
How to Reduce Temporal Cliques to Find Sparse
Spanners
Sebastian Angrick #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

Ben Bals #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

Tobias Friedrich #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

Hans Gawendowicz #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

Niko Hastrich #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

Nicolas Klodt #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

Pascal Lenzner #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

Jonas Schmidt #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

George Skretas #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

Armin Wells #

Faculty of Digital Engineering, Hasso Plattner
Institute, University of Potsdam, Germany

Abstract
Many real-world networks, such as transportation or trade networks, are dynamic in the sense that
the edge-set may change over time, but these changes are known in advance. This behavior is
captured by the temporal graphs model, which has recently become a trending topic in theoretical
computer science. A core open problem in the field is to prove the existence of linear-size temporal
spanners in temporal cliques, i.e., sparse subgraphs of complete temporal graphs that ensure all-pairs
reachability via temporal paths. So far, the best known result is the existence of temporal spanners
with O(n log n) many edges. We present significant progress towards proving whether linear-size
temporal spanners exist in all temporal cliques.

We adapt techniques used in previous works and heavily expand and generalize them. This
allows us to show that the existence of a linear spanner in cliques and bi-cliques is equivalent and
using this, we provide a simpler and more intuitive proof of the O(n log n) bound by giving an
efficient algorithm for finding linearithmic spanners. Moreover, we use our novel and efficiently
computable approach to show that a large class of temporal cliques, called edge-pivotable graphs,
admit linear-size temporal spanners. To contrast this, we investigate other classes of temporal cliques
that do not belong to the class of edge-pivotable graphs. We introduce two such graph classes and
we develop novel algorithmic techniques for establishing the existence of linear temporal spanners in
these graph classes as well.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems

Keywords and phrases Temporal Graphs, temporal Clique, temporal Spanner, Reachability, Graph
Connectivity, Graph Sparsification

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.11

Related Version Full Version: https://arxiv.org/abs/2402.13624

1 Introduction

Many real-world networks, like transportation networks with scheduled train connections
or social networks with repeating meeting schedules, are dynamic, i.e., their edge-set can
change over time. To address this, temporal graphs have gained significant attention in recent

© Sebastian Angrick, Ben Bals, Tobias Friedrich, Hans Gawendowicz, Niko Hastrich, Nicolas Klodt,
Pascal Lenzner, Jonas Schmidt, George Skretas, and Armin Wells;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sebastian.angrick@student.hpi.de
https://orcid.org/0009-0007-9840-9611
mailto:ben.bals@student.hpi.de
https://orcid.org/0009-0009-1054-8444
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:hans.gawendowicz@hpi.de
https://orcid.org/0000-0001-8394-4469
mailto:niko.hastrich@student.hpi.de
https://orcid.org/0000-0002-3753-145X
mailto:nicolas.klodt@hpi.de
https://orcid.org/0000-0002-5406-7441
mailto:pascal.lenzner@hpi.de
https://orcid.org/0000-0002-3010-1019
mailto:jonas.schmidt@student.hpi.de
https://orcid.org/0000-0002-1115-3868
mailto:georgios.skretas@hpi.de
https://orcid.org/0000-0003-2514-8004
mailto:armin.wells@student.hpi.de
https://orcid.org/0000-0002-5459-7899
https://doi.org/10.4230/LIPIcs.ESA.2024.11
https://arxiv.org/abs/2402.13624
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 How to Reduce Temporal Cliques to Find Sparse Spanners

research in theoretical computer science [15, 18]. In these graphs it is assumed that the
edge-set can change in every time step but the schedule of the availability of edges is known
in advance. Various problems have been studied in this model, including network redesign
[10, 12, 13], vertex cover [1, 11, 14], and influence maximization [9]. A general theme is that
insights from the static graph setting are only of limited value in temporal graphs, since the
temporal availability of the edges makes these problems much harder or even infeasible to
solve. For example, even fundamental statements like Menger’s Theorem do not hold for
temporal graphs [17]. Also, one of the most essential problems in graphs, that of finding a
sparse spanner, is much harder in temporal graphs. A sparse spanner is a small subset of the
edge-set that ensures all-pairs connectivity. In static graphs, it is well-known that linear-size
spanners exist and can be computed efficiently, e.g., minimum spanning trees [8].

Finding sparse temporal spanners is much more intricate in temporal graphs, since there
paths do not necessarily compose (i.e., concatenating two paths where the endpoint of the
first is the starting point of the second does not necessarily yield a temporal path). More
specifically, Kempe, Kleinberg, and Kumar [15] showed that there is a class of temporal graphs
having Ω(n log n) many edges, such that no single edge can be removed while preserving
temporal connectivity. In the same work, the authors asked, what is the minimum number
of edges c(n), such that any temporal graph with n vertices has a temporal spanner using at
most c(n) many edges. Almost 15 years later, this question was answered by Axiotis and
Fotakis [2] by providing a class of dense but non-complete temporal graphs having Θ(n2)
edges, such that any subgraph preserving temporal connectivity necessarily needs to contain
Ω(n2) edges as well.

This negative result raises the question if there even exists a natural class of temporal
graphs that can be sparsified without losing temporal connectivity. In particular, the question
if every temporal clique has a spanner of linear size has remained open for over 20 years now.
In a 2019 breakthrough paper, Casteigts, Peters, and Schoeters [6] proved that temporal
cliques always admit a spanner of size O(n log n). Not much progress has been made since
then, with most work on the topic veering off towards the study of temporal spanners in
random temporal graphs [7], or focusing on low stretch [3, 4] or a game-theoretic setting [5].

In this paper, we present significant progress on the long-standing open problem by
showing that a large class of temporal cliques does admit linear-size temporal spanners.

1.1 Our Contribution
In the first part of the paper, we adapt techniques used in previous works and heavily expand
and generalize them. In particular, in [6] a temporal spanner in cliques is computed by
a reduction from a clique to a bi-clique. We deepen this connection by showing that the
existence of a linear spanner in cliques and bi-cliques actually is equivalent. Furthermore,
in the reduction of Casteigts, Peters, and Schoeters [6], the authors exploit the property
that the set containing the earliest edge of each vertex is a perfect matching of the bi-clique
and that this also holds for the set of latest edges. We show that this property can also be
assumed when searching for bi-spanners in bi-cliques directly. This yields a simple and more
intuitive algorithm for computing linearithmic spanners, thus proving the existence of size
O(n log n) temporal spanners in temporal cliques.

Moreover, we reconsider the notion of a pivot-vertex [6, 7]. This is a vertex u that can
be reached by every vertex in the graph until some time step t, and then u can reach every
other vertex in the graph by a temporal path starting at or after time t. We transfer this
notion to bi-cliques, extend it to c-pivot-edges, and we strengthen it significantly to find
small spanners. If a bi-clique contains a c-pivot-edge, we can iteratively reduce the size of

S. Angrick et al. 11:3

the graph, while maintaining a linear-size temporal spanner, until the instance is solved, or
the instance no longer has a c-pivot-edge. This reduction rule is widely applicable and yields
linear-size temporal spanners in many cases.

In the second part of the paper, we investigate temporal cliques that are not edge-pivotable
graphs. We identify two such graph classes, called shifted matching graphs and product graphs,
and for both we provide novel techniques that allow us to efficiently compute linear-size
spanners. Thus, we extend the class of temporal cliques that admit linear-size temporal
spanners even further. It is open if our classes cover every temporal clique. However, finding
other graphs that do not belong to our graph classes seems to be challenging.

Statements where proofs or details are omitted due to space constraints are marked
with “⋆” in the full version.

1.2 Detailed Discussion of Related Work

The study of temporal spanners was initiated by Kempe, Kleinberg and Kumar [15]. In
their seminal paper, they introduce the temporal graphs model and show that spanners
on temporal hypercubes have Ω(n log n) edges. Axiotis and Fotakis [2] improve on this
by providing a class of graphs with Θ(n2) edges, such that no edge can be removed while
maintaining temporal connectivity. Later, Casteigts, Peters, and Schoeters [6] study temporal
cliques and show that temporal spanners of size O(n log n) always exist. Their “fireworks”
algorithm combines different techniques, such as dismountability and delegation, to reduce
the clique to a bipartite graph, and then compute a spanner on that graph, that can then be
translated to a spanner of the original graph.

Casteigts, Raskin, Renken and Zamaraev [7] take a different approach. They consider
random temporal graphs, where the host graph is a clique, and each edge is added to the
temporal graph with probability p. They show a sharp threshold for the generated temporal
graph being temporally connected. Even more surprisingly, they show that as soon as this
threshold is reached, the generated graph will contain an almost optimal spanner of size
2n + o(n). On a different note, Bilò, D’Angelo, Gualà, Leucci, and Rossi [4] investigate
whether temporal cliques admit small temporal spanners with low stretch. Their main
result shows that they can always compute a temporal spanner with stretch O(log n) and
O(n log2 n) edges.

2 Preliminaries

For two sets A, B, we write A ⊗ B := {{a, b} | a ∈ A, b ∈ B, and a ̸= b}. If A and B are
disjoint, we write A ⊔ B for their union. For n ∈ N+, let [n] = {1, . . . , n}.

Let (V, E) be an undirected graph. This together with a labeling function1 λ : E → N
forms the temporal graph G = (V, E, λ). Semantically, an edge e ∈ E is present at time λ(e).
For a vertex-set U ⊆ V , write G[U] for the subgraph of G induced by U . For v ∈ V , let
N(v) denote the set of neighbors of v, that is, all vertices u with {v, u} ∈ E. For v ∈ V and
u, u′ ∈ N(v), we define the order u ⪯v u′, if the edge {u, v} is not later than the edge {u′, v},
i.e., if λ({u, v}) ≤ λ({u′, v}). We define ≺v, ⪰v, and ≻v analogously.

1 In general each edge could have more than one label. We restrict ourselves to the case of simple temporal
graphs where each edge has exactly one label. Both formulations are equivalent for our use-case [6].

ESA 2024

11:4 How to Reduce Temporal Cliques to Find Sparse Spanners

In(e) Out(e)

A

B
e

(a) Blue edges and paths have labels earlier than
λ(e), red ones are later.

a1 a2

b1 b2

5
1 2

4

(b) A bi-clique where a1 cannot reach a2 using a path
starting after time 2 and a1 can not be reached by a2
using a path arriving before 5, so In3

a1 ∪ Out3
a1 ̸= V .

Figure 1 Examples for the sets In and Out.

If P = v1 . . . vk is a path in (V, E) and for all i ∈ [k − 2], we have vi ⪯vi+1 vi+2, then P

is a temporal path in G.2 We will also write P = v1 → v2
S
⇝ vk, where, v1 → v2 describes

a direct edge and v2
S
⇝ vk is a temporal path starting after λ({v1, v2}) using only edges of

S ⊆ E. Since only reachability is our focus, we will also construct non-simple paths. Note
that such paths can be shortcut to vertex-disjoint paths while remaining temporal.

Vertex u can reach vertex v if there is a temporal path from u to v. Also, G is called
temporally connected, if every vertex can reach every other vertex. A spanner for G is a set
S ⊆ E, such that (V, S, λ

∣∣
S

) is temporally connected, where λ
∣∣
S

is λ restricted to S.
The edges with the smallest and largest label take a special role. For v ∈ V , let π–(v) :=

arg minu∈N(v) λ({v, u}) be v’s earliest neighbor and let π+(v) := arg maxu∈N(v) λ({v, u}) be
v’s latest neighbor. We do not consider graphs with isolated vertices and we justify in Section 3
that we only use injective labelings, so this is well-defined. Denote the set of all earliest edges
as π– := {{v, π–(v)} | v ∈ V } and the set of latest edges as π+ := {{v, π+(v)} | v ∈ V }. If
both sets π– and π+ form a perfect matching for V , then G is extremally matched. Also, for
v, w ∈ V , and e = {v, w} ∈ E, we write σv(e) or simply σv(w) for the index of e in [n], when
ordering all edges incident to v ascendingly by their label (e.g., if w = π–(v), then σv(e) = 1).

Let v ∈ V be a vertex and t ∈ N be a time step. We define the set Int
v ⊆ V to be the

vertices reaching v via a temporal path with every label being at most t. Respectively, we
define the set Outt

v ⊆ V to be the vertices that v can reach via any temporal path starting
at or after t. As a shorthand, for an edge e = {u, v} ∈ E, we define In(e) = Inλ(e)

u ∪ Inλ(e)
v

and Out(e) = Outλ(e)
u ∪ Outλ(e)

v . Note, that we always have u, v ∈ In(e) ∩ Out(e).
We focus only on temporal graphs where the underlying graph is a clique or a complete

bipartite graph. In these cases, the set of edges is self-evident and for cliques we simply omit
it and write C = (V, λ). We, similarly, denote complete bipartite temporal graphs by a triple
D = (A, B, λ), where A and B are the two parts and λ : A ⊗ B → N is the corresponding
labeling function. When necessary, we refer to the set of edges as E(C) := V ⊗ V or
E(D) := A ⊗ B. We call C a temporal clique and D a temporal bi-clique. Finally, we define
an asymmetric analogue of spanners for temporal bi-cliques. We call a set S ⊆ A ⊗ B a
bi-spanner for D, if every a ∈ A can reach every b ∈ B through a temporal path that is
contained in S. Note that here, only one side needs to reach the other.

For e = {u, v} in temporal cliques or bi-cliques, notice that all vertices must be in In(e)
or Out(e), since all vertices have an edge to u or v, which puts this vertex in In(e) or Out(e),
depending on the time-label. See Figure 1a for a visualization of In and Out.

▶ Observation 2.1. Let G = (V, E, λ) be a temporal clique or bi-clique. For all e ∈ E, we
have In(e) ∪ Out(e) = V .

2 This is also referred to as non-strict temporal paths, where strict temporal paths ask that vi ≺vi+1 vi+1.

S. Angrick et al. 11:5

Note that for the case of bi-cliques considering both endpoints of e is crucial to ensure
that every vertex has a direct edge to an endpoint. Otherwise, there exist simple instances
with a vertex v and a time t with Int

v ∪ Outt
v ̸= A ⊔ B. See Figure 1b.

▶ Remark 2.2. For v ∈ A ⊔ B and t ∈ N, the analogue to Observation 2.1 (i.e., Int
v ∪ Outt

v =
A ⊔ B) does not necessarily hold, as one can see in Figure 1b.

Finally, for n ∈ N, let C(n) be the minimum number such that every temporal clique with
n vertices admits a spanner with at most C(n) edges. Analogously, let D(n) be the minimum
number such that any bi-clique in which both sides have n vertices admits a bi-spanner
with at most D(n) edges. We study the open problem whether C(n) ∈ O(n) and whether
D(n) ∈ O(n) holds.

3 Cliques and Bi-Cliques

In this section, we prove that the asymptotic behavior of spanners in cliques differs from
the asymptotic behavior of bi-spanners in bi-cliques only by a constant factor (i.e., we prove
C(n) ∈ Θ(D(n))). First, we show that C(n) ∈ O(D(n)). After this, we show C(n) ∈ Ω(D(n))
by proving each inequality of C(n) ≥ D

(
n
2

)
≥ 1

4 D(n) separately. Bi-cliques and bi-spanners
were already discussed in [6], when deriving C(n) ∈ O(n log n). They called these instances
residual as they remained once their other techniques were not applicable anymore. Our result
can be seen as evidence that the connection between cliques and bi-cliques is fundamental,
beyond being a step in their algorithm. First, we state the main result of this section.

▶ Theorem 3.1. The worst-case minimum size of a spanner for temporal cliques and temporal
bi-cliques only differs by a constant factor, that is, we have C(n) ∈ Θ(D(n)).

We start with a technical lemma that allows us to focus on globally injective labeling
functions for the rest of the paper. This slightly extends a result by [6] which proved the
generality of locally injective labelings. Note that the statement holds for all temporal graphs.

▶ Lemma 3.2 (⋆). Let G = (V, E, λ) be a temporal graph. Then there is an injective labeling
function λ′ s.t. every spanner S ⊆ E for (V, E, λ′) is also a spanner for the original graph G.
In case the original graph D = (A, B, λ) is a bi-clique, the same holds for a bi-spanner S.

We can now relate minimum spanners in cliques to minimum bi-spanners in bi-cliques.

▶ Lemma 3.3 (⋆). Let C = (V, λ) be a temporal clique. There is a temporal bi-clique
D = (A, B, λ′) with |V | = |A| = |B| s.t. for any bi-spanner SD in D there is a spanner SC

in C with |SC | ≤ |SD|.

This is enough to arrive at the first half of the tight bound we aim to prove in the section.

▶ Theorem 3.4 (⋆). For n ∈ N, we have C(n) ≤ D(n).

We now show that C(2n) ≥ D(n). To this end, we take a bi-clique and add edges within
the parts that yield no benefit in the construction of a spanner.

▶ Lemma 3.5. Let D = (A, B, λ) be a temporal bi-clique with |A| = |B|. Then there is a
temporal clique C = (A ⊔ B, λ′) such that for any spanner S in C the set S ∩ (A ⊗ B) is a
bi-spanner in D.

ESA 2024

11:6 How to Reduce Temporal Cliques to Find Sparse Spanners

Proof. We define λ′ such that for distinct v, w ∈ A ⊔ B, we have

λ′({v, w}) =

0, if v, w ∈ B;
1 + λ({v, w}), if v ∈ A, w ∈ B or v ∈ B, w ∈ A;
µ if v, w ∈ A,

where µ > 1 + maxe∈A⊗B λ(e). Intuitively, all early edges are between vertices in B and all
late edges are between vertices in A. The original edges keep their ordering.

Let S be a spanner of C. To show S ∩ (A ⊗ B) is a bi-spanner in D, let a ∈ A and b ∈ B.
As S is a spanner, there is a temporal ab-path P ⊆ S. If P contains any edges within A, no
edge to B can be used afterwards. Similarly, once the path arrives at B, it is already too
late to use any edge within B. Thus, P ⊆ A ⊗ B and S ∩ (A ⊗ B) is a bi-spanner in D. ◀

This yields the following relationship between clique and bi-clique spanner sizes.

▶ Theorem 3.6 (⋆). For n ∈ N, we have C(2n) ≥ D(n).

To conclude this section, we just need to show, that D(n) ≥ 1
4 D(2n). To that end, we

show the slightly more general statement that for any k ∈ N+, we have k2 D(n) ≥ D(kn),
which we achieve by splitting the instances into smaller subinstances.

▶ Lemma 3.7 (⋆). For all k, n ∈ N+, we have k2 D(n) ≥ D(kn).

▶ Remark 3.8. We later strengthen this statement using tools developed in Section 4.
Concretely, considering Di := D[Ai ∪ B], we show 2k(k − 1)n + k D(n) ≥ D(kn).

To plug all pieces together, we need a final property about D.

▶ Lemma 3.9 (⋆). The worst-case size of spanners for bi-cliques is monotonic in the size of
the bi-clique, that is for all n ∈ N, we have D(n) ≤ D(n + 1). The same holds for C.

Now all pieces are in place to puzzle together the proof of our main theorem.

Proof of Theorem 3.1. Let n ∈ N and c ∈ {0, 1, 2, 3} be such that n ≥ 3 and n + c is a
multiple of 4. In the following equation, we use Lemma 3.9 in the first and last step, apply
Lemma 3.7 in the third step and Theorem 3.6 in the forth step, to obtain

D(n) ≤ D(n + c) = D
(

4 · n + c

4

)
≤ 16 · D

(
n + c

4

)
≤ 16 · C

(
n + c

2

)
≤ 16 · C(n).

Theorem 3.4 directly gives us C(n) ≤ D(n), allowing us to conclude C(n) ∈ Θ(D(n)). ◀

4 Structure of Bi-Clique Instances

Using Theorem 3.1, from now on we only consider bi-cliques. Our first structural insight
for this type of instance was already used by Casteigts, Peters, and Schoeters [6] on special
reduced instances of bi-cliques. Remember, that we call an instance extremally matched
if the set of all earliest edges π– and the set of all latest edges π+ each form a perfect
matching. We give a general reduction rule which reduces the graph in case the instance is
not extremally matched. This structural property, that we can assume the existence of such
perfect matchings or reduce the instance, is useful for almost all further constructions. For
example, it enables us to reduce the instance size, when the number of vertices per side is
not equal. Additionally, we can think of the sets A and B of the bi-clique as interchangeable.

S. Angrick et al. 11:7

For example, consider any set of edges that includes temporal paths from some set A′ ⊆ A

to all vertices in A. We can extend these paths to reach all vertices in B by including the set
of all latest edges, because it is a perfect matching between A and B.

We start with proving that every b ∈ B is incident to at most one edge in π– or we can
reduce. The same holds for any a ∈ A with respect to π+. For our reduction rules, we adapt
the concept of dismountability on temporal cliques, first defined in [6], to temporal bi-cliques.

▶ Definition 4.1 (dismountable). Vertex a ∈ A is dismountable if there is a′ ∈ A with a ̸= a′,
s.t. a ⪯π–(a′) a′. Vertex b ∈ B is dismountable if there is b′ ∈ B with b ̸= b′, s.t. b′ ⪯π+(b′) b.

Intuitively, vertex a can delegate its obligation to reach all vertices in B to vertex a′ in
exchange for including two edges in the bi-spanner. Similarly, vertex b can be reached by all
vertices in A that can reach vertex b′ if we include the two necessary edges in the bi-spanner.

Note that this corresponds to the definition in [6], but transferred to the case of bi-
spanners, where all vertices in A only need to reach vertices in B. Concretely, this means
that vertex a can reach vertex a′ via the earliest edge of a′ on a temporal path of length 2.
Therefore, if this configuration occurs in the bi-clique, we can remove a and include the edges
{a, π–(a′)} and {a′, π–(a′)} into our bi-spanner. In the final solution for the whole bi-clique,
vertex a then has a temporal path to every vertex b ∈ B via vertex a′. Similarly, if a vertex
b ∈ B is dismountable, every temporal path that ends in b′ can be extended to be a temporal
path ending in vertex b, and we can remove b from the bi-clique.

The following lemma is similar to the one in [6]. For completeness, we prove it again.

▶ Lemma 4.2 (⋆). Let D = (A, B, λ) be a bi-clique. Let a ∈ A, π–(a) = b, then a = π–(b)
or π–(b) is dismountable. Let b ∈ B, π+(b) = a, then π+(a) = b or π+(a) is dismountable.

We can apply Lemma 4.2 to show that we can always find a dismountable vertex whenever
the number of vertices per side differs.

▶ Lemma 4.3 (⋆). For D = (A, B, λ), if |A| ≠ |B| then a dismountable vertex exists.

Since from now on, both parts of D have the same size after removing dismountable
vertices, we write n := |A| = |B| and call n the size of the instance. This justifies also that
the definition of D assumes equal part sizes and gives the following corollary.

▶ Corollary 4.4. Let D = (A, B, λ) and |A| ≤ |B|. Then, there is a bi-spanner for D of size
D(|A|)+2(|B|−|A|). Similarly, if |B| ≤ |A| there is a bi-spanner of size D(|B|)+2(|A|−|B|).

Finally, combining our lemmas yields that π– and π+ are extremally matched.

▶ Theorem 4.5 (Extremal Matching),(⋆). Let D = (A, B, λ) be a bi-clique. Then D is
extremally matched or there is a dismountable vertex.

After removing dismountable vertices, we now know that the remaining graph must be
extremally matched. Since reducing an instance to be extremally matched only requires the
inclusion of linearly many edges, we focus from now on extremally matched bi-cliques. This
also allows us to switch the roles of A and B, which will be useful later on.

▶ Lemma 4.6 (⋆). Let D = (A, B, λ) be an extremally matched bi-clique and let S be a
bi-spanner for D. If π–, π+ ⊆ S, then S is also a bi-spanner for (B, A, λ).

With Corollary 4.4 we prove Lemma 4.7. This gives a simpler proof that C(n) ∈ O(n log n).

▶ Lemma 4.7 (⋆). For all k, n ∈ N+, we have 2k(k − 1)n + k D(n) ≥ D(kn).

ESA 2024

11:8 How to Reduce Temporal Cliques to Find Sparse Spanners

If we now choose k > 1, we get C(n) ∈ O(n log n) using the master theorem [8]. Note
that we can also implement all the necessary reductions to find such a spanner in linear time
in the number of edges in the temporal clique. This achieves the same spanner size as in [6]
but with a simpler algorithm and proof.

▶ Corollary 4.8. We have C(n) ∈ O(n log n) and there is an algorithm that computes a
spanner of size O(n log n) in time O(n2).

5 Pivotable Bi-Cliques

An important structure that was used extensively in [6, 7] is the notion of a pivot. A pivot is
a vertex that can be reached by all vertices until a certain time point t and that can also
reach all other vertices starting at time point t. In [7] it is shown that this structure, though
intuitively quite restrictive, appears with high probability in random temporal graphs.

However, there are instances without this structure [6]. Thus, we study an even more
widely applicable structure, based on a what we call a c-pivot-edge or partial pivot-edge (when
omitting the concrete parameter). We exploit partial pivot-edges to apply the divide-and-
conquer paradigm to find linear-size temporal spanners. To the best of our knowledge, this
paradigm has not yet been applied to this problem. As we see later, the absence of a partial
pivot-edge yields strong structural properties and it heavily restricts the class of temporal
cliques where no linear spanner can be found using current techniques.

Recall the definition of In and Out in Section 2. We observe that in extremally matched
bi-cliques, the sets In(e) and Out(e) are always distributed evenly between A and B.

▶ Lemma 5.1 (⋆). Let G = (A, B, λ) be an extremally matched bi-clique. For all e ∈ A ⊗ B,
we have |In(e) ∩ A| = |In(e) ∩ B| and |Out(e) ∩ A| = |Out(e) ∩ B|.

Next, we show that we can reach all vertices in Out(e) from e starting at or after λ(e),
using exactly |Out(e)| − 1 edges. The analogous statement holds for the vertices in In(e), in
the sense that those can reach e at or after λ(e), using only |In(e)| − 1 many edges.

▶ Lemma 5.2. Let e = {a, b} ∈ A ⊗ B. All vertices in Out(e) can be organized in a tree T

rooted at a, s.t. T only has edges with label at least λ(e) and for each v ∈ Out(e) there are
temporal paths a⇝ v and b⇝ v in T . The analogous result holds for vertices in In(e).

The proof of Lemma 5.2 is already known [19] and it relies on constructing a foremost
tree for Out(e) (and its inverted version for In(e)). It was considered in [16] and lately has
been used in [7], where foremost trees are applied to temporal cliques. With this idea, we
can temporally connect all u ∈ In(e) to all v ∈ Out(e) using a linear number of edges.

▶ Corollary 5.3 (⋆). Given an edge e ∈ A ⊗ B, we can connect the vertices in In(e) to those
in Out(e) by using at most |In(e)| + |Out(e)| − 3 many edges.

To apply divide-and-conquer, we choose an edge e ∈ A⊗B and include the edges according
to Corollary 5.3. Then, we create two sub-instances to connect the remaining vertices.

▶ Theorem 5.4 (⋆). Let D = (A, B, λ) be an extremally matched bi-clique with n := |A| = |B|.
There exists a bi-spanner in D with size at most

min
e∈A⊗B

(
D

(
n − |In(e)|

2

)
+ D

(
n − |Out(e)|

2

)
+ 2|In(e)| + 2|Out(e)| − 3

)
.

S. Angrick et al. 11:9

As 2|In(e)| + 2|Out(e)| − 3 ≤ 8n − 3, we see that only a linear number of edges is included
to split the instance. With this, we can show that if for some edge e ∈ A ⊗ B the sets In(e)
and Out(e) overlap, we can reduce the instance significantly. We name the set In(e) ∩ Out(e)
the pivot-set of e. If |In(e) ∩ Out(e)| ≥ 2cn for c ∈ (0, 1], we call e a c-pivot-edge. When
omitting the concrete constant c, we refer to e as a partial pivot-edge.

▶ Theorem 5.5 (c-Pivot-Edge),(⋆). Let c ∈ (0, 1]. Let D = (A, B, λ) be an extremally
matched bi-clique with n := |A| = |B|. If there is a c-pivot-edge in D, we can split the
instance into two sub-instances with overall number of vertices reduced by 2cn. Per removed
vertex, we include at most 4

c edges. If applicable recursively, we get a spanner of size 8
c n.

This theorem tells us that if we repeatedly find such a c-pivot-edge e ∈ A ⊗ B with
|In(e) ∩ Out(e)| being at least a (previously fixed) c-fraction of the current size of the instance,
we get a linear-size bi-spanner for our graph. Therefore, if we search for counterexamples
for linear-size spanners in temporal bi-cliques, we can assume that for any fixed c no such
c-pivot-edge is present, that is, for all e ∈ A ⊗ B, we have |In(e) ∩ Out(e)| ∈ o(n).

This has many interesting consequences, removing large classes of graphs from considera-
tion. To illustrate, let us quickly mention three forbidden structures. First, for c ∈ (0, 1], no
edge e with |σv(e) − σw(e)| ≥ cn can exist. We call e c-steep because, intuitively, it makes a
steep jump between the ordering at its two endpoints. Second, in a bi-clique D = (A, B, λ)
without c-steep edges, for any i, j ∈ [n] and a ∈ A, we know that for the label spread
S := {b ∈ B | i ≤ σb(a) ≤ j}, we have |S| < j − i + 2cn. Intuitively, the number of vertices
for which vertex a is one of their i-th to j-th neighbors is relatively small. Of course, the
same property holds when A and B are swapped. Third, we can now assume that all but
sublinearly many vertices v ∈ In(e) and all but sublinearly many w ∈ Out(e) fulfill the
condition that π+(v) ∈ In(e) and π–(w) ∈ Out(e). Intuitively, the matchings π− and π+

don’t cross from In(e) to Out(e) or vice-versa.
These three consequences show that we have gained strong structural insights. They

allow us and future work to focus on a more concrete set of bi-cliques. For a more detailed
discussion of these consequences, please see the full version.

6 Bi-Cliques With Reverted Edges

We introduced partial pivot-edges and observed some interesting structural properties in bi-
cliques which contain no suitable c-pivot-edge. The first hope would be that every bi-cliques
admits such a c-pivot-edge. Unfortunately, this is not the case and we provide a graph class,
the shifted matching graph, in which for every edge, the pivot-set is as small as possible (i.e.,
In({a, b}) ∩ Out({a, b}) = {a, b}) and none of our reduction rules from Section 4 apply.

Still, we present a novel technique, called e-reverted edges, to construct small spanners
for shifted matching graphs which also provides solutions for a significantly larger class of
bi-cliques. We relate the technique to partial pivot-edges from Section 5 and argue why
e-reverted edges solve a class distinct from partial pivot-edges, beyond the concrete example
of shifted matching graphs. Unfortunately, also this is not applicable to all graph classes,
which we later demonstrate with a class that we call product graphs in Section 7.

We start by giving the definition of the shifted matching graph.

▶ Definition 6.1 (Shifted Matching Graph). Let n ∈ N+, A := {a0, . . . , an−1}, and B :=
{b0, . . . , bn−1}. We define the shifted matching graph on n vertices per side as SM(n) :=
(A, B, λ), where for every i, j ∈ {0, . . . , n − 1} we label the edge λ({ai, bj}) := j − i mod n.

ESA 2024

11:10 How to Reduce Temporal Cliques to Find Sparse Spanners

B

A

Figure 2 If at least one of the green or purple paths is temporal, {a′, b′} is {a, b}-reverted.

In shifted matching graphs, the earliest and latest neighbors form a matching, thus we
cannot apply the reduction from Theorem 4.5. Note that for all i ∈ {0, . . . , n − 1}, we have
π−(ai) = bi and π+(ai) = bi−1 mod n. Additionally, we observe that each edge at time t has
the form {ai, bi+t mod n}. Thus, the edges with label t form a perfect matching and ai sees
the bj in ascending order of indices, circularly shifted by i places compared to a0.

▶ Observation 6.2. Let t ∈ {0, . . . n − 1} be a time-point. Then in SM(n), the edges with
label t form a perfect matching.

We claim that this graph has no partial pivot-edges that are suitable for reduction in the
sense of Theorem 5.5. To prove that this method fails on the shifted matching graph, we
first characterize the set of vertices which can be reached from a vertex ai before and after a
given time. Finally, we prove that the intersection of In and Out for all edges at ai is trivial.

▶ Lemma 6.3 (⋆). Let i, t ∈ {0, . . . , n − 1} and ai and bi+t mod n be vertices in SM(n). Then
using edges with label at most t, precisely the vertices ai, . . . , ai+t mod n and bi, . . . , bi+t mod n

can reach ai and bi+t mod n. Using only edges with label at least t, ai and bi+t mod n can
precisely reach the vertices bi+t mod n, . . . , bi−1 mod n and ai+t+1 mod n, . . . , ai.

Using Lemma 6.3, we can see that using partial pivot-edges in SM(n) leads to no reduction.

▶ Lemma 6.4 (⋆). For vertices ai, bj in SM(n), we have In({ai, bj})∩Out({ai, bj}) = {ai, bj}.

However, with a new technique we can still construct linear-size spanners for SM(n). For
this, we need the concept of e-reverted edges. This construction sheds light on different ideas,
such as making use of π– and π+ to switch A and B, that can be used for other graphs than
just SM(n). We start by giving the general technique and then proving that it is applicable
to construct a linear-size bi-spanner for the shifted matching graph.

▶ Definition 6.5 (e-reverted). For a bi-clique D = (A, B, λ), consider an edge e = {a, b}.
We say that an edge {a′, b′} is e-reverted, if a′ ⪯b π+(b′) or π–(a′) ⪯a b′. Denote the set of
edges that are not e-reverted as NotReve := {{a′, b′} ∈ A ⊗ B | {a′, b′} is not e-reverted}.

Intuitively, for each edge e there is a linear-size set of edges that connects all pairs of
vertices {a′, b′} that form an e-reverted edge. If a′ ⪯b π+(b′), the path a′ → b → π+(b′) → b′

is temporal, since b′ is also the latest neighbor for π+(b′). If π–(a′) ⪯a b′, the path
a′ → π–(a′) → a → b′ is temporal, since a′ is also the earliest neighbor π–(a′). See Figure 2.
Notice that, no matter which a′ ∈ A and b′ ∈ B we choose, the paths only use edges incident
to a or b and edges from π– or π+. We use this to construct a small bi-spanner for D, if
NotReve is small.

S. Angrick et al. 11:11

12 3 43

(a) Construction of product graphs. Observe how
every edge in G is replaced by a copy of the graph
H and every label is the pair of their original labels.

(b) The construction of the path in the proof of
Lemma 7.8. Purple labels are the first element of
vertex names, orange ones are the second element.

Figure 3 Product graphs and how to find small spanners.

▶ Theorem 6.6 (⋆). Let D = (A, B, λ) be an extremally matched bi-clique of size n and
e = {a, b} ∈ A ⊗ B. Then D has a bi-spanner of size at most 4n − 4 + |NotReve|.

Note that we only require a single edge e to have a small number of non-e-reverted edges
to obtain a small spanner. Fortunately, the shifted matching graph SM(n) contains many
edges e for which all edges are e-reverted.

▶ Lemma 6.7 (⋆). Let n ∈ N+ and e = {a, b} be an edge with label 0 or n − 1 in SM(n).
Then NotReve = ∅.

This allows us to apply Theorem 6.6 to SM(n) to construct a linear-size bi-spanner.

▶ Corollary 6.8. For every n ∈ N+, the graph SM(n) has a bi-spanner of size 4n − 4.

Now we connect the concept of e-reverted edges to partial pivot-edges from Section 5.

▶ Lemma 6.9 (⋆). Let D = (A, B, λ) be a bi-clique and e = {a, b} ∈ A ⊗ B. Then
|NotReve| ≥ |A \ In(e)| · |B \ Out(e)|.

Lemma 6.9 tells us something about where to look for edges e with many e-reverted
edges. In fact, only edges that are either among the earliest or the latest edges of the incident
vertices are suitable candidates for Theorem 6.6, which are the least likely to be suitable
partial pivot-edges. This gives us an intuition, why the two techniques can be applied in
different situations. This intuition is supported by the example of shifted matching graphs.

7 Product Graphs

In this section we present a general construction to compose two bi-cliques. We show that a
careful application yields a bi-clique which cannot be solved by the techniques presented so
far. In particular, we present a class of graphs, such that for any edge e the pivot-set of e is
sub-linear and the set of non-revertible vertex-pairs grows almost quadratically.

▶ Theorem 7.1 (⋆). Let f : N → N+ be any function with f(n) ∈ O(n). There is a set of
bi-cliques {Dn}n∈N = {(An, Bn, λn)}n∈N, such that
1. |An| = |Bn| ∈ Θ(n);
2. for all e ∈ An ⊗ Bn

a. the size of In(e) ∩ Out(e) is in O(f(n)),
b. the number of the not e-reverted edges NotReve is in Ω(nf(n)).

ESA 2024

11:12 How to Reduce Temporal Cliques to Find Sparse Spanners

We do not prove Theorem 7.1 right away. Rather, we first consider an application. For
this, choose f(n) := n1−ε. Theorem 7.1 tells us that there is a set of graphs {Dn}n∈N such
that the size of sides is in Θ(n), the size of any pivot-set is in O(n1−ε), and the number of
not reverted edges with respect to any edge is in Ω(n2−ε).

To prove Theorem 7.1, we define a graph class that we later use to define appropriate Dn.

▶ Definition 7.2 (Product Graph). Consider two bi-cliques G = (AG, BG, λG) and H =
(AH , BH , λH). Define the product graph G × H = (A, B, Λ) as

A := AG × AH ,

B := BG × BH ,

Λ := ((aG, aH), (bG, bH)) 7→ (λG(aG, bG), λH(aH , bH)).

Note that the co-domain of Λ is N2. To make it the proper definition of an edge labeling
function, take the lexicographic embedding. For the reader’s benefit, we continue to write
tuples. Intuitively, to construct G × H, we start with the graph G and replace each vertex of
AG with a distinct copy of AH as well as each vertex of BG with a distinct copy of BH , see
Figure 3a for an illustration of this idea. We refer to each such expanded vertex as a bag.
Note that this operation is not commutative. The edge labels Λ are chosen in such a way
that any 2-edge path x → y → z with x and z in the same bag is temporal if the respective
path in H is temporal and any 2-edge path x → y → z with x and z belonging to different
bags is temporal if the respective path is temporal in G. We now make this rigorous.

▶ Lemma 7.3 (⋆). Let G and H be bi-cliques. Let P = (g1, h1)(g2, h2) . . . (gℓ, hℓ) be a
temporal path in G × H. Then
1. the sequence g1g2 . . . gℓ is a temporal path in G;
2. if λG(g1, g2) = λG(gℓ−1, gℓ), the sequence h1h2 . . . hℓ is a temporal path in H.

This gives us enough tools to prove how the pivot-set of an edge e = {(uG, uH), (vG, vH)} ∈
E(G × H) in G × H relates to the pivot-set of {uG, vG} in G. For this, define ϕ : V (G × H) →
V (G) as (uG, uH) ϕ7→ uG. This denotes the function that yields for every vertex in G × H

its bag, namely, its original vertex in G. We will also naturally extend ϕ to edges (i.e.,
ϕ({(uG, uH), (vG, vH)}) = {uG, vG}). Intuitively, for any vertex v in the pivot-set of an edge
e ∈ E(G × H), the vertex ϕ(v) must be in the pivot-set of ϕ(e) in G.

▶ Lemma 7.4 (⋆). Let G and H be bi-cliques and let e ∈ E(G × H). We have
1. ϕ(In(e)) ⊆ In(ϕ(e)),
2. ϕ(Out(e)) ⊆ Out(ϕ(e)), and
3. ϕ(In(e) ∩ Out(e)) ⊆ In(ϕ(e)) ∩ Out(ϕ(e)).

We now focus on product graphs, where both G and H are shifted matching graphs, as
we will use these to prove Theorem 7.1. Therefore, they will serve as the family of graphs
which the already introduced techniques do not solve.

▶ Definition 7.5. Let m, k ∈ N, Define the graph SM(m, k) = SM(m) × SM(k) to be the
product graph obtained by taking SM(m) as the outer graph and SM(k) as the inner graph.

Observe that each side of SM(m, k) has m bags each of size k and so, overall, SM(m, k)
has mk vertices per side. We now investigate the size of the pivot-sets in SM(m, k) as well
as the number of the non-reverted edges.

▶ Lemma 7.6 (⋆). Let m, k ∈ N and consider SM(m, k). For any e ∈ E(SM(m, k)), we have
that the size of the pivot-set In(e) ∩ Out(e) is at most 2k.

S. Angrick et al. 11:13

Edge-pivotable

Few
non-e-reverted pairs

Product graphs

c-steepVertex-
pivotable

Figure 4 Overview of techniques. Previously proposed techniques are blue, new ones are green.
Example families of graphs are purple. The red area contains instances that are not solved by any
known techniques.

▶ Lemma 7.7 (⋆). Let k, m ∈ N and consider SM(m, k). For any e ∈ E(SM(m, k)), the size
of the set of not e-reverted edges NotReve is at least (m − 1)

(
k
2
)
.

The last two lemmas show that our tools are not strong enough to solve this graph class
yet. With our previous techniques, we are not able to give a linear-size spanner for every
product graph. By Theorem 7.1, for f(n) ∈ Θ(

√
n), Theorem 5.4 and Theorem 6.6 only

give us Θ(n3/2) spanners. Still, product graphs exhibit a lot of structure, in the sense that
all edges between two bags have roughly the same time labels. We use this to construct
bi-spanners for the product graph based on bi-spanners for the two underlying graphs.

▶ Lemma 7.8 (⋆). Let G = (AG, BG, λG) and H = (AH , BH , λH) be temporal bi-cliques
of sizes nG and nH and let SG, SH be temporal bi-spanners respectively. Then, there is a
bi-spanner in G × H of size at most |SG| · |SH |.

With more careful analysis, this construction can be improved to a bound of |SG|nH + |SH |nG.
If G and H each have linear-size bi-spanners, this proves the existence of a linear-size

bi-spanner for G × H. Since we know from Section 6 how to construct a linear-size bi-spanner
for SM(m), we can now construct a linear-size bi-spanner for SM(m, k).

Additionally, we can augment Lemma 7.8 to also deal with different graphs He per edge e

in G. To do this, we have to change the definition of our representatives from a∗
H and b∗

H

to functions rA, rB , such that for bG ∈ BG the label of
{

(π+
SG

(bG), rA(bG)), (bG, rB(bG))
}

is
minimal. This enables us not only to construct bi-spanners for G × H but any bi-cliques
that can be decomposed into bags of vertices.

8 Conclusion

We present a significant step forwards towards answering whether temporal cliques admit
linear-size temporal spanners, see Figure 4 for an illustration. The obvious problem that
stems from this paper, is whether classes of graphs exist that are not solved by our techniques.
We conjecture that this is the case but the classes of graphs remaining should be quite
artificial. Another possible avenue is to generalize some of our techniques to include a wider
variety of graphs. For example, we could consider investigating the temporal ordering of
edges and try to generalize the concept of reverted edges. Also, product graphs and their
solution suggest a way in which temporal bi-cliques may be composed and decomposed.
Future research could generalize this idea and more closely analyze the cases in which a
temporal spanner can be obtained by combining temporal spanners on subinstances. Towards
the opposite direction, it is now easier to find a Ω(n log n) counterexample, if it exists at all,
since we have provided many properties that any counterexample must avoid.

ESA 2024

11:14 How to Reduce Temporal Cliques to Find Sparse Spanners

References
1 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex

cover with a sliding time window. Journal of Computer and System Sciences, 107:108–123,
2020. doi:10.1016/j.jcss.2019.08.002.

2 Kyriakos Axiotis and Dimitris Fotakis. On the Size and the Approximability of Minimum
Temporally Connected Subgraphs. In International Colloquium on Automata, Languages, and
Programming (ICALP 2016), pages 149:1–149:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.
149.

3 Davide Bilò, Gianlorenzo D’Angelo, Luciano Gualà, Stefano Leucci, and Mirko Rossi. Blackout-
tolerant temporal spanners. In Algorithmics of Wireless Networks (ALGOSENSORS 2022),
pages 31–44, 2022.

4 Davide Bilò, Gianlorenzo D’Angelo, Luciano Gualà, Stefano Leucci, and Mirko Rossi. Sparse
Temporal Spanners with Low Stretch. In European Symposium on Algorithms (ESA 2022),
pages 19:1–19:16, 2022. doi:10.4230/LIPIcs.ESA.2022.19.

5 Davide Bilò, Sarel Cohen, Tobias Friedrich, Hans Gawendowicz, Nicolas Klodt, Pascal Lenzner,
and George Skretas. Temporal network creation games. In International Joint Conference on
Artificial Intelligence (IJCAI 2023), pages 2511–2519, 2023. doi:10.24963/ijcai.2023/279.

6 Arnaud Casteigts, Joseph G Peters, and Jason Schoeters. Temporal cliques admit sparse
spanners. In International Colloquium on Automata, Languages and Programming (ICALP
2019), pages 134–1, 2019. doi:10.4230/LIPICS.ICALP.2019.134.

7 Arnaud Casteigts, Michael Raskin, Malte Renken, and Viktor Zamaraev. Sharp thresholds in
random simple temporal graphs. In Symposium on Foundations of Computer Science (FOCS
2022), pages 319–326, 2022. doi:10.1109/FOCS52979.2021.00040.

8 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

9 Argyrios Deligkas, Eduard Eiben, Tiger-Lily Goldsmith, and George Skretas. Being an
influencer is hard: The complexity of influence maximization in temporal graphs with a fixed
source. In International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2023), pages 2222–2230, 2023. doi:10.5555/3545946.3598898.

10 Argyrios Deligkas, Eduard Eiben, and George Skretas. Minimizing reachability times on
temporal graphs via shifting labels. In International Joint Conference on Artificial Intelligence
(IJCAI 2023), pages 5333–5340, 2023. doi:10.24963/ijcai.2023/592.

11 Riccardo Dondi and Alexandru Popa. Timeline cover in temporal graphs: Exact and ap-
proximation algorithms. In Combinatorial Algorithms (IWOCA 2023), pages 173–184, 2023.
doi:10.1007/978-3-031-34347-6_15.

12 Jessica A. Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges
to restrict the size of an epidemic in temporal networks. Journal of Computer and System
Sciences, 119:60–77, 2021. doi:10.1016/j.jcss.2021.01.007.

13 Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Delay-robust routes in
temporal graphs. In International Symposium on Theoretical Aspects of Computer Science
(STACS 2022), pages 30:1–30:15, 2022. doi:10.4230/LIPIcs.STACS.2022.30.

14 Thekla Hamm, Nina Klobas, George B. Mertzios, and Paul G. Spirakis. The complexity of
temporal vertex cover in small-degree graphs. In AAAI Conference on Artificial Intelligence
(AAAI 2022), pages 10193–10201, 2022. doi:10.1609/aaai.v36i9.21259.

15 David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems
for temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.
doi:10.1006/jcss.2002.1829.

16 Mikhail Lavrov and Po-Shen Loh. Increasing hamiltonian paths in random edge orderings.
Random Structures & Algorithms, 48(3):588–611, 2016. doi:10.1002/RSA.20592.

17 George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Temporal
network optimization subject to connectivity constraints. In International Colloquium on

https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.4230/LIPIcs.ICALP.2016.149
https://doi.org/10.4230/LIPIcs.ICALP.2016.149
https://doi.org/10.4230/LIPIcs.ESA.2022.19
https://doi.org/10.24963/ijcai.2023/279
https://doi.org/10.4230/LIPICS.ICALP.2019.134
https://doi.org/10.1109/FOCS52979.2021.00040
https://doi.org/10.5555/3545946.3598898
https://doi.org/10.24963/ijcai.2023/592
https://doi.org/10.1007/978-3-031-34347-6_15
https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.4230/LIPIcs.STACS.2022.30
https://doi.org/10.1609/aaai.v36i9.21259
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1002/RSA.20592

S. Angrick et al. 11:15

Automata, Languages and Programming (ICALP 2013), pages 657–668, 2013. doi:10.1007/
978-3-642-39212-2_57.

18 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239–280, 2016. doi:10.1080/15427951.2016.1177801.

19 B Bui Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost
journeys in dynamic networks. International Journal of Foundations of Computer Science,
14(02):267–285, 2003. doi:10.1142/S0129054103001728.

ESA 2024

https://doi.org/10.1007/978-3-642-39212-2_57
https://doi.org/10.1007/978-3-642-39212-2_57
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1142/S0129054103001728

	1 Introduction
	1.1 Our Contribution
	1.2 Detailed Discussion of Related Work

	2 Preliminaries
	3 Cliques and Bi-Cliques
	4 Structure of Bi-Clique Instances
	5 Pivotable Bi-Cliques
	6 Bi-Cliques With Reverted Edges
	7 Product Graphs
	8 Conclusion

