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Abstract
We explore the 4-coloring problem, a fundamental combinatorial NP-hard problem. Given a graph G,
the 4-coloring problem asks whether there exists a function f from the vertex set of G to {1, 2, 3, 4}
such that f(u) ̸= f(v) for each edge uv of G. Such function f is referred to as a 4-coloring of G. The
fastest known algorithm for the 4-coloring problem, introduced by Fomin, Gaspers, and Saurabh
(COCOON 2007), exhibits a time complexity of O(1.7272n) and exponential space.

In this paper, we propose an enhanced algorithm for the 4-coloring problem with a time complexity
of O(1.7159n) and polynomial space. Our algorithm is deterministic and built upon a novel method.
Specifically, inspired by previous algorithmic approaches for the 4-coloring problem, such as the
aforementioned O(1.7272n) time algorithm, we consider the instance (G, I, S), where G is a graph
and I, S are subsets of its vertex set representing vertices colored with 1 and vertices unable to be
colored with 1, respectively. For a given instance (G, I, S), we aim to determine the existence of a
4-coloring f of G such that f(v) = 1 for v ∈ I and f(v) ̸= 1 for v ∈ S.

Our key innovation lies in recognizing that, leveraging certain combinatorial properties, the
instance (G, I, S) can be efficiently solved when G − I − S is a union of K3’s and K4’s (where K3

and K4 denote complete graphs with 3 and 4 vertices, respectively). The ability to efficiently solve
instances (G, I, S), where G − I − S is comprised solely of K3’s and K4’s, enables us to devise a
branching algorithm capable of efficiently addressing instances (G, I, S), where G − I − S is not
a union of K3’s and K4’s (the other case). Based on this innovative method, we derive our final
enhanced algorithm.
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1 Introduction

Consider a graph G = (V, E). A function f : V → {1, 2, . . . , k} is a k-coloring of G if
f(u) ̸= f(v) for uv ∈ E. The smallest k, for which such a k-coloring of G exists, is termed
the chromatic number of G. The chromatic number problem, identified by Karp [25] as
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one of the 21 seminal NP-complete problems, aims to determine chromatic number of G.
The chromatic number problem is notoriously challenging. The best-known polynomial
time algorithm achieves only an approximation ratio of O(n log−3 n(log log n)2) [23], where
n denotes the number of vertices in the graph. Furthermore, it is NP-hard to approximate
within n1−ε [38] for any positive constant ε.

The k-coloring problem serves as the decision version of the chromatic number problem.
Specifically, given a positive integer k and a graph G, the k-coloring problem inquires whether
there is a k-coloring of G. When k ≥ 3, the k-coloring problem is NP-hard[27, 35]. Designing
algorithms for the k-coloring problem, including heuristic algorithms [6, 11, 17, 24, 28, 9, 29,
32] and exact algorithms [7, 36, 26, 14, 5, 2, 34, 12, 8, 15, 4], has garnered significant attention.
Among exact algorithms addressing graphs with n vertices, the fastest known algorithm [3] for
the k-coloring problem operates with a time and space complexity of O∗(2n) (O∗ suppresses a
polynomial factor about n). Subsequently, their work [4] further reduces the space complexity
to O(1.2916n). The fastest algorithm with polynomial space complexity achieves a time
complexity of O(2.2356n) [3, 20]. Recently, Björklund, Curticapean, Husfeldt, Kaski, and
Pratt [1], in their unofficially published work (reprinted on arXiv), give a O(1.99982n) time
complexity algorithm for the k-coloring problem, assuming the validity of the asymptotic rank
conjecture. Specifically, in Theorem 3 of [1], they show that if the asymptotic rank conjecture
is true over a field of characteristic zero, then the chromatic number of an n-vertex graph
can be computed deterministically in O(1.99982n) time. As of now, due to the undetermined
status of the asymptotic rank conjecture, no known algorithm for the k-coloring problem has
a time complexity of O(an), where a < 2. However, intriguingly, for small values of k, there
exist algorithms for the k-coloring problem with a time complexity of O(an), where a < 2.

Specifically, as far as is currently known, algorithms with time complexity O(an), where
a < 2, for the k-coloring problem are only feasible when k ≤ 6. The pursuit of fast algorithms
for these k-coloring problems has been a longstanding research focus. For the 3-coloring
problem, significant progress has been made over time. The time complexity has improved
successively to O(1.4423n) (in 1976) [26, 31], O(1.415n) (in 1994) [33], and O(1.3289n) (in
2001) [12], which remains the fastest known algorithm for the 3-coloring problem. Similarly,
advancements have been made for the 4-coloring problem. The time complexity has evolved
successively to O∗(2n) (in 1976) [26], O(1.8072n) (in 2001) [12], O(1.7504n) (in 2004) [8], and
O(1.7272n) (in 2007) [15], establishing the fastest known algorithms for the 4-coloring problem.
Meijer [30], in their unofficially published work (reprinted on arXiv), recently introduces
faster algorithms for the 3-coloring and 4-coloring problem, achieving time complexities
of O(1.3217n) and O(1.7247n), respectively. And recently, Clinch, Gaspers, Saffidine, and
Zhang[10], in their unofficially published work (reprinted on arXiv), introduces a new method
for analyzing the running time of branching algorithms. This method improves the time
complexity of the 4-coloring problem algorithm described in [15] to O(1.7215n). For the
5-coloring and 6-coloring problems, Zamir [37] recently proposed groundbreaking algorithms,
breaking the 2n Barrier. Zamir’s algorithms for the 5-coloring and 6-coloring problems
exhibit time complexities of O((2 − ε)n), where ε is a constant greater than 0, establishing
them as the fastest known algorithms for these problems. This paper aims to present a faster
algorithm for the 4-coloring problem.

Detailed description of the fastest known algorithm for the 4-Coloring Problem. In
the framework of [15] (the framework of the fastest known algorithm for the 4-coloring
problem), the approach involves utilizing the algorithm for the 3-coloring problem to address
a specific case. Thus, we initially introduce the framework of [12] (the framework of the
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fastest known algorithm for the 3-coloring problem). Within the framework of [12], the
algorithm commences with addressing (3, 2)-CSP, as defined in Definition 1. Notably, the
k-coloring problem can be naturally transformed into (k, 2)-CSP. To enhance efficiency, a
subset D of the vertex set of G is selected to enumerate all potential 3-colorings of G[D]
(the subgraph of G induced by D). Each feasible 3-coloring of G[D] leads to an instance of
(3, 2)-CSP, which is subsequently solved by the algorithm tailored for (3, 2)-CSP.

▶ Definition 1 (CSP). For a positive integer n, [n] represents the set {1, 2, . . . , n}, and
specially [0] = ∅. An instance of constraint satisfaction problem (CSP) is presented by (X, R),
where X = {(x1, D1), (x2, D2), . . . , (xr, Dr)} represents the set of ordered pairs of variable
and corresponding finite discrete-valued domain, and R = {RC1, RC2, . . . , RCp} represents
the set of constraints. Each RCi = {(xj1 , ci,j1), (xj2 , ci,j2), . . . , (xjqi

, ci,jqi
)} in R, satisfies

that ci,jz
∈ Djz

for z ∈ [qi] and j1, j2, . . . , jqi
∈ [r]. An assignment of (X, R) is a function f

on {x1, x2, . . . , xr} such that f(xi) ∈ Di for i ∈ [r]. For an assignment f of (X, R) and a
constraint RCi ∈ R, RCi is satisfied by f if there exists a z ∈ [qi] such that f(xjz

) ̸= ci,jz
.

A satisfying assignment f of (X, R) is an assignment such that RCi is satisfied by f for
RCi ∈ R. Given an instance (X, R), CSP asks whether there exists a satisfying assignment
of (X, R). (d, s)-CSP is the CSP such that |Di| ≤ d for i ∈ [r] and |RCj | ≤ s for j ∈ [p].

In the framework of [15], the focus is on the instance (G, I, S), where G is a graph,
and I and S are disjoint subsets of its vertex set, representing vertices colored with 1 and
vertices unable to be colored with 1, respectively. This involves determining the existence of a
4-coloring f of G such that f(v) = 1 for v ∈ I and f(v) ̸= 1 for v ∈ S. Based on the instance
(G, I, S), one of the three following strategies is adopted: (1) choose a maximum degree
vertex v in G − I − S and branch on v by considering whether v is colored with 1 or not; (2)
enumerating all bound size maximal independent sets of G − I − S, transform the instance
(G, I, S) to instances of the 3-coloring problem, which are then solved by an algorithm for
the 3-coloring problem; (3) use a dynamic program over the path decomposition. Due to the
necessity of employing dynamic programming, the required space can be exponential in the
worst case.

In the aforementioned unofficially published work of Meijer [30], a framework similar to
[12] is employed. Differently, Meijer introduces enhancements in selecting the aforementioned
set D, leading to an improved algorithm for the 3-coloring problem. Since the framework of
[15] utilizes a 3-coloring problem algorithm to address a specific case, Meijer’s improvements
in the 3-coloring problem algorithm consequently enhance the algorithm for the 4-coloring
problem as well. The utilization of the framework of [15] implies that the required space can
still be exponential in the worst case.

Our Result and Contribution. In our work, we also address the aforementioned instance
(G, I, S). Our primary contribution lies in effectively solving instances (G, I, S), where
G − I − S is a union of K3’s and K4’s. Specifically, when G − I − S exhibits this structure,
we leverage combinatorial properties to transform the instance (G, I, S) into a significantly
reduced number of instances of (3, 2)-CSP. Conversely, when G − I − S does not conform
to this structure, we employ a branching algorithm by considering whether a vertex v is
colored with 1 or not. The effectiveness of solving instances (G, I, S), where G − I − S is a
union of K3’s and K4’s, enables the design of an efficient branching algorithm for cases that
G − I − S deviates from this structure. Notably, we introduce a new method that enables us
to develop a faster algorithm for the 4-coloring problem. As a result, we present an algorithm
with polynomial space usage and a time complexity of O(1.7159n), where n is the number of
vertices of the given graph, as formally demonstrated in Theorem 8. A comparison between
our result and previous findings is provided in Table 1.

ESA 2024
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Table 1 Comparison between previous works and our result.

Year Time complexity Space complexity Reference
2001 O(1.8072n) polynomial [12]
2004 O(1.7504n) polynomial [8]
2007 O(1.7272n) exponential [15]
2023 O(1.7247n) exponential [30]1)

2024 O(1.7215n) exponential [10]1)

2024 O(1.7159n) polynomial Ours

1) Both works are unofficially published.

2 Preliminaries

Consider an instance (X, R) of CSP, where X = {(x1, D1), (x2, D2), . . . , (xr, Dr)}. xi is
termed a |Di|-variable for i ∈ [r]. For a RCi = {(xj1 , ci,j1), (xj2 , ci,j2), . . . , (xjqi

, ci,jqi
)} in R

and a variable xz, where z ∈ [r], we say that RCi contains xz if there is a t ∈ [qi] such that
xjt = xz. By a known result obtained by Eppstein [12], all 2-variables of a given (k, 2)-CSP
instance can be removed by replacing them with new constraints. Moreover, as detailed in
Lemma 2 below, he showed that the time complexity of his algorithm for (3, 2)-CSP mainly
depends on the number of 3-variables in the given instance.

▶ Lemma 2 ([12]). A (3, 2)-CSP instance with n 3-variables, can be solved within O(1.3645n)
time complexity and polynomial space.

In this paper, we exclusively deal with undirected simple graphs. Consider a graph G. V (G)
and E(G) denote the set of vertices and edges of G, respectively. For S1, S2 ⊆ V (G), denote
EG(S1, S2) = {uv ∈ E(G) | u ∈ S1, v ∈ S2}. The cycle with n vertices, also called the
n-cycle, is represented by Cn, and the complete graph with n vertices is denoted as Kn.
For a vertex v ∈ V (G), NG(v) denotes the set of neighbors of v, NG[v] = NG(v) ∪ {v},
and dG(v) represents the degree of v. For a subset S ⊆ V (G), NG[S] =

⋃
v∈S NG[v] and

NG(S) = NG[S] \ S. When the context is clear, we abbreviate EG(S1, S2), NG(v), NG[v],
dG(v), NG[S], and NG(S) as E(S1, S2), N(v), N [v], d(v), N [S], and N(S), respectively.
A vertex v ∈ V (G) is called a d(v)-vertex of G. Let δ(G) = min{d(v) | v ∈ V (G)} and
∆(G) = max{d(v) | v ∈ V (G)}. The vertex-induced subgraph G[S] of G with respect to a
subset S ⊆ V (G) consists of all vertices in S and all edges of G with both endpoints in S.
For a S ⊆ V (G), G − S refers to the vertex-induced subgraph G[V (G) \ S]. The graph H is
considered a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). We say that G contains a
graph H if there exists a subgraph of G that is isomorphic to H. G is defined as connected
if there exists a path between any pair of vertices u and v in V (G). A component of G

refers to a connected subgraph that is not a subgraph of any larger connected subgraph of
G. If a component C of G is isomorphic to K3 (K4), it is referred to as a K3-component
(K4-component). I ⊆ V (G) is an independent set of G if uv /∈ E(G) for u, v ∈ V (G). For
an instance P = (G, I, S), denote G(P ) = G − I − S. Notably, v ∈ I is the vertex colored 1,
and for a 4-coloring of G, the set of vertices colored 1 is an independent set. Consequently,
we can directly put NG(I) into S. Then we only consider the instance P = (G, I, S) where
S ⊇ NG(I). For a positive integer a and a nonnegative integer b,

(
a
b

)
represents the binomial

coefficient equal to the number of ways to pack a items out b items. For a real number x,
⌊x⌋ and ⌈x⌉ respectively denote the largest integer less than or equal to x, and the smallest
integer greater than or equal to x.
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2.1 Maximal independent set and independent dominating set
Consider a graph G. A maximal independent set I of G is an independent set satisfying that I

is not a proper subset of any other independent set of G. An independent dominating set ID

of G is an independent set satisfying N [ID] = V (G). Actually, I is a maximal independent
set of G if and only if I is an independent dominating set of G. We define independent
domination number i(G) as the minimum cardinality of any independent dominating set of
G, i.e., i(G) = min{|I| | I is an independent dominating set of G}, and MI(G) as the set of
all maximal independent sets of G.

▶ Lemma 3 ([22]). i(Cn) = ⌈ n
3 ⌉ for n ≥ 3.

▶ Lemma 4 ([18]). (1) |MI(C3)| = 3, |MI(C4)| = 2, |MI(C5)| = 5.
(2) |MI(Cn)| = |MI(Cn−2)| + |MI(Cn−3)| for n ≥ 6.

2.2 Measure and conquer method for branching algorithm
When utilizing branching algorithms, accurately assessing the size of the search tree is crucial.
To achieve this, the measure and conquer method [16] utilizes a measure µ, where T (µ)
denotes the upper bound on the size of the search tree produced by a branching algorithm
on an instance with a measure no greater than µ. Typically, a branching operation involves
dividing the instance into t branches, each reducing the measure by at least βi in the i-th
branch. This branching operation can be represented by the following recurrence relation:

T (µ) ≤ T (µ − β1) + T (µ − β2) + . . . + T (µ − βt). (1)

The largest root of the function g(x) = 1 −
∑t

i=1 x−βi is termed the branching factor of the
recurrence. If the branching factor of any branching operation within the algorithm is less
than r, then the algorithm’s time complexity can be expressed as T (µ) = O(rµ). To obtain
the bound rµ, a constraint akin to

∑t
i=1 r−βi ≤ 1 is formulated for each recurrence relation

of branching operations akin to Equation (1). Subsequently, all constraints are utilized in
a numerical program to determine a minimum r. For a comprehensive exploration of the
measure and conquer method for the branching algorithms please refer to [16].

Consider an instance P = (G, I, S), where G(P ) has n3 K3-components and n4 K4-
components. To define our measure for P , we introduce real number parameters ωi for i ≥ 0,
ωk3, ωk4 and ωc3. Specifically, we directly set ω0 = 0, and ωi = 1 for i ≥ 3. Let C = {C is a
component of G(P ) | C is neither K3 nor K4}. In this paper, we define the measure µ(P ) of
P as follows:

µ(P ) = |S|ωc3 + n3ωk3 + n4ωk4 +
∑
C∈C

∑
v∈V (C)

ωdC(v). (2)

To find the minimum r, we need to solve an optimal program. Usually, the optimal programs
derived by the measure and conquer method, including the one in this paper, are quasi-convex
programs, which can be solved by the method in [13]. In our final conclusion, we present the
values of all parameters in Table 2. We note that, in the time complexity analysis in [21, 19],
instead of solving the quasi-convex program, Gaspers and Sorkin present a method that only
requires solving a convex program, which is easier and supported by more existing solvers.
Their method is also suitable for the time complexity analysis of other branching algorithms,
including our algorithm. In this paper, we provide the constraints in their original form (the
quasi-convex program form) and give the details about obtaining the corresponding convex

ESA 2024
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program in the Appendix (Appendix A). To ensure that the measure doesn’t increase in the
branching algorithm, we present the following constraints:

0 ≤ ωc3 ≤ ω1 ≤ ω2 ≤ ω3,

ω3 − ω2 ≤ ω2 − ω1 ≤ ω1,

3ω2 ≥ ωk3,

4ω3 ≥ ωk4.

(3)

3 The algorithm for the 4-coloring problem

We present the algorithm for the 4-coloring problem in this section. For a 4-coloring f

of a graph G, denote Vi(f) = {v ∈ V (G) | f(v) = i} for i ∈ [4]. Consider an instance
P = (G, I, S). A 4-coloring of P is a 4-coloring of G such that f(v) = 1 for v ∈ I and
f(v) ̸= 1 for v ∈ S. Recall that G(P ) = G − I − S.

▶ Observation 5. Let P = (G, I, S) be an instance and D be a subset of V (G(P )). If there
is a 4-coloring of P , then there is a 4-coloring f of P such that V1(f) ∩ NG[v] ̸= ∅ for v ∈ D.

Proof. Let g be a 4-coloring of P such that |{v ∈ D | V1(g) ∩ NG[v] = ∅}| is minimized.
We show that g is the desired 4-coloring. Suppose, for contradiction, that |{v ∈ D |
V1(g) ∩ NG[v] = ∅}| > 0. Consider a v ∈ D with V1(g) ∩ NG[v] = ∅. It is clear that the
function f defined by f(v) = 1 and f(x) = g(x) otherwise, constitutes a 4-coloring of P .
Since |{v ∈ D | V1(f) ∩ NG[v] = ∅}| < |{v ∈ D | V1(g) ∩ NG[v] = ∅}|, we encounter a
contradiction. Thus, this observation holds. ◀

Observation 5 suggests that when we want to determine the existence of 4-colorings of an
instance P = (G, I, S) with a subset D of V (G(P )), we focus solely on functions f such that
V1(f) ∩ NG[v] ̸= ∅ for v ∈ D. The selection of D varies depending on the case. We consider
two scenarios: (1) V (G(P )) = ∅, or each component of G(P ) is K4 or K3; (2) there exists a
component of G(P ) that is neither K4 nor K3.

3.1 V (G(P )) = ∅, or each component of G(P ) is K4 or K3

Consider an instance P = (G, I, S) such that either V (G(P )) = ∅ or G(P ) is a union of
n3 K3’s and n4 K4’s. Regard the case that V (G(P )) = ∅ as the case that n3 = n4 = 0.
Let the n3 K3’s be denoted as K1

3 , K2
3 , . . . , Kn3

3 , and the n4 K4’s as K1
4 , K2

4 , . . . , Kn4
4 .

Assume V (Ki
3) = {vi,1, vi,2, vi,3} for i ∈ [n3] and V (Kj

4) = {uj,1, uj,2, uj,3, uj,4} j ∈ [n4].
Denote Du = {1, 2, 3, 4} for u ∈ V (G(P )), and Dv = {2, 3, 4} for v ∈ S. We transform
P into a (4, 2)-CSP instance U = (X, R), where X = {(v, Dv) | v ∈ V (G(P )) ∪ S} and
R = {{(u, i), (v, i)} | i ∈ Du ∩Dv, uv ∈ E(G), u, v ∈ S ∪V (G(P ))}. Notably, f is a 4-coloring
of P if and only if f is a satisfying assignment of U .

If V (G(P )) = ∅, then U is a (3, 2)-CSP instance with |S| 3-variables. By Lemma 2, U can
be solved within O(1.3645|S|) time complexity. Thus P can be solved within O(1.3645|S|)
time complexity. To bound our algorithm’s time complexity by O(rµ(P )), it is necessary
to ensure that rµ(P ) ≥ 1.3645|S|. Given that µ(P ) = |S|ωc3 by Equation (2), we have the
following constraint:

ωc3 ln r ≥ ln 1.3645. (4)

If V (G(P )) ̸= ∅, we aim to reduce the number of (3, 2)-CSP instances derived from U

by utilizing combinatorial properties. For a satisfying assignment f of U and a set A of
some variables, let f(A) = {f(x) | x ∈ A}. For a satisfying assignment f of U , denote
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Li(f) = {j ∈ [n3] | i /∈ f(V (Kj
3))} for i ∈ {2, 3, 4}, i.e., Li(f) is the set of integers j ∈ [n3]

such that no vertex in the component Kj
3 is assigned the color i under f . Considering⋃

j∈[n3] V (Kj
3) as analogous to D in Observation 5, we only consider satisfying assignments

f of U such that 1 ∈ f(V (Kj
3)) for j ∈ [n3]. So, for the satisfying assignment f of U to

consider, we have |L2(f)| + |L3(f)| + |L4(f)| = n3. Since colors 2, 3, 4 are symmetrical in U ,
we only search for satisfying assignments f of U such that 1 ∈ f(V (Kj

3)) for j ∈ [n3] and
|L2(f)| ≤ n3

3 . Enumerating all possible L2(f), there are
∑⌊ n3

3 ⌋
i=0

(
n3
i

)
cases that need to be

searched. Let L2(f) = {i1, i2, . . . , it} and consider to search for such satisfying assignment f .

Step 1. Consider a Kj
3 , where j ∈ L2(f). For v ∈ V (Kj

3), we can restrict Dv to D′
v =

{1, 3, 4}, resulting in f(V (Kj
3)) = {1, 3, 4}. For u ∈ NG(V (Kj

3)) ∩ S, u can’t be assigned
color 1, meaning that we are free to use color 1 for any of the three vertices in V (Kj

3). Thus
we only need to determine which vertices in Kj

3 are assigned colors 3 and 4. Thus, we can use
two variables to represent the status of Kj

3 . We construct two variables xj,3, xj,4, and two
corresponding discrete-valued domains Dxj,3 = {vj,1, vj,2, vj,3} and Dxj,4 = {vj,1, vj,2, vj,3}.
Specifically, xj,c is assigned a value vj,z, where c ∈ {3, 4} and z ∈ [3], meaning that we assign
color c to the vertex vj,z. Meanwhile the vj,z, where z ∈ [3], and which is unassigned to xj,3
and xj,4, is colored 1. Thus, we construct constraints RCj,z = {(xj,3, vj,z), (xj,4, vj,z)} for
z ∈ [3], and RCj,z,c,v = {(xj,c, vj,z), (v, c)} for v ∈ NG(vj,z) ∩ S, z ∈ [3], c ∈ {3, 4}. Then, we
remove all variables in

⋃
j∈L2(f) V (Kj

3), all constraints containing at least one variable in⋃
j∈L2(f) V (Kj

3), and add all variables xj,3, xj,4 for j ∈ L2(f), all constraints RCj,z, RCj,z,c,v

for v ∈ NG(vj,z) ∩ S, j ∈ L2(f), z ∈ [3], c ∈ {3, 4}.

Step 2. Consider a Kj
3 , where j /∈ L2(f). It clear that {1, 2} ⊆ f(V (Kj

3)), resulting in
three cases: (1) {f(vj,1), f(vj,2)} = {1, 2}, f(vj,3) ∈ {3, 4}; (2) {f(vj,1), f(vj,3)} = {1, 2},
f(vj,2) ∈ {3, 4}; (3) {f(vj,2), f(vj,3)} = {1, 2}, f(vj,1) ∈ {3, 4}. Correspondingly, we restrict
Dvj,1 , Dvj,2 , Dvj,3 into: (1) {1, 2},{1, 2},{3, 4}; (2) {1, 2},{3, 4},{1, 2}; (3) {3, 4},{1, 2},{1, 2}.
We enumerate all the possibilities for each Kj

3 with j /∈ L2(f).

Step 3. Consider a Kj
4 , where j ∈ [n4]. It is clear that f(V (Kj

4)) = {1, 2, 3, 4}, resulting in
that there are exactly two vertices in Kj

4 assigned color in {1, 2} and exactly two vertices
in Kj

4 assigned color in {3, 4}. Correspondingly, we choose two vertices w1, w2 of Kj
4 , and

assume V (Kj
4) \ {w1, w2} = {w3, w4}. We restrict Dw1 , Dw2 both into {1, 2}, and Dw3 , Dw4

both into {3, 4}. There are
(4

2
)

= 6 cases for choosing such w1, w2. We enumerate all the
possibilities for each Kj

4 with j ∈ [n4].
After enumerating all possible L2(f) and completing Steps 1-3, we transform U into∑⌊ n3

3 ⌋
i=0

(
n3
i

)
3n3−i6n4 (3, 2)-CSP instances. In Step 1, each Kj

3 with j ∈ L2(f) is trans-
formed into two 3-variables, and in Steps 2 and 3, each 4-variable is restricted to a 2-
variable. Consequently, the obtained (3, 2)-instance has |S| + 2|L2(f)| 3-variables. Spe-
cifically, for i ∈ {0, 1, . . . , ⌊ n3

3 ⌋}, there are exactly
(

n3
i

)
3n3−i6n4 (3, 2)-CSP instances

with |S| + 2i 3-variables. Thus, by Lemma 2, the time complexity of solving P is
O(

∑⌊ n3
3 ⌋

i=0
(

n3
i

)
3n3−i6n41.3645|S|+2i). Notably, µ(P ) = n3ωk3 + n4ωk4 + |S|ωc3 by Equation

(2). Thus, we need to satisfy 6n41.3645|S| ∑⌊ n3
3 ⌋

i=0
(

n3
i

)
3n3−i 1.36452i = O(rn3ωk3+n4ωk4+|S|ωc3).

Considering Stirling’s formula, n! = Θ(
√

2nπ
(

n
e

)n), we have
(

n3
i

)
= O(( 1

ββ(1−β)1−β )n3), where
β = i

n3
and i ∈ {0, 1, . . . , n3}, resulting in

(
n3
i

)
3n3−i1.36452i = ( 1

ββ(1−β)1−β 31−β1.36452β)n3 .
Upon inspection, when 0 ≤ β ≤ 1

3 , we have 1
ββ(1−β)1−β 31−β1.36452β < 4.837. And espe-

cially, the expression 1
ββ(1−β)1−β 31−β1.36452β attains a maximum when β = 1

3 . Therefore,
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6n41.3645|S| ∑⌊ n3
3 ⌋

i=0
(

n3
i

)
3n3−i1.36452i = O(4.837n36n41.3645|S|). Then, we need to sat-

isfy 4.837n36n41.3645|S| = O(rn3ωk3+n4ωk4+|S|ωc3). By setting rωk3 ≥ 4.837, rωk4 ≥ 6, and
rωc3 ≥ 1.3645, we obtain the desired result, 4.837n36n41.3645|S| = O(rn3ωk3+n4ωk4+|S|ωc3).
Notably, rωc3 ≥ 1.3645 is already obtained from Equation (4). Thus we present the following
constraints:{

ωk3 ln r ≥ ln 4.837,

ωk4 ln r ≥ ln 6.
(5)

3.2 There exists a component of G(P ) that is neither K4 nor K3

Recall that P = (G, I, S) and S ⊇ NG(I). Consider a component C of G(P ) that is neither
a K4 nor a K3. For a vertex v ∈ V (G(P )), “take v” means including v in I (coloring v with
1). Conversely, “discard v” signifies placing v into S (disabling v from being colored with 1).
Notably, if δ(C) = 0, meaning |V (C)| = 1, we can directly apply Observation 5 and utilize
the following reduction rule.

Reduction Rule. If there is a vertex v ∈ V (G(P )) with degree 0, we directly take v.
Therefore, we focus solely on the case that δ(C) ≥ 1. To formulate the branching

algorithm, we delineate it into five cases: (1) δ(C) = 1; (2) δ(C) = ∆(C) = 2; (3) δ(C) = 2
and 3 ≤ ∆(C) ≤ 4; (4) δ(C) ≥ 2 and ∆(C) ≥ 5; (5) 3 ≤ δ(C) ≤ ∆(C) ≤ 4.

Case 1. δ(C) = 1. Let v ∈ V (C) be a vertex with degree 1, NC(v) = {u}, and D = {v}.
By Observation 5, we only consider taking v or u, resulting in two subinstances: P1 =
(G, I ∪ {v}, S ∪ NC(v)) and P2 = (G, I ∪ {u}, S ∪ NC(u)). Notably ωi ≤ ωi+1 for i ≥ 0 by
Equation (3). Since dC(v) = 1 and dC(u) ≥ 1, we have µ(P ) − µ(Pi) ≥ 2ω1 − ωc3 for i ∈ [2].
Therefore, we obtain the following constraint:

2r−2ω1+ωc3 ≤ 1. (6)

Case 2. δ(C) = ∆(C) = 2. In this scenario, C is an n-cycle, denoted as Cn. As Cn cannot
be a K3, we have n ≥ 4. Let D = V (Cn) and by Observation 5, we only need to search
for a 4-coloring f of P such that V1(f) ∩ NG[v] ̸= ∅ for v ∈ D, meaning V1(f) represents
a maximal independent set of Cn. Let MI(Cn) = {I1, I2, . . . , It}. As a result, there are
t = |MI(Cn)| instances: Pi = (G, I ∪ Ii, S ∪ NC(Ii)) for i ∈ [t]. Since Ii is a maximal
independent set, we have V (Cn) = NC [Ii]. Consequently, µ(P ) − µ(Pi) = nω2 − (n − |Ii|)ωc3.
By Lemma 3, µ(P ) − µ(Pi) ≥ n(ω2 − ωc3) + i(Cn)ωc3 = n(ω2 − ωc3) + ⌈ n

3 ⌉ωc3 for i ∈
[t]. Therefore, we have the constraint |MI(Cn)|r−n(ω2−ωc3)−⌈ n

3 ⌉ωc3 ≤ 1. By Lemma 4,
|MI(Cn)| = |MI(Cn−2)| + |MI(Cn−3)| = |MI(Cn−4)| + |MI(Cn−5)| + |MI(Cn−3)| for
n ≥ 9. Hence,

|MI(Cn)|r−n(ω2−ωc3)−⌈ n
3 ⌉ωc3 ≤

5∑
j=3

|MI(Cn−j)|r−(n−j)(ω2−ωc3)−⌈ n−j
3 ⌉ωc3 ·r−j(ω2−ωc3)−ωc3

for n ≥ 9. Thus, it suffices to satisfy the following constraints:
|MI(Cj)|r−j(ω2−ωc3)−⌈ j

3 ⌉ωc3 ≤ 1, for j ∈ {4, 5, . . . , 8}
5∑

j=3
r−j(ω2−ωc3)−ωc3 ≤ 1.

(7)
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Case 3. δ(C) = 2 and 3 ≤ ∆(C) ≤ 4. Let V ′ = {v ∈ V (C) | dC(v) = 2 and there is a
vertex x ∈ NC(v) with dC(x) ≥ 3}. Since δ(C) = 2 and 3 ≤ ∆(C) ≤ 4, we have V ′ ̸= ∅.

Case 3.1. There exists a v ∈ V ′, w.l.o.g., assuming NC(v) = {v1, v2} and dC(v1) ≥ 3,
such that at least one of the following conditions holds: (1) v1v2 /∈ E(G); (2) dC(v1) = 4;
(3) dC(v2) = 4; (4) dC(vi) ≥ 3 for i ∈ [2]. By Observation 5, we consider searching for a
4-coloring f of P such that V1(f)∩NG[v] ̸= ∅. Regardless of which of (1)-(4) holds, we explore
three cases: (i) take v; (ii) discard v and take v1; (iii) discard v, v1 and take v2. This leads to
three subinstances: P1 = (G, I ∪ {v}, S ∪ NC(v)), P2 = (G, I ∪ {v1}, S ∪ NC(v1)) and P3 =
(G, I ∪{v2}, S ∪NC(v2)∪{v1}). Recall that 0 ≤ ωc3 ≤ ω1 ≤ ω2 ≤ 1 by Equation (3). Notably,
µ(P ) − µ(P1) ≥ ω2 +

∑
u∈NC (v)(ωdC (u) − ωc3), µ(P ) − µ(P2) ≥ 1 +

∑
u∈NC (v1)(ωdC (u) − ωc3)

and µ(P ) − µ(P3) ≥ ωdC(v2) +
∑

u∈NC(v2)∪{v1}(ωdC(u) − ωc3). For each condition (1)-(4), we
respectively have the following constraints:

r−(1+2ω2−2ωc3) + r−(1+3ω2−3ωc3) + r−(1+3ω2−3ωc3) ≤ 1,

r−(1+2ω2−2ωc3) + r−(1+4ω2−4ωc3) + r−(1+2ω2−2ωc3) ≤ 1,

r−(2+ω2−2ωc3) + r−(1+3ω2−3ωc3) + r−(2+3ω2−4ωc3) ≤ 1,

r−(2+ω2−2ωc3) + r−(1+3ω2−3ωc3) + r−(2+2ω2−3ωc3) ≤ 1.

(8)

Case 3.2. The complementary case (Case 3.1 doesn’t hold). Let v ∈ V ′ and NC(v) =
{v1, v2}. Since Case 3.1 doesn’t apply, all of the following conditions hold: (1) v1v2 ∈ E(G);
(2) dC(v1) ≤ 3; (3) dC(v2) ≤ 3. (4) dC(vi) = 2 for some i ∈ [2], w.l.o.g., assume dC(v1) = 2.
By the definition of V ′, there exists i ∈ [2] such that dC(vi) ≥ 3, resulting in dC(v2) = 3. Now,
let NC(v2) = {v1, v, w}. If dC(w) = 2, consider NC(w) = {v2, v3}. Since dC(v2) = 3 and
dC(w) = 2, we infer that w ∈ V ′. It is clear that v3v2 /∈ E(G). Considering w as analogous
to the vertex v specified in Case 3.1, we encounter a contradiction to the assumption that
(1) of Case 3.1 doesn’t hold. Therefore, we conclude that dC(w) ≥ 3.

Case 3.2.1. dC(w) = 4. We consider either taking w or discarding it, resulting in two
subinstances: P1 = (G, I ∪ {w}, S ∪ NC(w)) and P2 = (G, I, S ∪ {w}). Notably, dG(P1)(v) =
dG(P1)(v1) = 1, and G(P2)[{v, v1, v2}] is a K3-component of G(P2). Consequently, µ(P ) −
µ(P1) ≥ 2 + 3ω2 + 2ω2 − 4ωc3 − 2ω1 and µ(P ) − µ(P2) ≥ 2 + 2ω2 − ωc3 − ωk3. Thus, we have
the following constraint:

r−2−5ω2+4ωc3+2ω1 + r−2−2ω2+ωc3+ωk3 ≤ 1. (9)

Case 3.2.2. dC(w) = 3 and there is a vertex w1 ∈ NC(w) with dC(w1) = 2. Let NC(w) =
{v2, w1, w2}. Since dC(w) = 3, we have w1 ∈ V ′. Since Case 3.1 doesn’t hold, we have
wx ∈ E(G) and dC(x) = 2, where x ∈ NC(w1) \ {w}, implying that x = w2 and dC(w2) = 2.
By Observation 5, we only consider to search for a 4-coloring f of P such that V1(f)∩NG[v1] ̸=
∅. Thus we consider three cases: (1) take v2; (2) discard v2 and take v; (3) discard
v2, v and take v1. Correspondingly, there are three subinstances: P1 = (G, I ∪ {v2}, S ∪
NC(v2)), P2 = (G, I ∪ {v}, S ∪ NC(v)) and P3 = (G, I ∪ {v1}, S ∪ NC(v1)). Notably,
dG(P1)(w1) = dG(P1)(w2) = 1, G(P2)[{w, w1, w2}] and G(P3)[{w, w1, w2}] are respectively
both K3-component of G(P2) and G(P3). Consequently, µ(P ) − µ(P1) ≥ 2 + 4ω2 − 3ωc3 − 2ω1
and µ(P ) − µ(Pi) ≥ 2 + 4ω2 − 2ωc3 − ωk3 for i ∈ {2, 3}. So we have the following constraint:

r−2−4ω2+3ωc3+2ω1 + 2r−2−4ω2+2ωc3+ωk3 ≤ 1. (10)
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Case 3.2.3. dC(w) = 3 and dC(x) ≥ 3 for x ∈ NC(w). Let NC(w) = {v2, w1, w2}. By
Observation 5, we only consider to search for a 4-coloring f of P such that V1(f)∩NG[w] ̸= ∅.
Thus we consider four cases: (1) take w; (2) discard w and take v2; (3) discard w, v2 and take
w1; (4) discard w, v2, w1 and take w2. Correspondingly, there are four subinstances: P1 =
(G, I ∪{w}, S ∪NC(w)), P2 = (G, I ∪{v2}, S ∪NC(v2)), P3 = (G, I ∪{w1}, S ∪NC(w1)∪{v2})
and P4 = (G, I ∪{w2}, S∪NC(w2)∪{v2, w1}). Notably, dG(P1)(v) = dG(P1)(v1) = dG(P3)(v) =
dG(P3)(v1) = dG(P4)(v) = dG(P4)(v1) = 1. Consequently, µ(P ) − µ(P1) ≥ 4 + 2ω2 − 3ωc3 − 2ω1,
µ(P ) − µ(P2) ≥ 2 + 2ω2 − 3ωc3, and µ(P ) − µ(Pi) ≥ 3 + 4ω2 − 4ωc3 − 2ω1 for i ∈ {3, 4}.
Thus we have the following constraint:

r−4−2ω2+3ωc3+2ω1 + r−2−2ω2+3ωc3 + 2r−3−4ω2+4ωc3+2ω1 ≤ 1. (11)

Case 4. δ(C) ≥ 2 and ∆(C) ≥ 5. Let v ∈ V (C) be a vertex with maximum degree. We
consider taking v or discarding v. Thus, there are two subinstances P1 = (G, I∪{v}, S∪NC(v))
and P2 = (G, I, S∪{v}). Since δ(C) ≥ 2 and dC(v) ≥ 5, we have µ(P )−µ(P1) ≥ 1+5ω2−5ωc3
and µ(P ) − µ(P2) ≥ 1 − ωc3. Therefore, we obtain the following constraint:

r−1−5ω2+5ωc3 + r−1+ωc3 ≤ 1. (12)

Case 5. 3 ≤ δ(C) ≤ ∆(C) ≤ 4. In this case, we initially address Cases 5.1-5.4, handling
situations that C includes specific structures. Then, assuming that Cases 5.1-5.4 don’t hold,
we proceed to discuss two subcases: δ(C) = 3 in Case 5.5 and δ(C) = ∆(C) = 4 in Case 5.6.

Case 5.1. There is a vertex v in C with NC(v) = {v1, v2, v3}, such that dC(v1) = 4,
and vi, where i ∈ {2, 3}, satisfies that dC(vi) = 4 or viv1 /∈ E(G). By Observation 5,
we only consider searching for a 4-coloring f of P such that V1(f) ∩ NG[v] ̸= ∅. Thus,
we consider four cases: (1) take v; (2) discard v and take v1; (3) discard v, v1 and take
v2; (4) discard v, v1, v2 and take v3. Correspondingly, there are four subinstances: P1 =
(G, I ∪ {v}, S ∪ NC(v)), P2 = (G, I ∪ {v1}, S ∪ NC(v1)), P3 = (G, I ∪ {v2}, S ∪ NC(v2) ∪ {v1})
and P4 = (G, I ∪ {v3}, S ∪ NC(v3) ∪ {v1, v2}). Notably, dC(v) = 3, dC(v1) = 4, and
dC(vi) = 4 or viv1 /∈ E(G) for i ∈ {2, 3}. Consequently, we have µ(P ) − µ(P1) ≥ 4 − 3ωc3
and µ(P ) − µ(Pi) ≥ 5 − 4ωc3 for i ∈ {2, 3, 4}. Thus we have the following constraint:

r−4+3ωc3 + 3r−5+4ωc3 ≤ 1. (13)

Case 5.2. There exist vertices v1, v2, v3, v4 ∈ V (C) such that C[{v1, v2, v3, v4}] is a K4.
Notably, since C is not a K4, we have |NC({v1, v2, v3, v4})| ≥ 1. Let V ′ = {vi | dC(vi) =
4, i ∈ [4]}.

Case 5.2.1. |V ′| ≥ 3. As C[{v1, v2, v3, v4}] forms a K4, in any 4-coloring f of P , one of
v1, v2, v3, v4 must be colored 1. Since there are at least three 4-vertices among v1, v2, v3, v4,
we have the following constraint:

3r−5+4ωc3 + r−4+3ωc3 ≤ 1. (14)

Case 5.2.2. |V ′| ≤ 2 and |NC({v1, v2, v3, v4})| = 1. Assume NC({v1, v2, v3, v4}) = {w}.
We consider either taking w or discarding it. Thus, there are two subinstances: P1 =
(G, I ∪ {w}, S ∪ NC(w)) and P2 = (G, I, S ∪ {w}). Notably G(P2)[{v1, v2, v3, v4}] is a K4-
component of G(P2). Consequently µ(P )−µ(P1) ≥ 4−3ωc3 and µ(P )−µ(P2) ≥ 5−ωc3 −ωk4.
This yields the following constraint:

r−4+3ωc3 + r−5+ωc3+ωk4 ≤ 1. (15)
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Case 5.2.3. |V ′| ≤ 2 and |NC({v1, v2, v3, v4})| ≥ 2. In fact, |NC({v1, v2, v3, v4})| = |V ′| = 2.
Let NC({v1, v2, v3, v4}) = {w1, w2}, and w.l.o.g., assume wivi ∈ E(G) for i ∈ [2]. Notably,
dC(vi) = 4 for i ∈ [2]. If dC(wi) = 3 for some i ∈ [2], with considering wi and vi as
analogous to the vertices v and v1 specified in Case 5.1, we get a contradiction to that Case
5.1 doesn’t hold. Thus we have dC(wi) = 4 for i ∈ [2]. Consider the following three cases:
(1) take w1; (2) discard w1 and take w2; (3) discard w1, w2. Correspondingly, there are
three subinstances: P1 = (G, I ∪ {w1}, S ∪ NC(w1)), P2 = (G, I ∪ {w2}, S ∪ NC(w2) ∪ {w1})
and P3 = (G, I, S ∪ {w1, w2}). Notably G(P3)[{v1, v2, v3, v4}] is a K4-component of G(P3).
Consequently µ(P ) − µ(Pi) ≥ 5 − 4ωc3 for i ∈ [2] and µ(P ) − µ(P3) ≥ 6 − 2ωc3 − ωk4. This
leads to the following constraint:

2r−5+4ωc3 + r−6+2ωc3+ωk4 ≤ 1. (16)

Case 5.3. There is a vertex v of C with NC(v) = {v1, v2, v3}, such that dC(v1) = dC(v2) = 4.
Since Case 5.1 doesn’t hold, we have dC(v3) = 3. If v3vi /∈ E(G), for some i ∈ [2], then
considering v and vi as analogous to the vertices v and v1 specified in Case 5.1, we get a
contradiction to that Case 5.1 doesn’t hold. Consequently v3v1, v3v2 ∈ E(G). Since C doesn’t
contain a K4, we have v1v2 /∈ E(G). Let NC(v1) = {v, v3, w1, w2}, and notably wi /∈ NC [v]
for i ∈ [2]. Let D = {v, v1} and by Observation 5, we only consider to search for a 4-coloring
f of P such that V1(f) ∩ NG[x] ̸= ∅ for x ∈ D. Thus when we discard v, v1, v3, we need to
take v2 and one of w1, w2. Specifically we consider the following five cases: (1) take v; (2)
discard v and take v3; (3) discard v, v3 and take v1; (4) discard v, v3, v1 and take v2, w1; (5)
discard v, v3, v1, w1 and take v2, w2. Correspondingly, we have the following five subinstances:
P1 = (G, I ∪ {v}, S ∪ NC(v)), P2 = (G, I ∪ {v3}, S ∪ NC(v3)), P3 = (G, I ∪ {v1}, S ∪ NC(v1)),
P4 = (G, I ∪ {v2, w1}, S ∪ NC({v2, w1})), P5 = (G, I ∪ {v2, w2}, S ∪ NC({v2, w2}) ∪ {w1}).
Notably, if w1 ∈ NG(v2) or w2 ∈ NG(v2), then case (4) or (5) need not be considered.
Thus when wi ∈ NG(v2) for some i ∈ [2], the worst-case scenario imposes the constraint:
2r−4+3ωc3 + r−5+4ωc3 + r−6+4ωc3 ≤ 1. Now consider w1, w2 /∈ NC(v2). First we have
µ(P ) − µ(Pi) ≥ 4 − 3ωc3 for i ∈ [2], µ(P ) − µ(P3) ≥ 5 − 4ωc3. We present the following Claim
6 to estimate µ(P )−µ(Pi) for i ∈ {4, 5}. Since v1v2 /∈ E(G) and |NC(wi)\(NC(v2)∪{v1})| ≥ 1
for i ∈ [2] by Claim 6, we have |NC({v2, wi})| ≥ 6 for i ∈ [2]. Thus µ(P ) − µ(Pi) ≥ 8 − 6ωc3
for i ∈ {4, 5}. Then we have the following constraints:{

2r−4+3ωc3 + r−5+4ωc3 + r−6+4ωc3 ≤ 1,

2r−4+3ωc3 + r−5+4ωc3 + 2r−8+6ωc3 ≤ 1.
(17)

▷ Claim 6. Given vertices v, v1, v2, v3, and w1, w2 defined in Case 5.3, since Cases 5.1-5.2
don’t hold and w1, w2 /∈ NC(v2), it follows that |NC(wi) \ (NC(v2) ∪ {v1})| ≥ 1 for i ∈ [2].

Proof. The proof of |NC(w2) \ (NC(v2) ∪ {v1})| ≥ 1 is the same as the proof of |NC(w1) \
(NC(v2) ∪ {v1})| ≥ 1. Thus, our aim is to demonstrate that |NC(w1) \ (NC(v2) ∪ {v1})| ≥ 1.

If dC(w1) = 4, then |NC(w1) \ (NC(v2) ∪ {v1})| ≥ 1.
If dC(w1) = 3 and |NC(w1) \ (NC(v2) ∪ {v1})| = 0, then (NC(w1) \ {v1}) ⊆ NC(v2).

Notably NC(v1) = {v, v3, w1, w2}. Consequently, if there exists a vertex x ∈ NC(w1)∩NC(v1),
then x = w2 and x ∈ NC(v2), leading to a contradiction to w2 /∈ NC(v2). Thus xv1 /∈ E(G)
for x ∈ NC(w1) \ {v1}. Considering w1 and v1 as analogous to the vertices v and v1 specified
in Case 5.1, we get a contradiction to the assumption that Case 5.1 doesn’t hold. This yields
|NC(w1) \ (NC(v2) ∪ v1)| ≥ 1. ◁
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Case 5.4. There is a 3-cycle of C containing a 3-vertex of C. Assume that C3 is a
3-cycle of C such that |D| is maximum, where D = {w ∈ V (C3) | dC(w) = 3}. Let
V (C3) = {v1, v2, v3}. By Observation 5, we only consider to search for a 4-coloring f of
P such that V1(f) ∩ NG[w] ̸= ∅ for w ∈ D. Let T = NC(D) \ V (C3). Then when we
discard v1, v2, v3, we directly take vertices in T . Specifically, we consider the following
four cases: (1) take v1; (2) discard v1 and take v2; (3) discard v1, v2 and take v3; (4)
discard v1, v2, v3 and take T . Correspondingly, we have the following four subinstances:
P1 = (G, I ∪{v1}, S ∪NC(v1)), P2 = (G, I ∪{v2}, S ∪NC(v2)), P3 = (G, I ∪{v3}, S ∪NC(v3)),
and P4 = (G, I ∪ T, S ∪ NC(T ) ∪ V (C3)). If T is not an independent set of G, we only need
to consider (1)-(3). Thus, when T is not an independent set of G, the worst-case scenario
imposes the constraint: 3r−4+3ωc3 ≤ 1. Now Consider that T is an independent set of G.
We present Claim 7 to estimate µ(P ) − µ(Pi) for i ∈ [4]. Since |D| ≥ 2, |T | ≥ 2 by Claim
7 and 3 ≤ δ(C) ≤ ∆(C) ≤ 4, we have either |D| = 2, |NC(T ) ∪ V (C3)| ≥ 4, or |D| = 3,
|NC(T ) ∪ V (C3)| ≥ 5. When |D| = 2, w.l.o.g., assume dC(v3) = 4. Since |D| = 2 or |D| = 3,
one of the following holds: (i) µ(P )−µ(Pi) ≥ 4−3ωc3 for i ∈ [2], µ(P )−µ(P3) ≥ 5−4ωc3 and
µ(P )−µ(P4) ≥ 6−4ωc3; (ii) µ(P )−µ(Pi) ≥ 4−3ωc3 for i ∈ [3] and µ(P )−µ(P4) ≥ 7−5ωc3.
Then we have the following constraints:

3r−4+3ωc3 ≤ 1,

2r−4+3ωc3 + r−5+4ωc3 + r−6+4ωc3 ≤ 1,

3r−4+3ωc3 + r−7+5ωc3 ≤ 1.

(18)

▷ Claim 7. Given C3 and T as defined in Case 5.4, since Cases 5.2-5.3 don’t hold, we have
|D| ≥ 2 and |T | ≥ 2.

Proof. Notably |D| ≥ 1. If |D| = 1, w.l.o.g., assuming dC(v1) = 3, then v2, v3 ∈ NC(v1),
with dC(v2) = dC(v3) = 4, contradicts with that Case 5.3 doesn’t hold. Thus |D| ≥ 2.

If |D| = 2, suppose to the contrary that |T | ≤ 1. W.l.o.g., assume dC(v1) = dC(v2) = 3,
dC(v3) = 4 and NC({v1, v2}) = {v3, w}. If dC(w) = 3, then C[{v1, v2, w}] forms a 3-cycle
of C with dC(v1) = dC(v2) = dC(w) = 3, contradicting the maximality of |D|. Thus,
dC(w) = 4. Since dC(v1) = 3, dC(w) = 4, and |D| = 2, NC(v1) contains two 4-vertices of
C, leading to a contradiction to that Case 5.3 doesn’t hold.
If |D| = 3, suppose to the contrary that |T | ≤ 1. Then |NC({v1, v2, v3})| = 1, implying
C[NC [{v1, v2, v3}]] is a K4, contradicting that Case 5.2 doesn’t hold. ◁

Case 5.5. δ(C) = 3. If ∆(C) = 4, then there exists uw ∈ E(G) such that dC(u) = 3
and dC(w) = 4. Assume NC(u) = {w, u1, u2}. Since Case 5.4 doesn’t hold, NC(u) is an
independent set of C. Thus dC(w) = 4 and u1w, u2w /∈ E(G) contradicts the assumption
that Case 5.1 doesn’t hold. So δ(C) = ∆(C) = 3. Let v be a 3-vertex of C with NC(v) =
{v1, v2, v3}. Since Case 5.4 doesn’t hold, NC(v) is an independent set of C. By Observation
5, we only need to search for a 4-coloring f of P such that V1(f) ∩ NG[v] ̸= ∅. Thus, we
consider the following four cases: (1) take v; (2) discard v and take v1; (3) discard v, v1 and
take v2; (4) discard v, v1, v2 and take v3. Correspondingly, there are four subinstances: P1 =
(G, I ∪{v}, S ∪NC(v)), P2 = (G, I ∪{v1}, S ∪NC(v1)), P3 = (G, I ∪{v2}, S ∪NC(v2)∪{v1}),
and P4 = (G, I ∪ {v3}, S ∪ NC(v3) ∪ {v1, v2}). Since NC(v) is an independent set in C, we
have |NC(v2) ∪ {v1}| = 4 and |NC(v3) ∪ {v1, v2}| = 5. Recall the definition of EG(S1, S2)
in the Preliminary. Since Case 5.4 doesn’t hold, we have |EC(NC [v], V (G(Pi)))| ≥ 6 for
i ∈ [2] and |EC(NC [v2] ∪ {v1}, V (G(P3)))| ≥ 3. Notably, a vertex w ∈ V (G(Pi)) contributes
1 − ωdG(Pi)(w) weight to µ(P ) − µ(Pi) for i ∈ [4]. Since 1 − ω2 ≤ ω2 − ω1 ≤ ω1 − ω0 by
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Equation (3), we have 1 − ωdG(Pi)(w) ≥ (dG(P )(w) − dG(Pi)(w))(1 − ω2) for w ∈ V (G(Pi)) and
i ∈ [4]. Since |EC(NC [v], V (G(Pi)))| ≥ 6 for i ∈ [2] and |EC(NC [v2] ∪ {v1}, V (G(P3)))| ≥ 3,
we have µ(P ) − µ(Pj) ≥ 4 − 3ωc3 + 6(1 − ω2) for j ∈ [2], µ(P ) − µ(P3) ≥ 5 − 4ωc3 + 3(1 − ω2),
and µ(P ) − µ(P4) ≥ 6 − 5ωc3. Thus, we have the following constraint:

2r−4+3ωc3−6(1−ω2) + r−5+4ωc3−3(1−ω2) + r−6+5ωc3 ≤ 1. (19)

Case 5.6. δ(C) = ∆(C) = 4. Let v be a vertex in C such that |E(C[NC(v)])| is minimized,
and denote the induced subgraph by G′ = C[NC(v)]. Let NC(v) = {v1, v2, v3, v4}. If
∆(G′) = 3, w.l.o.g., assume dG′(v1) = 3, i.e., NC(v1) = {v, v2, v3, v4}. Since there is no K4
in C, we have v2v3, v2v4, v3v4 /∈ E(G). Notably |E(G′)| = 3. Let NC(v2) = {v, v1, w1, w2}.
It is clear that w1, w2 /∈ NC({v, v1}). Thus |E(C[NC(v2)])| ≤ 2 < |E(G′)|, which contradicts
the minimality of |E(G′)|. Hence, ∆(G′) ≤ 2.

Case 5.6.1. ∆(G′) = 2. W.l.o.g., assume dG′(v1) = 2 and NC(v1) = {v, v2, v3, w}, where
w ̸= v4. Since there is no K4 in C, we have v2v3 /∈ E(G). Let D = {v, v1} and by Observation
5, we only need to search for a 4-coloring f of P such that V1(f) ∩ NG[x] ̸= ∅ for x ∈ D.
Thus when we discard v, v1, v2, v3, we directly take w, v4. Specifically, we have five cases:
(1) take v; (2) discard v and take v1; (3) discard v, v1 and take v2; (4) discard v, v1, v2 and
take v3; (5) discard v, v1, v2, v3 and take w, v4. Correspondingly, there five subinstances:
P1 = (G, I ∪ {v}, S ∪ NC(v)), P2 = (G, I ∪ {v1}, S ∪ NC(v1)), P3 = (G, I ∪ {v2}, S ∪ NC(v2)),
P4 = (G, I∪{v3}, S∪NC(v3)∪{v2}), P5 = (G, I∪{v4, w}, S∪NC({w, v4})∪{v2, v3}). Notably
we have µ(P ) − µ(Pi) ≥ 5 − 4ωc3 for i ∈ [3] and µ(P ) − µ(P4) ≥ 6 − 5ωc3. If wv4 ∈ E(G),
we only need to consider (1)-(4). Considering the worst case, we assume wv4 /∈ E(G). It
is clear that |NC({w, v4}) ∪ {v2, v3}| ≥ 5. Consequently, we have µ(P ) − µ(P5) ≥ 7 − 5ωc3.
Thus we have the following constraint:

3r−5+4ωc3 + r−6+5ωc3 + r−7+5ωc3 ≤ 1. (20)

Case 5.6.2. ∆(G′) ≤ 1. It is clear that there are two vertices w1, w2 ∈ V (G′), assuming
V (G′) \ {w1, w2} = {w3, w4}, such that EC({w1, w2}, {w3, w4}) = ∅. W.l.o.g., we assume
EC({v1, v2}, {v3, v4}) = ∅. By Observation 5, we only need to search for a 4-coloring
f of P such that V1(f) ∩ NG[v] ̸= ∅. We have the following five cases: (1) take v; (2)
discard v and take v1; (3) discard v, v1 and take v3; (4) discard v, v1, v3 and take v2;
(5) discard v, v1, v2, v3 and take v4. Correspondingly, there are five subinstances: P1 =
(G, I ∪{v}, S ∪NC(v)), P2 = (G, I ∪{v1}, S ∪NC(v1)), P3 = (G, I ∪{v3}, S ∪NC(v3)∪{v1}),
P4 = (G, I ∪{v2}, S ∪NC(v2)∪{v1, v3}), P5 = (G, I ∪{v4}, S ∪NC({v4})∪{v1, v2, v3}). Since
EC({v1, v2}, {v3, v4}) = ∅, we have µ(P )−µ(Pi) ≥ 5−4ωc3 for i ∈ [2], µ(P )−µ(Pj) ≥ 6−5ωc3
for j ∈ {3, 4}, and µ(P ) − µ(P5) ≥ 7 − 6ωc3. Thus we have the following constraint:

2r−5+4ωc3 + 2r−6+5ωc3 + r−7+6ωc3 ≤ 1. (21)

▶ Theorem 8. For a graph G, we can test whether there exists a 4-coloring of G within
O(1.7159|V (G)|) time complexity and polynomial space.

Proof. We develop a numerical program to find the minimum value of r under Equations
(3)-(21). Subsequently, we determine the values of r and all parameters ωc3, ωk3, ωk4 and ωi

(i ≥ 0) as presented in Table 2. Moreover, we can check that, with the parameters in Table
2, Equations (3) to (21) hold. Thus, the time complexity of our algorithm for solving the
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Table 2 The values of all parameters.

r ωk3 ωk4 ωc3 ω0 ω1 ω2 ωi (i ≥ 3)
1.7159 2.96427205 3.43996139 0.57560002 0 0.92972213 0.99787746 1

instance P = (G, I, S) is O(1.7159µ(P )). Then, the instance P = (G, ∅, ∅) can be solved in
O(1.7159µ(P )) time complexity and polynomial space. Given that µ(P ) =

∑
v∈V (G) ωdG(v) ≤

|V (G)| by Equation (2), this lemma holds. ◀
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A Details about obtaining the convex program

In this section, we illustrate the process of transforming the problem of finding the minimum
r into a convex program using the method in [21, 19], motivated by the goal of eliminating
nonconvex constraint functions. The typical nonconvex constraint functions among Equations
(3)-(21) are formed as

∑t
j=1 r−βj , where βj is a linear combination of ωc3, ωk3, ωk4, and ωi

(where i ≥ 0). Specifically, Equations (6)-(21) are the constraints formed as
∑t

j=1 r−βj . To
handle these constraints, following the method in [21, 19], we introduce a new parameter λ,
representing log2 r. Then,

∑t
j=1 r−βj ≤ 1 can be transformed to

∑t
j=1 2−λβj ≤ 1. Notably,

all λβj , where j ∈ [t], are linear combinations of λωc3, λωk3, λωk4, and λωi (where i ≥ 0).
Then, we introduce new parameters ω′

c3, ω′
k3, ω′

k4, and ω′
i (where i ≥ 0) representing λωc3,

λωk3, λωk4, and λωi (where i ≥ 0) respectively, and refer to them along with λ as new
parameters.

Now, we can transform Equations (6)-(21) into constraints similar to
∑t

j=1 2−β′
j , where

β′
j is a linear combination of the new parameters. For instance, Equation (21) is transformed

into the constraint 2 ·2−5λ+4ω′
c3 +2 ·2−6λ+5ω′

c3 +2−7λ+6ω′
c3 ≤ 1. A key detail is that 2r−5+4ωc3

is transformed into 2 · 2−5λ+4ω′
c3 because −5 + 4ωc3 actually represents −5ω3 + 4ωc3, and ω3

needs to be transformed to λω3 = ω′
3 = λ. Similarly, we transform Equations (3)-(5) into

the following constraints:

0 ≤ ω′
c3 ≤ ω′

1 ≤ ω′
2 ≤ λ,

ω′
3 − ω′

2 ≤ ω′
2 − ω′

1 ≤ ω′
1,

3ω′
2 ≥ ω′

k3,

4ω′
3 ≥ ω′

k4,

ω′
c3 ≥ log2 1.3645

ω′
k3 ≥ log2 4.837,

ω′
k4 ≥ log2 6.

(22)

We now have a convex program: find the minimum λ under these new constraints.
Importantly, the optimal value r∗ of the original quasi-convex program is 2λ∗ , where λ∗ is the
optimal value of the convex program. Readers interested in further details on constructing
the convex program for the measure and conquer method are encouraged to read [21, 19].

B Discussions about the bottleneck

In this section, we present the tight constraints among Equations (4)-(21) and discuss the
potential for improving our algorithm’s efficiency. The tight constraints within this range
are Equations (4), (9)-(11), and (19). Specifically, the values of the left-hand side of these
tight constraints are 0.3107881, 0.9990582, 0.9991849, 0.9999997, and 0.9996582, respectively.
Interestingly, even though Equation (4) is tight, it is not the unavoidable bottleneck. We
searched for a minimum r under Equations (3)-(21), excluding Equations (9)-(11) and (19).
The resulting values of r and all parameters are shown in Table 3. It is verified that the
values in Table 3 satisfy all Equations (3)-(21), except for Equations (9)-(11) and (19). Since
the r value in Table 3 is less than 1.7159, improving the methods for handling Cases 3.2 and
5.5 can lead to a faster algorithm.
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Table 3 The values of all parameters with excluding Equations (9)-(11) and (19).

r ωk3 ωk4 ωc3 ω0 ω1 ω2 ωi (i ≥ 3)
1.7141 2.99988192 3.66711472 0.57672093 0 0.99992243 0.9999775 1

C The intuitions of obtaining Equations (6)-(21)

In this section, we present the intuitions and details behind deriving Equations (6)-(21).
These equations are formulated by analyzing the changes in measure between given instances
and their subinstances. For example, consider Equation (6). In the Case 1, we obtain two
subinstances, P1 and P2, by taking either u or v. And we show that µ(P ) − µ(Pi) ≥ 2ω1 − ω3
for i ∈ [2] in the Case 1. Thus we present Equation (6). Now, let’s discuss the intuitions
and details behind obtaining the lower bounds of the changes in measure between the given
instances and its subinstances.

Consider an instance P = (G, I, S) and denote the maximum degree of G(P ) as ∆.
By Equation (2), µ(P ) consists of three parts: (i) the number of K3-components and
K4-components in G(P ); (ii) the number of vertices in S; (iii) the number of i-vertices,
where i ≥ 0, in non-K3-components and non-K4-components of G(P ). When we obtain a
subinstance P ′ = (G, I ′, S′) by taking and discarding some vertices in V (G(P )), the changes
in measure µ(P ) − µ(P ′) depend on four parts: (i) The numbers of i-vertices in G(P ) that
are put into I ′, denoted by s1,i; (ii) The numbers of i-vertices in G(P ) that are put into
S′, denoted by s2,i; (iii) The numbers of non-K3-components (non-K4-components) of G(P )
that become K3-components (K4-components) in G(P ′), denoted by s3,3 (s3,4); (iv) The
numbers of i-vertices with i ≤ 2 in G(P ′) that are j-vertices with j > i in G(P ), denoted by
s4,i,j . We emphasize that s4,i,j are about the vertices in G(P ′), instead of the vertices just
in the non-K3-components and non-K4-components of G(P ′). Specifically, µ(P ) − µ(P ′) =∑∆

i=1 s1,iωi +
∑∆

i=1 s2,i(ωi −ωc3)+s3,3(3ω2 −ωk3)+s3,4(4−ωk4)+
∑2

i=0
∑∆

j=1 s4,i,j(ωj −ωi).
Let s1,i+ =

∑∆
j=i s1,j and s2,i+ =

∑∆
j=i s2,j . Consider the lower bounds for s1,i+ and s2,i+ ,

denoted as low1,i and low2,i respectively. We emphasize that low1,∆+1 = low2,∆+1 = 0.
Since ωi ≥ ωj when i ≥ j by Equation (3),

∑∆
i=1 s1,iωi ≥

∑∆
j=0(low1,j − low1,j+1)ωj and∑∆

i=1 s2,i(ωi − ωc3) ≥
∑∆

j=0(low2,j − low2,j+1)(ωj − ωc3). This implies that to obtain the
lower bounds of µ(P ) − µ(P ′), we only need to get the lower bounds of s1,i+ and s2,i+ where
i ≥ 0, and the lower bounds of s3,3, s3,4, and s4,i,j where 0 ≤ i ≤ 2 and i < j.

Actually, from the deductions in each case in the main body, we can directly derive the
lower bounds of all kinds of “s” (i.e., s1,i+ , s2,i+ , s3,3, s3,4, and s4,i,j). For the reader’s
convenience in verifying correctness, we provide all the lower bounds for Cases 1-5 below.
Specifically, in each case, the content in (i) represents the lower bounds of all kinds of “s”
derived by the corresponding subinstance Pi. If we do not provide the lower bounds of a
particular type of “s”, it means that we adopt the trivial lower bound. Specifically, the trivial
lower bound is 0, except for s1,i+ and s2,i+ . It is clear that s1,i+ ≥ s1,j+ and s2,i+ ≥ s2,j+

when j ≥ i. If no lower bound of s1,j+ is given for j > i, the trivial lower bound of s1,i+

is 0; otherwise, the trivial lower bound of s1,i+ is max{low1,j | j > i}, where low1,j is the
presented lower bound of s1,j . The same applies to the trivial lower bound of s2,i+ .

Case 1: (1) s1,1+ = 1, s2,1+ = 1; (2) s1,1+ = 1, s2,1+ ≥ 1.
Case 2: In the main body, we have already provided the exact form of µ(P ) − µ(P ′) for

each subinstance and determined their lower bounds using the exact form.
Case 3.1: The lower bounds of µ(P ) − µ(P ′) are divided into four cases. We give the

lower bounds of all kinds “s” in the following (a)-(d).
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(a). (1) s1,2+ = 1, s2,2+ = 2, s2,3+ ≥ 1; (2) s1,3+ = 1, s2,2+ ≥ 3; (3) s1,2+ = 1, s2,2+ ≥
3, s2,3+ ≥ 1;

(b). (1) s1,2+ = 1, s2,2+ = 2, s2,4+ ≥ 1; (2) s1,4+ = 1, s2,2+ = 4; (3) s1,2+ = 1, s2,2+ ≥
2, s2,4+ ≥ 1;

(c). (1) s1,2+ = 1, s2,3+ = 2; (2) s1,3+ = 1, s2,2+ ≥ 3; (3) s1,4+ = 1, s2,2+ ≥ 4, s2,3+ ≥ 1;
(d). (1) s1,2+ = 1, s2,3+ = 2; (2) s1,3+ = 1, s2,2+ ≥ 3; (3) s1,3+ = 1, s2,2+ ≥ 3, s2,3+ ≥ 1.
Case 3.2.1: (1) s1,4+ = 1, s2,2+ = 4, s2,3+ ≥ 1, s4,1,2 ≥ 2; (2) s2,4+ = 1, s3,3 ≥ 1, s4,2,3 ≥ 1.
Case 3.2.2: (1) s1,3+ = 1, s2,2+ = 3, s2,3+ = 1, s4,1,2 ≥ 2; (2)-(3) s1,2+ = 1, s2,2+ =

2, s2,3+ = 1, s3,3 = 1, s4,2,3 = 1.
Case 3.2.3: (1) s1,3+ = 1, s2,3+ = 3, s4,1,2 ≥ 2; (2) s1,3+ = 1, s2,2+ = 3, s2,3+ = 1; (3)-(4)

s1,3+ = 1, s2,2+ ≥ 4, s2,3+ ≥ 2, s4,1,2 ≥ 2.
Case 4: (1) s1,5+ = 1, s2,2+ ≥ 5; (2) s2,5+ = 1.
Case 5.1: (1) s1,3+ = 1, s2,3+ = 3; (2)-(4) s1,3+ = 1, s2,3+ ≥ 4.
Case 5.2.1: In this case we take one of {v1, v2, v3, v4}, if the vertex we take has degree 4,

then we have s1,4+ = 1, s2,3+ = 4; and if has degree 3, then we have s1,3+ = 1, s2,3+ = 3.
Case 5.2.2: (1) s1,3+ = 1, s2,3+ ≥ 3; (2) s2,3+ = 1, s3,4 ≥ 1.
Case 5.2.3: (1)-(2) s1,4+ = 1, s2,3+ ≥ 4; (3) s2,4+ = 2, s3,4 ≥ 1.
Case 5.3: The lower bounds of µ(P ) − µ(P ′) are divided into two cases. We give the

lower bounds of all kinds “s” in the following (a)-(b).
(a). (1)-(2) s1,3+ = 1, s2,3+ = 3; (3) s1,4+ = 1, s2,3+ = 4; (4) or (5) s1,3+ = 2, s2,3+ ≥ 4.
(b). (1)-(2) s1,3+ = 1, s2,3+ = 3; (3) s1,4+ = 1, s2,3+ = 4; (4)-(5) s1,3+ = 2, s2,3+ ≥ 6.
Case 5.4: The lower bounds of µ(P ) − µ(P ′) are divided into three cases. We give the

lower bounds of all kinds “s” in the following (a)-(c).
(a). (1)-(3) s1,3+ = 1, s2,3+ ≥ 3.
(b). (1)-(2) s1,3+ = 1, s2,3+ ≥ 3; (3) s1,4+ = 1, s2,3+ = 4; (4) s1,3+ ≥ 2, s2,3+ ≥ 4.
(c). (1)-(3) s1,3+ = 1, s2,3+ = 3; (4) s1,3+ ≥ 2, s2,3+ ≥ 5.
Case 5.5: We have already provided the comprehensive deduction in the main body.
Case 5.6.1: (1)-(3) s1,4+ = 1, s2,4+ = 4; (4) s1,4+ = 1, s2,4+ = 5; (5) s1,4+ = 2, s2,4+ ≥ 5.
Case 5.6.2: (1)-(2) s1,4+ = 1, s2,4+ = 4; (3)-(4) s1,4+ = 1, s2,4+ ≥ 5; (5) s1,4+ = 1, s2,4+ ≥

6.
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