
Pattern Matching with Mismatches and Wildcards
Gabriel Bathie #

DIENS, École normale supérieure de Paris, PSL Research University, France
LaBRI, Université de Bordeaux, Talence, France

Panagiotis Charalampopoulos #

Birkbeck, University of London, UK

Tatiana Starikovskaya #

DIENS, École normale supérieure de Paris, PSL Research University, France

Abstract
In this work, we address the problem of approximate pattern matching with wildcards. Given a
pattern P of length m containing D wildcards, a text T of length n, and an integer k, our objective
is to identify all fragments of T within Hamming distance k from P .

Our primary contribution is an algorithm with runtime O(n + (D + k)(G + k) · n/m) for this
problem. Here, G ≤ D represents the number of maximal wildcard fragments in P . We derive
this algorithm by elaborating in a non-trivial way on the ideas presented by [Charalampopoulos,
Kociumaka, and Wellnitz, FOCS’20] for pattern matching with mismatches (without wildcards).
Our algorithm improves over the state of the art when D, G, and k are small relative to n. For
instance, if m = n/2, k = G = n2/5, and D = n3/5, our algorithm operates in O(n) time, surpassing
the Ω(n6/5) time requirement of all previously known algorithms.

In the case of exact pattern matching with wildcards (k = 0), we present a much simpler algorithm
with runtime O(n + DG · n/m) that clearly illustrates our main technical innovation: the utilisation
of positions of P that do not belong to any fragment of P with a density of wildcards much larger
than D/m as anchors for the sought (approximate) occurrences. Notably, our algorithm outperforms
the best-known O(n log m)-time FFT-based algorithms of [Cole and Hariharan, STOC’02] and
[Clifford and Clifford, IPL’04] if DG = o(m log m).

We complement our algorithmic results with a structural characterization of the k-mismatch
occurrences of P . We demonstrate that in a text of length O(m), these occurrences can be partitioned
into O((D + k)(G + k)) arithmetic progressions. Additionally, we construct an infinite family of
examples with Ω((D + k)k) arithmetic progressions of occurrences, leveraging a combinatorial result
on progression-free sets [Elkin, SODA’10].
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1 Introduction

Pattern matching is one of the most fundamental algorithmic problems on strings. Given
a text T of length n and a pattern P of length m, both over an alphabet Σ, the goal is to
compute all occurrences of P in T . This problem admits an efficient linear-time solution, for
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20:2 Pattern Matching with Mismatches and Wildcards

example using the seminal algorithm of Knuth, Morris, and Pratt [30]. However, looking
for exact matches of P in T can be too restrictive for some applications, for example when
working with potentially corrupted data, when accounting for mutations in genomic data,
or when searching for an incomplete pattern. There are several ways to model and to work
with corrupt or partial textual data for the purposes of pattern matching.

A natural and well-studied problem is that of computing fragments of the text that are
close to the pattern with respect to some distance metric. One of the most commonly used
such metrics is the Hamming distance. Abrahamson and Kosaraju [1, 32] independently
developed an O(n

√
m log m)-time algorithm that computes the Hamming distance between

the pattern and every m-length substring of the text using convolutions via the Fast Fourier
Transform (FFT). This complexity has only been recently improved with the state of the
art being the randomised O(n

√
m)-time algorithm of Chan, Jin, Vassilevska Williams, and

Xu [9] and the deterministic O(n
√

m log log m)-time algorithm of Jin and Xu [28]. In many
applications, one is interested in computing substrings of the text that are close to the pattern
instead of computing the distance to every substring. In this case, an integer threshold k

is given as part of the input and the goal is to compute fragments of T that have at most
k mismatches with P . Such a fragment is called a k-mismatch occurrence of P in T . The
state-of-the-art for this problem are the O(n

√
k log k)-time algorithm of Amir, Lewenstein,

and Porat [3], the O(n + (n/m) · k2)-time algorithm of Chan, Golan, Kociumaka, Kopelowitz,
and Porat [8], and the O(n+kn/

√
m)-time algorithm of Chan et al. [9] that provides a smooth

trade-off between the two aforementioned solutions, improving the bound for some range of
parameters. Deterministic counterparts of the last two algorithms (which are randomised) at
the expense of extra polylogarithmic factors were presented in [15, 24, 11].

The structure of the set of k-mismatch occurrences of P in T admits an insightful
characterisation, shown by Charalampopoulos, Kociumaka, and Wellnitz [11] who tightened
the result of Bringmann, Künnemann, and Wellnitz [7]: either P has O(k · n/m) k-mismatch
occurrences in T or P is at Hamming distance less than 2k from a string with period
q = O(m/k); further, in the periodic case, the starting positions of the k-mismatch occurrences
of P in T can be partitioned into O(k2 · n/m) arithmetic progressions with difference q. This
characterisation can be exploited towards obtaining efficient algorithms in settings other
than the standard one, e.g., in the setting where both P and T are given in compressed
form [11], and, in combination with other ideas and techniques, in the streaming setting [31]
and in the quantum setting [27].

In the case when the positions of the corrupt characters in the two strings are known
in advance, one can use a more adaptive approach, by placing a wildcard ♦♢ ̸∈ Σ, a special
character that matches any character in Σ ∪ {♦♢}, in each of these positions, and then
performing exact pattern matching. Already in 1974, Fischer and Paterson [36] presented an
O(n log m log σ)-time algorithm for the pattern matching problem with wildcards. Subsequent
works by Indyk [26], Kalai [29], and Cole and Hariharan [17] culminated in an O(n log m)-
time deterministic algorithm [17]. A few years later, Clifford and Clifford [12] presented a
very elegant algorithm with the same complexities. All the above solutions are based on fast
convolutions via the FFT.

Unsurprisingly, the pattern matching problem in the case where we both have wildcards
and allow for mismatches has also received significant attention. Conceptually, it covers the
case where some of the corrupt positions are known, but not all of them. We denote by D

the total number of wildcards in P and T , and by G the number of maximal fragments in P

and T all of whose characters are wildcards. A summary of known results for the considered
problem is provided in Table 1. Note that, as discussed below, any algorithm for the pattern
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Table 1 Results on pattern matching with wildcards under the Hamming distance.

Time complexity ♦♢ in Reference

O(nk2 log2 m)

P and T

[14]

O(n(k + log m log k) log n) [14]

O(nk polylog m) [13, 14, 37]

O(n
√

m log m) follows from [1, 32], cf. [14]

O(n
√

m − D log m) [3]

O(n 3
√

mk log2 m) one of P or T [16]

O(n
√

k log m + n · min{ 3
√

Gk log2 m,
√

G log m}) P [38]

O(n + (n/m)(D + k)(G + k)) P this work

matching problem with at most k mismatches (without wildcards) can be applied to the
setting where we have wildcards only in the pattern at the expense of allowing for k + D

mismatches instead of k (and hence replacing any factor of k in the complexity by a factor
k + D). We chose to not include the implied results in the table to avoid clutter.

Note that, in practice, G may be much smaller than D. For example, DNA sequences
have biologically important loci, which are characterised using the notion of structured
motifs [35]: sequences of alternating conserved and non-conserved blocks. Conserved blocks
are ones which are identical across intra- or inter-species occurrences of the structured
motif, while non-conserved ones are not known to have biological significance and can vary
significantly across such occurrences. Non-conserved blocks can be hence modelled with
blocks of wildcards as in [34]. In this case, evidently, we have G being much smaller than D.
This feature has been used in the literature before, e.g., for the problem of answering longest
common compatible prefix queries over a string with wildcards. Crochemore et al. [19] showed
a O(nG)-time construction algorithm for a data structure that is capable of answering such
queries in O(1) time, while the previously best known construction time was O(nD) [6].

In several applications, it is sufficient to only account for wildcards in one of P and T :
in the application we just discussed, the text is a fixed DNA sequence, whereas the sought
pattern, the structured motif, is modelled as a string with wildcards. In such cases, one can
obtain more efficient solutions than those for the general case where both P and T have
wildcards, such as the ones presented in [16, 38] and the one we present here.

Multi-framework algorithms with the PILLAR model. We describe our algorithms in the
PILLAR model, introduced by Charalampopoulos et al. [11]. In this model, we account for
the number of calls to a small set of versatile primitive operations on strings, called PILLAR
operations, such as longest common extension queries or internal pattern matching queries,
plus any extra time required to perform usual word RAM operations. The PILLAR model
allows for a unified approach across several settings, due to known efficient implementations
of PILLAR operations. These settings include the standard word RAM model, the compressed
setting, where the strings are compressed as straight-line programs, the dynamic setting [23],
and the quantum setting. Therefore, in essence, we provide meta-algorithms, that can be
combined with efficient PILLAR implementations to give efficient algorithms for a variety of
settings.

ESA 2024



20:4 Pattern Matching with Mismatches and Wildcards

The standard trick. For reasons related to the periodic structure of strings, it is often
convenient to assume that the length of the text is at most 3m/2, where m is the length
of the pattern. This does not pose any actual restrictions as one can cover T with O(n/m)
fragments, each of length 3m/2 (except maybe the last one) such that each two consecutive
fragments overlap on m − 1 positions. Then, any occurrence of P in T is contained in exactly
one of these fragments. Thus, an algorithm with runtime C(m) for a pattern of length m and
a text of length at most 3m/2, readily implies an algorithm with runtime O(C(m) · n/m) for
texts of length n, as one can run O(n/m) separate instances and aggregate the results.

Reduction to pattern matching with mismatches. The problem of k-mismatch pattern
matching with D wildcards can be straightforwardly reduced to (D + k)-mismatch pattern
matching in solid strings, i.e., strings without wildcards. In what follows we consider solid
texts. Given the pattern P , construct the string P# obtained by replacing every wildcard in P

with a new character # /∈ Σ. Observe that a pattern P with D wildcards has a k-mismatch
occurrence at a position i of a solid text T if and only if P# has a (D + k)-mismatch
occurrence at that position.

In [11], the authors present an efficient algorithm for the d-mismatch pattern matching
problem for solid strings in the PILLAR model.

▶ Theorem 1.1 ([11, Main Theorem 8]). Let S and T be solid strings of respective lengths m

and n ≤ 3m/2. We can compute a representation of the d-mismatch occurrences of S in T

using O(d2 log log d) time plus O(d2) PILLAR operations.

Applying Theorem 1.1 with S = P# and d = D + k, we obtain an algorithm for k-mismatch
pattern matching with D wildcards that runs in Õ((D + k)2) time in the PILLAR model.1

Our results. We provide a more fine-grained result, replacing one D factor with a G factor.
We also make an analogous improvement over the structural result for the set of k-mismatch
occurrences obtained via the reduction to (D + k)-mismatch pattern matching. Our main
result can be formally stated as follows.

▶ Theorem 1.2. Let P be a pattern of length m with D wildcards arranged in G groups, T be
a solid text of length n ≤ 3m/2, and k be a positive integer. We can compute a representation
of the k-mismatch occurrences of P in T as O((D+k)G) arithmetic progressions with common
difference and O((D + k)k) additional occurrences using O((D + k) · (G + k) log log(D + k))
time plus O((D + k) · (G + k)) PILLAR operations.

In the usual word RAM model, by using known implementations of the PILLAR operations
with O(n) preprocessing time and O(1) operation time, using the “standard trick”, and
observing that the loglogarithmic factor can be avoided at the cost of O(n) extra time,
we obtain an algorithm with runtime O(n + (n/m)(D + k)(G + k)) for texts of arbitrary
length n. The full version of this work details the implementation of our algorithm in other
settings, such as the dynamic and compressed settings. For example, given a solid text T

and a pattern P with D wildcards represented as straight-line programs of sizes N and M

respectively, we can compute the number of k-mismatch occurrences of P in T in time
Õ(M + N · (D + k)(G + k)), without having to uncompress P and T .

We complement our structural result with a lower bound on the number of arithmetic
progressions of occurrences of a pattern with mismatches and wildcards (Theorem 5.1), based
on a neat construction that employs large sets that do not contain any arithmetic progression

1 In this work, the notation Õ(·) suppresses factors polylogarithmic in the length of the input strings.
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of size 3 [21, 5, 20]. Informally, we show that there exist a pattern P and a text T of length
at most 3|P |/2 such that the set of k-mismatch occurrences of P in T cannot be covered with
less than Ω((D + k) · (k + 1)) arithmetic progressions. This implies, in particular, a lower
bound of Ω(D) on the number of arithmetic progressions of exact occurrences for a pattern
with D wildcards and a lower bound of Ω(k2) on the number of arithmetic progressions of
k-mismatch occurrences of a solid pattern, thus showing the tightness of the known upper
bound [11].

When k = 0, Theorem 1.2 readily implies an O(n + DG · n/m)-time algorithm for exact
pattern matching. However, the techniques employed by this algorithm are rather heavy-
handed, and this can be avoided. In Section 3, we present a much simpler algorithm that
achieves the same time complexity and showcases the primary technical innovation of our
approach: the utilization of carefully selected positions, termed sparsifiers, which exclusively
belong to fragments F of P such that the ratio of the number of wildcards within them
to their length is bounded by O(D/m). In the standard word RAM model, the implied
O(n+DG ·n/m) time complexity for exact pattern matching outperforms the state-of-the-art
O(n log m) [12, 17] when DG = o(m log m).

Technical overview. To illustrate how sparsifiers help, consider our algorithm for exact
pattern matching, which draws ideas from the work of Bringmann et al. [7]. We first compute
a solid Ω(m/G)-length fragment S of P that contains a sparsifier. We then compute its
exact matches in T . If S only has a few occurrences, we straightforwardly verify which of
those extend to occurrences of P . However, if S has many occurrences we cannot afford to
do that, and we instead have to exploit the implied periodic structure of S. We distinguish
between two cases. In the case when P matches a periodic string with the same period as S,
denoted per(S), we take a sliding window approach as in [7], using the fact that the wildcards
are organised in only G groups. The remaining case poses the main technical challenge.
In that case, our goal is to align the maximal fragment S′ := P [i . . j] of P that contains
S and matches a solid string with period per(S) with a periodic fragment of T such that
position i − 1 is aligned with a position breaking the periodicity in T ; a so-called misperiod.
To this end, we compute O(G) maximal fragments of T , called S-runs, that have period
per(S). The issue is, however, that up to D misperiods in T might be aligned with wildcards
of S′. A straightforward approach would be to extend each S-run to the left, allowing for
D + 1 misperiods and to try aligning each such misperiod with i − 1. This would yield an
algorithm with runtime O(G2D) in the PILLAR model, as we would have O(DG) candidate
misperiods to align position i − 1 with, and the verification time for each such alignment
is O(G). The crucial observation is that since S′ contains a sparsifier, we do not need to
extend each S-run allowing for D + 1 misperiods. Instead, we extend it while the ratio of the
encountered misperiods to its length does not exceed 20 · D/m. By skipping S-runs that are
covered due to the extension of other S-runs, we ensure that the total number of misperiods
with which we align i − 1 is only O(D), obtaining the desired complexity.

Other related work. The pattern matching problem with wildcards under the edit distance
has also been studied. A straightforward adaptation of the O(nk)-time algorithm of Landau
and Vishkin [33] for pattern matching under edit distance for solid P and T yields an
algorithm with running time O(n(k + G)). Akutsu [2] presented an algorithm running in
time O(n

√
mk polylog m). Recently, an algorithm with runtime O(n(k +

√
Gk log n)) was

presented [4], improving over both previously known algorithms when k ≪ G ≪ m. The
aforementioned algorithms can handle the case where both P and T contain wildcards.

ESA 2024
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2 Preliminaries

In this work, Σ denotes an alphabet that consists of integers polynomially bounded in the
length of the input strings. The elements of Σ are called (solid) characters. Additionally,
we consider a special character denoted by ♦♢ that is not in Σ and is called a wildcard. Let
Σ♦♢ = Σ ∪ {♦♢}. Two characters match if (a) they are identical or (b) at least one of them is a
wildcard. Two equal-length strings match if and only if their i-th characters match for all i.

For an integer n ≥ 0, we denote the set of all length-n strings over an alphabet A by An.
The set of all strings over A is denoted by A∗. The unique empty string is denoted by ε. A
string in Σ∗

♦♢ is called solid if it only contains solid characters, i.e., it is in Σ∗.
For two strings S, T ∈ Σ∗

♦♢, we use ST to denote their concatenation. For an integer
m > 0, the string obtained by concatenating m copies of S is denoted by Sm. We denote
by S∞ the string obtained by concatenating infinitely many copies of S.

For a string T ∈ Σn
♦♢ and an index i ∈ [1 . . n],2 the i-th character of T is denoted by T [i].

We use |T | = n to denote the length of T . For indices 1 ≤ i, j ≤ n, T [i . . j] denotes the
fragment T [i]T [i + 1] · · · T [j] of T if i ≤ j and the empty string otherwise. We extend
this notation in a natural way to T [i . . j + 1) = T [i . . j] = T (i − 1 . . j]. When i = 1 or
j = n, we omit these indices, i.e., T [. . j] = T [1 . . j] and T [i . .] = T [i . . n]. A string P is a
prefix of T if there exists j ∈ [1 . . n] such that P = T [. . j], and a suffix of T if there exists
i ∈ [1 . . n] such that P = T [i . .]. A ball with a radius r and a center i, BT (i, r) is a fragment
T [max{1, i − r} . . min{i + r, n}], where we often omit the subscript T if it is clear from the
context. A position i of a string T is called an occurrence of a string P if T [i . . i + |P |) = P .

A positive integer ρ is a period of a (solid) string T ∈ Σn if T [i] = T [i + ρ] for all
i ∈ [1 . . n − ρ]. The smallest period of T is referred to as the period of T and is denoted
by per(T ). If per(T ) ≤ |T |/2, T is called periodic. We exploit the following folklore fact,
which is a straightforward corollary of the Fine–Wilf periodicity lemma [22]:

▶ Corollary 2.1 (folklore). Let P, T ∈ Σ∗ be solid strings such that |T | < 2|P |. The set of
occurrences of P in T can be represented as one arithmetic progression (possibly, trivial) with
difference equal to per(P ).

For an integer s ∈ [1 . . n), we denote by rots(T ) the string T [s + 1] · · · T [n]T [1] · · · T [s],
while rot0(T ) := T . More generally, for any s ∈ Z, we denote by rots(T ) the string rotx(T ),
where x = s mod |T |. A non-empty (solid) string is called primitive if it is different from
each of its non-trivial rotations.

▶ Fact 2.2 ([18]). For any solid string T ∈ Σn, the prefix T [1 . . per(T )] is primitive.

An integer ρ is a deterministic period of a string S ∈ Σ∗
♦♢ (that may contain wildcards), if

there exists a solid string T that matches S and has period ρ.
The Hamming distance δH(S1, S2) between two equal-length strings S1, S2 in Σ∗

♦♢ is the
number of positions i such that S1[i] does not match S2[i]. For two strings U, Q ∈ Σ∗

♦♢,
we slightly abuse notation and denote δH(U, Q∞[. . |U |]) by δH(U, Q∞). A position i of a
string T is called a k-mismatch occurrence of a string P if δH(T [i, i + |P |), P ) ≤ k, and the
set of all k-mismatch occurrences of P in T is denoted by Occk(P, T ).

The PILLAR model. The PILLAR model of computation, introduced in [11], abstracts away
the implementation of a versatile set of primitive operations on strings. In this model, one is
given a family of solid strings X for preprocessing. The elementary objects are fragments

2 For integers i, j ∈ Z, denote [i . . j] = {k ∈ Z : i ≤ k ≤ j}, [i . . j) = {k ∈ Z : i ≤ k < j}.
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X[i . . j] of strings X ∈ X . Each such fragment S is represented via a handle, which is how S

is passed as input to PILLAR operations. Initially, the model provides a handle to each
X ∈ X . Handles to other fragments can be obtained through an Extract operation:

Extract(S, ℓ, r): Given a fragment S and positions 1 ≤ ℓ ≤ r ≤ |S|, extract S[ℓ . . r].
Furthermore, given elementary objects S, S1, S2 the following primitive operations are sup-
ported in the PILLAR model:

Access(S, i): Assuming i ∈ [1 . . |S|], retrieve S[i].
Length(S): Retrieve the length |S| of S.
lcp(S1, S2): Compute the length of the longest common prefix of S1 and S2.
lcpR(S1, S2): Compute the length of the longest common suffix of S1 and S2.
Internal pattern matching IPM(S1, S2): Assuming that |S2| < 2|S1|, compute the set of
the starting positions of occurrences of S1 in S2 represented as one arithmetic progression.

We use the following facts; the proof of Fact 2.4 is provided in the full version of this
work.

▶ Fact 2.3 ([10, proof of Lemma 12]). The value lcp(X∞, Z) for a fragment X and a suffix Z

of a solid string Y can be computed in O(1) time in the PILLAR model.

We work in the PILLAR model despite considering strings with wildcards. We circumvent
this by replacing each wildcard with a solid character # ̸∈ Σ and using PILLAR operations
over the obtained collection of (solid) strings. We ensure that for each string in the collection
we can efficiently compute a linked list that stores the endpoints of groups of wildcards.

▶ Fact 2.4. Let P be a pattern with D wildcards arranged in G groups and T be a solid text.
For a position p and a given threshold k ≥ 0, one can test whether δH(P, T [i . . i + m)) ≤ k

in O(G + k) time in the PILLAR model.

Sparsifiers. In Section 1, we elucidated the pivotal role of the fragments of the pattern
where wildcards exhibit a “typical” distribution. In this section, we formalize this concept.

▶ Definition 2.5 (Sparsifiers). Consider a string X ∈ Σm
♦♢ containing D wildcards. We call a

position i in X a sparsifier if X[i] is a solid character and, for any r, the count of wildcards
within the ball of radius r centered at i is at most 8r · D/m.

In the following, we demonstrate that P contains a long fragment whose every position
is a sparsifier. We start with an abstract lemma, the proof of which can be found in the
full version of this work, where one can think of a binary vector V as the indicator vector
for wildcards, and ∥V ∥ denotes the number of 1s in V . A run of 1s (resp. 0s) is a maximal
fragment that consists only of 1s (resp. 0s).

▶ Lemma 2.6. Let V be a binary vector of size N , M := ∥V ∥ and R be the number of
runs of 1s in V . Assume V to be represented as a linked list of the endpoints of runs of 1s
in V , arranged in the sorted order. There is an O(R)-time algorithm that computes a set
U ⊆ [1 . . N ] satisfying all of the following conditions:
1. |U | ≥ N/2 − M ,
2. U can be represented as a union of at most R + 1 disjoint intervals,
3. for each i ∈ U and radius r ∈ [1 . . N ], ∥BV (i, r)∥ ≤ 8r · M/N .

▶ Corollary 2.7. Consider a string P ∈ Σm
♦♢ containing D wildcards arranged in G groups.

If D < m/4, then there is a fragment S of P of length L = ⌊m/(8G)⌋ whose every position
is a sparsifier, and one can compute S in O(G) time.

ESA 2024



20:8 Pattern Matching with Mismatches and Wildcards

Proof. An application of Lemma 2.6 to P with wildcards treated as 1s and solid characters
treated as 0s returns m/2 − D > m/4 sparsifiers in the form of G + 1 intervals in O(G)
time. Thus, there is a fragment of size at least m/(4(G + 1)) ≥ L whose every position is a
sparsifier; the L-length prefix of this fragment satisfies the condition of the claim. ◀

3 Exact Pattern Matching in the PILLAR Model

In this section, we consider a pattern P of length m with D ≥ 1 wildcards arranged in G

groups and a solid text T of length n such that n ≤ 3m/2. We then use the “standard
trick” presented in the introduction to lift the result to texts of arbitrary length. We prove
a structural result for the exact occurrences of P in T and show how to compute them
efficiently when the product of D and G is small. In particular, we compute them in linear
time when DG = O(m), thus improving by a logarithmic factor over the state-of-the-art
O(n log m)-time algorithms in this case.

▶ Definition 3.1 (Misperiods). Consider a string V over alphabet Σ♦♢. We say that a
position x is a misperiod with respect to a solid fragment V [i . . j] when V [x] does not match
V [y], where y is any position in [i . . j] such that per(V [i . . j]) divides |y − x|. Additionally,
we consider positions 0 and |V | + 1 as misperiods. We denote the set of the at most κ

rightmost misperiods smaller than i with respect to V [i . . j] by LeftMisper(V, i, j, κ). Similarly,
we denote the set of the at most κ leftmost misperiods larger than j with respect to V [i . . j]
by RightMisper(V, i, j, κ).

▶ Example 3.2. Consider string V = cc♦♢bdabcabcabcab. The misperiods with respect to
the underlined fragment V [6 . . 13], which has period 3, are positions 0, 1, 5, and |V | + 1 = 17.
We have LeftMisper(V, 6, 13, 2) = {1, 5} and RightMisper(V, 6, 13, 2) = {17}.

The next lemma states that the sets LeftMisper(V, i, j, k) and RightMisper(V, i, j, k) can
be computed efficiently in an incremental fashion. Its proof, which can be found in the full
version of this work, uses the kangaroo method and closely follows [7, 10].

▶ Lemma 3.3. Consider a string V over an alphabet Σ♦♢ and a solid periodic fragment
V [i . . j] of V . The elements of either of LeftMisper(V, i, j, |V |) and RightMisper(V, i, j, |V |)
can be computed in the increasing order with respect to their distance from position i so that:

the first misperiod x can be computed in O(1 + G0) time in the PILLAR model, where G0
denotes the number of groups of wildcards between positions x and i;
given the t-th misperiod x ̸∈ {0, |V | + 1}, the (t + 1)-th misperiod can be computed in
O(1 + Gt) time in the PILLAR model, where Gt denotes the number of groups of wildcards
between said misperiods.
A direct application of the above lemma yields the following fact.

▶ Corollary 3.4. For any integer k, the sets LeftMisper(V, i, j, k) and RightMisper(V, i, j, k)
can be computed in O(k + G) time in the PILLAR model.

▶ Definition 3.5. For two strings S and Q, let MI(S, Q) denote the set of positions of
mismatches between S and Q∞.

▶ Definition 3.6 (S-runs). A fragment of a solid string V spanned by a set of occurrences of
a solid string S in V whose starting positions form a maximal arithmetic progression with
difference per(S) is called an S-run.

▶ Example 3.7. Let V = cababcabcabcabc and S = abcab. The underlined fragment
V [4 . . 14] is the sole S-run in V ; it is spanned by the occurrences of S at positions 4, 7, 10.
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The following fact characterises the overlaps of S-runs; its proof can be found in the full
version of this work.

▶ Fact 3.8. Two S-runs can overlap by no more than per(S) − 1 positions.

We need a final ingredient before we prove the main theorem of this section. We state a
more general variant of the statement than we need here that also accounts for k mismatches,
as this will come handy in the subsequent section. For the purposes of this section one can
think of k as 0. The following corollary follows from [11, Lemma 4.6] via the reduction to
computing (D + k)-mismatch occurrences of P# in T .

▶ Corollary 3.9 (of [11, Lemma 4.6]). Let S be a string of length m with D wildcards, let T

be a solid string such that |T | ≤ 3|S|/2, let k ∈ [0 . . m] and d ≥ 2(D + k) be a positive integer,
and let Q be a primitive solid string such that |Q| ≤ m/8d and δH(S, Q∞) ≤ d. Then, we
can compute, in O(d) time in the PILLAR model, a fragment T ′ = T [ℓ . . r] of T such that

δH(T ′, Q∞) ≤ 3d, and
all elements of Occk(S, T ′) = {p − ℓ : p ∈ Occk(S, T )} are equivalent to 0 (mod |Q|).

▶ Theorem 3.10. Consider a pattern P of length m with D wildcards arranged in G groups
and a solid text T of length n ≤ 3m/2. Either P has O(D) occurrences in T or P has
a deterministic period q = O(m/D). A representation of the occurrences of P in T can
be computed in O(DG log log D) time plus the time required to perform O(DG) PILLAR
operations. In the former case the occurrences are returned explicitly, while in the latter case
they are returned as O(DG) arithmetic progressions with common difference q.

Proof. First, observe that if D = Θ(m) the statement holds trivially as there can only
be O(m) occurrences and we can compute them using O(mG) PILLAR operations, e.g., by
applying Fact 2.4 for each position of the text. We thus henceforth assume that D < m/4.

We apply Corollary 2.7 to P , thus obtaining, in O(G) time, a fragment S = P [x . . y] of
length m/(8G) whose every position is a sparsifier. (As an implication, S is a solid fragment.)
Then, we compute all occurrences of S in T in O(G) time in the PILLAR model, represented
as O(G) arithmetic progressions with common difference per(S) (see Corollary 2.1).

Case (I): S has less than 384D occurrences in T . In this case, we try to extend each
such occurrence to an occurrence of P in T using Fact 2.4 in O(G) time in the PILLAR model.
This takes O(DG) time in total in the PILLAR model.

Case (II): S has at least 384D occurrences in T . In this case, we have two occurrences
of S in T starting within (3m/2)/(384D) positions of each other, and hence per(S) ≤
m/(256D). Let Q = S[1 . . per(S)]. By definition of per(S), S is a prefix of Q∞ and
by Fact 2.2, Q is primitive. Using Corollary 3.4, we compute the sets LeftMisper(P, x, y, 1)
and RightMisper(P, x, y, 1) in O(G) time in the PILLAR model. In other words, we compute
the maximal fragment V of P that contains S and matches exactly some substring of Q∞.

Subcase (a): V = P . We conclude that q := |Q| ≤ m/(256D) is a deterministic period
of P . We replace Q by its (possibly trivial) rotation Q0 such that P is equal to a prefix of Q∞

0
and then apply Corollary 3.9 to compute, in O(D) time in the PILLAR model, a fragment T ′

of T that contains the same number of occurrences of P as T , is at Hamming distance O(D)
from a prefix of Q∞, and only has occurrences of P at positions equivalent to 1 (mod q).

It now suffices to show how to compute the occurrences of P in T ′. As in previous
works [7, 11], we take a sliding window approach. Let W be the set of positions in P where
we have a wildcard. For i ∈ [1 . . |T ′|−m+1], define Hidden(i) to be the size of the intersection
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of MI(T ′, Q) ∩ [i . . i + m) with i + W .3 Intuitively, this is the number of mismatches between
T ′[i . . i + m) and Q∞ that are aligned with a wildcard in P (and are hence “hidden”) when
we align P with T ′[i . . i + m). Hidden(·) is a step function whose value changes O(DG) times
as we increase i, since each mismatch enters or exits the window [i . . i + m) at most once and
whether it is hidden or not changes at most 2G times. We compute Hidden(1) and store the
positions where the function changes (as well as by how much) as events in the increasing
order; this sorting takes O(DG log log D) time [25].

For a position i ≤ |T ′| − m + 1 with i ≡ 1 (mod q), we have di := δH(T ′[i . . i + m), P ) =
MI(T ′[i . . i + m), Q) − Hidden(i). We maintain this value as we, intuitively, slide P along T ,
q positions at a time. If there are no events in (i . . i + q] ⊆ [1 . . |T ′|], then di = di+q. This
allows us to report all occurrences of P in T efficiently as O(DG) arithmetic progressions
with common difference q by processing all events in a left-to-right manner in O(DG) time.

Subcase (b): V ̸= P . Our goal is to show that, in this case, the occurrences of P in T are
O(D) and they can be computed in time O(GD). Without loss of generality, assume that V

is not a prefix of P . This means that LeftMisper(P, x, y, 1) = {µ} ≠ {0}. The occurrences of
S in T give us a collection S of O(G) S-runs in T , any two of which can overlap by less than
per(S) = q positions due to Fact 3.8. For each S-run R, extend R to the left until either of
the following two conditions is satisfied, keeping track of the encountered misperiods:
(a) the ratio of encountered misperiods to the sum of |R| and the number of prepended

positions exceeds 20D/m,
(b) the beginning of T has been reached.
Denote by ER the resulting fragment of T and by MR the set of misperiods in it. The
following two claims are of crucial importance for the algorithm’s performance. The proof of
the first one can be found in the full version of this work along with an illustration.

▷ Claim 3.11. If p + 1 is an occurrence of P in T that aligns S with an occurrence of S in
an S-run R = T [r . . r′], then p + µ ∈ MR.

Proof sketch. Assume towards a contradiction that p + µ ̸∈ MR. Intuitively, this can only be
the case if the extension of R did not reach the beginning of T due to encountering too many
misperiods. On the other hand, the fragment P [µ . . x)S of P contains only one misperiod
and cannot contain many wildcards, since every position of S is a sparsifier. As a result, a
misperiod in T will be aligned with a position of P that is neither a misperiod nor a wildcard,
contradicting the fact that p + 1 is an occurrence of P in T . ◁

▷ Claim 3.12. The set ∪R∈SMR is of size O(D) and it can be computed using O(D) PILLAR
operations given the set S of S-runs and q.

Proof. We start by initialising a set R := S, marking every element of R as unprocessed
and a set M = ∅. We then iteratively perform the following procedure for the rightmost
unprocessed R = T [r . . r′] ∈ R. Compute MR using Lemma 3.3, set M := M ∪ MR, and
mark R as processed. This takes time proportional to the sum of |MR| and the number
of groups of wildcards contained in ER. Let us say that two elements R = T [r . . r′] and
R′ = T [t . . t′] of S are synchronised if and only if r = t (mod q). During the procedure,
whenever we compute some ER = T [x . . r′] that extends beyond an (unprocessed) S-run
R′ = T [t . . t′], that is, x ≤ t ≤ t′ < r′, and R and R′ are synchronised, we remove R′ from R
– the total time required for this step is O(G).

3 For a set Y and an integer z, by z + Y we denote the set {z + y : y ∈ Y }.
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We now show the correctness of the algorithm. If, while extending a run R = T [r . . r′] ∈ R,
we extend beyond a run R′ = T [t . . t′] ∈ R with r = t (mod q), observe that the left endpoint
of ER cannot be to the right of the left endpoint of ER′ , since we have at least as big a
budget for misperiods in the extension of R when we reach position t as in the extension
of R′ when we reach position t. This implies that MR′ ⊆ MR and hence the algorithm
correctly computes M = ∪R∈SMR. Additionally, it guarantees that any computed ER and
ER′ for synchronised S-runs R and R′ are disjoint.

Finally, we analyse the algorithm’s time complexity. Henceforth, R denotes set of
runs that were processed. Observe that the run extensions take O(

∑
R∈R |MR|) time

in total in the PILLAR model. As we have
∑

R∈R |MR| ≤ |R| +
∑

R∈R |ER| · 20D/m ≤
O(G)+20D/m·

∑
R∈R |ER|, proving that

∑
R∈R |ER| = O(m) directly yields that M = O(D)

and that the algorithm takes O(D) time.
In what follows, we ignore all ER that are of length at most m/D as their total length

is O(G · m/D) = O(m). Let us partition T into a collection Q = {T [1 + iq . . (i + 1)q] : i ∈
[0 . . ⌊n/q⌋ − 1]} of consecutive fragments of length q, with the last one potentially being
shorter and in this case discarded. We say that an element T [i . . j] of Q is synchronised
with an element R = T [r . . r′] of R if no position in [i . . j] is a misperiod with respect to
T [r . . r′]. For a run R = T [r . . r′], let QR = {T [i . . j] ∈ Q : r ≤ i ≤ j ≤ r′} consist of
all elements of Q that are fully contained in ER and observe that |QR| ≥ |ER|/q − 2 ≥
|ER|/(m/256D) − 2 = |ER| · 256D/m − 2 ≥ |ER| · 252D/m + 2. Further, let Qs

R = {X ∈
QR : X is synchronised with R}. As ER contains at most |ER| · 20D/m + 1 misperiods with
respect to T [r . . r′], we have |Qs

R| ≥ |QR|/2. This means that |ER| = O(|Qs
R| · q). Now,

observe that if some element of Q is synchronised with two elements R and R′ of R, then R

and R′ are themselves synchronised. Since the computed extensions of synchronised runs are
pairwise disjoint, the considered sets Qs

R are pairwise disjoint and hence the bound follows:∑
R∈R |ER| = O(m) +

∑
R∈R,|ER|≥m/D |ER| = O(m + |Q| · q) = O(m). ◁

We can now conclude the proof of the theorem. By Claim 3.11, the starting positions of
occurrences of P in T are in the set {ν − µ + 1 : ν ∈ M}. This concludes the proof of the
combinatorial bound, as the size of this set is O(D). As for the time complexity, we verify
each candidate position using Fact 2.4 in total time O(DG) in the PILLAR model. ◀

4 Technical Overview for Theorem 1.2

In this section, we outline the main ideas for extending the results of Section 3 towards
obtaining Theorem 1.2. We build upon the framework of Charalampopoulos et al. [11]
for k-mismatch pattern matching on solid strings. They presented an efficient structural
analysis of a solid pattern that returns a number of breaks or a number of repetitive regions,
or concludes that the pattern is almost periodic. Then, they treated each case separately,
exploiting the computed structure. We make several alterations to account for wildcards,
such as ensuring that breaks are solid strings and adapting the sliding window approach. The
primary technical challenge in achieving an efficient solution lies in limiting the number of
occurrences of repetitive regions in T . The greater the number of repetitive region occurrences,
the higher the number of potential starting positions for k-mismatch occurrences of P . By
ensuring that each repetitive region contains a sparsifier, we force an upper bound on the
number of wildcards in each repetitive region, which, in turn, allows us to bound the number
of its approximate occurrences in T .
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Computing structure in the pattern. We first show a decomposition lemma, that either
extracts useful structure from the pattern or reveals that it is close to a periodic string. Our
lemma is analogous to the decomposition lemma for the case where both strings are solid [11,
Lemma 3.6]. We take extra care to ensure that the breaks in Case (I) are solid strings and
that each computed repetitive region in Case (II) contains a sparsifier.

▶ Lemma 4.1. Let P be a string of length m that contains D ≤ m/16 wildcards arranged in G

groups. Further, let k ∈ [1 . . m] be an integer threshold, and let γ := G + k and τ := D + k.
At least one of the following holds:

(I) P contains 2γ disjoint solid strings B1, . . . , B2γ, that we call breaks, each having
length m/(16γ) and the period greater than m/(512τ).

(II) P contains disjoint repetitive regions R1, . . . , Rr of total length mR ≥ m/8, such that,
for every i: Ri contains a sparsifier, |Ri| ≥ m/16γ, and, for a primitive string Qi

with |Qi| ≤ m/(512τ), we have δH(Ri, Q∞
i ) = ⌈32k/m · |Ri|⌉.

(III) There exists a primitive string Q of length at most m/(512τ) such that δH(P, Q∞) ≤
32k.

Moreover, there is an algorithm that takes O(G + k) time in the PILLAR model and
distinguishes between the above cases, returning one of the following: either 2γ disjoint breaks,
or repetitive regions R1, . . . , Rr of total length at least m/8 along with primitive strings
Q1, . . . , Qr, or a primitive string Q along with MI(P, Q).

Let us now outline how the three different cases are dealt with in the proof of Theorem 1.2.

Case (III). The almost periodic case is treated quite similarly to Case (II.a) of the exact
pattern matching algorithm in Section 3. Specifically, we take a sliding window approach
where we have an event for each misperiod/wildcard in P being aligned with a misperiod in T

and an event for each misperiod in T entering or exiting the window. We have O((D +k)(G+
k)) events and hence obtain an algorithm running in time O((D + k)(G + k) log log(D + k))
in the PILLAR model.

Case (I). In the case when the algorithm underlying Lemma 4.1 returns 2γ breaks, we
perform a standard marking trick. As each break is long and has period greater than
m/(512τ), it has O(τ) exact occurrences in T , which we can compute efficiently using IPM
queries. For each break P [pi . . pi + m/(16γ)), for each occurrence of it at a position j in T ,
we place a mark at the corresponding position where an occurrence of P would start, that is,
at position j − pi + 1. Over all breaks, we place O(τγ) marks in total. Now, observe that in
any k-mismatch occurrence of P in T , at most k breaks are not matched exactly and hence
at least 2γ − k breaks are matched exactly. It is sufficient to verify each position that has at
least 2γ − k marks; their number is O(τγ/(2γ − k)) = O(D + k). As the verification of each
position takes O(G + k) time in the PILLAR model due to Fact 2.4, the total time required
in this case is O((D + k)(G + k)).

Case (II). The case when the algorithm underlying Lemma 4.1 returns repetitive regions is
the most challenging one. We tackle it using a more elaborate marking scheme. For a repetitive
region Ri, let Di denote the number of wildcards in Ri, let di denote ⌊32(k + D)/m · |Ri|⌋,
and let ki denote ⌊16k/m · |Ri|⌋. First, for each repetitive region Ri, we compute Ri’s
ki-mismatch occurrences using our algorithm for Case (III); this takes Õ((D + k)(G + k))
time in the PILLAR model. Then, for each ki-mismatch occurrence of Ri, we put |Ri| marks
at the corresponding starting position for P . Importantly, we show that the number of
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ki-mismatch occurrences of Ri is O(D +k): this crucially relies on the fact that the repetitive
region contains a sparsifier and hence Di ≤ 16D/m · |Ri|. We can thus upper-bound the total
number of placed marks by O((D + k) · mR). On the other hand, we show that each starting
position of a k-mismatch occurrence of P in T must have at least mR − m/16 marks. As in
Case (I), we obtain O(D + k) candidate positions, which we verify in O((D + k)(G + k))
time in total in the PILLAR model.

Concluding, the algorithm runs in Õ((D + k)(G + k)) time in the PILLAR model. In
Cases (I) and (II), we have shown that P has O(D + k) k-mismatch occurrences in T , which
can be trivially paritioned into the same number of arithmetic progressions. Therefore,
the bottleneck to obtain the refined result on the combinatorial structure of occurences is
the sliding window scheme of Case (III). We consider events associated to misperiods and
groups of wildcards of P separately: in the former case, they are O((D + k)k) and lead
to “isolated” occurrences, whereas in the latter case, they are O((D + k)G) and result in
arithmetic progressions of occurrences.

5 A Lower Bound on the Number of Arithmetic Progressions

In this section we show a lower bound on the number of arithmetic progressions covering the
set of k-mismatch occurrences of a pattern in a text.

▶ Theorem 5.1. There exist a pattern P of length m = Ω((D + k)1+o(1)(k + 1)) and a text T

of length n ≤ 3m/2 such that the set of k-mismatch occurrences of P in T cannot be covered
with less than Ω((D + k) · (k + 1)) arithmetic progressions.

Proof. We call a set S ⊆ [1 . . n] progression-free if it contains no non-trivial arithmetic
progression, that is, three distinct integers a, b, c such that a + b − 2c = 0.

▶ Fact 5.2 ([20]). For any sufficiently large M , there exists an integer nM = O(M2
√

log M )
and a progression-free set S such that S has cardinality M and S ⊆ [nM ].

Let M = D + k/2 and S ⊆ [nM ] be a progression-free set of cardinality M . We encode S

in a string PS of size nM as follows: for every i /∈ S we set PS [i] = 0, and we arbitrarily
assign k/2 1s and D wildcards to the remaining D + k/2 positions. We then consider the
pattern P = 0ℓPS0ℓ, where ℓ is a parameter to be determined later. In what follows, let
m := 2ℓ + nM denote the length of P .

Now, let M ′ = k/2 + 1 and S′ ⊆ [nM ′ ] be a progression-free set of cardinality M ′.
We set T := 0m/2B1 . . . BnM′ 0m/2, where Bi = 0t−11 if i ∈ S′, Bi = 0t otherwise, and
t = ⌊m/(2nM ′)⌋. We pick ℓ large enough such that t ≥ 10nM and 2nM ′ divides m. We have
t = ⌊m/(2nM ′)⌋ = ⌊(2ℓ + nM )/(2nM ′)⌋ ≥ 10nM , which implies that it suffices for ℓ to be
larger than nM nM ′ by a constant factor, i.e., m = Ω((k + D)(k + 1)2

√
log(k+D)+

√
log(k+1)).

Observe that i ∈ X if and only if there exists j such that P [j] ∈ {1, ♦♢} and T [i + j] = 1.
Moreover, any pair of 1s in T are at least t ≥ 10nM positions apart, while the 1s and
wildcards of P all lie within an interval of size nM . Therefore, for a given alignment of P

and T , there can be at most one 1 of T that is aligned with a 1 or a wildcard of P ; it follows
that Occk(P, T ) has cardinality (D + k/2) · (k/2 + 1) = Ω((D + k) · (k + 1)).

It remains to show that Occk(P, T ) does not contain arithmetic progressions of length 3.
Assume for a sake of contradiction that there exist x, y, z ∈ Occk(P, T ) with x < y < z that
form an arithmetic progression, i.e., y −x = z −y. Let ix denote the index of the block Bix

of
T that contains the leftmost 1 that is aligned with a 1 or a wildcard of P : this 1 is at position
m/2 + ixt in T . Similarly, let dx be such that the corresponding aligned character is at
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position ℓ + dx in P . Define iy, iz, dy, dz similarly for y, z. We can express each w ∈ {x, y, z}
in terms of iw and dw as w = m/2+ iwt−dw − ℓ+1. Combining the above equations for x, y,
and z, we get y −x = (iy − ix)t− (dy −dx) and z −y = (iz − iy)t− (dz −dy). By construction,
|dy − dx| ≤ nM . As t ≥ 10nM , the equality y − x = z − y thus yields iy − ix = iz − iy and
dy − dx = dz − dy. However, as x < y < z, at least one of the above two equations involves
non-zero values. In other words, there is a three-term arithmetic progression in either S

or S′, contradicting the fact that they are progression-free. ◀
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