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Abstract
This paper presents parallel, distributed, and quantum algorithms for single-source shortest paths
when edges can have negative integer weights (negative-weight SSSP). We show a framework that
reduces negative-weight SSSP in all these settings to no(1) calls to any SSSP algorithm that works
on inputs with non-negative integer edge weights (non-negative-weight SSSP) with a virtual source.
More specifically, for a directed graph with m edges, n vertices, undirected hop-diameter D, and
polynomially bounded integer edge weights, we show randomized algorithms for negative-weight
SSSP with

WSSSP (m, n)no(1) work and SSSSP (m, n)no(1) span, given access to a non-negative-weight SSSP
algorithm with WSSSP (m, n) work and SSSSP (m, n) span in the parallel model, and
TSSSP (n, D)no(1) rounds, given access to a non-negative-weight SSSP algorithm that takes
TSSSP (n, D) rounds in CONGEST, and
QSSSP (m, n)no(1) quantum edge queries, given access to a non-negative-weight SSSP algorithm
that takes QSSSP (m, n) queries in the quantum edge query model.

This work builds off the recent result of Bernstein, Nanongkai, Wulff-Nilsen [7], which gives a
near-linear time algorithm for negative-weight SSSP in the sequential setting.

Using current state-of-the-art non-negative-weight SSSP algorithms yields randomized algorithms
for negative-weight SSSP with

m1+o(1) work and n1/2+o(1) span in the parallel model, and
(n2/5D2/5 +

√
n + D)no(1) rounds in CONGEST, and

m1/2n1/2+o(1) quantum queries to the adjacency list or n1.5+o(1) quantum queries to the adjacency
matrix.

Up to a no(1) factor, the parallel and distributed results match the current best upper bounds for
reachability [23, 12]. Consequently, any improvement to negative-weight SSSP in these models
beyond the no(1) factor necessitates an improvement to the current best bounds for reachability.
The quantum result matches the lower bound up to an no(1) factor [9].

Our main technical contribution is an efficient reduction from computing a low-diameter de-
composition (LDD) of directed graphs to computations of non-negative-weight SSSP with a virtual
source. Efficiently computing an LDD has heretofore only been known for undirected graphs in both
the parallel and distributed models, and been rather unstudied in quantum models. The directed
LDD is a crucial step of the sequential algorithm in [7], and we think that its applications to other
problems in parallel and distributed models are far from being exhausted.

Other ingredients of our results include altering the recursion structure of the scaling algorithm in
[7] to surmount difficulties that arise in these models, and also an efficient reduction from computing
strongly connected components to computations of SSSP with a virtual source in CONGEST. The
latter result answers a question posed in [6] in the negative.
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1 Introduction

Single-source shortest paths (SSSP) is one of the most fundamental problems in graph
algorithms. Given a directed graph G = (V, E), an integer weight function w : E → Z, and a
source vertex s ∈ V , we want to compute the distance from s to v for all v ∈ V .

Efficient solutions to this problem are typically better understood in the regime where
edge weights are non-negative, which we denote with non-negative-weight SSSP. For example,
Dijkstra’s algorithm, from the 50s, requires this assumption and runs in near-linear time. The
algorithms for single-source shortest paths with negative integer weights (denoted negative-
weight SSSP), on the other hand, have until very recently been significantly slower. From
the 50s, the classic Bellman-Ford algorithm gives an O(mn) time algorithm,1 which either
computes distances from s to v or reports a negative-weight cycle. A series of improvements
since then ([22, 16, 33, 2]) culminated in two recent breakthroughs: the algorithm of Chen,
Kyng, Liu, Peng, Probst Gutenberg, and Sachdeva ([15]) solving transshipment and min-cost
flow in time m1+o(1), thus implying the same runtime for negative-weight SSSP, and a parallel
and independent result of Bernstein, Nanongkai, Wulff-Nilsen ([7]) giving a Õ(m) time2

algorithm for negative-weight SSSP that uses relatively simpler techniques. Follow-up work
by Bringmann, Cassis, and Fischer significantly reduces the number of log factors in the
Õ(m) runtime ([10]). In this paper, we take the exploration of negative-weight SSSP to
parallel, distributed, and quantum models of computation. Should there be analogous results
there?

In parallel models, there has been much recent progress for the non-negative-weight SSSP
problem. Rozhoň, Haeupler, Martinsson, Grunau and Zuzic ([29]) and Cao and Fineman ([11])
showed that SSSP with polynomially bounded non-negative integer edge weights can be
solved with Õ(m) work and n1/2+o(1) depth in the parallel model. By contrast, the known
bounds for negative-weight SSSP are significantly weaker: the classic Bellman-Ford algorithm
solves negative-weight SSSP with O(mn) work and O(n) depth, and recently, Cao, Fineman
and Russell ([13]) improved this to Õ(m

√
n) work and n5/4+o(1) depth.

Similarly, in distributed models, Rozhoň et al. ([29]) and Cao and Fineman ([11]) show
algorithms for SSSP with non-negative integer edge weights that take Õ((n2/5+o(1)D2/5 +√

n + D) rounds3. On the negative-weight SSSP front, the Bellman-Ford algorithm takes

1 Here and throughout, we use n to denote the number of vertices, m to denote the number of edges of G.
2 Here and throughout, we use the soft-O notation Õ to suppress polylogarithmic (in n) factors. Through-

out the paper, we assume the maximum weight edge (in absolute value) of G is polynomially bounded.
3 Here and throughout, we use D to denote the undirected hop-diameter of G.
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13:2 Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths

O(n) rounds. The current state-of-the-art by Forster, Goranci, Liu, Peng, Sun and Ye ([19]),
which uses Laplacian solvers, gives an Õ(m3/7+o(1)(n1/2D1/4 + D)) round algorithm for
negative-weight SSSP.

In the quantum edge query model, Durr, Heiligman, Høyer, and Mhalla [17] show an
algorithm for SSSP with non-negative edge weights in O(n1.5) queries to the adjacency
matrix or O(m1/2n1/2) queries to the adjacency list, which are both tight. We are not aware
of any quantum edge query algorithm solving negative-weight SSSP better than the trivial
O(n2) or O(m) algorithm.

There is a substantial gap between the best known upper bounds for non-negative-weight
SSSP and negative-weight SSSP in these models and, in fact, the number of landmark
algorithms for negative-weight SSSP has been comparatively few. This begets the following
question: Can we close the gap, and get parallel, distributed, and quantum algorithms
for negative-weight SSSP that are nearly as efficient as the best non-negative-weight SSSP
algorithms? This paper gives an answer in the affirmative.

Main Results. The main results of this paper are as follows.

▶ Theorem 1 (Parallel SSSP reduction with negative edge-weight). Assuming there is a parallel
algorithm answering (non-negative integer weight) SSSP on directed graphs in W (m, n)
work and S(m, n) span, then there exists a randomized algorithm that solves negative-
weight SSSP on directed graphs G with polynomially bounded integer edge-weights with
O(W (m, n)(log n)O(

√
logn)) work and Õ(S(m, n)2

√
logn) span with high probability.

Using state-of-the-art results for non-negative-weight SSSP ([29] and [11]) with Theorem 1
immediately gives a randomized parallel algorithm that solves negative-weight SSSP on
directed graphs with m1+o(1) work and n1/2+o(1) span, with high probability.

▶ Theorem 2 (Distributed SSSP reduction with negative edge-weight). In the CONGEST model,
assuming there is an algorithm answering (non-negative integer weight) SSSP on directed
graphs in T (n, D) rounds, then there exists a randomized algorithm that solves negative-weight
SSSP on directed graphs G with polynomially bounded integer edge-weights and undirected
hop-diameter D in O((T (n, D) +

√
n + D)(log n)O(

√
logn)) rounds with high probability.

Using state-of-the-art results for non-negative-weight SSSP ([29] and [11]) with Theorem 2
immediately gives a distributed randomized algorithm that solves negative-weight SSSP
on directed graphs with O((n2/5+o(1)D2/5 +

√
n + D)no(1)) rounds of communication in

the CONGEST model with high probability. For general graphs there is a lower bound of
T (n, D) = Ω(

√
n + D) ([26]), so the factor of

√
n + D in our runtime does not impact the

efficiency of our reduction.

▶ Theorem 3 (Quantum SSSP reduction with negative edge-weight). In the quantum edge
query model, assuming there is an algorithm answering (non-negative integer weight) SSSP
on directed graph in Q(m, n) queries, then there exists a randomized algorithm that solves
negative-weight SSSP on directed graphs G with polynomially bounded integer edge-weights in
O(Q(m, n)(log n)O(

√
logn))) queries.

Using the state-of-the-art results for non-negative-weight SSSP [17] with Theorem 3
immediately gives a quantum edge query algorithm that solves negative-weight SSSP on
directed graphs with n1.5+o(1) queries to the adjacency matrix, or m1/2n1/2+o(1) queries to
the adjacency list. The upper bound is optimal up to an no(1) factor by the Ω(n1.5) and
Ω(
√

mn) lower bound result [17].
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We note that all of our results take the form of a general reduction from negative-weight
SSSP to non-negative-weight SSSP, so any further advance in non-negative-weight SSSP
immediately translates to improved bounds for negative-weight SSSP. Modulo no(1) factors,
the complexity of parallel and distributed algorithms for non-negative-weight SSSP match
that of directed reachability [23, 12]; any improvements to negative-weight SSSP beyond the
no(1) factor would thus first require improvements to directed reachability in these models.

Our reductions follow the high-level framework of the recent sequential Õ(m)-time
algorithm of Bernstein, Nanongkai, and Wulff-Nilsen [7]. At the heart of their framework is
the use of directed low-diameter decompositions (on graphs with non-negative edge weights),
and one of our key technical contributions is to give algorithms for computing such a directed
decomposition in parallel, distributed, and quantum models.

1.1 Our Further Contributions
On top of algorithms for negative-weight SSSP, we provide two algorithms that we believe are
of independent interest. The most significant one is an efficient implementation of directed
low-diameter decomposition in parallel, distributed, and quantum models. We also show
an algorithm for computing strongly connected components and their topological ordering
in the CONGEST model. Like Theorems 1 and 2, these results are presented as reductions
to non-negative-weight SSSP. An advantage of this approach is that our results scale with
non-negative-weight SSSP; if there is any progress in the upper bounds to non-negative-weight
SSSP, progress to the bounds here immediately follow.

Directed Low Diameter Decomposition
Previous Work. Low-Diameter Decomposition (LDD) has long been used to design efficient
algorithms for undirected graphs in several models of computation [1, 24, 3, 18, 21, 28, 31, 30,
7, 20]. A few recent papers developed a generalization of LDD that also applies to directed
graphs[14, 8, 5]. Bernstein et al.[7] use directed LDD as one of the key subroutines in their
sequential algorithm for negative-weight SSSP, and they present a sequential algorithm for
computing directed LDD in near-linear time.

In undirected graphs, it is also known how to compute LDD efficiently in other models of
computation, including parallel and distributed models; in fact, the well-known algorithm of
Miller, Peng, and Xu (MPX) reduces this problem to a single shortest-path-tree computation
from a dummy source s [25].

Our Results. One of our main technical contributions is showing that in several computation
models, computing directed LDD can similarly be reduced to a small number of shortest-
path-tree computations. This requires new techniques for overcoming obstacles that are
unique to directed graphs; see Section 4.1 for an overview of these new techniques.

The input/output guarantees of directed LDD are stated below; they are the same as
those in the sequential paper of [7]. (Note in particular that the input to LDD is a graph with
non-negative weights.) Intuitively, for a given parameter d, the decomposition computes a
small set of “bad” edges Erem such that (1) Every strongly connected component in G\Erem

has weak diameter at most d and (2) Every edge of the graph is in Erem with probability at
most Õ(w(e)/d).

▶ Lemma 4 (Low-Diameter Decomposition, Algorithm 1). Let G = (V, E, w) be a directed
graph with a polynomially bounded weight function w : E → N and let d be a positive integer.
There exists a randomized algorithm LowDiameterDecomposition(G, d) with following
guarantees:

ESA 2024



13:4 Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths

INPUT: An n-node m-edge, graph G = (V, E, w) with non-negative integer edge weight
and a positive integer d.
OUTPUT: (proved in the full paper) a set of edges Erem ⊆ E satisfying:

Each SCC of the subgraph G \Erem has weak diameter at most d in G, i.e. if u, v are
two vertices in the same SCC, then distG(u, v) ≤ d and distG(v, u) ≤ d.
For any e ∈ E, we have Pr[e ∈ Erem] = O

(
w(e) log2 n

d + 1
n8

)
RUNNING TIME: The algorithm is randomized and takes Õ(1) calls to (non-negative
integer weight) SSSP. More specifically:

Assuming there is a parallel algorithm answering non-negative-weight SSSP in W (m, n)
work and S(m, n) span, then LowDiameterDecomposition(G, d) takes Õ(W (m, n))
work and Õ(S(m, n)) span with high probability.
Assuming there exists a CONGEST algorithm answering non-negative-weight SSSP in
T (n, D) rounds, then LowDiameterDecomposition(G, d) takes Õ(T (n, D) +

√
n +

D) rounds in the CONGEST model with high probability, where D is the undirected
hop diameter.
Assuming there exists a quantum edge query algorithm answering non-negative-
weight SSSP using Q(m, n) queries, then LowDiameterDecomposition(G, d) takes
Õ(Q(m, n)) queries with high probability.

We observe that the complexity of quantum query algorithms is typically sublinear in m,
yet the output size of Erem may reach up to m. Consequently, rather than directly producing
Erem as output, it is represented in an implicit format within Õ(n) bits. For further details,
refer to the full paper.

The concept of undirected low-diameter decomposition was first introduced in the context
of parallel and distributed algorithms, and some of the most important applications and
use cases are in these areas. We are therefore optimistic that our directed parallel and
distributed low-diameter decomposition algorithm can be applied to solve various problems
in the distributed and parallel setting in the future, beyond the application of computing
negative weight shortest paths addressed in this paper.

Strongly Connected Components and Their Topological Order in
CONGEST
Another subroutine we need in our algorithm is finding the strongly connected components
of a graph. It is known that in the parallel setting this problem reduces to single-source
reachability ([32]). In the full version we show a similar reduction for the CONGEST setting;
we use the same high-level framework as the parallel reduction, but this is difficult to port
directly into the CONGEST model; we show that by going through the recently developed
Distributed Minor-Aggregation Model, we are able to overcome this difficulty.

▶ Lemma 5. There is a CONGEST algorithm that, given a directed graph G = (V, E), and
assuming there is an algorithm answering non-negative-weight SSSP in T (n, D) rounds,
outputs strongly connected components listed in a topological order. More specifically, it
outputs a polynomially-bounded labelling (rv)v∈V such that, with high probability
1. ru = rv if and only if u and v are in the same strongly connected component;
2. when the SCC that u belongs to has an edge towards the SCC that v belongs to, ru > rv.4

The algorithm takes Õ(T (n, D) +
√

n + D) rounds.

4 As a matter of convenience, the labels correspond to a reverse topological order (i.e. something which
appears earlier in a topological order has a larger label than something which appears later).
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It is worth noting that a more careful examination gives a round complexity in terms
of calls to a reachability oracle, rather than a non-negative-weight SSSP oracle. Plugging
in the current state-of-the-art CONGEST algorithm for non-negative-weight SSSP ([29] and
[11]) leads to a Õ

(
n1/2 + D + n2/5+o(1)D2/5)

round algorithm, answering a question posed
in [6] which asked if a lower bound of Ω̃(n) rounds applies to the problem of finding SCCs.

1.2 Organization
In Section 2, we provide the necessary terminology and notation that will be used throughout
the paper. This section can be skipped and referred back to as needed. In Section 3, we
present a high-level overview of [7] and discuss the key challenges involved in adapting the
results to other models. Section 4 presents our algorithm for low-diameter decomposition.
Omitted results can be found in the full version of this paper, appended at the end of this
submission.

2 Definitions and Preliminaries

A weighted directed graph G is a triple (V, E, w) where w : E → Z is a weight function. For a
weighted directed graph G, the number of vertices and edges are |V (G)| = n and |E(G)| = m,
respectively. We denote the set of negative edges by Eneg(G) = {e ∈ E | w(e) < 0}. For
a subset V ′ ⊂ V , we denote the induced graph on V ′ by G[V ′] and the induced edges on
V ′ by E(V ′). For an edge set E′ ⊆ E, when we treat E′ as a subgraph of G, we mean
the graph ({u, v | (u, v) ∈ E′}, E′, w). A path is a sequence of vertices joined by edges;
sometimes we refer to the path by the sequence of vertices and sometimes by the edges. A
strongly connected component (SCC) is a set of vertices S such that for any pair of
vertices u, v ∈ S, there is a path from u to v contained entirely in S.

For a path Γ = ⟨v0, v1, . . . , vk⟩, the weight of Γ is given by w(Γ) =
∑k
i=1 w(vi−1, vi), that

is, the sum of the weights of the edges on the path. For a pair of nodes u, v ∈ V , the shortest
path distance from u to v is the minimum length over all paths that start at u and end at v.
We use distG(u, v) to denote this shortest path distance with respect to the graph G. When
the graph G is clear in the context, we simply write dist(u, v). If there is no u-to-v path,
then we define dist(u, v) = +∞. Given a directed graph G = (V, E, w), a vertex s ∈ V and
d ∈ N, we define BallinG(s, d) = {v | distG(v, s) ≤ d} and Ballout

G (s, d) = {v | distG(s, v) ≤ d},
the in or out balls centered at s with weighted radius d. For a given graph G = (V, E, w)
and a subset of vertices S ⊆ V , we define δ−(S) = {(u, v) ∈ E | u ̸∈ S, v ∈ S} and
δ+(S) = {(u, v) ∈ E | u ∈ S, v ̸∈ S}, the in or out edge sets crossing S .

When we say that an algorithm achieves performance O(f(n)) with high probability,
we mean the following: for a particular choice of constant c > 0, with probability at least
1− 1/nc the algorithm achieves performance O(f(n)).

▶ Definition 6 (Definition 2.5 of [7]). Consider a graph G = (V, E, w) and let ϕ be any function:
V 7→ Z. Then, we define wϕ to be the weight function wϕ(u, v) = w(u, v) + ϕ(u) − ϕ(v)
and we define Gϕ = (V, E, wϕ). We will refer to ϕ as a price function on V . Note that
(Gϕ)ψ = Gϕ+ψ.

3 High Level Overview

Our results follow the framework of [7], which provides a sequential algorithm for negative-
weight SSSP that takes Õ(m) time with high probability.

ESA 2024
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3.1 Overview of the Sequential Algorithm from [7]
This section provides a summary of Bernstein et al.’s approach to computing exact shortest
paths on a graph with integer edge weights (both positive and negative) [7].

The final goal is to compute a price function ϕ such that all edges in Gϕ are non-negative;
since Gϕ and G are equivalent, one can then run SSSP for non-negative weights on Gϕ.
Following the standard scaling framework, Bernstein et al.’s algorithm computes such a ϕ over
multiple scaling rounds. The key component of the algorithm is a procedure ScaleDown
that computes a price function that halves the minimum negative edge weight: given a
weighted directed graph G where all edge weights are at least as large as −2B for some
non-negative parameter B, ScaleDown outputs a price function ϕ such that in Gϕ all edge
weights are at least as large as −B. A procedure ScaleDown with these guarantees can
then easily be used to solve negative-weight SSSP, so for the rest of this section we focus
exclusively on the algorithm ScaleDown.

The Algorithm ScaleDown. We now give a high-level overview of the sequential algorithm
for ScaleDown in [7]. Our algorithm will follow the same general framework, but with a
few key differences discussed below. See full paper for a more detailed description of our
algorithm, along with pseudocode.

In order to compute the desired price function ϕ, the ScaleDown procedure consists of
four phases.

Phase 0: Run a Low Diameter Decomposition on GB with negative-weight edges rounded
up to 0 (See Lemma 4). This gives a set Erem of removed edges, such that all SCCs of
G \ Erem have small weak diameter. Observe that by the guarantees of directed LDD,
after Phase 0 the graph will contain three types of edges: (i) edges within each SCC of
G \ Erem, (ii) edges that connect one component to another and are not in Erem; one
can intuitively think of these edges as being DAG-like, since they always go forward in
the topological ordering of the SCCs of G \ Erem, and (iii) edges from Erem, where any
edge e ∈ E is in Erem with probability at most Õ(w(e)/D). Phase 1 of ScaleDown
addresses the first type of edge, Phase 2 the second, and Phase 3 the third.
Phase 1: Recursively call ScaleDown on the edges inside each SCC. This finds a price
function under which edges inside each SCC have non-negative weight, thus fixing the
type 1 edges.
Phase 2: Fix the edges not in Erem that connect one component to another (i.e. the
DAG-like edges); that is, compute a price function that makes their weight non-negative.
Phase 3: Fix the edges of Erem.

Implementing the Three Phases in the Sequential Model. Recall that the low-diameter
decomposition provides two guarantees: first that the weak diameter in each SCC is bounded,
and second that each edge will be in Erem with probability proportional to its weight. Loosely
speaking, the first guarantee ensures that in Phase 1, recursively calling ScaleDown on the
SCCs is making progress, because one can show that as the diameter decreases the maximum
number of negative edges on any shortest path is reduced (This is technically only true in a
carefully defined auxiliary graph). Bernstein et al. show that after O(log n) recursive calls
to ScaleDown, the number of negative edges on any shortest path is at most Õ(1). They
then show an algorithm called ElimNeg that can efficiently compute single-source shortest
paths in graphs with this property; running this algorithm from a dummy source s yields
the desired price function.
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For Phase 2, the focus is on DAG-like edges connecting the SCCs of G \ Erem; by Phase
1, the edges in each SCC already have non-negative weights. The algorithm simply contracts
each SCC into a vertex to get an acyclic graph whose edge set consists of type-2 edges.
Computing a price function for these edges turns out to be very easy because the underlying
graph is a DAG.

By the time the algorithm reaches Phase 3, only edges in Erem can still be negative. The
second guarantee of low-diameter decomposition ensures that every shortest path has few
edges from Erem in expectation. In other words, by the time the algorithm reaches Phase 3,
the remaining graph has the following property: on average, the shortest path from s to any
vertex v contains few negative edges. The authors of [7] then show that their subroutine
ElimNeg can efficiently compute shortest distances in any graph with this property; These
distances then give the desired price function.

3.2 Adapting to Other Models: Challenges & Solutions
Although this framework works well in the sequential setting, it presents additional challenges
in other models. We summarize these obstacles below.

Obstacle 1: Low Diameter Decomposition. Undirected LDD in parallel and distributed
models (e.g. [25],[4],[27]) is commonly solved via the following framework: each node grows
a ball starting at a random “delayed” time (the distribution of the randomness is picked
carefully), and the boundary of a ball stops growing once it reaches another ball. The balls
create a partition of the graph, where each ball has a low diameter, and if we define Erem to
be the edges between different balls, then it can be shown that any particular edge e is in
Erem with small probability. For example, the simplest instantiation of the above approach
is the well-known MPX algorithm of Miller, Peng, Xu [25]. In this algorithm, every vertex
picks a random delay δ(v), and then vertex x is assigned to the ball By of the vertex y that
minimizes minv∈V dist(x, v) + δ(v) (some of the By may end up empty.) One can easily
compute this minimum for every x by computing a single shortest path tree from a dummy
source with an edge of weight δ(v) to every vertex v.

Natural approaches: A natural way to extend the above algorithm to the directed setting
is as follows: each vertex in parallel grows an outgoing ball (which means the ball growing
only uses the edges going out of this ball), and the boundary stops growing once it reaches
another out-ball; the edges pointing out of every ball are then included in Erem. (The process
should be repeated with incoming balls, but we leave this out to keep the discussions simple.)
However, we can no longer argue that each edge is included in Erem with a small probability.
Consider the following graph: it contains a star with a middle vertex denoted by s′, and
n− 1 other vertices which have edges pointing to s′. If s′ is the first vertex to start growing
a ball (because it ends up with the lower random delay), then the LDD algorithm will create
a ball {s′}, so when every vertex on the boundary of the star later grows its own ball, the
algorithm will include all the edges of the graph into Erem. On the other hand, if some other
vertex s in the boundary of the star starts growing a ball before s′, this will result in ball
{s, s′}, and when other boundary vertices start growing their own balls, all edges other than
(s, s′) will be added to Erem.

The above example is rather naive because the input graph is not strongly connected; so,
we can just return Erem = ∅ (then, all the strongly connected components (SCCs) already
have low diameters). But the construction can be extended to the more sophisticated example
in Figure 1. The example graph in Figure 1 contains a clique of n/2 vertices and a directed
cycle of n/2 vertices. An edge (s, s′) is pointing from the clique to the directed cycle. We
will show that in this graph, there is some particular edge that is included in Erem with a
constant probability, which is too high.

ESA 2024
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clique
s s′

s′′

Figure 1 The figure shows the case when one vertex in the clique starts growing a ball before all
vertices in the cycle and includes s, s′ into the ball, while s′′ is not included. s′′ will be induced in
another outgoing ball later. The dashed line marked the edges included in Erem as a result.

The right way to compute a directed LDD on this graph is to set Erem to be a single
random edge on the cycle, but this is not what the parallel ball-growing approach would do.
To see this, consider two cases. The first case is that the vertex s′ ends up in the ball Bv of
some vertex v in the clique (because v gets low random delay). The vertex s′′ cannot be in
this same ball Bv because the resulting out-diameter of Bv would be too large, so s′′ ends up
in a different ball and the edge (s′′, s′) is necessarily added to Erem. In the second case, the
vertex s′ ends up in the ball Bv of some vertex v on the cycle; in this case (s, s′) is added to
Erem. So no matter what, at least one of (s, s′) or (s′′, s′) is added to Erem, so one of these
edges is added with probability at least 1/2. (By contrast, if all edges were undirected, then
a ball starting from the clique would explore the cycle in both directions up to some random
threshold, and hence the edge (s′, s′′) would not necessarily be added to Erem.)

Our approach: Our approach does not follow the random delay approach. Roughly,
our algorithm simulates a variation of the directed LDD algorithm [7]. The sequential
algorithm carves out the graph with disjoint balls in an arbitrary order Bv1 , . . . , Bvℓ

. Doing
so sequentially is inefficient in distributed models, so we instead show how to efficiently
compute an index i, such that Bv1 ∪ . . . ∪Bvi−1 ∪Bvi and its complement are proportional
in size. This yields a recursive algorithm with O(log(n)) parallel rounds, and because our
final ordering is mimicking a valid sequential ordering from [7], we are able to argue that
every edge e is added to Erem with a small probability. For more details, see 4.1.

Obstacle 2: Algorithms for Average Case vs Worst Case Inputs. Recall that once we
reach Phase 3 of the algorithm, only the edges of Erem can be negative; since the directed
LDD guarantees that every edge is added to Erem with small probability, this implies that
every shortest path contains few negative edges in expectation. Bernstein et al. [7] show a
simple sequential algorithm that efficiently computes shortest paths in such a graph. This
algorithm works even when there are shortest paths with many negative edges, so long as
the average number over shortest paths is small.

Unfortunately, such an algorithm does not seem possible in other settings. Instead, we
have to settle for a weaker subroutine that requires all shortest paths to have few negative
edges. (Technically speaking, it works in a general graph, but only returns correct distances
to vertices v for which the shortest sv-path has few negative edges.) This subroutine is too
weak to directly handle Phase 3 from [7]. In order to execute the framework above with our
weaker subroutine, we need to introduce a more refined recursive structure for ScaleDown,
which is the cause of our extra no(1) factor in the time bounds.

Obstacle 3: SCCs and Their Topological Order in CONGEST. Phase 2 of our algorithm
requires computing SCCs and a toplogical ordering among them. Schudy [32] gives an
algorithm for computing SCCs and their topological order in the parallel model that uses
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O(log2 n) calls to non-negative-weight SSSP and yet, somewhat surprisingly, there has been
no such algorithm formally written for CONGEST. Directly porting the framework of [32]
to CONGEST is non-trivial; the congestion on any particular edge could be prohibitively
large. We remedy this state of affairs by implementing the framework in the Distributed
Minor-Aggregation Model, which abstracts away from such low-level details and can be
compiled into a CONGEST algorithm.

4 Low Diameter Decomposition

Our main technical contribution is showing how to compute directed low-diameter decomposi-
tion (LDD) in various models of computation, so for the rest of the extended abstract we give
an overview of our LDD algorithm, along with model-independent pseudocode (Algorithm 1).
The algorithm takes as an input a directed graph with non-negative integer weights. We
will defer a comprehensive discussion of the LDD algorithm, including its correctness and
running time (see Lemma 4), and implementation across various models, to the full version
of this paper.

4.1 Algorithm Overview
Our low diameter decomposition algorithm is presented in Algorithm 1. In this subsection,
we provide an overview of Algorithm 1. The algorithm contains two phases:

Phase 1: Mark vertices as light or heavy. This phase is identical to the sequential algorithm
introduced in [7]. After this phase, each vertex v will get one of the following three marks:
in-light, out-light, heavy. It is guaranteed that w.h.p., if a vertex v is marked as (i) in-light,
then |BallinG(v, d/4)| ≤ .7|V |, (ii) out-light, then |Ballout

G (v, d/4)| ≤ .7|V |, (iii) heavy, then
|BallinG(v, d/4)| > .5|V | and |Ballout

G (v, d/4)| > .5|V |. The algorithm for finding these labels
can be summarized as follows. We select Θ(log n) nodes from the graph uniformly at random
and execute the SSSP algorithm starting from these nodes. The proportion of sampled nodes
that are at a distance of no more than d/4 from a vertex v represents the size of BallinG(v, d/4),
while the proportion of nodes to which v is at a distance of no more than d/4 corresponds to
the size of Ballout

G (v, d/4). See Algorithm 1 Phase 1 for the details of how to get the marks
for the proof of the guarantees.

Phase 2: Create sub-problems with small sizes. We denote the set of in-light vertices by
Vin, the set of out-light vertices by Vout, and the set of heavy vertices by Vheavy. Sequentially
carving our balls centered on light vertices, as in [7], would not be efficient in the models
we consider. We would like to find sets which make for an efficient recursion. To this
end, we first apply subroutine FindBalancedSet (see below for more details) on Vin, Vout.
FindBalancedSet on Vin (or Vout) will create a random vertex set Ain (or Aout) having the
following properties:
1. (Light boundary) It is guaranteed that each edge e is included in δ−(Ain) (or δ+(Aout))

with probability O(w(e) log(n)/d). Note that this differs from Lemma 4 by a log n factor.
2. (Balanced or contains V∗) For ∗ ∈ {in, out}, we have (i) |A∗| ≤ .9|V | and (ii) either
|A∗| ≥ .1|V | or V∗ ⊆ A∗. If .1|V | ≤ |A∗| ≤ .9|V |, we say A∗ is balanced. In other words,
the only case that A∗ is not balanced (too small) is that V∗ is completely contained in A∗.

Now we consider two cases.
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Case 1: Ain or Aout is balanced. For convenience, we only consider the case when Ain

is balanced, i.e. .1|V | ≤ |Ain| ≤ .9|V |. The case where Aout is balanced is similar. In
this case, we recursively call Erem

1 ← LowDiameterDecomposition(G[Ain], d) and Erem
2 ←

LowDiameterDecomposition(G[V \Ain], d), and return δ−(Ain) ∪ Erem
1 ∪ Erem

2 as Erem.
Now, we verify the output guarantees.

1. (Time cost) Since each recursion layer decreases the size of the graph by a constant factor,
the depth of the recursion tree is bounded by O(log n).

2. (Low diameter) Consider an SCC C of the subgraph E−Erem. Since δ−(Ain) ⊆ Erem, it
must be the case that C ⊆ Ain or C ⊆ V \Ain. In both cases, C is included in a recursive
call.

3. (Erem guarantee) Each edge e is included in δ−(Ain) with probability O(w(e) log(n)/d).
Each edge e can also be included in the returned edge set of a recursive call. The depth
of the recursion tree is bounded by O(log n), therefore, an edge is included in Erem with
probability O(w(e) log2 n/d).

Case 2: Both Ain, Aout are not balanced. In this case, we have Vin ⊆ Ain, Vout ⊆ Aout.
We call Erem

1 ← LowDiameterDecomposition(G[Ain], d), and Erem
2 ←

LowDiameterDecomposition(G[Aout\Ain], d), then return δ−(Ain)∪δ+(Aout)∪Erem
1 ∪Erem

2
as Erem. Now we verify the output guarantees.

1. (Time cost) Notice that |Ain ∪Aout| ≤ .2|V |, thus, each recursion layer decreases the size
of the graph by a constant factor; the depth of the recursion tree is bounded by O(log n).

2. (Low diameter) Consider an SCC C of the subgraph E−Erem. Since δ−(Ain), δ+(Aout) ⊆
Erem, it must be the case that C ⊆ Ain or C ⊆ Aout\Ain or C ⊆ V \(Ain ∪ Aout) ⊆
Vheavy. In both the first two cases, C is included in a recursive call. In the third case,
remember that each vertex v ∈ Vheavy has the property that |BallinG(v, d/4)| > .5|V | and
|Ballout

G (v, d/4)| > .5|V |. Thus, any two vertices in Vheavy have mutual distance at most
d/2 and so C has weak diameter at most d.

3. (Erem guarantee) Each edge e is included in δ−(Ain) or δ+(Aout) with probability
O(w(e) log(n)/d). Each edge e can also be included in the returned edge set of a recursive
call. The depth of the recursion tree is bounded by O(log n), therefore, an edge is included
in Erem with probability O(w(e) log2 n/d).

4.1.1 Overview of FindBalancedSet
Remember that FindBalancedSet takes Vin or Vout as input and outputs a set Ain or Aout

that satisfies properties light boundary and balanced described above. For convenience, we
only consider the case when Vin is the input. Write Vin = {v1, v2, ..., vℓ} (an arbitrary order).

The algorithm contains two steps.

Step 1. For each i ∈ [ℓ], sample an integer di following a certain geometric distribution. The
detailed definition is given in the full paper. For now, we can think of the distribution in
the following way: suppose a player is repeating identical independent trials, where each
trial succeeds with probability Θ( logn

d ), then di is the number of failed trails before the
first success.

Step 2. Find the smallest i ∈ [ℓ] such that
∣∣∪j≤i BallinG(vj , dj)

∣∣ > 0.1|V |, denoted as k. If
k does not exist, i.e.

∣∣∪j∈[ℓ] BallinG(vj , dj)
∣∣ ≤ 0.1|V |, set k = ℓ. Note that for a fixed

i, we can compute
∣∣∪j≤i BallinG(vj , dj)

∣∣ by a single SSSP call (as opposed to computing
each ball sequentially, which is inefficient); we can then binary search to find k. Return
∪j≤k BallinG(vj , dj) as A.
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Algorithm 1 Erem ← LowDiameterDecomposition(G, d).

Input: Non-negative weighted directed graph G = (V, E, w), an integer d.
Output: A random set of edges Erem ⊆ E. (See Lemma 4 for the properties of the

output.)

1 If G is an empty graph, return ∅;
2 Let n and c be defined as in full paper; // Phase 1: mark vertices as light

or heavy
3 Sample ⌈c log n⌉ vertices in V uniformly at random, denoted as S;
4 For each v ∈ S, use ONN−SSSP (G, v) to find BallinG(v, d/4) and Ballout

G (v, d/4);
5 For each v ∈ V , compute BallinG(v, d/4)

⋂
S and Ballout

G (v, d/4)
⋂

S using Line 4;
6 foreach v ∈ V do
7 If |BallinG(v, d/4)

⋂
S| ≤ .6|S|, mark v in-light // whp |BallinG(v, d/4)| ≤ .7|V (G)|

8 Else if |Ballout
G (v, d/4)

⋂
S| ≤ .6|S|, mark v out-light // whp

|Ballout
G (v, d/4)| ≤ .7|V (G)|

9 Else mark v heavy // whp |BallinG(v, d/4)| > .5|V (G)| and
|Ballout

G (v, d/4)| > .5|V (G)|

// Phase 2: creates sub-problems with small sizes
10 Denote the set of in-light vertices by Vin, the set of out-light vertices by Vout;
11 Ain ← FindBalancedSet(G, Vin, d, in), Erem

in ← δ−(Ain);
12 Aout ← FindBalancedSet(G, Vout, d, out), Erem

out ← δ+(Aout);
// Case 1: One of Ain, Aout is balanced.

13 if A∗ (∗ can be in or out) has size between .1|V | and .9|V | then
14 Erem

1 ← LowDiameterDecomposition(G[A∗], d);
15 Erem

2 ← LowDiameterDecomposition(G[V \A∗], d);
16 return Erem

∗
⋃

Erem
1

⋃
Erem

2 ;
// Clean up: Check that V \(Ain

⋃
Aout) have small weak diameter.

17 Pick an arbitrary vertex u ∈ V \(Ain ∪Aout). Use ONN−SSSP (G, u) to find
BallinG(u, d/2), Ballout

G (u, d/2);
18 if V \(Ain ∪Aout) ̸⊆ BallinG(u, d/2)

⋂
Ballout

G (u, d/2) or |Ain ∪Aout| ≥ .5|V | then
19 return E

// Case 2: both Ain, Aout are small.
20 Erem

1 ← LowDiameterDecomposition(G[Ain], d);
21 Erem

2 ← LowDiameterDecomposition(G[Aout\Ain], d);
22 return Erem

in

⋃
Erem
out

⋃
Erem

1
⋃

Erem
2 ;

Property balanced or contains Vin. According to the definition of di, one can show that di <

d/4 w.h.p., which implies |BallinG(vi, di)| ≤ .7|V | (because vi is light.). Since k is the smallest
integer such that

∣∣∪j≤k BallinG(vj , dj)
∣∣ > 0.1|V |, it must be the case

∣∣∪j≤k BallinG(vj , dj)
∣∣ <

0.8|V |. Moreover, if
∣∣∪j≤k BallinG(vj , dj)

∣∣ > 0.1|V | is not true, then k = ℓ and Vin ⊆ Ain.

Property light boundary. This is the most technical part and the rest of this subsection is
devoted to sketching the proof idea.

Notice that the only randomness of FindBalancedSet comes from d1, d2, ..., dℓ. For
convenience, write d = (d1, d2, ..., dℓ). Since δ−(A) only depends on d, we may define δ−(A)d
as the edge set δ−(A) generated by the algorithm with d as the randomness.
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Algorithm 2 A← F indBalancedSet(G, V ′, d, ∗).

Input: Non-negative weighted directed graph G = (V, E, w), a vertex set V ′ ⊆ V

and an integer d satisfying |Ball*G(v, d/4)| ≤ .7|V | for any v ∈ V ′.
Output: A set of vertices A ⊆ V which have a Light Boundary and is either

Balanced or contains V ′.
1 Suppose V ′ = {v1, v2, ..., vℓ}. Each vertex vi samples

di ∼ GE[min((c log n)/d, 1)]≤⌊d/4⌋ (A geometric random variable truncated to
⌊d/4⌋) ;

2 Find the smallest i ∈ [ℓ] such that
∣∣∪j≤i Ball*G(vj , dj)

∣∣ > 0.1|V |, denoted as k. If k

does not exist, i.e.
∣∣∪j∈[ℓ] Ball*G(vj , dj)

∣∣ ≤ 0.1|V |, set k = ℓ. (Implementation in full
paper);

3 return ∪j≤k Ball*G(vj , dj), ;

To analyze the light boundary property, we will describe another algorithm that, given
d = (d1, d2, ..., dℓ), outputs an edge set Ed, such that
1. δ−(A)d ⊆ Ed always holds for any d, and
2. an edge e is included in Ed with probability O(w(e) log(n)/d).

(The algorithm to generate Ed) Initially set Ed = ∅. For iterations i = 1, 2, ..., ℓ, do
Mark all edges (u, v) with u, v ∈ BallinG(vi, di) as “invulnerable”, and add all edges in
δ−(BallinG(vi, di)) that are not invulnerable to Ed.

Note that Ed is produced by a sequential algorithm, which is easier to analyze, but the
algorithm never actually computes Ed. We can show that δ−(A) ⊆ Ed is always true: Recall
that A = ∪j≤k BallinG(vj , dj). Any edge in δ−(A) is not invulnerable before the end of the
k-th iteration; any edge in δ−(A) is also on the boundary of some Bj for j ≤ k, which means
it has already been added to Ed before the end of the k-th iteration.

The last thing is to show that an edge e is included in Ed with probability O(w(e) log(n)/d).
To this end, consider the following alternative explanation of the procedure when we do the
i-th iteration: vi gradually grows the radius of the ball centered on vi, each round increases
the radius by 1, and stops with probability Θ(log(n)/d). This is exactly how di is defined.
Observe that each edge (u, v) will be included in Ed if and only if the first vi that grows its
ball to reach v failed to reach u (if it reached u, then this edge is marked as invulnerable and
will never be added to Ed). By the memoryless property of the geometric distribution, this
happens with probability Θ(w(e) · log(n)/d).
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