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Abstract
We study in this paper the problem of maintaining a solution to k-median and k-means clustering
in a fully dynamic setting. To do so, we present an algorithm to efficiently maintain a coreset, a
compressed version of the dataset, that allows easy computation of a clustering solution at query
time. Our coreset algorithm has near-optimal update time of Õ(k) in general metric spaces, which
reduces to Õ(d) in the Euclidean space Rd. The query time is O(k2) in general metrics, and O(kd)
in Rd.

To maintain a constant-factor approximation for k-median and k-means clustering in Euclidean
space, this directly leads to an algorithm with update time Õ(d), and query time Õ(kd + k2). To
maintain a O(polylog k)-approximation, the query time is reduced to Õ(kd).
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1 Introduction

As a staple of data analysis, the problem of clustering a dataset has been widely investigated,
both from a theory and practice perspective. In this paper, we focus on the fully dynamic
setting, where the input changes through insertions and deletions of data items: as an
illustration, we think of a data-miner clustering their dataset, analyzing it, and suitably
modifying it – for instance, to clean the dataset by removing outliers, or by adding new
observations. In the big-data setting, updates need to be very efficient: instead of recomputing
a solution from scratch, the goal of fully dynamic clustering algorithms is to efficiently cluster
the data after a user updates. This problem has received a lot of attention under various
models of clustering: recent works tackled the k-center problem [7, 2], effectively closing
the problem from the theory side; the facility location problem [8]; and the more intricate
k-median and k-means problems [8, 18, 4]. The latter is probably the most useful for practice
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as k-means is one of the most common unsupervised learning techniques, and this paper
presents new improvements for both k-median and k-means problems. The input for the
k-median problem is a set of weighted points in some metric space, and the goal is to output
a set of k centers that minimizes the sum, for each input point, of its weight times its distance
to the closest center. For k-means, it is the sum of squared distances. Both problems are
NP-hard to approximate arbitrarily close to one [16]: therefore, we focus on finding a set of
centers with cost (i.e., sum of distances) within a constant factor of the optimal solution.

A standard approach to solve k-median and k-means problems is the use of coreset. An
ε-coreset for input P is a compressed version of the input, Ω, such that for any set of k

centers S the cost is almost the same when it is evaluated on the full input or on the coreset,
i.e.:

cost(Ω, S) = (1± ε)cost(P, S).

Perhaps surprisingly, coresets can have size almost independent of n: the smallest ε-coresets
in general metric spaces have size O(k log(n)ε−2), which can be replaced with O(kε−4) in
Euclidean spaces [12]. As the cost of any candidate solution of k centers is preserved, an
algorithm that dynamically maintains a coreset can therefore be directly used to maintain
dynamically a solution to k-means: at query time, simply use a static approximation algorithm
on the coreset. Therefore, using a k-means algorithm with running time T (n, k) on a dataset
of size n, this translates into a fully dynamic algorithm with query time T (O(k log(n)), k)
(and an update time that depends on the coreset algorithm itself).

To maintain a coreset in a dynamic setting, a merge-and-reduce procedure was introduced
by Har-Peled and Mazumdar [17] (based on Bentley and Saxe [3] and Agarwal, Har-Peled,
and Varadarajan [1]). This transforms any static coreset construction into a fully-dynamic
one, reducing the dependency in n to a dependency in O(k log n) – the same speed-up as
when applying an approximation algorithm on a coreset. With current coreset constructions,
this translates into an algorithm with worst-case query and amortized update time Õ(k2).1
Henzinger and Kale [18] showed how to solve the problem in Õ(k2) worst-case query and
update time. The interest of this method is two-fold: first, it uses a static coreset algorithm
in a black-box manner. Therefore, in a setting where faster coreset algorithms exist (such as
Euclidean space), the algorithm directly improves. Second, at query time, the algorithm uses
any static k-means algorithm: here as well, a different algorithm may be used to achieve a
different time-to-accuracy ratio.

To improve the update time, Bhattacharya, Costa, Lattanzi and Parotsidis [4] recently
adopted a completely different strategy: they adapted an old and fast algorithm from Mettu
and Plaxton [23], and showed how to implement it such that only a few changes are required
between each update. That way, they manage to improve the amortized update time to
Õ(k) with Õ(k2) query time (which is near-optimal for any O(1)-approximation algorithm
in general metric space according to a lower bound in [23, 4]), but with an (unspecified)
constant approximation ratio. However, their result is much more restrictive than the coreset
framework: (a) it only works in general metric spaces and cannot be fine-tuned to specific
cases, and (b) it is based on an approximation algorithm with an unspecified constant
approximation factor. Furthermore, they state in their introduction that it is “not at all
clear how to use [the coreset] algorithm to reduce the update time to Õ(k)”. This appears
true when a static coreset algorithm is used as a black-box in the framework of [17, 18], but
possibly not in general: in this work, we therefore ask

1 We use the notation Õ(T ) as a shorthand to O(T polylog(n)).
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Is it possible to design a coreset construction
suited specifically to dynamic clustering algorithms?

We answer this question positively, showing how to use the framework of [17] with
a particular coreset construction – answering the (implicit) question from [4]. One key
advantage of our technique is that, if the metric space of study admits some faster k-means
algorithm, then our algorithm is faster as well. In particular, applied to Euclidean space, we
get almost constant update-time, and almost linear query time.

1.1 Our result and techniques
More precisely, we show the following theorem.

▶ Theorem 1.1. There exists an algorithm for fully dynamic k-median (resp. k-means),
that maintains an ε-coreset of size Õ

(
kε−2)

with amortized update and query time
O

(
T (k polylog(n),k)

k

)
, where T (n, k) is the time to compute a polylog(n)-approximation to

k-median (resp. k-means) on a dataset of size n.

As mentioned above, we can combine this algorithm with any static k-median (resp.
k-means) algorithm: if the static algorithm runs in time T ′(n, k) on a dataset of size n and
computes a c-approximation, then there is a fully-dynamic algorithm to solve k-median (resp.
k-means) with amortized update time O

(
T (k polylog(n),k)

k

)
, query time T ′(kε−2 polylog(n), k)

and approximation guarantee 2(1 + ε)c (resp. 4(1 + ε)c).2

▶ Corollary 1.2. In general metric spaces, there is a coreset-based fully-dynamic algorithm
to compute an O(1)-approximation to k-median (resp. k-means) with amortized update time
Õ(k) and worst-case query time Õ(k2). In d-dimensional Euclidean space, the amortized
update time is Õ(d), and the worst-case query time is Õ(k2 + kd).

Note that the running-time for general metric spaces matches the results of [4], but we
improve the constant in the approximation ratio:3 our algorithm matches the approximation
ratio in [17, 18], while improving their update time. In Euclidean space, the query-time of
our corollary matches the one from [18, 4], but we reduce the update-time from Õ(k2d) to
Õ(kd). Furthermore, since it is possible to compute an O(polylog k)-approximation to the
static problems in time O(nd),4 our algorithm can achieve this approximation factor with
query time Õ(kd), which equals the time to output the solution, namely a list of k centers
in Rd. We conjecture that an O(1)-approximation can be computed with the same running
time, which would provide a likely near-optimal algorithm for both update and queries.

Our techniques

It is elementary to show our theorem in insertion-only streams. Indeed, a key property of
coreset ensures that if Ω is a coreset for P , Ω ∪ {x} is a coreset for P ∪ {x}. Therefore, if
the goal is to maintain a coreset of size Õ(k) under insertions, one can merely compute a

2 The factor 2 and 4 come from the fact that, to achieve a fast query time, we restrict the set of potential
centers to the coreset points. See [18] for precise computation.

3 They adapt a static O(1) algorithm, and making it dynamic blows up the approximation ratio by an
unspecified O(1) factor. On the other hand, our algorithm preserves the approximation ratio of any
static algorithm, up to a multiplicative factor 4(1 + ϵ).

4 This follows from Corollary 4.3 and Lemma 3.1 from [11], with a pre-processing step to reduce the
dimension to O(log k) [22].
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coreset every k steps, in time T (n, k) (the same time as computing an Õ(1)-approximation),
and in-between simply add new points to the coreset in time O(1). Using this idea in
the merge-and-reduce algorithm of [17] directly yields an amortized runtime of essentially
T (k, k)/k – which is Õ(k) in general metric spaces, Õ(d) in Rd.

Dealing with deletions is more intricate as it is not the case that Ω \ {x} is a coreset for
P \{x}5. Standard coreset constructions are randomized, and the coreset is built by sampling
according to an intricate sampling distribution, typically sensitivity sampling. This sampling
method works as follows: start by computing a good approximation to k-means (with
possibly O(k) centers), and then sample points proportionally to their cost in the solution,
and weight each point inversely to their sampling probability. There are two difficulties in
adapting such a sampling algorithm. (1) The initial good approximation to k-means does
not necessarily remain good after a deletion – a single deletion can make the approximation
ratio go from 1 to infinity6 (2) Even without changing the solution, maintaining efficiently a
sample proportionally to its contribution to the solution is not obvious at all.

We address those two questions independently. (1) We show that a good solution for
2k-means remains a good solution for k-means, even after k deletions. This allows to compute
a solution only every k steps – just as in the insertion only case. This result is novel in
the world of dynamic clustering algorithms: it is the first result that allows to build some
approximation and let it deteriorate over time, while still being a “good enough” solution.

(2) We show how to build a coreset from uniform sampling instead of sampling from a
more complicated distribution. In this way it is much easier to maintain a uniform sample
under insertions and deletions: we build on the coreset construction of [12], to show that, if
the input satisfies the following property, called Property 1.3, any small uniform sample is a
coreset.

▶ Property 1.3. Let G be a set of points with weights in [1, 2], and let A be a set of centers.
We say G and A satisfy Property 1.3 when:

Each point has the same cost up to a factor 2, namely, ∀p, q ∈ G, cost(p, A) ≤
2cost(q, A).
All non-empty clusters in solution A have the same size, up to a factor 8: there is a scalar
cA such that, for any cluster C in solution A, either C∩G = ∅ or cA ≤ cost(C∩G, A) ≤
8cA.

In the above, A will be a set of O(k) centers; and for each center a ∈ A, the cluster of a is
the set of points closer to a than any other center of A. Therefore, we need to (1) maintain a
small number of groups of data points with the property above, and (2) maintain a uniform
sample in each group. We show that, for k consecutive steps, our algorithm does so very
efficiently.

Combining those results allows us to use the same strategy for deletions as for inser-
tions: compute a fresh solution every k steps, and update it very efficiently between two
recomputations. Therefore, the amortized running time of the algorithm is T (n, k)/k, where
T (n, k) is the running time to compute a coreset for a dataset of size n (or, equivalently,
an Õ(1)-approximate solution). Finally, we incorporate this into the merge-and-reduce

5 Consider the case where x concentrates most of the cost of a solution: because of the multiplicative
approximation guarantee, Ω only needs to capture the cost of x, and have a poor approximation
elsewhere. Removing x requires the coreset to be precise everywhere else.

6 In a set of k + 1 points at distance 1 from each other any set of k distinct centers is an optimal solution
with cost 1. However after removing a single point (which is a center) the cost of the optimal solution is
0 while the solution still has cost 1.
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framework of [17], to reduce further the running time to T (k, k)/k. This is the most intricate
part of our analysis: for a reason that will later become obvious, we need to ensure that the
coreset algorithm produces a coreset that evolves not more than the input: when a single
point is deleted, a single point should be deleted from the coreset. This is formalized in the
following theorem, which is our main technical contribution:

▶ Lemma 1.4. For 0 < ε ≤ 1/3, there exists an algorithm that maintains an ε-coreset under
insertion and deletions, with the following guarantee. Starting with a dataset P0 ⊂ Rd of size
n, the running time for initializing the data structure is Õ(T (n, 2k)), where T (n, k) is the
running time to compute an Õ(1)-approximation for k-means on a dataset of size n. Then,
after ni insertions and nd deletions with ni + nd ≤ k, it holds that: (1) the total running time
for updates is at most Õ(ni + nd), (2) the total number of points inserted into the coreset is
at most ni + nd, and (3) the total number of points deleted from the coreset is at most nd.

Those ideas allow us to maintain efficiently a precise coreset. In order to answer a k-means
query, we simply use a static algorithm on the coreset.

1.2 Further related work
We already covered the closest related work on dynamic k-median and k-means clustering.
In the particular case of k-median in Euclidean spaces, where points are restricted to the grid
{0, 1, ..., ∆}d, [5] achieve update time O(d log2 ∆). This, however, only works for k-median,
because of the use of a quadtree embedding. For k-means, the preprint [19] claims to show
how to maintain an ε-coreset of size Õ(kε−2d4 log2 ∆), using at most k poly(d/ε · log ∆) bits
of memory. We believe that the (un-specified) running time is the same as ours; however,
the coreset computed is correct at any step with probability 0.97, while ours is 1 − δ for
any δ > 0. This means that their algorithm fails every ≈ 30 queries, and we do not see an
immediate fix to this.7To maintain coresets in general metric spaces, [17] introduced the
merge-and-reduce tree with an amortized running-time analysis, and [18] showed how to
turn it into a worst-case guarantee.

The literature on coreset recently boomed (see e.g. [14, 21, 6] and the references therein),
with a series of work achieving optimal bound for k-means clustering of Õ(kε−2 log n) in
general metric spaces [12] and Õ(kε−4) or Õ(k3/2ε−2) [12, 10, 20]. Besides their use in the
dynamic setting, coresets are key to a recent breakthrough in the streaming model [13], which
shows that a memory of only dkε−4 poly(log log n) is necessary.

The related k-center clustering is perhaps easier to handle: the reason is that a certificate
that the cost is higher than a threshold only needs k + 1 points (at distance more than twice
the threshold from each other). This is the basis of the works of [7, 2]. This can be more
easily maintained than a k-median solution, for which no such certificate exists.

1.3 Definitions and notations
The (k, z)-clustering problem is defined as follows. Given a set of points P in a metric
space (X, dist), with weights w : P → R+, the goal is to find a set S of k points that
minimizes the cost function costz(P, S) :=

∑
p∈P w(p) mins∈S dist(p, s)z. We call S with k

points of X a candidate solution. For c ∈ R, a candidate solution S is a c-approximation if
costz(P, S) ≤ c min costz(P, S′), where the minimum is taken over all candidate solutions
S′.

7 In particular, note that the problem of estimating whether a given set is an ε-coreset is co-NP hard [24].
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An ε-coreset for (k, z)-clustering is a weighted set Ω such that, for any candidate solution
S, costz(Ω, S) = (1± ε)costz(P, S). In the following, we will use nc to denote the size of
the coreset, in particular the coreset constructed via Lemma 2.1.

We use T (n, k) to denote the running time of an algorithm computing an Õ(1)-approxima-
tion for k-means, on a dataset of size n. In Euclidean space Rd, this is Õ(nd). In general
metric spaces, this is O(nk). We will sometimes abusively denote T for T (k polylog(n), k).
We use the notation Õ(x) to denote x · polylog(nx).

For simplicity of presentation, we will focus our presentation on k-means – i.e., (k, 2)-
clustering – and write cost for cost2. All the results can be directly translated to the more
general problem, replacing T (n, k) by the running time to compute an approximation to
(k, z)-clustering.

2 Preliminary results

In this section, we provide some results that are crucial to our analysis, and can be used
in a black-box manner. Our first lemma formalizes that, in a group of points that satisfy
Property 1.3, a uniform sample produces a coreset:

▶ Lemma 2.1. Let G be a group of points with weights w : G → [1, 2] and let A

be a set of centers such that G and A satisfy Property 1.3. Let Ω be a set of nc =
O

(
k log(n)ε−2 polylog(k/(δε))

)
points sampled uniformly at random, where p ∈ Ω has weight

w(p) · |G|/nc. It holds with probability 1− 1/δ that

∀S, |cost(Ω, S)− cost(G, S)| ≤ ε(cost(G, A) + cost(G, S)).

Furthermore, the total weight verifies:
∑

p∈G w(p) = (1± ε)
∑

p∈Ω w(p)|G|/nc.
In Euclidean space Rd, it is enough to take nc = O

(
kε−4 polylog(k/(δε))

)
.

This lemma is very related to Lemma 2 in [12], which uses group sampling to construct a
coreset. This algorithm starts by computing a solution A, with set of clusters A1, ..., Ak and
partitions the input into polylog(k, 1/ε) structured groups. The groups have the following
property: each cluster that intersects with the group has roughly the same contribution to
the cost of the group in the solution A, and each point within the same cluster has roughly
the same distance to the center A. Then, the algorithm samples essentially kε−4 points from
each group, following the following distribution: in group Gi, point p in some cluster Aj is
sampled with probability w(p) · cost(Aj∩Gi,A)

|Aj∩Gi|cost(Gi,A) .
Property 1.3 is a strong requirement on A designed such that the distribution of group

sampling becomes essentially uniform: for a set of points satisfying Property 1.3, the
probability of sampling any two points (using the group sampling distribution) differs by a
small constant factor. Therefore, it is not a surprise that the proof can be adapted to work
with uniform sampling instead. More precisely, group sampling will sample each point with
probability within a constant factor of uniform. The analysis of group sampling is based on
a concentration inequality on the sum of the random variables indicating whether each point
is sampled or not. This concentration is based on bounding the first and second moments of
those variables: since the group sampling distribution is close to the uniform sampling one,
those moments are essentially the same and the proof goes through. We provide a thorough
proof in the full version of the article. In the following, we will use nc to denote the size of
the coreset constructed via Lemma 2.1.

As explained in the introduction, we crucially need to construct a bicriteria solution
whose cost stays close to optimal over many steps. This can be achieved using the following
result.
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▶ Lemma 2.2. Let A be a c-approximation to the 2k-means problem on a weighted set P .
Then, for any set D ⊂ P, |D| ≤ k, it holds that

cost(P \D, A) ≤ c · optk(P \D),

where optk(P \D) is the optimal k-means solution on P \D.

Proof. We let optk(P \D) be the optimal k-means solution on P \D, and opt2k(P ) be
the optimal 2k-means solution on P . By definition of A, it holds that cost(P \D, A) ≤
cost(P, A) ≤ c · cost(P, opt2k(P )). Since |optk(P \D) ∪D| ≤ 2k, optk(P \D) ∪D is a
2k-means solution for P with cost at least as high as the cost of opt2k(P ). Thus, A is a
2k-means solution for P with cost at most c · cost(P, optk(P \D) ∪D). Furthermore, we
have:

cost(P, optk(P \D) ∪D) = cost(P \D, optk(P \D) ∪D)
≤ cost(P \D, optk(P \D)),

where the equality holds as all points of D contribute zero to cost(P, optk(P \D) ∪D),
and the inequality because removing centers only increases the cost. Putting it all together,
this shows cost(P \D, A) ≤ c · cost(P \D, optk(P \D)). ◀

3 O(T/k) update time via merge-and-reduce tree

We start by showing how Lemma 1.4 implies our main theorem Theorem 1.1. For this,
we sketch first the merge-and-reduce algorithm of [17], and how to incorporate the coreset
construction of Lemma 1.4 to speed up the update time.

3.1 Description of the merge-and-reduce algorithm
The goal of this algorithm is to maintain an ε-coreset under insertions and deletions of points.
The keys to this are the following strong properties of coreset: first, if Ω1 is an ε-coreset for
P1, and Ω2 is an ε-coreset for P2, then Ω1 ∪Ω2 is an ε-coreset for P1 ∪P2. Second, if instead
Ω2 is an ε-coreset for Ω1, then Ω2 is a (2ε + ε2)-coreset for P1.

The merge-and-reduce data structure is the following (suppose for now that the number
of points in the dataset stays within [n, 2n]). The dataset is partitioned into at most 2n/k

parts, each containing at most k points. Those parts form the leaves of a complete binary
tree. We say that a node v of the tree represents the points stored at the leaves descendants
of v.

Each node v maintains a set Ωv as follows. Let v1, v2 be the children of v. Node v stores
an ε-coreset of Ωv1 ∪ Ωv2 . It follows from the two coreset properties that the set stored at
the root is an O(log n · ε)-coreset of the full dataset.8 Rescaling ε by log n therefore ensures
that the root stores an ε-coreset. It is straightforward to maintain this data structure under
insertions: simply add the new point to a leaf that contains less than k points, and update
the sets stored at all its ancestors. For deletions, simply remove the point from the leaf
it is stored in, and update all its ancestors. Since the depth of the tree is O(log n), this
triggers Õ(1) coreset computations, every time on a dataset of size 2nc (where nc is the size
of an ε/ log n-coreset, which is Õ(kε−2)). The update time is therefore the time to compute

8 This can be shown by induction: a node at height h stores an O(hε)-coreset of the points it represents.
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log(n) times an ε/ log n-coreset on a dataset of size 2nc. This turns out to be Õ(T (2nc, k))
using standard coreset construction. Finally, if the size of the dataset changes too much and
jumps out of [n, 2n], the algorithm recomputes from scratch the data structure with a fresh
estimate on the number of points. [17] shows that the amortized complexity induced by this
step stays Õ(T (nc, k)).

3.2 Our algorithm
The previous algorithm uses a static coreset construction as a black-box. Instead, we propose
to use Lemma 1.4 to avoid reprocessing from scratch at every node. For each node, we divide
time into epochs, with the following property. For a node v with children v1 and v2, the sets
maintained at v1 and v2 change at most k times during an epoch. When those sets have
changed k times, a new epoch is started for the node and all its ancestors.

Each node maintains an ε-coreset Ω of its two children using the algorithm from Lemma 1.4.
For each update of those, this algorithm processes them and transmits to its parent the
potential updates made in Ω. This is enough to show Theorem 1.1:

Proof of Theorem 1.1. We let ni be the number of insertions to the dataset, and
nd the number of deletions. Our goal is to show that the total running time is
Õ

(
(ni + nd) · T (k polylog(n),k)

k

)
.

At each node, the complexity can be decomposed into the one due to updates in between
epochs, and the complexity due to starting new epochs. We say that the work done by a
node is the total complexity to update its coreset, and the total complexity when starting a
new epoch at this node (i.e., re-initializing this node and all its parents).

We will compute the work done at each level of the tree: leaves have level 0, and parent
of a node at level i has level i + 1. For a node v, let nv

i , nv
d be the total number of insertions

and deletions in the dataset represented by v.
We show the following claim by induction: the total work for a node v at level ℓ is

Õ
(

(nv
i + nv

d) · T (k polylog(n),k)
k

)
, the number of insertions to the coreset is nv

i + ℓ · nv
d, and

the number of deletion is nv
d.

For leaves (i.e., nodes at level 0), the statement is straightforward, as the set they maintain
is directly the dataset they represent, with weights 1.

Let ℓ ≥ 1, v be a node at level ℓ with children v1, v2. We let nΩv
i , nΩv

d be the number of
insertions and deletions made to the coresets maintained at v1 and v2. By the induction
hypothesis, the coresets Ω1 and Ω2 maintained at v1 and v2 have undergone nΩv

i +(ℓ−1) ·nΩv

d

insertions, and nΩv

d deletions.
Lemma 1.4 therefore shows that, during each epoch, the total complexity to maintain a

coreset at v is Õ
(

(nΩv
i + nΩv

d ) · T (k polylog(n),k)
k

)
, the number of insertions to the coreset at

most nΩv
i + nΩv

d , and the number of deletions to the coreset at most nΩv

d . Therefore, over all
epochs, the complexity is O(nv

i + ℓnv
d), the number of insertions to the coreset is nv

i + ℓ · nv
d

and number of deletions at most nv
d.

A new epoch is started at the node either when one of its descendant triggered a re-
initialization, in which case the complexity is accounted at that descendant’s level, or
when k updates have been made to the input during the current epoch. The latter occurs
therefore at most (nΩv

i + ℓnΩv

d )/k times, and every time triggers a recomputation of the
coresets at log(n) − ℓ many levels: therefore the complexity of a single recomputation is
Õ(T (nc, k, ε/ log n) · (log n − ℓ)) = Õ(T (k polylog(n), k, ε/ log n)) (from the guarantee of
Lemma 1.4). Thus, the total complexity due to all re-initialization after nv

i insertions and nv
d

deletions is Õ
(

T (k polylog(n), k, ε/ log n) · nv
i +nv

d

k

)
, which concludes the induction statement

and the proof of the theorem. ◀
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4 An efficient dynamic coreset algorithm

In this section, we show the key Lemma 1.4. For this, we describe an algorithm to maintain
a coreset of size k poly(log n, ε−1) for a set of O(n) points with weights in [1, 2], in amortized
time T (n,k,ε)

k . As explained in the previous section, this algorithm can be used black-box to
reduce the complexity to T (Õ(k),k,ε)

k .

4.1 The Algorithm
We explain first the data structure that is maintained by the algorithm, and how to extract
efficiently a coreset from it. We will then show how to initialize the data structure, and
maintain it under insertions and deletions.

The data structure

Let P0 be the initial set of points, P the current set of points, I (resp. D) the set of points
inserted (resp. deleted) since the beginning. For the lemma, we focus on the case where
|I|+ |D| ≤ k.

The data structure consists of a set of centers A, a scalar ∆, and a set of groups
Gsmall, Gclose, G1, G2, ... with the following guarantees:
1. A consists of O(k) centers such that cost(P0 \D, A) = O(optk(P \D)), and ∆ ∈ R+

verifies ∆ ≤ cost(P0\D,A)
|P | ,

2. Gsmall, Gclose, G1, G2, ... partition P0 \D such that
|Gsmall| ≤ k poly(log n, ε−1),
∀p ∈ Gclose, cost(p, A) ≤ ε∆, and
for all i ≥ 1, Gi and A satisfy Property 1.3.

3. For each group its points are maintained in random order in a data structure that allows
for efficient insertions and deletions.

4. Finally, for each group Gi with i = 1, ... a lazy estimate ci on |Gi| is maintained.

Given this data structure, we can easily build a coreset of size k poly(log n, ε−1), as we
sketch here and prove in Lemma 4.5. Gsmall is a coreset for itself, and A is a coreset for
Gclose. For each other group Gi for i ≥ 1, Lemma 2.1 shows that the first nc points of the
random order, with weights multiplied by |Gi|/nc, form a coreset for Gi. Since the groups
partition P \D, the union of those coresets is a coreset for P \D. To get a coreset for P ,
one merely needs to add each point of I with weight 1.

However, if we used the weight w(p)|Gi|/nc for each point p in Gi, the weights of a
coreset point, and thus the coreset itself, would change too frequently. Thus, instead we
use w(p)ci/nc as weight for each coreset point. We describe below how the data structure
maintains lazily an estimate ci of the size of each Gi, while still guaranteeing that ci is a
good estimate of |Gi|.

We first show how our algorithm maintains this data structure, and prove in the next
section that this indeed maintains efficiently a coreset.

Initialization at the beginning of an epoch

For initialization, the algorithm computes an O(1)-approximation A to 2k-means on P0.
Define E0 as the k most expensive points of P0 in this solution A. ∆ is set to be the average
cost of P0 \ E0, i.e., cost(P0 \ E0)/|P0 \ E0|.
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Next the algorithm defines groups as follows:9

For i = 1, ..., 2k, let ai be the i-th center of A, and define Ci to be the cluster of ai,
namely all points of P0 \ E0 closer to ai than to any other center of A (breaking ties
arbitrarily).
For j ≥ 1, let Ri,j := {x ∈ Ci : 2j−1 · ε

√
∆ ≤ ∥x − ai∥2 < 2j · ε

√
∆}. Let also

Ri,0 := {x ∈ Ci : ∥x− ai∥ ≤ ε
√

∆}. Each Ri,j for i = 1, ..., 2k is called a j-th ring. Note
that the Ri,j partition P0 \ E0.
For w ≥ 1, let Ri,j,w = {p ∈ Ri,j : w(p) ∈ [2w, 2w+1)}.
For b ≥ 0, and all w, j ≥ 1, let Gj,b,w := {x : ∃i, x ∈ Ri,j,w, 2b ≤ |Ri,j,w| < 2b+1} =
∪i,2b≤|Ri,j,w|<2b+1Ri,j,w be the set of j-th rings with cardinality between 2b and 2b+1.
cj,b,w is set to be |Ri,j,w|.
We say a group Gj,b,w is initially large when its size at the beginning of the epoch is more
than log(n)nc/ε, otherwise the group is initially small. The group Gsmall consists of the
points of all initially small groups, together with E0.
The group Gclose is initialized to be ∪iRi,0.

Finally, in each of the initially large groups, the algorithm randomly orders points and store
them in a binary search tree (to allow for efficient insertions and deletions). Each point is
associated with a random number in [0, 1], and those are stored in a binary search tree with
keys being the random number.

We make a few remarks about this construction:

▶ Fact 4.1. (1) The groups form a partition of P0. (2) There are only log3(n/ε) non-empty
groups. (3) Each Gj,b,w and A satisfy Property 1.3 at the beginning of the epoch As long as
|D| ≤ k, it holds that (4) cost(P0 \D, A) = O(optk(P \D)), and (5) ∆ is smaller than
the average cost of P0 \D.

Proof. (1) and (3) are direct consequences of the definition of the groups. For (2), note that
for any i and j ≥ log(|P0 \ E0|/ε), the set Ri,j is empty (as the cost of points in such a ring
would be larger than cost(P0 \ E0), which is a contradiction). Furthermore, no ring can
contain more than |P0 \ E0| points. Lastly, the lemma’s condition ensures that all weights
are in [1, 2n]. Therefore, groups with b > log(n), or j > log(n/ε), or w > log(2n) are empty:
this concludes the second bullet.

Finally, (4) holds directly from Lemma 2.2, and (5) stems from the definition of ∆ and
the choice of E0. ◀

Therefore, the groups form a partition of P0. Note that there are there are log2 n many
groups Gj,b,w and, thus, Gsmall contains at most log3(n)nC/ϵ many points.

Processing insertions

Dealing with insertion is easy: the set of inserted points does not appear in the definition
of the data structure. Therefore, as long as the total number of updates is less than k, the
data structure needs no update after an insertion. When |I|+ |D| > k, the algorithm is done
(and, in the use of this subroutine in Section 3.2, a new “epoch” starts).

9 For convenience, we index the groups by three integers j, b, w instead of a single one as in the previous
description.
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Processing deletions

Property 1 is a consequence of Fact 4.1. Properties 2 and 3 of the data structure are more
involved, as we need to ensure that the groups still fulfill Property 1.3, e.g., their size stays
roughly the same. The algorithm updates the groups as follows. First, if the deleted point is
in a group that is initially small, then no further updates are required.

If the point is in a group that is initially large, the algorithm only needs to ensure that
all clusters in a group have the same size, up to a factor 8. Suppose the deleted point was in
a ring Ri,j,w from the group Gj,b,w. Note that two things can happen. Either the number of
points in the ring after deletion is still more than 2b−3, in which case Property 1.3 still holds
and the algorithm does nothing. If, however, the number of points becomes exactly 2b−3,
the algorithm removes the whole ring from Gj,b,w and adds it to Gj,b−3,w (note that, in that
case, b− 3 ≥ 0 and Gj,b−3,w exists).

This movement triggers some necessary changes in the ordering of each group, to maintain
Property 3 of the data structure, i.e., the random order of the points of each group in the
data structure. First, in the group Gj,b,w, the points of the ring are simply removed. Second,
they are inserted one by one at positions that are chosen uniformly at random into Gj,b−3,w.
This can be done efficiently, as the orderings are described with a binary search tree.

Finally, the size estimate of the two groups may have to be updated: if |Gj,b,w| ≤ (1−
ε)cj,b,w set cj,b,w ← |Gj,b,w|. If a ring was moved in the group Gj,b−3,w and if (1+ε)cj,b−3,w ≤
|Gj,b−3,w|, then set cj,b−3,w ← |Gj,b−3,w|. Both cases imply that the weights of all coreset
points from the group considered change.

Extracting a coreset from the data structure

From the data structure described above, the algorithm extracts a coreset as follows. First,
it defines weights w such that:

w(p) = 1 for p ∈ I

w(p) = 1 for p ∈ Gsmall \D

for all centers ai of A, w(ai) = |Ri,0 \D|,
for each point p in an initially large group Gj,b,w, w(p) = cj,b,w if p is among the first nc

elements of Gj,b,w in the random order of the data structure, and 0 otherwise,
w(p) = 0 for each other point p.

Let Ω be the set of points with non-zero weight. Those weights can be easily maintained
under insertions and deletions, as described in the previous paragraphs. We first show that
Ω can be computed in amortized Õ(1) time, then that it is an ε-coreset for P0 \D ∪ I.

4.2 Running-time Analysis
To show the running time, we assume for simplicity of the bounds ε ≤ 1/3, and nc ≥ 10kε−2.
The second assumption is (almost) without loss of generality, as in general metric spaces
any ε-coreset must have size Ω(kε−2 log n) [9], and in Euclidean space they must have size
Ω(kε−4) [20].

We start by listing the running time induced by each of the operations described in the al-
gorithm. The initialization takes time T (n, 2k) to compute the constant-factor approximation
to 2k-means, and assignment of each point to its closest center. Then, the identification of
E0 and partitioning into groups take linear time. This is enough to prove the first statement
of Lemma 1.4

Any insertion just requires to set the weight of the point to 1, which takes constant time.
Deletions are more intricate to analyze. We first note that the running time to insert or
remove a point from a group of the data structure takes time Õ(1), which is the time to
remove the point from a binary search tree and add it to another one.
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It may happen that a ring Ri,j,w is moved from one initially large group Gj,b,w to Gj,b−3,w.
In that case, the running time is Õ(|Ri,j,w|), in order to move all points of Ri,j,w; and the
coreset changes by at most 2|Ri,j,w|: first, at most |Ri,j,w| points are removed from the
coreset of Gj,b,w (and replaced by points that stay in Gj,b,w after the operation). Second,
the |Ri,j,w| points that are added to Gj,b,w are placed randomly in the random order: if
they appear among the first nc elements, they need to be added to the coreset of Gj,b−3,w.
Therefore, there are at most |Ri,j,w| many changes in the coreset of Gj,b−3,w (the same
argument works if Gj,b−3,w is initially small). Therefore, in total the coreset changes by at
most 2|Ri,j,w|.

Finally, the size estimate for a group Gj,b,w may appear to change. However, as we will
demonstrate in Lemma 4.4, it is never actually decreased. The size estimate increases when
several rings have been moved to the group: in that case, the weight of up to nc many coreset
points changes. In the amortized analysis below, we will show that those costly events do
not occur too often, which will conclude the proof of Lemma 4.5.

Amortized analysis

To analyze the number of changes to the coreset by this algorithm, we proceed with a
token-based argument. Every deletion of a point from the dataset is charged one token, i.e.,
it increases the number of tokens by one. The tokens are used to bound the total number of
updates in the coreset: whenever a point is removed from the coreset, it will consume one
token. This can happen both for its deletion, or when its weight is updated (which we see as
deleting the point and re-inserting it with a different weight).

To proceed with the analysis, we define token wallets of several types. For each group,
there is one wallet T G

j,b,w, used to update the weight of the group. For each ring Ri,j,w, there
is a wallet T R

i,j,w which is used for deletions occurring when moving a ring to another group,
and T i

i,j,w which is used as an intermediary wallet to supply T G
j,b,w.

Tokens are provided to the wallets when points are deleted from the dataset: each deleted
point p brings one token as follows. Let Ri,j,w be the ring of p. If p has non-zero weight,
then it directly consumes its token to pay for its own deletion from the coreset. Otherwise,
it gives 1/2 token to T R

i,j,w, and 1/2 to T i
i,j,w. When a ring Ri,j,w moves to a group Gj,b,w,

all tokens of T i
i,j,w are transferred to T G

j,b,w.
To show that those tokens are enough to pay for deletions, we use a probabilistic analysis

using the randomness of our algorithm: in each group, points are sorted randomly, which
will ensure that deletions from the input rarely triggers deletions in the coreset, as we show
in the next lemma.

▶ Lemma 4.2. Let b ∈ [3, . . . , log n], i ∈ [1, k], and j ∈ [1, log n]. Consider a ring Ri,j,w

in group Gj,b,w that is initially large, and let m = 2b − 2b−3. Let p1, . . . , pm be the first m

points removed from the ring Ri,j,w. Then, after those m deletions, both T R
i,j,w and T i

i,j,w

contain at least 2b−3 tokens with probability at least 1− 1/n6.

Proof. First, the lemma statement is well defined: when Ri,j,w was placed into Gj,b,w (either
at the beginning of the epoch, or after points were removed from Ri,j,w), its size was at least
2b, and therefore there are indeed at least m points in the ring.

Each of the deleted points contributes 1/2 to T R
i,j,w and T G

j,b,w, if it is not part of the
coreset. Therefore, the number of tokens added by those points in both wallets is the same,
and it is enough to analyze T R

i,j,w. Let Xi be the random variable equal to 1/2 if pi is not
part of the coreset when it is deleted: we have |T R

i,j,w| =
∑m

i=1 Xi. We will show that this
sum of variables is a martingale, and use Azuma’s inequality to conclude.
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We make a few observations. Since the group is initially large, its size is at least log n·nc/ε.
All rings in the group have initially size between 2b and 2b+1. As there are initially at most
k rings in the group Gb,j,w this ensures 2b ≥ log n·nc

kε ≥ log(n)
ε3 . Using ε ≤ 1/3, this ensures

m = 2b − 2b−3 = (7/8)2b ≥ 230 log(n).
It seems more natural to consider the process of deletions reversed. Starting from the

set of points Gj,b,w \ {p1, . . . pm}, points are added sequentially at random locations, in
order pm, pm−1, ..., p1. Then, Xi = 1/2 when point pi is not inserted among the first nc

locations. This is equivalent to the initial process as the relative positions of pi, pi+1, ... in
the random order do not depend on the positions of p1, ..., pi−1. Furthermore, this shows
Xi is independent of Xi+1, ..., Xm: the position where pi is inserted does not depend on the
relative order of pi+1, . . . , pm.

We use this fact to show that the number of tokes follows a martingale. Formally,
let µi = E[

∑m
j=i Xj ], let Yi =

∑m
j=i Xj − µi for 1 ≤ i ≤ m, and let Ym+1 = 0. Then

E[Yi] = 0 and E[Yi|Yi+1, . . . , Ym] = E[Xi − E[Xi]|Yi+1, . . . , Ym] + E[Yi+1|Yi+1, . . . , Ym] =
E[Xi − E[Xi]] + Yi+1 = Yi+1. Therefore, the sequence of variables Yi for i = m, m− 1, ..., 1
is a martingale. We will use concentration bound on martingales to prove the lemma.

Note that for each i ∈ [1, m], Xi = 0 with probability at most ε: indeed, when pi is added,
there are already at least |Gj,b,w| −m = 2b−3 ≥ nc/ε points in the order (using log(n) ≥ 8
and that Gj,b,w is initially large), and therefore ε is an upper-bound on the probability of pi

being added among the first nc positions. Thus, for each i ∈ [1, m], 1/2 ≥ E[Xi] ≥ (1− ϵ)/2
and we have µ1 = E[

∑m+1
j=1 Xj ] ≥ (1− ε)m/2.

As |Yi − Yi+1| = |Xi − E[Xi]| ≤ 1/2 for each i ∈ [1, m], Azuma’s inequality ensures
that, with probability at most exp(−2t2/m), Y1 − Ym+1 ≤ −t, which is equivalent to∑m

j=1 Xj ≤ µ1 − t. It follows that
∑m

j=1 Xj ≤ (1 − ε)m/2 − t, with probability at most
exp(−2t2/m).

Taking t = m/8 and using ε ≤ 1/3 yields that, with probability at least 1− exp(−m/32),∑m
j=1 Xj ≥ (2/3)m/2 − m/8 ≥ m/5 = (2b − 2b−3)/5 ≥ 2b−3. As m ≥ 230 log n, this

probability is at least 1− 1/n6. As the number of tokens is exactly
∑m

j=1 Xj , this concludes
the proof. ◀

As a corollary of the previous lemma, we can compute the number of tokens in T G
j,b,w:

▶ Corollary 4.3. [Proof in the full version] Consider a group Gj,b,w, at the moment its size
estimate increases. Then, T G

j,b,w contains at least nc tokens with probability at least 1− 1/n5.

In addition to this token scheme, we have the following property:

▶ Lemma 4.4. [Proof in the full version] For any group Gj,b,w that is initially large, the
size estimate cj,b,w does not decrease during a sequence of at most k updates.

We can now proceed to the proof of Lemma 1.4.

Proof of Lemma 1.4. As presented in the initial sketch, the running time for initializing
the data structure is Õ(T (n, 2k)), and each insertion is processed in constant time and yields
a single addition to the coreset.

The effect of deletions can be bounded via the previous lemmas as follows. First, when
the point deleted by the update is part of the coreset, it is removed from the data structure
in time Õ(1), and uses one token to account for the update in the coreset.

When a ring moves from Gj,b,w to Gj,b−3,w, its size is exactly 2b−3: the complexity of
processing the movement (removing points of the ring from Gj,b,w and adding them to
Gj,b−3,w) is therefore Õ(2b) = Õ(|T R

i,j,w|). The tokens in T R
i,j,w are therefore enough to pay

for the running time. Similarly, the number of insertions and deletions in the coreset is at
most 2 · 2b−3 ≤ |T R

i,j,w|.
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When the size estimate of Gj,b,w changes, the weights of nc many points are updated:
this has running time O(nc). Lemma 4.4 shows that the size must have increased, and
Corollary 4.3 ensures that T G

j,b,w ≥ nc. Those tokens can therefore pay for the updates.
Since the total number of tokens is the number of deleted points, this concludes the

lemma. ◀

4.3 Correctness analysis
▶ Lemma 4.5. For group Gj,b,w, let Ωj,b,w be the nc first points of the random order
maintained by the data structure. Then, E0 \D ∪ I

⋃
j,b,w Ωj,b,w with weights defined in the

algorithm is a 2ε + ε2-coreset for P0 \D ∪ I.

Proof. We use the composability property of coreset. I with weights 1 is obviously a coreset
for I. Similarly, E0 \D is a coreset for E0 \D, and Gsmall a coreset for Gsmall.

Let ∆ be as in the algorithm, the average cost of P0 \ E0. The algorithm ensures that
every point in Gclose is at distance at most ε∆ of a center of A. Item (2) of Fact 4.1
shows that ∆ ≤ cost(P0 \D)/|P0 \D|: therefore, the triangle inequality ensures that each
point of Gclose can be replaced by its closest center in A, up to a total error ε|Gclose|∆ ≤
ε · cost(P0 \ D, A) ≤ O(ε)optk(P0 \ D). The centers of A, weighted by |Ri,0 \ D|, form
therefore an ε-coreset for Gclose.

The first item of Fact 4.1 ensures that A is an O(1)-approximation to k-means on P0 \D:
therefore, Lemma 2.1 shows that for each initially large group Gj,b,w, Ωj,b,w with weight
per point wj,b,w := |Gj,b,w|

nc
is an ε-coreset for Gj,b,w. Since the total weight estimates satisfy

cj,b,w = (1± ε)|Gj,b,w|, each Ωj,b,w with weights wj,b,w := cj,b,w

nc
is a 2ε + ε2-coreset for Gj,b,w.

The union of all those coresets is therefore a coreset for P0 \D ∪ I. ◀

5 Conclusion

We present an efficient algorithm to maintain a coreset under insertion and deletion of
points. This algorithm has near-optimal running time, as it can be used black-box to solve
(k, z)-clustering with optimal update time (and improving ours would directly improve the
update time for (k, z)-clustering).

Furthermore, our algorithm may yield an optimal algorithm for update and query time in
Euclidean space. This is true, under two conjectures that we believe are worth investigating:
first, there exists a static O(1)-approximation algorithm for (k, z)-clustering with running
time Õ(nd). Second, the query time is at least Ω(k). This is the time to output a solution;
however, it may be the case that solutions do not entirely change between each query.

This second conjecture is thus related to the notion of consistency: [15] recently showed
how to maintain a k-median solution in an insertion-only stream of length n, with at most
Õ(k) total number of changes in the solution. It is therefore natural to ask whether this
approach can be extended to fully-dynamic streams: is it possible to maintain a solution
with at most O(1) changes between each time step?
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