
The Last Success Problem with Samples
Toru Yoshinaga #

The University of Tokyo, Japan

Yasushi Kawase #

The University of Tokyo, Japan

Abstract
The last success problem is an optimal stopping problem that aims to maximize the probability
of stopping on the last success in a sequence of independent n Bernoulli trials. In the classical
setting where complete information about the distributions is available, Bruss [4] provided an
optimal stopping policy that ensures a winning probability of 1/e. However, assuming complete
knowledge of the distributions is unrealistic in many practical applications. This paper investigates
a variant of the last success problem where samples from each distribution are available instead of
complete knowledge of them. When a single sample from each distribution is allowed, we provide a
deterministic policy that guarantees a winning probability of 1/4. This is best possible by the upper
bound provided by Nuti and Vondrák [33]. Furthermore, for any positive constant ϵ, we show that a
constant number of samples from each distribution is sufficient to guarantee a winning probability
of 1/e − ϵ.
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1 Introduction

Imagine you are driving down a street toward a movie theater, hoping to park in a space
near the destination. You cannot know in advance which parking spaces are free. Each
time you encounter an available space, you must decide whether to park there or continue
driving. Your goal is to maximize the probability of parking in the available space nearest to
the theater without going back. This scenario is studied as the last success problem in the
literature on optimal stopping theory [15, 35].

The last success problem is an optimal stopping problem that aims to maximize the
probability of stopping on the last success in a sequence of independent n Bernoulli trials,
where the success probability of ith trial is known to be pi for each i ∈ {1, 2, . . . , n}. The
event of stopping on the last success is referred to as a win, whereas the other event is
referred to as a loss.

This problem is a generalization of various optimal stopping problems, including the
classical secretary problem, and has a wide range of applications such as parking [35], main-
tenance planning for production equipment [27, 31], and ethical choices for clinical trials [6].
The last success problem was originally studied by Hill and Krengel [25]. Subsequently,
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Bruss [4] provided an optimal stopping policy for this problem. Bruss’s policy is to stop
at the first success from the index τ = min

{
t ∈ {1, 2, . . . , n} |

∑n
i=t+1 ri < 1

}
, where ri

denotes the odds defined as pi/(1 − pi). Here, we treat ri as ∞ if pi = 1. In words, this
policy stops at the first observed success within the range where the sum of the odds of
future successes is less than one. Bruss’s policy guarantees a winning probability of at least
1/e if the sum of the odds is at least one, i.e.,

∑n
i=1 ri ≥ 1, and this lower bound is shown to

be optimal [5]. Note that an assumption about the sum of the odds is needed to guarantee
a winning probability. Without such an assumption, there can be a situation where no
successes occur (i.e., p1 = · · · = pn = 0), leading to an inevitable loss of any policy.

However, the assumption that the success probabilities are completely known is too
restrictive in certain cases. For example, in the parking problem, it seems unnatural to know
the probability of each parking place being available. Nevertheless, if you have previously
driven to the movie theater, you would be aware of whether each parking space was available
at that time. To model such a situation, it is appropriate to assume unknown distributions
along with finite data obtained from them. To address real-world applications, optimal
stopping problems under limited information have recently been extensively studied [1, 2, 3,
10, 13, 12, 18, 19, 21, 23, 28, 29, 32].

In this paper, we investigate the last success problem in the sample model where the
decision maker has only m samples for each (unknown) distribution. Very little is known
about the problem of this variant, excluding the fact that no policy achieves a winning
probability strictly better than 1/4 in the single sample case where m = 1.

▶ Theorem 1 (Nuti and Vondrák [33]). For any positive real ϵ, there does not exist a
(randomized) stopping policy for the single sample last success problem that guarantees a
winning probability of 1/4 + ϵ even when a success occurs with probability one.

Nuti and Vondrák [33] provided this impossibility result while examining a setting named
the adversarial order single sample secretary problem, which is an optimal stopping problem
with the goal of maximizing the probability of stopping on the largest value in a sequence
of n independent real-valued random variables. Observing a tentatively maximum value in
this problem can be interpreted as observing a success in our problem. They also proved
that the following simple policy achieves a winning probability of 1/4: set the largest value
from the samples as a threshold and stop at the first index whose value beats this threshold.
However, this fact does not directly imply the existence of a stopping policy that attains a
winning probability of 1/4 for the last success problem. Indeed, for the last success problem,
the winning probability for any algorithm is 0 if the success probabilities are 0. Note that, in
the adversarial order single sample secretary problem, such a case does not exist because the
first variable must be a tentatively maximum value.

Our Contributions

We first examine the no-sample model, where m = 0, and show that no policy can guarantee
a positive winning probability even when a success occurs with probability one (Theorem 5).

For the single sample model, where m = 1, we propose two natural deterministic policies,
which we call the from the last success (FLS) policy and the after the second last success
(ASLS) policy, and evaluate their winning probabilities. Each of the two policies first
determines a threshold index from the sample sequence and then stops at the first success
from the index. The FLS policy and the ASLS policy select the index of the last success
and the next index of the second-last success in the sample sequence as the threshold index,
respectively. We show that the FLS policy cannot guarantee a winning probability of better
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than (1 − e−4)/4 ≈ 0.2454 even in instances where a success occurs with probability one
(Theorem 6). On the other hand, we prove that the ASLS policy guarantees a winning
probability of 1/4 for every instance where the sum of the odds is at least (

√
3−1)/2 ≈ 0.3660

(Theorem 7). We also demonstrate that the ASLS policy is nearly optimal for any case with
a restriction on the sum of the odds.

Moreover, we analyze a randomized policy derived from a policy proposed by Nuti and
Vondrák [33] for the adversarial order single sample secretary problem. This policy randomly
selects the threshold index to be either the index of the last success or the next index of
the last success in the sample sequence, each with a probability of 1/2. We conducted this
analysis for comparison with our policies. Our analysis reveals that this policy guarantees
a winning probability of 1/4 if the sum of the odds is at least 1/2 (Theorem 8) for our
problem setting. However, it fails to guarantee a winning probability of 1/4 if the sum of the
odds is slightly less than 1/2. Thus, we conclude that the ASLS policy is superior in both
performance and deterministic nature.

For the multiple sample model, we provide a policy that guarantees a winning probability
of 1/e − ϵ with a constant m for any positive constant ϵ if the sum of the odds is at least
1 (Theorem 9). Notably, this result does not depend on the number of trials n. A natural
policy would be to estimate the probability of success for each distribution and apply Bruss’s
policy. However, such a method may lead to errors that depend on the number of trials n.
Instead, our policy determines a threshold index from the samples by estimating an index i

such that
∏n

k=i(1 − pk) ≤ 1/e + δ and
∏n

k=i+1(1 − pk) ≥ 1/e for a small δ > 0. To evaluate
the winning probability of this policy, we first demonstrate that its winning probability is at
least 1/e − δ if it correctly identifies an index i that satisfies these conditions. Subsequently,
we show that an index i meeting the conditions can be selected with high probability by
utilizing a martingale property. Moreover, we prove that no policy can guarantee a winning
probability of exactly 1/e if m is a finite number (Proposition 4). Due to space limitations,
most of the proofs are omitted and can be found in a full version [37].

1.1 Related work
One of the most fundamental problems in optimal stopping is the secretary problem (see
the survey by Ferguson [22] for a detailed history). In the classical setting, applicants are
interviewed one by one in a random order. After each interview, the interviewer must make
an immediate and irrevocable decision to either hire or reject the candidate. The interviewer
can only rank the candidates among those interviewed up to that point. The goal is to
maximize the probability of hiring only the best candidate. The secretary problem can be
viewed as a special case of the last success problem of known distributions where pi = 1/i

for i = 1, 2, . . . , n. This is because the occurrence of a best candidate so far in the secretary
problem is analogous to the occurrence of a success in the last success problem.

Another fundamental problem is the prophet inequality problem. In this problem, a
decision-maker observes a sequence of individual real-valued random variables, one by one.
For each observation, an irrevocable decision must be made to either select the current
variable or wait for the next one. The objective is to select the variable with the best value. It
is known that a 1/2-competitive algorithm exists for this problem, and it is best possible [30].

Models that allow limited sample access to unknown distributions have been proposed for
online optimization in recent years. Azar et al. [3] introduced a sample model in which inputs
are drawn from unknown distributions, but the decision maker can access some samples from
each distribution. They applied this model to the prophet inequalities under constraints,
guaranteeing a constant competitive ratio for each setting. Rubinstein et al. [34] proposed
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a stopping policy with a competitive ratio of 1/2 for the single sample prophet inequality.
Remarkably, this competitive ratio is optimal even when the distributions are fully known in
advance [30]. Building on these works, online optimization problems with a limited number of
samples have been studied extensively for the past decade [8, 12, 9, 11, 14, 16, 20, 24, 28, 33].

Several studies have also been conducted on the last success problem in the unknown
distribution setting. Bruss and Louchard [7] considered a variant of the last success problem
where the distributions are unknown but identical (i.e., p1 = · · · = pn = p). They investigated
a stopping policy by estimating the success probability p from observed random variables.
The special case of our problem with m = 1 can be reduced to the single sample secretary
problem in an adversarial order by considering the no success scenario as a win (refer to
the subsection 3.3 in details). Nuti and Vondrák [33] proposed a policy for the problem
that ensures a winning probability of 1/4 and showed that this is best possible by using
Theorem 1.1

2 Preliminaries

2.1 Model
We formally define the last success problem with m samples. For a positive integer n, we
denote the set {1, . . . , n} by [n]. Suppose that there are n random variables X1, . . . , Xn,
following independent and non-identical Bernoulli distributions. A trial i is called success if
Xi = 1. For each trial i ∈ [n], the success probability pi = Pr[Xi = 1] is unknown. Instead,
m samples independently drawn from the ith Bernoulli distribution are available for each
i ∈ [n]. We sequentially observe realizations of the variables X1, . . . , Xn. Upon observing a
success at trial i, an immediate and irrevocable decision must be made to either halt the
observation or continue to the subsequent trial. This decision must be based only on the
observed values X1, . . . , Xi and the samples. The result is a win if stopping the observation
on the last success (i.e., Xi = 1 and Xi+1 = · · · = Xn = 0). Note that, if no successes are
observed by the end of the sequence, the result must be a loss. Our goal is to design a
stopping policy that maximizes the probability of a win, that is, the probability of stopping
at the last success.

We will evaluate policy performance with a worst-case analysis. However, for instances
where successes never occur (i.e., p1 = · · · = pn = 0), the probability of a win is zero no
matter what policies are used. To conduct a meaningful analysis, we use the sum of the
odds R =

∑n
i=1 ri as a parameter in our analysis, where ri = pi/(1 − pi) is the odds of ith

trial. This parameter R plays a crucial role in the context of the last success problem [4].
Let Im,R be the set of instances of the last success problem with m samples such that the
sum of the odds is at least R. For a stopping policy P and an instance I ∈ Im,R, let P(I)
be the winning probability when we apply P to I. Then, we call infI∈Im,R

P(I) the winning
probability of P for the (m, R)-last success problem. The (m, R)-last success problem is easier
than the (m, R′)-last success problem when R > R′ since IR ⊊ IR′ . Thus, the easiest case is
the (m, ∞)-last success problem.

2.2 Basic observation
The sum of the odds R is associated with the probability of no success as follows.

1 Nuti and Vondrák [33] provided this lower bound even for a slightly more general problem called the
adversarial order two-sided game of googol.
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▶ Lemma 2. For p1, . . . , pn ∈ [0, 1], let R =
∑n

i=1 pi/(1 − pi) and Q =
∏n

i=1(1 − pi). Then,
we have 1/eR ≤ Q ≤ 1/(1 + R).

We can derive an upper bound of the winning probability for the last success problem
with samples by referencing the upper bound in the complete information setting.

▶ Proposition 3 (Bruss [4]). The winning probability of any (randomized) stopping policy
for the (m, R)-last success problem is at most R/eR if R ≤ 1 and at most 1/e if R ≥ 1.

For the prophet inequality problem [30], it has been demonstrated that the optimal
performance of 1/2, which can be achieved with complete information, can be attained using
just a single sample [34]. In contrast, for the last success problem, the optimal winning
probability 1/e, which can be achieved with complete information, cannot be attained using
a finite number of samples.

▶ Proposition 4. For any (randomized) stopping policy and any positive integer m, the
winning probability for the (m, ∞)-last success problem is strictly less than 1/e.

Of course, this proposition also holds for the (m, R)-last success problem with any positive
real R.

For the no-sample setting where m = 0, we can demonstrate that no (randomized)
stopping policy can guarantee a positive constant probability of winning. Indeed, consider
a scenario where the adversary selects an index j uniformly at random from [n] and sets
the success probabilities as p1 = · · · = pj = 1 and pj+1 = · · · = pn = 0. In this scenario, we
need to correctly guess the index j to win, which can only be done with a probability of 1/n.
Hence, by Yao’s principle [36], any stopping policy can win with probability at most 1/n for
an instance with n trials. Note that the sum of the odds of the instance is ∞ by p1 = 1. By
considering the limit as n approaches infinity, we obtain the following theorem.

▶ Theorem 5. The winning probability of any (randomized) stopping policy is zero for the
(0, ∞)-last success problem.

3 Single sample model

In this section, we concentrate on the special case where m = 1 for the last success problem
with m samples, which we refer to as the single sample last success problem. Throughout
this section, we write Yi ∈ {0, 1} to denote the sample of ith trial for each i ∈ [n].

3.1 Estimating the sum of the odds
When all success probabilities are known in advance, the optimal stopping policy for the last
success problem is Bruss’s policy [4], wherein one stops on the first success for which the sum
of the odds for the future trials is at most 1. Given this, a natural approach to our single
sample setting is to compute an estimated success probability p̂i for each trial i ∈ [n] from
the sample Yi and then apply Bruss’s policy based on these estimated success probabilities.
Let α0 and α1 be real numbers in the range [0, 1], and consider estimating p̂i as α0 if Yi = 0
and p̂i as α1 if Yi = 1. We will then show that regardless of the values of α0 and α1 used for
estimation, we cannot achieve a winning probability of 1/4 even when a success occurs with
probability 1.

We examine three cases: (i) α0 > 0, (ii) α1 < 1/2, and (iii) α0 = 0 and α1 ≥ 1/2.
For the first case, where α0 > 0, we consider an instance with n = ⌈1/a1⌉ + 1 trials

such that the success probabilities are p1 = 1 and p2 = · · · = pn = 0. Note that the
last success is the first trial, which means that we must stop at the first trial to win.

ESA 2024
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Here, the estimated success probabilities must be p̂1 = α1 and p̂2 = · · · = p̂n = α0. As∑n
i=2 p̂i/(1− p̂i) = ⌈1/α0⌉·α0/(1−α0) > 1, the threshold index must be at least 2. Therefore,

the policy wins with a probability of 0.
For the second case, where α1 < 1/2, we examine an instance with p1 = p2 = 1 and

n = 2. The estimated success probabilities must be p̂1 = p̂2 = α1. Further, the threshold
index cannot be 2 because p̂2/(1 − p̂2) = α1/(1 − α1) < 1. Thus, the policy always stops at
the first trial, resulting in a winning probability of 0.

Now, it remains to examine the last case where α0 = 0 and α1 ≥ 1/2. In this case, the
policy sets the index of the last success in the samples as a threshold because α1/(1 − α1) ≥ 1
and α0/(1 − α0) = 0. We refer to this policy as the From the Last Success (FLS) policy,
and we demonstrate that this policy cannot guarantee a winning probability exceeding
(1 − e−4)/4 ≈ 0.2454 < 1/4 even when at least one success is guaranteed to occur, i.e., the
sum of the odds R is positive infinity.

▶ Theorem 6. The winning probability of the FLS policy for the (1, ∞)-last success problem
is at most (1 − e−4)/4.

Proof sketch. For the instance where the success probabilities are p1 = 1 and p2 = · · · =
pn = 2/n, the winning probability of the FLS policy can be computed as(

1 − 2
n

)2n−2
+

n∑
k=2

(n − k + 1) · 2
n

· 2
n

·
(

1 − 2
n

)2n−2k

=
(

1 − 2
n

)n
2 · 4(n−1)

n

+ 4
n

n∑
k=2

(
1 − k − 1

n

)(
1 − 2

n

)n
2 ·4(1− k

n )

→ 1
e4 +

∫ 1

0
4(1 − x) ·

(
1
e

)4(1−x)
dx = 1

e4 +
∫ 1

0

4x

e4x
dx

= 1
e4 +

[
−(4x + 1)

4e4x

]1

0
= 1

e4 − 5
4e4 + 1

4 = 1 − e−4

4 ,

as n goes to infinity, where the limit is evaluated by limx→∞(1−1/x)x = 1/e and interpreting
the sum as a Riemann sum. ◀

3.2 Direct utilization of success positions
As demonstrated in the previous subsection, Bruss’s policy with estimated success probabilities
fails to achieve the winning probability of 1/4. Nevertheless, by appropriately setting the
threshold, we propose a deterministic policy that guarantees a winning probability of 1/4
as long as the sum of the odds R is at least (

√
3 − 1)/2. Note that achieving a winning

probability of 1/4 is best possible according to Theorem 1.
We consider stopping policies that determine the threshold index based only on the

relative position from the success indices in the sample sequence. Then, the threshold needs
to be set between the indices of the last success and the second-to-last success of the samples.
Indeed, if the threshold is set after the last success index in the sample sequence, then the
winning probability becomes zero for the instance with n = 2 and (p1, p2) = (1, 0). Similarly,
setting the threshold before or at the second last success index in the samples results in a
winning probability of zero for the instance with n = 2 and (p1, p2) = (1, 1). Setting the
threshold at the last success (i.e., the FLS policy) is also not effective, as we showed in
Theorem 6. Therefore, the threshold should be set between the indices of the last success
and the second last success in the sample sequence.
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We consider the policy of setting the threshold at the next index of the second last success
in the sample sequence. We refer to this policy as the After the Second Last Success (ASLS)
policy. If there are fewer than two successes in the samples, the threshold is assumed to be
index 1. We demonstrate that the ASLS policy wins with a probability of at least 1/4 if the
sum of the odds R is at least (

√
3 − 1)/2 (≈ 0.3660).

▶ Theorem 7. The winning probability of the ASLS policy for the (1, R)-last success problem
is at least 1/4 if R ≥ (

√
3 − 1)/2 and at least R(4+3R)

4(1+R)2 if 0 ≤ R ≤ (
√

3 − 1)/2.

Proof. We give the proof only for the cases where 0 ≤ pi < 1 for all i ∈ [n]. The other cases
where pi = 1 for some i ∈ [n] can be proved by considering the continuity of the winning
probability with respect to p1, . . . , pn.

To simplify the analysis, we add two virtual trials that ensure success before the actual
trials. Specifically, we place them at the 0th and −1st positions with p0 = p−1 = 1 and
X0 = X−1 = Y0 = Y−1 = 1. With these virtual trials, both sample and actual sequences
must contain at least two successes. Let i1 and i2 be the indices of the last and the second
last success observed in the sample sequence (Yi)n

i=−1, respectively. Similarly, let j1 and j2
be the indices of the last and the second last success observed in (Xi)n

i=−1, respectively. We
then analyze the winning probability of the ASLS policy based on the relative positions of
i1, i2, j1, j2.

We classify possible outcomes into 16 cases of (a)–(p) as illustrated in Figure 1. Let p

denote the probability that case (a) occurs. By symmetry, the probabilities that cases (b),
(c), and (d) occur are also p each. However, the probability that case (g) (and also (h))
occurs is different from p. This difference arises because the actual sequence in case (g) may
contain successes between i1 and j2. Let us denote q as the probability of case (e) occurring.
By symmetry, the probability of case (f) occurring is q as well. Additionally, let r represent
the probability of case (g) occurring, then the probability that case (h) occurs is also r due
to symmetry.

Consider a realization of the sample and actual sequences. If the realization is classified
as being in case (g), then swapping the realizations of Xj2 and Yj2 results in case (a), (c), or
(e). Conversely, if the realization is classified as being in case (a), (c), or (e), then swapping
the realizations of Xi1 and Yi1 leads to case (g). As such swaps yield sequences with the
same realization probability, we can conclude that

r = 2p + q. (1)

Similarly, let us denote the probability of case (i) (or case (j)) occurring as s and the
probability of case (k) (or case (l)) occurring as t, respectively. The relative position of case
(m) matches that of case (k), but we categorize them separately since the ASLS policy wins
for case (m). We also consider case (n) separately from case (k) for the convenience of the
analysis. Let the probability of cases (m) and (n) occurring be denoted as u. Moreover, let v

be the probability of cases (o) occurring. However, in the case of no success, we separate it
and denote it as case (p) with probability w since the ASLS policy cannot win. Note that
there are two or more non-virtual successes for cases (a) to (i) and case (o). In all other
cases, non-virtual successes are at most one. Since each realization is classified uniquely into
one case in Figure 1, we obtain

4p + 2q + 2r + 2s + 2t + 2u + v + w = 8p + 4q + 2s + 2t + 2u + v + w = 1, (2)

where the first equality holds by (1).

ESA 2024
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Note that w =
∏n

i=1(1 − pi)2 represents the probability that successes occur only in
virtual trials. The probability of case (m) occurring can be expressed as

u =
(

n∏
i1=1

(1 − pi1)
)

·

 n∑
j2=1

pj2

∏
i2∈[n]\{j2}

(1 − pi2)


=

n∏
i=1

(1 − pi)2 ·
n∑

j=1

pj

1 − pj
= wR. (3)

The probability of having exactly one success in each of the actual and sample sequences,
excluding the virtual trials, is n∑

j=1
pj

∏
i∈[n]\{j}

(1 − pi)

2

=

 n∏
i=1

(1 − pi) ·
n∑

j=1

pj

1 − pj

2

= wR2.

This situation is classified as case (e), (f), or (o). Thus, we have

wR2 ≤ 2q + v. (4)

The probability of the last successes in both the actual and sample sequences having the
same index (i1 = j1) is

2s + v =
n∑

i=1
p2

i

n∏
j=i+1

(1 − pj)2, (5)

where the right-hand side is obtained by directly computing the probability, and the left-hand
side is derived from the probabilities that cases (i), (j), and (o) occur. The probability that
the indices of the second last successes of the actual and the sample sequences are the same
(i.e., i2 = j2) is

2q + v − wR2 =
n∑

i=1
p2

i

n∏
j=i+1

(1 − pj)2

 n∑
j=i+1

rj

2

(6)

where the right-hand side is obtained by directly computing the probability, and the left-hand
side is derived from the probabilities that cases (e), (f), and (o) occur. Moreover, the
probability t can be expressed as

t =
n∑

i=1
p2

i

n∏
j=i+1

(1 − pj)2

 n∑
j=i+1

rj

 . (7)

By combining (5), (6), and (7), we have

t ≤ (2s + v) + (2q + v − w · R2)
2 = q + s + v − w · R2

2 , (8)

since (1 + (
∑n

j=i+1 rj)2)/2 ≥
∑n

j=i+1 rj holds by the AM-GM inequality for every i ∈ [n].
Since w represents the probability of no success in both the sample and the actual

sequence, we have

w ≤
(

1
1 + R

)2
(9)

by Lemma 2.
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Yi :
Xi :

i2 i1

j2 j1

(a) 0 ≤ i2 < j2 < i1 < j1 ≤ n (w.p. p)

Yi :
Xi :

i2 i1

j2 j1

(b) 0 ≤ j2 < i2 < j1 < i1 ≤ n (w.p. p)

Yi :
Xi :

i2 i1

j2 j1

(c) 0 ≤ j2 < i2 < i1 < j1 ≤ n (w.p. p)

Yi :
Xi :

i2 i1

j2 j1

(d) 0 ≤ i2 < j2 < j1 < i1 ≤ n (w.p. p)

Yi :
Xi :

i2 i1

j2 j1

(e) 0 ≤ i2 = j2 < i1 < j1 ≤ n (w.p. q)

Yi :
Xi :

i2 i1

j2 j1

(f) 0 ≤ i2 = j2 < j1 < i1 ≤ n (w.p. q)

Yi :
Xi :

i2 i1

j2 j1

(g) −1 ≤ i2 < i1 < j2 < j1 ≤ n (w.p. r)

Yi :
Xi :

i2 i1

j2 j1

(h) −1 ≤ j2 < j1 < i2 < i1 ≤ n (w.p. r)

Yi :
Xi :

i2 i1

j2 j1

(i) 0 ≤ i2 < j2 < j1 = i1 ≤ n (w.p. s)

Yi :
Xi :

i2 i1

j2 j1

(j) 0 ≤ j2 < i2 < j1 = i1 ≤ n (w.p. s)

Yi :
Xi :

i2 i1

j2 j1

(k) 0 ≤ i2 < j2 = i1 < j1 ≤ n (w.p. t)

Yi :
Xi :

i2 i1

j2 j1

(l) 0 ≤ j2 < i2 = j1 < i1 ≤ n (w.p. t)

Yi :
Xi :

−1 0

0 j1

(m) −1 = i2 < j2 = i1 = 0 < j1 ≤ n (w.p. u)

Yi :
Xi :

0 i1

−1 0

(n) −1 = j2 < i2 = j1 = 0 < i1 ≤ n (w.p. u)

Yi :
Xi :

i2 i1

j2 j1

(o) 0 ≤ i2 = j2 < i1 = j1 ≤ n (w.p. v)

Yi :
Xi :

−1 0

−1 0

(p) −1 = i2 = j2 < i1 = j2 = 0 (w.p. w)

Figure 1 Classifications of the relative positions of i1, i2, j1, j2. Red lines indicate locations
without success.
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Now, we are ready to demonstrate that the ASLS policy guarantees a winning probability
of 1/4. As depicted in Figure 1, the ASLS policy wins if the realization is classified as case
(b), (c), (e), (f), (j), (m), or (o). Consequently, the winning probability is at least

2p + 2q + s + u + v = 8p + 4q + 2s + 2t + 2u + v + w

4 + 4q + 2s − 2t + 2u + 3v − w

4

= 1
4 + 4q + 2s − 2t + 2u + 3v − w

4 (by (2))

≥ 1
4 + 4q + 2s − 2(q + s + v − w · R2/2) + 2u + 3v − w

4 (by (8))

= 1
4 + 2q + 2u + v + w(R2 − 1)

4

= 1
4 + 2q + v + 2wR + w(R2 − 1)

4 (by (3))

≥ 1
4 + wR2 + 2wR + w(R2 − 1)

4 (by (4))

= 1
4 + w(2R2 + 2R − 1)

4 .

Here, (2R2 + 2R − 1) is non-negative if and only if R ≥ (
√

3 − 1)/2. Thus, the winning
probability is at least 1/4 if R is at least (

√
3 − 1)/2 by w ≥ 0. Also, if R < (

√
3 − 1)/2, the

winning probability is at least 1
4 + 2R2+2R−1

4(1+R)2 = R(4+3R)
4(1+R)2 by (9). ◀

For the (1, R)-last success problem, the winning probability of any policy is at most
1/4 (Theorem 1) and at most R/eR if R ≤ 1 (Proposition 3). Introducing α ≈ 0.357 such
that α/eα = 1/4, the upper bound is summarized as R/eR for R ≤ α and 1/4 for R ≥ α.
Consequently, the ASLS policy attains nearly the best possible winning probability for any
R, as illustrated in Figure 2.

R

1/4

Winning prob.

O √
3−1
2 ≈ 0.366

R(4+3R)
4(1+R)2

0.357 ≈ α

R
eR

Figure 2 The winning probability of the ASLS policy (red line) and an upper bound of any policy
for the (1, R)-last success problem (black dashed line).

3.3 Applying a policy by Nuti and Vondrák
Nuti and Vondrák [33] considered an optimal stopping problem called the adversarial order
single sample secretary problem and gave a simple optimal stopping policy. Their policy can
be converted into a stopping policy for the (1, R)-last success problem using randomization.
This policy is a natural candidate that is expected to outperform the ASLS policy. However,
this section observes that this is not the case. More precisely, we demonstrate that the policy
achieves a winning probability of 1/4 only if R is at least 1/2. This means that the ASLS
policy is superior in both performance and deterministic nature.
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The adversarial order single sample secretary problem is described as follows: A sequence
of independent real-valued random variables V1, V2, . . . , Vn is revealed one by one. Upon
observing the value of Vi, an immediate and irrevocable decision must be made to either
halt the observation or continue with other subsequent observations. It is assumed that the
distribution that each random variable Vi follows is unknown, but a prior sample Wi that
follows the same distribution as Vi is given for each i ∈ [n]. The goal is to maximize the
probability of stopping at the highest value among Vi’s. The single sample last success problem
can be reduced to the adversarial order single sample secretary problem by considering a
distribution where Vi = i with probability pi and 0 with probability 1 − pi, if we treat the
no-success scenario as a win (or at least one success appears with probability 1).

For the adversarial order single sample secretary problem, Nuti and Vondrák [33] proposed
the following simple policy: set the maximum value in the sample sequence as the threshold,
and then stop when a value exceeding the threshold is observed. Here, if two values are
the same, we make a random tie-break.2 This policy wins with a probability of at least 1/4
as follows [33]: suppose the largest two numbers that appear in V1, . . . , Vn, W1, . . . , Wn are
a1, a2. Then, the policy wins if a2 comes from W1, . . . , Wn and a1 comes from V1, . . . , Vn.
Thus, it wins with probability 1/4 if a1, a2 come from different trials, and with probability
1/2 if a1, a2 come from the same trial.

This policy leads to the following randomized policy for the single sample last success
problem: set the threshold index τ either to the index of the last success or to the next
index of the last success in the sample sequence, each with a probability of 1/2. If no success
appears in the sample sequence, it sets τ to be 1. We refer to this policy as the From the
Last Success, Randomized (FLSR) policy. We demonstrate that the FLSR policy guarantees
a winning probability of 1/4 only if R ≥ 1/2, which is a stronger condition than the one
of the ASLS policy. We remark that the above elegant analysis conducted by Nuti and
Vondrák is not applicable to the FLSR policy if R < ∞. This is because a no-success scenario
(X1 = · · · = Xn = 0) results in a loss in the last success problem, whereas its corresponding
scenario (V1 = · · · = Vn = 0) leads to a win in the reduced adversarial order secretary
problem.

▶ Theorem 8. The winning probability of the FLSR policy for the (1, R)-last success problem
is 1/4 when R ≥ 1/2 and at least 1

4 − 1−2R
4(1+R)2 when R ≤ 1/2. Moreover, the winning

probability is strictly less than 1/4 if R < 1/2.

4 Multisample model

In this section, we examine the last success problem with m samples for general m. Let
OPT(R) be the optimal winning probability of the last success problem with complete
information about the distributions when the sum of the odds is at least R. As mentioned
in Proposition 3, OPT(R) = R/eR if R ≤ 1 and OPT(R) = 1/e if R ≥ 1. For any positive
constant ϵ, we propose a stopping policy that guarantees a winning probability of OPT(R)−ϵ

with a constant number of samples. Formally, we prove the following theorem.

▶ Theorem 9. There exists a stopping policy that guarantees a winning probability of
OPT(R) − O(1/ 4

√
m) for the (m, R)-last success problem.

2 See, e.g., the paper of Rubinstein et al. [34] for more details on this tie-break. Note that without such a
random tie-break, the winning probability of this policy is at most (1 − e−4)/4 by Theorem 6.
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We emphasize that the number of samples required does not depend on the number of trials
n. In addition, by Proposition 4, no policy can guarantee a winning probability of 1/e with
a finite number of samples.

We propose a threshold-based policy with such a winning probability. The threshold is
determined by the samples as follows. For each i ∈ [n], define Qi to be

∏n
k=i(1−pk), which is

the probability that the event Xi = Xi+1 = · · · = Xn = 0 occurs. For each i ∈ [n] and j ∈ [m],
let Yi,j ∈ {0, 1} be jth sample from ith distribution. The sequence (Y1,j , Y2,j , . . . , Yn,j) is
said to be jth sample sequence. For each i ∈ [n], let Ti be the number of sample sequences
where no success is observed from i to n, i.e., Ti = |{j ∈ [m] | Yi,j = Yi+1,j = · · · = Yn,j = 0}|.
Since the event Yi,j = Yi+1,j = · · · = Yn,j = 0 happens with probability Qi, the random
variable Ti follows a binomial distribution characterized by number m and probability Qi.
We also define Q̂i as Ti/m, which is an unbiased estimator of Q.

Let ϵ be a real such that 0 < ϵ < 1/2. Our policy first calculates the index î = arg min{i ∈
[n] | Q̂i+1 ≥ 1/e + ϵ} from samples and then stops at the first success observed from î in the
actual trials. Here, we assume that Q̂n+1 = 1.

We prepare some lemmas to prove the theorem. Firstly, we show that the winning
probability of a threshold-based policy is close to 1/e if the threshold is an index i such that
Qi is approximately 1/e.

▶ Lemma 10. Let i ∈ [n] and let δ be a positive real. If Qi ≤ 1/e + δ and Qi+1 ≥ 1/e, the
winning probability of the stopping policy that stops at the first success from the index i is at
least 1/e − δ.

Secondly, we evaluate the probability that î satisfies the condition of Lemma 10 by
showing that Q̂i and Qi are close with high probability. Let Di = (Qi − Q̂i)/Qi, which
represents the relative difference of Q̂i and Qi. To bound the maximum deviation, we use
Doob’s inequality (see, e.g., [17]), which states that, for any λ > 0 and any non-negative
submartingale3 S1, S2, . . . , Sn, the following inequality holds:

Pr
[

nmax
k=1

Sk ≥ λ

]
≤ E[Sn]/λ. (10)

Let i∗ ∈ [n] be the minimum index i such that Qi+1 ≥ 1/e, where we assume that
Qn+1 = 1. Note that we have (i) Q1 ≤ Qi∗ < 1/e or (ii) Q1 ≥ 1/e and i∗ = 1. Additionally,
we have pi∗+1, pi∗+2, . . . , pn < 1 by Qi∗+1 =

∏n
k=i∗+1(1 − pk) ≥ 1/e > 0. We show that

Dn . . . , Di∗+1 is a martingale.

▶ Lemma 11. The sequence Dn, . . . , Di∗+1 is a martingale.

From this lemma, we can conclude that the sequence of random variables |Dn|, . . . , |Di∗+1|
is a non-negative submartingale. By applying the Doob’s inequality (10) to |Dn|, . . . , |Di∗+1|,
we can obtain the following inequality.

▶ Lemma 12. Pr
[
maxn

k=i∗+1 Dk ≥ ϵ
]

≤
√

e
mϵ2 .

Furthermore, we have the following lemma by Hoeffding’s inequality [26].

▶ Lemma 13. Pr
[
Q̂i∗ ≥ 1

e + ϵ
]

≤ exp
(
−2ϵ2m

)
if Q1 < 1/e.

3 A sequence of random variables S1, . . . , Sn is called a martingale if E[Si+1 | S1, . . . , Si] = Si for all
i ∈ [n − 1], and a submartingale if E[Si+1 | S1, . . . , Si] ≥ Si for all i ∈ [n − 1].
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Next, we demonstrate that î satisfies the condition of Lemma 10 if the events considered
in Lemmas 12 and 13 occur.

▶ Lemma 14. If Q1 < 1/e, maxn
k=i∗+1 Dk < ϵ and Q̂i∗ < 1/e + ϵ, then Qî+1 ≥ 1/e and

Qî ≤ 1/e + 3ϵ.

Finally, we use the union bound to show that the probability of maxn
k=1 Dk < δ or

Q̂i∗ < 1
e + δ occurring is small. Then, by combining this fact with Lemma 10, we prove

Theorem 9.

Proof of Theorem 9. We choose ϵ as the one that satisfies m = e/ϵ4, which leads to
ϵ = O(1/ 4

√
k). Since we perform an asymptotic analysis, we may assume that 0 < ϵ < 1/2.

We first consider the case where Q1 < 1/e. In this case, Qi∗ < 1/e by the definition of
i∗. By Lemmas 12 and 13, maxn

k=i∗+1 Dk ≥ ϵ or Q̂i∗ ≥ 1/e + ϵ happens with probability at
most

√
e

mϵ2 + exp
(
−2ϵ2m

)
by the union bound. Then, we have√

e

mϵ2 + exp
(
−2ϵ2m

)
= ϵ + exp

(
−2e

ϵ2

)
≤ ϵ + ϵ2

2e
≤ 2ϵ,

where the first inequality holds since e−x ≤ 1/(1 + x) ≤ 1/x by ex ≥ 1 + x, and the last
inequality holds by the assumption that ϵ < 1/2. Therefore, the probability that both
maxn

k=i∗+1 Dk < ϵ and Q̂i∗ < 1/e + ϵ happen is at least 1 − 2ϵ. Under these conditions, we
have Qî+1 ≥ 1/e and Qî ≤ 1/e + 3ϵ by Lemma 14. Using such an index î, the threshold
policy wins with probability at least 1/e − 3ϵ by Lemma 10. Thus, the overall winning
probability is

(1 − 2ϵ)
(

1
e

− 3ϵ

)
≥ 1

e
− 4ϵ = 1

e
− O

(
1

4
√

m

)
.

Next, suppose that Q1 ≥ 1/e. In this case, we have i∗ = 1. Then, by Lemma 12, we
have maxn

k=2 Dk < ϵ with probability at least 1 −
√

e
mϵ2 = 1 − ϵ by m = e/ϵ4. In what

follows, we analyze the winning probability under the assumption that maxn
k=2 Dk < ϵ. By

the definition of î, there are two cases where (i) î = 1 or (ii) î ≥ 2 and Q̂î < 1/e + ϵ. If î = 1,
the winning probability is Q1R, which is at least 1/e if R ≥ 1, and at least R/eR if R < 1
by Lemma 2. If î ≥ 2 and Q̂î < 1/e + ϵ, we have (Qî − Q̂î)/Qî = Dî < ϵ, and hence

Qî <
Q̂î

1 − ϵ
<

1/e + ϵ

1 − ϵ
<

(
1
e

+ ϵ

)
(1 + 2ϵ) = 1

e
+
(

2
e

+ 1
)

ϵ + 2ϵ2 <
1
e

+ 3ϵ,

where the last two inequalities hold by 0 < ϵ < 1/2. Thus, the winning probability is at
least 1/e − 3ϵ by Lemma 10. In both cases (i) and (ii), the winning probability is at least
OPT(R) − 3ϵ. Further, as the assumption of maxn

k=2 Dk < ϵ happens with probability 1 − ϵ,
the overall winning probability is at least

(1 − ϵ)(OPT(R) − 3ϵ) ≥ OPT(R) − 4ϵ = OPT(R) − O

(
1

4
√

m

)
. ◀
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