
Solving Directed Multiway Cut Faster Than 2n

Mingyu Xiao #

School of Computer Science and Engineering, University of Electronic Science and Technology of
China, Chengdu, China

Abstract
In the Directed Multiway Cut problem, we are given a directed graph G = (V, E) and a subset
T ⊆ V , called the terminal set. The aim is to find a minimum sized set S ⊆ V \ T , such that after
deleting S, no directed path exists from one terminal to another terminal in the remaining graph.
It has been an open question whether Directed Multiway Cut can be solved faster than the
trivial running-time bound O∗(2|V |). In this paper, we provide a positive answer to this question,
presenting an algorithm with a running-time bound O(1.9967|V |).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Exact Algorithms, Parameterized Algorithms, Directed Multiway Cut,
Directed Multicut, Directed Graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.104

Funding Mingyu Xiao acknowledges the National Science Foundation of China under Grant No.
62372095.

1 Introduction

The renowned min-cut max-flow theorem establishes that the size of the maximum flow
equates to the size of the minimum cut between two vertices in a graph. Remarkably, both
the maximum flow and the minimum cut can be computed in polynomial time, showcasing
a compelling duality in combinatorics and algorithms. However, this elegant symmetry
fails when we extend to a more generalized problem – one that involves separating more
than two vertices from each other. According to Mader’s Theorem [16], we encounter a
somewhat weaker property in this context: given a subset T of vertices in an undirected
graph G, there either exist k vertex-disjoint paths connecting two distinct vertices in T , or
there is a vertex set of size at most 2k whose removal results in the disconnection of every
pair of vertices within T . Even though a maximum set of vertex-disjoint paths connecting
vertices in T can be computed efficiently in polynomial time using matching techniques, the
corresponding cut problem, referred to as the Multiway Cut problem [5, 20], presents
significant computational challenges. In the context of undirected graphs, Multiway Cut
becomes NP-complete when the number of terminals in T is three [5]. For directed graphs,
the problem turns even more intricate, becoming NP-complete with only two terminals [13].
This paper will delve into the exploration of exact exponential algorithms for the Directed
Multiway Cut problem, which is formally defined as follows.

Directed Multiway Cut
Input: Directed graph G = (V, E), a set T = {t1, t2, . . . , tl} of l vertices in V , called
terminals, and an integer k.
Output: Can we delete a set S ⊆ V \ T of at most k vertices such that in the
remaining graph G − S, there is no path between any two terminals in T?

In the case of undirected graphs, the problem is denoted as Undirected Multiway
Cut. It is worth noting that Multiway Cut is alternatively referred to as Multiterminal
Cut in various literature sources [5, 20]. Another extension of the minimum cut problem is

© Mingyu Xiao;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 104; pp. 104:1–104:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:myxiao@uestc.edu.cn
https://orcid.org/0000-0002-1012-2373
https://doi.org/10.4230/LIPIcs.ESA.2024.104
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

104:2 Solving Directed Multiway Cut Faster Than 2n

known as Multicut [1, 15]. This problem, given a set of terminal pairs, is to disconnect all
these terminal pairs by deleting the fewest number of vertices. Depending on whether the
graph is directed or undirected, we encounter two distinct problems: Directed Multicut
and Undirected Multicut. Multiway Cut is a specific instance of Multicut. In the
former, each pair of terminals will constitute one terminal pair (or two terminal pairs for
directed graphs) in the latter. Both Multiway Cut and Multicut represent significant
generalizations of the minimum cut problem, drawing certain attention in the field of graph
algorithms.

In the realm of exact algorithms, our goal is not to devise polynomial algorithms for NP-
complete problems. Instead, we are interested in determining the fastest possible algorithm
within the context of exponential algorithms. For a myriad of NP-complete problems, there
are straightforward O∗(2n)-time brute-force algorithms, which enumerate all vertex subsets
for graph problems or all assignments for SAT problems, where n is the number of vertices
in the graph or the number of variables in SAT. However, despite decades of research,
no breakthrough has been made in surpassing this basic running-time bound for several
fundamental NP-complete problems. The first NP-complete problem, SAT, is even subject to
the SETH, which stipulates that no algorithm can solve it in O(1.9999n)-time [14]. The well-
known TSP has not seen any improvement beyond the O∗(2n)-time dynamic programming
method developed in the 1960s. Multiway Cut has also been extensively investigated in
exact and parameterized algorithms. For Undirected Multiway Cut, Cygan et al. [4]
introduced an O∗(2k)-time algorithm, an improvement over the previous result of O∗(4k) [2].
Using the general framework of designing exact algorithms via parameterized algorithms in [8],
we can directly solve Undirected Multiway Cut in O∗(1.5n) time. Subsequently, Chitnis
et al. [3] proposed an O(1.4767n)-time1 algorithm for Undirected Multiway Cut. In the
case of Undirected Multicut, Lokshtanov, Saurabh, and Suchý [15] broke the barrier 2n

for the first time by providing an O(1.987n)-time algorithm. When the graph is a directed
one, both Directed Multiway Cut and Directed Multicut become considerably more
challenging. Whether they can be solved faster than O(2n) has remained an open question
in the field of exact algorithms [3, 15]. In this paper, we focus on Directed Multiway
Cut and present a non-trivial algorithm with a running-time bound of O(1.9967n).

Directed Multiway Cut admits a 2-factor approximation in polynomial time [17]. By
using the Approximate Monotone Local Search framework described by Esmer et al. [7], we
can get an algorithm for Directed Multiway Cut with the running time better than 2n

and the approximation ratio arbitrarily close to 1 (but not 1). The approximation factor can
be made arbitrary small at the expense of increasing the running time but still keeping it the
form of (2 − ϵ)n for some ϵ > 0 whenever the approximation factor is strictly greater than 1.
However, our result is still the first proof that the barrier of 2 for Directed Multiway
Cut can be exactly broken.

We should also note the existence of unrestricted versions of Multiway Cut and
Multicut where terminals are permitted to be included in the solution set S. For these
unrestricted versions, the size k of the solution set cannot exceed the number l of terminals;
otherwise, we would be better off simply deleting all terminals. This distinction is crucial.
When the number l of terminals is small, a simple algorithm that enumerates all vertex
subsets of size at most l may already be efficient. Conversely, when the number l of terminals

1 We use the O-notation to hide the constant factor and the O∗-notation to hide the polynomial
factor. Here we use O(1.4767n) instead of O∗(1.4767n) because the actual bound is O∗(an) with
a = 1.4766 · · · < 1.4767. Thus, O∗(an) ⊆ O(1.4767n).

M. Xiao 104:3

is large, we can first enumerate the vertex subsets of V \ T and simplify the problem. By
striking a balance between |T | and |V | − |T |, Chitnis et al. [3] demonstrated that the
unrestricted version of Undirected Multiway Cut can be solved in O(1.4767n) time, an
improvement over the previous result of O(1.8638n) in [11]. Furthermore, the unrestricted
version of Directed Multiway Cut can be solved in O(1.6181n) time [3].

2 Preliminaries

Let G = (V, E) denote a directed graph with a set V of vertices and a set E of edges. An
edge in E is an ordered pair of vertices in V . Let n = |V |. We allow two edges with different
directions between two vertices in the graph.

For a vertex v ∈ V , the set of out-neighbors of v is defined as N+(v) := {u ∈ V : vu ∈
E}, and the set of in-neighbors of v is defined as N−(v) := {u ∈ V : uv ∈ E}. For a
vertex subset V ′ ⊆ V , let N+(V ′) =

⋃
v∈V ′ N+(v) \ V ′, N−(V ′) =

⋃
v∈V ′ N−(v) \ V ′, and

N(V ′) = N+(V ′)
⋃

N−(V ′). For a vertex subset U , we also let N+
U (V ′) = N+(V ′)

⋂
U ,

N−
U (V ′) = N−(V ′)

⋂
U , and NU (V ′) = N(V ′)

⋂
U . The subgraph of G induced by a vertex

subset V ′ ⊆ V is denoted by G[V ′], and we also use G − V ′ to denote the subgraph G[V \ V ′].
A path of length ℓ is a sequence of vertices (x1, x2, . . . , xℓ+1) such that xixi+1 ∈ E for each
1 ≤ i ≤ ℓ. If there exists a path from vertex u to vertex v, then we say vertex u can reach
vertex v, and conversely, vertex v is reachable from vertex u.

In our problem, the set of terminals will be denoted by T = {t1, t2, . . . , tl}. A path is
called a T -path if the first and last vertex are two distinct terminals. A vertex set is called
a multiway cut if there is no T -path in the remaining graph after deleting them. In our
problem, the target is to check whether there is a multiway cut of size at most k. We will be
utilizing the following two simple properties in our algorithm.

▶ Observation 1. Let v be a vertex not in any T -path in the graph G. A vertex set S is a
multiway cut in G if and only if S is a multiway cut in the resulting graph after deleting v

from G.

▶ Observation 2. Let G be a directed graph and G′ be the graph after reversing the direction
of all edges in G. A vertex set S is a multiway cut in G if and only if S is a multiway cut
in G′.

We will utilize Observation 1 to simplify the graph by removing certain vertices not
involved in any T -path. Note that our algorithm may not delete all such vertices. We
intentionally leave some in place to preserve certain properties of the graph structure, which
will be explained later. For the sake of presentation, in one step of our algorithm, we will
reverse the direction of all edges, and Observation 2 guarantees the correctness of this step.

3 The Algorithm for Directed Multiway Cut

The major contribution of this paper is to break the barrier 2n for Directed Multiway
Cut. We present our algorithm in this section. Most of the steps in our algorithm are simple
branching rules. To verify the correctness of a branching rule, we only need to demonstrate
that solutions exist if and only if at least one can be found in some subbranch. We will
first introduce the main concept and the framework of the algorithm. Then, we will detail
the specific steps involved in the algorithm. While introducing each branching rule, we also
discuss its correctness and analyze its complexity.

ESA 2024

104:4 Solving Directed Multiway Cut Faster Than 2n

3.1 The Framework
We now present the main concept of our algorithm. In our procedure, we consistently
establish a vertex subset A that fulfills the following property.

Basic Property.
(1) There is exactly one terminal in A, which is always denoted by t;
(2) There is a path from terminal t to each other vertex in A;
(3) Vertices in A are not allowed to be included in the solution set S.

The set A determines a partition (A, B, R) of the vertex set of the graph. The set B is
always the set of out-neighbors of A, i.e., B = N+(A). All the remaining vertices are in R,
i.e., R = V \ (A ∪ B). See Fig. 1(a) for an illustration of the partition. The algorithm will
always maintain this partition. Initially, the set A contains an arbitrary terminal t ∈ T . In
most steps, the algorithm will select one vertex v ∈ B and branch on v by either excluding
it from the solution set S or including it in the solution set S. In the former branch, we
include v in A, and then some vertices in R will move to B. In the latter branch, we delete
v from the graph and decrease k by 1. The vertices in R may be iteratively moved to B or
disconnected from A ∪ B. By the Basic Property of A, we know that there is no terminal
other than t in A ∪ B; otherwise, the instance is a no-instance, and thus we can directly
solve the problem when R = ∅. However, when N+

R (B) = ∅, we may not be able to move
vertices in R to B anymore. For this case, we will consider two subcases. If it also holds that
N−(A ∪ B) = ∅, we delete A ∪ B from the graph since no vertex in A ∪ B is in a T -path,
and select an arbitrary terminal in the remaining graph as a new initial terminal in A. If
N−(A ∪ B) is not an empty set, we will reverse the direction of all edges in the graph, keep
set A the same and update B = N+(A). For this case, we can show that after deleting some
vertices not in any T -path, the set A will also satisfy the Basic Property. Thus, we can
continue our algorithm.

t

A
B

R

t

A
B

R

(a) The partition (A,B,R) (b) Colored and marked vertices

Figure 1 An illustration of the partition of the graph and colored and marked vertices, where a
terminal is denoted by a square, a non-terminal vertex is denoted by a circle, and a small circle is
put in each marked vertex.

In most steps, we just branch on a vertex by including it in the solution set or excluding it
from the solution set, which may only lead to the trivial bound 2n. Note that our algorithm
will terminate when A ∪ B = V is the whole vertex set. At that time, the vertices in B are
not branched on yet, which may save some running time. Keeping this in mind, we will use

M. Xiao 104:5

a measure-and-conquer method to analyze our algorithm and show that the running-time
bound is strictly better than 2n. The measure-and-conquer method was introduced by Fomin
et al. [10]. It is a powerful tool to analyze exact algorithms. In the measure-and-conquer
method, we will set weights to different types of vertices to distinguish their contribution
to the complexity. To elucidate how we assign weights to the vertices, we use two different
labels. The vertices will be colored in either black, red, or blue, meaning a vertex can be
either one of these colors or uncolored. At a certain step in our algorithm, we will mark
some vertices, making them either marked or unmarked. See Fig. 1(b) for a visualization of
the vertices that have been colored and marked. We have five different weights for vertices:
1, α = 0.958234, β = 0.943555, γ = 0.901789, and 0. The weights of vertices with different
labels are shown in Table 1.

Table 1 The setting of vertex weights, where α = 0.958234, β = 0.943555, and γ = 0.901789.

black red blue uncolored
marked 0 γ γ β

unmarked 0 β α 1

Let us first discuss the color label. Regardless of their marked status, black vertices
are not permitted to be part of the solution set S, and their weight is therefore set to
0. According to the Basic Property, all vertices in A will be black. As per the problem
definition, all terminals in T are also black. We may also generate additional black vertices
in R. Vertices in B are colored either red or blue, based on the following definition of a
generalized out-neighbor. The vertices in R can only be either black or uncolored. One step
of our algorithm will also mark certain vertices. These marked vertices are reachable solely
from one terminal t, i.e., there is no path from any terminal different from t to these vertices.
However, not all vertices with this property will be marked.

Let w be the sum of the weight of all vertices in the graph. Then w ≤ n. We will use w

as the measure to analyze our algorithm and C(w) to denote the worst size of the searching
space of our algorithm on an instance with measure w. We will build a recurrence relation on
C(·) for each branching operation. The complexity of the recurrence relation is determined
by the corresponding branching factor. If among all the branching factors in the algorithm,
the biggest one is µ, then the size of the searching tree is bounded by O(µw). For more
detailed information on evaluating the size of the search tree and the time complexity bounds
for recursive algorithms, refer to [12].

Generalized out-neighbor. A vertex u is referred to as a generalized out-neighbor of vertex v

if vertex u is not colored black and there exists a path from v to u such that all vertices, except
for v and u, within that path are colored black. The set of generalized out-neighbors of vertex
v is denoted by GN+(v). For a vertex set V ′, we will also let GN+(V ′) =

⋃
v∈V ′ GN+(v).

In our algorithm, we mainly consider generalized out-neighbors in set R. Thus, the following
two sets will be frequently used: GN+

R (v) = GN+(v)
⋂

R and GN+
R (V ′) = GN+(V ′)

⋂
R.

A vertex v ∈ B will be colored red if GN+
R (v) = ∅ and blue if GN+

R (v) ̸= ∅. See Fig. 2 for an
illustration of the generalized out-neighbors.

The concept of generalized out-neighbor is inspired by the idea of generalized neighbor
for Feedback Vertex Set in undirected graphs used in [19, 9, 21].

ESA 2024

104:6 Solving Directed Multiway Cut Faster Than 2n

t

.

A
B R

Figure 2 An illustration of generalized out-neighbors: in this graph, GN+
R (v1) = {u2, u4, u6},

GN+
R (v2) = ∅, and GN+

R (v3) = {u3}.

3.2 Main Steps of the Algorithm
In Directed Multiway Cut, terminals cannot be selected to the solution set. We assume
that all terminals are colored black. We also assume that there is no edge between two
terminals; otherwise, the instance is a no-instance. In the algorithm, when we say a vertex
is not allowed to be selected to the solution set, we automatically color it black. Unless
otherwise specified, after each operation of the algorithm, we also automatically update the
color of vertices in A ∪ B by using the Color Principle: any vertex added to A is colored
black; color an uncolored vertex v ∈ B red if GN+

R (v) = ∅ and blue if GN+
R (v) ̸= ∅. After

most steps of the algorithm, the Basic Property of A trivially holds since we only extend A

by moving one vertex from B to A in these steps. The Basic Property for only one step is
not obvious, and we will give a proof. Thus, we will assume that the Basic Property always
holds. We have four simple rules that will be iteratively applied to simplify the instance
before executing any of the main steps.

▶ Reduction Rule 1. If A is empty, include an arbitrary terminal t ∈ T in A.

▶ Reduction Rule 2. If there is a black vertex in B, then move it to A immediately.

This step will always keep the vertices in B red and blue.

▶ Reduction Rule 3. If there is a vertex that can not reach any terminal, then delete it from
the graph. If there is a vertex that is not reachable from any terminal, then delete it from the
graph. If N+(A ∪ B) = N−(A ∪ B) = ∅, then delete A ∪ B from the graph.

Whether a vertex can reach a terminal or is reachable from a terminal can be checked in
polynomial time. A vertex that can not reach any terminal or is not reachable from any
terminal is not in any T -path. Then we can delete it according to Observation 1. When
N+(A ∪ B) = N−(A ∪ B) = ∅, no T -path includes a vertex in A ∪ B. This is due to the fact
that there is only one terminal t in A. Consequently, we can eliminate A ∪ B according to
Observation 1 again.

Next, we are ready to introduce the main process of the algorithm. The algorithm is a
recursive algorithm that contains nine branching steps described below. Before executing
each branching step, we assume that we apply the above three reduction rules first and we
do not describe this each time. Initially, the set A contains only a terminal t by Reduction
Rule 1, B is N+(t), and R = V \ (A ∪ B). The algorithm will recursively do the following

M. Xiao 104:7

until k < 0 or the graph becomes an empty graph: If there is no marked vertex in B ∪ R,
execute Steps 1 to 4; if there is some marked vertex in B ∪ R, execute Steps 5 to 9. Next, we
introduce these steps.

▶ Step 1. If there is a vertex v ∈ B such that |GN+
R (v)| ≥ 3, then branch by either deleting

v from the graph and decreasing k by 1 or including v in A.

The correctness of Step 1 is trivial since any vertex v can be either in the solution or not.
In Fig. 2, the vertex v1 is a vertex satisfying the condition in Step 1. Let d = |GN+

R (v)|. In
the first branch, a blue vertex v is deleted from the graph, and the measure w decreases by
α at least. In the second branch, a blue vertex v is moved to A, and it becomes black. Note
that black vertices in B = N+(A) will be recursively moved to A by Reduction Rule 2. Thus,
all vertices in GN+

R (v) will come to set B. This means that d uncolored vertices will be
colored either red or blue. Note that α > β. In total, the measure w decreases by α+d(1−α)
at least, where d ≥ 3. We get a recurrence relation

C(w) ≤ C(w − α) + C(w − (3 − 2α)), (1)

the branching factor of which is 1.9736.

▶ Step 2. If there is a vertex v ∈ B such that |GN+
R (v)| = 1, then assume GN+

R (v) = {u},
and branch on u by either coloring u black or deleting u from the graph and decreasing k

by 1.

The correctness of Step 2 is also trivial. In Fig. 2, the vertex v3 is a vertex satisfying the
condition in Step 2, and after deleting vertex u3 from the graph, the color of vertex v3 will
change from blue to red. In the first branch of this step, an uncolored vertex u is colored
black, and the measure w decreases by 1. In the second branch, an uncolored vertex u is
deleted from the graph, and the vertex v will become a vertex with GN+

R (v) = ∅. Thus, its
color will change from blue to red. The measure w decreases by at least 1 + (α − β). We get
a recurrence relation

C(w) ≤ C(w − 1) + C(w − (1 + α − β)), (2)

the branching factor of which is 1.9900.

▶ Step 3. If there is a vertex v ∈ B such that |GN+
R (v)| = 2, then assume GN+

R (v) = {u1, u2},
and branch into three branches: coloring u1 black; deleting u1 from the graph, decreasing k

by 1, and coloring u2 black; deleting both of u1 and u2 from the graph and decreasing k by 2.

The correctness of Step 3 is based on the following observation. Vertex u1 can be in the
solution set or not. In the branch where u1 is in the solution, we can further branch on u2
by either including it in the solution set or not. Thus, we get three branches. In the first
branch of excluding u1 from the solution set, an uncolored vertex u1 is colored black, and the
measure w decreases by at least 1. In the second branch, one uncolored vertex u1 is deleted,
one uncolored vertex u2 is colored black, and the measure w decreases by at least 2. In the
third branch, two uncolored vertices u1 and u2 are deleted, the color of vertex v changes
from blue to red, and the measure decreases by at least 2 + (α − β). We get a recurrence
relation

C(w) ≤ C(w − 1) + C(w − 2) + C(w − (2 + α − β)), (3)

the branching factor of which is not greater than 1.9967.

ESA 2024

104:8 Solving Directed Multiway Cut Faster Than 2n

When none of the above steps can be applied, it holds that GN+
R (B) = ∅. After applying

Reduction Rule 3, we also have that N+(A ∪ B) = ∅. If it further holds that N−(A ∪ B) = ∅,
then there is no edge of any direction between A ∪ B and R. For this case, our algorithm will
delete all vertices in A ∪ B by applying Reduction Rule 3. Furthermore, Reduction Rule 1
will be applied to add a new terminal t to A. Next, we assume that N−(A ∪ B) ̸= ∅. We
have some steps to handle with this case. Specially, we will mark some vertices and reverse
the direction of edges in Step 4.

▶ Step 4. If GN+
R (B) = ∅ and N−(A ∪ B) ̸= ∅, then we set all vertices in B as marked

uncolored vertices, reverse the direction of all edges in the graph, keep the set A the same,
and update the set B by letting B = N+(A) in the new graph.

Note that after updating B in Step 4, we will automatically color the vertices in the new
set B according to the Color Principle. We let Y denote the set of marked vertices not
in A. After reversing the direction of all edges, the set B = N+(A) may change (even if
we keep A the same). Thus, it may hold B ≠ Y after Step 4. An illustration of the graphs
before and after Step 4 is shown in Fig. 3.

t

.

A B

R

t

.

A

B

R

(a) The graph before Step 4 (b) The graph after Step 4

Figure 3 An illustration of the graphs before and after Step 4, where a small circle is put in each
marked vertex.

We next show with a series lemmas culminating in Lemma 5 that the Basic Property of
A still holds after Step 4.

▶ Lemma 3. After executing Step 4, no terminal other than t can reach a vertex in A ∪ Y .

Proof. Let G∗ and G denote the graph before and after executing Step 4 (reversing the
direction of all edges), respectively. All vertices in B in G∗ will be marked after Step 4. As
we mentioned above that we execute Steps 1 to 4 only when there is no marked vertex in
B ∪ R. Thus, we know that in G the set Y of marked vertices not in A is exactly the set
B in G∗. We have the condition GN+

R (B) = ∅ in G∗ when executing Step 4. Thus, in G∗,
there is no directed path from a vertex in A ∪ B to any terminal in T \ {t} since A ∪ B

only contains one terminal t. Therefore, after reversing the direction of all edges, in G, no
terminal in T \ {t} can reach a vertex in A ∪ Y . ◀

▶ Lemma 4. After executing Step 4, for each vertex u ∈ A ∪ Y , in the induced subgraph
G[A ∪ Y], there is a path from terminal t to u and also a path from u to t. Furthermore,
any path from terminal t to a vertex in A ∪ Y only contains vertices in A ∪ Y .

M. Xiao 104:9

Proof. We use G∗ and G to denote the graph before and after Step 4, respectively. First, we
consider the graph G∗. The Basic Property of A holds in G∗, and hence there is a directed
path from terminal t to each vertex u ∈ A ∪ B in the subgraph G[A ∪ B]. Assume to the
contrary that there is a vertex u ∈ A ∪ B such that there is no path from it to terminal t.
Then u is not in any T -path to t. Furthermore, u is not in any T -path from t to a terminal
in T \ {t} since GN+

R (B) = ∅. Therefore, vertex u would be deleted by Reduction Rule 3, a
contradiction. We know that there is a path from each vertex u ∈ A ∪ B to terminal t in G∗.
Furthermore, it is easy to derive a contradiction if in G there is a path from u ∈ A ∪ B to
terminal t containing a vertex not in A ∪ B. Thus, in G∗, for each vertex u ∈ A ∪ B, there is
a path from terminal t to u and also a path from u to t in the subgraph G[A ∪ B]. Note that
in G, the set A is the same and the set Y is the set B in G∗. The lemma holds. ◀

▶ Lemma 5. After executing Step 4, the Basic Property of A still holds, and the measure w

does not increase.

Proof. Step 4 does not change the vertices in A and does not change the vertex color in A.
After reversing the direction of all edges, by Lemma 4, we know that there is still a path
from terminal t to each vertex u ∈ A. Thus, the Basic Property of A still holds.

Next, we consider the measure w. Step 4 first makes all vertices in Y as marked uncolored
vertices. Before this, all vertices in Y are unmarked red or blue vertices. Thus, the weight
of a vertex in Y will change from α or β to β according to Table 1. The measure will not
increase. After updating set B, if a marked vertex is colored red or blue, its weight will
change from β to γ; if an unmarked vertex is colored red or blue, its weight will change from
1 to α or β. In any case, the measure will not increase according to the value setting of α, β

and γ in Table 1. We can conclude that the measure will not increase in Step 4. ◀

▶ Lemma 6. After executing Step 4, for each marked vertex v ∈ B, there is a minimum
multiway cut S∗ such that either v is not in S∗ or at least two vertices in GN+

R (v) are not
in S∗.

Proof. Let G be the graph. Assume that there is a minimum multiway cut S′ in G such that
|GN+

R (v) \ S′| ≤ 1 and v ∈ S′. We show that S∗ = (S′ ∪ GN+
R (v)) \ {v} is another minimum

multiway cut not containing v.
For each marked vertex v ∈ B, there is no path from a terminal in T \ {t} to it by

Lemma 3. Thus, each T -path containing v must be a path from t to another terminal t′.
Let G′ be the graph after deleting S∗ from the graph. Assume to the contrary that there
is a T -path P in G′. The path P must be a path from t to another terminal t′. Let P1 be
the subpath of P from v to the terminal t′. Since GN+

R (v) ⊆ S∗ has been deleted in G′, we
know that P1 must contain some other vertex in B. Let u ∈ B be the last vertex in B on
the path P1. Let P2 be the subpath of P1 from u to the terminal t′. Since u ∈ B, we know
that there is a path P3 from t to u that contains only vertices in A ∪ {u}. Then P3 and P2
will form a T -path from t to t′. This T -path does not contain v, and will also appear in the
graph after deleting S′ from G, which contradicts the fact that S′ is a multiway cut in G.
Thus, there is no T -path in G′, and S∗ is also a multiway cut.

Note that |S∗| = |(S′ ∪ GN+
R (v)) \ {v}| ≤ |S′| since |GN+

R (v) \ S′| ≤ 1. Thus, S∗ is a
minimum multiway cut that does not contain v. ◀

By Lemma 6, we know that if |GN+
R (v)| ≤ 1, then there is always a minimum multiway

cut not containing v.

▶ Step 5. If there is a marked vertex v ∈ B with |GN+
R (v)| ≤ 1, then move v to set A.

ESA 2024

104:10 Solving Directed Multiway Cut Faster Than 2n

In Step 5, a blue vertex v will be moved to A and colored black. We decrease the measure
directly without branching. Based on Lemma 6, we can get the following branching rule for
a marked vertex v ∈ B with |GN+

R (v)| = 2.

▶ Step 6. If there is a marked vertex v ∈ B with |GN+
R (v)| = 2, then assume GN+

R (v) =
{u1, u2}, and branch by either moving v to set A or deleting v from the graph, decreasing k

by 1, and coloring u1 and u2 black (including v in the solution set S but not u1 and u2).

In the first branch, a marked blue vertex v will become a black vertex, and the measure w

decreases by γ. In the second branch, one marked blue vertex v is deleted, and two uncolored
vertices u1 and u2 are colored black. Note that the two vertices u1 and u2 may already be
marked. Thus, the measure w decreases by at least γ + 2β. We get a recurrence relation

C(w) ≤ C(w − γ) + C(w − (γ + 2β)), (4)

the branching factor of which is 1.5166.
Next, we consider a marked vertex v ∈ B with |GN+

R (v)| = 3. By Lemma 6, we know
that if a minimum multiway cut S∗ contains v, then we can assume that S∗ contains at most
one vertex in GN+

R (v) = {u1, u2, u3}. For this case, the set S∗ either does not contain u1 or
contains u1 but does not contain u2 and u3.

▶ Step 7. If there is a marked vertex v ∈ B with |GN+
R (v)| = 3, then assume GN+

R (v) =
{u1, u2, u3}, and branch into three subbranches: moving v to set A; deleting v from the
graph, decreasing k by 1, and coloring u1 black (including v in the solution set S but not u1);
deleting v and u1 from the graph, decreasing k by 2, and coloring u2 and u3 black (including
v and u1 in the solution set S but not u2 and u3).

In the first branch, a marked blue vertex v becomes a black vertex, and the measure w

decreases by γ. In the second branch, one marked blue vertex v is deleted and one (marked)
uncolored vertex u1 is colored black, and the measure w decreases by at least γ + β. In the
third branch, one marked blue vertex v and one (marked) uncolored vertex u1 are deleted and
two (marked) uncolored vertices u2 and u3 are colored black, and the measure w decreases
by at least γ + 3β. We get a recurrence relation

C(w) ≤ C(w − γ) + C(w − (γ + β)) + C(w − (γ + 3β)), (5)

the branching factor of which is 1.8453.
For a marked vertex v ∈ B with |GN+

R (v)| = 4 (assume GN+
R (v) = {u1, u2, u3, u4}),

similar to the above case, by Lemma 6, we can branch into four branches: v ̸∈ S; {v, u1}∩S =
{v}; {v, u1, u2} ∩ S = {v, u1}; {v, u1, u2, u3, u4} ∩ S = {v, u1, u2}.

▶ Step 8. If there is a marked vertex v ∈ B with |GN+
R (v)| = 4, then assume GN+

R (v) =
{u1, u2, u3, u4}, and branch into four subbranches: moving v to set A; deleting v from the
graph, decreasing k by 1, and coloring u1 black; deleting v and u1 from the graph, decreasing
k by 2, and coloring u2 black; deleting v, u1 and u2 from the graph, decreasing k by 3, and
coloring u3 and u4 black.

In the first branch, a marked blue vertex v becomes a black vertex, and the measure w

decreases by γ. In the second branch, one marked blue vertex v is deleted and one (possibly
marked) uncolored vertex u1 is colored black, and the measure w decreases by at least γ + β.
In the third branch, one marked blue vertex v and one (possibly marked) uncolored vertex
u1 are deleted and one (possibly marked) uncolored vertex u2 is colored black, and the

M. Xiao 104:11

measure w decreases by at least γ + 2β. In the forth branch, one marked blue vertex v and
two (possibly marked) uncolored vertices u1 and u2 are deleted and two (possibly marked)
uncolored vertices u3 and u4 are colored black, and the measure w decreases by at least
γ + 4β. We get a recurrence relation

C(w) ≤ C(w − γ) + C(w − (γ + β)) + C(w − (γ + 2β)) + C(w − (γ + 4β)), (6)

the branching factor of which is not greater than 1.9967.
For a marked vertex v ∈ B with |GN+

R (v)| ≥ 5, we just use a simple branching rule by
either including it in the solution set or not.

▶ Step 9. If there is a marked vertex v ∈ B with |GN+
R (v)| ≥ 5, then branch by either

moving v to set A or deleting v from the graph and decreasing k by 1.

In the first branch, one marked blue vertex v becomes black, and at least |GN+
R (v)| ≥ 5

uncolored vertices will become red or blue. If an unmarked uncolored vertex becomes an
unmarked red or blue vertex, the measure w decreases by at least min{1 − α, 1 − β} = 1 − α.
If a marked uncolored vertex becomes a marked red or blue vertex, the measure w decreases
by at least β − γ. We let ∆ = min{1 − α, β − γ} = 0.041766. Then the measure w decreases
by at least γ + 5∆. In the second branch, a marked blue vertex v is deleted, and the measure
w decreases by γ. We get a recurrence relation

C(w) ≤ C(w − (γ + 5∆)) + C(w − γ), (7)

the branching factor of which is not greater than 1.9967.

▶ Lemma 7. If there is no marked vertex in B, after applying Reduction Rule 3, all marked
vertices in the graph are in A.

Proof. By Lemmas 3 and 4, we know that among all terminals, only t can possibly reach
a marked vertex v ∈ Y , and any path from t to v only contains vertices in A ∪ Y . In our
algorithm, we never add new edges or new vertices. If a marked vertex v is not removed by
Reduction Rule 3, then there is a path P from t to v that only contains vertices in A ∪ Y .
If v is not in A, then P must contain a vertex in B which is a marked vertex in Y . This
finishes the proof. ◀

Lemma 7 says that when none of Steps 5 to 9 can be applied, there is no marked vertex
in B ∪ R. The vertices in A are not allowed to be selected to the solution set, and we can
see that whether the vertices in A are marked or not does not affect our problem. When no
marked vertex is in B ∪ R , our algorithm will execute the first four steps.

For the sake of completeness, finally we prove the following property that is frequently
used in the algorithm.

▶ Lemma 8. The Basic Property of A always holds after each step following by applying
reduction rules.

Proof. For Step 4, we have proved this in Lemma 5. For other steps, deleting vertices may
only violate item (2) of the Basic Property. Assume item (2) holds before executing an
operation Π and after executing this operation Π terminal t can not reach a vertex v ∈ A. If
Π deletes a vertex u ∈ A, then Π can only be Reduction Rule 3. For this case, vertex v will
also be deleted by Reduction Rule 3 since u is on the path from t to v. If Π deletes a vertex
u ̸∈ A, then Π can only be one of Steps 5 to 9. For this case, the vertex u is a marked vertex
in Y and only terminal t can reach v before deleting u by Lemma 3. After deleting u, no
terminal can reach v and it will not be in any T -path and cycle containing a terminal. Thus,
vertex v will also be deleted by Reduction Rule 3. ◀

ESA 2024

104:12 Solving Directed Multiway Cut Faster Than 2n

We set α, β and γ as variables and generate a constraint for each of above branching
operations to get a quasiconvex program. By solving this quasiconvex program according
to the method introduced in [6], we get a bound of O(1.9967w) by setting α = 0.958234,
β = 0.943555 and γ = 0.901789 for our problem. Among all the branching recurrences in our
algorithm, the worst ones are (3),(6), and (7), which have a branching factor not greater than
1.9967. Thus, Directed Multiway Cut can be solved in O(1.9967w) time. According to
the setting of the vertex weight, we know that w ≤ n. We get the following theorem.

▶ Theorem 9. Directed Multiway Cut can be solved in O(1.9967n) time.

4 Conclusion and Discussion

Fomin et al. [8] put forth a general method for a range of deletion problems to design
exact algorithms and surpass the 2n barrier by leveraging single-exponential parameterized
algorithms. Given an O∗(ak)-time parameterized algorithm where k is the solution size,
we can derive an O∗(bn)-time algorithm where b = 2 − 1/a. For Directed Multiway
Cut, we have not found a single-exponential parameterized algorithm yet; for Directed
Multicut, the problem even becomes W[1]-hard when there are at least four terminal
pairs [18]. Consequently, the method in [8] cannot be currently applied to these two problems.
Fortunately, we have managed to break 2n for Directed Multiway Cut by proposing a
relatively simple algorithm. It seems that directed problems are much harder than undirected
problems. One of the most important techniques in this paper to achieve the breakthrough
should be the technique of reversing the direction of edges. Before reversing the direction,
we use some branching rules; after revising the direction, we use some other branching
rules. This technique, not being used before as far as we know, makes the algorithm simple.
The algorithm presented in this paper may aid us in understanding exhaustive-searching
algorithms for related cut problems in directed graphs.

References
1 Gruia Călinescu, Cristina G. Fernandes, and Bruce A. Reed. Multicuts in unweighted graphs

and digraphs with bounded degree and bounded tree-width. J. Algorithms, 48(2):333–359,
2003.

2 Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
minimum node multiway cut problem. Algorithmica, 55(1):1–13, 2009.

3 Rajesh Chitnis, Fedor V. Fomin, Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan,
and Saket Saurabh. Faster exact algorithms for some terminal set problems. J. Comput. Syst.
Sci., 88:195–207, 2017.

4 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. ACM Trans. Comput. Theory, 5(1):3:1–3:11,
2013.

5 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.

6 David Eppstein. Quasiconvex analysis of multivariate recurrence equations for backtracking
algorithms. ACM Trans. Algorithms, 2(4):492–509, 2006. doi:10.1145/1198513.1198515.

7 Baris Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma. Optimally
repurposing existing algorithms to obtain exponential-time approximations. In David P.
Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 314–345. SIAM, 2024. doi:
10.1137/1.9781611977912.13.

https://doi.org/10.1145/1198513.1198515
https://doi.org/10.1137/1.9781611977912.13
https://doi.org/10.1137/1.9781611977912.13

M. Xiao 104:13

8 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. J. ACM, 66(2):8:1–8:23, 2019.

9 Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. On the minimum
feedback vertex set problem: Exact and enumeration algorithms. Algorithmica, 52(2):293–307,
2008.

10 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for the
analysis of exact algorithms. J. ACM, 56(5):25:1–25:32, 2009. doi:10.1145/1552285.1552286.

11 Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yngve Villanger.
Enumerating minimal subset feedback vertex sets. Algorithmica, 69(1):216–231, 2014.

12 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010.

13 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in node weighted
graphs. J. Algorithms, 50(1):49–61, 2004.

14 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

15 Daniel Lokshtanov, Saket Saurabh, and Ondrej Suchý. Solving multicut faster than 2n. In
Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014 - 22th Annual
European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of
Lecture Notes in Computer Science, pages 666–676. Springer, 2014.

16 W. Mader. Über die maximalzahl kreuzungsfreier h-wege. Arch. Math. (Basel), 31(4):387–402,
1978/1979.

17 Joseph Naor and Leonid Zosin. A 2-approximation algorithm for the directed multiway cut
problem. SIAM J. Comput., 31(2):477–482, 2001. doi:10.1137/S009753979732147X.

18 Marcin Pilipczuk and Magnus Wahlström. Directed multicut is w[1]-hard, even for four
terminal pairs. ACM Trans. Comput. Theory, 10(3):13:1–13:18, 2018. doi:10.1145/3201775.

19 Igor Razgon. Exact computation of maximum induced forest. In Lars Arge and Rusins
Freivalds, editors, Algorithm Theory - SWAT 2006, 10th ScandinavianWorkshop on Algorithm
Theory, Riga, Latvia, July 6-8, 2006, Proceedings, volume 4059 of Lecture Notes in Computer
Science, pages 160–171. Springer, 2006.

20 Mingyu Xiao. Simple and improved parameterized algorithms for multiterminal cuts. Theory
Comput. Syst., 46(4):723–736, 2010.

21 Mingyu Xiao and Hiroshi Nagamochi. An improved exact algorithm for undirected feedback
vertex set. J. Comb. Optim., 30(2):214–241, 2015.

ESA 2024

https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1137/S009753979732147X
https://doi.org/10.1145/3201775

	1 Introduction
	2 Preliminaries
	3 The Algorithm for Directed Multiway Cut
	3.1 The Framework
	3.2 Main Steps of the Algorithm

	4 Conclusion and Discussion

