Step 1. Upper Bound on the Maximum Crossing-Level
In this subsection, we show that the maximum crossing-level of Γ is O(α log n). We use the
following observation which immediately comes from the definition of the crossing-level.

▶ Observation 3. Any two points in the same face of the arrangement of Γ have the same
crossing-level. Also, any two points of the same edge of the arrangement of Γ have the same
crossing-level unless one of the points is an endpoint of the edge.

Let p be a point of int(C) that achieves the maximum crossing-level of Γ, and let r be
the crossing-level of p. For each index 0 ≤ i ≤ r, let Ui be the set of points in int(C) of
crossing-level at least i. Clearly, U0 coincides with int(C). Notice that Ui contains p for all
indices 0 ≤ i ≤ r. Let Ri be the boundary of the connected component of Ui containing
p. Due to Observation 3, Ri is a Jordan curve consisting of parts of strings of Γ for i > 1,
and R0 coincides with the ground. See also Figure 3(a). Then let Γi be the set of strings
of Γ intersecting Ri. Since R0, R1, . . . Rr are concentric, Γr ⊆ Γr−1 ⊆ . . . ⊆ Γ0 = Γ. In the
following lemma, we show that the size of Γi is (almost) geometrically decreasing. Since
|Γ0| = n, this gives an upper bound of r in terms of input size n and arboricity α.

▶ Lemma 4. For each index i ≥ 4α, where α is the arboricity of G, we have 2|Γi| ≤ |Γi−4α|.

Proof. We consider the region bounded by Ri and Ri−4α. See Figure 3(b). Note that a
string of Γi intersects both Ri and Ri−4α by definition. Each string γ of Γi is intersected by
at least 4α different strings of Γ in the region bounded by Ri and Ri−4α. Otherwise, the first
intersection point of γ with Ri from the ground point of γ would have the crossing-level less
than i, which contradicts the fact that this intersection point lies on Ri. Also, observe that
a string of Γ intersecting γ in the region bounded by Ri and Ri−4α is contained in Γi−4α.
Let P be the set of all pairs (γ, γ′) such that a string γ of Γi is intersected by a string γ′ of
Γi−4α. Due to the previous observation, we have |P| ≥ 4α · |Γi|.

Now we show that |P| ≤ 2α · |Γi−4α|. To see this, observe that a pair (γ, γ′) of P
corresponds to an edge of G[Γi−4α]. This is because γ ∈ Γi ⊆ Γi−4α, and γ′ ∈ Γi−4α.
Moreover, by construction, an edge of G[Γi−4α] corresponds to at most two different pairs of
P. Here, notice that two strings of Γ may intersect more than once, but in the construction
of P, for all pairs of P whose first elements are the same, there second elements must be
distinct. Therefore, an edge of G[Γi−4α] corresponds to at most two pairs of P. Since the
arboricity of G is α, any subgraph H of G has at most α · |V (H)| edges. Then the number
of edges of G[Γi−4α] is at most α · |Γi−4α|. Therefore, we have |P| ≤ 2α · |Γi−4α|, and thus
the lemma holds. ◀

▶ Lemma 5. The maximum crossing-level of Γ is at most O(α log n).

Proof. For the maximum crossing-level r of Γ, we have Γr ̸= ∅. By Lemma 4, 2|Γi| ≤ |Γi−4α|
for all indices i ≥ 4α. Therefore, 2⌊r/(4α)⌋ · |Γr| ≤ |Γ0| = n. Thus, r ≤ 4α(log n + 1). ◀

ESA 2024



10:8 Sparse Outerstring Graphs Have Logarithmic Treewidth

3.2 Step 2. Existence of a Clique Minor of Size tw

In this subsection, we show that an outerstring graph has a clique minor of size Ω(tw). A
clique minor of G is a clique formed from G by deleting edges, vertices, and contracting
edges. Note that a general “string” graph may not contain a clique minor of size Ω(tw).
For instance, an n by n rectangular grid graph is a string graph since it is a planar graph
and all planar graphs are string graphs [43]. The treewidth of this graph is

√
n but it does

not have a size-five clique minor. For any two disjoint sets A and B of vertices of a general
graph H with |A| = |B|, an (A, B)-linkage of H is defined as a set of |A| vertex-disjoint
paths connecting every vertex of A and every vertex of B. See Figure 4(a). We say a set Q

of vertices of H is well-linked if for any two disjoint subsets A and B of Q with |A| = |B|,
there is an (A, B)-linkage of H. The following lemma is frequently used in literature without
formal proof, but to make our paper self-contained, we add a short proof.

▶ Lemma 6 (Folklore). Any graph H of treewidth tw has a well-linked set of size Θ(tw).

Proof. Let X be a bramble of H of maximum order. Recall that the order of X is tw + 1 by
the characterization of the treewidth mentioned in Section 2. Let Q be the smallest hitting
set of X with |Q| = tw + 1. We show that Q is well-linked. If this is not the case, there is a
witness (A, B) for two disjoint sets A and B of Q with |A| = |B|. That is, the maximum
number of vertex-disjoint paths between A and B is less than |A|. Among all such witnesses
(A, B), we choose the one that minimizes |A|. Then no two vertices, one from A and one
from B, are adjacent. Then by Menger’s theorem, there is a vertex set X of size less than
|A| such that every path between A and B intersects X.

We show that X ∪ (Q \ A) or X ∪ (Q \ B) is a hitting set of X , which contradicts that H

is the smallest hitting set of X . To show this, observe that for an element X of X , either X

intersects X, or it is fully contained in a connected component of G − X. The elements of
X of the first type are hit by X, and thus it is hit by both X ∪ (H \ A) and X ∪ (H \ B).
The elements of X of the second type must be contained in the same connected component
of G − X as they touch each other. Then either (H \ A) or (H \ A) hits all such elements.
Therefore, either X ∪ (H \ A) or X ∪ (H \ B) is a hitting set of X , and thus the lemma
holds. ◀

Let X be a well-linked set of G of size Θ(tw). Without loss of generality, we may assume
that the size of X is a power of four. Assume further that they are sorted along C with
respect to the ground points of their corresponding curves of Γ. Then we partition X into
four equal-sized subsets X1, X2, X3, X4 so that each subset consists of consecutive vertices of
X with respect to their corresponding ground points. See Figure 4(b). By the well-linkedness
of X, there are an (X1, X3)-linkage Ph and an (X2, X4)-linkage Pv of G. Observe that if all
vertices in the paths of Ph ∪ Pv are distinct, the geometric representation of every path of
Ph crosses the geometric representation of every path of Pv. Then we simply pair each path
of Ph with a path of Pv and then contract all the edges in the two paths to form a single
vertex. In this way, we have Ω(tw) contracted vertices, which form a clique. However, a
vertex in a path of Ph might appear in a path of Pv. To handle this case, we choose new
sets X̃1, X̃2, X̃3 and X̃4 using X1, X2, X3, X4 as follows.

Construction of new sets. Recall that the sizes of Xi’s are the same. Let k be the size
of these sets. For i ∈ {1, 2, 3, 4}, let Ci be the minimal subarc of C containing the ground
points of all curves corresponding to Xi but not containing the ground point of any curve
corresponding to a vertex of X \ Xi. See Figure 4(b). Notice that C1, C2, C3 and C4 are
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(a)

X1

X3
C1

C3

(b)

C2

X2

X4

C̃2

C4 C̃4

π

π′

(c)

A B

Cπ′

Cπ

Figure 4 (a) Illustration of an (A, B)-linkage. (b) Partition of X into X1, X2, X3 and X4. (c)
The case that Cπ ⊆ Cπ′ . An internal vertex of π′ (corresponding to the pink dotted curve) intersects
the geometric representation of π.

pairwise disjoint. We say two vertex sets A and B of G are separated by C1 and C3 if the
ground points of the curves corresponding to the vertices of A are contained in one component
of C \ {C1, C3}, and the ground points of the curves corresponding to the vertices of B are
contained in the other component of C \ {C1, C3}. An (A, B)-linkage of G is called a shortest
(A, B)-linkage if its total length is minimum over all (A, B) linkages of G. Here, the length
of a path is defined as the number of vertices in the path.

Among all pairs (X ′
2, X ′

4) of disjoint vertex sets of V (G) \ (X1 ∪ X3) separated by C1 and
C3 with |X ′

2| = |X ′
4| = k, we choose the one that minimizes the total length of the shortest

(X ′
2, X ′

4)-linkage. Notice that such a pair always exists since (X2, X4) satisfies the conditions
for being a candidate. Let X̃2 and X̃4 be the resulting sets. Then let C̃2 (and C̃4) be the
minimal subarc of C containing the ground points of all curves corresponding to X̃2 (and
X̃4) and not containing any other curve of X̃4 (and X̃2). Then among all pairs (X ′

1, X ′
3) of

disjoint vertex sets of V (G) \ (X̃2 ∪ X̃4) separated by C̃2 and C̃4 with |X ′
1| = |X ′

3| = k, we
choose the one that minimizes the total length of the shortest (X ′

1, X ′
3)-linkage. Notice that

such a pair always exists since (X1, X3) satisfies the conditions for being a candidate. Let
X̃1 and X̃3 be the resulting sets. By construction, all resulting sets are pairwise disjoint.

Then a shortest (X̃1, X̃3)-linkage satisfies the following property. By changing the roles of
C̃2 ∪C̃4 and C1 ∪C3, we can show that the following also holds for a shortest (X̃2, X̃4)-linkage.

▶ Lemma 7. Let P be a shortest (X̃1, X̃3)-linkage. Then the set of paths of P of length at
least three can be decomposed into two subsets such that for any two paths of P in the same
subset, their geometric representations intersect.

Proof. Let π be a path of P of length at least three. For any internal vertex of π, its
corresponding curve of Γ has the ground point on C̃2 ∪ C̃4. Otherwise, we partition π into
two subpaths π1 and π2 whose common endpoint v lies outside of C̃2 ∪ C̃4. Assume, without
loss of generality, it lies the subarc of C \ (C̃2 ∪ C̃4) containing C1. In this case, the other
endpoint of πi(i=1 or 2) lies in the other subarc of C \ (C̃2 ∪ C̃4). Then we simply replace π

with πi. In this way, we can decrease the total length of paths of P without any conditions
for P. This contradicts the choice of P. Then we decompose the paths of P of length at
least three into two subsets P ′ and P ′′ such that P ′ consists of all paths of P of length at
least three containing at least one internal vertex whose corresponding curve has its ground
point on C̃2, and P ′′ consists of all paths of P of length at least three not contained in P ′.

Now we show that for any two paths π and π′ of P ′, their geometric representations
intersect. The other case can be handled symmetrically by changing the roles of C̃2 and
C̃4. Let Cπ be the subarc of C containing C̃2 lying between the ground points of the
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X̃1

X̃3

C1

C3

C2

X̃2

X̃4

C4

Ph

Pv

(a) (b)

Figure 5 (a) Illustration of X̃1, X̃2, X̃3 and X̃4. (b) Illustration of length-two paths of Pv and
Ph. Two geometric representations of two pairs of paths of Ph and Pv intersect.

strings corresponding to the endpoints of π. See Figure 4(c). Similarly, let Cπ′ be the
subarc of C containing C̃2 lying between the ground point of the strings corresponding to the
endpoints of π. If neither Cπ nor Cπ′ contains the other, π and π′ cross because the geometric
representation of π (and π′) is connected. If this is not the case, without loss of generality,
assume that Cπ is contained in Cπ′ . Since π′ has an internal vertex whose corresponding
string has its ground point on C̃2, the geometric representation of π must intersect the string.
See the pink dotted curve in Figure 4(c). Therefore, the lemma holds. ◀

Now we are ready to show that G has a clique minor of size Ω(tw). Recall that X̃i’s have
size k = Ω(tw). Let Pv be a shortest (X̃1, X̃3)-linkage, and Ph be a shortest (X̃2, X̃4)-linkage.
If Pv (or Ph) contains k/2 paths of length at least three, then we are done. To see this,
observe that Pv (or Ph) contains at least k/4 paths whose geometric representations intersect
by Lemma 7. For each such path, we contract all edges in the path into a single vertex. Then
at least k/4 vertices form a clique, and thus G has a clique minor of size k/4.

Thus we assume each of Pv and Ph contains at least k/2 paths of length at most two.
Recall that X̃i ∩ X̃j = ∅ for any two distinct indices i, j ∈ {1, 2, 3, 4}. This implies that every
such path of Pv and Ph has length exactly two. Moreover, the paths of Pv ∪ Ph of length
exactly two are pairwise vertex-disjoint since X̃i ∩ X̃j = ∅. Since the geometric representation
of every path of Ph crosses the geometric representation of every path of Pv, we pair each
path of Ph with a path of Pv and then contract all the edges in the two paths to form a
single vertex. In this way, we have k/2 contracted vertices, which form a clique. See Figure 5.
Therefore, in any case, G has a clique minor of size k/2 = Ω(tw).

3.3 Step 3. Lower Bound on the Maximum Crossing-Level
As the third step, we show that the maximum crossing-level of Γ is Ω(tw). First, we reduce
the general case to the case that Γ consists of double-grounded circularly ordered curves, and
then we analyze the maximum crossing-level of Γ in this case. A double-grounded curve is a
curve having both endpoints on C. We say that double-grounded curves γ1, γ2, . . . , γk are
circularly ordered if x1, x2, . . . , xk, y1, y2, . . . , yk−1 and yk lie on C in the counterclockwise
order, where xi and yi denote two endpoints of γi for i = 1, . . . , k. See Figure 6(a).

Reduction to the double-grounded circularly ordered case. Let k be the largest integer
such that G has a clique minor of size 4k. Notice that k = Ω(tw) by Section 3.2. Then
G has a model µ of K4k, that is, there is a function µ that maps the vertices of K4k to
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Figure 6 (a) Illustration of double-grounded circularly ordered curves. The colored region is h2.
(b-c) Illustrates P1 (black curve) and P2 (red curve). The crossing-level of p is at least k/2.

vertex-disjoint connected subgraphs of G such that, for any two vertices u and v of Kk, µ(u)
and µ(v) are adjacent in G. In other words, the edges of µ(v) are contracted into v in the
construction of the clique minor of G of size k.

For a vertex v of K4k, recall that the geometric representation of v is defined as the union
of the strings of Γ corresponding to the vertices of µ(v). We choose an arbitrary one as its
ground point of v (and its geometric representation). Let ⟨v1, v2, . . . , v4k⟩ be the sequence of
vertices of K4k sorted with respect to their ground points along C in the counterclockwise
order. We pair a vertex vi in the first half of the sequence with vi+2k, and then find a curve
in the union of their geometric representations. More specifically, for each index i with
i = 1, . . . , 2k, consider the union of the geometric representations of vi and vi+2k. Notice that
the union consists of a single connected component since vi and vi+2k are adjacent in K4k.
Let xi be the ground point of vi, and let yi be the ground point of vi+2k. Then the union
contains a curve with endpoints xi and yi. Let γi be a curve between xi and yi contained in
the union. By construction, γ1, γ2, . . . , γ2k are doubly-grounded circularly ordered curves.
Due to the following lemma, it is sufficient to show that the maximum crossing-level of k

double-grounded circularly ordered curves is Ω(k).

▶ Lemma 8. The max crossing-level of Γ is at least the max crossing-level of {γ1, . . . , γ2k}.

Proof. Let q be a point in int(C), and let ℓ(q) be the crossing-level of q in {γ1, γ2, . . . , γ2k}.
We show that the crossing-level of q in Γ is at least ℓ(q), which implies the lemma. Consider
a curve π connecting q and C. The number of curves of {γ1, γ2, . . . , γ2k} intersected by π is
at least ℓ(q). By the construction of {γ1, γ2, . . . , γ2k}, for any point in γi and any point in
γj with i ≠ j, they come from different strings of Γ. Therefore, the number of strings of Γ
intersected by π is at least ℓ(q), and thus the lemma holds. ◀

Analysis of the double-grounded circularly ordered case. In the following, we focus on
the set {γ1, . . . , γ2k} of double-grounded circularly ordered curves along C. To make the
description easier, we assume that k is even. We give a direction to each path γi from xi to yi.
Then every edge of the arrangement of {γ1, . . . , γ2k} has its direction. By the general position
assumption, every vertex of the arrangement has two incoming arcs and two outgoing arcs.
Then γi subdivides int(C) into two regions. The (closed) region lying locally to the right of γi

is denoted by hi. See Figure 6(a). Let H1 = {h1, h2, . . . hk} and H2 = {hk+1, hk+2, . . . , h2k}.
Let Pi be the set of points contained in exactly k/2 regions of Hi and lying on the boundary
curves of the regions of Hi for i = 1, 2. Then Pi forms a simple curve, but in the following,
we prove the weaker property that Pi contains a curve as it is sufficient for our purpose.

▶ Lemma 9. The set Pi contains a simple curve connecting two points on C for i = 1, 2.
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Proof. We prove this for P1 only. The other case can be handled similarly. We traverse the
arrangement of the curves of {γ1, . . . , γk} along a simple curve as follows. Starting from xk/2,
we move along γk/2 until we reach a vertex of the arrangement. Whenever we meet a vertex
of the arrangement, this vertex is an intersection point between the curve we are traversing
and another curve in {γ1, . . . , γk}. Then we follow the outgoing arc of the vertex lying on
the new curve. We repeat this until we reach a point of C. Let ρ be the set of points we
have visited in this way. We claim that ρ is a simple curve contained in Pi.

We first show that each (directed) arc of ρ is contained in Pi. As xk/2 is contained in
exactly k/2 regions of H1, the claim holds for the first arc. Consider two consecutive arcs η

and η′ of ρ. Assume that the claim holds for η, and we show that the claim also holds for η′.
Let h and h′ be the two regions of H1 such that the boundary curve of h contains η, and the
boundary curve of h′ contains η′. The regions of H1 \ {h, h′} containing η also contains η′,
and vice versa. On the other hand, there are two possibilities: (1) h contains both η and η′,
and h′ contains both η and η′, or (2) h contains η only, and h′ contains η′ only. Therefore,
the number of regions of H1 containing η′ (and η) are the same, and thus ρ is contained in
Pi. See also Figure 6(b).

Moreover, ρ is a simple curve, that is, it does not contain a cycle. If this is not the case, ρ

contains three arcs of the arrangement sharing a common vertex. Two of them are contained
in the boundary curve of the same region h of H1. Let h′ be the region of H1 whose boundary
curve contains the other arc. The regions of H1 \ {h′} containing one arc coming from h

contain the other arc coming from h, and vice versa. On the other hand, one arc coming
from h is not contained in h′, and the other arc coming from h is contained in h′. Therefore,
not both arcs coming from h are contained in P1, which contradicts that ρ contains both
arcs. Therefore, ρ does not contain a cycle, and thus it ends at a point on C. ◀

▶ Lemma 10. We have P1 ∩ P2 ̸= ∅, and a point in P1 ∩ P2 has a crossing-level at least k/2.

Proof. Notice that P1 ∩ C consists of two points xk/2 and yk/2+1. Therefore, P1 contains a
simple curve connecting xk/2 and yk/2+1. Similarly, P2 contains a simple curve connecting
x3k/2 and y3k/2+1. Since xk/2, x3k/2, yk/2+1 and y3k/2+1 lie on C in the counterclockwise
order, the two simple curves cross. See Figure 6(c). Notice that an intersection point p of
the two simple curves is contained in exactly k/2 regions of Hi for i = 1, 2.

Now we show that the crossing-level of p is at least k/2. Let z be a point in C. It suffices
to show that any curve connecting p and z intersects at least k/2 curves of {γ1, . . . , γ2k}.
For two points x′ and y′ on C, we let C[x′, y′] be the circular arc of C from x′ to y′ in the
counterclockwise direction. We show this through case studies of the position of z. Consider
the case that z ∈ C[x2k, y1]. Recall that the common intersection of all regions of H1 ∪ H2
contains C[x2k, y1]. Recall also that the number of regions of H not containing p is exactly
k. The region hi of H not containing p is defined by the double-grounded curve γi. Then γi

separates p and z. In this case, any curve connecting p and z intersects at least k different
curves of {γ1, γ2, . . . , γ2k}, and thus we are done.

Now consider the case that z ∈ C[x1, xk] ∪ C[y1, yk]. Then the regions of H2 containing p

do not contain z. Therefore, at least k/2 curves of {γk+1, γ2, . . . , γ2k} separate p and z, and
thus any curve connecting p and z intersects at least k/2 different curves of {γ1, γ2, . . . , γ2k}.

The other cases can be handled similarly. Specifically, the case that z ∈ C[y2k, x1] can
be handled symmetrically to the first case by changing the roles of the regions of H not
containing p and the regions of H containing p. The case that z ∈ C[xk, x2k] ∪ C[yk, y2k]
can be handled symmetrically to the second case by changing the roles of H1 and H2. ◀
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In this way, we can show that for an outerstring graph G with a geometric representation
Γ, the maximum crossing-level in Γ is Ω(tw), where tw denotes the treewidth of G.

▶ Theorem 11. The treewidth of an outerstring graph is O(α log n), where α and n denote
the arboricity and the number of vertices of the graph, respectively.

▶ Corollary 12. The treewidth of a Kt,t-free outerstring graph is O(t(log t) log n).

4 Lower Bound of the Treewidth of an Outerstring Graph

In this section, we show that the bound of Theorem 11 is almost tight by constructing an
outersegment graph G with treewidth Θ(α log(n/α)), where α is the arboricity of G. An
outersegment graph G is the intersection graph of segments grounded on C. We say an
outersegment graph is k-directional if it has a geometric representation consisting of grounded
segments of k orientations. To make the description easier, we first present a 2-directional
outersegment graph with arboricity O(1) of treewidth Ω(log n).

▶ Lemma 13. There is a 2-directional outersegment graph with arboricity O(1) and treewidth
Ω(log n), where n denotes the number of its vertices.

Proof. Let n = 2m. We consider the x-axis as the ground, and the region lying above
the x-axis as the interior of the ground. A V-shape curve is the union of two equal-length
outersegments sharing a common ground point, with the other endpoints having the same
y-coordinates. Note that the angle of the two outersegments is π/3. The width of a V-shaped
curve is defined as the length of each outersegment. A folk is the union of equal-width
V-shaped curves which form a simple curve. See Figure 7(a). The size of folk is the number
of V-shaped curves in the fork, and the width of a folk is the size of each V-shaped curve in
the folk. For an index i with 1 ≤ i ≤ m, let Fi be the folk of width 2i and size n/2i whose
leftmost point lies on the y-axis. Then we set Γ as the set of all outersegments of the folks
F1, F2, . . . , Fm. See Figure 7(b). Notice that the ground points of the outersegments of Fi

have x-coordinates 2i−1 + 2i · j for integers j with 0 ≤ j < n/2i − 1. Therefore, no two
segments from different folks share their ground points.

Its intersection graph G is clearly a 2-directional outersegment graph. The number of
vertices of G is Θ(n) since the number of segments of Fi is 2 · (n/2i). The arboricity of G is
O(1) since each segment of Fi intersects at most one segment of Fi+1 ∪ Fi+2 ∪ . . . ∪ Fm for
any index i with 1 ≤ i ≤ m. Then the number of edges of any subgraph of G is linear in the
number of its vertices, and thus the arboricity of G is O(1). Consider the minor of G obtained
by contracting all edges coming from Fi for each index i with 1 ≤ i ≤ m. Since the folks are
pairwise intersecting, the resulting minor is a clique of size m = log n. Since the treewidth of
G is at least the treewidth of any of its minors, the treewidth of G is Ω(log n). ◀

Notice that this example is 2-biclique-free. We can generalize this example to an out-
ersegment graph with an arbitrary arboricity α whose treewidth is Θ(α log(n/α)) by simply
copying all segments α times. Notice that we can slightly perturb the copied segments
without changing their intersection graphs so that any two segments intersect at most once.

▶ Lemma 14. For any integer α, there is an outersegment graph with arboricity α and
treewidth Ω(α log(n/α)), where n denotes the number of its vertices.

Proof. Let Γ be the set of outersegments we constructed in Lemma 13. We copy each
outersegment of Γ into α copies. Then these α curves are pairwise intersecting. Then the
intersection graph of the resulting outersegments has arboricity α, and it has αn vertices.
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Figure 7 (a) A folk of width 2i−1 and size n/2i. (b) Illustration of F1, F2 and F3.

Moreover, the resulting set Γ can be decomposed into α log n pairwise intersecting folks, and
they form a clique minor of size α log n. Therefore, the treewidth of the resulting graph is
α log(N/α), where N denotes the number of vertices of the resulting graph. ◀

5 Algorithmic Applications

In this section, we present algorithmic applications of Corollary 12. Immediate consequences
of Corollary 12 are as follows. We compute a tree decomposition of width 2 · tw in 2O(tw)n

time [32]. Then lots of central NP-hard problems can be solved in 2O(tw)nO(1) time [14]
including the problems mentioned in the following corollary (except for Coloring). The
definitions of the problems we will mention in this section is as follows.

Independent Set asks for a maximum-sized set of pairwise non-adjacent vertices.
Hamiltonian Cycle asks for a cycle that visits all the vertices of the graph.
Vertex Cover asks for a minimum-sized set of vertices that cover all the edges.
Dominating Set asks for a minimum-sized set D of vertices such that every other vertex
is adjacent to D.
Feedback Vertex Set asks for a minimum-sized vertex set whose removal makes G

acyclic.
Coloring asks for a coloring of the vertices of G with the smallest number of colors.
Maximum Induced Matching asks for a maximum-sized edge set S such that no two
such edges are joined by an edge of G.
List 3-Coloring asks for a function f̄ : V (G) → {1, 2, 3} such that f̄(v) ∈ f(v) for all
vertices v of V (G), and f̄(u) ̸= f̄(v) for all edges (u, v) of G. An input of this problem
consists of a graph G and a function f : V (G) → 2{1,2,3}.
Cycle Packing asks for a maximum-sized set of vertex-disjoint cycles of G.

▶ Corollary 15. Independent Set, Hamiltonian Cycle, Dominating Set, Feedback
Vertex Set and Coloring can be solved in polynomial time on t-biclique-free outerstring
graphs for a fixed constant t.

Proof. All problems mentioned above, except for Coloring, admit polynomial-time al-
gorithms for graphs with logarithmic treewidth. More specifically, they are based on
dynamic programming over a tree decomposition of width tw = O(log n), and they run in
2O(tw)nO(1) = nO(1) time in our case. For details, see [14, Chapter 7.3 and Chapter 11.2].

In the case of Coloring, recall that a t-biclique-free outerstring graph is O(t log t)-
degenerate by Lemma 1. Thus it is O(t log t)-colorable. To see this, consider the following
constructive argument. In each iteration, we find a minimum degree vertex v and compute a
minimum coloring of G − {v} recursively. Then since the degree of v is O(t log t), we can
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color v using a color not used by any neighbor of v once we have Ω(t log t) colors. This
implies that G is O(t log t)-colorable. For a fixed constant q, we can compute a coloring of a
graph with treewidth tw with q colors in 2O(tw)nO(1) time [14, Chapter 7.3]. Therefore, we
can solve Coloring in polynomial time in the case that t is a constant. ◀

Subexponential-time FPT algorithms for (not necessarily sparse) outerstring graphs.
We can obtain subexponential-time FPT algorithms for Vertex Cover and Feedback
Vertex Set on general outerstring graphs. To do this, we first compute the polynomial
kernel with respect to the solution size k. Then we compute biclique of size t =

√
k in a

brute-force manner, and apply branching with respect to the partial solution in the biclique.

▶ Corollary 16. Vertex Cover and Feedback Vertex Set parameterized by the solution
size k can be solved in 2O(

√
k log2 k)nO(1) time for (not necessarily sparse) outerstring graphs.

Proof of Vertex Cover. Let G be an outerstring graph with n vertices. Vertex Cover
admits a kernel of size k [14], that is, there is an instance (H, k′) consisting of an induced
minor H of G with O(k) vertices and an integer k′ ≤ k such that H has a vertex cover of
size k′ if and only if G has a vertex cover of size k. Thus it is sufficient to solve Vertex
Cover for (H, k′). Notice that H is also an outerstring graph.

Let t =
√

k. Given an instance (H, k′), we first compute a biclique of size t in H in a
brute-force fashion if it exists. This takes kt = 2O(

√
k log k) time. Let A, B be the sets of V (H)

which form a biclique of size t. Notice that a vertex cover of H must contain either A or B.
We branch on whether A is contained in an optimal vertex cover, or B is contained in an
optimal vertex cover. For this, we produce two instances (H −A, k′ −t) and (H −B, k′ −t). If
H does not contain a biclique of size t, we apply a polynomial-time algorithm for computing
a minimum vertex cover for a t-biclique-free outerstring graph.

The number of instances we produce is 2O(k/t), which is 2O(
√

k). For each instance, we
compute a biclique of size t in 2O(

√
k log k) time. If it does not exist, we compute a minimum

vertex cover in O(2t(log t) log k) = 2O(
√

k log2 k) time. ◀

Subexponential-time algorithms for (not necessarily sparse) outerstring graphs. Apart
from Corollary 12, the main tools we use for Vertex Cover and Feedback Vertex
Set are branching and kernelization. For the following two problems, we are not aware
of any polynomial kernel although we can apply branching. In this case, we can obtain
subexponential-time (non-parameterized) algorithms for those problems.

▶ Corollary 17. Maximum Induced Matching and List 3-Coloring on outerstring
graphs with n vertices can be solved in 2O(

√
n log2 n) time.

Proof of Maximum Induced Matching. Let G be an outerstring graph with n vertices. Let
t =

√
n. We first compute a biclique of size t in H in a brute-force fashion if it exists. This

takes nt = 2O(
√

n log n) time. Let A, B be the sets of V (G) which form a biclique of size
t. Notice that for any induced matching M of G, at most one edge of M is incident to
A ∪ B. We produce t2 instances for branching on which vertices of A ∪ B are involved in
a maximum induced matching. For this, we produce two instances G \ A and G \ B, and
t2 instances (G \ (A ∪ B)) ∪ {u, v} for all pairs (u, v) with u ∈ A and v ∈ B. If G does
not contain a biclique of size t, we apply a 2O(tw)nO(1)-time algorithm for computing a
maximum-cardinality induced matching for a t-biclique-free outerstring graph.

The number of instances we produce is (t2)O(n/t), which is 2O(
√

n log n). For each instance,
we compute a biclique of size t in 2O(

√
n log n) time. If it does not exist, we compute a

maximum induced matching in O(2t(log t) log n) = 2O(
√

n log2 n) time. ◀
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Approximation algorithms for (not necessarily sparse) outerstring graphs. We present
the first constant-factor approximation algorithm for the Cycle Packing running in quasi-
polynomial time. Our algorithm repeatedly computes a cycle of length at most four and
removes it from G until no such cycle exists. Then the remaining graph is 2-biclique-free,
and thus we can find a maximum number of cycles in the remaining graph in 2O(tw log tw)

time. Then we show that the total number of cycles we have found so far is at least OPT/4.

▶ Corollary 18. Cycle Packing on outerstring graphs with n vertices can be solved
approximately with an approximation factor of 4 in nO(log log n) time.

Proof. Let G be an outerstring graph with n vertices. As the first step, we repeatedly
compute a cycle of length at most four. We add it to the solution and remove it from G.
Then finally we have a graph Gfinal whose shortest cycle has a length larger than four. Notice
that this graph does not contain K2,2 as a subgraph, and thus its treewidth is O(log n). It is
known that Cycle Packing can be solved in 2O(tw log tw)nO(1) time. As the second step,
we find a maximum set of vertex-disjoint cycles in Gfinal in nO(log log n) time, and return all
cycles we computed in the first and second steps as output.

We can obtain at least OPT/4 vertex-disjoint cycles in this way, where OPT is the
maximum number of vertex-disjoint cycles. Let COPT be a set of vertex-disjoint cycles with
|COPT| = OPT. A cycle of COPT not contained in Gfinal intersects at least one cycle we
computed in the first step. Since the length of a cycle we computed in the first step is at
most four, each such cycle intersects at most four cycles of COPT. On the other hand, the
number of cycles of COPT contained in Gfinal is at most the number of cycles we computed in
the second step since we compute a maximum number of vertex-disjoint cycles of Gfinal in the
second step. Therefore, the number of vertex-disjoint cycles we have is at least OPT/4. ◀
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