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Abstract
In the Tricolored Euclidean Traveling Salesperson problem, we are given k = 3 sets of points in the
plane and are looking for disjoint tours, each covering one of the sets. Arora (1998) famously gave
a PTAS based on “patching” for the case k = 1 and, recently, Dross et al. (2023) generalized this
result to k = 2. Our contribution is a (5/3 + ε)-approximation algorithm for k = 3 that further
generalizes Arora’s approach. It is believed that patching is generally no longer possible for more
than two tours. We circumvent this issue by either applying a conditional patching scheme for three
tours or using an alternative approach based on a weighted solution for k = 2.
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1 Introduction

We consider the k-Colored Euclidean Traveling Salesperson problem (k-ETSP) where k sets
of points have to be covered by k disjoint curves in the plane (cf. Figure 1). This is a
fundamental problem in geometric network optimization [24] and generalizes the well-known
Euclidean Traveling Salesperson problem (ETSP). It captures applications ranging from VLSI
design [12, 21, 29, 30] to set visualisation of spatial data [1, 7, 11, 16, 27].

Formally, an instance of k-ETSP is a partition (Tc)c∈C of a set of terminals T ⊆ R2

in the Euclidean plane, where |C| = k. We consider every c ∈ C to be a color and every
point in Tc to be of color c. A solution to the instance is a k-tuple Π = (πc)c∈C of closed
curves in R2, also referred to as tours, such that every curve πc visits all terminals of color c,
i.e., Tc ⊆ πc,1 and the curves are pairwise disjoint, i.e., πc ∩ πc′ = ∅ for c ̸= c′.

1 For convenience, we identify curves with their images.
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15:2 A (5/3+ε)-Approximation for Tricolored Non-Crossing Euclidean TSP

Figure 1 An instance of 3-ETSP together with two possible solutions. An optimum solution
does not exist: The curves can get arbitrarily close but must not touch. Observe that, in the middle
subfigure, the red and green tour are not δ-close for any δ > 0, as the blue tour lies in between.

The objective of k-ETSP is to minimize the total length of the tours, i.e., to minimize
l(Π) :=

∑
c∈C l(πc), where l(π) denotes the Euclidean length of π. It is important to note

that, for k > 1, an optimum does not always exist (cf. Figure 1).2 In order to still define
an approximation, we follow the approach of [10] by defining the value Opt∗ := inf{l(Π) :
Π is a solution} and saying that a solution Π is an α-approximation if l(Π) ≤ αOpt∗.

The k-ETSP problem inherits NP-hardness from its special case ETSP [25] for k = 1.
It is well-known that 1-ETSP (i.e., ETSP) admits a Polynomial-Time Approximation
Scheme (PTAS) [2], and the result was recently extended to a PTAS for 2-ETSP [10]. The
best known approximation factor for 3-ETSP was (10/3 + ε) via doubling of the solution to
3-Colored Non-crossing Euclidean Steiner Forest from [5].

Our results. Our main result is the following.

▶ Theorem 1. For every ε > 0, there is an algorithm that computes a
( 5

3 + ε
)
-approximation

for 3-ETSP in time
(

n
ε

)O(1/ε).

To prove Theorem 1, we adapt Arora’s algorithm for Euclidean TSP [2]. One of the
key ingredients of that algorithm is the so-called Patching Lemma which allows to locally
modify any tour such that the number of crossings with a line segment is bounded, without
increasing the length of the tour too much. It was shown in [10] that this is still possible
for two tours, but it does not seem to be possible for more than two non-crossing tours
(see Figure 2, [5, 10]). We show how to circumvent this issue by imposing an additional
condition on the tours to be patched. For this, we say that two tours are δ-close if they can
be connected by a straight line segment of length at most δ that is disjoint from the third
tour (cf. Figure 1).

▶ Lemma 2. Let s be a straight line segment and δ = l(s) be its length. Let a solution
to 3-ETSP be given in which two of the three tours are not δ-close. For every δ′ > 0, the
solution can be modified inside a δ′-neighbourhood3 of s such that it intersects s in at most 18
points and its cost is increased by at most O(δ).

For the case where patching is not possible, we take a different approach. For this,
we define a two-tour presolution to be a pair of disjoint tours (πcc′ , πc′′) such that πcc′

visits all terminals colored c and c′, and πc′′ visits all terminals colored c′′. Such tours can
easily be transformed into a feasible solution to 3-ETSP by “doubling” πcc′ (cf. Figure 3,
Observation 6). We call the resulting solution an induced two-tour solution.

2 For k = 1, an optimum always exists because tours are allowed to self-intersect.
3 A formal definition is given in Section 3.
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Figure 2 A modified example from [5] that is presumably non-patchable.

▶ Lemma 3. For every ε > 0, there exists δ > 0 such that, for every (1 + ε)-approximate
solution to 3-ETSP in which the two shorter tours are δ-close, we can find a two-tour
presolution (π1, π2) with 2l(π1) + l(π2) ≤

( 5
3 + 2ε

)
· Opt∗.

Similarly as in [2], we place a suitable grid on the plane and place so-called portals on the
grid lines (cf. Section 3.1). Roughly speaking, a solution to k-ETSP is portal-respecting if it
only intersects grid lines at portals and intersects every portal at most a constant number of
times (see Section 3.1 for a formal definition). Combining the ideas in [2] with Lemmas 2
and 3, we obtain the following result.

▶ Theorem 4. For every instance of 3-ETSP and ε > 0, either, there is a solution that is
a (1 + ε)-approximation and portal-respecting with respect to a suitable grid, or there is a
portal-respecting two-tour presolution that induces a

( 5
3 + ε

)
-approximation.

Theorem 4 allows us to restrict ourselves to finding portal-respecting solutions. The
last step is to show that such solutions can be computed in polynomial time using dynamic
programming. For this, we generalize the approach in [10] to any number of colors k while
simultaneously allowing for weighted tours. We denote this generalized problem by k-ETSP′

(see Section 4 for a formal definition).

▶ Theorem 5. For every k ∈ N, there is a polynomial-time algorithm that computes a
parametric solution Π(λ) to k-ETSP′ such that limλ→0 l (Π(λ)) = Opt∗.

Here, a parametric solution is a function Π: (0, ∞) → {Π′ : Π′ is a solution} that con-
tinuously4 interpolates between solutions. Intuitively, the algorithm of Theorem 5 computes
the optimal combinatorial structure of a solution, i.e., the optimal order in which portals and
terminals are visited or bypassed, and the parameter λ sets the spacing between the tours.
Importantly, our solution allows to efficiently recover the (non-parametric) solution Π(λ) for
given λ > 0 and to compute Opt∗.

Comparison to previous work. Our work is closely related to the papers by Dross et al. [10]
and Bereg et al. [5]. While each work adapts Arora’s algorithm [2], we have to overcome
significant additional difficulties. The main contribution of [5] is that Arora’s patching lemma
can be adapted to two Steiner trees, and three Steiner trees if one of them may use parts
of another. The main contribution of [10] is that Arora’s patching lemma can be adapted
to two TSP tours. In contrast to these two results, our patching procedure needs to be

4 For example, with respect to the Fréchet-distance on the space of curves, which is defined as follows: For
π1, π2 : [0, 1] → R2, the Fréchet distance between π1 and π2 is dFr(π1, π2) := supt∈[0,1]∥π1(t) − π2(t)∥.

ESA 2024



15:4 A (5/3+ε)-Approximation for Tricolored Non-Crossing Euclidean TSP

more involved: in our setting we have to deal with more complex crossing patterns whose
mono-colored groups cannot be reduced to a single size (they were reduced to size 1 in [5]
and 2 in [10]), and we have to ensure that the modified tours remain connected (which is more
immediate in [5] and [10]) and that they remain Jordan curves (which is more immediate
in [10] and not needed in [5]). Additionally, in contrast to [10], we develop an alternative
approach when patching is not possible. We also generalize Arora’s dynamic program to any
number of weighted, portal-respecting tours, and its portal-snapping technique to arbitrary
arrangements of line segments.

Related work. Our results build upon the celebrated PTAS by Arora [2] for ETSP, which
was gradually improved [26, 3] to an EPTAS [20] with the running time proven tight under
the gap-ETH. The 2-ETSP problem also admits a gap-ETH tight EPTAS [10], which is
based on the techniques introduced in [2, 20], but relies on a more involved patching lemma
compared to the one in [2]. The authors of [10] claim that patching is unlikely to work for
the 3-ETSP problem (cf. Figure 2) and they leave it as a central open problem whether there
is a PTAS for 3-ETSP. We present a ( 5

3 + ε)-approximation algorithm that combines a new
patching method for three tours with a complementary approach for the case where patching
is not possible. We believe that our approach is applicable for a wider range of non-crossing
problems, for instance for the Red-Blue-Green-Yellow Separation problem (cf. [10]).

Interestingly, similar progress was earlier obtained for the problem of computing k pairwise
non-crossing Euclidean Steiner trees, one for each color of a k-colored set of terminals in the
plane. The k-Colored Non-crossing Euclidean Steiner Forest problem (k-CESF for short)
was introduced and studied in [11]. Later, Bereg et al. [5] showed a PTAS for 2-CESF and a
( 5

3 + ε)-approximation algorithm for 3-CESF, leaving the existence of PTAS for 3-CESF a
main open question. This may suggest that 5

3 could be some natural barrier for computing
three non-crossing curves interconnecting three point sets in the plane.

Other problems in geometric network optimization include the following: In the
k-Minimum Spanning Tree problem, we have to find a spanning tree connecting a sub-
set of size k of the terminals [6, 26]. In the k-Traveling Repairperson problem, we can use
k tours (that are allowed to intersect) to cover the terminals, objective to minimizing the
latency, i.e., the sum of the times at which a terminal is visited [8, 9, 13]. In the Traveling
Salesperson problem with neighbourhoods, the task is to find a shortest tour that visits at
least one point in each of a set of neighbourhoods [15, 22, 23, 28].

Moreover, the TSP problem has been extensively studied for other metric spaces. For
example, it is known that there is a PTAS in the case of a metric space of bounded doubling
dimension [4, 14]. On the other hand, it is known that a PTAS for general metric spaces does
not exist [19]. Currently, the best approximation algorithm known in general metric spaces
was suggested by Karlin et al. [17, 18], achieving an approximation factor of 1.5 − 10−36.

2 Two-tour presolutions

Recall that a two-tour presolution for 3-ETSP is a pair of disjoint closed curves (πcc′ , πc′′)
such that πcc′ visits all terminals in Tc ∪ Tc′ and πc′′ visits all terminals in Tc′′ for
some {c, c′, c′′} = {R, G, B}, where {R, G, B} denotes throughout the paper the color set C

in the case of 3-ETSP, standing for red, green, and blue. In this section, let c′′ = B without
loss of generality. We first investigate how two-tour presolutions can be transformed into
solutions to 3-ETSP.
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2λ

Figure 3 On the left, we have a single curve πRG visiting all red and green points. On the right,
we have replaced πRG by two parametrized disjoint curves πR(λ) and πG(λ) with Fréchet-distance at
most λ to πRG, visiting the terminals of the corresponding color. In particular, the Fréchet-distance
between πR and πG is at most 2λ.

xx1 x2

y1 y2y

s

Figure 4 On the left, we are given a solution to 3-ETSP where the red and green tour are δ-close.
On the right, we see how the solution can be transformed into an induced two-tour solution.

For this, note that, if we are given a single tour πRG that visits all red and green terminals,
it is possible to replace it by two parametrized disjoint tours πR(λ) and πG(λ) that have
Fréchet-distance at most λ from πRG such that πR(λ), πG(λ) visit all red, respectively green,
terminals and limλ→0 l(πR(λ)) = limλ→0 l(πG(λ)) = l(πRG) (cf. Figure 3). Choosing λ > 0
small enough and considering the tours πR(λ), πG(λ), we obtain the following.

▶ Observation 6. Fix an instance of 3-ETSP and let πRG, πB be a two-tour presolution. For
every δ > 0, there is a solution to 3-ETSP of cost at most 2 · l(πRG) + l(πB) + δ, called an
induced two-tour solution.

Next, we show that, if the two shorter tours of a (1 + ε)-approximation for 3-ETSP are in
some sense close to each other, then there is a good two-tour presolution. However, note that
this is not a reduction to 2-ETSP: In 2-ETSP, the objective is to minimize l(πB) + l(πRG).
In our case, we need to minimize l(πB) + 2 · l(πRG), i.e., we need to solve a weighted variant
of 2-ETSP. We will see later that we can compute a (1 + ε)-approximation for this weighted
variant of 2-ETSP in polynomial time (cf. Theorem 15).

Recall that two tours are δ-close if they can be connected by a straight line segment of
length at most δ that does not intersect the third tour. The construction for proving the
following lemma is illustrated in Figure 4.5

▶ Lemma 7. Let Π = (πR, πG, πB) be a solution to a given instance of 3-ETSP and let δ > 0.
Wlog., let πB be the longest tour, i.e., l(πB) ≥ l(πR), l(πG). Assume that πR and πG are
δ-close. Then, there is a two-tour presolution (πRG, πB) with 2 · l(πRG)+ l(πB) ≤ 5

3 · l(Π)+8δ.

Note that applying Lemma 7 to a (1 + ε)-approximation with δ ≤ εOpt∗/24 gives a
two-tour presolution (πRG, πB) with

2 · l(πRG) + l(πB) ≤ 5
3 · (1 + ε) · Opt∗ + 8δ =

(
5
3 + 5

3ε

)
· Opt∗ + 8δ ≤

(
5
3 + 2ε

)
· Opt∗,

which completes the proof of Lemma 3.

5 This and all other missing proofs are deferred to the full version.
ESA 2024
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3 Our structure theorem

In this section, we prove our structure theorem for 3-ETSP (cf. Theorem 4) which, roughly
speaking, states the following: For every ε > 0, either, there is a two-tour presolution that
induces a

( 5
3 + ε

)
-approximation, or there is a (1 + ε)-approximate solution that fulfills some

additional constraints (or both). Later, we will see that it is possible to find a good solution
that fulfills these additional constraints and a good two-tour presolution in polynomial time.

Our final algorithm for 3-ETSP will preprocess the input such that the terminals remain
distinct points and have integer coordinates. This allows us to assume throughout this section
that terminals lie in {0, . . . , L}2 for some integer L that is a power of 2. As the problem
is not interesting for small L, we also assume L ≥ 4 whenever necessary. In Section 5, we
explain in more detail how we preprocess the input and show that a near-optimal solution to
the preprocessed input can be transformed in polynomial time to a near-optimal solution to
the original input.

Following [10], we assume without loss of generality that, for every ε > 0 and δ > 0, there is
a (1+ε)-approximate solution to 3-ETSP whose tours consist of straight line segments, where
each segment connects two points that each are at distance at most δ from a terminal. To see
this intuitively, interpret each tour of a solution as a sequence of terminals to visit or bypass.
The cheapest way to realize such a sequence is by straight line segments with endpoints
arbitrarily close to terminals (cf. Figure 1). For this reason, we will assume from now on that
all tours that we work with consist of such straight line segments. Since we assume in this
section that terminals lie in {0, . . . , L}2, we have in particular, that the straight line segments
have endpoints in Nδ

(
{0, . . . , L}2)

, where Nδ(A) := {x : ∥x − a∥ < δ for some a ∈ A}
denotes the δ-neighbourhood of a set A.

3.1 Dissection and portals
In this subsection, we place a suitable grid on the Euclidean plane and place some portals
on it through which the tours will later be allowed to cross the grid lines. For this, we
follow the definitions as in [2]. The aforementioned additional constraints for the (1 + ε)-
approximate solution in Theorem 4 strongly relate to this construction and are crucial for
efficient computation.

Fix an instance of k-ETSP with T ⊆ {0, . . . , L}2 where L is a power of two. We pick a
shift vector a = (a1, a2) ∈ {0, . . . , L − 1}2 and consider the square

C(a) :=
[
−a1 − 1

2 , 2L − a1 − 1
2

]
×

[
−a2 − 1

2 , 2L − a2 − 1
2

]
,

i.e., C(a) is the square [0, . . . , 2L]2 shifted by −a − (0.5, 0.5). Note that C(a) contains every
terminal.

The dissection D(a) is a full 4-ary tree defined as follows (illustrated in Figure 5): Each
node is a square in R2. The root of D(a) is C(a). Given a node S of the tree of side length
more than one, we partition S into four smaller equal sized squares and these define the four
children of S. If S has side length one, it is a leaf. Note that this is well-defined because L is
a power of two.6

Given a square S, we define its border edges to be the unique four straight line segments
bounding it and we define its border ∂S to be the union of the border edges.

6 In previous work, the well-known quad-trees are defined as a subtree of the dissection, on which the
dynamic program of [2] is based, which however we do not rely on in this work.
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2L

vertical grid lines

(
−a1 − 0.5
−a2 − 0.5

)

C(a)

level 1

level 2

level 2

level 3

level 3

level 3

level 3

Figure 5 The figure on the left illustrates the dissection D(a) with L = 4, a = (1, 0). The dashed
lines denote ∂[0, L]2. The three pink lines are examples of boundaries of levels one, two, and three.
The levels of all horizontal grid lines are indicated. We have placed 4 portals on every boundary,
represented as circles. For better overview, we have drawn only one portal at endpoints of boundaries.
Note that the endpoint of a boundary is actually contained in up to four portals. This is illustrated
on the right hand side, where the exact portal placement of the marked orange area is given.

A grid line is either a horizontal line containing (0, −a2 − 0.5 + k) or a vertical line
containing (−a1 − 0.5 + k, 0) for some k ∈ {1, . . . , 2L − 1}. Note that every border edge of a
square in D(a) is either contained in a grid line or contained in a border edge of C(a) (which
is not on a grid line). Since terminals have coordinates in Z and grid lines have coordinates
in 0.5 + Z, no terminal lies on a grid line. More precisely, every terminal lies exactly in the
center of a leaf of D(a).

A boundary is a border edge of a non-root node in D(a) not contained in another border
edge (see Figure 5 for an example). Observe that its length is 2L

2i for some i ∈ {1, . . . , log(2L)}.
Then, we define its level as i. Note that a grid line only contains boundaries of the same level so
we can define the level of a grid line as the level of the boundaries that it contains (cf. Figure 5).
If two boundaries (or grid lines) of level i and j are given with i < j, we say that level j is
deeper than level i (resembling the property that the corresponding boundary belongs to a
node that is deeper in the dissection), and level i is shallower than level j.

Observe that there is precisely one vertical (respectively horizontal) grid line of level one
and, for every i ∈ {1, . . . , log(2L) − 1}, there are twice as many grid lines of level i + 1 as
grid lines of level i. In total, there are 2L − 1 horizontal and 2L − 1 vertical grid lines. With
this, we immediately obtain the following property.

▶ Observation 8. Let g be either a vertical line containing point (k − 0.5, 0) or a horizontal
line containing point (0, k − 0.5) for some k ∈ {1, . . . , L}. Consider the dissection D(a) for
a vector a ∈ {0, . . . , L − 1}2 chosen uniformly at random. Then, g is a grid line with respect
to D(a), and, for every i ∈ {1, . . . , log(2L)}, we have

Pra(the level of g is i) = 2i−1

2L − 1 .

ESA 2024
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µ
µ

Figure 6 On the left, the red and blue tour cross a boundary outside of a portal and the green tour
crosses in an intersection of grid lines. On the right, the tours are modified in a µ-Neighbourhood of
the grid line such that they are still non-crossing, only cross boundaries at portals and do not cross
in intersections of grid lines.

A δ-portal (or, in short, portal) on a straight line segment is a subsegment of length
δ ∈ (0, 1). Given a segment s, we define grid(s, k, δ) as the set of k equispaced δ-portals on s

such that the endpoints of s are contained in the first and last δ-portal respectively.
We place portals on D(a) as follows: We will choose a large enough integer r ∈ N (called

the portal density factor) and δ > 0 (the portal length) small enough. Then, for every
boundary b, we place the portals grid(b, r log L, δ) on b (cf. Figure 5). Note hereby that
log L ∈ N because L is a power of two. Observe that, on a deeper level boundary, portals are
placed more densely, which will turn out to be a key property.

3.2 Snapping non-crossing curves to portals
In this subsection, we show that disjoint tours can be modified so that they only intersect
grid lines in portals, without increasing their lengths too much. To prove this, we follow the
same ideas as in [2, Section 2.2]. Nevertheless, the snapping technique in [2, Section 2.2]
needs some adaptation to work in the setting of non-crossing curves. This technique was
used in previous work for pairs of non-crossing tours [10] and for Steiner trees [5]. Here, we
provide a unified framework for this technique, which may be of wider interest and can be
applied to a variety of non-crossing Euclidean problems.

In the following, if s = x1x2 is a straight line segment, we let s◦ := s \ {x1, x2}. This
allows us to specify more precisely where the segments are allowed to intersect. In particular,
if we require that s◦

1 and s◦
2 are disjoint for two segments s1 and s2, they are allowed to share

an endpoint.

▶ Lemma 9. Let S = {s1, . . . , sm} be a finite set of straight line segments in the Euclidean
plane such that each si connects two points in N 1

4

(
{0, . . . , L}2)

and assume L ≥ 4. Choose a
vector a ∈ {0, . . . , L − 1}2 uniformly at random and consider the dissection D(a). For every
portal density factor r ∈ N \ {0}, portal length δ ∈ (0, 1), and δ′ > 0, there is a set of curves
S ′ = {s′

1, . . . , s′
m} (not necessarily straight line segments) such that

a) s′
i differs from si only in Nδ′(G) where G denotes the union of all grid lines in D(a),

b) if the segments s◦
i are pairwise disjoint, then the curves (s′

i)◦ are pairwise disjoint as well,
c) every s′

i intersects every boundary b of D(a) only in the portals grid(b, r log L, δ), i.e.,
s′

i ∩ b ⊆ grid(b, r log L, δ),
d) no s′

i contains an intersection point of two grid lines, i.e., g1 ∩ g2 ∩ s′
i = ∅ for every

i ∈ {1, . . . , m} and grid lines g1 ̸= g2,
e) the curves of S ′ intersect the grid lines in finitely many points,
f) Ea [l(S ′) − l(S)] ≤ 7

√
2 · l(S)

r , where l(S) :=
∑

s∈S l(s).

Proof sketch. We apply the modifications illustrated in Figure 6 one by one on every
boundary. When estimating the cost of these modifications, we make use of the fact that, on
a boundary of a deeper level, the portals are placed more densely and, by Observation 8, given
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s s

Figure 7 Illustration of the patching scheme in [2] for a single tour: On the left, we are given a
tour π intersecting the segment s in six points. On the right, we see how the tour can be modified
such that the number of crossings is at most two and the length of is increased at most by 3 · l(s).

a fixed line intersected by S, the probability that it is of a shallower level in D(a) is small.
The total cost of the modifications in Figure 6 depends on the total number of intersection
points with grid lines. Therefore, the last step is to relate the number of intersection points
to l(S), making use of the fact that S consists of straight lines segments connecting points
close to {0, . . . , L}2. ◀

3.3 The patching technique for three disjoint tours
In the previous section, we have seen that a (reasonable) solution to k-ETSP can be modified
such that it only intersects grid lines in portals. In this section, we investigate how the tours
can further be modified to reduce the number of intersection points per portal. This will be
important for our algorithm because it considers all possible ways that a solution can cross
the squares of D(a) through the portals. To obtain a reasonable running time, we need a
constant bound on the number of crossings. As briefly explained in the introduction, we
cannot hope to show this for every solution, even for k = 3 (cf. Figure 2). Therefore, we
restrict ourselves to 3-ETSP and show the desired properties for this problem under some
additional assumptions.

Before delving into the proof, let us introduce some useful notation and establish the
prerequisites. Let πR, πG, πB be a solution to an instance of 3-ETSP and s be a straight line
segment such that πc ∩ s consists of finitely many distinct points for all c ∈ {R, G, B}. Then
we say that s is non-aligned to the solution and we call the points in

⋃
c∈C πc ∩ s crossings.

We define an order on the crossings by rotating the plane such that s is parallel to the x-axis
and then ordering them by their x-coordinates. This allows us to speak of a crossing to
be “next to” or “in between” other ones. The color of a crossing x, denoted c(x), is d if
x ⊆ s ∩ πd. With this, we can classify the occurring patterns by sequences of the three colors
and we call this a crossing pattern. For example, if x1, . . . , x6 denote the ordered crossings,
by the crossing pattern RRGGBB, we mean that c(x1) = c(x2) = R, c(x3) = c(x4) = G and
c(x5) = c(x6) = B.

Our work builds on existing results for one and two tours. Arora [2] showed that the
number of crossings of a single tour with a line segment can be reduced as follows (cf. Figure 7).

▶ Lemma 10 (Arora [2]). Let π be a closed curve and s be a non-aligned straight line segment.
For every δ > 0, there is a curve π′ differing from π only inside Nδ(s) such that |s ∩ π′| ≤ 2
and l(π′) ≤ l(π) + 3 · l(s).

Dross et al. [10] proved that the number of crossings between two disjoint tours and a
straight line segment s can be reduced to a constant number, at additional cost O(l(s)).
Here, we only need the two-color patching schemes for the two special crossing patterns given
in the following result. To see why the following lemma holds, one can carefully investigate
the proof in [10] or observe that the scheme illustrated in Figure 8 works as desired.
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Figure 8 Illustration of the patching scheme for the crossing pattern BRRBBRR, see also [10].
Observe that the connections illustrated by dashed lines must exist (up to symmetry).

(a) (b) (c)

Figure 9 Impossible connections of the blue groups.

▶ Lemma 11 (Dross et al. [10]). Let πc, πd be disjoint closed curves and s be a non-aligned
straight line segment. Assume the crossing pattern is given by cddccdd. For every δ > 0,
there are disjoint closed curves π′

c, π′
d differing from πc and πd only inside Nδ(s) such that

the new crossing pattern is cdd, and l(π′
c) + l(π′

d) ≤ l(πc) + l(πd) + 4 · l(s).

Now, we have all the prerequisites in place to give a patching procedure in the case
that no red crossing is next to a green crossing on the considered segment (or for any other
other choice of two colors), i.e., to prove Lemma 2. For this, we first give a more precise
formulation of Lemma 2.

▶ Lemma 12 (Tricolored Patching). Let πR, πG, πB be disjoint closed curves and s be a
non-aligned straight line segment. Assume that, in the crossing pattern on s, there is no red
crossing next to a green crossing. Then, for every δ > 0, there are disjoint closed curves
π′

R, π′
B, π′

G such that
a) for all c ∈ {R, G, B}, πc differs from π′

c only inside Nδ(s),
b) |(s ∩ π′

R) ∪ (s ∩ π′
B) ∪ (s ∩ π′

G)| ≤ 18,
c) l(π′

R) + l(π′
G) + l(π′

B) ≤ l(πR) + l(πG) + l(πB) + 75 · l(s).

Proof sketch. We modify the three curves in several steps to reduce the number of crossings
with s. We arrange the crossings into groups, where a group is a maximal set of consecutive
monochromatic crossings. The road map for our proof is roughly as follows:

First, we reduce the number of crossings inside a group by applying Lemma 10 so that
each group consists of either one or two crossings. Next, we show that all green and red groups
consist of two crossings, except for possibly the first and last group along the segment s.
Then, we further simplify the occurring patterns by applying Lemma 11, eliminating longer
sequences where only two of the three colors appear. As a next step, we argue that, after these
reductions, it is only left to eliminate crossing patterns of the form GGB∗RRB∗GGB∗RR,
where B∗ ∈ {B, BB}.

To eliminate occurrences of this pattern, we will cut the tours open close enough to s and
reconnect them. However, we must ensure that this does not disconnect the tours. For this,
we investigate how the crossings are connected via the tours outside of Nδ(s) and we show
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Figure 10 Patching scheme for three non-crossing tours in the two considered crossing patterns.

that the connections illustrated by the dashed lines in Figure 10 must exist (up to symmetry),
which is the technically most involved part of our proof. To prove the existence of these
connection, we carefully investigate all possible ways that the crossings can be connected.
We argue that (some combinations of) the connections illustrated in Figure 9 cannot exist
and that this implies the existence of the desired connections.

Then, one can observe that modifying the tours as illustrated in Figure 10 gives three
closed curves with a reduced number of crossings with s. We apply this modification
repeatedly whenever the crossing pattern GGB∗RRB∗GGB∗RR (B∗ ∈ {B, BB}) appears
while simultaneously redirecting the new crossings towards the right endpoint of s. This will
ensure that we do not occur an additional cost of O(l(s)) for every application of the scheme,
but rather a cost of O(l(si)) for some almost non-overlapping subsegements si of s.

The last step is to argue that every crossing pattern that does not contain the described
subpatterns consists of at most 18 crossings. ◀

3.4 Structure theorem for three non-crossing tours
Now, we have all the prerequisites in place to state and prove our structure theorem
(cf. Theorem 4) for three non-crossing tours.

For this, given an instance of k-ETSP with terminals in {0, . . . , L}2 and a shift vector
a ∈ {0, . . . , L − 1}2, we say that a solution Π = (πc)c∈C is (r, m, δ)-portal respecting if, for
every boundary b in D(a), the intersection points b∩

⋃
c∈C πc are contained in the the portals

grid(b, r log L, δ) and every portal is intersected in at most m points in total.

▶ Theorem 13 (Structure Theorem for 3-ETSP). Let an instance of 3-ETSP with T ⊆
{0, . . . , L}2 and ε > 0 be given. Then there exists a shift vector a ∈ {0, . . . , L − 1}2

and δ > 0 such that there is either a (⌈(15
√

2 + 4)/ε⌉, 18, δ)-portal respecting solution of
cost at most (1 + ε) · Opt∗, or there is a (⌈(15

√
2 + 4)/ε⌉, 18, δ)-portal respecting two-tour

presolution (π1, π2) with 2l(π1) + l(π2) ≤
( 5

3 + ε
2
)

· Opt∗.

Proof sketch. First, we move all crossings to portals by applying Lemma 9. Then, we
consider boundaries b one by one in non-decreasing order of their levels and apply patching
(Lemma 12). Note that patching can create new crossings on another boundary perpendicular
to b. We argue that such a boundary is of a deeper level so that it has not been modified
yet. Since we can choose the portal-length δ arbitrarily small, the total cost of patching is
negligible. ◀
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Recall that, given a two-tour presolution, one can “double” one of the tours to ob-
tain an induced two-tour solution for 3-ETSP (cf. Observation 6). Applying this to a
(⌈(15

√
2 + 4)/ε⌉, 18, δ)-portal respecting two-tour presolution obtained from Theorem 13,

this gives a (⌈(15
√

2 + 4)/ε⌉, 36, δ)-portal respecting solution for 3-ETSP. Combining this
with Theorem 13, we obtain the following.

▶ Corollary 14. For every instance of 3-ETSP with terminals in {0, . . . , L}2 and ε > 0, there
is a shift vector a ∈ {0, . . . , L − 1}2 and δ > 0 such that there exists a (⌈(15

√
2 + 4)/ε⌉, 36, δ)-

portal respecting solution of cost at most
( 5

3 + ε
)

· Opt∗.

4 A dynamic programming algorithm

In the previous section, we have seen that there is a
( 5

3 + ε
)
-approximate portal-respecting

solution. In this section, we give a polynomial-time algorithm that computes an “optimal”
(in the sense of Theorem 5) portal-respecting solution.

Our algorithm is based on the same ideas as Arora’s dynamic programming algorithm for
Euclidean TSP [2] and the algorithm by Dross et al. for 2-ETSP [10]. The difference to our
work is that we need to solve a more general problem: First, we allow for any fixed number
of colors of terminals and search for non-crossing tours. Second, we have weighted colors,
i.e., the tours of different colors contribute differently to the total cost.

More precisely, by k-ETSP′ we denote the following problem: a set C of k colors is given
together with an integer L that is a power of two. The input consists of a set of terminals
Tc ⊆ {0, . . . , L}2 for each color c ∈ C, a color weight wc ≥ 0 for each c ∈ C, a shift vector
a ∈ {0, . . . , L − 1}2, δ > 0 (sufficiently small) and two integers r, m ∈ N. We consider the
dissection D(a) and, as before, we place r log L portals on every boundary. A solution to
k-ETSP′ is a k-tuple of tours Π = (πc)c∈C such that every terminal is visited by the tour of the
same color (i.e., Tc ⊆ πc for every c ∈ C), the tours are pairwise disjoint, and (r, m, δ)-portal
respecting. The cost of a solution for k-ETSP′ is then l(Π) :=

∑
c∈C wc · l(πc). Similarly

as for k-ETSP (cf. Figure 1), a solution minimizing the cost does not necessarily exist. By
Opt∗ := inf{l(Π)) : Π is a solution}, we denote the value that we want to approximate.

The aim of this section is to prove the following theorem.

▶ Theorem 15. There is an algorithm that computes a parametric solution Π(λ) to k-ETSP′

in time LO(mr log k) such that limλ→0 l (Π(λ)) = Opt∗.

Proof sketch. The main idea is to use dynamic programming. More precisely, we consider
the nodes of D(a) (i.e., squares in R2) one by one from leaves to the root and compute all
possible ways that a solution can cross the border of the square (the so-called multipath
problem). For a non-leaf node, we will find these possibilities by combining the solutions for
the four subsquares. ◀

5 Perturbation

In the previous section, we have focused on solving 3-ETSP when the terminals have integer
coordinates. In this section, we show how an input for general 3-ETSP can be preprocessed
such that we only have to solve an instance with terminals in Z2 and how a solution to the
preprocessed instance can be transformed back into a solution to the original instance. For
this, we use similar ideas as in [2]. Note that, if the terminal sets of different colors are in
some sense far away from each other, we can find a tour for each color separately such that
they are are disjoint. More precisely, we call an instance to 3-ETSP ε-reducible, if there is
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a choice of the three colors {c, c′, c′′} = {R, G, B} such that, when applying the algorithm
in [10] on Tc, Tc′ (with the given ε), and, independently appylying Arora’s algorithm [2]
on Tc′′ , the resulting tours are disjoint and, therefore, provide a (1 + ε)-approximation for
3-ETSP. For this reason, we restrict ourselves to instances that are non-reducible.

▶ Theorem 16. Let ε > 0 and I be a non-ε-reducible instance of 3-ETSP.
a) There is an algorithm Perturbation that has running time O(n2) and returns an

instance I ′ of 3-ETSP with terminals in {0, . . . , L}2 where L = O(n/ε) is a power of two.
b) There is an algorithm Back-Perturbation that has running time O(n2) and, given a

(1 + ε′)-approximate solution to the instance I ′, returns a (1 + ε′ + O(ε))-approximate
solution to the instance I.

Proof sketch. The main idea for the algorithm Perturbation is the following: Choose a
square S of minimum size containing all terminals and place a grid in S with O(n/ε) many
grid lines. Then, snap each terminal to a close enough intersection point of these grid lines
without moving two terminals of different colors to the same point.

For Back-Perturbation, include a doubled straight line segment between terminals of
the original instance and the solution to the perturbed instance. If such a segment crosses
the other two tours, apply patching and then replace each crossing by a detour around the
segment. ◀

6 A (5
3 + ε)-approximation algorithm for 3-ETSP

We have all the prerequisites in place to prove our main result. We begin by recalling the
theorem.

▶ Theorem 1 (restated). For every ε > 0, there is an algorithm that computes a
( 5

3 + ε
)
-

approximation for 3-ETSP in time ( n
ε )O(1/ε).

Proof sketch. It is straightforward how to check whether an instance is ε-reducible and
how we can find a solution in that case. Therefore, assume we are given a non-reducible
instance. First, we apply algorithm Perturbation to the instance. By Corollary 14, there is
a portal-respecting solution to the perturbed instance I ′ that gives a

( 5
3 + ε′)-approximation

(where we need to choose ε′ to be ε divided by a large enough constant). Therefore, we can
apply Theorem 15 to compute a

( 5
3 + ε′)-approximate portal-respecting solution to I ′. Last,

we apply Back-Perturbation to the solution. ◀
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