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Abstract
In the Properly Colored Spanning Tree problem, we are given an edge-colored undirected graph
and the goal is to find a properly colored spanning tree. The problem is interesting not only from
a graph coloring point of view, but is also closely related to the Degree Bounded Spanning Tree
and (1, 2)-Traveling Salesman problems. We propose an optimization version called Maximum-size
Properly Colored Forest problem, which aims to find a properly colored forest with as many edges as
possible. We consider the problem in different graph classes and for different numbers of colors, and
present polynomial-time approximation algorithms as well as inapproximability results for these
settings. We also consider the Maximum-size Properly Colored Tree problem asking for the maximum
size of a properly colored tree not necessarily spanning all the vertices. We show that the optimum
is significantly more difficult to approximate than in the forest case, and provide an approximation
algorithm for complete multigraphs.
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14:2 Approximating Maximum-Size Properly Colored Forests

1 Introduction

Throughout the paper, we consider loopless graphs that might contain parallel edges. A
k-edge-colored graph is a graph G = (V, E) with a coloring c : E → [k] of its edges by k colors.
We refer to a graph that is k-edge-colored for some k ∈ Z+ as edge-colored. A subgraph H of
G is called rainbow colored if no two edges of H have the same color, and properly colored if
any two adjacent edges of H have distinct colors. Since rainbow colored forests form the
common independent sets of two matroids, i.e., the partition matroid defined by the color
classes and the graphic matroid of the graph, a rainbow colored forest of maximum size can
be found in polynomial time using Edmonds’ celebrated matroid intersection algorithm [11].
However, much less is known about the properly colored case. In [5], Borozan, de La
Vega, Manoussakis, Martinhon, Muthu, Pham, and Saad initiated the study of properly
edge-colored spanning trees of edge-colored graphs and investigated the existence of such
a spanning tree, called the Properly Colored Spanning Tree problem (PST). This problem
generalizes the well-known bounded degree spanning tree problem for uncolored graphs
as the number of colors bounds the degree of each vertex, as well as the properly colored
Hamiltonian path problem when the number of colors is restricted to two. Since both of
these problems are NP-complete, finding a properly colored spanning tree is hard in general.

The aim of this paper is to study the problem from an approximation point of view.
Accordingly, we define the Maximum-size Properly Colored Forest problem (Max-PF) in
which the goal is to find a properly colored forest of maximum size in an edge-colored graph,
and discuss the approximability of the problem in various settings. Throughout the paper,
by the size of a tree or a forest we mean the number of its edges. From an application point
of view, the problem arises naturally in practice in the context of conflict-free scheduling.
Consider a communication network where nodes represent switches or routers and edges
represent communication lines between those. An edge-coloring of the graph might represent
different channels or time slots for data transmission. A properly colored spanning tree then
provides a set of communication paths without redundancy where no conflicts appear at
the vertices. From a theoretical point of view, the proposed problem and the results may be
interesting not only for the graph coloring but also for the optimization community.

1.1 Related work and connections
Finding properly colored spanning trees in graphs is closely related to constrained spanning
tree problems, or in a more general context, to the problem of finding a basis of a matroid
subject to further matroid constraints. In what follows, we give an overview of questions
that motivated our investigations.

Properly colored trees. Properly colored spanning trees were first considered in Borozan
et al. [5] where their existence was studied from both a graph-theoretic and an algorithmic
perspective. They showed that finding a properly colored spanning tree remains NP-complete
when restricted to complete graphs. Deciding the existence of a properly colored spanning
tree is hard in general, hence a considerable amount of work has focused on finding sufficient
conditions [8, 19, 20]. Since a properly colored spanning tree may not exist, it is natural
to ask for the maximum size of a properly colored tree not necessarily spanning all the
vertices, called the Maximum-size Properly Colored Tree problem (Max-PT). Borozan et
al. [5] proved that Max-PT is hard to approximate within a factor of 55/56 + ε for any ε > 0,
while they provided polynomial algorithms for graphs not containing properly edge-colored
cycles. Hu, Liu and Maezawa [18] proved that the maximum size of a properly colored tree
in an edge-colored connected graph is at least min {|V | − 1, 2δc(G) − 1}.
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Degree bounded spanning trees. In the Minimum Bounded Degree Spanning Tree problem
(Min-BDST), we are given an undirected graph G = (V, E) with |V | = n, a cost function
c : E → R on the edges, and degree upper bounds g : V → Z+ on the vertices, and the task
is to find a spanning tree of minimum cost that satisfies all the degree bounds. There is an
extensive list of results on variants of the problem [6, 7, 9, 14, 16, 17, 25, 29, 30]. When the
degree bounds are the same for every vertex and the edge-costs are identically 1, we get the
Uniformly Bounded Degree Spanning Tree problem.

Degree bounded matroids and multi-matroid intersection. Király, Lau and Singh [24]
studied a matroidal extension of the Min-BDST problem. In their setting, a matroid with
a cost function on its elements, and a hypergraph on the same ground set with lower and
upper bounds f(e) ≤ g(e) for each hyperedge e. The task is to find a minimum cost basis of
the matroid which contains at least f(e) and at most g(e) elements from each hyperedge e. If
we choose the matroid to be the graphic matroid of a graph G = (V, E) and the hyperedges
to be the sets δ(v) for v ∈ V , we get back the Min-BDST Tree problem with the value of ∆
being 2. In [31], Zenklusen considered a different generalization of the Min-BDST problem
where for every vertex v, the edges adjacent to v have to be independent in a matroid Mv.
This model was further extended by Linhares, Olver, Swamy and Zenklusen [26] who studied
the problem of finding a minimum cost basis of a matroid M0 that is independent in other
matroids M1, . . . , Mq.

(1, 2)-traveling salesman problem. Karp [21] showed that the metric Traveling Salesman
Problem is NP-hard even in the special case when all distances between cities are either
1 or 2, called the Traveling Salesman Problem with Distances 1 and 2 ((1, 2)-TSP). This
result was further strengthened by Papadimitriou and Yannakakis [28] who showed that
(1, 2)-TSP is in fact hard to approximate and MAX-SNP-hard. The currently best known
inapproximability bound of 535/534 is due to Karpinski and Schmied [22]. The performance
of local search-based approximations was studies by many [4, 23, 32]; Adamaszek, Mnich and
Paluch [1] presented an 8/7-approximation algorithm with running time O(n3).

The problem Max-PF is closely related to the problems listed above.
Max-PF provides a relaxation of both the PST and Max-PT problems.
For an arbitrary graph G, let G′ be the k-edge-colored multigraph obtained by taking k

copies of each edge of G colored by different colors. Then, G has a uniformly bounded
degree spanning tree with upper bound k if and only if G′ admits a properly colored
spanning tree.
For a k-edge-colored graph G = (V, E), let M be the graphic matroid of G. Furthermore,
define a hypergraph on E as follows: for each vertex v ∈ V and color i ∈ [k], let
ev,i := {e ∈ E | c(e) = i, e is incident to v} be a hyperedge with upper bound 1. Then, G

has a properly colored spanning tree if and only if M admits a degree bounded basis.
For a k-edge-colored graph G = (V, E), let M0 be the graphic matroid of G. Furthermore,
for each vertex v ∈ V and color i ∈ [k], let Mv,i be a rank-1 partition matroid whose
ground set is the set of edges incident to v having color i. Then, G has a properly colored
spanning tree if and only if the multi-matroid intersection problem M0, {Mv,i}v∈V,i∈[k]
admits a solution of size |V | − 1.
Consider an instance of (1, 2)-TSP on n vertices and let G denote the subgraph of edges
of length 1. Since any linear forest of G of size x can be extended to a Hamiltonian cycle of
length 2n−x, one can reformulate (1, 2)-TSP as the problem of finding a maximum linear
forest in G. This problem reduces to Max-PF in 2-edge-colored graphs, see [2, Section
3.1] for further details.

ESA 2024



14:4 Approximating Maximum-Size Properly Colored Forests

Given the close connection to earlier problems, the reader may naturally wonder whether
existing methods are applicable to the proposed problem. Consider an instance of Max-PF,
that is, an edge-colored graph G and let Opt denote the maximum size of a properly colored
forest in G. One can obtain a forest F of G of size at least Opt in which every color appears
at most twice at every vertex, either by the approximation algorithm of [24] for the bounded
degree matroid problem, or by the approximation algorithm of [26] for the multi-matroid
intersection problem. Deleting conflicting edges from F greedily results in a properly colored
forest of size at least |F |/2 ≥ Opt/2, thus leading to a 1/2-approximation for Max-PF. The
reason for providing a detailed overview of previous results and techniques was to emphasize
that those approaches do not help to get beyond the approximation factor of 1/2. Our main
motivation was to improve the approximation factor and to understand the inapproximability
of the problem.

1.2 Our results

We use the convention that, by an α-approximation algorithm, for minimization problems
we mean an algorithm that provides a solution with objective value at most α times the
optimum for some α ≥ 1, while for maximization problems we mean an algorithm that
provides a solution with objective value at least α times the optimum for some α ≤ 1.

We initiate the study of properly colored spanning trees from an optimization point of
view and focus on the problem of finding a properly colored forest of maximum size, i.e.,
containing a maximum number of edges. We discuss the problem for several graph classes
and numbers of colors, and provide approximation algorithms as well as inapproximability
bounds for these problems. The results are summarized in Table 1.

Table 1 Complexity landscape of Max-PF.

Number of colors
Graphs k = 2 k = 3 k ≥ 4

Simple
graphs

MAX-SNP-hard [2, Thm. 3.3]
3/4-approx. (Thm. 3.13) 5/8-approx. (Thm. 3.14) 4/7-approx. (Thm. 3.7)

Multigraphs
MAX-SNP-hard [2, Thm. 3.3]

3/5-approx. (Thm. 3.10) 4/7-approx. (Thm. 3.7) 5/9-approx. (Thm. 3.3)

Complete
graphs

P (Thm. 3.2)

MAX-SNP-hard [2, Thm. 3.4]
5/8-approx. (Thm. 3.14) 4/7-approx. (Thm. 3.7)

Complete
multigraphs

MAX-SNP-hard [2, Thm. 3.4]
4/7-approx. (Thm. 3.7) 5/9-approx. (Thm. 3.3)

We also consider Max-PT, that is, when a properly colored tree (not necessarily spanning)
of maximum size is to be found. We give a strong inapproximability result in general, together
with an approximation algorithm for complete multigraphs. The results are summarized in
Table 2.

Studying the problem on complete graphs is interesting since the vast majority of previous
work on finding properly colored (spanning) trees has focused on complete graphs. Designing
approximation algorithms for complete graphs was motivated also by the result of Borozan
et al. [5] (Theorem 2.2). For Max-PT, they provided a 55/56-inapproximability bound that
we improve in our paper. Also, it is worth emphasizing that we prove a better approximation
guarantee for complete graphs than the inapproximability bound for general graphs.
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Table 2 Complexity landscape of Max-PT.

Number of colors
Graphs k = 2 k ≥ 3

Simple graphs 1/n1−ε-inapprox. for ε > 0 [2, Thm. 3.6]

Multigraphs 1/n1−ε-inapprox. for ε > 0 [2, Thm. 3.6]

Complete
graphs P [3]

MAX-SNP-hard [2, Thm. 3.7]

1/
√

(2 + ε)n-approx. for any ε > 0 (Thm. 3.18)

Complete
multigraphs P [3]

MAX-SNP-hard [2, Thm. 3.7]

1/
√

(2 + ε)n-approx. for any ε > 0 (Thm. 3.18)

1.3 Our techniques
Most of the previous work on the Minimum Bounded Degree Spanning Tree, Degree Bounded
Matroids and Multi-matroid Intersection problems was based on polyhedral approaches,
combined with variants of iterative rounding. Polyhedral methods are indeed standard in
approximation algorithms for related problems. Nevertheless, these techniques do not seem to
be sufficient for beating the approximation factor of 1/2 for Max-PF, see also the beginning
of Section 3.3. In contrast, in the current paper, we take a different approach that relies on
the following technical ingredient. Consider the matching matroids formed by edges of each
color, and take the union – also called sum – of these matroids. If U is a maximum sized
independent set of vertices in the matroid thus obtained, then we show that any properly
colored forest spanning U provides a 1/2-approximation for Max-PF. Since the maximum
size of a properly colored forest is clearly bounded by the number of vertices, the factor
1/2 is tight only if each component of the returned forest has two vertices. However, if
each component has, say, size three, then we would get a constant factor improvement and
get a 2/3-approximation. Our algorithms focus on these small components and make local
improvements to reduce the components of size two or to get an improved bound.

Paper organization

The paper is organized as follows. In Section 2, we introduce basic definitions and notation,
and overview some results of matroid theory that we will use in our proofs. The rest of the
paper is devoted to presenting approximation algorithms mainly for Max-PF in various
settings. In Section 3.1, we show that the vertex set of the graph can be assumed to be
coverable by monochromatic matchings of the graph, and that such a reduction can be found
efficiently using techniques from matroid theory. We then give a polynomial algorithm for
2-edge-colored complete multigraphs in Section 3.2. Our main result is a 5/9-approximation
algorithm for the problem in k-edge-colored multigraphs, presented in Section 3.3. In
Section 3.4, we explain how the approximation factor can be improved if the graph is simple
or the number of colors is at most three. We further improve the approximation factor for
2- and 3-edge-colored simple graphs in Section 3.5. Finally, an approximation algorithm is
given for Max-PT in Section 3.6. Due to space constraints, the statements and proofs of
our hardness results are deferred to the full version [2] of the paper.

2 Preliminaries

Basic notation. We denote the set of nonnegative integers by Z+. For a positive integer
k, we use [k] := {1, . . . , k}. Given a ground set S, the difference of X, Y ⊆ S is denoted by
X \ Y . If Y consists of a single element y, then X \ {y} and X ∪ {y} are abbreviated as
X − y and X + y, respectively.

ESA 2024



14:6 Approximating Maximum-Size Properly Colored Forests

We consider loopless undirected graphs possibly containing parallel edges. A graph is
simple if it has no parallel edges, and it is called a multigraph if parallel edges might be
present. A simple graph is complete if it contains exactly one edge between any pair of
vertices. By a complete multigraph, we mean a multigraph containing at least one edge
between any pair of vertices. A graph is linear if each of its vertices has degree at most 2
in it. Let G = (V, E) be a graph, F ⊆ E be a subset of edges, and X ⊆ V be a subset of
vertices. The subgraph of G and set of edges induced by X are denoted by G[X] and E[X],
respectively. The graph obtained by deleting F and X is denoted by G − F − X. We denote
the vertices of the edges in F by V (F ), and the vertex sets of the connected components of
the subgraph (V (F ), F ) by comp(F ) ⊆ 2V (F ). We denote the set of edges in F having exactly
one endpoint in X by δF (X) and define the degree of X in F as dF (X) := |δF (X)|. We
dismiss the subscript if F = E. A matching is a subset of edges M ⊆ E satisfying dM (v) ≤ 1
for every v ∈ V . We say that F covers X if dF (v) ≥ 1 for every v ∈ X, or in other words, if
X ⊆ V (F ).

Let c : E → [k] be an edge-coloring of G using k colors. The function c is extended to
subsets of edges where, for a subset F ⊆ E of edges, c(F ) denotes the set of colors appearing
on the edges of F . For an edge-colored graph G = (V, E), we use Ei = {e ∈ E | c(e) = i}
to denote the edges of color i. Without loss of generality, we assume throughout that Ei

contains no parallel edges. We call a subset of vertices U ⊆ V matching-coverable if there exist
matchings Mi ⊆ Ei for i ∈ [k] such that

⋃k
i=1 Mi covers U . A properly colored 1-path-cycle

factor of a graph G is a spanning subgraph consisting of a properly colored path C0 and a
(possibly empty) collection of properly colored cycles C1, . . . , Cq such that V (Ci)∩V (Cj) = ∅
for 0 ≤ i < j ≤ q. We will use the following result of Bang-Jensen and Gutin [3], extended
by Feng, Giesen, Guo, Gutin, Jensen, and Rafiey [13].

▶ Theorem 2.1 (Bang-Jensen and Gutin [3]). A 2-edge-colored complete graph G has a
properly colored Hamiltonian path if and only if G contains a properly colored 1-path-cycle
factor. Furthermore, any properly colored 1-path-cycle factor can be transformed into a
properly colored Hamiltonian path in polynomial time.

For our approximation algorithm for Max-PT in complete graphs, we will rely on the
following result of Borozan et al. [5].

▶ Theorem 2.2 (Borozan et al. [5]). Let G = (V, E) be an edge-colored complete multigraph.
Then, there exists an efficiently computable partition V1 ∪ V2 of V such that Max-PT can be
solved in polynomial-time in both G[V1] and G[V2]. Furthermore, the optimal solution F1 in
G[V1] is a properly colored spanning tree of G[V1].

Matroids. For basic definitions on matroids and on matroid optimization, we refer the reader
to [15,27]. A matroid M = (E, I) is defined by its ground set E and its family of independent
sets I ⊆ 2E that satisfies the independence axioms: (I1) ∅ ∈ I, (I2) X ⊆ Y, Y ∈ I ⇒ X ∈ I,
and (I3) X, Y ∈ I, |X| < |Y | ⇒ ∃e ∈ Y \ X s.t. X + e ∈ I. Members of I are called
independent, while sets not in I are called dependent. The rank rM (X) of a set X is the
maximum size of an independent set in X.

The union or sum of k matroids M1 = (E, I1), . . . , Mk = (E, Ik) over the same ground
set is the matroid MΣ = (E, IΣ) where IΣ = {I1 ∪ · · · ∪ Ik | Ii ∈ Ii for each i ∈ [k]}.
Edmonds and Fulkerson [12] showed that the rank function of the sum is rMΣ(Z) =
min{

∑k
i=1 ri(X) + |Z − X| | X ⊆ Z}, and provided an algorithm for finding a maximum

sized independent set of MΣ, together with its partitioning into independent sets of the
matroids appearing in the sum, assuming an oracle access1 to the matroids Mi.

1 In matroid algorithms, it is usually assumed that the matroid is given by a rank oracle and the running
time is measured by the number of oracle calls and other conventional elementary steps. For a matroid
M = (E, I) and set X ⊆ E as an input, a rank oracle returns rM (X).
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For an undirected graph G = (V, E), the matching matroid of G is defined on the set of
vertices V with a set X ⊆ V being independent if there exists a matching M of G such that
X ⊆ V (M), that is, M covers all the vertices in X. Determining the rank function of the
matching matroid is non-obvious since it requires the knowledge of the Berge-Tutte formula
on the maximum cardinality of a matching in a graph. Nevertheless, the rank of a set can
still be computed in polynomial time, see [12] for further details.

3 Approximation algorithms

In this section, we provide approximation algorithms for Max-PF and Max-PT in various
settings. First, in Section 3.1, we establish a connection between Max-PF and the sum of
matching matroids defined by the color classes of the coloring of the graph. In Section 3.2, we
discuss 2-edge-colored complete multigraphs and show that Max-PF is solvable in polynomial
time for this class. Our main result is a general 5/9-approximation algorithm for Max-PF
in multigraphs, presented in Section 3.3. In Section 3.4, we explain how the approximation
factor can be improved if the graph is simple or the number of colors is at most three, and
then we further improve the approximation factor for 2- and 3-edge-colored simple graphs in
Section 3.5. Finally, an approximation algorithm for Max-PT is given in Section 3.6. We
denote by Opt[G] the size of an optimal solution for the underlying problem, i.e., Max-PF
or Max-PT, in graph G throughout.

3.1 Preparations
For analyzing the proposed algorithms, we need some preliminary observations. Consider
an instance of Max-PF, that is, a k-edge-colored graph G = (V, E) on n vertices. Recall
that Ei denotes the set of edges colored by i and that a subset of vertices U ⊆ V is called
matching-coverable if there exist matchings Mi ⊆ Ei for i ∈ [k] such that

⋃k
i=1 Mi covers U .

Using the matroid terminology, this is equivalent to U being independent in the sum of the
matching matroids defined by the color classes. The next lemma shows that it suffices to
restrict the problem to a maximum sized matching-coverable set.

▶ Lemma 3.1. For any matching-coverable set U ⊆ V , there exists a maximum-size properly
colored forest Fopt in G such that dFopt

(u) ≥ 1 for every u ∈ U . Furthermore, if U is a
maximum-size matching-coverable set, then Opt[G] = Opt[G[U ]].

Proof. Let U ⊆ V be a matching-coverable set and let M1, . . . , Mk be matchings satisfying
Mi ⊆ Ei and U ⊆ V (

⋃k
i=1 Mi). Let Fopt be a maximum-size properly colored forest in G

that has as many edges in common with M1 ∪· · ·∪Mk as possible. We claim that Fopt covers
U . Suppose indirectly that there exists a vertex u ∈ U that is not covered by Fopt. For any
edge e ∈ M1 ∪ · · · ∪ Mk incident to u, Fopt + e is still a forest by the indirect assumption.
Moreover, Fopt contains at most one edge adjacent to e having the same color as e. Since
Fopt has maximum size, there exists exactly one such edge f . However, as f has the same
color as e ∈ M1 ∪ · · · ∪ Mk, we get that f /∈ M1 ∪ · · · ∪ Mk. Therefore, Fopt − f + e is a
maximum-size properly colored forest containing more elements from M1 ∪ · · · ∪ Mk than
Fopt, a contradiction. This proves the first half of the lemma.

To see the second half, let U be a maximum-size matching-coverable set and Fopt be
a maximum-size properly colored forest covering U , implying U ⊆ V (Fopt). Note that
Ni = Ei ∩ Fopt is a matching for every i ∈ [k], hence V (Fopt) is also a matching-coverable
set. By the maximality of U , we get U = V (Fopt), concluding the proof. ◀

ESA 2024



14:8 Approximating Maximum-Size Properly Colored Forests

Algorithm 1 Algorithm for Max-PF in 2-edge-colored complete multigraphs.
Input: A 2-edge-colored complete multigraph G = (V, E).
Output: A properly colored forest F .

1 Find maximum matchings M1 ⊆ E1, M2 ⊆ E2 maximizing |V (M1 ∪M2)|.
2 Let F := M1 ∪M2 and U := V (F ).
3 Let P and C denote the path and cycle components in comp(F ), respectively.
4 if P = ∅ then
5

Delete any edge of F , transform the remaining set of edges into a properly colored
Hamiltonian path P using Theorem 2.1, and update F ← P .

6 else

7

Let P ∈ P arbitrary and let F ′ := F [P ∪
⋃

C∈C C].
Transform F ′ into a properly colored Hamiltonian path P ′ using Theorem 2.1 and
update F ← (F \ F ′) ∪ P ′.

8 return F

▶ Remark 3.1. Since a rank oracle for the matching matroid of a graph can be constructed
in polynomial time, a maximum-size matching-coverable set U can be found by using the
matroid sum algorithm of Edmonds and Fulkerson [12]. The algorithm also provides a
partition U = U1 ∪ · · · ∪ Uk where Ui is independent in the matching matroid defined by
Ei. For each Ui, one can find a matching Mi ⊆ Ei that covers Ui using Edmonds’ matching
algorithm [10]. Furthermore, each matching Mi can be chosen to be a maximum matching
in Ei, due the the underlying matroid structure. Concluding the above, a maximum-size
matching-coverable set U together with maximum matchings M1, . . . , Mk with Mi ⊆ Ei and
V (

⋃k
i=1 Mi) = U can be found in polynomial time.

3.2 2-edge-colored complete multigraphs
Though Max-PF is hard even to approximate in general, the problem turns out to be tractable
for 2-edge-colored complete multigraphs. Our algorithm is presented as Algorithm 1.

▶ Theorem 3.2. Algorithm 1 outputs a maximum-size properly colored forest for 2-edge-
colored complete multigraphs in polynomial time.

Proof. Note that each component of M1 ∪ M2 is either a path or a cycle whose edges are
alternating between M1 and M2. If M1 ∪ M2 is the union of cycles, then Algorithm 1 gives
a properly colored Hamiltonian path in G[U ] by Step 5. By Lemma 3.1, G[U ] contains a
maximum-size properly colored forest and hence Opt ≤ |U | − 1, implying that F is optimal.

If M1 ∪ M2 has a path component, then Step 7 of Algorithm 1 does not reduce the
number of edges, i.e., the output F of the algorithm has size |M1| + |M2|. Since M1 and M2
were chosen to be maximum matchings in E1 and E2, respectively, the sum of their sizes is
clearly an upper bound on the maximum size of a properly colored forest, implying that F

is optimal. The overall running time of the algorithm is polynomial by Theorem 2.1 and
Remark 3.1. ◀

3.3 General case
This section is dedicated for the proof of our main result, a general approximation algorithm
for Max-PF. The high-level idea of our approach is as follows. With the help of Lemma 3.1,
we restrict the problem to a subgraph G[U ] where U is a maximum-size matching-coverable
set. Throughout the algorithm, we maintain matchings Mi ⊆ Ei for i ∈ [k] such that



Y. Bai, K. Bérczi, G. Csáji, and T. Schwarcz 14:9

Algorithm 2 Approximation algorithm for Max-PF in multigraphs.
Input: A multigraph G = (V, E) with edge-coloring c : E → [k].
Output: A properly colored forest F in G.

1 Find matchings Mi ⊆ Ei for i ∈ [k] maximizing |
⋃k

i=1 V (Mi)|. // Preprocessing steps.

2 Let F :=
⋃k

i=1 Mi and U := V (F ).
3 Us :=

⋃
{C ∈ comp(F ) | |C| = 2}. // Union of size-two components.

4 Ur := U \ Us. // Remaining vertices.
5 Take a maximum forest F ◦ in F [Ur] and set F ← (F \ F [Ur]) ∪ F ◦. // Maximum forest in

Ur.
6 for uv ∈ E \ F with c(uv) ̸∈ c(δF (u) ∪ δF (v)) do // Trying to add single edges.
7 If u and v are in different components of F , then F ← F + uv and go to Step 3.
8 Let E′ := E[Us] ∪ {vw ∈ E | v ∈ Us, w ∈ Ur, c(vw) /∈ c(δF (w))}. // Candidate edges for

extending F ◦.
9 Let E′

i := E′ ∩ Ei.
10 for uv ∈ E′ with u ∈ Us, v ∈ Ur do // Trying to improve using single edges.

11
If there exist matchings Ni ⊆ E′

i for i ∈ [k] such that uv ∈ Nc(uv) and Us+v ⊆ V (
⋃k

i=1 Ni),
then F ← (F \ F [Us]) ∪ (

⋃k

i=1 Ni) and go to Step 3.

12 for uv1, uv2 ∈ E[Us] with v1 ̸= v2, c(uv1) ̸= c(uv2) do // Trying to improve using pairs
of edges.

13
If there exist matchings Ni ⊆ E′

i[Us] for i ∈ [k] such that uv1 ∈ Nc(uv1), uv2 ∈ Nc(uv2)

and Us ⊆ V (
⋃k

i=1 Ni), then F ← (F \ F [Us]) ∪ (
⋃k

i=1 Ni) and go to Step 3.
14 Take a maximum forest F • in F [Us] and set F ← (F \ F [Us]) ∪ F •. // Getting rid of

parallel edges.
15 return F

F =
⋃k

i=1 Mi covers U . We then try to improve the structure of F by decreasing the number
of its components of size 2 by local changes. These local improvement steps consist of adding
one or two appropriately chosen edges. If no improvement is found, then a careful analysis of
the structure of the current solution gives a better-than-1/2 guarantee for the approximation
factor.

Before stating the algorithm and the theorem, let us remark that there are several ways
of getting a 1/2-approximation for Max-PF in general. As it was mentioned already in
Section 1, the algorithms of [24] and [26] provide such a solution. However, there is a
simple direct approach as well: find matchings Mi ⊆ Ei for i ∈ [k] maximizing the size
of U := V (

⋃k
i=1 Mi), and take a maximum forest F in

⋃k
i=1 Mi. This provides a 1/2-

approximation by Lemma 3.1, since |F | ≥ |U |/2 ≥ Opt[G[U ]]/2 ≥ Opt[G] holds. However,
improving the 1/2 approximation factor is non-trivial and requires new ideas. Our main
contribution is to break the 1/2 barrier and show that the problem can be approximated
within a factor strictly better than 1/2. The algorithm is presented as Algorithm 2.

▶ Theorem 3.3. Algorithm 2 provides a 5/9-approximation for Max-PF in multigraphs in
polynomial time.

Proof. First, we show that if the algorithm terminates, then it returns a properly colored
forest F in G. Throughout the algorithm, the edge set F is the union of matchings of color i

for i ∈ [k], hence it is properly colored. By Steps 5 and 14, the algorithm outputs the union
of a forest F ◦ covering Ur and a forest F • covering Us, which is a forest. These prove the
feasibility.
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Now we turn to the approximation factor. Let F , Us, Ur and E′ denote the corresponding
sets at the termination of the algorithm, and let G′ := (U, E′) and G′′ = (U, E[U ] \ E′). By
Lemma 3.1, we have

Opt[G] = Opt[G[U ]] ≤ Opt[G′] + Opt[G′′]. (1)

We give upper bounds on Opt[G′] and Opt[G′′] separately.

▷ Claim 3.4. Opt[G′] = |F [Us]| = |Us|/2.

Proof. Clearly, Opt[G′] ≥ |Us|/2 as the output of Algorithm 2 has these many edges in
E[Us] ⊆ E′.

Let F ′ be a maximum-size properly colored forest of G′ that covers every vertex in Us;
note that such a forest exists by Lemma 3.1. Suppose to the contrary that |F ′| > |Us|/2.
Then, either there is an edge e = uv ∈ F ′ \ E[Us], or there are edges e1 = uv1 and e2 = uv2
with c(e1) ̸= c(e2) such that e1, e2 ∈ F ′∩E[Us]. In particular, there are matchings N1, . . . , Nk

with Ni ⊆ E′
i such that they either cover every vertex in Us + v and uv ∈ Nc(uv), or they

cover Us and e1 ∈ Nc(e1) and e2 ∈ Nc(e2). Both cases lead to a contradiction, since the
algorithm would have found such matchings N1, . . . , Nk in Step 11 or Step 13. Therefore,
Opt[G′] = |Us|/2 indeed holds. ◁

We use the following simple observation to bound Opt[G′′].

▷ Claim 3.5. If an edge e ∈ E[U ] \ E′ connects two components of F , then there exists an
edge in F [Ur] which is adjacent to e and has the same color.

Proof. Since E[Us] ⊆ E′, e has at least one endpoint in Ur. If e = vw such that v ∈ Us and
w ∈ Ur, then c(e) ∈ c(δF (w)) by e ̸∈ E′ and the definition of E′. Otherwise, e is spanned
by Ur, and since it was not added to F in Step 7, it is adjacent to an edge of F having the
same color. ◁

With the help of the claim, we can bound Opt[G′′].

▷ Claim 3.6. Opt[G′′] ≤ 3 · |F [Ur]|.

Proof. Let F ′′ be a maximum-size properly colored forest of G′′. For each edge f ∈ F [Ur],
F ′′ has at most two edges adjacent to f having color c(f). Then, Claim 3.5 implies that F ′′

has at most 2 · |F [Ur]| edges connecting different components of F . As F ′′ is a forest, it has
at most |F [Ur]| edges spanned by a component of F [Ur], thus |F ′′| ≤ 3 · |F [Ur]| follows. ◁

Using (1), Claim 3.4, and Claim 3.6, we get Opt[G] ≤ Opt[G′] + Opt[G′′] ≤ |F [Us]| +
3 · |F [Ur]| = |F | + 2 · |F [Ur]|, which yields

|F | ≥ Opt[G] − 2 · |F [Ur]|. (2)

Using that |U | ≥ Opt[G[U ]] = Opt[G], we get

2 · |F | = |Us| + 2 · |F [Ur]| = |U | − |Ur| + 2 · |F [Ur]| ≥ Opt[G] − |Ur| + 2 · |F [Ur]|. (3)

Since each component of F [Ur] has size at least three, we have |F [Ur]| ≥ 2/3 · |Ur|. Thus (3)
implies

8|F | ≥ 4 · Opt[G] − 4 · |Ur| + 8 · |F [Ur]| ≥ 4 · Opt[G] + 2 · |F [Ur]|. (4)

By adding (2) and (4), we obtain 9 · |F | ≥ 5 · Opt[G], proving the approximation factor.
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By Remark 3.1, each step of the algorithm can be performed in polynomial time, and the
total number of for loops in Steps 10 and 12 is also clearly polynomial in the number of edges
of the graph. Hence it remains to show that the algorithm makes polynomially many steps
back to Step 3. This follows from the fact that whenever the algorithm returns to Step 3, a
local improvement was found and so the sum |Us| + | comp(F )| strictly decreases that can
happen at most 2n times. This concludes the proof of the theorem. ◀

The analysis in Theorem 3.3 is tight for k-edge-colored multigraphs if k ≥ 4; see [2, Figure
4a] for an example.

3.4 Simple graphs and multigraphs with small numbers of colors
While Algorithm 2 provides a 5/9-approximation in general, the approximation factor can
be improved if the graph is simple or the number of colors is small. In what follows, we show
how to get better guarantees when G is simple or k ≤ 3.

▶ Theorem 3.7. Algorithm 2 provides a 4/7-approximation for Max-PF in simple graphs
and in 3-edge-colored multigraphs.

Proof. We use the notation and extend the proof of Theorem 3.3. Consider an instance where
G is simple or k = 3; this assumption is in fact used only in the next simple observation.

▷ Claim 3.8. Let C be a component of F with |C| = 3. If |F ′′[C]| = 2, then there exist
e ∈ F ′′[C] and f ∈ F [Ur] such that c(e) = c(f) and e and f has at least one common
endpoint.

Proof. If G is simple, then |E[C]| ≤ 3, thus |F ′′[C] ∩ F [Ur]| ≥ 1. If k = 3, then |c(F ′′[C]) ∩
c(F [C])| ≥ 1, that is, c(e) = c(f) for some e ∈ F ′′[C] and f ∈ F [C]. Since |C| = 3, e and f

have at least one common endpoint. ◁

Let m3 := |{C ∈ comp(F ) | |C| = 3}|. Using Claim 3.8, we strengthen Claim 3.6 as
follows.

▷ Claim 3.9. Opt[G′′] ≤ 3 · |F [Ur]| − m3.

Proof. Let γ := |{C ∈ comp(F ) | |C| = 3, |F ′′[C]| = 2}|. Let F ′′
1 denote the set of edges

uv ∈ F ′′ such that u and v are in different components of F , and let F ′′
2 := F ′′ \ F ′′

1 .
Claim 3.5 and Claim 3.8 imply that F ′′ has at least |F ′′

1 | + γ edges e for which there exists
f ∈ F [Ur] such that c(e) = c(f) and e and f has at least one common endpoint. For each
f ∈ F [Ur], F ′′ has at most two edges having the same color as f and sharing at least one
common endpoint with f , implying 2 · |F [Ur]| ≥ |F ′′

1 | + γ. Since F has m3 − γ size-three
components spanning at most one edge of F ′′

2 , we have |F ′′
2 | ≤ |F [Ur]| − (m3 − γ). Then,

|F ′′| = |F ′′
1 | + |F ′′

2 | ≤ (2 · |F [Ur] − γ) + (|F [Ur] + γ − m3) = 3 · |F [Ur]| − m3, and the claim
follows. ◁

Using (1), Claim 3.4 and Claim 3.9, we get Opt[G] ≤ Opt[G′] + Opt[G′′] ≤ |F [Us]| +
3 · |F [Ur]| − m3 = |F | + 2 · |F [Ur]| − m3, that is,

|F | ≥ Opt[G] − 2 · |F [Ur]| + m3. (5)

Since F [Ur] has m3 components of size three and the other components of F [Ur] has size
at least four, we have |F [Ur]| ≥ 2m3 + 3/4 · (|Ur| − 3m3) = 3/4 · |Ur| − 1/4 · m3. Then, (3)
implies

6 · |F | ≥ 3 · Opt[G] − 3 · |Ur| + 6 · |F [Ur]| ≥ 3 · Opt[G] + 2 · |F [Ur]| − m3. (6)

By adding (5) and (6), we obtain 7 · |F | ≥ 4 · Opt[G], proving the approximation factor. ◀
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The analysis in Theorem 3.7 is tight for 3-edge-colored multigraphs and for k-edge-colored
simple graphs for k ≥ 4; see [2, Figures 4b and 4c] for examples.

▶ Theorem 3.10. Algorithm 2 provides a 3/5-approximation for Max-PF in 2-edge-colored
multigraphs.

Proof. We use the notation and extend the proof of Theorem 3.3 assuming that k = 2. For
e ∈ F ′′, define

x(e) := |{f ∈ F [Ur] | c(e) = c(f), e and f has at least one common endpoint}|.

For a subset S ⊆ F ′′, we use the notation x(S) :=
∑

e∈S x(e).

▷ Claim 3.11. x(F ′′[C]) ≥ |F ′′[C]| − 1 for every even component C ∈ comp(F [Ur]), and
x(F [C]) ≥ |F ′′[C]| for every odd component C ∈ comp(F [Ur]).

Proof. Let ℓ := |C|. Since k = 2, F [C] is an alternating path, let v1, v2, . . . , vℓ denote its
vertices and f1, . . . , fℓ−1 denote its edges such that fi = vivi+1 for i ∈ [ℓ − 1]. For each edge
e ∈ F ′′[Ur] we have x(e) ≥ 1 unless e = v1vℓ and c(e) ̸= c(f1) = c(fℓ−1). This proves the
claim since c(f1) ̸= c(fℓ−1) if ℓ = |C| is odd. ◁

Let m3 := |{C ∈ comp(F ) | |C| = 3}|. Using Claim 3.11, we strengthen Claim 3.6 as
follows.

▷ Claim 3.12. Opt[G′′] ≤ |F [Ur]| + |Ur| + m3.

Proof. F [Ur] has |Ur| − |F [Ur]| components, thus it has at most |Ur| − |F [Ur]| − m3 even
components. Claim 3.5 implies that x(e) ≥ 1 holds for each edge e ∈ F ′′ connecting two
components of F . Using Claim 3.11, it follows that x(F ′′) ≥ |F ′′|− (|Ur|− |F [Ur]|−m3). For
each edge f ∈ F [Ur], F ′′ has at most two edges having the same color as f and at least one
common endpoint of f , thus x(F ′′) ≤ 2|F [Ur]|. Then, |F ′′| ≤ x(F ′′) + |Ur| − |F [Ur]| − m3 ≤
|F [Ur]| + |Ur| − m3, and the claim follows. ◁

Using (1), Claim 3.4 and Claim 3.12, we get Opt[G] ≤ Opt[G′] + Opt[G′′] ≤ |F [Us]| +
|F [Ur]| + |Ur| − m3 = |F | + |Ur| − m3, that is,

|F | ≥ Opt[G] − |Ur| + m3. (7)

As in the proof of Theorem 3.7, |F [Ur] ≥ 3/4 · |Ur| − 1/4 · m3, thus (3) implies

4 · |F | ≥ 2 · Opt[G] − 2|Ur| + 4|F [Ur]| ≥ 2 · Opt[G] + |Ur| − m3. (8)

By adding (7) and (8), we get 5 · |F | ≥ 3 · Opt[G], proving the approximation factor. ◀

The analysis in Theorem 3.10 is tight for 2-edge-colored multigraphs; see [2, Figure 4d]
for an example.

3.5 Simple graphs with small numbers of colors
For simple graphs, the algorithm can be significantly simplified while leading to even better
approximation factors if the number of colors is small. The modified algorithm is presented
as Algorithm 3. First, we consider the case k = 2.

▶ Theorem 3.13. Algorithm 3 provides a 3
4 -approximation for Max-PF in 2-edge-colored

simple graphs in polynomial time.
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Algorithm 3 Approximation algorithm for Max-PF in simple graphs.
Input: A simple graph G = (V, E) with edge-coloring c : E → [k].
Output: A properly colored forest F in G.

1 Find maximum matchings Mi ⊆ Ei for i ∈ [k] maximizing |
⋃k

i=1 V (Mi)|.
2 Let F ′ :=

⋃k

i=1 Mi.
3 Take a maximum forest F in F ′.
4 return F

Proof. Let M1 and M2 denote the maximum matchings found in Step 1 of the algorithm.
Then in Step 2, F ′ is a properly colored edge set which is the vertex-disjoint union of paths
and even cycles. As the graph is simple, every cycle has length at least 4. In Step 3, we delete
no edge from the paths and exactly one edge from each cycle. Since every cycle had length
at least 4, we deleted at most 1/4 · (|M1| + |M2|) edges and hence the algorithm outputs a
solution of size |F | ≥ 3/4 · (|M1| + |M2|). On the other hand, Opt[G] ≤ |M1| + |M2| clearly
holds since every properly colored forest of G decomposes into the union of a matching in E1
and a matching in E2. This concludes the proof of the theorem. ◀

The analysis in Theorem 3.13 is tight for 2-edge-colored simple graphs; see [2, Figure 5a]
for an example.

▶ Remark 3.2. Note that the proof of Theorem 3.13 only uses that M1 and M2 are maximum
matchings and does not rely on the fact that |V (M1 ∪ M2)| is maximized.

Now we discuss the case when k = 3.

▶ Theorem 3.14. Algorithm 3 provides a 5
8 -approximation for Max-PF in 3-edge-colored

simple graphs in polynomial time.

Proof. Let M1, M2 and M3 denote the maximum matchings found in Step 1 of the algorithm.
Then in Step 2, F ′ is a properly colored edge set in which every vertex has degree at most 3.

▷ Claim 3.15. |F ′(C)| = 1 for every component C ∈ comp(F ′) of size 2.

Proof. The statement follows by the assumption that G is simple. ◁

▷ Claim 3.16. |F ′(C)| ≤ 3/2 · |C| for every even component C ∈ comp(F ′).

Proof. The statement follows from the fact that each vertex has degree at most 3 in F ′. ◁

▷ Claim 3.17. |F ′(C)| ≤ 3/2 · (|C| − 1) for every odd component C ∈ comp(F ′).

Proof. Suppose to the contrary that |F ′(C)| > 3/2 · (|C| − 1). Since every vertex has degree
at most 3 in F ′, C either contains |C| − 2 vertices of degree 3 and two vertices of degree 2,
or |C| − 1 vertices of degree 3 and one vertex u of degree at least one in F ′. However, the
former case cannot happen as C is an odd component and the sum of the degrees of the
vertices is an even number, namely 2|F ′|. Let e ∈ F ′ be an edge incident to u. Since every
vertex in C − u has degree exactly 3, each vertex in C is incident to an edge of color c(e)
in F ′. However, F ′ is a properly colored edge set, hence the edges in F ′(C) colored by c(e)
form a perfect matching of C, contradicting |C| being odd. ◁
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For i ∈ [n], let mi denote the number of components in comp(F ′) containing i vertices.
Furthermore, let m :=

∑⌊n/2⌋
i=2 m2i, that is, m is the number of even components in F ′ of size

at least four. Using Claim 3.15, Claim 3.16 and Claim 3.17, we get

2 · |F ′| ≤
∑

C∈comp(F ′)
|C|=2

2 +
∑

C∈comp(F ′)
C is even

|C|≥4

3 · |C| +
∑

C∈comp(F ′)
C is odd

3 · (|C| − 1)

=
∑

C∈comp(F ′)

3 · (|C| − 1) − m2 + 3m

= 3 · |F | − m2 + 3m.

Note that Opt[G] ≤ |M1| + |M2| + |M3| = |F ′| clearly holds since every properly colored
forest of G decomposes into the union of a matching in E1, a matching in E2, and a matching
in E3. Then, by rearranging the previous inequality, we get

3 · |F | ≥ 2 · Opt[G] + m2 − 3m. (9)

Let U :=
⋃3

i=1 V (Mi). Since each matching-coverable set can be covered by maximum
matchings, U is a maximum-size matching-coverable set, thus Opt[G] = Opt[G[U ]] holds
by Lemma 3.1. Now F is a forest, thus |F | = |F [U ]| = |U | −

∑n
i=2 mi = |U | − m2 − m −∑⌊(n−1)/2⌋

j=1 m2j+1, that is,
∑⌊(n−1)/2⌋

j=1 m2j+1 = |U | − m2 − m − |F |. Using this equation and
the fact that U is the union of the components of F with size at least two, we have

2 · |U | = 2 ·
n∑

i=2

i ·mi ≥ 4m2 + 8m + 6 ·
⌊(n−1)/2⌋∑

j=1

m2j+1 ≥ 4m2 + 8m + 5 ·
⌊(n−1)/2⌋∑

j=1

m2j+1

= 4m2 + 8m + 5 · (|U | −m2 −m− |F |) = 5 · |U | −m2 + 3m− 5 · |F |.

Rearranging and using |U | ≥ Opt[G[U ]] = Opt[G], we obtain

5 · |F | ≥ 3 · Opt[G] − m2 + 3m. (10)

By adding (9) and (10), we get 8 · |F | ≥ 5 · Opt[G], proving the approximation factor. ◀

The analysis in Theorem 3.14 is tight for 3-edge-colored simple graphs; see [2, Figure 5b]
for an example.

▶ Remark 3.3. A key ingredient of Algorithm 3 is that it starts with maximum matchings
Mi ⊆ Ei, which makes it possible to compare the size of the solution output by the algorithm
against Opt ≤

∑k
i=1 |Mi|. In contrast, Algorithm 2 starts with arbitrary matchings Mi ⊆ Ei

maximizing |V (
⋃k

i=1 Mi)|. The reason why that algorithm operates with matchings instead
of maximum matchings is that in certain steps we need to find matchings containing some
fixed edges, hence they cannot necessarily be chosen to be maximum matchings.

3.6 Approximating Max-PT
Finally, for any ε > 0 we give an 1/

√
(2 + ε)(n − 1)-approximation algorithm for Max-PT

in complete multigraphs. The approximation factor is far from being constant; still, the
algorithm is of interest since its approximation guarantee is better than the general upper
bound on the approximability of Max-PT.

Our algorithm for Max-PT in complete multigraphs is presented as Algorithm 4.
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Algorithm 4 Approximation algorithm for Max-PT in complete multigraphs.
Input: A complete multigraph G = (V, E) with edge-coloring c : E → [k] and ε > 0.
Output: A properly colored tree F in G such that |F | ≥ Opt/

√
(2 + ε)(n− 1).

1 if ∃v, w ∈ V, |E[{v, w}]| ≥ n then
2 Choose n parallel edges between v and w arbitrarily and delete the remaining ones.
3 Let F := ∅ and nε := (ε2 + 9ε + 18)/ε2.
4 if n < nε then
5 Compute all properly colored trees in G and let Fopt be one with maximum size.
6 F ← Fopt

7 else
8 Compute V1, V2 and optimal properly colored tree Fi of G[Vi] for i ∈ [2] as in Theorem

2.2.
9 Let E′ := {vw | v ∈ V1, w ∈ V2, c(vw) /∈ c(δF1 (v))}.

10
Compute a properly colored forest F12 ⊆ E′ that covers a maximum number of vertices
in V2 and |δF12 (v)| ≤ 1 for each v ∈ V2.

11 if |F1|+ |F12| ≥ |F2| then
12 F ← F1 ∪ F12

13 else
14 F ← F2

15 return F

▶ Theorem 3.18. For complete multigraphs on n vertices and for any fixed constant ε > 0,
Algorithm 4 provides a 1/

√
(2 + ε)(n − 1)-approximation for Max-PT in polynomial time.

Proof. First, we show that deleting edges in Step 2 does not decrease the size of the optimal
solution. Indeed, for any optimal solution Fopt, if e = vw ∈ Fopt but e is deleted, then there
are at least n parallel edges between v and w having different colors. As the degrees of v

and w are at most n − 1 in Fopt, there is always at least one edge f among those parallel
ones such that Fopt − e + f is a properly colored tree again. Note that after the deletion of
unnecessary parallel edges, the total number edges of the graph is bounded by n3.

Let ε > 0 be the parameter of the algorithm. If n < nε = (ε2 + 9ε + 18)/ε2, then the
output is clearly optimal. Furthermore, the number of possible solutions is bounded by

(
n3

ε
nε

)
which is a constant, hence the runtime is constant.

Assume now that n ≥ nε. Let V1 ∪ V2 be the partition of V as in Theorem 2.2. We may
assume that V1, V2 ̸= ∅ since otherwise the algorithm clearly gives an optimal solution. Let
F1 and F2 be maximum-size properly colored trees in G[V1] and G[V2], respectively. Let
n1 := |V1|, n2 := |V2| and x1 := Opt[G[V1]] = |F1| = n1 − 1, x2 := Opt[G[V2]] = |F2|. The
forest F12 in Step 10 can be determined using a maximum bipartite matching algorithm in a
bipartite graph H = (S, T ; W ) defined as follows. The vertex set S contains a vertex (v, i)
for each v ∈ V1 and color i ∈ [k] such that v has no incident edges in F1 having color i, that
is, S = {(v, i) | v ∈ V1, i /∈ c(δF1(v))}. The vertex set T contains a copy of each vertex in V2,
that is, T = {v | v ∈ V2}. Finally, there is an edge added between (v, i) ∈ S and u ∈ T in W

if uv ∈ E has color i in G. It is not difficult to check that a maximum matching of H gives
a properly colored forest F12 that can be added to F1 and with respect to that, covers as
many vertices in V2 as possible.

For the output F of Algorithm 4, either we have |F | = x2 or |F | = x1 +y, where y = |F12|.
Recall that n1 ≥ 1 by our assumption, hence x1 + y ≥ 1. Indeed, this clearly holds if
n1 ≥ 2, while if n1 = 1 then y ≥ 1 by the completeness of the multigraph. Let Fopt be an
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optimal properly colored tree in G. We claim that Opt[G] = |Fopt| ≤ 3x1 + y + (2x1 + y)x2.
To see this, let U := {u ∈ V2 | there exists uv ∈ Fopt with v ∈ V1} and set U ′ := {u ∈ U |
c(uv) ∈ c(δF1(v)) for every uv ∈ Fopt with v ∈ V1}. Since every edge of F1 is adjacent to at
most two edges in Fopt having the same color, we have |U ′| ≤ 2x1. Moreover, by the choice
of F12, we have |U \ U ′| ≤ y. These together imply |U | ≤ 2x1 + y. Now Fopt \ E[V1 ∪ U ]
is the union of properly colored trees in G[V2], all of which can have size at most x2. By
the above, there are at most |U | = 2x1 + y such components as Fopt is connected, leading
to |Fopt \ E[V1 ∪ U ]| ≤ (2x1 + y)x2. Finally, observe that |Fopt ∩ E[V1 ∪ U ]| ≤ 3x1 + y by
|V1| ≤ x1 + 1 and |U | ≤ 2x1 + y. Since Fopt has at most |V | − 1 edges, these together show
Opt[G] = |Fopt| ≤ min{n − 1, 3x1 + y + (2x1 + y)x2}.

The approximation factor of Algorithm 4 is hence at least max{x1 + y, x2}/ min{3x1 +
y + (2x1 + y)x2, n − 1}. To lower bound this expression, let x′

1 := x1 + y. Then, it suffices to
show that

max{x′
1, x2}

min{n − 1, 3x′
1 + 2x′

1x2}
≥ 1√

(2 + ε)(n − 1)

for 1 ≤ x′
1 ≤ n − 1 and 0 ≤ x2 ≤ n − 1, since the value on the left hand side is a lower bound

on the approximation factor. Assume that this is not the case, and in particular, we have
x2 <

√
n − 1/

√
2 + ε and x′

1/(3x′
1 + 2x′

1x2) < 1/
√

(2 + ε)(n − 1) for some n ≥ nε. From the
latter inequality, we get

√
(2 + ε)(n − 1)/2−3/2 < x2. Therefore,

√
(2 + ε)(n − 1)/2−3/2 <

x2 <
√

n − 1/
√

2 + ε. However,
√

(2 + ε)(n − 1)/2−3/2 ≥
√

n − 1/
√

2 + ε whenever n ≥ nε,
a contradiction.

We conclude that Algorithm 4 provides a 1/
√

(2 + ε)(n − 1)-approximation. Also, by
Theorem 2.2 and the fact that a maximum-size matching can be computed in polynomial
time, the running time is polynomial. This concludes the proof of the theorem. ◀

▶ Remark 3.4. For ε = 2, the algorithm provides a 1/(2
√

n − 1)-approximation and n2 = 10.
That is, the brute force approach of Step 5 is only executed for n ≤ 9. However, any properly
colored tree with two edges gives a 1/(2

√
n − 1)-approximation, and deciding the existence

of such a tree requires
(|E|

2
)

steps.
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