
Longest Common Substring with Gaps and Related
Problems
Aranya Banerjee #

Georgia Institute of Technology, Atlanta, GA, USA

Daniel Gibney1 #

University of Texas at Dallas, Richardson, TX, USA

Sharma V. Thankachan #

North Carolina State University, Raleigh, NC, USA

Abstract
The longest common substring (also known as longest common factor) and longest common sub-
sequence problems are two well-studied classical string problems. The former is solvable in optimal
O(n) time for two strings of length m and n with m ≤ n, and the latter is solvable in O(nm)
time, which is conditionally optimal under the Strong Exponential Time Hypothesis. In this work,
we study the problem of longest common factor with gaps, that is, finding a set of at most k

matching substrings obeying precedence conditions with maximum total length. For k = 1, this is
equivalent to the longest common factor problem, and for k = m, this is equivalent to the longest
common subsequence problem. Our work demonstrates that, for constant k, this problem can be
solved in strongly subquadratic time, i.e., nm1−Θ(1). Motivated by co-linear chaining applications
in Computational Biology, we further demonstrate that the longest common factor with gaps results
can be extended to the case where the matches are restricted to maximal exact matches (MEMs).
To further demonstrate the applicability of our techniques, we show that a similar approach can be
used for a restricted version of the episode matching problem where one seeks an ordered set of at
most k matches whose concatenation equals a query pattern P and the length of the substring of
T containing the matches is minimized. These solutions all run in strongly subquadratic time for
constant k.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Pattern Matching, Longest Common Subsequence, Episode Matching

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.16

Funding Sharma V. Thankachan: Supported by the U.S. National Science Foundation (NSF) award
CCF-2316691.

1 Introduction

The longest common substring, or longest common factor, problem (LCF) asks: given strings
T1[1 . . n] and T2[1 . . m] with n ≥ m, find a common substring of T1 and T2 of maximum length.
This classical problem was heavily influential in the field of string algorithms. Disproving
a conjectured Ω(n log n) lower bound on the time complexity on LCF by Knuth, Weiner
developed a linear time solution for constant-sized alphabets that was the precursor to the
modern suffix tree data structure [61]. The suffix tree can now be constructed in linear
time for polynomially sized integer alphabets [31] and is one of the most widely used data
structures in string algorithms.

The longest common subsequence problem (LCS) instead seeks the longest common
subsequence between T1 and T2. This problem has been highly influential as well. The
textbook dynamic programming algorithm running in O(nm) time underwent a series of

1 corresponding author
© Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aranyabanerjee@gatech.edu
https://orcid.org/0000-0001-5237-060X
mailto:daniel.j.gibney@gmail.com
https://orcid.org/0000-0003-1493-5432
mailto:svalliy@ncsu.edu
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.4230/LIPIcs.ESA.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Longest Common Substring with Gaps and Related Problems

improvements in the 1970s, leading to an O(kn) time algorithm by Hirschberg [35] where
k is the length of a longest common subsequence. Other parameterizations based on
the number of matching pairs have also been developed [36]. Lower bounds for LCS are
conditioned on the Strong Exponential Time Hypothesis (SETH) or related conjectures in
circuit complexity [1, 18]. They include that there is no O(nm1−ε + mn1−ε) time algorithm
for any constant ε > 0 for the general problem conditioned on SETH [18]. In the case of LCS
of length k, a work by Bringmann and Künneman ruled out an algorithm running in the
time O(n + k2) [19]. This result contrasts with edit distance, where when the edit distance
is at most k, an O(n + k2) time algorithm is possible [50].

In this work, we consider a problem that transitions between LCF and LCS with the use of
a parameter k that denotes the number of matched substrings appearing in the solution. Let
T1[1 . . n] and T2[1 . . m] be input strings, where n ≥ m. We say a set of k matching substrings
(T1[i1 . . i′

1], T2[j1 . . j′
1]), (T1[i2 . . i′

2], T2[j2 . . j′
2]), . . ., (T1[ik . . i′

k], T2[jk . . j′
k]) is strictly ordered

if i′
h < ih+1 and j′

h < jh+1 for h ∈ [1 . . k − 1]. The first problem we study here is formally
defined as follows.

▶ Problem 1 (Longest Common Factor with Gaps (k-LCFg)). Given two strings T1[1 . . n],
T2[1 . . m] (n ≥ m) and a number k, find a strictly ordered set of at most k matching substrings
such that the total combined length of the substrings is maximized.

Observe that k-LCFg is equivalent to LCF when k = 1, and is equivalent to LCS when
k = m. This problem was first defined by Li et al., under the name Longest k Tuple
Common Substring. They focused on the case of more than two strings and applications to
Computational Biology [44]. Their proposed algorithm runs in time O(knk) for two strings.
This was recently improved to O(knm) time by Li et al. [43].

Applications in Computational Biology. Besides providing a connection between LCF
and LCS, the problems considered in this work are motivated by Computational Biology,
particularly the co-linear chaining problem. Co-linear chaining is a powerful heuristic for
finding good sequence alignments. As a preprocessing step for alignment, co-linear chaining
takes a set of matching substrings, called anchors, and determines which matches should be
preserved within the alignment based on some scoring criteria. This technique, or closely
related techniques, are used in long-read mappers [24, 38, 42, 54, 55, 56] and generic sequence
aligners [3, 17, 40, 48, 52]. The time complexity of the co-linear chaining algorithm is
typically measured in terms of the size of the input anchor set, rather than the lengths of
the underlying strings.

One commonly used set of anchors for co-linear chaining is maximal exact matches
(MEMs). A match (T1[ih . . i′

h], T2[jh . . j′
h]) is left-maximal if T1[ih − 1] ̸= T2[jh − 1] or ih = 1

or jh = 1 and right-maximal if T1[i′
h + 1] ̸= T2[j′

h + 1] or ih = n or jh = m. If a match is
both left and right-maximal, we say that it is a maximal exact match. The advantages of
MEMs over alternative sets of anchors include that MEMs are a superset of most commonly
used anchors, including maximally extended k-mers and maximal unique matches (MUMs).
However, using MEMs as anchors raises the issue of either handling the entire set of MEMs or
selecting some subset of MEMs. In the former case, the entire set of MEMs can be quadratic
in size relative to the sequence lengths. In the latter case, there is no guarantee that this
subset gives the best co-linear chaining score relative to the solution obtained using the
entire set of MEMs. By using parameter k, we bound the number of MEMs appearing in
the chaining solution. This enables us to avoid the computation of the entire set of MEMs,
preventing quadratic time complexity in the worst case for constant k. We consider the
following problem.

A. Banerjee, D. Gibney, and S. V. Thankachan 16:3

▶ Problem 2 (k-MEM Chain). Given two strings T1[1 . . n], T2[1 . . m] (n ≥ m) and a number
k, find a strictly ordered set of at most k maximal exact matches such that the total combined
length is maximized.

The condition that the subset of MEMs have maximum total length is equivalent to
maximizing the “coverage” of the selected subset of anchors used in earlier co-linear chaining
work. It should be noted, however, that Problem 2 is distinct from previous co-linear chaining
formulations in that the input is the two strings rather than a set of anchors.

We also consider the case where a subset of MEMs is provided as input, and one wishes
to find an optimal MEM chain with at most k of the provided MEMs. We assume each
MEM in the input is provided as two starting positions and a length. The problem is then
defined as follows.

▶ Problem 3 (k-MEM Chain Given MEM Set). Given a subset of MEMs, M, of the two (not
necessarily provided) strings T1, T2 and a number k, find a strictly ordered subset of at most
k MEMs from M such that the total combined length of the subset is maximized.

Finally, to further demonstrate the usefulness of the underlying techniques, we also
consider the problem of finding occurrences of a pattern with gaps so that the overall length
of the occurrence is minimized. The problem is defined formally as follows.

▶ Problem 4 (Pattern Matching with Gaps). Given a text T [1 . . n] and pattern P [1 . . m]
and parameter k, we seek substrings (if they exist) T [i1 . . i′

1], T [i2 . . i′
2], . . ., T [ih . . i′

h] such
that i′

1 < i2, . . ., i′
h−1 < ih, T [i1 . . i′

1] · T [i2 . . i′
2] · . . . · T [ih . . i′

h] = P , h ≤ k, and i′
h − i1 is

minimized.

Problem 4 is known as episode matching [29] when k = m, discussed more in Section 1.2.

1.1 Our Results
We observe in Sections 3, 4, 5 that Problems 1, 2, and 4, respectively, can be solved in
O(knm) time using simple dynamic programming. We then give results for constant k with
strongly subquadratic time complexity, stated below.

▶ Theorem 1. For Problems 1, 2, and 4 with 2 ≤ k = Θ(1), there exists an Õ(nm1−(1/3)k−2)
time2 algorithm.

We achieve our results through a combination of dynamic programming, string algorithm
techniques, multiple levels of blocking schemes, and observations limiting which matches
need to be considered as the leftmost (or rightmost) match for given suffixes of T1 and T2.
We believe the techniques presented here can provide a starting point for the development of
faster algorithms and inspire interest in how the computational complexity of this problem
transitions with the parameter k.

We also present a conditional lower bound on Problem 3 where a subset of MEMs, M,
is explicitly given (moved to full version for space considerations). Letting M = |M|, we
observe that an O(kM log M) time algorithm is straightforward using dynamic programming.
Our lower bound is within logarithmic factors of this time complexity for large k. In the
(max, +)-Convolution Problem, one is given an integer N and three sequences x0, . . . , xN ,
y0, . . . , yN , and z0, . . . , zN , and wishes to compute max

i+j+h=N
{xi + yj + zh}. The problem

has been used previously to prove conditional hardness results for Capacitated Dynamic
Programming [9] and the Tree Sparisty Problem [11].

2 Õ(·) suppresses polylogarithmic factors.

ESA 2024

16:4 Longest Common Substring with Gaps and Related Problems

▶ Theorem 2. For k = Ω(M), conditioned on there being no strongly subquadratic time
algorithm for the (max, +)-Convolution Problem, Problem 3 cannot be solved in O(k1−ε|M|)
time for any constant ε > 0.

1.2 Related Work
Variants of Longest Common Factor. A previously studied LCF variant is finding the
longest common factor with at most k mismatches. Babenko and Starikovskaya considered the
case with 1 mismatch and provided an O(nm) time algorithm [10]. Flouri et al. later provided
a quadratic time algorithm for arbitrary k [32]. Kociumaka et al. proved that, for k = ω(log n),
a strongly subquadratic time algorithm is not possible under SETH and considered the
approximate version [39]. Thankachan et al. provided an O(n logk n) time solution [6, 60].
This was later improved to O(n logk−1/2 n) time for k > 0 by Charalampopoulos et al. [26].
The same work presents a sublinear time algorithm for the standard/exact LCF problem
when the alphabet size is bounded. When the LCF has length ℓ, Charalampopoulos et
al. showed the problem can be solved in time O(n + n logk+1 n/

√
ℓ) [25]. Also see [2, 59] for

some related results on the k-edits version of LCF. Our k-LCFg problem allows for gaps of
arbitrary length. In this way, it seems distinct from k-mismatch and k-edits LCF.

Episode Matching. A closely related problem is known as episode matching. In episode
matching, one tries to find the shortest substring of T containing P as a subsequence. As
such, episode matching differs from Problem 4 only in our parameter k that limits the
maximum number of substrings used. Episode matching was introduced by Das et al. [29]
and studied extensively since [8, 16, 23, 28, 46]. The fastest solution currently known was
given by Das et al. and runs in time O(nm/ log m) [29]. A lower bound proving that under
SETH no O((nm)1−ε) time algorithm exists for constant ε > 0 was provided by Bille et
al. [13]. They further provided upper and lower bounds parameterized by the length of the
pattern. This parameterization differs from the number of matches in the solution used here.

Gapped pattern matching is another highly related and well-studied problem. Here, the
pattern is provided along with a set of length constrained gap positions within the pattern.
Practical algorithms for this problem were considered by Bader et al. [12] and indexing
versions of the problem were consider by Cáceres et al. [22]. See also [14, 15, 41, 49, 53].

Co-Linear Chaining. Many variants of the co-linear chaining problem exist. These depend
on the cost function used for chaining and the types of chaining allowed. Often, the cost
function considers both the coverage of the chain as well as some gap cost, which is not
considered here. For co-linear chaining where the anchors in the output must be non-
overlapping, several solutions exist running in O(r log r) time where r is the number of input
anchors (not necessarily MEMs) [4, 5, 51]. When overlap is allowed, but no gap cost is
incorporated, Mäkinen and Sahlin provide a solution running in O(r log2 r) time [47] that
builds on work by Shibuya and Kurochkin [57]. When anchors are allowed to overlap, and
gap cost is incorporated, a work by Jain et al. provides a solution running in Õ(r) time, with
polylogarithmic factors depending on problem specifics [37].

2 Technical Preliminaries

Suffix Arrays, Suffix Trees, and the Burrows Wheeler Transform. We assume the input
strings are over an integer alphabet {0, 1, . . . , σ − 1}. The suffix array SA[1 . . n] of a string
T [1 . . n] is an array such that T [SA[i] . .] is the ith smallest suffix lexicographically. The

A. Banerjee, D. Gibney, and S. V. Thankachan 16:5

inverse suffix array ISA[1 . . n] is an array such that ISA[SA[i]] = i, or equivalently, ISA[i]
gives the lexicographic rank of T [i . .]. The Burrows-Wheeler Transform (BWT) [21] of T

is a permutation of the symbols of T such that BWT[i] = T [SA[i] − 1] if SA[i] ̸= 1 and
T [n] otherwise. The suffix tree [61] of T is a compact trie constructed from all suffixes of
T . We assume that the last symbol in T is unique so that there are n leaves of the suffix
tree ℓ1, ℓ2, . . ., ℓn, ordered such that the root-to-leaf path for a leaf ℓi corresponds to suffix
T [SA[i] . .]. For a node v in the suffix tree, its string depth equals the length of concatenated
edge labels on the root-to-v path. The longest common extension of two suffixes of a string
is defined as the length of their longest common prefix, which can be computed in constant
time using suffix trees [34]. The suffix tree and the BWT can be built in linear time, even
for polynomially sized alphabets [31]. For our input strings T1 and T2, we use LCE(i, j) to
denote the length of the longest common prefix of T1[i . .] and T2[j . .]. We use LCE(i, j) to
denote the length of the longest common suffix of T1[1 . . i] and T2[1 . . j].

d-Covers. A d-cover of an integer interval [1 . . n] is a subset D ⊆ [1 . . n] such that for
any i, j ∈ [1 . . n − d] there exists d′ ∈ [0 . . d − 1] such that i + d′, j + d′ ∈ D. Observe
that, given a d-cover for [1 . . n], for any i1, i2 ∈ [1 . . n − ℓ] and substrings T [i1 . . i1 + ℓ),
T [i2 . . i2 + ℓ) of T [1 . . n] with ℓ ≥ d, there exist x, y ∈ D such that 0 ≤ x − i1 = y − i2 < d.
If T [i1 . . i1 + ℓ) = T [i2 . . i2 + ℓ), we say that x and y anchor the match T [i1 . . i1 + ℓ) =
T [i2 . . i2 + ℓ). There exists a d-cover of size O(n/

√
d) that can be computed in O(n/

√
d)

time [33]. The construction of d-covers is based on difference covers [27, 45], and the use
of d-covers for string problems was first proposed by Burkhardt and Kärkkäinen [20] and
further used for LCE queries by Gawrychowski et al. [33].

Range Minimum/Maximum Queries. Our algorithms will use orthogonal range minimum
queries (RmQs) and orthogonal range maximum queries (RMQs). For a set of n d-dimensional
points, each with an associated weight, a “query” consists of an orthogonal d-dimensional
range. The query response to an RmQ query is a point in that range with the smallest
weight. The query response to an RMQ query is a point in that range with the largest
weight. Using known techniques in computational geometry [30], d-dimensional RmQ and
RMQ data structures answering queries in O(logd−1 n) time can be built in O(n logd−1 n)
time and space.

3 Our Algorithm for k-LCFg

3.1 Algorithm Preliminaries

▶ Lemma 3. There exists an optimal solution to any k-LCFg instance where all matches in
the solution are right-maximal.

Proof. We begin with an optimal k-LCFg solution and suppose some match in this solution
is not right-maximal. Extending this match to the right by one symbol increases the length
of this match by one and must decrease the length of the next consecutive match in the
solution by one (otherwise, the starting solution was sub-optimal). Applying the same step
repeatedly, we extend this match to the right until it is right-maximal while preserving the
overall solution length. Repeating this for each non-right-maximal match, we eventually
obtain a solution containing only right-maximal matches. ◀

ESA 2024

16:6 Longest Common Substring with Gaps and Related Problems

Simple Dynamic Programming Solution. Before presenting a strongly subquadratic time
algorithm for constant k, we observe that the problem can be solved in O(knm) time through
straightforward dynamic programming. Let CHAIN(i, j, k) denote the length of an optimal
k-LCFg solution for the suffixes T1[i . .] and T2[j . .]. Our final answer, CHAIN(1, 1, k) can
be computed using the following recurrence: CHAIN(i, j, k) = 0 if i > n or j > m or k = 0,
otherwise

CHAIN(i, j, k) = max{CHAIN(i, j + 1, k), CHAIN(i + 1, j, k), Z}

where Z = LCE(i, j) + CHAIN(i + LCE(i, j), j + LCE(i, j), k − 1). The definition of Z works
since by Lemma 3, we can always assume a match starting at i and j is right-maximal.

The dynamic programming solution provides a starting point for our improved solution.
Our approach will utilize a k-stage approach that combines the observation that within
a given suffix we only need the leftmost occurrence of a match, d-covers to handle large
matches, and RMQ data structures to quickly recover pre-computed solutions.

Pairs of Interest. As mentioned above, we would like a way to consider the leftmost
occurrences of matches within a specified subset of suffixes S1 of T1 and S2 of T2. This is
captured formally by the following definition.

▶ Definition 4 (Leftmost Pairs of Interest). Let S1 ⊆ [1 . . n] be a set of starting positions in
T1 and S2 ⊆ [1 . . m] be a set of starting positions in T2. A pair of indices (i, j) is called a
leftmost pair of interest of S1 and S2 if i ∈ S1, j ∈ S2, and there does not exist an:

h ∈ S1 such that h < i and LCE(h, j) ≥ LCE(i, j), or an
h ∈ S2 such that h < j and LCE(i, h) ≥ LCE(i, j).

Given the suffix tree of T1$1T2$2 and a set of suffix starting positions S1 of T1 and S2 of
T2, one can compute a set of size O(|S1| + |S2|) containing all leftmost pairs of interest in
O(|S1| + |S2|) time. Pairs of interest will be useful to us due to the following observation,
which will be used implicitly throughout our algorithm. We call the first match occurring in
a k-LCFg solution its leftmost match.

▶ Observation 5. Consider an optimal k-LCFg solution for a suffix of T1 containing S1
and a suffix of T2 containing S2. If there exists an optimal solution having a leftmost match
starting in S1 and S2, then there also exist i ∈ S1 and j ∈ S2 that are a leftmost pair of
interest and the starting positions of a leftmost match in some optimal solution.

Suffix-LCF Queries. Amir et al. presented a technique to preprocess two strings so that
when two indices indicating the suffixes of the input strings are provided as a query, one
efficiently obtains the longest common factor of the specified suffixes [7]. We call these
suffix-LCF queries. Their data structure requires O(n log2 n) preprocessing time, O(n log n)
preprocessing space, and answers queries O(log n) time.

Observe that for 2-LCFg, we can iterate over all leftmost pairs of interests (i, j) of
S1 = [1 . . n] and S2 = [1 . . m], compute LCE(i, j) and perform a suffix-LCF query on the
suffixes T1[i + LCE(i, j) . .] and T2[j + LCE(i, j) . .]. The pair of matches with maximum
overall length provides the optimal solution. The algorithm requires Õ(n) time. Our main
algorithm will be for the case k ≥ 3.

A. Banerjee, D. Gibney, and S. V. Thankachan 16:7

3.2 Main Algorithm
We construct two suffix trees at the beginning of our algorithm: the suffix tree of T1$1T2$2
and the suffix tree of its reverse, where $1 and $2 are two special symbols that do not appear
in T1 or T2. These suffix trees allow us to answer LCE(·, ·) and LCE(·, ·) queries in O(1)
time.

We initially consider a stage for each f ∈ [1 . . k − 1]. The final stage, where f = k, is
handled separately since it can be accomplished by considering the leftmost pairs of interest
across all of T1 and T2. For each f ∈ [1 . . k − 1], we construct a data structure DS(f) that
can efficiently compute CHAIN(i, j, f). We denote the size of DS(f) by S(f), construction
time by C(f), and time for answering a query by Q(f). Note that these are functions over f ,
n, and m, but we drop n and m for simplicity. For each level f , we define two parameters:
bf (called the block size) and df =

√
bf (called the length threshold). Although we wait to

define bf until the analysis of the algorithm, we note here that the block size bf will increase
as f increases.

For the base case f = 1, we make DS(1) equal to the suffix-LCF data structure of Amir
et al. [7]. This has the properties that S(1) = Õ(n), C(1) = Õ(n), Q(1) = Õ(1). We now
construct a DS(f) for each f ∈ [2 . . k − 1] such that

S(f) = S(f − 1) + O(nm/bf)

C(f) = C(f − 1) + Q(f − 1) · O(nm/
√

bf)
Q(f) = Q(f − 1) · O(bf log bf)

3.2.1 The Structure
For f > 1, DS(f) consists of DS(f − 1) and CHAIN(i, j, f) for all i ∈ [1 . . n] and j ∈ [1 . . m],
such that either i or j is a multiple of bf . The number of such entries is bounded by
2nm/bf . Summing the size of DS(f − 1) and the number of stored entries, the space S(f) is
S(f − 1) + O(nm/bf).

3.2.2 Construction
We will compute two quantities CHAINs(i, j, f) and CHAINl(i, j, f). CHAINs(i, j, f) is the
length of an optimal f -LCFg solution of T1[i..] and T2[j..], such that the length of the first
match in the solution is ≤ df . CHAINl(i, j, f) is the maximum over the lengths of a set of
potential f -LCFg solutions of T1[i..] and T2[j..], where this set includes all solutions such
that the length of the first match is > df . As a result, CHAIN(i, j, f) is the maximum of
CHAINs(i, j, f) and CHAINl(i, j, f).

Computing CHAINs. For each j ∈ [1 . . m] such that j is a multiple of bf , we compute
CHAINs(i, j, f) as follows. We first initialize CHAINs(n+1, j, f) = 0. Then, for i from n down
to 1 and for all h ∈ [1 . . df], we locate the leftmost right-maximal occurrence of T1[i . . i + h)
in T2[j . . m] (if it exists). For each h, this can be accomplished in Õ(1) time after Õ(n) time
preprocessing at the start of the algorithm (see full version for details). Suppose this match
is (T1[i . . i + h), T2[yh . . yh + h)) for some yh ∈ [j . . m]. Applying the data structure for f − 1,
we let wh = h + CHAIN(i + h, yh + h, f − 1) if a match for a given h ∈ [1 . . df] exists and 0
otherwise. We then assign

CHAINs(i, j, f) = max
1≤h≤df

{CHAINs(i + 1, j, f), wh}

ESA 2024

16:8 Longest Common Substring with Gaps and Related Problems

We perform a symmetric procedure for i ∈ [1 . . n] such that i is a multiple of bf , for
j from m down to 1, and h ∈ [1 . . df]. Finding all desired CHAINs(·, ·, f) values takes
2nmdf /bf = O(nm/

√
bf) number of CHAIN(·, ·, f − 1) queries to DS(f − 1).

Computing CHAINl. Before computing CHAINl for any particular i and j, we use a df -
cover D of T1$1T2$2 to preprocess all MEMs that are longer than df . We call these long
MEMs. We do so by considering all anchor pairs a1 ∈ D ∩ [1 . . n], a2 ∈ D ∩ [n + 2 . . n + m + 1].
Note that the number of elements of D in the range [1 . . n] is O(n/

√
df) and the number of

elements in D contained in the range [n + 2 . . n + m + 1] is O(m/
√

df). This follows from
the fact that the df -cover utilized by Colbourn and Ling is periodic in df [27].

Letting a′
2 = a2 − (n + 1), we compute LCE(a1, a′

2) and LCE(a1, a′
2) to obtain a MEM

for anchor pair a1 and a′
2 (if it exists). The total number of long MEMs is at most

(n/
√

df) · (m/
√

df) = O(nm/df) = O(nm/
√

bf). We construct three RMQ structures
over this set of long MEMs. These account for how a given i and j can intersect (or not
intersect) a long MEM. To motivate the definitions, consider for indices i and j, the substring
T1[x . . x + h) of suffix T1[i . . n] and the substring T2[y . . y + h) of suffix T2[j . . m] to be the
leftmost match in a solution to CHAIN(i, j, f).
1. If i < x and j < y the solution value will be

h + CHAIN(x + h, y + h, f − 1)

2. If y ≤ j < y + h, and i − x ≤ j − y the solution value will be

y + h − j + CHAIN(x + h, y + h, f − 1)

3. If x ≤ i < x + h, and i − x > j − y the solution value will be

x + h − i + CHAIN(x + h, y + h, f − 1)

Based on the above, for a given long MEM (T1[x . . x + h), T2[y . . y + h)), we create the
three points and weights described next. Each type of point will be stored in an RMQ
structure, say RMQ1, RMQ2, and RMQ3, respectively.
1. (x, y) with weight h + CHAIN(x + h, y + h, f − 1)
2. (y, y + h, x − y) with weight y + h + CHAIN(x + h, y + h, f − 1)
3. (x, x + h, x − y) with weight x + h + CHAIN(x + h, y + h, f − 1)

To compute CHAINl(i, j, f), we make the following queries:
1. RMQ1([i + 1 . . n] × [j + 1 . . m]).
2. RMQ2([1 . . j] × [j + 1 . . m] × [i − j . . ∞]).
3. RMQ3([1 . . i] × [i + 1 . . n] × [−∞ . . i − j − 1]).

Let wg for g ∈ {1, 2, 3} be the weight of the point returned by RMQg or 0 if no point is
returned. Then we let CHAINl(i, j, f) = max{w1, w2 − j, w3 − i}. Note that it is possible
that the first match in the solution is actually smaller than df , particularly in the cases
where the query result from RMQ2 or RMQ3 is used. Importantly, however, all solutions
where the first match has a length greater than df are captured.

Since the preprocessing of long MEMs as described above is done only once for level f ,
finding all desired CHAINl(·, ·, f) values requires O(nm/

√
bf) number of CHAIN(·, ·, f − 1)

queries to DS(f − 1). Therefore, the total time for construction after DS(f − 1) has been
computed is Q(f − 1) · O(nm/

√
bf) as claimed.

A. Banerjee, D. Gibney, and S. V. Thankachan 16:9

(a) (b)

(c) (d)

Figure 1 The cases considered when querying DS(f). The possible first match is an optimal
solution for T1[i . .] and T2[j . .] shown with the dashed rectangles.

3.2.3 Querying

To find CHAIN(i, j, f) for an arbitrary i ∈ [1 . . n] and j ∈ [1 . . m] we let i′ = bf ⌈i/bf ⌉ and
j′ = bf ⌈j/bf ⌉. Suppose (T1[x . . x + h), T2[y . . y + h)) is the first match in an optimal f -LCFg
solution for T1[i . .] and T2[j . .]. There are two possibilities:
1. x ≥ i′ or y ≥ j′: In this case, the answer is the max of CHAIN(i, j′, f) and CHAIN(i′, j, f),

and can be reported in Õ(1) time from the precomputed values (or a suffix-LCF query
if f = 1). In particular, in the case shown in Figure 1a, the solution is obtained with
the query CHAIN(i, j′, f). In the case shown in Figure 1b, the solution is obtained with
query CHAIN(i′, j, f). The case in Figure 1c is solved by both queries.

2. x ∈ [i . . i′) and y ∈ [j . . j′): See Figure 1d. In this case, we compute the leftmost pairs
of interests for the suffix sets S1 = [i . . i′) and S2 = [j . . j′). Note that |S1| + |S2| ≤ 2bf .
We enumerate the right-maximal matches corresponding to the O(bf) leftmost pairs of
interest. For a match (T1[x′ . . x′ + h), T2[y′ . . y′ + h)) corresponding to a pair of interest,
we associate the value h + CHAIN(x′ + h, y′ + h, f − 1). We take the maximum value
computed over all of these. If there are no pairs of interest, we consider this as returning
the value 0.

We then take the maximum over the values computed for the two possibilities above. The
first computation takes Õ(1) time, the second computation takes Õ(bf)+Q(f −1)·O(bf log bf)
time. Combined, the total query time is Q(f − 1) · Õ(bf).

3.2.4 Solving the Recurrence

Assuming constant k ≥ 3, Q(k−1) = Õ(b2 · . . . ·bk−1) and C(k−1) = Õ
(

nm
∑k−1

f=2
b2·...·bf−1√

bf

)
where we take b2 . . . bf−1 = 1 if f = 2. We focus on minimizing C(k − 1).

For f ∈ [2, k − 1], let us suppose bf = ⌈mc3f ⌉ for some constant c > 0 (we will fix c later).
Then, the largest exponent in the product b2...bf−1/

√
bf is

c(32 + . . . + 3f−1) − c · 3f

2 = c · 9(1 + . . . + 3f−3) − c · 3f

2 = c · 9(3f−2 − 1)
2 − c · 3f

2 = −9c

2 .

Hence, we have C(k−1) = Õ(nm1−9c/2) and Q(k−1) = Õ(mc(32+...+3k−1)) = Õ(mc(3k−9)/2).

ESA 2024

16:10 Longest Common Substring with Gaps and Related Problems

3.2.5 Obtaining the Final Answer
The optimal solution value, i.e., CHAIN(1, 1, k) can be answered by first constructing DS(k−1)
and then performing O(n) number of CHAIN(·, ·, k − 1) queries. In particular, we iterate
over all leftmost pairs of interest for the entire set of suffixes, S1 = [1 . . n] and S2 = [1 . . m]
as follows: For a right-maximal match (T [x . . x + h), T2[y . . y + h)) corresponding to a pair
of interest, we make the query CHAIN(x + h, y + h, k − 1). We take CHAIN(1, 1, k) to be
h + CHAIN(x + h, y + h, k − 1) from the pair of interest that maximizes this value.

This makes the total time C(k−1)+Q(k−1) · Õ(n), which is polylogarithmic factors from
nm1−9c/2 + nmc(3k−9)/2. By equating the exponents, we see that we should set c = 2/3k,
yielding a final complexity of Õ(nm1−1/3k−2). We discuss in the full version of this work how
back pointers can be used to recover the matches in the solution.

4 Our Algorithm for k-MEM Chain

We modify the definition of CHAIN(i, j, k) to now be the longest k-MEM Chain solution
for the suffixes T1[i . .] and T2[j . .]. An O(knm) time algorithm is straightforward with the
following modification to the recurrence at the start of Section 3: CHAIN(i, j, k) = 0 if i > n

or j > m or k = 0, otherwise

CHAIN(i, j, k) = max{CHAIN(i, j + 1, k), CHAIN(i + 1, j, k), Z}

where Z = 0 if T1[i−1] = T2[j−1], else Z = LCE(i, j)+CHAIN(i+LCE(i, j), j+LCE(i, j), k−
1). The case where Z = 0 is included to avoid including non-left-maximal matches. Solving
the recurrence with standard dynamic programming has a time complexity O(knm). In
what follows, we show the modifications needed to the main algorithm in Section 3 to solve
k-MEM Chain in strongly subquadratic time for constant k.

4.1 Modified Pairs of Interest
We first modify the pairs of interest definition for MEMs.

▶ Definition 6 (Modified Leftmost (Rightmost) Pairs of Interest). Let S1 ⊆ [1 . . n] be a set of
starting positions in T1 and S2 ⊆ [1 . . m] be a set of starting positions in T2. A pair of indices
(i, j) is called a leftmost (rightmost resp.) pair of interest of S1 and S2 if i ∈ S1, j ∈ S2, and
there does not exist an:

h ∈ S1 such that h < i (h > i resp.), T1[h − 1] ̸= T2[j − 1] or h = 1 or j = 1, and
LCE(h, j) ≥ LCE(i, j); or an
h ∈ S2 such that h < j (h > j resp.), T1[i − 1] ̸= T2[h − 1] or i = 1 or h = 1, and
LCE(i, h) ≥ LCE(i, j).

We next show how heavy path decomposition can be used to compute a set of size
O((|S1| + |S2|) log(|S1| + |S2|)) containing all modified leftmost (rightmost) pairs of interest
in Õ(|S1| + |S2|) time. These are returned in the form of 2D-points with weights such that
point (x, y) has x value equal to the starting position of the MEM in T1, y value equal to
the starting position of the MEM in T2, and weight equal to the MEM’s length.

The heavy path decomposition of a tree categorizes nodes into heavy and light nodes,
such that the root is always light and exactly one child of every node is heavy, specifically the
child with the heaviest subtree size (number of leaves under it) with ties broken arbitrarily.
The technique was introduced by Sleator and Tarjan [58]. A well-known key property of
heavy path decomposition used by our algorithm for k-MEM Chain is the following:

A. Banerjee, D. Gibney, and S. V. Thankachan 16:11

Figure 2 Node u is a light child of v in the heavy path decomposition of TL.

▶ Observation 7. For any root-to-leaf path in a tree with n vertices, at most log n light nodes
appear on the path.

Let T be the suffix tree of T1$1T2$2. We first find the subset of leaves L of T corresponding
to the specified suffix sets S1 and S2 and obtain the sparse suffix tree, TL. Sparse suffix tree
construction can be done in Õ(|L|) time by adding the LCA of each adjacent pair of sampled
suffixes as an internal node in the sparse suffix tree. We next preprocess TL. Recall that ℓi

represents the ith leaf in T (rather than the ith leaf in TL). For the leaves of these subtrees,
we will use their BWT values to determine left-maximality. We also use an additional value
1 or 2 to indicate which string the corresponding suffix belongs to. Hence, we assign to each
leaf ℓi ∈ L a 2D point (i, BWT[i], b) and weight SA[i] where b = 1 if leaf ℓi corresponds
to a suffix of T1 and b = 2 if leaf ℓi corresponds to a suffix of T2. In the case of leftmost
pairs of interest, we construct a 2D-RmQ over this set of points, and for rightmost pairs of
interest, we construct a 2D-RMQ. Either case requires O(|L| log |L|) time. In O(|L|) time,
we also make it so that every node in TL has a pointer to its leftmost and rightmost leaf in
its subtree. Next, we take a heavy path decomposition of TL.

Assume we are seeking leftmost pairs of interest. For rightmost pairs of interest, the same
procedure is used but with RMQ queries instead. We iterate through the internal nodes of
TL. For each node v, we consider each of its light children. Let u be a light child of v. We
iterate through the leaves in the subtree for u. Let ℓi be a leaf in the subtree for u.

First, assume ℓi corresponds to a suffix of T1. For the union of children of v to the left of u

and the union of children of v to the right of u, we get the leftmost and rightmost leaves. Say
these are ℓx1 ,ℓy1 and ℓx2 , ℓy2 , respectively (see Figure 2). Having a BWT value in either range
[−∞ . . BWT[i] − 1] or [BWT[i] + 1 . . ∞] implies a left-maximal match with the substring
starting at SA[i]. Since we are seeking leftmost pairs of interest, we make the RmQ queries,
RmQ([x1 . . y1] × [−∞ . . BWT[i] − 1] × [2 . . 2]), RmQ([x1 . . y1] × [BWT[i] + 1 . . ∞] × [2 . . 2]),
RmQ([x2 . . y2] × [−∞ . . BWT[i] − 1] × [2 . . 2]), RmQ([x2 . . y2] × [BWT[i] + 1 . . ∞] × [2 . . 2])
and take the point with the minimum weight of those returned (For rightmost pairs of
interest, the point with the maximum weight is taken). Assuming some point (j, BWT[j], 2)
is found, we create the point (SA[i], SA[j]) with weight equal to the string depth of v and
add it to the set of points to output.

If instead ℓi corresponds to a suffix of T2, then we find ℓx1 ,ℓy1 and ℓx2 , ℓy2 as above.
We make the RmQ queries, RmQ([x1 . . y1] × [−∞ . . BWT[i] − 1] × [1 . . 1]), RmQ([x1 . . y1] ×
[BWT[i] + 1 . . ∞] × [1 . . 1]), RmQ([x2 . . y2] × [−∞ . . BWT[i] − 1] × [1 . . 1]), RmQ([x2 . . y2] ×
[BWT[i] + 1 . . ∞] × [1 . . 1]) and take the point with the minimum weight of those returned.
Assuming some point (j, BWT[j], 1) is found, we create the point (SA[j], SA[i]) with weight
equal to the string depth of v and add it to the set of points to output.

Applying the key property of heavy path decomposition that every leaf has at most
log |TL| light ancestors, each leaf gets processed by the above algorithm at most log |TL|

ESA 2024

16:12 Longest Common Substring with Gaps and Related Problems

times. Since each time a leaf is considered requires O(log |L|) time, the total time taken per
leaf is O(log2 |L|) and the total time over the entire sparse suffix tree TL is O(|L| log2 |L|).
However, since each time a leaf is considered at most one point is added to the output set,
the size of the set returned is O(|L| log |L|).

Further Modifications. For space considerations, details of the further modifications to the
algorithm from Section 3 are moved to the full version of this work.

5 Our Algorithm for Pattern Matching with Gaps

We solve Problem 4 in this section. Define CHAIN(i, j, k) to be equal to the leftmost index
i′
h such that there exists a gapped match of P [j . .] in T [i . .] ending at i′

h or ∞ if no such
occurrence exists. Formally, i′

h is the smallest i′
h such that there exists T [i1 . . i′

1], T [i2 . . i′
2],

. . ., T [ih . . i′
h] where h ≤ k, T [i1 . . i′

1] · T [i2 . . i′
2] · . . . · T [ih . . i′

h] = P [j . .], and i1 ≥ i. An
O(knm) time solution is achieved by solving the following recurrence:

CHAIN(i, j, k) = min{CHAIN(i + 1, j, k), CHAIN(i + LCE(i, j), j + LCE(i, j), k − 1)}

The final solution is obtained by taking the i ∈ [1 . . n] that minimizes CHAIN(i, 1, k) − i. The
matches in the solution can be found with back pointers. We now show how our techniques
provide a strongly subquadratic time algorithm for constant k.

5.1 Construction
For f = 1, using a suffix tree of T $1P $2, we can locate the leftmost occurrence of P [j . .] in the
suffix T [i . .] in Õ(1) time after Õ(n) time preprocessing. Hence, we can answer CHAIN(i, j, 1)
queries in Õ(1) time. For f ∈ [2 . . k − 1], we have the following construction of DS(f): we
compute for every j ∈ [2 . . m] and i ∈ [1 . . n] where i is a multiple of bf , CHAIN(i, j, f) by
taking the minimum of CHAINs(i, j, f) and CHAINl(i, j, f), which are found as follows.

Computing CHAINs. For h ∈ [1 . . df], we find the leftmost right-maximal match of
P [j . . j + h) in the suffix T [i . .] (if it exists). If such a match exists, say starting at position
x in T , do a query DS(f − 1) for CHAIN(x + h, j + h, f − 1). Let wh be equal to the query
result if the match exists and ∞ otherwise. We make CHAINs(i, j, f) = min1≤h≤df

wh. The
total number of queries is O(nmdf /bf), which is O(nm/

√
bf).

Computing CHAINl. We utilize a df -cover D of T$1P$2. There are O(nm/df) anchor
pairs a1 ∈ D ∩ [1 . . n] and a2 ∈ D ∩ [n + 2 . . n + m + 1]. We iterate over all of these pairs.
For a given pair a1 and a′

2 = a2 − (n + 1), we compute LCE(a1, a′
2) and LCE(a1, a′

2).
For a given MEM found this way, say T [x . . x + h) and P [y . . y + h), we use DS(f − 1) to

compute CHAIN(x + h, y + h, f − 1). Observe that for a given i and j,
1. If j < y, or j ≥ y + h, or y ≤ j < y + h and i − x > j − y, then no portion of exact match

T [x . . x + h) and P [y . . y + h) is included in the first match of a solution.
2. If y ≤ j < y+h, and i−x ≤ j−y, then the portion of the match including P [j . . y+h) can

potentially be used as the first match in the solution with value CHAIN(x+h, y +h, f −1).

As such, we create the point (y, y + h, x − y) with weight CHAIN(x + h, y + h, f − 1).
Once all such points are created, they are stored in an RmQ structure. Now for a given i

and j we make the query [1 . . j] × [j + 1 . . m] × [i − j . . ∞] and let CHAINl(i, j, f) be equal to
the weight of the resulting point or ∞ if no point exists. The total number of queries done
to DS(f − 1) is O(nm/df), which is O(nm/

√
bf).

A. Banerjee, D. Gibney, and S. V. Thankachan 16:13

5.2 Querying

To find CHAIN(i, j, f) for an arbitrary i ∈ [1 . . n] and j ∈ [2 . . m], we let i′ = bf ⌈i/bf ⌉.
For each h ∈ [i . . i′) we compute LCE(h, i) and, using DS(f − 1), the value CHAIN(h +
LCE(h, i), j + LCE(h, j), f − 1). We take the minimum of these values and the precomputed
value CHAIN(i′, j, f). The total number of queries to DS(f − 1) is O(bf).

5.3 Analysis and Obtaining the Final Answer

The analysis is the same as in Section 3.2.4. We have for f ≥ 2, S(f) = S(f −1)+O(nm/bf),
C(f) = C(f − 1) + Q(f − 1) · Õ(nm/

√
bf), Q(f) = Q(f − 1) · O(bf). We let bf = ⌈mc3f ⌉

with c = 2/3k. This makes C(k − 1) = Õ(nm1−9c/2) and Q(k − 1) = O(mc(32+...+3k−1)) =
O(mc(3k−9)/2).

To obtain the final answer, for each i ∈ [1 . . n], we compute LCE(i, 1). For every i where
LCE(i, 1) ≥ 1, we use DS(k − 1) to obtain CHAIN(i + LCE(i, 1), 1 + LCE(i, 1), k − 1). A
minimum is take over all resulting values. The total time is C(k − 1) + n · Q(k − 1) =
Õ(nm1−9c/2 + nmc(3k−9)/2). With c = 2/3k, this yields an overall time complexity of
Õ(nm1−1/3k−2). Back pointers can be used to obtain the actual solution.

6 Open Problems and Discussion

Another interesting variant of the Pattern Matching with Gaps problem is the following:

▶ Problem 5 (Pattern Matching with (Min-Max) Gap). Given a text T [1 . . n] and pattern
P [1 . . m] and parameter k, find substrings (if they exist) T [i1 . . i′

1], T [i2 . . i′
2], . . ., T [ih . . i′

h]
such that i′

1 < i2, . . ., i′
h−1 < ih, T [i1 . . i′

1] · T [i2 . . i′
2] · . . . · T [ih . . i′

h] = P , h ≤ k, and
max2≤s≤h{is − i′

s−1} is minimized.

This can be solved with dynamic programming in time Õ(knm). We use a threshold
value g. We now define CHAIN(i, j, k) equal to the smallest i1 ≥ i such that there exists
T [i1 . . i′

1] · T [i2 . . i′
2] · . . . · T [ih . . i′

h] = P [j . .] where i′
1 < i2, and max2≤s≤h{is − i′

s−1} ≤
g. Then, CHAIN(i, j, k) = min{CHAIN(i + 1, j, k), Z} where if LCE(i, j) = m − j + 1 or
CHAIN(i + LCE(i, j), j + LCE(i, j), k − 1) − (i + LCE(i, j) − 1) ≤ g then Z = i, otherwise
Z = ∞. With logarithmic factor overhead we perform binary search of the g value to find
the smallest g such that CHAIN(i, 1, k) ̸= ∞ for some i.

We leave open the problem of developing a strongly subquadratic time solution for
this problem. One apparent difficulty in utilizing the same techniques that were used in
Problem 4 is that, when computing the analogous CHAINs values, it is no longer sufficient to
only consider the leftmost occurrence in T [i . .] of a fixed fragment P [j . . j + h). At the same
time, picking the rightmost occurrence of P [j . . j + h) that is at most g from i may result in
eliminating potential solutions for the remaining suffix of P .

Future Directions. We leave open whether this time complexity can be improved significantly
and whether a Ω(nm) conditional lower bound can be established for small k, e.g., k =
polylog(n). Such a lower bound would make an O(kn) time algorithm (like that known for
LCS where k is the length of the subsequence [35]) impossible under the applied hardness
assumption. The current SETH-based conditional lower bounds for LCS use Θ̃(n) gaps
between elements of the subsequence. The SETH-based lower bound k-mismatch LCS for
k = ω(log n) of Kociumaka et al. [39] is also difficult to adapt without imposing some
additional restrictions on the problem, such as a constraint on the allowed gap length.

ESA 2024

16:14 Longest Common Substring with Gaps and Related Problems

References
1 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.

Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 375–388. ACM, 2016. doi:10.1145/2897518.2897653.

2 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 218–230. SIAM, 2015. doi:10.1137/1.9781611973730.17.

3 Mohamed I Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Coconut: an efficient system
for the comparison and analysis of genomes. BMC bioinformatics, 9(1):476, 2008. doi:
10.1186/1471-2105-9-476.

4 Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. Multiple genome alignment: Chaining
algorithms revisited. In Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore,
editors, Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia,
Michocán, Mexico, June 25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer
Science, pages 1–16. Springer, 2003. doi:10.1007/3-540-44888-8_1.

5 Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. Chaining algorithms for multiple genome
comparison. J. Discrete Algorithms, 3(2-4):321–341, 2005. doi:10.1016/j.jda.2004.08.011.

6 Srinivas Aluru, Alberto Apostolico, and Sharma V. Thankachan. Efficient alignment free
sequence comparison with bounded mismatches. In Teresa M. Przytycka, editor, Research in
Computational Molecular Biology - 19th Annual International Conference, RECOMB 2015,
Warsaw, Poland, April 12-15, 2015, Proceedings, volume 9029 of Lecture Notes in Computer
Science, pages 1–12. Springer, 2015. doi:10.1007/978-3-319-16706-0_1.

7 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
Dynamic and internal longest common substring. Algorithmica, 82(12):3707–3743, 2020.
doi:10.1007/s00453-020-00744-0.

8 Alberto Apostolico and Mikhail J. Atallah. Compact recognizers of episode sequences. Inf.
Comput., 174(2):180–192, 2002. doi:10.1006/INCO.2002.3143.

9 Kyriakos Axiotis and Christos Tzamos. Capacitated dynamic programming: Faster knapsack
and graph algorithms. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 19:1–19:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.19.

10 Maxim A. Babenko and Tatiana Starikovskaya. Computing the longest common substring with
one mismatch. Probl. Inf. Transm., 47(1):28–33, 2011. doi:10.1134/S0032946011010030.

11 Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree sparsity
in nearly-linear time. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 2215–2229. SIAM, 2017. doi:10.1137/1.9781611974782.145.

12 Johannes Bader, Simon Gog, and Matthias Petri. Practical variable length gap pattern
matching. In Andrew V. Goldberg and Alexander S. Kulikov, editors, Experimental Algorithms
- 15th International Symposium, SEA 2016, St. Petersburg, Russia, June 5-8, 2016, Proceedings,
volume 9685 of Lecture Notes in Computer Science, pages 1–16. Springer, 2016. doi:10.1007/
978-3-319-38851-9_1.

13 Philip Bille, Inge Li Gørtz, Shay Mozes, Teresa Anna Steiner, and Oren Weimann. The
fine-grained complexity of episode matching. In Hideo Bannai and Jan Holub, editors, 33rd
Annual Symposium on Combinatorial Pattern Matching, CPM 2022, June 27-29, 2022, Prague,
Czech Republic, volume 223 of LIPIcs, pages 4:1–4:12. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPICS.CPM.2022.4.

https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1137/1.9781611973730.17
https://doi.org/10.1186/1471-2105-9-476
https://doi.org/10.1186/1471-2105-9-476
https://doi.org/10.1007/3-540-44888-8_1
https://doi.org/10.1016/j.jda.2004.08.011
https://doi.org/10.1007/978-3-319-16706-0_1
https://doi.org/10.1007/s00453-020-00744-0
https://doi.org/10.1006/INCO.2002.3143
https://doi.org/10.4230/LIPIcs.ICALP.2019.19
https://doi.org/10.1134/S0032946011010030
https://doi.org/10.1137/1.9781611974782.145
https://doi.org/10.1007/978-3-319-38851-9_1
https://doi.org/10.1007/978-3-319-38851-9_1
https://doi.org/10.4230/LIPICS.CPM.2022.4

A. Banerjee, D. Gibney, and S. V. Thankachan 16:15

14 Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and David Kofoed Wind. String matching with
variable length gaps. Theor. Comput. Sci., 443:25–34, 2012. doi:10.1016/J.TCS.2012.03.029.

15 Philip Bille and Mikkel Thorup. Regular expression matching with multi-strings and intervals.
In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1297–1308.
SIAM, 2010. doi:10.1137/1.9781611973075.104.

16 Luc Boasson, Patrick Cégielski, Irène Guessarian, and Yuri V. Matiyasevich. Window-
accumulated subsequence matching problem is linear. Ann. Pure Appl. Log., 113(1-3):59–80,
2001. doi:10.1016/S0168-0072(01)00051-3.

17 Nick Bray, Inna Dubchak, and Lior Pachter. Avid: A global alignment program. Genome
research, 13(1):97–102, 2003. doi:10.1101/gr.789803.

18 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20
October, 2015, pages 79–97. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.15.

19 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 1216–1235. SIAM, 2018. doi:10.1137/1.9781611975031.79.

20 Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construction and checking.
In Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors, Combinatorial
Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocán, Mexico, June
25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer Science, pages 55–69.
Springer, 2003. doi:10.1007/3-540-44888-8_5.

21 Michael Burrows, D J Wheeler D I G I T A L, Robert W. Taylor, David J. Wheeler, and
David Wheeler. A block-sorting lossless data compression algorithm. In , 1994. URL:
https://api.semanticscholar.org/CorpusID:2167441.

22 Manuel Cáceres, Simon J. Puglisi, and Bella Zhukova. Fast indexes for gapped pattern matching.
In Alexander Chatzigeorgiou, Riccardo Dondi, Herodotos Herodotou, Christos A. Kapoutsis,
Yannis Manolopoulos, George A. Papadopoulos, and Florian Sikora, editors, SOFSEM 2020:
Theory and Practice of Computer Science - 46th International Conference on Current Trends
in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020,
Proceedings, volume 12011 of Lecture Notes in Computer Science, pages 493–504. Springer,
2020. doi:10.1007/978-3-030-38919-2_40.

23 Patrick Cégielski, Irène Guessarian, and Yuri V. Matiyasevich. Multiple serial episodes
matching. Inf. Process. Lett., 98(6):211–218, 2006. doi:10.1016/J.IPL.2006.02.008.

24 Mark J Chaisson and Glenn Tesler. Mapping single molecule sequencing reads using basic local
alignment with successive refinement (blasr): application and theory. BMC bioinformatics,
13(1):238, 2012. doi:10.1186/1471-2105-13-238.

25 Panagiotis Charalampopoulos, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Linear-time algorithm
for long LCF with k mismatches. In Gonzalo Navarro, David Sankoff, and Binhai Zhu, editors,
Annual Symposium on Combinatorial Pattern Matching, CPM 2018, July 2-4, 2018 - Qingdao,
China, volume 105 of LIPIcs, pages 23:1–23:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.CPM.2018.23.

26 Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, and Jakub Radoszewski.
Faster algorithms for longest common substring. In Petra Mutzel, Rasmus Pagh, and Grzegorz
Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8,
2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 30:1–30:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ESA.2021.30.

27 Charles J. Colbourn and Alan C. H. Ling. Quorums from difference covers. Inf. Process. Lett.,
75(1-2):9–12, 2000. doi:10.1016/S0020-0190(00)00080-6.

ESA 2024

https://doi.org/10.1016/J.TCS.2012.03.029
https://doi.org/10.1137/1.9781611973075.104
https://doi.org/10.1016/S0168-0072(01)00051-3
https://doi.org/10.1101/gr.789803
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1137/1.9781611975031.79
https://doi.org/10.1007/3-540-44888-8_5
https://api.semanticscholar.org/CorpusID:2167441
https://doi.org/10.1007/978-3-030-38919-2_40
https://doi.org/10.1016/J.IPL.2006.02.008
https://doi.org/10.1186/1471-2105-13-238
https://doi.org/10.4230/LIPIcs.CPM.2018.23
https://doi.org/10.4230/LIPICS.ESA.2021.30
https://doi.org/10.1016/S0020-0190(00)00080-6

16:16 Longest Common Substring with Gaps and Related Problems

28 Maxime Crochemore, Costas S. Iliopoulos, Christos Makris, Wojciech Rytter, Athanasios K.
Tsakalidis, and T. Tsichlas. Approximate string matching with gaps. Nord. J. Comput.,
9(1):54–65, 2002.

29 Gautam Das, Rudolf Fleischer, Leszek Gasieniec, Dimitrios Gunopulos, and Juha Kärkkäinen.
Episode matching. In Alberto Apostolico and Jotun Hein, editors, Combinatorial Pattern
Matching, 8th Annual Symposium, CPM 97, Aarhus, Denmark, June 30 - July 2, 1997,
Proceedings, volume 1264 of Lecture Notes in Computer Science, pages 12–27. Springer, 1997.
doi:10.1007/3-540-63220-4_46.

30 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: https://www.
worldcat.org/oclc/227584184.

31 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 137–143. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.
646102.

32 Tomás Flouri, Emanuele Giaquinta, Kassian Kobert, and Esko Ukkonen. Longest common
substrings with k mismatches. Inf. Process. Lett., 115(6-8):643–647, 2015. doi:10.1016/J.
IPL.2015.03.006.

33 Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Walen. Faster longest
common extension queries in strings over general alphabets. In Roberto Grossi and Moshe
Lewenstein, editors, 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016,
June 27-29, 2016, Tel Aviv, Israel, volume 54 of LIPIcs, pages 5:1–5:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CPM.2016.5.

34 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

35 Daniel S Hirschberg. Algorithms for the longest common subsequence problem. Journal of the
ACM (JACM), 24(4):664–675, 1977.

36 James W Hunt and Thomas G Szymanski. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20(5):350–353, 1977.

37 Chirag Jain, Daniel Gibney, and Sharma V. Thankachan. Co-linear chaining with overlaps
and gap costs. In Itsik Pe’er, editor, Research in Computational Molecular Biology - 26th
Annual International Conference, RECOMB 2022, San Diego, CA, USA, May 22-25, 2022,
Proceedings, volume 13278 of Lecture Notes in Computer Science, pages 246–262. Springer,
2022. doi:10.1007/978-3-031-04749-7_15.

38 Chirag Jain, Arang Rhie, Nancy F Hansen, Sergey Koren, and Adam M Phillippy. Long-read
mapping to repetitive reference sequences using winnowmap2. Nature Methods, pages 1–6,
2022. doi:10.1038/s41592-022-01457-8.

39 Tomasz Kociumaka, Jakub Radoszewski, and Tatiana Starikovskaya. Publisher correction:
Longest common substring with approximately k mismatches. Algorithmica, 85(10):3323, 2023.
doi:10.1007/S00453-023-01119-X.

40 Stefan Kurtz et al. Versatile and open software for comparing large genomes. Genome biology,
5(2):R12, 2004. doi:10.1186/gb-2004-5-2-r12.

41 Moshe Lewenstein. Indexing with gaps. In Roberto Grossi, Fabrizio Sebastiani, and Fabrizio
Silvestri, editors, String Processing and Information Retrieval, 18th International Symposium,
SPIRE 2011, Pisa, Italy, October 17-21, 2011. Proceedings, volume 7024 of Lecture Notes in
Computer Science, pages 135–143. Springer, 2011. doi:10.1007/978-3-642-24583-1_14.

42 Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–
3100, 2018. doi:10.1093/bioinformatics/bty191.

43 Tiantian Li, Haitao Jiang, Xuefeng Cui, Haodi Feng, and Daming Zhu. Longest order-consistent
and number-limited common substrings. Available at SSRN 4724959, 2024.

44 Tiantian Li, Daming Zhu, Haitao Jiang, Haodi Feng, and Xuefeng Cui. Longest k-tuple
common sub-strings. In Donald A. Adjeroh, Qi Long, Xinghua Mindy Shi, Fei Guo, Xiaohua

https://doi.org/10.1007/3-540-63220-4_46
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1016/J.IPL.2015.03.006
https://doi.org/10.1016/J.IPL.2015.03.006
https://doi.org/10.4230/LIPIcs.CPM.2016.5
https://doi.org/10.1137/0213024
https://doi.org/10.1007/978-3-031-04749-7_15
https://doi.org/10.1038/s41592-022-01457-8
https://doi.org/10.1007/S00453-023-01119-X
https://doi.org/10.1186/gb-2004-5-2-r12
https://doi.org/10.1007/978-3-642-24583-1_14
https://doi.org/10.1093/bioinformatics/bty191

A. Banerjee, D. Gibney, and S. V. Thankachan 16:17

Hu, Srinivas Aluru, Giri Narasimhan, Jianxin Wang, Mingon Kang, Ananda Mondal, and
Jin Liu, editors, IEEE International Conference on Bioinformatics and Biomedicine, BIBM
2022, Las Vegas, NV, USA, December 6-8, 2022, pages 63–66. IEEE, 2022. doi:10.1109/
BIBM55620.2022.9995199.

45 Mamoru Maekawa. A square root N algorithm for mutual exclusion in decentralized systems.
ACM Trans. Comput. Syst., 3(2):145–159, 1985.

46 Veli Mäkinen, Gonzalo Navarro, and Esko Ukkonen. Transposition invariant string matching.
J. Algorithms, 56(2):124–153, 2005. doi:10.1016/J.JALGOR.2004.07.008.

47 Veli Mäkinen and Kristoffer Sahlin. Chaining with overlaps revisited. In 31st Annual Symposium
on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen, Denmark,
volume 161, pages 25:1–25:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CPM.2020.25.

48 Guillaume Marçais, Arthur L Delcher, et al. Mummer4: A fast and versatile genome alignment
system. PLoS computational biology, 14(1):e1005944, 2018. doi:10.1371/journal.pcbi.
1005944.

49 Michele Morgante, Alberto Policriti, Nicola Vitacolonna, and Andrea Zuccolo. Structured
motifs search. J. Comput. Biol., 12(8):1065–1082, 2005. doi:10.1089/CMB.2005.12.1065.

50 Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1(2):251–
266, 1986. doi:10.1007/BF01840446.

51 Gene Myers and Webb Miller. Chaining multiple-alignment fragments in sub-quadratic time.
In Kenneth L. Clarkson, editor, Proceedings of the Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, 22-24 January 1995. San Francisco, California, USA, pages 38–47.
ACM/SIAM, 1995. URL: http://dl.acm.org/citation.cfm?id=313651.313661.

52 Christian Otto, Steve Hoffmann, Jan Gorodkin, and Peter F Stadler. Fast local fragment
chaining using sum-of-pair gap costs. Algorithms for Molecular Biology, 6(1):4, 2011. doi:
10.1186/1748-7188-6-4.

53 M. Sohel Rahman, Costas S. Iliopoulos, Inbok Lee, Manal Mohamed, and William F. Smyth.
Finding patterns with variable length gaps or don’t cares. In Danny Z. Chen and D. T. Lee,
editors, Computing and Combinatorics, 12th Annual International Conference, COCOON
2006, Taipei, Taiwan, August 15-18, 2006, Proceedings, volume 4112 of Lecture Notes in
Computer Science, pages 146–155. Springer, 2006. doi:10.1007/11809678_17.

54 Jingwen Ren and Mark JP Chaisson. lra: A long read aligner for sequences and contigs. PLOS
Computational Biology, 17(6):e1009078, 2021. doi:10.1371/journal.pcbi.1009078.

55 Kristoffer Sahlin and Veli Mäkinen. Accurate spliced alignment of long RNA sequencing reads.
Bioinformatics, 37(24):4643–4651, 2021. doi:10.1093/bioinformatics/btab540.

56 Fritz J Sedlazeck et al. Accurate detection of complex structural variations using single-molecule
sequencing. Nature methods, 15(6):461–468, 2018. doi:10.1038/s41592-018-0001-7.

57 Tetsuo Shibuya and Igor Kurochkin. Match chaining algorithms for cDNA mapping. In
Algorithms in Bioinformatics, Third International Workshop, WABI 2003, Budapest, Hungary,
September 15-20, 2003, Proceedings, pages 462–475, 2003. doi:10.1007/978-3-540-39763-2_
33.

58 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

59 Sharma V. Thankachan, Chaitanya Aluru, Sriram P. Chockalingam, and Srinivas Aluru.
Algorithmic framework for approximate matching under bounded edits with applications to
sequence analysis. In Benjamin J. Raphael, editor, Research in Computational Molecular
Biology - 22nd Annual International Conference, RECOMB 2018, Paris, France, April 21-
24, 2018, Proceedings, volume 10812 of Lecture Notes in Computer Science, pages 211–224.
Springer, 2018. doi:10.1007/978-3-319-89929-9_14.

60 Sharma V. Thankachan, Alberto Apostolico, and Srinivas Aluru. A provably efficient algorithm
for the k-mismatch average common substring problem. J. Comput. Biol., 23(6):472–482, 2016.
doi:10.1089/cmb.2015.0235.

ESA 2024

https://doi.org/10.1109/BIBM55620.2022.9995199
https://doi.org/10.1109/BIBM55620.2022.9995199
https://doi.org/10.1016/J.JALGOR.2004.07.008
https://doi.org/10.4230/LIPIcs.CPM.2020.25
https://doi.org/10.1371/journal.pcbi.1005944
https://doi.org/10.1371/journal.pcbi.1005944
https://doi.org/10.1089/CMB.2005.12.1065
https://doi.org/10.1007/BF01840446
http://dl.acm.org/citation.cfm?id=313651.313661
https://doi.org/10.1186/1748-7188-6-4
https://doi.org/10.1186/1748-7188-6-4
https://doi.org/10.1007/11809678_17
https://doi.org/10.1371/journal.pcbi.1009078
https://doi.org/10.1093/bioinformatics/btab540
https://doi.org/10.1038/s41592-018-0001-7
https://doi.org/10.1007/978-3-540-39763-2_33
https://doi.org/10.1007/978-3-540-39763-2_33
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1007/978-3-319-89929-9_14
https://doi.org/10.1089/cmb.2015.0235

16:18 Longest Common Substring with Gaps and Related Problems

61 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and
Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE Computer
Society, 1973. doi:10.1109/SWAT.1973.13.

https://doi.org/10.1109/SWAT.1973.13

	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Preliminaries
	3 Our Algorithm for k-LCFg
	3.1 Algorithm Preliminaries
	3.2 Main Algorithm
	3.2.1 The Structure
	3.2.2 Construction
	3.2.3 Querying
	3.2.4 Solving the Recurrence
	3.2.5 Obtaining the Final Answer

	4 Our Algorithm for k-MEM Chain
	4.1 Modified Pairs of Interest

	5 Our Algorithm for Pattern Matching with Gaps
	5.1 Construction
	5.2 Querying
	5.3 Analysis and Obtaining the Final Answer

	6 Open Problems and Discussion

