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Abstract
We study the problem of robust multivariate polynomial regression: let p : Rn → R be an unknown
n-variate polynomial of degree at most d in each variable. We are given as input a set of random
samples (xi, yi) ∈ [−1, 1]n × R that are noisy versions of (xi, p(xi)). More precisely, each xi is
sampled independently from some distribution χ on [−1, 1]n, and for each i independently, yi is
arbitrary (i.e., an outlier) with probability at most ρ < 1/2, and otherwise satisfies |yi − p(xi)| ≤ σ.
The goal is to output a polynomial p̂, of degree at most d in each variable, within an ℓ∞-distance of
at most O(σ) from p.

Kane, Karmalkar, and Price [FOCS’17] solved this problem for n = 1. We generalize their results
to the n-variate setting, showing an algorithm that achieves a sample complexity of On(dn log d),
where the hidden constant depends on n, if χ is the n-dimensional Chebyshev distribution. The
sample complexity is On(d2n log d), if the samples are drawn from the uniform distribution instead.
The approximation error is guaranteed to be at most O(σ), and the run-time depends on log(1/σ).
In the setting where each xi and yi are known up to N bits of precision, the run-time’s dependence
on N is linear. We also show that our sample complexities are optimal in terms of dn. Furthermore,
we show that it is possible to have the run-time be independent of 1/σ, at the cost of a higher
sample complexity.
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12:2 Outlier Robust Multivariate Polynomial Regression

1 Introduction

“Curve fitting” or polynomial regression is one of the oldest and most fundamental learning
problems: find a polynomial that approximately satisfies the input-output relationship
displayed by a collection of data points. Polynomial regression has a vast range of applications,
from the physical sciences to statistics and machine learning; see, e.g., the books [13, 14] for
discussions and references.

The focus of this work is on multivariate polynomial regression, which is the task of
learning the class of bounded degree polynomials from random noisy samples. Multivariate
polynomial regression is a natural requirement in many applications. For example, in
computer vision, boundaries of objects are often modeled as low-degree bivariate polynomials,
so it is well-motivated to fit curves to estimates of object boundaries. Our goal is to design
robust regression algorithms, which can withstand having a constant fraction of the input
data be arbitrary outliers in the same setting as in [1, 6, 8].

We next formally state the problem of robust multivariate regression. Let us denote by
Pd the class of all n-variate individual degree-d polynomials, which are the polynomials with
degree at most d in each variable1.

▶ Robust Multivariate Polynomial Regression Problem. Let σ > 0 be a noise bound, C > 1
be an approximation factor, ρ ∈ [0, 1] be the outlier probability, χ be a probability distribution
over [−1, 1]n. Fix an unknown p ∈ Pd and let S = {(x1, y1), . . . , (xM , yM )} be a set random
samples where for each i ∈ [M ] independently, xi sampled from χ, and yi ∈ R is an inlier
satisfying |yi − p(xi)| ≤ σ with probability 1− ρ and otherwise, it may be an outlier, i.e., the
noise may be arbitrarily large. The goal is to design an efficient algorithm that, given the set
S of random samples as input, recovers a polynomial p̂ ∈ Pd satisfying

max
x∈[−1,1]n

|p(x)− p̂(x)| ≤ Cσ,

with probability at least 1− δ.

Note that though the locations of the outliers are random, i.e., each sample is an outlier
with probability ρ independently, the noise for both the inliers and the outliers is still allowed
to be chosen in an adversarial way (meaning an adversary can choose the values of all the
yi’s after seeing the entire sample set {xi}).

In the univariate setting, recovery for non-trivial values of ρ was first shown by Guruswami
and Zuckerman [6] for ρ < 1/ log d. Previously, Arora and Khot [1] had shown ρ < 1/2 was
information-theoretically necessary for unique recovery. Subsequently, Kane, Karmalkar,
and Price [8] designed a simple and optimal (up to constants) algorithm that runs in
polynomial time for any ρ < 1/2, uses Θ(d log d) samples from the Chebyshev measure on
[−1, 1], or Θ(d2) uniform samples and outputs a degree-d univariate polynomial p̂ satisfying
maxx∈[−1,1] |p(x) − p̂(x)| ≤ Cσ. They show how to achieve C as close to 2 as desired. In
addition, they show that to solve the problem for d = 2 with probability at least 2/3,
C > 1.09 is needed, while for general d, to succeed with constant probability, one needs
C > 1 + Ω(1/d3).

1 This is in contrast to the usual convention of the total degree being at most d. Note that the class of
polynomials of total degree at most d is strictly included in Pd. Our results (for Pd) can be translated
for the class of total degree-d polynomials; See discussion in Remark 1.10.
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1.1 Main results
We wish to minimize the sample complexity M . Our algorithmic results are mainly when
the measure χ is either the uniform distribution or the n-dimensional Chebyshev measure,
i.e., the n-fold product of the Chebyshev measure on [−1, 1], with the probability density
function ∝ 1/

√
1− x2 for x ∈ [−1, 1].

Note that when n is large, for some distributions, solving the multivariate polynomial
regression problem requires exp(n) many samples, even for polynomials of total degree d = 1
(see Theorem 1.5). So, for sample-efficient algorithms, it is prudent to assume n > 1 being a
constant. In this setup, then, the total degree of an individual degree-d polynomial is at most
nd, i.e., O(d), and hence the multivariate polynomial regression problem becomes oblivious
to the degree being total or individual. Thus, we focus on learning the class Pd of individual
degree-d polynomials in a constant number of variables.

We now state our main results. Denote the cube [−1, 1]n by Cn; we will omit the subscript
when the dimension is clear from the context. Let ∥ · ∥C,∞ denote the ℓ∞ norm2 over Cn.

▶ Theorem 1.1. Let σ ≥ 0, η > 0, and ρ be any constant < 1/2. There is an algorithm
that almost solves the Robust Multivariate Polynomial Regression Problem with a constant
approximation factor, up to an additive error of η. The output of the algorithm is p̂ ∈ Pd

that satisfies

|p(x)− p̂(x)| ≤ O(σ) + η, for all x ∈ Cn,

with probability at least 2/3. It uses M = On(dn log d) samples drawn from the multidimen-
sional Chebyshev distribution, or M = Õn(d2n) if the samples are drawn from the uniform
measure. Its run-time is at most poly(log∥p∥C,∞, M, log(1/η)).

The notations Õ, Θ̃ hide factors proportional to log d above; the dependence on η, or σ

is kept explicit. The n in the subscripts denotes that it is the non-asymptotic parameter.
▶ Remark 1.2. One may consider the case of non-constant values of ρ < 1/2. Here, the
number of samples increases as ρ→ 1/2, since the dependence of M on ρ is M ∝ 1/(1− 2ρ)2.

In case σ is known to be at least 2−N , one may choose η = 2−N to guarantee ∥p̂−p∥Cn,∞ ≤
O(σ) and run-time proportional to poly(N). Generalizing this observation, we consider the
N -bit precision setting, where both the sample locations xi and the labels yi are truncated
to N bits of precision; this is consistent with a computational model where real numbers can
only be specified up to N bits of precision. We show that in the N -bit precision setting, a
variant of our algorithm achieves a constant approximation factor without any additional
additive error.

▶ Theorem 1.3. Let N be the number of bits of precision, σ ≥ 2−N , and ρ be any constant
< 1/2. There exists an algorithm for the Robust Multivariate Polynomial Regression Problem
, wherein each xi is now drawn from a continuous distribution χ and then rounded to N bits
of precision, and each yi is similarly rounded. The output of the algorithm is p̂ ∈ Pd, that
satisfies

|p(x)− p̂(x)| ≤ O(σ), for all x ∈ Cn,

with probability at least 2/3. It uses M = On(dn log d) samples drawn from the multidimen-
sional Chebyshev distribution, or M = Õn(d2n) if the samples are drawn from the uniform
measure. Its run-time is at most poly(log∥p∥C,∞, M, N).

2 See formal Definition 2.1.
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12:4 Outlier Robust Multivariate Polynomial Regression

To avoid a run-time dependent on ∥p∥C,∞ and 1/η, in case they are unknown or too large,
we also obtain a variant of the algorithm that achieves an explicit constant multiplicative
approximation factor, as close to 2 as desired and independent of ∥p∥C,∞ and 1/η, at the
cost of a higher sample complexity.

▶ Theorem 1.4. Let ε > 0, σ ≥ 0, and a constant ρ < 1/2. There exists an algorithm that
solves the Robust Multivariate Polynomial Regression Problem . The output of the algorithm
is p̂ ∈ Pd, that satisfies

|p(x)− p̂(x)| ≤ (2 + ε)σ for all x ∈ Cn,

with probability at least 2/3. It uses M = poly(dn2
, 1/εn) samples drawn from either the mul-

tidimensional Chebyshev distribution or the uniform distribution. Its run-time is poly(M).
We complement the above results by showing lower bounds on the sample complexity of

robust multivariate polynomial regression.

▶ Theorem 1.5. For any constant approximation factor C > 1, and any σ < 1
2C , given

M = eo(nσ2) samples, drawn from any product distribution with mean 0, no algorithm can
solve the Robust Multivariate Polynomial Regression Problem with failure probability δ < 1/4,
for any ρ (even for ρ = 0, i.e., even without outliers).

In particular, for constant noise level σ, any algorithm requires, eΩ(n) many samples to
succeed with probability at least 3/4.

This motivates our setting where n > 1 is constant, and d is the asymptotic parameter.

▶ Theorem 1.6. For any approximation factor C > 1, there exists c = c(C) > 0 such that
any algorithm, that solves the Robust Multivariate Polynomial Regression Problem , requires
at least (cd)2n samples drawn from the uniform measure to succeed with probability more than
2/3. This holds for any outlier probability ρ.

This lower bound matches the upper bound of Theorem 1.3 up to lower order terms (in
the case of uniform sampling) for constant n, and C, and holds even for ρ = 0, where there
are no outliers.

The following result shows that our result in Theorem 1.3 for the multidimensional
Chebyshev measure matches the optimal sample complexity over arbitrary distributions3.

▶ Theorem 1.7. For any approximation factor C > 1, and any outlier probability ρ > 0,
there exists c = c(C, ρ) > 0 such that any algorithm, that solves the Robust Multivariate
Polynomial Regression Problem , requires at least (cd)n log d samples drawn from any measure
over [−1, 1]n to succeed with probability more than 2/3.
▶ Remark 1.8. The reason for choosing the Chebyshev measure is that it matches the
distribution-free lower bound of Theorem 1.7. Even for the univariate case, as shown by
KKP, the Chebyshev measure yields an optimal sample complexity of Θ(d log d). While for
uniform sampling, they show an Ω(d2) lower bound, which inspires an Ω(d2n) lower bound of
Theorem 1.6 in the n-variate case. Intuitively, this tightness is because of a classical result in
approximation theory that the optimal points for polynomial interpolation are the Chebyshev
nodes (roots of Chebyshev polynomials).

A comparison of the results across parameter regimes may be given via the following
Table 1, wherein M is the sample complexity, and Cp = log ∥p∥C,∞:

3 Similarly, the lower bounds match the respective sample complexities of Theorem 1.1, when the additive
error η approaches 0, since the algorithm’s run-time grows as η → 0, but the sample complexities remain
unchanged.
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Table 1 The upper bounds in the first row follow from Theorem 1.1, the second row from
Theorem 1.3, and the third row from Theorem 1.4. The lower bounds in the second row for the
Uniform Measure follow from Theorem 1.6, and for the Chebyshev Measure from Theorem 1.7.

Setting Approximation Chebyshev Measure Uniform Measure Run-time
Exact O(σ) + η On(dn log d) Õn(d2n) poly(Cp, M, log(1/η))
N -bit O(σ) Θn(dn log d) Θ̃n(d2n) poly(Cp, M, N)

Small ε (2 + ε)σ poly(dn2
, 1/εn) poly(dn2

, 1/εn) poly(M)

▶ Remark 1.9. [8] were able to achieve both optimal sample complexity and efficient run-time
independent of ∥p∥∞/σ with a single algorithm in the univariate setting. In contrast, as we
elaborate in the proof overview, our Theorem 1.4 incurs an additional blowup in the sample
complexity; we leave open the problem of realizing the error guarantees of Theorem 1.4 with
the optimal number of samples.
▶ Remark 1.10. Both our upper and lower bounds hold for the class of total degree-d
polynomials, when n is bounded, since total degree being at most d implies individual degree
being at most d, and individual degree being at most d implies total degree being at most dn.

1.2 Main technical contributions
Our main technical contributions are twofold, and they may be of interest more broadly.
First, consider some m ≥ d, and let {Cj}j∈[m]n be a partition of the cube Cn induced by
the m-Chebyshev extremas on each axis. We call it the (m, n)-Chebyshev partition4 of Cn.
For n = 1, [8] showed how to approximate a univariate polynomial of degree at most d on
[−1, 1] by an appropriate piece-wise constant function with respect to the unidimensional
Chebyshev partition. We extend their result to the multivariate case.

▶ Theorem 1.11. [Multivariate Approximation by piece-wise constant functions] Let p :
Cn → R be a polynomial of degree at most d in each variable, and m ≥ d. Let r : Cn → R be
a piece-wise constant function with respect to the (m, n)-Chebyshev partition, such that for
every j ∈ [m]n, there exist a point x(j) ∈ Cj , such that r(x) = p(x(j)), for all x ∈ Cj . Then,
there exists a universal constant C such that,

∥p− r∥Cn,∞ ≤ C
dn

m
∥p∥Cn,∞.

Second, we show how to relate the maximum value of a bounded degree polynomial on
Cn with its ℓ1 norm, on the same cube Cn.

▶ Theorem 1.12. There exists a global constant C > 0 such that, for every p ∈ Pd:

∥p∥Cn,∞ ≤ Cnd2n∥p∥Cn,1.

We also note the tightness of the relation between ℓ∞ and ℓ1 norms, using an observation
from [7].

▶ Proposition 1.13. There exists a global constant c > 0 such that for every odd d, there
exists a family of individual degree-d polynomials {fn}n∈N, where fn : Cn → R, such that
∥fn∥Cn,∞ ≥ cnd2n∥fn∥Cn,1.

4 See formal Definitions 2.4–2.6, and Figure 1 for an illustration of a 2-dimensional Chebyshev partition.
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(α, β) →
(
cos πα7 , cos

πβ
7

)

(7, 7)

(0, 0)

(0, 7)

(0, 6)

(0, 5)

(0, 4)

(0, 3)

(0, 2)

(0, 1)

(1, 7)(2, 7)(3, 7)(4, 7)(5, 7)(6, 7)

(7, 6)

(7, 5)

(7, 4)

(7, 3)

(7, 2)

(7, 1)

(7, 0) (6, 0) (5, 0) (4, 0) (3, 0) (2, 0) (1, 0)

0

(5, 5)

x((5,5))

C(5,5)

Figure 1 An illustration of a 2-dimensional (7, 2)-Chebyshev partition (in red) super-imposed
on the 2-dimensional solid cube C2 = [−1, 1]2, with boundary in blue. The cells are indexed by
their bottom-left Chebyshev extremas (the red points). Theorem 1.11 essentially proves that on any
cell, for example, C(5,5) (in black), any p ∈ Pd can be well approximated by its evaluation on one
arbitrary point x((5,5)) ∈ C(5,5). As the partition grows finer, the approximation gets better.

1.3 Related Work

Given the fundamental nature of the polynomial regression problem, there is a long history
of work on the problem, but mostly in the univariate setting. Arora and Khot [1] were
the first to study this problem in our random outlier noise model, giving an algorithm
that in O(d2

σ log d
σ ) random noisy samples outputs an O(σ)-approximation (in ℓ∞) to the

(actual) hidden polynomial, where the outlier rate ρ = 0. This was improved in a work
by Guruswami and Zuckerman [6], who gave a computationally efficient algorithm for all
ρ < 1/ log d. Finally, in a significant improvement, Kane, Karmalkar and Price [8] obtained
computationally efficient algorithms for any ρ < 1/2, while having no additional requirements
for σ or ∥p∥∞. As far as we know, Daltrophe, Dolev and Lotker [3] were the first to consider
the multivariate setting of this problem. For the two-dimensional case (n = 2), they gave
an algorithm that with O( d4

σ log d
σ ) random noisy samples outputs a c(2) · σ-approximation

(in ℓ∞), for any ρ < 1
2 , where c(2) = 3. A limitation of their result is that c(n) grows

exponentially in n. In contrast, we obtain a constant factor approximation for all n.
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There has also been a surge of recent research in the related area of robust statistics. Here,
instead of the outliers being randomly placed, their locations are chosen adversarially. For
the setting when the total degree is fixed, and the dimension n is growing, Klivans, Kothari
and Meka [9] gave an algorithm using the sum-of-squares method. However, their sample
complexity is poly(nd), which is exponential in the degree; moreover, the output guarantee
is with respect to the ∥ · ∥2 norm, instead of the ∥ · ∥∞ norm in our setting. Other related
works in this spirit are that of Diakonikolas, Kamath, Kane, Li, Steinhardt and Stewart [4]
and Prasad, Suggala, Balakrishnan and Ravikumar [12]. The work of Diakonikolas, Kong,
and Stewart [5] also studied the related problem of adversarially robust linear regression, but
with the assumption that the xi’s are drawn from a Gaussian.

1.4 Technical Overview
We first sketch the algorithm designed by Kane, Karmalkar, and Price [8], henceforth KKP,
and their analysis for the univariate case, n = 1. For univariate polynomial interpolation,
the points at which the noisy samples are located play an important role in determining the
interpolation error. Choosing the points to be the Chebyshev nodes, which are the roots
of Chebyshev polynomials (see Definition 2.4), is a good starting point, as suggested by
approximation theory literature. However, the algorithm receives random samples, which
may not necessarily be located at the Chebyshev nodes. Instead, KKP argue that they
have enough inliers around each Chebyshev node. For this, they define a partition of the
interval [−1, 1] on the extremal points of Chebyshev polynomials, which they call the size-m
Chebyshev partition. In their algorithm and its analysis, they assume that the set of samples
is good, in the sense that in every part of the partition, there is only a small fraction of
outliers; this good event is guaranteed to happen with high probability.

1.4.1 KKP’s Algorithm and Analysis
Formally, the size-m Chebyshev partition of [−1, 1] is the set of intervals{

Ij =
[
cos πj

m
, cos π(j − 1)

m

]
⊊ [−1, 1],∀j ∈ [m]

}
.

Given a set of s samples (xi, yi) where xi’s are drawn from some distribution over [−1, 1],
and yi’s are the corresponding labels, the algorithm uses the idea of median-based recovery.
For every interval Ij :
1. Let ỹj be the median of yi’s of samples for which xi ∈ Ij . Since the set of samples is

assumed to be good, i.e., the fraction of outliers in each interval is strictly less than 1/2,
ỹj lies in between two inliers located in the interval Ij .

2. Let x̃j be an arbitrary point in Ij .
3. Let p̂ be a minimizer, over all degree-d polynomials, of the empirical ℓ∞ error maxj |p̂(x̃j)−

ỹj | over all j ∈ [m].
As m grows, the partition gets finer, and the error gets better, though at a cost of higher
sample complexity. Iteratively applying the median-based recovery on the residual left from
previous iteration improves the approximation, and in log(maxx∈[−1,1] |p(x)|/σ) iterations,
the error drops down to 3σ.

The backbone of their analysis is a technical result for approximating p on a size-m
Chebyshev partition, by a piece-wise constant function (with respect to the same partition)
that matches p on at least one point in every part of the partition.

ESA 2024



12:8 Outlier Robust Multivariate Polynomial Regression

▶ Lemma 1.14. [Lemma 2.1, [8]] Let g : R→ R be a (univariate) degree-d polynomial. Let
{Ij}j∈[m] denote the m-Chebyshev partition of [−1, 1], for some m ≥ d. Let r : [−1, 1]→ R
be piece-wise constant, so that for each k ∈ [m], there exists x∗

k ∈ Ik, such that r(x) = g(x∗
k)

for all x ∈ Ik. Then, there exists a universal constant C such that, for any q ≥ 1,

∥g − r∥q ≤
Cd

m
∥g∥q.

To prove Lemma 1.14, they used Nevai’s inequality [11], an ℓq-version of Bernstein’s
inequality, to bound the ℓq approximation error by a multiple of the ℓq norm of p. The
multiple is linear in the degree d, and 1/m. The bound from Nevai’s inequality works for all
“inner” parts of the Chebyshev partition, as it relies on the fact that the length of any part Ij ,
where j ̸∈ {1, m}, is at most O(

√
1− x2/m), for every x ∈ Ij . To bound the approximation

error on the peripheral parts I1, Im, they use Markov Brothers’ inequality (Lemma 2.3). Here
they strongly rely on the fact that those parts are much narrower5 (|I1| = |Im| = O(1/m2))
than the inner parts. This additional 1/m factor in the length compensates for the worse
bound from Lemma 2.3.

Lemma 1.14, with q set to ∞, is used to bound the error of the median-based recovery
procedure, in terms of ∥p∥C1,∞. This allows the log ∥p∥C1,∞

σ iterations to be all that is further
needed to bring the error down to 3σ.

To avoid the run-time dependence on maxx∈[−1,1] |p(x)|/σ, which maybe unknown or
too large, KKP first run an ℓ1 regression, which gives an ℓ∞ error of at most O(d2σ), and
then run the median-based recovery algorithm on the residual polynomial, which in log d

iterations drops the error further to at most 3σ. Lemma 1.14, with q = 1, is used to bound
the ℓ1-error of the ℓ1-minimizer by O(σ). A further application of Lemma 2.3 bounds the
ℓ∞-error of the ℓ1-minimizer by O(d2σ). This then allows for a bound of log d on the number
of iterations needed, and hence the algorithm’s run-time.

1.4.2 Our Results

Generalizing to the multivariate case (n > 1)

We show that the idea of KKP generalizes to the multivariate setting by considering a
tensorization of the Chebyshev partition, i.e., we divide the cube [−1, 1]n into mn cells
according to a grid partition, where each axis is divided into m intervals, according to the
size-m Chebyshev partition of [−1, 1] defined by KKP. The analysis takes steps similar to
the analysis done by KKP, and some of the proofs follow by “tensoring” KKP’s arguments
in some sense.

There are some subtleties that we take care of along the way. We successfully show
optimal sample complexity results, in terms of the dependence on dn, for the median-based
recovery algorithm, while for the ℓ1 regression, we need more samples. For this reason, we
first analyze the median based recovery algorithm, the running time (but not the sample
complexity) of which, depends on maxx∈Cn |p(x)|. Later, we show that by running the ℓ1
regression on weighted averages (with respect to cells) as the first step, we reach a constant
approximation factor in bounded run-time at the cost of increasing the exponent in the
sample complexity from n to O(n2).

5 A pictorial demonstration of this narrowness, for 2-dimensional partitions, can be observed in Figure 1.
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Overview of the algorithms and analyses

For using the median-recovery algorithm, we devise a multivariate analog (Theorem 1.11)
of Lemma 1.14 for the ℓ∞ norm. Specifically, we show that, for large enough m, every
n-variate, individual degree-d polynomial p is well approximated by any piece-wise constant
function with respect to the (m, n)-Chebyshev partition that matches p on at least one point
in each cell. This is proved by a repeated application of the univariate ℓ∞ approximation
statement from Lemma 1.14. Algorithmically, we then do median-based recovery on a
fine enough Chebyshev partition of Cn, and iteratively improve the output of the ℓ∞
regression. After at most log(∥p∥Cn,∞/η) iterations, we achieve an O(σ) + η approximation.
A poly(log ∥p∥C,∞, M, log(1/η)) run-time is thus achieved. One may set η = σ to achieve an
O(σ) approximation, in this case the run-time is dependent on log(1/σ) instead.

(3j1, 3j2) (3j1 − 1, 3j2) (3j1 − 2, 3j2) (3j1 − 3, 3j2)

(3j1, 3j2 − 1)

(3j1 − 1, 3j2 − 2)

(3j1 − 2, 3j2 − 1) (3j1 − 3, 3j2 − 1)

(3j1, 3j2 − 2)

(3j1 − 1, 3j2 − 1)

(3j1 − 2, 3j2 − 2) (3j1 − 3, 3j2 − 2)

(3j1, 3j2 − 3) (3j1 − 1, 3j2 − 3) (3j1 − 2, 3j2 − 3) (3j1 − 3, 3j2 − 3)

(α, β)→
(
cos πα3m, cos

πβ
3m

)

C(3j1−1,3j2−1)

Figure 2 An illustration of cell-refinement in 2-dimensional Chebyshev grids: a (3m, 2)-grid (in
green) super-imposed on a (m, 2)-Chebyshev cell C(j1,j2) (in red). The samples from middle-most
cell C(3j1−1,3j2−1) (in blue) only are retained, and median-recovery is applied on them.

We also consider the finite bit precision setting where the samples are represented using
at most N bits of precision. This forces σ ≥ 2−N , and the (location, evaluation) pairs of
the random input samples are now rounded to N bits. In this case, the samples’ locations
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12:10 Outlier Robust Multivariate Polynomial Regression

are not exact, and hence we are uncertain as to which Chebyshev cell they belong to. To
deal with it, we discard samples that lie in a small ℓ1 neighborhood of the boundary of the
cells. (See Figure 2 for an illustration.) We then apply the median-based recovery algorithm
on only the remaining samples in the cells’ interior. The interior refined sample points, by
virtue of being far enough from their nearest cell boundary, would have remained in their
respective cells, even after suffering from the rounding noise. Hence, we only have to ensure
that all the interior regions have enough good samples, which we show increases the sample
complexity by a factor dependent only on n. It still gives a tight upper bound on the sample
complexity, in terms of dn.

In order to avoid a run-time dependence on (∥p∥Cn,∞, σ), e.g., in case σ is unknown or
∥p∥Cn,∞ is too big, we compute an ℓ1 minimizer p̂ℓ1 first as in KKP’s approach, However,
for this analysis, we need a multivariate analog of Lemma 1.14 for the ℓ1 norm. The main
difficulty here is the fact that now we have many more “peripheral” cells, i.e, cells on
the boundary of Cn (these cells correspond to the peripheral intervals I1 and Im from the
1-dimensional Chebyshev partition, that needed Markov Brothers’ Inequality). Since these
peripheral cells are narrower, and much more in number, as n grows, this issue becomes
more crucial. For example, for n = 1, the fraction of “peripheral” intervals is 2/m; but for
n = 2, it is 4(m−1)

m2 = 2
m (2− 2/m)≫ 1

m2 . We circumvent this difficulty with our second new
technical contribution (Theorem 1.12), that relates the ℓ∞ and ℓ1 norms of any individual
degree-d, n-variate polynomial.

Relating ℓ∞ and ℓ1 norms of p

We inductively show the existence of a subset of points in Cn, with a large measure (at
least 1/(2d2)n), on which the valuations of p can be guaranteed to be large, i.e., at least
maxx∈Cn

|p(x)|/2n. Thus we lower bound the ℓ1 norm of p by a 1/poly(dn) factor of its ℓ∞
norm, in the form of Theorem 1.12. We also note the tightness of this bound, by showing a
family of polynomials for which their (resp.) ℓ1 norms are upper bounded by a matching
1/poly(dn) factor of the (resp.) ℓ∞ norms, in the form of Proposition 1.13.

To begin, for any point in x ∈ Cn, using Markov Brothers’ inequality, we show the
existence of a long enough line segment, on an axis-parallel line passing through it, such
that p on that line segment has all valuations at least p(x)/2. For constructing (higher)
(k + 1)-dimensional cubes from k-dimensional cubes, in the induction step, we prove that
all new unique line segments (one each corresponding to every point in the k-dimensional
cube) can be translated to form a (k + 1)-dimensional cube with a large enough Lebesgue
measure. Thus, a sizable subset of points in n dimensions is constructed. On each of these
points, the valuations of p are at least half of the valuations of p on the corresponding points
in the k-dimensional cube. Using the inductive hypothesis, we conclude the argument.

Using Theorem 1.12 we bound the ℓ∞ error of the ℓ1 minimizer p̂ℓ1 by poly(dn)σ. We
then feed p̂ℓ1 to the median based recovery procedure, which in O(n log d) iterations6, brings
down the error to O(σ), thus proving Theorem 1.4.

Organization

We begin by setting up some preliminaries in Section 2. Discussion of the upper bounds
follows, with Theorem 1.1 in Section 3, Theorem 1.3 in Section 4, and Theorem 1.4 in
Section 5.

6 The number of iterations in this case additionally depends on O(log(1 − 2ρ)), which diverges as ρ → 0.5,
thus agreeing with ρ < 0.5 being information-theoretically necessary, as shown by [1].
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Due to space contraints, the discussion of lower bounds, and all proofs are omitted here.
They are included in the full version [2] of our paper.

2 Preliminaries

Notations

As mentioned earlier, Pd denotes the class individual degree-d polynomials, where a polyno-
mial p : Rn → R is said to be of individual degree-d if it can be written as

p(x1, . . . , xn) =
∑

α∈{0,1,...,d}n

cαxα1
1 · · ·xαn

n ,

for some set of coefficients cα ∈ R. We use [m] = {1, . . . , m}, and bold font for multi-indices.
For example j = (j1, . . . , jn) ∈ [m]n where each entry ji ∈ [m]. We use the math bold font
(for e.g., x, y) for vectors. To denote random uniform sampling from a set D, we use ∼ D.
We denote by Cn = [−1, 1]n the n dimensional solid cube and omit the subscript n when it is
clear from the context. Our main problem of interest is the Robust Multivariate Polynomial
Regression Problem , formally described in Section 1.

▶ Definition 2.1. [Norms] For any bounded subset S ⊊ Rn, for any 1 ≤ q ∈ R, the ℓq norm
of a function f : Rn → R on S, provided it exists, is defined as:

∥f∥S,q ≜

(∫
S

|f(x)|qdx
) 1

q

<∞.

The supremum norm of f on S is defined as ∥f∥S,∞ ≜ limq→∞ ∥f∥S,q = supx∈S{|f(x)|}.

▶ Lemma 2.2. [Hölder’s Inequality] Let α, β, γ ∈ R≥1 such that 1
α + 1

β = 1
γ . For all functions

f and g with finite ∥f∥S,α, and ∥g∥S,β, we have: ∥fg∥S,γ ≤ ∥f∥S,α∥g∥S,β.

▶ Lemma 2.3 (Markov Brothers’ Inequality [10]). Let p : R → R be a degree-d polynomial.
Then, for all a < b ∈ R,

∥p′∥[a,b],∞ ≤
2d2

b− a
∥p∥[a,b],∞.

▶ Definition 2.4 (Chebyshev Polynomials). Chebyshev polynomials of the first kind are degree-d
polynomials Td : R→ R, that follow the recurrence relation:

T0(x) = 1, T1(x) = x, Td+1(x) = 2xTd(x)− Td−1(x).

Their explicit trigonometric formulation is:

Td(x) ≜


cos(d arccos(x)), if |x| ≤ 1,

cosh(d arcosh(x)), if x ≥ 1,

(−1)d cosh(d arcosh(−x)), if x ≤ −1,

.

▶ Definition 2.5 (Chebyshev Extremas). For any d ∈ Z>0, the d Chebyshev extremas ∈ [−1, 1]
given by

xk ≜ cos
(

k

d
π

)
, k ∈ [d]

are the extremas of Td, the degree-d Chebyshev polynomial of the first kind, i.e., Td(xk) ∈
{±1},∀k ∈ [d].
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12:12 Outlier Robust Multivariate Polynomial Regression

Chebyshev Partition

We partition the cube Cn into mn cells by tensorizing the partition used by KKP for the line
segment [−1, 1].

▶ Definition 2.6 (Chebyshev partition). The (m, n)-Chebyshev partition of the cube C is a set
of mn cells indexed by j ∈ [m]n and denoted Cj , such that

Cj =
[
cos πj1

m
, cos π(j1 − 1)

m

]
× · · · ×

[
cos πjn

m
, cos π(jn − 1)

m

]
.

The grid is induced by partitioning [−1, 1] between the extrema points of the degree m

Chebyshev polynomial of the first kind, Tm, simultaneously along each axis.
We generalize KKP’s notion of goodness that restricts the number of outliers in each cell:

▶ Definition 2.7 (α-good sample set). We say that a set of samples S = {(xi, yi)} is α-good
for the (m, n) Chebyshev partition, if for every j ∈ [m]n, the set of samples in Cj has size at
least 1/α, and the fraction of outliers in the cell Cj is less than α.

3 Main algorithmic result

In this section, we present the algorithm that solves the Robust Multivariate Polynomial
Regression Problem , proving the following theorem, handling an approximation factor as
close to 2 as we want, and any success probability 1− δ.

▶ Theorem 3.1. [Generalized version of Theorem 1.1 ] Let ε ∈ (0, 1/2], δ ∈ (0, ε], σ ≥ 0, η > 0,
and ρ < 1/2. There is an algorithm (Algorithm 2) that almost solves the Robust Multivariate
Polynomial Regression Problem up to an additive error of η. The output of the algorithm is
a polynomial p̂ of degree at most d in each variable, such that with probability at least 1− δ

(over the random input samples), p̂ satisfies

|p(x)− p̂(x)| ≤ (2 + ε)σ + η for all x ∈ C .

It uses M = On,ρ((d/ε)n log(d/δ)) samples drawn from the multidimensional Chebyshev
distribution, or M = On,ρ((d/ε)2n log(d/δ)) if the samples are drawn from the uniform
measure. Its run-time is that of solving O(log1/ε(∥p∥Cn,∞/η) linear programs with (d + 1)n <

M variables, and M constraints.
We remark that the idea is to show that we may achieve a multiplicative approximation

factor C, as close to 2 as we want (as long as C > 2), at the cost of more samples. We may
allow larger values of ε, and then run our algorithm7 with ε′ = min{ε, 1/2}. For ε ≥ 1/2,
the dependence on ε in the sample complexity becomes constant for constant values of n.
▶ Remark 3.2. In case σ > 0 is known, one may choose η = εσ/2, and set the ε parameter to
be half of the desired bound to guarantee ∥p̂− p∥Cn,∞ ≤ (2 + ε)σ.

Our algorithm, given in Algorithm 2 with its subroutine Algorithm 1, is essentially the
same algorithm proposed by KKP, which now uses the (m, n)-Chebyshev partition of the cube
C instead of the (m, 1)-Chebyshev partition of the interval [−1, 1] used in KKP. Compared
to their algorithm, we don’t use the ℓ1 regression as the first step, but instead start with the
0 polynomial as the first approximation. We first describe the idea of the algorithm and the
median-based recovery.

7 Having ε′ ≤ 1/2 is a limitation of the current analysis. An open question remains to make it work
efficiently for any ε′ > 0.
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Median-based Recovery

As in KKP (a similar approach was taken by [3]), for every j ∈ [m]n, we take the median ỹj

of all the yi’s corresponding to locations xi’s that land in the cell Cj . We assume that the
sample set S is α-good, so the fraction of outliers in each cell is strictly less than one-half (α
and ρ are related: α = 2ρ+1

4 . So, α < 1/2, since ρ < 1/2.) so that the median lies in between
the values of the inlier samples. However, we may not be able to determine which domain
point is associated with ỹj . Even if there is a sample (xi, yi) in the cell Cj which collide with
the median value (for which yi = ỹj), it might be the case (xi, yi) that is an outlier. We
generalize KKP’s techniques to show that picking an arbitrary x̃j ∈ Cj , and assigning ỹj to
it is enough. We then compute the polynomial r, that minimizes maxj∈[m]n |r(x̃j)− ỹj |, and
show that r is O(σ)-close to p in ℓ∞ up to an additive error of ε∥p∥Cn,∞. To deal with this
error, we iteratively refine the estimate r. After log1/ε(∥p∥Cn,∞/η) iterations, the additive
error becomes as small as η.

Algorithm 1 Refinement.

1 Procedure Refine(S, p̂)
Input : A set of samples S = {xi, yi}M

i=1, and an estimate p̂.
2 for j ∈ [m]n do
3 ỹj ← medxi∈Cj

(yi − p̂(xi));
4 Choose an arbitrary x̃j ∈ Cj ;
5 Fit a degree d polynomial r minimizing ∥r(x̃j)− ỹj∥∞;
6 p̂′ ← p̂ + r;
7 Return p̂′.

Algorithm 2 Median Based Recovery.

Input : A set of samples S = {xi, yi}M
i=1, approximation factor ε ≤ 1/2, accuracy

parameter η > 0.
1 p̂(1) ← Refine(S, 0) ; // Let p̂(1)(x) =

∑
α∈{0,1,...,d}n cαxα

2 Let vmax : |p̂(1)(x)| ≤ vmax for all x ∈ C ; // Set vmax ≜
∑

α∈{0,1,...,d}n |cα|

3 N2 ← O
(

log1/ε(vmax/η)
)

;
4 for i ∈ {1, . . . , N2 − 1} do
5 p̂(i+1) ← Refine(S, p̂(i)));
6 Return p̂(N2).

To prove Theorem 3.1, we show that for M as in the theorem, the set of samples is
α-good with high probability, then we apply the following result.

▶ Theorem 3.3 (Absolute ℓ∞ error bound). Let c be some absolute constant, and let ε, α < 1/2,
0 < η ≤ 1, be parameters. For any m ≥ cdn/ε, if the set S = {(xi, yi)} of M samples
is α-good for the (m, n)-Chebyshev partition, then the median-based recovery Algorithm 2
returns an individual degree-d polynomial p̂ = p̂(N2), such that

∥p− p̂∥Cn,∞ ≤ (2 + ϵ)σ + η.

The first part of the proof of Theorem 3.3 follows the skeleton of the proof of [8, Theorem
1.4], whilst skipping the preliminary ℓ1 regression.
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12:14 Outlier Robust Multivariate Polynomial Regression

The main ingredient for proving Theorem 3.3 is the following technical result, bounding
the ℓ∞ error of the non-robust ℓ∞ minimizer, i.e., a single run of Algorithm 1. This is later
used to bound the error of the robust minimizer Algorithm 2.

▶ Lemma 3.4 (Relative ℓ∞ error bound, generalization of [8, Lemma 1.3]). Let c > 0 be an
absolute constant. Let ε, α < 1/2, and m ≥ cdn/ε. Let the set S = {(xi, yi)} of M samples
is α-good for the (m, n)-Chebyshev partition. And for every j ∈ [m]n, let x̃j be an arbitrary
point from the cell Cj, and ỹj ≜ medS{yi : xi ∈ Cj}, i.e. the median of all those yi’s in S,
whose corresponding xi is in the cell Cj . Then, with

p̂ ≜ arg min
q∈Pd

max
j∈[m]n

|q(x̃j)− ỹj |,

where the minimization is over the class Pd of all individual degree-d polynomials over Rn,
we have

∥p− p̂∥Cn,∞ ≤ (2 + ε)σ + ε∥p∥Cn,∞.

The proof of this statement mirrors the proof of its univariate counterpart [8, Lemma 1.3],
with Theorem 1.11 replacing Lemma 1.14.

4 Dealing with finite precision representations

We prove a more precise statement of Theorem 1.3, giving an algorithm for handling an
approximation factor close enough to 2, and for any success probability 1− δ.

▶ Theorem 4.1. [Generalized version of Theorem 1.3] Let N be the number of bits of
precision, σ ≥ 2−N and, constant ρ < 1/2. For any ε ≤ 1/2 such that ε = Ωn(d2−N/2), and
δ ∈ (0, ε], there exists an algorithm (Algorithm 3) for the Robust Multivariate Polynomial
Regression Problem . The output of the algorithm is p̂ : Rn → R, a polynomial of degree at
most d in each variable, that satisfies

|p(x)− p̂(x)| ≤ (2 + ε)σ for all x ∈ Cn,

with probability at least 1 − δ. It uses M = On,ρ((d/ε)n log(d/δ)) samples drawn from the
multidimensional Chebyshev distribution, or M = On,ρ((d/ε)2n log(d/δ)) if the samples are
drawn from the uniform measure. Its run-time is that of solving O(log1/ε∥p∥Cn,∞ + N) linear
programs with (d + 1)n < M variables, and M constraints.

Algorithm 3 Median Based Recovery with Finite Precision.

Input : A set of samples S = {xi, yi}M
i=1 specified upto N bits of precision,

approximation factor ε ≤ 1/2, accuracy parameter η = ε2−N .
1 Sift S into S′ ≜ {(x = (x1, . . . , xn), y) ∈ S : ∀i ∈ [n].|kxi

− xi| > 2−N}, where for all
i ∈ [n], kxi

= the Chebyshev extrema (Definition 2.5) closest to xi.
2 Run Algorithm 2 on (S′, ε, η).

▶ Remark 4.2. We note that the condition on ε implies that in order to learn degree d

polynomials using Algorithm 2, one needs at least N = Ω(log d) bits of precision. The reason
is that to get a good approximation we need to take a fine enough grid, but the grid’s
“fineness parameter” m is limited as well by the precision restriction, as we need the width
of any cell to be at least 2−N . Note that if N = o(log d), i.e. d = 2Ω(N), then ε = Ω(1),



V. Arora, A. Bhattacharyya, M. Boban, V. Guruswami, and E. Kelman 12:15

i.e. the approximation factor achieved in this setting is too large, compared to the factor
of at most 3, achievable when N = Ω(log d). If we would take another approach, and just
consider the difference between p(x) and p(z), for some arbitrary x, z ∈ Cn; the bound, using
for example, Markov Brothers’ inequality, would involve ∥p∥Cn,∞ and impose a restriction
of ∥p∥Cn,∞ ≤ 2N . This might make sense in some settings, if we consider N , not only as a
restriction on the precision of the given sample set, but also as a restriction on the space
complexity of the algorithm.

5 Robust multivariate regression algorithm

In this section, we show how to modify our algorithm to avoid having a run-time dependence
on (∥p∥Cn,∞, σ, N) and thus prove the following theorem. In Algorithm 4, we use the same
idea as in KKP: starting with p̂ℓ1 , the result of an ℓ1 regression, we then iteratively refine
the estimate, improving the ℓ∞ error in each step.

▶ Theorem 5.1. [Generalized form of Theorem 1.4] Let ε ∈ (0, 1/2],δ ∈ (0, ε], σ ≥ 0, and
ρ < 1/2. There is an algorithm (Algorithm 4) that solves the Robust Multivariate Polynomial
Regression Problem with approximation factor C = 2 + ε. The output of the algorithm is a
polynomial p̂ : Rn → R of degree at most d in each variable, such that with probability (over
the random input samples) at least 1− δ, p̂ satisfies

|p(x)− p̂(x)| ≤ (2 + ε)σ, for all x ∈ C .

It uses M = On,ρ

((
d2n+1/ε

)n log(d/δ)
)

samples drawn from the multidimensional Chebyshev
distribution, or M = On,ρ

((
d2n+1/ε

)2n log(d/δ)
)

if the sampled are drawn from the uniform
measure. Its run-time is poly(M, logε(1− 2ρ)).

Algorithm 4 Median Based Recovery with ℓ1 regression.

Input : A set of samples S = {xi, yi}M
i=1, of which a ρ fraction may be outliers.

1 p̂(0) ← result of ℓ1 regression: p̂ℓ1 ;
2 N4 ← O

(
n log1/ε d + logε(1− 2ρ)

)
;

3 for i ∈ {0, . . . , N4 − 1} do
4 p̂(i+1) ← Refine(S, p̂(i));
5 Return p̂(N4).

As a result, the number of iterations here depends only on (d, n), and improves as ε gets
smaller. (In fact, it is linear in n, and logarithmic in d, and 1/ε).

Here, as in Section 3, we prove that with enough samples, the set of samples is α-good
(again, for α = 2ρ+1

4 ) with high probability, and separately we show that for any α-good
(where α < 1/2) set of samples, Algorithm 4 recovers p as required.

▶ Theorem 5.2 (Absolute ℓ∞ error bound). Let ε, α < 1/2. Let the set S = {(xi, yi)}M
i=1 of

samples be α-good for the (m, n)-Chebyshev partition where m ≥ (cd)2n+1/ε, for some large
enough constant c > 1. Then the median recovery Algorithm 4, in N4 = O(n log1/ε d+logε(1−
2α)) iterations, returns an individual degree-d polynomial p̂, such that ∥p−p̂∥Cn,∞ ≤ (2+ε)σ.

For proving the above theorem, we bound the initial error ∥p− p̂ℓ1∥Cn,∞ by poly(dn)σ.
We briefly discuss this in Subsection 5.1, presented as Theorem 5.4. However, to use the ℓ1
regression result, the underlying Chebyshev grid needs to be much finer, with m = (cd)2n+1/ε,
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for some absolute constant c > 0 (as compared to c0dn/ε needed for just the ℓ∞ regression).
Hence the Chebyshev and Uniform sample complexities for Algorithm 4 are worse compared
to Algorithm 2.

5.1 Bounding the ℓ1 regression error
We next generalize KKP’s ℓ1 regression. Similar to their regression on averages over Chebyshev
intervals, we do regression on averages over Chebyshev cells.

▶ Definition 5.3 (ℓ1 Minimizer). Let m be large enough integer. Given a set of M samples
S = {(xi, yi)}, for every j ∈ [m]n, let Sj ≜ {β ∈ [M ] : xβ ∈ Cj}. The ℓ1 minimizer of S

with respect to the (m, n)-Chebyshev partition, is the individual degree-d polynomial:

p̂ℓ1 ≜ arg min
f∈Pd

∑
j∈[m]n

Vn(Cj)
|Sj |

∑
β∈Sj

|f(xβ)− yβ |. (1)

Using Theorem 1.12, we show that on a set of α-good samples, the ℓ1 regression outputs
an individual degree-d polynomial with poly(dn) error in ℓ∞.

▶ Theorem 5.4 (ℓ∞ error bound for the ℓ1 minimizer). Let α < 1/2 be constant , ε ≤ (1−2α)/2,
and for some constant c > 1, m ≥ (cd)2n+1/ε. Given a set S of samples that is α-good with
respect to the (m, n)-Chebyshev partition, the ℓ1 minimizer p̂ℓ1 from (1) satisfies

∥p− p̂ℓ1∥Cn,∞ = Oα((8d2)nσ).
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