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Abstract
Entropy is a measure of the randomness of a system. Estimating the entropy of a quantum state
is a basic problem in quantum information. In this paper, we introduce a time-efficient quantum
approach to estimating the von Neumann entropy S(ρ) and Rényi entropy Sα(ρ) of an N -dimensional
quantum state ρ, given access to independent samples of ρ. Specifically, we provide the following
quantum estimators.

A quantum estimator for S(ρ) with time complexity Õ(N2),1 improving the prior best time
complexity Õ(N6) by Acharya, Issa, Shende, and Wagner (2020) and Bavarian, Mehraba, and
Wright (2016).
A quantum estimator for Sα(ρ) with time complexity Õ(N4/α−2) for 0 < α < 1 and Õ(N4−2/α)
for α > 1, improving the prior best time complexity Õ(N6/α) for 0 < α < 1 and Õ(N6) for
α > 1 by Acharya, Issa, Shende, and Wagner (2020), though at a cost of a slightly larger sample
complexity.

Moreover, these estimators are naturally extensible to the low-rank case. We also provide a sample
lower bound Ω(max{N/ε, N1/α−1/ε1/α}) for estimating Sα(ρ).

Technically, our method is quite different from the previous ones that are based on weak Schur
sampling and Young diagrams. At the heart of our construction, is a novel tool called samplizer,
which can “samplize” a quantum query algorithm to a quantum algorithm with similar behavior
using only samples of quantum states; this suggests a unified framework for estimating quantum
entropies. Specifically, when a quantum oracle U block-encodes a mixed quantum state ρ, any
quantum query algorithm using Q queries to U can be samplized to a δ-close (in the diamond norm)
quantum algorithm using Θ̃(Q2/δ) samples of ρ. Moreover, this samplization is proven to be optimal,
up to a polylogarithmic factor.
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1 Introduction

In quantum information theory, entropy is a basic measure of the randomness of a quantum
system (cf. [39, 57, 56]), which can be understood as the quantum generalization of the entropy
of a probability distribution. Quantum entropy can be used to quantify important quantum
properties, e.g., the compressibility of quantum data [43, 28, 36] and the entanglement of
quantum states [26, 33]. As an analog to the classical learning task of probability distributions,
a natural question is: how can we learn the entropy of a quantum state from its independent
samples?

Indeed, this is a real question raised in physics for measuring quantum entanglement, e.g.,
[15, 22, 27]. Recently, Acharya, Issa, Shende, and Wagner [1] and Bavarian, Mehraba, and
Wright [7] proposed sample-efficient quantum algorithms for estimating quantum entropy
based on the Empirical Young Diagram (EYD) algorithm [4, 30]. Their algorithms, however,
have a large time complexity that is cubic in the sample complexity (i.e., the number of
independent samples used in the algorithm), due to the use of weak Schur sampling.2 By
stark contrast, classically estimating the entropy of a probability distribution only takes time
linear in the sample complexity [45]. Regarding these, one may ask:

Can we estimate quantum entropy with time complexity linear in the sample complexity?

This is not solely a theoretical question: a time-efficient approach to estimating quantum
entropy will benefit many practical applications, e.g., preparing quantum Gibbs states
[59, 12, 53] and learning Hamiltonians [5].

2 Main results

We introduce a new quantum approach to estimating the entropy of a quantum state,
which takes time linear in the sample complexity. For a quantum algorithm3 that only
takes independent samples of a quantum state as input (this input model is called sample
access), the sample complexity is the number of samples used in the algorithm, and the time
complexity is the sum of the number of one- and two-qubit quantum gates and the number
of one-qubit measurements in its circuit description.

We will state the sample and time complexity of our von Neumann entropy estimator
and Rényi entropy estimator in Section 2.1 and Section 2.2, respectively. In comparison
with the additive error ε, we are more interested in the dependence on the size of the input
quantum state. For simplicity, we assume constant additive error ε = Θ(1) in this section,
even though our quantum algorithms are polynomially scalable as 1/ε increases.

In Table 1, we summarize our entropy estimators and compare them with prior best
approaches. There are also other approaches for estimating the entropy of a quantum state
in the literature, which assume access to the quantum circuit that prepares the purification
of ρ (this input model is called purified quantum query access), thus very different from
our setting that only allows access to independent samples of ρ. This line of work will be
reviewed in Section 5.

2 The quantum algorithms proposed in both [1] and [7] are based on the weak Schur sampling [11] (cf.
[38]), so (as noted by [58]) they have quantum time complexity Õ(n3) on input n independent samples
of a quantum state, using the current best quantum Fourier transform over symmetric groups [29].

3 In this paper, we only consider uniform quantum algorithms. That is, there is a polynomial-time
classical Turing machine that, on input 1n, outputs the circuit description of the quantum algorithm for
the problem of size n.
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Table 1 Sample and time complexities for entropy estimation of quantum states.

Reference 0 < α < 1 α = 1 (von Neumann) α > 1

Upper
Bounds

[1] O(N2/α) samples
Õ(N6/α) time

O(N2) samples
Õ(N6) time

O(N2) samples
Õ(N6) time

This work
Õ(N4/α−2) samples
Õ(N4/α−2) time
Theorem 2

Õ(N2) samples
Õ(N2) time
Theorem 1

Õ(N4−2/α) samples
Õ(N4−2/α) time
Theorem 2

Lower
Bounds

[1] Ω(N1+1/α) samples
(EYD)

Ω(N2) samples
(EYD)

Ω(N2) samples
(EYD)

This work Ω(N + N1/α−1) samples
Theorem 9

Ω(N) samples
Theorem 9

Ω(N) samples
Theorem 9

(EYD) – These lower bounds are for Empirical Young Diagram algorithms.

2.1 Von Neumann entropy estimator
Our first result is a time-efficient estimator for von Neumann entropy, defined by (cf. [46])

S(ρ) = − tr(ρ ln(ρ)).

▶ Theorem 1. There is a quantum estimator for the von Neumann entropy S(ρ) of an
N -dimensional quantum state ρ with sample and time complexity Õ(N2).

The prior best quantum estimators for the von Neumann entropy [1, 7] have sample
complexity O(N2) and time complexity Õ(N6).4 Our estimator is cubicly faster than
theirs in the time complexity, while with the same sample complexity (up to a logarithmic
factor). Technically, our method is quite different from the previous ones based on weak
Schur sampling and Young diagrams. By comparison, our algorithm builds on our new
tool – samplizer (which will be introduced in Section 3.1), together with the block-encoding
techniques (cf. [19]).

Our von Neumann entropy estimator has an advantage in that it can exploit prior know-
ledge of a relatively low rank r of the quantum state ρ. In this case, our von Neumann entropy
estimator has time complexity Õ(r2), which is polynomial in r while only polylogarithmic
in N . Note that the work of [1] does not consider the low-rank case. Recently, a von
Neumann entropy estimator was proposed in [54] with sample complexity Õ(κ2), where κ is
the reciprocal of the minimum non-zero eigenvalue of ρ. The rank-dependent version of our
algorithm immediately reproduces their result by noting that κ is always an upper bound on
the rank r of ρ.

2.2 Rényi entropy estimator
We also provide time-efficient estimators for α-Rényi entropy, defined by (cf. [42])

Sα(ρ) = 1
1− α

ln(tr(ρα)),

with von Neumann entropy a limiting case: S(ρ) = S1(ρ).

4 See Footnote 2.
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▶ Theorem 2. There is a quantum estimator for the α-Rényi entropy Sα(ρ) of an N-
dimensional quantum state ρ with sample and time complexity Õ(N4/α−2) for 0 < α < 1 and
Õ(N4−2/α) for α > 1.

The prior best quantum estimators for the α-Rényi entropy [1] have sample complexity
O(N2/α) and time complexity Õ(N6/α) for α < 1, and sample complexity O(N2) and time
complexity Õ(N6) for α > 1.5 By comparison, our estimators for the α-Rényi entropy and
von Neumann entropy are faster (in time) than the approaches of [1] for any constant α > 0.6
It can be seen that there is a trade-off between the sample and time complexities: our
algorithms are more time-efficient, while the approaches of [1] are more sample-efficient. Like
our von Neumann entropy estimator, our Rényi entropy estimator is also extensible to the
low-rank case, resulting in a time complexity polynomial in the rank r of quantum state ρ.

3 Techniques

The design of our quantum algorithms is based on a novel tool – samplizer. Roughly speaking,
the samplizer allows us to design a quantum algorithm with access to samples of quantum
states by instead designing a quantum query algorithm (namely, a quantum algorithm with
access to a quantum unitary oracle). We first introduce the samplizer in Section 3.1 and
then show how to design our quantum entropy estimators using the samplizer in Section 3.2
(for von Neumann entropy) and in Section 3.3 (for Rényi entropy).

3.1 Samplizer
Throughout this paper, we use the following concepts and notations for quantum query
algorithms and quantum sample algorithms. A quantum query algorithm with query access
to oracle U is described by a quantum circuit family C = {C[U ]}, where C[U ] can use queries
to (controlled-)U and (controlled-)U†. A quantum sample algorithm with sample access to
state ρ is described by a quantum channel family E = {E [ρ]}, where E [ρ] is implemented by
a quantum circuit with ancilla input state of the form ρ⊗k ⊗ |0⟩⟨0|⊗ℓ. We will use C[U ] to
denote the quantum channel C[U ](ϱ) = C[U ]ϱC[U ]† induced by C[U ]. To justify the concepts
defined here, we note that any quantum entropy estimator using independent samples of
quantum states is indeed a quantum sample algorithm.

Now we are able to introduce the notion of samplizer.

▶ Definition 3 (Samplizer). A samplizer Samplize∗⟨∗⟩ is a converter from a quantum circuit
family to a quantum channel family with the following property: for any δ > 0, quantum
circuit family C = {C[U ]}, and quantum state ρ, there exists a unitary operator Uρ that is a
block-encoding of ρ/2 such that7

∥Samplizeδ⟨C⟩[ρ]− C[Uρ]∥⋄ ≤ δ,

where ∥·∥⋄ denotes the diamond norm between quantum channels. Here, U is a block-encoding
of A if the matrix A is in the upper left corner in the matrix representation of U .

5 See Footnote 2.
6 For integer α > 1, the approach of [1] has sample complexity O(N2−2/α) and time complexity Õ(N6−6/α).

Our algorithm is faster with the only exception that α = 2. To address this special case, we provide a
simple algorithm for estimating the 2-Rényi entropy S2(ρ) with sample and time complexity Õ(N2) via
the SWAP test [6, 10] in the full version of this paper [50].

7 The scaling factor 1/2 is due to technical reasons.
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The definition of samplizer is inspired by existing quantum query algorithms wherein the
output depends only on the matrix block-encoded in the oracle, e.g., the quantum algorithms
for Hamiltonian simulation and quantum Gibbs sampling in [19] and solving systems of linear
equations in [13]. For any such quantum query algorithm C, we can use the samplizer to
construct a quantum sample algorithm Samplizeδ⟨C⟩ that simulates the behavior of C when
the density matrix of a (mixed) quantum state is block-encoded in the oracle. The existence
of the samplizer will allow us to design quantum sample algorithms by just designing quantum
query algorithms instead. In the following, we provide an efficient samplizer, demonstrating
its existence.

▶ Theorem 4 (Optimal samplizer). There is an optimal samplizer Samplize∗⟨∗⟩ such that for
any δ > 0 and quantum query algorithm C with query complexity Q, the quantum sample
algorithm Samplizeδ⟨C⟩8 has sample complexity S = Θ̃(Q2/δ) and incurs an extra time
complexity of O(nS) over C if the quantum oracle of C acts on n qubits.

We design our samplizer based on quantum principal component analysis [35, 31]. The
idea is inspired by the recent quantum algorithms for estimating fidelity [18] and trace distance
[49]. These algorithms can be employed to construct a quantum circuit that (approximately)
block-encodes a quantum state given its independent samples, using quantum singular value
transformation [19]. Based on this idea, a lifting theorem was discovered in [48] that relates
quantum sample complexity to quantum query complexity. In this paper, we further extend
this technique to general quantum query algorithms. This is done by replacing each oracle
query with a quantum channel that simulates the oracle that is implemented by (samples of)
the quantum state block-encoded in the oracle (if applicable). After the replacement, we
obtain a quantum sample algorithm that simulates the original quantum query algorithm.

We prove the optimality of the samplizer by observing that any samplizer can samplize a
quantum query algorithm for Hamiltonian simulation (e.g., [19, 37]) to a quantum sample
algorithm for sample-based Hamiltonian simulation [35]. Then, we use the quantum sample
lower bound for the latter problem [31] to derive a matching lower bound for the samplizer.

▶ Remark 5. Our samplizer studies the sample complexity of simulating quantum query
algorithms, which is a generalization of [48, Theorem 1.1] (for Q-dependence only) and [18,
Corollary 21] (for δ-dependence only). In [48], they showed a tight Q-dependence but did
not consider the dependence on the overall error δ in the sample/time complexity (they only
consider the case when δ is a constant). The δ-dependence is extremely important, as the
time complexity of the samplizer grows polynomially in 1/δ. In [18], they did not consider
the Q-dependence and did not show the optimality of the δ-dependence. In Theorem 4, we
show matching upper and lower bounds with respect to both Q and δ.

3.2 Von Neumann entropy estimator

Now we present a quantum estimator for the von Neumann entropy in Algorithm 1 through
the samplizer provided in Theorem 4. As demonstrated, the samplizer is convenient and
useful in designing quantum sample algorithms in a modular fashion.

8 Our samplizer is uniform. That is, there is a polynomial-time deterministic Turing machine that, on
input the description of quantum circuit family C = {C[U ]} and the unary encodings of Q and δ, outputs
the quantum circuit description of the implementation of the quantum channel family Samplizeδ⟨C⟩.

ESA 2024
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Algorithm 1 estimate_von_Neumann_main(ε, δ) – quantum sample algorithm.

Resources: Access to independent samples of N -dimensional quantum state ρ of rank r.
Input: ε ∈ (0, 1) and δ ∈ (0, 1).
Output: S̃ such that |S̃ − S(ρ)| ≤ ε with probability ≥ 1− δ.

1: function von_Neumann_subroutine(δp, εp, δQ) – quantum query algorithm
Resources: Unitary oracle UA that is a block-encoding of A.

2: Let p(x) be a polynomial of degree dp = O
(

1
δp

log
(

1
εp

))
such that |p(x)| ≤ 1

2 for

x ∈ [−1, 1] and
∣∣∣p(x)− ln(1/x)

4 ln(2/δp)

∣∣∣ ≤ εp for x ∈ [δp, 1] (by the polynomial approximation
of logarithms [17, Lemma 11]).

3: Construct unitary operator Up(A) that is a (1, a, δQ)-block-encoding of p(A), using
O(dp) queries to UA (by quantum singular value transformation [19, Theorem 31]).

4: return Up(A).
5: end function
6: δp ← ε

128r ln(32r/ε) , εp ← ε
32 ln(2/δp) , δQ ← ε

32r ln(2/δp) , δa ← ε
64 ln(2/δp) , εH ← δa, k ←⌈

1
2ε2

H

ln
( 2

δ

)⌉
.

7: for i = 1 . . . k do
8: Perform the Hadamard test on Samplizeδa

⟨von_Neumann_subroutine(δp, εp, δQ)⟩[ρ]
and ρ (by the Hadamard test [18, Lemma 9]). Let Xi ∈ {0, 1} be the outcome.

9: end for
10: S̃ ← 4(2

∑
i∈[k] Xi/k − 1) ln(2/δp)− ln(2).

11: return S̃.

The framework of our quantum estimator for the von Neumann entropy is inspired by the
quantum query algorithm in [47] for estimating the von Neumann entropy. In Algorithm 1,
we first design a quantum query algorithm

von_Neumann_subroutine(δp, εp, δQ)[UA] = Up(A),

which implements a block-encoding Up(A) of p(A), using queries to a block-encoding UA of A,
where p(·) is a polynomial defined in Line 2 of Algorithm 1 that approximates the logarithm
(up to some constant factor) in certain regime. If von_Neumann_subroutine(δp, εp, δQ)[Uρ]
can be implemented as desired for every quantum state ρ, then we can estimate the von
Neumann entropy through the Hadamard test [3]. To see this, we provide the following
lemma.

▶ Lemma 6. Suppose that Uρ is a block-encoding of ρ/2 where ρ is a quantum state of
rank r. Let random variable X ∈ {0, 1} be the output of the Hadamard test (as in Line 8
of Algorithm 1) on the unitary operator von_Neumann_subroutine(δp, εp, δQ)[Uρ] and the
quantum state ρ. Then,∣∣∣∣(4(2E[X]− 1) ln

(
2
δp

)
− ln(2)

)
− S(ρ)

∣∣∣∣ ≤ 4(2rδp + εp + rδQ) ln
(

2
δp

)
.

Using the samplizer provided in Theorem 4, we are able to construct its “samplized”
version

Samplizeδa
⟨von_Neumann_subroutine(δp, εp, δQ)⟩[ρ],

which only uses independent samples of the input quantum state ρ. Let X ′ ∈ {0, 1} be the
output of the Hadamard test on Samplizeδa

⟨von_Neumann_subroutine(δp, εp, δQ)⟩[ρ] and
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the quantum state ρ, as analogous to Lemma 6. It can be shown that |E[X ′]− E[X]| ≤ δa,
which implies that∣∣∣∣(4(2E[X ′]− 1) ln

(
2
δp

)
− ln(2)

)
− S(ρ)

∣∣∣∣ ≤ 4(2rδp + εp + rδQ + 2δa) ln
(

2
δp

)
.

Therefore, once an estimate p of E[X ′] is obtained, we can use 4(2p− 1) ln(2/δp)− ln(2) as an
estimate of S(ρ). By choosing appropriate values for the parameters such as δp, εp, δQ, δa, εH , k

as in Algorithm 1, we can obtain an ε-estimate of the von Neumann entropy S(ρ) with
sample and time complexity Õ(r2/ε5).

3.3 Rényi entropy estimator
We also provide quantum estimators for the α-Rényi entropy for every α ∈ (0, 1) ∪ (1, +∞)
through the samplizer provided in Theorem 4. As an illustrative example, we mainly introduce
the estimator for α > 1 in Algorithm 2. The idea for 0 < α < 1 is similar, which is presented
in Algorithm 3. The framework of our quantum estimators for the Rényi entropy of quantum
states is recursive, which is inspired by the quantum query algorithm in [34] for estimating
the Rényi entropy of discrete probability distributions. We denote Pα(ρ) = tr(ρα).

3.3.1 α > 1
In Algorithm 2, two main functions are explained as follows.

estimate_Rényi_gt1(α, ε, δ): return an estimate P̃ such that (1−ε)P̃ ≤ Pα(ρ) ≤ (1+ε)P̃
with probability ≥ 1− δ.
estimate_Rényi_gt1_promise(α, P, ε, δ): return an estimate P̃ such that (1 − ε)P̃ ≤
Pα(ρ) ≤ (1 + ε)P̃ with probability ≥ 1− δ, given a promise that P ≤ Pα(ρ) ≤ 10P .

It can be seen that by letting P̃ ← estimate_Rényi_gt1(α, (α− 1)ε/2, δ) as in Line 31 of
Algorithm 2, S̃ ← 1

1−α ln(P̃ ) is then an ε-estimate of Sα(ρ).
The main observation is that estimate_Rényi_gt1(α, ε, δ) can be computed recursively.

This is done by two steps:
1. With probability ≥ 1 − δ/2, obtain an estimate P such that P ≤ Pα(ρ) ≤ 10P . This

is done by reducing to another entropy estimation task with smaller α as in Line 26 of
Algorithm 2.

2. With probability ≥ 1− δ/2, obtain an estimate P̃ such that (1− ε)P̃ ≤ Pα(ρ) ≤ (1 + ε)P̃
by calling estimate_Rényi_gt1_promise(α, P, ε, δ/2) as in Line 29 of Algorithm 2.

To implement the function estimate_Rényi_gt1_promise(α, P, ε, δ), we first design a
quantum query algorithm

Rényi_gt1_subroutine(α, P, δp, εp, δQ)[UA] = Up(A),

which implements a block-encoding Up(A) of p(A), using queries to a block-encoding UA of A,
where p(·) is a polynomial defined in Line 3 of Algorithm 2 that approximates the positive
power function (up to some constant factor). If Rényi_gt1_subroutine(α, P, δp, εp, δQ)[Uρ]
can be implemented as desired for every quantum state ρ, then we can estimate Pα(ρ) by
applying it on ρ⊗ |0⟩⟨0|⊗a. To see this, we provide the following lemma.

▶ Lemma 7. Suppose that Uρ is a block-encoding of ρ/2 where ρ is a quantum state of rank
r. Let Up(ρ/2) = Rényi_gt1_subroutine(α, P, δp, εp, δQ)[Uρ]. Let random variable X = 1 if
the measurement outcome of Up(ρ/2)(ρ⊗ |0⟩⟨0|⊗a)U†

p(ρ/2) in the computational basis (on the
last a qubits) is |0⟩⊗a, and 0 otherwise (as in Line 14 of Algorithm 2). Then,∣∣16(4β)α−1E[X]− Pα(ρ)

∣∣ ≤ 5r(2δp)α + 32(4β)α−1(εp + rδQ).

ESA 2024
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Algorithm 2 estimate_Rényi_gt1_main(α, ε, δ) – quantum sample algorithm.

Resources: Access to independent samples of N -dimensional quantum state ρ of rank r.
Input: α > 1, ε ∈ (0, 1), and δ ∈ (0, 1).
Output: S̃ such that |S̃ − Sα(ρ)| ≤ ε with probability ≥ 1− δ.

1: function Rényi_gt1_subroutine(α, P, δp, εp, δQ) – quantum query algorithm
Resources: Unitary oracle UA that is a block-encoding of A.

2: β ← min{(10P )1/α, 1/2}, c← (α− 1)/2.
3: Let p(x) be a polynomial of degree dp = O

(
1
δp

log
(

1
δpεp

))
such that |p(x)| ≤ 1

2

(
δp

2β

)c

for x ∈ [0, δp],
∣∣∣p(x)− 1

4

(
x

2β

)c∣∣∣ ≤ εp for x ∈ [δp, β], and |p(x)| ≤ 1
2 for x ∈ [−1, 1] (by

the polynomial approximation of positive power functions, e.g., [52, Lemma 6]).
4: Construct unitary operator Up(A) that is a (1, a, δQ)-block-encoding of p(A), using

O(dp) queries to UA (by quantum singular value transformation [19, Theorem 31]).
5: return Up(A).
6: end function
7: function estimate_Rényi_gt1_promise(α, P, ε, δ)
8: β ← min{(10P )1/α, 1/2}, m← ⌈8 ln(1/δ)⌉, δp ← 1

2
(

P ε
40r

)1/α.
9: εp ← (4β)1−αP ε

256 , δQ ← (4β)1−αP ε
128r , δa ← (4β)1−αP ε

128 , and k ←
⌈

65536
(4β)1−αP ε2

⌉
.

10: for j = 1 . . . m do
11: for i = 1 . . . k do
12: Let σ = Samplizeδa

⟨Rényi_gt1_subroutine(α, P, δp, εp, δQ)⟩[ρ](ρ⊗ |0⟩⟨0|⊗a).
13: Measure σ in the computational basis.
14: Let Xi be 1 if the outcome is |0⟩⊗a, and 0 otherwise.
15: end for
16: P̂j ← 16(4β)α−1 ∑

i∈[k] Xi/k.
17: end for
18: P̃ ← the median of P̂j for j ∈ [m].
19: return P̃ .
20: end function
21: function estimate_Rényi_gt1(α, ε, δ)
22: λ← 1 + 1/ ln(r).
23: if α ≤ λ then
24: P ← e−1.
25: else
26: P ′ ← estimate_Rényi_gt1(α/λ, 1/4, δ/2).
27: P ← (4P ′/5)λe−1.
28: end if
29: return estimate_Rényi_gt1_promise(α, P, ε, δ/2).
30: end function
31: P̃ ← estimate_Rényi_gt1(α, (α− 1)ε/2, δ).
32: S̃ ← 1

1−α ln(P̃ ).
33: return S̃.
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Using the samplizer provided in Theorem 4, we are able to construct its “samplized”
version

Samplizeδa
⟨Rényi_gt1_subroutine(α, P, δp, εp, δQ)⟩[ρ],

which only uses independent samples of the input quantum state ρ. Let random variable X ′ =
1 if the measurement outcome of Samplizeδa

⟨Rényi_gt1_subroutine(α, P, δp, εp, δQ)⟩[ρ](ρ⊗
|0⟩⟨0|⊗a) in the computational basis (on the last a qubits) is |0⟩⊗a, and X ′ = 0 otherwise, as
analogous to Lemma 6. It can be shown that |E[X ′]− E[X]| ≤ δa, which implies that∣∣16(4β)α−1E[X ′]− Pα(ρ)

∣∣ ≤ 5r(2δp)α + 16(4β)α−1(2εp + 2rδQ + δa).

Therefore, once an estimate p of E[X ′] is obtained, we can use 16(4β)α−1p as an estimate
of Pα(ρ). By choosing appropriate values for the parameters such as δp, εp, δQ, δa, k as in
Algorithm 2, we can obtain an ε-estimate of the Rényi entropy Sα(ρ) with sample and time
complexity Õ(r4−2/α/ε3+2/α).

3.3.2 0 < α < 1
Although the structure and the analysis of Algorithm 3 are similar to those of Algorithm 2,
we introduce them here for completeness and for noting the differences in detail. The two
main functions are explained as follows.

estimate_Rényi_lt1(α, ε, δ): return an estimate P̃ such that (1 − ε)Pα(ρ) ≤ P̃ ≤
(1 + ε)Pα(ρ) with probability ≥ 1− δ.
estimate_Rényi_lt1_promise(α, P, ε, δ): return an estimate P̃ such that (1−ε)Pα(ρ) ≤
P̃ ≤ (1 + ε)Pα(ρ) with probability ≥ 1− δ, given a promise that P ≤ Pα(ρ) ≤ 10P .

The key part is the implementation of the function estimate_Rényi_lt1_promise(α, P, ε, δ).
To this end, we first design a quantum query algorithm

Rényi_lt1_subroutine(α, P, δp, εp, δQ)[UA] = Up(A),

which implements a block-encoding Up(A) of p(A), using queries to a block-encoding UA of A,
where p(·) is a polynomial defined in Line 2 of Algorithm 3 that approximates the negative
power function (up to some constant factor). Similar to the analysis for α > 1, if one can
implement Rényi_lt1_subroutine(α, P, δp, εp, δQ)[Uρ] for every quantum state ρ, then we
can estimate Pα(ρ) by applying it on ρ ⊗ |0⟩⟨0|⊗a. To see this, we provide the following
lemma.

▶ Lemma 8. Suppose that Uρ is a block-encoding of ρ/2 where ρ is a quantum state of rank
r. Let Up(ρ/2) = Rényi_lt1_subroutine(α, P, δp, εp, δQ)[Uρ]. Let random variable X = 1 if
the measurement outcome of Up(ρ/2)(ρ⊗ |0⟩⟨0|⊗a)U†

p(ρ/2) in the computational basis (on the
last a qubits) is |0⟩⊗a, and 0 otherwise (as in Line 13 of Algorithm 3). Then,∣∣16(2δp)α−1E[X]− Pα(ρ)

∣∣ ≤ 5r(2δp)α + 32(2δp)α−1(εp + rδQ).

Using the samplizer provided in Theorem 4, we are able to construct its “samplized”
version

Samplizeδa
⟨Rényi_lt1_subroutine(α, P, δp, εp, δQ)⟩[ρ],

which only uses independent samples of the input quantum state ρ. Let random variable X ′ =
1 if the measurement outcome of Samplizeδa

⟨Rényi_lt1_subroutine(α, P, δp, εp, δQ)⟩[ρ](ρ⊗
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Algorithm 3 estimate_Rényi_lt1_main(α, ε, δ) – quantum sample algorithm.

Resources: Access to independent samples of N -dimensional quantum state ρ of rank r.
Input: 0 < α < 1, ε ∈ (0, 1), and δ ∈ (0, 1).
Output: S̃ such that |S̃ − Sα(ρ)| ≤ ε with probability ≥ 1− δ.

1: function Rényi_lt1_subroutine(α, P, δp, εp, δQ) – quantum query algorithm
Resources: Unitary oracle UA that is a block-encoding of A.

2: Let p(x) be a polynomial of degree dp = O
(

1
δp

log
(

1
εp

))
such that∣∣∣∣p(x)− 1

4

(
x
δp

) α−1
2

∣∣∣∣ ≤ εp for x ∈ [δp, 1], and |p(x)| ≤ 1
2 for x ∈ [−1, 1] (by the poly-

nomial approximation of negative power functions [19, Corollary 67 in the full version]).
3: Construct unitary operator Up(A) that is a (1, a, δQ)-block-encoding of p(ρ), using

O(dp) queries to UA (by quantum singular value transformation [19, Theorem 31]).
4: return Up(A).
5: end function
6: function estimate_Rényi_lt1_promise(α, P, ε, δ)
7: m← ⌈8 ln(1/δ)⌉, δp ← 1

2
(

P ε
40r

)1/α.
8: εp ← (2δp)1−αP ε

256 , δQ ← (2δp)1−αP ε
128r , δa ← (2δp)1−αP ε

128 , and k ←
⌈

65536
(2δp)1−αP ε2

⌉
.

9: for j = 1 . . . m do
10: for i = 1 . . . k do
11: Let σ = Samplizeδa

⟨Rényi_lt1_subroutine(α, P, δp, εp, δQ)⟩[ρ](ρ⊗ |0⟩⟨0|⊗a).
12: Measure σ in the computational basis.
13: Let Xi be 1 if the outcome is |0⟩⊗a, and 0 otherwise.
14: end for
15: P̂j ← 16(2δp)α−1 ∑

i∈[k] Xi/k.
16: end for
17: P̃ ← the median of P̂j for j ∈ [m].
18: return P̃ .
19: end function
20: function estimate_Rényi_lt1(α, ε, δ)
21: λ← 1− 1/ ln(r).
22: if α ≥ λ then
23: P ← 1.
24: else
25: P ′ ← estimate_Rényi_lt1(α/λ, 1/4, δ/2).
26: P ← (4P ′/5)λ.
27: end if
28: return estimate_Rényi_lt1_promise(α, P, ε, δ/2).
29: end function
30: P̃ ← estimate_Rényi_lt1(α, (1− α)ε/2, δ).
31: S̃ ← 1

1−α ln(P̃ ).
32: return S̃.
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|0⟩⟨0|⊗a) in the computational basis (on the last a qubits) is |0⟩⊗a, and X ′ = 0 otherwise, as
analogous to Lemma 8. It can be shown that |E[X ′]− E[X]| ≤ δa, which implies that∣∣16(2δp)α−1E[X ′]− Pα(ρ)

∣∣ ≤ 5r(2δp)α + 16δα−1
p (2εp + 2rδQ + δa).

Therefore, once an estimate p of E[X ′] is obtained, we can use 16(2δp)α−1p as an estimate
of Pα(ρ). By choosing appropriate values for the parameters such as δp, εp, δQ, δa, k as in
Algorithm 3, we can obtain an ε-estimate of the Rényi entropy Sα(ρ) with sample and time
complexity Õ(r4/α−2/α/ε1+4/α).

4 Lower bounds

For completeness, we prove lower bounds on the sample complexity for estimating the von
Neumann entropy and Rényi entropy.

▶ Theorem 9. For every constant α > 0, any quantum estimator for the α-Rényi entropy
of an N-dimensional quantum state within additive error ε requires sample complexity
Ω(max{N/ε, N1/α−1/ε1/α}). In particular, estimating the von Neumann entropy (α = 1)
requires sample complexity Ω(N/ε).

To the best of our knowledge, we are not aware of any general sample lower bounds
for estimating the von Neumann entropy or Rényi entropy that are explicitly stated in the
literature. Nevertheless, we note that the sample lower bound for the mixedness testing
problem of quantum states given in [41, Theorem 1.10] actually implies an Ω(N) sample lower
bound for entropy estimation. In Theorem 9, our contribution is that we give a better sample
lower bound for 0 < α < 1/2, and that we further consider the ε-dependence in the lower
bounds. This is achieved by reducing the task of estimating the α-Rényi entropy of quantum
states to the mixed testing problem of quantum states in [41] and to the distinguishing
problem of a special probability distribution used in [2, 1].

We note that in [1], they provided sample lower bounds Ω(max{N2/ε, N1+1/α/ε1/α})
for any empirical Young diagram algorithms that estimate the α-Rényi entropy for α > 0
(including α = 1 for the von Neumann entropy). Compared to the lower bounds given in
Theorem 9, their lower bounds do not apply to general algorithms that are not based on
empirical Young diagrams (which is noted by [58]).

We discuss the limiting cases α = 0 and α =∞ of Theorem 9 as follows.
For the case of α = 0, S0(ρ) = ln(rank(ρ)) is the Max (Hartley) entropy. We further
show that there is no estimator for the Max entropy (within constant additive error).
To see this, consider the problem of distinguishing the two quantum states ρ0 = |0⟩⟨0|
and ρδ = (1 − δ)|0⟩⟨0| + δ · I

N , where δ > 0 can be arbitrarily close to 0. Note that
rank(ρ0) = 1 and rank(ρδ) = N , and thus S0(ρ0) = 0 and S0(ρδ) = ln(N). On the
other hand, according to the upper bound on the success probability of quantum state
discrimination [23, 25], distinguishing between ρ0 and ρδ requires Ω(1/δ) samples, which
can be arbitrarily large and is independent of N .
For the case of α =∞, S∞(ρ) = − ln(∥ρ∥) is the Min entropy. An estimator with sample
complexity O(N2/ε2) is implied by [40, Theorem 1.18].9 On the other hand, the proof
for α > 1 also applies to α = ∞, thus an Ω(N/ε) sample lower bound also holds for
estimating S∞(ρ).

9 In [40], they proposed a quantum algorithm that finds the top-k eigenvalues of an N -dimensional
quantum state ρ to δ-accuracy in ℓ2

2 distance with sample complexity O(k/δ). Note that ∥ρ∥ is the
largest (i.e., top-1) eigenvalue of ρ and 1/N ≤ ∥ρ∥ ≤ 1. To obtain an estimate of S∞(ρ) within additive
error ε, an estimate of ∥ρ∥ with multiplicative error ε suffices. This can be done by taking k = 1 and
δ = ε2/N2, resulting in a sample complexity of O(N2/ε2).
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5 Related Work

As not aforementioned, there are quantum query algorithms for estimating the entropy of
a quantum state ρ, given purified access to ρ. It was shown in [17] that the von Neumann
entropy S(ρ) can be estimated with quantum query complexity Õ(N). The estimation of
S(ρ) was shown to be useful as a subroutine in variational quantum algorithms [12], where
they showed that S(ρ) can be estimated with query complexity Õ(κ2), and κ is the reciprocal
of the minimum non-zero eigenvalue of ρ. A quantum query algorithm for estimating S(ρ)
with multiplicative error was proposed in [20]. It was shown in [44] that the α-Rényi entropy
Sα(ρ) can be estimated with quantum query complexity Õ(κNmax{α,1}), which was later
shown in [52] to be Õ(N1/2+1/2α) for 0 < α < 1 and Õ(N3/2−1/2α) for α > 1. When ρ is
low-rank, it was shown in [47] that the quantum query complexity of estimating S(ρ) and
Sα(ρ) is poly(r). Other than upper bounds, it was shown in [16] that estimating the entropy
of shallow circuit outputs is hard. In addition to quantum approaches, a classical approach
for estimating the von Neumann entropy was proposed in [32]. For probability distributions,
quantum algorithms for estimating their entropy were investigated in [34].

6 Discussion

In this paper, we provide time-efficient quantum estimators for the von Neumann entropy and
Rényi entropy of quantum states using their independent samples. They are designed under
the unified framework of our novel tool – samplizer. Very different from the prior approaches
[1, 7] that are based on weak Schur sampling and Young diagrams, our quantum entropy
estimators build on the samplizer and quantum singular value transformation, demonstrating
that block-encoding techniques [19] are also useful to obtain efficient quantum estimators
that take only independent samples of quantum states as input.

We conclude by mentioning several open questions related to our work.

Can we improve the logarithmic factors in the sample complexity of the samplizer given
in Theorem 4? The current upper and lower bounds on the sample complexity of the
samplizer are only tight up to polylogarithmic factors.

All of the existing estimators for the von Neumann entropy, including the estimators
based on the EYD (empirical Young diagram) by [1, 7] and ours (Theorem 1), have
sample complexity Õ(N2). It was also shown in [1] that any quantum EYD estimator
for the von Neumann entropy has sample complexity Ω(N2). We conjecture that the
same sample lower bound also holds for any von Neumann entropy estimator (that is
not necessarily based on the EYD), though we can only prove a lower bound Ω(N) in
Theorem 9.

Although our Rényi entropy estimator (Theorem 2) is more time-efficient than the
estimator proposed in [1], its sample complexity is worse. Can we improve the sample-
time tradeoff or prove any sample-time lower bound for Rényi entropy estimators?

We believe that the samplizer can be useful to design quantum algorithms for quantum
property testing, especially for those concerning quantum states. For example, we think
that it could be used to simplify the fidelity estimator in [18] and the trace distance
estimator in [49]. Except for these direct applications, can we find new quantum sample
algorithms for other computational tasks of interest through the samplizer?
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