
SubModST: A Fast Generic Solver for
Submodular Maximization with Size Constraints
Henning Martin Woydt #

Heidelberg University, Germany

Christian Komusiewicz #

Friedrich Schiller University Jena, Institute of Computer Science, Germany

Frank Sommer #

Friedrich Schiller University Jena, Institute of Computer Science, Germany

Abstract
In the Cardinality-Constrained Maximization (Minimization) problem the input is a uni-
verse U , a function f : 2U → R, and an integer k, and the task is to find a set S ⊆ U with |S| ≤ k

that maximizes (minimizes) f(S). Many well-studied problems such as Facility Location, Partial
Dominating Set, Group Closeness Centrality and Euclidean k-Medoid Clustering are spe-
cial cases of Cardinality-Constrained Maximization (Minimization). All the above-mentioned
problems have the diminishing return property, that is, the improvement of adding an element e ∈ U
to a set S is at least as large as adding e to any superset of S. This property is called submodularity
for maximization problems and supermodularity for minimization problems.

In this work we develop a new exact branch-and-cut algorithm SubModST for the generic Submodu-
lar Cardinality-Constrained Maximization and Supermodular Cardinality-Constrained
Minimization. We develop several speed-ups for SubModST and we show their effectiveness on six
example problems. We show that SubModST outperforms the state-of-the-art solvers developed by
Csókás and Vinkó [J. Glob. Optim. ’24] and Uematsu et al. [J. Oper. Res. Soc. Japan ’20] for
Submodular Cardinality-Constrained Maximization by orders of magnitudes.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Branch-and-bound

Keywords and phrases Branch-and-Cut, Lazy Evaluations, Facility Location, Group Closeness
Centrality, Partial Dominating Set

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.102

Supplementary Material Software (Source Code): https://github.com/HenningWoydt/SubModST
archived at swh:1:dir:dee9bf07a182bd8d04257ddb4d9d94b2342f46e4

Dataset (Experimental data): https://zenodo.org/doi/10.5281/zenodo.12579218

Funding Henning Martin Woydt: Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – DFG SCHU 2567/6-1.

Acknowledgements The results of this work are based on the first author’s Masters thesis [33].

1 Introduction

A vast number of computational problems can be formulated as the problem of selecting a
small set of elements from a universe that optimizes a given objective function.

In operations research, the Facility Location problem receives as input a set of facility
locations and a set of demand locations and asks for optimally placing a set of at most k

facilities at the facility locations so that the sum of costs of the demand locations for reaching
any facility is minimized [8, 9]. Essentially the same problem occurs in geometric clustering
approaches, where it is called k-Medoid Clustering. Here the input is a set of data points,
for example in a Euclidean space, and the task is to select k cluster centers, so that the sum

© Henning Martin Woydt, Christian Komusiewicz, and Frank Sommer;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 102; pp. 102:1–102:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:henning.woydt@informatik.uni-heidelberg.de
https://orcid.org/0009-0004-2234-2869
mailto:c.komusiewicz@uni-jena.de
https://orcid.org/0000-0003-0829-7032
mailto:frank.sommer@uni-jena.de
https://orcid.org/0000-0003-4034-525X
https://doi.org/10.4230/LIPIcs.ESA.2024.102
https://github.com/HenningWoydt/SubModST
https://archive.softwareheritage.org/swh:1:dir:dee9bf07a182bd8d04257ddb4d9d94b2342f46e4;origin=https://github.com/HenningWoydt/SubModST;visit=swh:1:snp:8fb4d3d77560e4ec9a35b94b61bd9d40eaeedb8f;anchor=swh:1:rev:deb84d2618a5f928137127fd78d3439d6f90e9ad
https://zenodo.org/doi/10.5281/zenodo.12579218
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

102:2 SubModST: A Generic Solver for Submodular Maximization

of the distances of data points to their cluster centers is minimized [15, 30]. In social network
analysis, Group Closeness Centrality is again the same problem, here motivated by
identifying a group of central actors: the input is a graph and the task is to select k vertices
so that the unselected vertices have a small distance to the set of selected vertices [5, 11].

Other important examples of these problems are covering problems. Here, a central
problem is Maximum Coverage [1] where the task is to select k sets from a set fam-
ily {S1, S2, . . . , Sn} over a ground set X so that the union of the k sets is maximized.
Maximum Coverage is a generalization of other well-studied problems for example Domi-
nating Set and Partial Dominating Set. Moreover, Set Cover and, similarly, Hitting
Set, correspond to the special case of the decision version of Maximum Coverage where
we ask whether there is a set of k sets whose union is X, the full ground set. In the even more
general Weighted Coverage [17, 18] problem each element is associated with a weight
and the task is to select a coverage such that the sum of the covered weights is maximized.
Maximum Coverage and its special cases find applications in machine learning [3], in
routing [34, 29], document summarization [27, 35] and sensor networks [21].

All of the problems described above are subsumed by the following generic problem.

Cardinality-Constrained Maximization (Minimization)
Input: A set function f : 2U → R and an integer k ∈ N.
Task: Find a set S ⊆ U with |S| ≤ k that maximizes (minimizes) f(S).

The fact that Hitting Set and Maximum Coverage are special cases entails strong
hardness results for Cardinality-Constrained Maximization: The problem is NP-
hard [14], APX-hard [2], and assuming the Exponential Time Hypothesis (ETH) [13] is
true, it cannot be solved in no(k) time, where n denotes the total input size [6]. Note that
Cardinality-Constrained Maximization is trivially solvable in nk · nO(1) time assuming
that f can be evaluated in polynomial time.

A striking common feature of the examples discussed above is, that they exhibit what
is called the diminishing returns property. Informally, this property, called submodularity
for maximization problems, implies that the improvement of the objective value obtained
by adding an element e to a set S (this is called the marginal gain of e) is at least as
large as when adding e to any superset of S. More formally, a set function f is submodular
if f(A∪{e})−f(A) ≥ f(B∪{e})−f(B) for A ⊆ B ⊆ U and e ∈ U . For minimization problems,
the diminishing returns property is called supermodularity. Interestingly, by negating the
objective function f , we not only transform minimization problems into maximization
problems but we also transform supermodular problems into submodular ones. Hence,
all of the problems mentioned above are special cases of Submodular Cardinality-
Constrained Maximization where the objective function f is submodular. This makes
the development of generic solvers for this problem both desirable from an application point
of view and challenging from an algorithmic point of view. We present a new generic exact
solver SubModST for Submodular Cardinality-Constrained Maximization, develop
and evaluate several speed-ups for SubModST and compare it to other state-of-the-art solvers.

Related Work. Submodularity can be used to show that the natural greedy algorithm which
always selects an element with the maximum marginal gain gives an approximation which is a
factor of (1−1/e) away from the optimum [22]. Minoux [20] improved the speed of the greedy
algorithm by using lazy evaluations. These can be applied because, due to submodularity,
not all elements have to be reevaluated in each iteration. Minoux’s algorithm [20] gives the
same set as the standard greedy algorithm but can be magnitudes faster [18].

H. M. Woydt, C. Komusiewicz, and F. Sommer 102:3

A first exact algorithm was described by Nemhauser and Wolsey in 1981 [23]. In its most
basic form, it solves the problem via a 0/1-ILP with exponentially many constraints. To
mitigate the potentially prohibitive constraint number, new constraints are added iteratively.
A further solver, also based on 0/1-ILPs with an iterative constraint generation method, was
described in 2009 [16]. Chen at al. [7] developed a framework in 2015 in which the user can tune
the quality of the returned set and the time needed to compute it. This tradeoff can be made
via a hyperparameter α ∈ [0, 1], with α = 0 being a fast but inaccurate greedy approximation
and α = 1 being a slow but optimal solution. They utilize a A∗ search algorithm on the
search space, that is, on the space of all subsets of size at most k of U .

Subsequently, Uematsu et al. [31] revised the idea of Nemhauser et al. [23]; they de-
veloped an improved solver based on the constraint generation algorithm, called ICG, by
heuristically generating a set of feasible solutions that generate new constraints. Moreover, to
quickly improve the best-found lower bound the solver makes use of a local search heuristic.
The comparison of these solvers showed that ICG substantially outperforms the previous
approaches. Very recently, Csókás and Vinkó [10] further refined ICG by considering other
heuristics for the constraint generation and by exploiting some structure of the input graphs
for specific problems. The proposed solvers outperform ICG on most but not all of the
considered benchmark instances [10]. Summarizing, the current state-of-the-art generic
solvers for Submodular Cardinality-Constrained Maximization are ICG [31] and its
refined variants [10].

Some algorithms have been developed for special cases. The most similar to SubModST
is a solver for Group Closeness Centrality [28] which is based on the enumeration
of candidate solutions in a search tree. The state-of-the-art (SOTA) solver for Group
Closeness Centrality is based on an ILP formulation which computes exact solutions
for small values of k on graphs with up to 30 000 vertices [28].

Our Results. We develop a generic solver SubModST for Submodular Cardinality-
Constrained Maximization. SubModST accesses the function f as a black-box oracle
that supplies the value f(S) for any set S ⊆ U . SubModST is based on an exact solver for
Group Closeness Centrality [28]. Basically, the solver of Staus et al. [28] is a search-tree
algorithm maintaining the current subset of the solution. The search-tree is efficiently pruned
by exploiting the diminishing return of single elements. First, in Section 2 we generalize the
ideas of this solver to Submodular Cardinality-Constrained Maximization. Second,
in Section 3, inspired by Minoux [20], we introduce Lazy Evaluations to avoid having to
recompute the marginal gains of all candidates in each search-tree node. Finally, in Section 4
we present new heuristics using the diminishing return of pairs of candidates.

In Section 5 we present an extensive experimental evaluation of our approach. More
precisely, we analyze SubModST on six example problems. First, we show the effectiveness of
heuristics. Second, we compare SubModST to the SOTA solvers of Uematsu et al. [31] and
Csókás and Vinkó [10] for Submodular Cardinality-Constrained Maximization. Our
approach is orders of magnitudes faster than their algorithms. For example, instances of
Facility Location solved by Uematsu et al. [31] in 500 seconds are solved by our solver
in less than 1 second. We also compare SubModST to a special-purpose solver for Group
Closeness Centrality [28]. While SubModST is much slower on the instances solved by
both solvers, SubModST is able to find solutions for some graphs which cannot be solved by
the SOTA [28].

Due to lack of space, correctness proofs for some speed-up techniques (marked by (⋆))
and several details of the experimental analysis are deferred to a full version.

ESA 2024

102:4 SubModST: A Generic Solver for Submodular Maximization

Preliminaries. A function f : 2U → R for a universe U = [n] = {0, 1, . . . , n − 1} is called a
set function. Let S ⊆ U and e ∈ U . The marginal gain (also called the discrete derivative) of
f at S with respect to e is ∆f (e | S) := f(S ∪ {e}) − f(S). Analogously, the marginal gain
for set A ⊆ U of f at S with respect to A is ∆f (A | S) := f(S ∪ A) − f(S) [18]. When f is
evident from the context, we drop the subscript and write ∆(e | S). A function f : 2U → R
is submodular if for every A ⊆ B ⊆ U and e ∈ U \ B it holds that ∆(e | A) ≥ ∆(e | B).
Equivalently, f is submodular if for every A, B ⊆ U , f(A ∩ B) + f(A ∪ B) ≤ f(A) + f(B).

A set function f is monotone if for every A ⊆ U and every e ∈ U , ∆(e | A) ≥ 0.
Throughout the rest of this work, we consider only submodular and monotone set functions f

(calling them score function) and assume that f is well-defined and computable on all inputs.
Monotonicity is a mild technical condition which was also assumed in the other generic
solvers [31, 10] for Submodular Cardinality-Constrained Maximization. It enables
us to only focus on sets of size k. Since the marginal gain of any element e gradually declines
as elements are added to the set A, we can compute an upper bound on the marginal gain
for every subset B ⊆ U at A ⊆ U if we have the marginal gain of each element e ∈ U .
Lemma 1.1 is used extensively later in Sections 2 and 4 to prove the correctness of our
numerous heuristics.

▶ Lemma 1.1 (Folklore). Let A, B ⊆ U , and let f : 2U → R be a submodular set function.
Then

∑
e∈B ∆(e | A) ≥ ∆(B | A).

2 The Basic Search Algorithm

SubModST is based on a branching algorithm from Staus et al. [28] for Group Closeness
Centrality with worst-case running time nk · nO(1). The ideas of their algorithm are
not limited to Group Closeness Centrality, instead it can be used for the much more
general Cardinality-Constrained Maximization. Next, we present their ideas and
lift them to Cardinality-Constrained Maximization. Also, we present one further
technique (Fast Pruning) which was not part of the original algorithm.

Staus et al. [28] use a Set-Enumeration Tree (SE Tree) [26] as a data structure to efficiently
iterate over [n]. More precisely, each node T = (ST , CT = {c1, . . . , cm}) has a working
set ST ⊆ [n] and a candidate set CT ⊆ [n] with ST ∩CT = ∅. The working set ST is the current
solution and the data structure ensures that the working set of each node is unique. The
candidate set CT contains all elements which can be added to enlarge ST . For each 1 ≤ i ≤ m

the child Ti of T is Ti = (ST ∪ {ci}, CT \ {c1, c2, . . . , ci}}). The children of T are Ch(T) =
{Ti : 1 ≤ i ≤ m}. The descendants of T are Des(T) = Ch(T) ∪

(⋃
Ti∈Ch(T) Des(Ti)

)
. A

depth-k-limited Set-Enumeration Tree (k-SE Tree) for k ∈ N consists of a root node R

with SR = ∅ and CR = [n], and all descendants of R having a working set of size at most k.
By sbest we denote the score of the best set the algorithm has found so far. The best
remaining subset (with respect to node T) is S∗

CT
= arg maxS′⊆CT ,|S′|=k−|ST | f(ST ∪ S′).

By T = Des(R) ∪ {R} we denote the set of all nodes of the SE Tree. Basic simply explores
the k-SE Tree starting in root R. Clearly, Basic has running time O(nk · Tf (n)), where Tf

denotes the time needed to evaluate f . Note that Basic exploits monotonicity since it only
evaluates f at working sets of size k. The Basic search algorithm can be seen in Algorithm 1,
it skips lines 3, 5 and 6.

H. M. Woydt, C. Komusiewicz, and F. Sommer 102:5

Algorithm 1 Pseudocode of the SESearch algorithm. The initial call is
SESearch((∅, [n]), k, −∞).

1 Function SEsearch (T, k, sbest)
Input: A node T , the budget k, and the so far best achieved score sbest.
Output: The maximum score.

2 if |ST | = k then return max(sbest, f(ST)) // check for solution
3 Apply Dynamic Candidate Ordering with Fast Pruning and Lazy Evaluation
4 while |CT | ≥ k do
5 Apply Heuristics (such as SUB or PW) to prune T

6 Apply Candidate Reduction to CT

7 c := pop first element of CT

8 sbest = SEsearch ((ST ∪ {c}, CT), k, sbest)
9 return sbest

Search Tree Pruning. To avoid traversing the whole search space, we use pruning rules to
remove candidates or whole subtrees. Formally, pruning a set of candidates C at node T in
a k-SE Tree is the action of setting CT = CT \ C. If C = CT , we say that we prune node T

and if C = {c}, we say that we prune candidate c. Pruning is safe when it does not remove
any nodes with a score that is better than the current best. This is formalized as follows.

▶ Lemma 2.1. A node T of a k-SE Tree can be pruned if f(ST) + ∆(S∗
CT

| ST) ≤ sbest.

In this form, the lemma is not helpful since it depends on S∗
CT

, which is not known in
advance. We need ways to determine an upper bound on the marginal gain of S∗

CT
.

▶ Definition 2.2. Let T be a node in a k-SE Tree. We call a function h : T× 2[n] ×N → R a
valid heuristic if maxS⊆CT ,|S|=k−|ST | f(ST ∪ S) ≤ h(T, CT , k). We call the value h(T, CT , k)
a valid upper bound.

Next, we introduce a method to quickly find good sets with a large score, a heuristic
for pruning a node T , and a function for pruning a set of candidates C. All three methods
were described by Staus et al. [28] for Group Closeness Centrality. Afterwards, we
introduce a new method that identifies as early as possible if a node can be pruned.

Dynamic Candidate Ordering. The children of a node T are explored based on the
ordering in CT = {c1, . . . , cm}. We choose the following candidate ordering to quickly
obtain large values for sbest. Dynamic Candidate Ordering reindexes the candidates such
that ∆(c1 | ST) ≥ ∆(c2 | ST) ≥ . . . ≥ ∆(cm | ST). Applying the ordering costs O(n ·Tf) time
to evaluate the score function and additionally O(n log n) time to sort the candidates. This
would result in a slower algorithm without further improvements. Observe that now the first
leaf the algorithm finds, corresponds to the solution of the greedy algorithm and hence, has
a value of at least (1 − 1/e) · f(Smax) where Smax is a maximizing set [22].

Simple Upper Bound. The Simple Upper Bound (SUB) heuristic is SUB(T, CT , k) :=
f(ST) + maxS′⊆CT ,|S′|=k−|ST |

∑
e∈S′ ∆(e | ST). SUB is valid, due to the submodularity of f .

When using Dynamic Candidate Ordering, the upper bound can be computed in O(k) time.
After returning from a child with candidate c, we can update the upper bound in O(1) time
by removing the marginal gain of c and adding the next best marginal gain.

ESA 2024

102:6 SubModST: A Generic Solver for Submodular Maximization

Candidate Reduction. The idea of Candidate Reduction (CR) is to remove candidates
whose marginal gain is too low to be part of a maximizing set. Let C ⊆ CT be the set of
candidates ci with SUB(T, CT \ {ci}, k − 1) + ∆(ci | ST) ≤ sbest. The idea is that candidates
in C need not be considered by the algorithm as shown in the following lemma.

▶ Lemma 2.3 (⋆). If c ∈ C, then c is not part of a set with a larger score than sbest.

The Candidate Reduction function is to set CT := CT \ C. By using Dynamic Candidate
Ordering, we can start the candidate reduction with the candidate with lowest marginal gain
and stop as soon as we identify the first candidate that violates the above inequality.

Fast-Pruning. The aim of Fast-Pruning, which is not part of the branching algorithm of
Staus et al. [28], is to prune a node during Dynamic Candidate Ordering. To prune after the
update of the ith marginal gain two conditions must be fulfilled: (i) The sum of the k − |ST |
largest updated marginal gains is at most srem = sbest − f(ST) and (ii) the largest not yet
updated marginal gain is upper-bounded by the smallest marginal gain of the k − |ST | chosen
marginal gains. The first condition ensures that the sum of the updated marginal gains does
not surpass srem, while the second condition ensures that all not-updated marginal gains
can not increase this sum. Fast Pruning can be implemented efficiently with a Min-Heap
which stores the k − |ST | largest updated elements. In the worst-case, the pruning condition
is never fulfilled, and the Fast-Pruning technique has a total running time of O(n log k) for a
search tree node. This is dominated by the time needed for Dynamic Candidate Ordering.

3 Lazy Evaluations

The bottleneck of the search algorithm is the computation of the Dynamic Candidate Ordering
in each of the Θ(nk) nodes which consumes O(n · Tf) time per node. However, we observed
two interesting behaviors. First, the algorithm only expands a fraction of its children due to
SUB and CR. Second, candidates with a small marginal gain are unlikely to be part of a
maximizing set. Thus, calculating marginal gains for these candidates seems to be wasted
time. We address this observation with Lazy Evaluations, also used by Minoux [20] for
the greedy algorithm. Generally speaking, we do not update the marginal gains of some
candidates, and instead we reuse their marginal gain from the parent. Observe that this
approach might enlarge the search space and change the order in which nodes are traversed.

▶ Definition 3.1. Let T be a node in an k-SE Tree, and let T ∗ be its parent. The function
UT : U → R subject to some predicate π is defined via

UT (c) :=
{

∆(c | ST) if π is true,
UT ∗(c) otherwise

is called an update scheme with respect to node T . UT (c) is the lazy marginal gain.

Note that the existence of a parent is necessary. Thus, we assign the default update
scheme DU : U → R with DU(c) := ∆(c | ST) to the root. To apply Dynamic Candidate
Ordering on non-root node T with update scheme UT , the candidates are reindexed such
that UT (c1) ≥ UT (c2) ≥ . . . ≥ UT (cm). A necessary condition for any useful update scheme
is that the search algorithm does not lose its exactness guarantee. Hence, an update scheme
UT is valid if UT (c) ≥ ∆(c | ST) for each candidate c ∈ CT .

▶ Lemma 3.2 (⋆). Let T be a node in a k-SE Tree, and let UT be a valid update scheme.
Each valid heuristic h that uses UT (c) instead of ∆(c | ST) stays valid.

H. M. Woydt, C. Komusiewicz, and F. Sommer 102:7

Notice that by using update schemes the heuristic becomes less sharp and hence its less
likely that nodes are pruned. Now, it is essential to skip some evaluations while not enlarging
the search space too much. For this, we present two specific update schemes.

Score Update Scheme. The score update scheme Uavg
T (c) only calculates the marginal

gain of a candidate c at node T if the lazy marginal gain of the candidate at parent
node T ∗ was greater than the average required marginal gain, that is, if UT ∗(c) ≥ ravg
where ravg = (sbest − f(ST))/(k − |ST |). The hope is that candidates c with UT ∗(c) ≥ ravg
receive a marginal gain that is below the average marginal gain required. If this aim is
achieved for every candidate c ∈ CT , then SUB prunes the node T , and we have saved the
evaluations for all candidates with UT ∗(c) < ravg. The threshold of ravg is specifically set for
SUB, but any threshold is applicable, and there is no guarantee that one threshold is better
than the other. One may use a hyperparameter to scale ravg, that is, the update scheme
compares UT ∗(c) ≥ y · ravg. Observe that if y = 0, then the score update scheme behaves
like the default update scheme, and if y = ∞ no candidate is ever updated.

Rank Update Scheme. The rank update scheme U ℓ
T (c) only updates the marginal gain

of candidate c if c has a sufficiently high rank in the candidate set of the parent, that is,
if rank(c, CT ∗) ≤ ℓ(T), where rank(c, CT ∗) returns the rank of c in the set CT ∗ (the candidate
with the greatest marginal gain has rank 1). If Dynamic Candidate Ordering was applied to
the parent node T ∗, then determining each candidate’s rank is straightforward. This scheme
is only as powerful as the ranking function ℓ(T). In our experiments we use ℓ(T) = 3(k−|ST |).
Preliminary experiments showed that choosing ℓ(T) = |CT |·y or ℓ(T) = n·y for some y ∈ [0, 1]
does not yield smaller running times. Note that a function with ℓ(T) ≥ |CT | results in the
default update scheme, and ℓ(T) = 0 never updates any candidate.

Combination of Update Schemes. We combine score and rank schemes as follows: We
define the score or rank update scheme U∨

T (c) where U∨
T (c) = ∆(c | ST) if π = UT ∗(c) ≥

ravg ∨ rank(c, CT ∗) ≤ l(T) is true. We also use the score and rank update scheme which is
defined similarly with an ∧ instead of an ∨.

4 Advanced Heuristics

Until now, we only considered marginal gains of single candidates. Now, we extend this
to candidate sets of size 2, called pairs, that is, we give a valid upper bounds for the best
remaining set S∗

CT
in T with size k′ = k − |ST | where we choose k′/2 pairs if k′ is even

and (k′ −1)/2 pairs and one single marginal gain if k′ is odd. The hope is that ∆({u, w} | ST)
is much smaller than ∆(u | ST) + ∆(w | ST) and thus we can obtain sharper upper bounds.
Ideally, we want that no element is used in at least two pairs; this property is referred to
as pair disjointness. Note that the best remaining set S∗

CT
can always be partitioned into

disjoint pairs. Clearly, testing all different pair disjoint sets consisting of k′ elements is not
feasible. Hence, we use maximum-weight matching which is much faster. Second, we describe
a greedy approach which does not fulfill the pair disjointness property but which is much
faster than the maximum matching approach. Here, we assume that k′ is even. The proof
for the case that k′ is odd is deferred to a full version of this article. For both approaches
the number of candidate pairs is still too large. Thus, we then describe a hybrid approach
where CT is partitioned into two sets P1 and P2 and only for P1 we use a pairwise heuristic.

ESA 2024

102:8 SubModST: A Generic Solver for Submodular Maximization

4.1 Approaches for Candidate Sets of Size 2

Maximum-Weight Matching and Matching Graph. Recall that a matching in a graph G

is a set E′ ⊆ E(G) such that no two edges in E′ are incident, and E′ is a maximum-weight
matching for G with weight function ω of size ℓ if there is no size ℓ-matching E∗ with larger
weight. We interpret the candidate set CT as vertices and the pairs as edges. The weight
of an edge e is the marginal gain of the corresponding pair of candidates. Note that the
resulting graph GT is a clique. A maximum-weight matching of size k′/2 would yield a valid
upper-bound with pair disjointness. Additionally the bound would be smaller than SUB. In
order to find a maximum-weight matching of size k′/2, we will build a new graph HT on
which we can compute a maximum-weight matching and extract the relevant edges.

Starting from GT , we build a new graph, which we call the matching graph for k′ ver-
tices HT which is a complete split graph in which the clique corresponds to V (GT) and the
independent set consists of n − k′ newly added vertices. Formally, V (HT) = V (GT) ∪ VI

where VI = {ui : 1 ≤ i ≤ n − k′} is the independent set. The weight of each edge e with
both endpoints in V (GT) is equal to the weight of e in GT , and the weight of each edge with
exactly one endpoint in VI is 0. Next, we verify that a maximum-weight perfect matching
on HT contains a maximum-weight matching of size k′/2 for GT .

▶ Lemma 4.1 (⋆). Let HT be a matching graph for k′ vertices. Let E′ be a maximum-weight
perfect matching of HT and let E′

GT
⊆ E′ be the restriction of HT to GT . Then, E′

GT
has

size k′/2 and for each other matching E∗ of size k′/2 in GT we have ω(E∗) ≤ ω(E′
GT

).

Now, we show that using the marginal gains as edge weights in GT yields a valid heuristic
for Cardinality-Constrained Maximization.

▶ Definition 4.2. Let T be a node in a k-SE Tree, and k′ = k − |ST | even. Let GT be the
clique graph formed by the candidates of CT , and let E′ ⊆ E(GT) be a maximum-weight
matching of size k′/2 for GT . The Pairwise Matching heuristic is

PWM (T, CT , k) := f(ST) +
∑
c∈E′

∆(c | ST).

▶ Lemma 4.3 (⋆). The Pairwise Matching heuristic is valid and has running time O(n5).

Greedy Approach. The greedy approach simply chooses the k′/2 pairs with the greatest
marginal gain regardless of pair disjointness. Note that the greedy approach never has
a smaller upper bound than the matching approach and it can even have a worse bound
than SUB. However, if the variance of the marginal gains of the O(n2) pairs is small, then
the greedy approach provides a relatively sharp upper bound significantly faster than the
matching approach. Observe that all heuristics require at least O(n2Tf) time, since the
marginal gains of all pairs need to be computed.

▶ Definition 4.4. Let T be a node in a k-SE Tree, k′ = k − |ST | even, and let P (CT) be the
set of all pairs of CT . The Pairwise Greedy heuristic is

PWG(T, CT , k) := f(ST) + max
P ⊆P (CT),|P |=k′/2

∑
p∈P

∆(p | ST).

▶ Lemma 4.5 (⋆). The Pairwise Greedy heuristic is valid and has running time O(n2 log k′).

H. M. Woydt, C. Komusiewicz, and F. Sommer 102:9

4.2 Avoiding Practical Limitations
Until now, we have assumed that we use all available O(n2) pairs, but such an approach
requires Ω(n2 · Tf) running time to calculate all marginal gains. Additionally, a running time
for computing the upper bound of O(n5) (matching) or O(n2 log k′) (greedy) is necessary.
Since this is quite time-consuming, we partition the candidate set CT into two parts P1
and P2. Intuitively, P1 contains all elements with high marginal gains and P2 contains all
elements with low marginal gains. Now, we only use the pairwise heuristics for P1, and the
much faster SUB heuristic for P2. However, this partitioning does come with additional
costs: previously we knew that S∗

CT
⊆ CT with |S∗

CT
| = k′. Now, we do not know how S∗

CT

is distributed across P1 and P2, and theoretically all distributions are possible.

▶ Definition 4.6. Let T be a node in a k-SE Tree, and k′ = k − |ST |. Let P1, P2 be a
partition of CT with |P1| = ℓ and ∀a ∈ P1, ∀b ∈ P2 : UT (a | ST) ≥ UT (b | ST). Let h be a
valid heuristic. The Partitioning heuristic is

PTh(T, CT , k) := max
0≤i≤k′

(h(T, P1, k − k′ + i) + SUB(T, P2, k − i) − f(ST)) .

▶ Lemma 4.7 (⋆). The Partitioning heuristic is valid.

For the running time, observe that if Dynamic Candidate Ordering is applied to a node,
then the Simple Upper Bound heuristic can be pre-computed and then performed in O(1)
and does not increase any complexity. Hence, the parameter n in the running time of h is
replaced by the new hyperparameter ℓ, but we get an additional factor of k′.

Clearly, there is a trade-off for the hyperparameter ℓ: a small value of ℓ speeds up the
computation but the result is less sharp. In our experiments we consider two choices for ℓ:
One intuitive choice is ℓ =

√
n. Then, the time complexity of the O(ℓ2) score function

evaluations is O(n · Tf), and the space complexity is O(n); matching the time needed for
Dynamic Candidate Ordering. We also use ℓ = k′ in our experiments.

5 Experiments

To evaluate our solver, we perform experiments on the following six problems:

(a) Group Closeness Centrality. Here, we aim to select a vertex set in a graph with a small
distance to the vertices of graph. More formally, we aim to minimize the following measure.

▶ Definition 5.1 (Group Farness). Let G = (V, E) be a connected undirected graph. Let
dist(u, v) be the distance of a shortest path between the vertices u and v. Let S ⊆ V be a
subset of vertices. The group farness of S is

fGF(S) :=
∑

v∈V \S

min
u∈S

dist(u, v).

In other words, the group farness of a set S is the sum of the minimum distances of each vertex
not in S to any vertex in S. Note that the function value of the empty set is not properly
defined, so we define it in this work as fGF(∅) := |V |2. Note that fGF is supermodular and
monotone (decreasing). Based on group farness, we can now properly define the problem.

Group Closeness Centrality
Input: A connected undirected graph G = (V, E) and an integer k ∈ N.
Task: Find a set S ⊆ V with |S| = k that has the lowest group farness fGF(S).

ESA 2024

102:10 SubModST: A Generic Solver for Submodular Maximization

Table 1 The ten graphs used for (a) Group Closeness Centrality and (b) Partial Dom-
inating Set (left) and the ten cluster datasets used for (f) Euclidean k-Medoid Clustering
(right).

Name # Vertices # Edges diameter density Name # Points # Dim # Clusters
ca-netscience 379 913 17 0.013 skewed 1 000 2 6
soc-wiki-Vote 889 2 914 13 0.007 asymmetric 1 000 2 5
bio-yeast 1 458 1 948 19 0.002 overlap 1 000 2 6
econ-orani678 2 529 86 768 5 0.027 dim032 1 024 32 16
soc-advogato 5 054 39 374 9 0.003 a1 3 000 2 20
bio-dmela 7 393 25 569 11 0.001 s1 5 000 2 15
ia-escorts-dynamic 10 106 39 016 10 0.001 s2 5 000 2 15
soc-anybeat 12 645 49 132 10 0.001 a2 5 250 2 35
ca-AstroPh 17 903 196 972 14 0.001 unbalance2 6 500 2 8
fb-pages-media 27 917 205 964 15 0.001 a3 7 500 2 50

(b) Partial Dominating Set. In this problem, we aim to select a vertex set with many
neighbors in a graph G = (V, E). Formally, the open neighborhood N(u) of u ∈ V is the
set {w : {u, w} ∈ E} and the closed neighborhood of u is N [u] := N(u)∪{u}. For a vertex set
S ⊆ V , the vertex domination number is fD := |

⋃
u∈S N [u]|. For S = ∅, we set fD(S) = 0.

Partial Dominating Set
Input: An undirected graph G = (V, E) and an integer k ∈ N.
Task: Find a S ⊆ V with |S| = k that has maximum fD(S).

(c) Facility Location. This variant of the facility location problem was described by
Uematsu et al. [31]. Let N = {1, . . . , n} be a set of locations and M = {1, . . . , m} a set of
customers. The value wij > 0 is the profit for customer i ∈ M if served by facility j ∈ N .
Let G = (N ∪ M, E) be a fully connected bipartite graph with edge weights wij . For a subset
S ⊆ N of selected facilities, each customer is served by a facility with the greatest profit.

Facility Location
Input: A graph G = (N ∪ M, E) and an integer k ∈ N.
Task: Find a S ⊆ N with |S| = k that maximizes

f(S) =
∑
i∈M

max
j∈S

wij .

(d) Weighted Coverage. Here, we are given a collection of item sets and want to select k

of them such that their union has a maximum total weight. Let
⋃

S :=
⋃

si∈S si.

Weighted Coverage
Input: A collection N = {s1, . . . , sn} of subsets of an item set M = {1, . . . , m}, a

weight function ω : M → R and an integer k ∈ N.
Task: Find a S ⊆ N with |S| = k that maximizes f(S) =

∑
i∈

⋃
S ω(i).

(e) Bipartite Influence. Let N = {1, . . . , n} be a set of sources and M = {1, . . . , m} a
set of targets. Let G = (N ∪ M, E) be a bipartite directed graph with E ⊆ N × M . Let
0 ≤ pij ≤ 1 be the activation probability of edge (j, i) for target i ∈ M and source j ∈ N . If
the edge does not exist in G then pij = 0. A target i ∈ M is activated by a set S ⊂ N of
sources with probability 1 −

∏
j∈S(1 − pij).

H. M. Woydt, C. Komusiewicz, and F. Sommer 102:11

Bipartite Influence
Input: A Graph G = (N ∪ M, E), probabilities pij and an integer k ∈ N.
Task: Find a S ⊆ N with |S| = k that maximizes

f(S) =
∑
i∈M

1 −
∏
j∈S

(1 − pij)

 .

(f) Euclidean k-Medoid Clustering. This problem is a geometric clustering problem with
the following objective function.

▶ Definition 5.2 (Clustering Cost). Let X = {x1, x2, . . . , xn} be a set of n data points in Rn.
Let d(xi, xj) be a distance function, and S ⊆ X be a subset of the data points. The clustering
cost of S with distance function d is

fCC(S) :=
n∑

i=1
min
xj∈S

d(xi, xj).

Since the clustering cost is not defined for the empty set, we define fCC(∅) as the sum of
all distances between all data points. Like group farness fGF, the clustering cost function d

is supermodular and monotone (decreasing).

Euclidean k-Medoid Clustering
Input: A set X consisting of n datapoints, the Euclidean distance function

d(xi, xj), and an integer k ∈ N.
Task: Find a set S ⊆ X with |S| = k that has the lowest clustering cost fCC(S).

Data and Experimental Setup. For problems (a) and (b) we use 10 graphs from the
Network Repository [25], where we always only use the largest connected component of each
graph (see Table 1). These graphs are (mostly) a subset of those used by Staus et al. [28].
For problems (c) and (d) we used the benchmark data provided by Uematsu et al. [31]. In
this data set, the size ranges from |N | = 20, . . . , 100 and |M | = |N | + 1. For problem (e) we
use the benchmark data provided by Csókás et al. [10]. The problem sizes are identical to
the ones of the benchmark set of Uematsu et al. [31]. We refer the reader to Uematsu et
al. [31] and Csókás et al. [10] for more information on the data for problems (c), (d) and (e).
We used the same data as them to have a fair comparison. For (f) we use six synthetic
datasets proposed by Fränti et al. [12] and four proposed by Rezaei et al. [24]. Table 1 gives
a description.

Our algorithm is implemented in C++ using the C++ 17 Standard. We use -03 as a
compilation flag to generate the most efficient machine code. The used machine has an Intel®
Xeon® Gold 6230 Processor with 2.1 GHz. and 96GB RAM running Red Hat Enterprise
Linux (RHEL) 8.4. The code is compiled using GCC compiler version 13.2.0 and CMake
version 3.23.3 as build tool. We limit the experiments by only allowing k ∈ {1, . . . , 20} and
set the time limit to 30 minutes. Should an algorithm not solve an instance for k in the time
limit, we assume that all runs with greater k will also time out, and therefore they will not
be started. Any preprocessing is not included in the time measurements.

ESA 2024

102:12 SubModST: A Generic Solver for Submodular Maximization

20 30 40 50 60 70 80 90
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Basic

Simple

Simple+

(a) Group Closeness Centr.

20 40 60 80 100 120 140 160 180 200
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Basic

Simple

Simple+

(b) Partial Dominating Set

120 130 140 150 160 170 180 190 200
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Basic

Simple

Simple+

(c) Facility Location

150 156 162 168 174 180 186 192 198 204
Solved Instances

10−1

100

101

102

103

T
im

e
in

S
ec

on
ds

Basic

Simple

Simple+

(d) Weighted Coverage

80 88 96 104 112 120 128 136 144 152
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Basic

Simple

Simple+

(e) Bipartite Influence

12 14 16 18 20 22 24 26
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Basic

Simple

Simple+

(f) Euclidean Clustering

Figure 1 Number of solved instances of the three basic algorithms for each of the six problems.
In total 200 instances can be solved per problem.

5.1 Comparison of Different Versions of our Solver

Simple Search Algorithm. We first evaluate the ideas of Section 2. Recall that Basic
employs complete search without pruning, Simple is the generalized version of the solver of
Staus et al. [28], and Simple+ additionally uses Fast-Pruning. Figure 1 shows the number of
solved instances for each of the six problems. Table 2 gives further results for each instance.
Except for Euclidean Clustering (which is very hard for all versions of the algorithm),
Basic is by far the slowest version. Simple+ performs better than Simple for all problems
except Facility Location. Additional profiling has shown that the heap management
takes a significant amount of runtime of Simple+ for instances of Facility Location. This
however can still be improved by a faster and more specialized heap.

Lazy Evaluation. Next, we compare Simple+, the best version so far, against versions using
Lazy Evaluations. We use the following four configurations: LE-Score is the score update
scheme with y = 1, LE-Rank is the rank update scheme with l(T) = 3(k − |ST |), LE-ROS is
the ∨ (or) combination of the previous two schemes and LE-RAS is the ∧ (and) combination
of the first two schemes. Figure 2 shows the number of solved instances for each of the six
problems. Table 2 gives further results for each instance.

LE-Rank has almost the same running time as Simple+, while LE-RAS is much slower.
LE-Score and LE-ROS are faster than Simple+ with LE-Score being slightly faster. LE-Score
is very beneficial for problems (a) and (b) and has almost no effect for (c) and (e). For (d)
and (f) no statement is possible, since the instances are too easy ((d)) or too hard ((f)).
For some instances LE-Score was able to solve three greater k as Simple+ (econ-orani678
for (b)) and for other instances it halved the running time (inf_60_5).

Pairwise Heuristics. Next, we compare LE-Score against versions using pairwise heuristics.
We test four configurations: the Pairwise Greedy heuristic with ℓ(T) = k − ST (denoted as
G-k′) and with ℓ(T) =

√
|CT | (denoted as G-

√
n′), and the Pairwise Matching heuristic with

H. M. Woydt, C. Komusiewicz, and F. Sommer 102:13

20 30 40 50 60 70 80 90 100
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Simple+

LE-Rank

LE-Score

LE-ROS

LE-RAS

(a) Group Closeness Centr.

150 156 162 168 174 180 186 192 198 204
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Simple+

LE-Rank

LE-Score

LE-ROS

LE-RAS

(b) Partial Dominating Set

150 156 162 168 174 180 186 192 198 204
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Simple+

LE-Rank

LE-Score

LE-ROS

LE-RAS

(c) Facility Location

180 183 186 189 192 195 198 201 204 207
Solved Instances

10−1

100

101

102

103

T
im

e
in

S
ec

on
ds

Simple+

LE-Rank

LE-Score

LE-ROS

LE-RAS

(d) Weighted Coverage

120 125 130 135 140 145 150 155 160
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Simple+

LE-Rank

LE-Score

LE-ROS

LE-RAS

(e) Bipartite Influence

12 14 16 18 20 22 24 26
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

Simple+

LE-Rank

LE-Score

LE-ROS

LE-RAS

(f) Euclidean Clustering

Figure 2 Number of solved instances of the four Lazy Evaluation algorithms for each of the six
problems. In total 200 instances can be solved per problem.

60 65 70 75 80 85 90 95 100 105
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

G-k′

G-
√
n′

M-k′

M-
√
n′

(a) Group Closeness Centr.

150 156 162 168 174 180 186 192 198 204
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

G-k′

G-
√
n′

M-k′

M-
√
n′

(b) Partial Dominating Set

150 156 162 168 174 180 186 192 198 204
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

G-k′

G-
√
n′

M-k′

M-
√
n′

(c) Facility Location

180 183 186 189 192 195 198 201 204 207
Solved Instances

10−1

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

G-k′

G-
√
n′

M-k′

M-
√
n′

(d) Weighted Coverage

120 125 130 135 140 145 150 155 160
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

G-k′

G-
√
n′

M-k′

M-
√
n′

(e) Bipartite Influence

12 14 16 18 20 22 24 26
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

G-k′

G-
√
n′

M-k′

M-
√
n′

(f) Euclidean Clustering

Figure 3 Number of solved instances of the four Pairwise algorithms for each of the six problems.
In total 200 instances can be solved per problem. LE-Score still has the overall fastest running time.

ℓ(T) = k −ST (denoted as M-k′) and with ℓ(T) =
√

|CT | (denoted as M-
√

n′). Figure 3 shows
the numbers of solved instances. Sadly no configuration surpasses LE-Score. There is also
no clear rule on which configuration should be preferred. While G-k′ and M-k′ are faster than
G-

√
n′ and M-

√
n′ for Partial Dominating Set and Group Closeness Centrality, it

is reversed for Facility Location and Bipartite Influence.

Using Oracles. Figure 3 shows that using a pairwise heuristic does not improve the running
time. Next, we analyze whether there can be a faster implementation using candidate pairs.
To this end, we introduce oracles to outline the potential of using candidate pairs. An oracle
returns the solution of an heuristic for free. Thus, an oracle provides a lower bound on the
best achievable time of any implementation.

ESA 2024

102:14 SubModST: A Generic Solver for Submodular Maximization

Table 2 Comparison of the Simple and Lazy Evaluation algorithms. The Lazy Evaluation
algorithms use Simple+ as basis. For each instance and algorithm the largest solved k and the
required time to solve it in seconds are shown. Bold numbers indicate that an algorithm solved the
largest k out of any algorithm. Simple+ is the fastest Simple algorithm and LE-score successfully
improves the running time. For Weighted Coverage every algorithm solved each instance
for k ∈ [20] in under 1 second.

Instance Basic Simple Simple+ LE-Score LE-Rank LE-ROS LE-RAS
k seconds k seconds k seconds k seconds k seconds k seconds k seconds

Pa
rt

ia
l

D
om

.
Se

t ca-netscience 5 324 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1
soc-wiki-Vote 4 95 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1
bio-yeast 4 652 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1
econ-orani678 3 7 14 1 649 17 1 263 19 1 228 17 1 265 19 1 214 6 429
soc-advogato 3 70 20 7 20 4 20 < 1 20 4 20 < 1 20 3
bio-dmela 3 217 20 11 20 11 20 < 1 20 10 20 < 1 20 < 1
ia-escorts-dynamic 3 544 20 7 20 7 20 < 1 20 7 20 < 1 20 < 1
soc-anybeat 3 1 072 20 2 20 1 20 < 1 20 1 20 < 1 20 < 1
ca-AstroPh 2 < 1 17 941 18 1 656 20 266 18 1 649 20 162 20 1 606
fb-pages-media 2 2 20 185 20 168 20 4 20 173 20 2 20 4

G
ro

up
C

lo
se

.
C

en
. ca-netscience 5 358 14 1 743 14 1 104 14 968 14 1 105 14 979 5 1 619

soc-wiki-Vote 4 132 12 1 489 13 1 521 13 752 13 1 536 13 796 3 14
bio-yeast 4 956 10 725 11 1 080 11 458 11 1 085 11 482 3 112
econ-orani678 3 8 11 532 14 1 048 17 1 724 14 1 061 16 975 3 1 264
soc-advogato 3 95 9 1 142 12 1 470 14 1 750 12 1 438 13 809 2 16
bio-dmela 3 351 7 1 237 8 1 036 9 700 8 1 041 9 721 2 51
ia-escorts-dynamic 3 936 6 347 7 698 8 675 7 700 8 687 2 134
soc-anybeat 3 1 288 6 762 7 1 018 10 1 769 7 1 038 9 1 053 2 265
ca-AstroPh 2 734 5 859 5 816 6 994 5 809 6 980 2 749
fb-pages-media 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C
lu

st
er

in
g

skewed 3 28 3 28 3 28 3 28 3 28 3 28 3 171
asymmetric 4 557 4 421 4 404 4 390 4 404 4 389 3 171
overlap 4 815 4 662 4 649 4 756 4 643 4 756 3 171
dim032 4 403 4 179 4 166 4 218 4 166 4 218 3 188
a1 2 15 2 15 2 15 2 15 2 15 2 15 2 15
s1 2 70 2 70 2 70 2 70 2 70 2 70 2 70
s2 2 70 2 70 2 70 2 70 2 70 2 71 2 70
a2 2 81 2 81 2 81 2 81 2 81 2 81 2 81
unbalance2 2 154 2 154 2 155 2 155 2 155 2 155 2 154
a3 2 237 2 237 2 237 2 237 2 237 2 237 2 237

Fa
c.

Lo
ca

ti
on

L.20.5.1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1
L.20.8.1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1
L.30.5.1 20 5 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1
L.30.8.1 20 5 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1
L.40.5.1 13 828 20 1 20 3 20 4 20 3 20 3 20 5
L.40.8.1 13 821 20 3 20 6 20 8 20 6 20 6 20 8
L.50.5.1 11 1 601 20 52 20 87 20 115 20 87 20 88 20 115
L.50.8.1 11 1 619 20 45 20 75 20 100 20 75 20 76 20 101
L.60.5.1 9 393 20 799 20 1 225 20 1 608 20 1 227 20 1 242 20 1 782
L.60.8.1 9 393 20 617 20 942 20 1 239 20 945 20 953 20 1 408

B
ip

.
In

fl
ue

nc
e inf_20_5_1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1

inf_20_8_1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1 20 < 1
inf_40_5_1 11 698 20 527 20 343 20 341 20 348 20 346 20 341
inf_40_8_1 11 696 20 319 20 315 20 311 20 314 20 314 20 311
inf_60_5_1 8 411 14 1 319 14 1 551 14 808 14 1 100 14 1 049 14 1 052
inf_60_8_1 8 527 14 915 14 751 15 1 776 14 750 14 736 14 731
inf_80_5_1 7 420 11 408 12 1 687 12 1 115 12 1 677 12 1 622 10 576
inf_80_8_1 7 408 12 1 259 12 966 12 641 12 966 12 938 11 1 345
inf_100_5_1 6 126 10 399 10 297 11 1 204 10 296 11 1 662 9 1 776
inf_100_8_1 6 130 10 415 10 316 11 1 221 10 315 11 1 637 9 1 521

To outline the potential of the pairwise heuristics, we present a new valid pairwise heuristic
which returns a sharper bound than the matching heuristic but which is infeasible in practice.
Recall that the matching heuristic for a node T outputs the largest sum of the marginal gains of
k′/2 pairs out of a set A of candidates. Hence, maxA⊆CT ,|A|=k′ maxP ⊆P (A),|P |=k′/2

∑
p∈P ∆(p |

ST) where P (A) is the set of all pairs of A, is computed. To obtain a sharper bound
for a set A we do not want to compute a maximum matching, instead we want to com-
pute D(T) := maxA⊆CT ,|A|=k′ minP ⊆P (A),|P |=k′/2

∑
p∈P ∆(p | ST). Clearly, D(T) is lower

than the bound of the matching, however efficiently computing the bound is not possible.
In practice, a Dynamic Programming approach takes O(nk′

k
′2) time. Recall that we only

use this heuristic to outline the potential of the pairwise heuristic, its running time is of no
importance here.

▶ Lemma 5.3 (⋆). The upper bound f(ST) + D(T) is valid.

Figure 4 shows the result for k′ = 10 (D-10) and for k′ being the remaining budget
(D-k′). The plots only use instances that were solved by all three algorithms. D-k′ and D-10
have almost the same running time as LE-Score, showing that there is no hope that any
implementation of the pairwise heuristic can improve LE-Score. Thus, SubModST is LE-Score.

H. M. Woydt, C. Komusiewicz, and F. Sommer 102:15

20 30 40 50 60 70 80 90 100
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

D-k′ Oracle

D-10 Oracle

(a) Group Closeness Centr.

150 156 162 168 174 180 186 192 198 204
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

D-k′ Oracle

D-10 Oracle

(b) Partial Dominating Set

144 150 156 162 168 174 180 186
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

D-k′ Oracle

D-10 Oracle

(c) Facility Location

180 183 186 189 192 195 198 201 204 207
Solved Instances

10−1

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

D-k′ Oracle

D-10 Oracle

(d) Weighted Coverage

102 108 114 120 126 132 138 144 150
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

D-k′ Oracle

D-10 Oracle

(e) Bipartite Influence

12 14 16 18 20 22 24 26
Solved Instances

100

101

102

103

T
im

e
in

S
ec

on
ds

LE-Score

D-k′ Oracle

D-10 Oracle

(f) Euclidean Clustering

Figure 4 Number of solved instances of the LE-Score algorithm and the two oracle configurations.

Table 3 Running times in seconds of Simple+ and LE-Score against the SOTA algorithms
ICG [31], and ICG(k − 1), GCG and ECG [10] for Facility Location instances with k = 8. � denotes
a timeout after 7200 seconds. The smallest running times are marked bold.

Instance ICG ICG(k − 1) GCG ECG Simple+ LE-Score

L.20.8.1 0.34 0.31 0.26 0.78 0.00 0.00
L.30.8.1 35.93 14.65 10.04 17.15 0.01 0.01
L.40.8.1 1 502.32 563.23 323.94 568.86 0.04 0.04
L.50.8.1 � � 6 357.27 6 186.57 0.12 0.11
L.60.8.1 � � � � 0.31 0.26

5.2 Comparison to SOTA Algorithms

We compare SubModST against the state-of-the-art solver for the generic Submodular
Cardinality-Constrained Maximization [10] and against the SOTA solver [28] for
Group Closeness Centrality.

Csókás et al. [10] introduced three solvers which are all based on the Improved Constraint
Generation (ICG) solver [31]. Unfortunately, we did not get their solver in time. Thus, we
here report the results provided in their work [10]. The software is written in AMPL and
they used CPLEX 20.1.0.0. They evaluated their experiments on a system with an Intel®
Core™ i5-6500 at 3.20 Ghz and 64GB RAM which was running Ubuntu Linux 22.04. We are
therefore at a disadvantage in terms of clock speed. The results for Facility Location
are shown in Table 3. Our algorithm SubModST solves all instances in less than a second
and thus SubModST is orders of magnitudes faster than the SOTA solvers. For Weighted
Coverage and Bipartite Influence the results are roughly similar and can be found in
the supplementary material.

In Table 4 we compare SubModST against exact solvers of Staus et al. [28] for Group
Closeness Centrality. CI is also a branch-and-bound algorithm that uses SUB and
Candidate Reduction, making it comparable to Simple+ and LE-Score. ILPnew is an

ESA 2024

102:16 SubModST: A Generic Solver for Submodular Maximization

Table 4 Comparison of our solvers Simple+ and LE-Score algorithm against CI and ILPnew [28]
for Group Closeness Centrality. For each instance and algorithm the largest solved k and
the required time to solve this k in seconds is shown. Numbers marked in bold indicate that this
algorithm was able to solve the largest k out of any algorithm.

Instance Simple+ LE-Score CI ILPnew
k seconds k seconds k seconds k seconds

ca-netscience 14 1 104 14 968 12 1 663 20 < 1
soc-wiki-Vote 13 1 521 13 752 11 1 778 20 2
bio-yeast 11 1 080 11 458 9 513 20 19
econ-orani678 14 1 048 17 1 724 11 1 362 20 13
soc-advogato 12 1 470 14 1 750 8 726 20 101
bio-dmela 8 1 036 9 700 6 419 1 �

ia-escorts-dynamic 7 698 8 675 6 742 1 �

soc-anybeat 7 1 018 10 1 769 6 1 618 20 1 314
ca-AstroPh 5 816 6 994 4 1 595 1 �

fb-pages-media 1 1 1 1 1 < 1 1 �

improved version of the ILP algorithm by Bergamini et al. [4]. Both Simple+ and LE-Score
are considerably faster than CI. In general, ILPnew is much faster than LE-Score, but several
instances were solved by LE-Score and not by ILPnew.

6 Discussion

We presented a new solver SubModST for Submodular Cardinality-Constrained Maxi-
mization which is orders of magnitudes faster than the SOTA algorithms [10, 31]. While
being overall slower than a solver for the special case of Group Closeness Central-
ity [28], SubModST solves some instances not solved by Staus et al. [28]. Our hyperparameters
are not optimized. If one uses our implementation for a specific problem, one should use
hyperparameter optimization tools as SMAC [19] to optimize them.

Recall that we assumed that f is monotone. This property can be scrapped if one
evaluates f in each SE-Tree node and only removes candidates with negative marginal
gain. Another direction is to consider additional properties of the submodular function f ,
for example their total curvature. This number reflects how much the marginal gains of
elements can decrease. For example, for some curvature values, improved approximation
algorithms can be given [32]. Can they be used profitably in SubModST? Here, we considered
cardinality constraints but it seems worthwhile to extend SubModST to other constraints
such as Knapsack constraints, where each element has a weight and there is a limit on the
maximum weight.

References
1 Alexander A. Ageev and Maxim Sviridenko. Approximation Algorithms for Maximum Cov-

erage and Max Cut with Given Sizes of Parts. In Integer Programming and Combinatorial
Optimization, 7th International IPCO Conference, Graz, Austria, June 9-11, 1999, Pro-
ceedings, volume 1610 of Lecture Notes in Computer Science, pages 17–30. Springer, 1999.
doi:10.1007/3-540-48777-8_2.

2 Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theoretical
Computer Science, 237(1-2):123–134, 2000. doi:10.1016/S0304-3975(98)00158-3.

https://doi.org/10.1007/3-540-48777-8_2
https://doi.org/10.1016/S0304-3975(98)00158-3

H. M. Woydt, C. Komusiewicz, and F. Sommer 102:17

3 Francis R. Bach. Learning with Submodular Functions: A Convex Optimization Perspective.
Foundations and Trends in Machine Learning, 6(2-3):145–373, 2013. doi:10.1561/2200000039.

4 Elisabetta Bergamini, Tanya Gonser, and Henning Meyerhenke. Scaling up group closeness
maximization. In Rasmus Pagh and Suresh Venkatasubramanian, editors, Proceedings of the
Twentieth Workshop on Algorithm Engineering and Experiments, ALENEX 2018, New Orleans,
LA, USA, January 7-8, 2018, pages 209–222. SIAM, 2018. doi:10.1137/1.9781611975055.18.

5 Chen Chen, Wei Wang, and Xiaoyang Wang. Efficient Maximum Closeness Centrality
Group Identification. In Databases Theory and Applications - 27th Australasian Database
Conference, ADC 2016, Sydney, NSW, Australia, September 28-29, 2016, Proceedings, volume
9877 of Lecture Notes in Computer Science, pages 43–55. Springer, 2016. doi:10.1007/
978-3-319-46922-5_4.

6 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information
and Computation, 201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

7 Wenlin Chen, Yixin Chen, and Kilian Q. Weinberger. Filtered Search for Submodular
Maximization with Controllable Approximation Bounds. In Proceedings of the Eighteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2015, San Diego,
California, USA, May 9-12, 2015, volume 38 of JMLR Workshop and Conference Proceedings.
JMLR.org, 2015. URL: http://proceedings.mlr.press/v38/chen15c.html.

8 Fabián A. Chudak and David B. Shmoys. Improved Approximation Algorithms for the
Uncapacitated Facility Location Problem. SIAM Journal on Computing, 33(1):1–25, 2003.
doi:10.1137/S0097539703405754.

9 Gérard Cornuéjols, George Nemhauser, and Laurence Wolsey. The Uncapicitated Facility
Location Problem. Technical report, Cornell University Operations Research and Industrial
Engineering, 1983.

10 Eszter Julianna Csókás and Tamás Vinkó. Constraint generation approaches for submodular
function maximization leveraging graph properties. Journal of Global Optimization, 88(2):377–
394, 2024. doi:10.1007/s10898-023-01318-4.

11 M. G. Everett and S. P. Borgatti. The Centrality of Groups and Classes. The Journal of
Mathematical Sociology, 23(3):181–201, 1999.

12 Pasi Fränti and Sami Sieranoja. k-means properties on six clustering benchmark datasets.
Applied Intelligence, 48(12):4743–4759, 2018. doi:10.1007/s10489-018-1238-7.

13 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

14 Richard M. Karp. Reducibility among Combinatorial Problems. In Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia
Series, pages 85–103. Plenum Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

15 Leonard Kaufmann and Peter Rousseeuw. Clustering by Means of Medoids. Data Analysis
based on the L1-Norm and Related Methods, pages 405–416, 1987.

16 Yoshinobu Kawahara, Kiyohito Nagano, Koji Tsuda, and Jeff A. Bilmes. Submodular-
ity Cuts and Applications. In Advances in Neural Information Processing Systems 22:
23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of
a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada, pages 916–924.
Curran Associates, Inc., 2009. URL: https://proceedings.neurips.cc/paper/2009/hash/
9ad6aaed513b73148b7d49f70afcfb32-Abstract.html.

17 Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39–45, 1999. doi:10.1016/S0020-0190(99)00031-9.

18 Andreas Krause and Daniel Golovin. Submodular Function Maximization. In Tractability:
Practical Approaches to Hard Problems, pages 71–104. Cambridge University Press, 2014.
doi:10.1017/CBO9781139177801.004.

ESA 2024

https://doi.org/10.1561/2200000039
https://doi.org/10.1137/1.9781611975055.18
https://doi.org/10.1007/978-3-319-46922-5_4
https://doi.org/10.1007/978-3-319-46922-5_4
https://doi.org/10.1016/j.ic.2005.05.001
http://proceedings.mlr.press/v38/chen15c.html
https://doi.org/10.1137/S0097539703405754
https://doi.org/10.1007/s10898-023-01318-4
https://doi.org/10.1007/s10489-018-1238-7
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-1-4684-2001-2_9
https://proceedings.neurips.cc/paper/2009/hash/9ad6aaed513b73148b7d49f70afcfb32-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/9ad6aaed513b73148b7d49f70afcfb32-Abstract.html
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1017/CBO9781139177801.004

102:18 SubModST: A Generic Solver for Submodular Maximization

19 Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng,
Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A Versatile
Bayesian Optimization Package for Hyperparameter Optimization. Journal of Machine
Learning Research, 23:54:1–54:9, 2022. URL: http://jmlr.org/papers/v23/21-0888.html.

20 Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization Techniques II, pages 234–243. Springer Berlin, Heidelberg, 1977.

21 Thomas Moscibroda and Roger Wattenhofer. Maximizing the Lifetime of Dominating Sets. In
19th International Parallel and Distributed Processing Symposium (IPDPS 2005), CD-ROM
/ Abstracts Proceedings, 4-8 April 2005, Denver, CO, USA. IEEE Computer Society, 2005.
doi:10.1109/IPDPS.2005.276.

22 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approxima-
tions for maximizing submodular set functions - I. Mathematical Programming, 14(1):265–294,
1978. doi:10.1007/BF01588971.

23 G.L. Nemhauser and L.A. Wolsey. Maximizing Submodular Set Functions: Formulations and
Analysis of Algorithms. In Annals of Discrete Mathematics (11), volume 59 of North-Holland
Mathematics Studies, pages 279–301. North-Holland, 1981.

24 Mohammad Rezaei and Pasi Fränti. Can the Number of Clusters Be Determined by External
Indices? IEEE Access, 8:89239–89257, 2020. doi:10.1109/ACCESS.2020.2993295.

25 Ryan A. Rossi and Nesreen K. Ahmed. The Network Data Repository with Interactive Graph
Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA, pages 4292–4293. AAAI Press, 2015.
doi:10.1609/aaai.v29i1.9277.

26 Ron Rymon. Search through Systematic Set Enumeration. In Proceedings of the 3rd In-
ternational Conference on Principles of Knowledge Representation and Reasoning (KR’92).
Cambridge, MA, USA, October 25-29, 1992, pages 539–550. Morgan Kaufmann, 1992.

27 Chao Shen and Tao Li. Multi-Document Summarization via the Minimum Dominating Set.
In COLING 2010, 23rd International Conference on Computational Linguistics, Proceedings
of the Conference, 23-27 August 2010, Beijing, China, pages 984–992. Tsinghua University
Press, 2010. URL: https://aclanthology.org/C10-1111/.

28 Luca Pascal Staus, Christian Komusiewicz, Nils Morawietz, and Frank Sommer. Exact
Algorithms for Group Closeness Centrality. In SIAM Conference on Applied and Computational
Discrete Algorithms, ACDA 2023, Seattle, WA, USA, May 31 - June 2, 2023, pages 1–12.
SIAM, 2023. doi:10.1137/1.9781611977714.1.

29 Ivan Stojmenovic, Mahtab Seddigh, and Jovisa D. Zunic. Dominating Sets and Neighbor
Elimination-Based Broadcasting Algorithms in Wireless Networks. IEEE Transactions on
Parallel and Distributed Systems, 13(1):14–25, 2002. doi:10.1109/71.980024.

30 Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. IEEE Transactions
on Neural Networks, 19(2):376, 2008. doi:10.1109/TNN.2008.929642.

31 Naoya Uematsu, Shunji Umetani, and Yoshinobu Kawahara. An efficient branch-and-cut
algorithm for submodular function maximization. Journal of the Operations Research Society
of Japan, 63(2):41–59, 2020. doi:10.48550/arXiv.1904.12682.

32 Jan Vondrak. Submodularity and curvature: the optimal algorithm. RIMS Kôkyûroku Bessatsu,
pages 253–266, 2010.

33 Henning M. Woydt. Algorithm engineering for generic subset optimization problems. Master’s
thesis, Friedrich-Schiller-Universität Jena, 2023. doi:10.22032/dbt.61730.

34 Jie Wu and Hailan Li. A Dominating-Set-Based Routing Scheme in Ad Hoc Wireless Networks.
Telecommunication Systems, 18(1-3):13–36, 2001. doi:10.1023/A:1016783217662.

35 Yi-Zhi Xu and Hai-Jun Zhou. Generalized minimum dominating set and application in
automatic text summarization. Computing Research Repository, abs/1602.04930, 2016. doi:
10.48550/arXiv.1602.04930.

http://jmlr.org/papers/v23/21-0888.html
https://doi.org/10.1109/IPDPS.2005.276
https://doi.org/10.1007/BF01588971
https://doi.org/10.1109/ACCESS.2020.2993295
https://doi.org/10.1609/aaai.v29i1.9277
https://aclanthology.org/C10-1111/
https://doi.org/10.1137/1.9781611977714.1
https://doi.org/10.1109/71.980024
https://doi.org/10.1109/TNN.2008.929642
https://doi.org/10.48550/arXiv.1904.12682
https://doi.org/10.22032/dbt.61730
https://doi.org/10.1023/A:1016783217662
https://doi.org/10.48550/arXiv.1602.04930
https://doi.org/10.48550/arXiv.1602.04930

	1 Introduction
	2 The Basic Search Algorithm
	3 Lazy Evaluations
	4 Advanced Heuristics
	4.1 Approaches for Candidate Sets of Size 2
	4.2 Avoiding Practical Limitations

	5 Experiments
	5.1 Comparison of Different Versions of our Solver
	5.2 Comparison to SOTA Algorithms

	6 Discussion

