
Improved Space Bounds for Subset Sum
Tatiana Belova #

St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences,
Russia

Nikolai Chukhin #

Neapolis University Pafos, Paphos, Cyprus
JetBrains Research, Paphos, Cyprus

Alexander S. Kulikov #

JetBrains Research, Paphos, Cyprus

Ivan Mihajlin #

JetBrains Research, Paphos, Cyprus

Abstract
More than 40 years ago, Schroeppel and Shamir presented an algorithm that solves the Subset Sum
problem for n integers in time O∗(20.5n) and space O∗(20.25n). The time upper bound remains
unbeaten, but the space upper bound has been improved to O∗(20.249999n) in a recent breakthrough
paper by Nederlof and Węgrzycki (STOC 2021). Their algorithm is a clever combination of a number
of previously known techniques with a new reduction and a new algorithm for the Orthogonal
Vectors problem.

In this paper, we give two new algorithms for Subset Sum. We start by presenting an Arthur–
Merlin algorithm: upon receiving the verifier’s randomness, the prover sends an n/4-bit long proof
to the verifier who checks it in (deterministic) time and space O∗(2n/4). An interesting consequence
of this result is the following fine-grained lower bound: assuming that 4-SUM cannot be solved
in time O(n2−ε) for all ε > 0, Circuit SAT cannot be solved in time O(g2(1−ε)n), for all ε > 0 (where
n and g denote the number of inputs and the number of gates, respectively).

Then, we improve the space bound by Nederlof and Węgrzycki to O∗(20.246n) and also simplify
their algorithm and its analysis. We achieve this space bound by further filtering sets of subsets
using a random prime number. This allows us to reduce an instance of Subset Sum to a larger
number of instances of smaller size.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases algorithms, subset sum, complexity, space, upper bounds

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.21

Related Version Full Version: https://arxiv.org/abs/2402.13170 [3]

Funding Research is partially supported by the grant 075-15-2022-289 for creation and development
of Euler International Mathematical Institute, and by the Foundation for the Advancement of
Theoretical Physics and Mathematics “BASIS”.

1 Overview

In this paper, we study the well-known Subset Sum problem and its parameterized version,
k-SUM. In Subset Sum, given a set of n integers and a target integer t the goal is to check
whether there is a subset of them that sum up to t. It is common to assume that the absolute
value of all input integers is at most 2O(n) (one can achieve this using hashing techniques).

In the k-SUM problem, the goal is to check whether some k of the input integers sum
to zero. We consider a slightly different formulation of k-SUM: given k sequences A1, . . . , Ak,
each containing n integers of absolute value at most nO(1), check whether there exist indices

© Tatiana Belova, Nikolai Chukhin, Alexander S. Kulikov, and Ivan Mihajlin;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yukikomodo@gmail.com
mailto:buyolitsez1951@gmail.com
mailto:alexander.s.kulikov@gmail.com
https://orcid.org/0000-0002-5656-0336
mailto:ivmihajlin@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2024.21
https://arxiv.org/abs/2402.13170
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Improved Space Bounds for Subset Sum

i1, . . . , ik such that1 A1[i1] + · · · + Ak[ik] = 0. It is common to further assume that the
bit-length of all integers in the k-SUM problem is at most k log n + O(log log n). This can
be achieved by the standard fingerprinting technique.

1.1 Known Results
1.1.1 Time Complexity
2-SUM can be solved in time Õ(n) using binary search (the Õ(·) notation hides polylogarithmic
factors): sort A1; then, for each 1 ≤ i2 ≤ n, check whether A1 contains an element −A2[i2].
Another well known algorithm is based on the two pointers method that proceeds as follows.
Sort A1 and A2 and let i1 = 1 and i2 = n. Then, keep repeating the following: if i1 > n

or i2 < 1, stop; if A1[i1] + A2[i2] = 0, return (i1, i2); if A1[i1] + A2[i2] > 0, decrement i2
(as A2[i2] is too large: its sum with the currently smallest element of A1 is positive); if
A1[i1] + A2[i2] < 0, increment i1 (as A1[i1] is too small: its sum with the currently largest
element of A2 is negative).

The algorithm for 2-SUM allows k-SUM to be solved in time Õ(n⌈k/2⌉) via the following
reduction. Given k arrays A1, . . . , Ak, split them into two halves: A1, . . . , A⌊k/2⌋ and
A⌈k/2⌉, . . . , Ak. Populate arrays B1 and B2 with all sums of elements from the first and
second halves, respectively. Then, it remains to solve 2-SUM for B1 and B2.

For 3-SUM, Chan [5] proved a slightly better upper bound O(n2 log logO(1) n/ log2 n).
It is a major open problem whether 3-SUM can be solved in time O(n2−ε) and the 3-SUM
hypothesis, stating that this is impossible, is a popular hypothesis in the field of fine-grained
complexity. It is also currently unknown whether k-SUM can be solved in time Õ(n⌈k/2⌉−ε)
for any k ≥ 3 and ε > 0.

The 2-SUM algorithm described above is also at the core of the strongest known upper
bound O∗(2n/2) for Subset Sum (O∗(·) hides polynomial factors) presented by Horowitz and
Sahni [7] fifty years ago. To get this running time, partition A into two halves of size n/2;
then, populate arrays A1 and A2 (of size 2n/2) with sums of all subsets of the two halves,
respectively; then, it remains to solve 2-SUM for A1 and A2. It is an important open problem
to solve Subset Sum in O∗(2(1/2−ε)n) for a constant ε > 0. The fastest known algorithm
shows that Subset Sum can be solved in time 2n/2/poly(n) [6].

1.1.2 Space Complexity
The algorithms that solve k-SUM and Subset Sum via a reduction to 2-SUM have high space
complexity: for k-SUM, it is O(n⌈k/2⌉), whereas for Subset Sum it is O(2n/2). It is natural
to ask whether one can lower the space complexity or whether it is possible to trade off
time and space. Lincoln et al. [11] gave a positive answer for k-SUM: one can solve 3-SUM
in time O(n2) and space O(

√
n) as well as k-SUM (for k ≥ 4) in time O(nk−2+2/k) and

space O(
√

n). For Subset Sum, the well-known algorithm by Schroeppel and Shamir [15]
solves it in time O∗(2n/2) and space O(2n/4): they reduce Subset Sum to 4-SUM and note
that 4-SUM can be solved in time Õ(n2) and space O(n) (since all pairwise sums of two sorted
sequences of length n can be enumerated in time Õ(n2) and space O(n) using a priority
queue data structure). Just recently, Nederlof and Wegrzycki improved the space complexity
to O(20.249999n) [13].

1 These two versions of k-SUM are reducible to each other. One direction is easy: take k copies of the
array A. For the other direction, one can use the color coding technique [2]: for every element A, add
it to Ai for random i ∈ [k]; then, if a solution for the original problem exists, it survives in the resulting
instance with constant probability. This randomized reduction can also be derandomized [2].

T. Belova, N. Chukhin, A. S. Kulikov, and I. Mihajlin 21:3

1.1.3 Proof Complexity
It is easy to certify a yes-instance of k-SUM or Subset Sum: just write down a solution; it can
be checked in deterministic time O(n). Certifying no-instances is trickier. Carmosino et
al. [4] showed that, for 3-SUM, there are proofs of size Õ(n1.5) that can be deterministically
verified in time Õ(n1.5). By allowing the verifier to be probabilistic, Akmal et al. [1] presented
a proof system for 3-SUM where the proof’s size and the verification time is Õ(n). For
k-SUM, they give an upper bound of Õ(nk/3). The corresponding proof system is known
as a Merlin–Arthur protocol: a computationally unbounded prover (Merlin) prepares a proof
and sends it to a probabilistic verifier (Arthur) who needs to be able to check the proof quickly
with small constant error probability. We say that a problem can be solved in Merlin–Arthur
time T (n), if there exists a protocol where both the proof size and the verification time
do not exceed T (n).

For Subset Sum, Nederlof [12] proved an upper bound O∗(2(1/2−ε)n), for some ε > 10−3,
on Merlin–Arthur time. Akmal et al. [1] improved the bound to O∗(2n/3).

1.2 New Results
Below, we give an overview of the main results of the paper. Their proofs are given later
in the text. The proofs of some of the technical lemmas are omitted due to the page limit,
the corresponding lemmas are stated with a reference to the full version [3] of the paper that
contains all the proofs.

1.2.1 New Arthur–Merlin Algorithm
Recall that in an Arthur–Merlin protocol the randomness is shared (also known as public
coins) and the verifier is deterministic: upon receiving the verifier’s randomness, the prover
prepares a proof and sends it to the verifier who checks it deterministically with small error
probability (taken over public randomness). Formally, we say that a language L ⊆ {0, 1}∗

belongs to a class AM[s(n), t(n)], if there exists an Arthur–Merlin protocol such that, for any
x ∈ {0, 1}n, the proof length is at most s(n), the verification time is at most t(n), and for each
x ∈ L, the verifier accepts with probability at least 2/3, whereas for each x ̸∈ L, the verifier
rejects with probability 1.2 Such a protocol implies that L can be solved by a randomized
algorithm that has running time t(n) and error probability at least 2−s(n). It is also easily
parallelizable: using k ≤ 2s(n) processors, the problem can be solved in time 2s(n)t(n)

k .
Our first main result is a new Arthur–Merlin algorithm for Subset Sum.

▶ Theorem 1. Subset Sum ∈ AM
[
n/4, O∗(2n/4)

]
.

As discussed above, it can be parallelized easily: to solve the problem, one can enumerate
possible proofs in parallel. Also, by enumerating all possible proofs, one recovers upper bounds
on time and space for Subset Sum proved by Schroeppel and Shamir in 1979. Interestingly,
the resulting algorithm is very simple and does not need to use the priority queue data
structure as in the algorithm by Schroeppel and Shamir.

As it is the case with the previously known algorithms for Subset Sum, our algorithm
follows from an algorithm for 4-SUM.

2 In the standard definition of AM protocols, there is either a two-sided error probability or zero error
probability of acceptance. We choose to have a zero error probability of rejection as it allows for
straightforward transformation to randomized and parallel algorithms.

ESA 2024

21:4 Improved Space Bounds for Subset Sum

▶ Theorem 2. 4-SUM ∈ AM
[
log2 n, Õ(n)

]
.

Since 2k-SUM can be reduced to 4-SUM, this extends to 2k-SUM as follows.

▶ Corollary 3. For every even integer k, 2k-SUM ∈ AM
[

k
2 log2 n, Õ(nk/2)

]
.

The main idea of the proof of Theorem 2 is the following. To find integers i1, i2, i3, i4
such that A1[i1] + A2[i2] + A3[i3] + A4[i4] = 0, one generates a random prime p ≤ n and
uses (A1[i1] + A2[i2]) mod p as a proof. A similar idea of using a random prime for filtering
subsets was used previously by Howgrave-Graham and Joux [8].

1.2.2 New Conditional Lower Bounds for Circuit SAT
Another interesting consequence of Theorem 2 is a fine-grained lower bound for the Circuit SAT
problem. Circuit SAT is a generalization of SAT where instead of a formula in CNF, one is
given an arbitrary Boolean circuit with g binary gates and n inputs (and the goal, as usual,
is to check whether it is satisfiable). Being a generalization of SAT, Circuit SAT cannot
be solved in time O∗(2(1−ε)n), for any constant ε > 0, under the Strong Exponential Time
Hypothesis (that states that for every ε > 0, there exists k such that k-SAT cannot be solved
in time O(2(1−ε)n)). Even designing a 2(1−ε)n time algorithm solving Circuit SAT for circuits
with g ≤ 8n gates is challenging: as shown by [9], this would imply new circuit lower bounds.

We prove the following conditional lower bound for Circuit SAT.

▶ Theorem 4. If, for any ε > 0, 4-SUM cannot be solved in time O(n2−ε), then, for any
ε > 0, Circuit SAT cannot be solved in time O(g2(1−ε)n).

This theorem however does not exclude a O(gO(1)2(1−ε)n)-time algorithm for Circuit-SAT
in the same manner. To get such a fine-grained lower bound, one needs to push the algorithm
from Corollary 3 further (i.e., to trade most of the nk time upper bound for nondeterminism).

▶ Open Problem 1. Prove or disprove: 2k-SUM ∈ AM
[
k log2 n, no(k)] .

▶ Corollary 5. Assume that 2k-SUM ∈ AM
[
k log2 n, no(k)] . Then, if for any ε > 0 and any

k ≥ 1, 2k-SUM cannot be solved in time O(nk−ε), then, for any ε > 0, Circuit SAT cannot
be solved in time O(gO(1)2(1−ε)n).

1.2.3 Improved Space Upper Bound for Subset Sum
Our second main result is an improved space upper bound for Subset Sum. We achieve this
by improving and simplifying the algorithm by Nederlof and Węgrzycki.

▶ Theorem 6. There exists a Monte Carlo algorithm with constant success probability that
solves Subset Sum for instances with n integers of absolute value at most 2O(n) in time
O∗(20.5n) and space O∗(20.246n).

The algorithm by Nederlof and Węgrzycki proceeds roughly as follows. Let I ⊆ Z,
|I| = n, be an instance of Subset Sum. Assume that it is a yes-instance and that a solution
S ⊆ I has size n/2. Assume further that there exists a subset M ⊆ I of size Θ(n)
such that |S ∩ M | = |M |/2 and M is a perfect mixer: the weights of all subsets of M

are (pairwise) distinct. Partition I \ M into two parts L and R of equal size, hence,
I = L ⊔ M ⊔ R. We will be looking for two disjoint sets S1 ⊆ L ⊔ M and S2 ⊆ M ⊔ R such

T. Belova, N. Chukhin, A. S. Kulikov, and I. Mihajlin 21:5

that |S1 ∩ M | = |S2 ∩ M | = |M |/4 and S1 ⊔ S2 is a solution. This problem can be solved
by a reduction to the Weighted Orthogonal Vectors (WOV) problem that can be viewed
as a hybrid of the Orthogonal Vectors and the 2-SUM problems: given two families L and R
of weighted sets and a target integer t, find two disjoint sets whose sum of weights is equal
to t. A naive such reduction would proceed similarly to the algorithm by Horowitz and
Sahni [7]: let

L = {(S1 ∩ M, w(S1)) : S1 ⊆ L ⊔ M, |S1 ∩ M | = |M/4|},

R = {(S2 ∩ M, w(S2)) : S2 ⊆ M ⊔ R, |S2 ∩ M | = |M/4|}.

Then, it remains to solve WOV for L, R and t. The bad news is that |L ⊔ M | > n/2, hence
enumerating all S1 ⊆ L ⊔ M leads to a running time worse than O∗(2n/2). The good news is
that the solution S is represented by exponentially many pairs (S1, S2): there are many ways
to distribute S ∩ M between S1 and S2. This allows one to use the representation technique:
take a random prime p of the order 2|M |/2 and a random remainder r ∈ Zp; filter L and R
to leave only subsets S1 and S2 such that w(S1) ≡p r and w(S2) ≡p t − r. This way, one
reduces the space complexity since L and R become about p times smaller.

In this work, we further introduce the following idea to reduce the space complexity of the
algorithm and to simplify it at the same time. We use another prime q to further filter L
and R: this allows us to reduce the original instance to a larger number of instances that
in turn have smaller size. The idea is best illustrated by the following toy example. Consider
an instance I of size n of Subset Sum. As in the algorithm by Horowitz and Sahni [7],
partition I arbitrarily into two parts L and R of size n/2. Assume now that we are given
a magic integer q = Θ(2n/4) that hashes all subsets of L and R almost perfectly: for each
r ∈ Zq,

|{A ⊆ L : w(A) ≡q r}|, |{B ⊆ R : w(B) ≡q t − r}| = O(2n/4) .

This allows us to solve I in time O∗(2n/2) and space O∗(2n/4) without using a reduction
to 4-SUM and priority queues machinery of Schroeppel and Shamir’s algorithm: for each r,
construct sequences of all subsets of L and R having weights r and t−r modulo q, respectively,
and solve 2-SUM for the two resulting sequences of length O(2n/4). Thus, instead of reducing I

to a single instance of 2-SUM of size 2n/2, we reduce it to 2n/4 instances of size 2n/4. We show
that even though in general a randomly chosen integer q does not give a uniform distribution
of remainders, one can still use this idea to reduce the space.

On a technical side, we choose a mixer M more carefully. This allows us to cover various
corner cases, when the size of the solution S is not n/2 and when the mixer M is far from
being perfect, in the same manner, thus simplifying the algorithm by Nederlof and Węgrzycki.

2 General Setting

2.1 Modular Arithmetic

We write a ≡m b to denote that integers a and b have the same remainder modulo m. By Zm

we denote the ring of remainders modulo m. We make use of the following well known fact.

▶ Theorem 7 (Chinese Remainder Theorem). For any coprime positive integers p and q and any
a ∈ Zp and b ∈ Zq, there exists a unique x ∈ Zpq such that x ≡p a and x ≡q b. Furthermore,
it can be computed (using the extended Euclidean algorithm) in time O(log2 p + log2 q).

ESA 2024

21:6 Improved Space Bounds for Subset Sum

2.2 Prime Numbers
Given an integer t, one can generate a uniform random prime from [t, 2t] in time O(logO(1) t):
to do this, one selects a random integer from [t, 2t] and checks whether it is prime [10]; the
expected number of probes is O(log t) due to the law of distribution of prime numbers. We also
use the following estimate: any positive integer k has at most log2 k distinct prime divisors;
hence the probability that a random prime from [t, 2t] divides k is at most O(log k log t

t).

2.3 Probability Amplification
We use the following standard success probability amplification trick: if a “good” event A

occurs with probability at least p, then for A to occur at least once with constant probability,
1/p independent repetitions are sufficient: (1 − p)1/p ≤ (e−p)1/p = e−1 .

2.4 Growth Rate and Entropy
Much like O(·) hides constant factors, O∗(·) and Õ(·) hide factors that grow polynomially in
the input size and polylogarithmically, respectively: for example, n2 · 1.5n = O∗(1.5n) and
log3 n · n2 = Õ(n2). Ω∗(·), Θ∗(·), Ω̃(·), and Θ̃(·) are defined similarly.

We use the following estimates for binomial coefficients: for any constant 0 ≤ α ≤ 1,

Ω(n−1/2)2h(α)n ≤
(

n

αn

)
≤ 2h(α)n and hence

(
n

αn

)
= Θ∗

(
2h(α)n

)
, (1)

where h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function. The function h

is concave: for any 0 ≤ β ≤ 1 and any 0 ≤ x, y ≤ 1, βh(x) + (1 − β)h(y) ≤ h(βx + (1 − β)y) .

2.5 Sets and Sums
For a positive integer n, [n] = {1, 2, . . . , n}. For disjoint sets A and B, by A ⊔ B we denote
their union.

Let S ⊆ Z be a finite set of integers. By w(S) we denote the weight of S: w(S) =
∑

a∈S a.
By 2S we denote the power set of S, i.e., the set of its subsets: 2S = {A : A ⊆ S}. By

(
S
k

)
we denote the set of all subsets of S of size k:

(
S
k

)
= {A ⊆ S : |A| = k}. For a family of sets

F ⊆ 2S , by w(F) we denote the set of their weights: w(F) = {w(A) : A ∈ F}.
Given S, one can compute |w(2S)| in time and space O∗(2|S|) by iterating over all of its

subsets. If |w(2S)| = 2(1−ε)|S|, we call S an ε-mixer.

▶ Lemma 8 ([3]). Let S ⊆ A and |A| = n. For m = O(1) uniformly randomly chosen
disjoint non-empty sets A1, . . . , Am ⊆ A,

Pr
[

|Ai ∩ S|
|Ai|

≈ |S|
|A|

, for all i ∈ [m]
]

= Ω∗(1) ,

where |Ai∩S|
|Ai| ≈ |S|

|A| means that
∣∣∣|Ai ∩ S| − |Ai| |S|

|A|

∣∣∣ = O(1).

2.6 Weighted Orthogonal Vectors
▶ Definition 9 (Weighted Orthogonal Vectors, WOV). Given families of N weighted sets
A, B ⊆ 2[d] × N, and a target integer t, the problem is to find (A, wA) ∈ A and (B, wB) ∈ B
such that A ∩ B = ∅ and wA + wB = t.

T. Belova, N. Chukhin, A. S. Kulikov, and I. Mihajlin 21:7

▶ Lemma 10 ([3]). For any σ ∈ [0, 1
2], there is a Monte-Carlo algorithm that, given

A ⊆
([d]

σd

)
× N, B ⊆

([d]
(1/2−σ)d

)
×N and a target integer t, solves WOV(A, B) in time

Õ
(
(|A| + |B|)2d(1−h(1/4))) and space Õ

(
|A| + |B| + 2d

)
.

To prove the lemma, we utilize the algorithm from [13], but with a different parameter
range.

3 New Arthur–Merlin Algorithm

▶ Theorem 2. 4-SUM ∈ AM
[
log2 n, Õ(n)

]
.

Proof. Given arrays A1, A2, A3, A4 each consisting of n 4 log n-bit integers, our goal is to find
four indices i1, i2, i3, i4 ∈ [n] such that A1[i1] + A2[i2] + A3[i3] + A4[i4] = 0 . Without loss
of generality, assume that Ai’s are sorted and do not contain duplicates: for every i ∈ [4],
Ai[1] < Ai[2] < · · · < Ai[n] . Assume that i∗

1, i∗
2, i∗

3, i∗
4 is a solution and let s = A1[i∗

1] + A2[i∗
2].

Let P be a randomized algorithm that, given an integer n, returns a uniform random prime
from [2..n]. Since one can check whether a given integer k is prime or not in time O(logO(1) k),
the expected running time of P is O(logO(1) n): one picks a random k ∈ [2..n] and checks
whether it is prime; if it is not, one repeats; the expected number of probes is O(log n).

We are ready to describe the protocol.

Stage 0: Shared randomness. Using the shared randomness, Arthur and Merlin
generate a random prime p = P(n).

Stage 1: Preparing a proof. Merlin sends an integer 0 ≤ r < p to Arthur.
Stage 2: Verifying the proof. Arthur takes all elements of A1 and A2 modulo p and

sorts both arrays. Using the two pointers method (or binary search), he enumerates
all pairs (i1, i2) ∈ [n]2 such that (A1[i1] + A2[i2]) ≡ r mod p. For each such pair
(i1, i2), he adds A1[i1] + A2[i2] to a new array A12. If the size of A12 becomes
larger than O(n log3 n), Arthur rejects immediately. Then, he does the same for
A3 and A4, but for the remainder −r (rather than r) and creates an array A34.
Finally, he solves 2-SUM for A12 and A34 (the two arrays may have different lengths,
but this can be fixed easily by padding one of them with dummy elements).

Now, we analyze the protocol. It is clear that the proof size is at most log2 n and that
the running time of the verification stage is Õ(n). Also, if there is no solution for the original
instance, Arthur rejects with probability 1, as he only accepts if the solution is found. Below,
we show that if Merlin sends r = s mod p (recall that s = A1[i∗

1] + A2[i∗
2]), Arthur accepts

with good enough probability.
Consider the set S = {(i1, i2) ∈ [n]2 : A1[i1] + A2[i2] ≡ s mod p} (hence, |A12| = |S|).

It contains at most n true positives, that is, pairs (i1, i2) such that A1[i1] + A2[i2] = s: as the
arrays do not contain duplicates, for every i1 there is at most one matching i2. All the
other pairs (i1, i2) in S are false positives: A1[i1] + A2[i2] − s ≠ 0, but A1[i1] + A2[i2] − s ≡
0 mod p. Recall that |A1[i1] + A2[i2] − s| = O(n4), hence the number of prime divisors
of A1[i1]+A2[i2]−s is O(log n), Section 2.2. The probability that a random prime 2 ≤ p ≤ n

divides (A1[i1] + A2[i2] − s) is O(log2 n
n). Thus, the expected number of false positives

is at most n2 · O
(

log2 n
n

)
= O(n log2 n). By Markov’s inequality, the probability that the

number of false positives is larger than O(n log3 n) (and hence that |S| = O(n log3 n)) is
at most 1/ log n.

ESA 2024

21:8 Improved Space Bounds for Subset Sum

Thus, with probability at least 1 − 2/ log n, both A12 and A34 have length at most
O(n log3 n) and by solving 2-SUM for them, Arthur finds a solution for the original yes-
instance. ◀

▶ Theorem 4. If, for any ε > 0, 4-SUM cannot be solved in time O(n2−ε), then, for any
ε > 0, Circuit SAT cannot be solved in time O(g2(1−ε)n).

Proof. Assume that, for some ε > 0, there exists an algorithm A that checks whether a given
Boolean circuit with g binary gates and n inputs is satisfiable in time O(g2(1−ε)n). Using A,
we will solve 4-SUM in time O(n2−ε).

Consider the verification algorithm from Theorem 2 as a Turing machine M : M has three
read-only input tapes (IR, IP , I): the tape IR contains random bits, the tape IP contains
a proof, and the tape I contains four input arrays. For any four arrays (A1, A2, A3, A4) of
size n, if it is a yes-instance, there exists a proof of size at most log2 n such that M accepts with
probability at least 2/3, whereas for a no-instance, M rejects every proof with probability 1.
The machine M compares 2 log n-bit integers and moves two pointers through two arrays.
Hence, the running time of M is Õ(n).

Given (A1, A2, A3, A4), fix the contents of the tape I and fix the random bits of the tape
IR. This turns M into a machine M ′ with log2 n input bits and running time Õ(n).

As proved by [14], a Turing machine recognizing a language L ⊆ {0, 1}∗ with running
time t(n) can be converted to an infinite series {Cn}∞

n=1 of circuits of size O(t(n) log t(n)):
for every n, Cn has n inputs and O(t(n) log t(n)) gates and computes a function f : {0, 1}n →
{0, 1} such that f−1(1) = L∩{0, 1}n. The circuit Cn can be produced in time O(t(n) log t(n)).

Applying this to the machine M ′, we get a circuit C with Õ(n) gates and log2 n input
bits. If A1, A2, A3, A4 is a yes-instance of 4-SUM, the circuit C is satisfiable with probability
at least 2/3; otherwise it is unsatisfiable. Using the algorithm A, we can check the satisfiability
of C in time Õ(n2(1−ε) log2 n) = Õ(n2−ε). ◀

▶ Theorem 1. Subset Sum ∈ AM
[
n/4, O∗(2n/4)

]
.

Proof. We use the standard reduction from Subset SUM to 4-SUM. Given a sequence A

of n integers, partition them into four parts of size n/4 and create sequences A1, A2, A3, A4
of size 2n/4 containing sums of all subsets of the corresponding parts. Use the protocol from
Theorem 2 for the resulting instance of 4-SUM. ◀

The proofs of the following two corollaries can be found in the full version of the paper [3].

▶ Corollary 3. For every even integer k, 2k-SUM ∈ AM
[

k
2 log2 n, Õ(nk/2)

]
.

▶ Corollary 5. Assume that 2k-SUM ∈ AM
[
k log2 n, no(k)] . Then, if for any ε > 0 and any

k ≥ 1, 2k-SUM cannot be solved in time O(nk−ε), then, for any ε > 0, Circuit SAT cannot
be solved in time O(gO(1)2(1−ε)n).

4 Improved Space Upper Bound for Subset Sum

4.1 Algorithm
Let (I, t) be an instance of Subset Sum (as usual, n = |I|) and assume that it is a yes-instance:
we will present a randomized algorithm that is correct on no-instances with probability 1,
so, as usual, the main challenge is to obtain Ω∗(1) success probability for yes-instances. Let
S ⊆ I be a solution: w(S) = t. It is unknown to us, but we may assume that we know its
size: there are just n possibilities for |S|, so with a polynomial overhead we can enumerate
all of them. Thus, assume that |S| = αn where 0 < α ≤ 1 is known to us.

T. Belova, N. Chukhin, A. S. Kulikov, and I. Mihajlin 21:9

For a parameter β = β(α) < 0.15 to be specified later, select randomly pairwise disjoint
sets ML, M, MR ∈

(
I

βn

)
. In time and space O∗(20.15n), find εL, ε, εR such that ML is an

εL-mixer, M is an ε-mixer, and MR is εR-mixer. Without loss of generality, we assume that
ε ≤ εL, εR. Consider the probability that S touches exactly half of ML ⊔ M ⊔ MR:

Pr [|(ML ∪ M ∪ MR) ∩ S| = 3βn/2] =

(
αn

3βn/2
)((1−α)n

3βn/2
)(

n
3βn

) = Θ∗ (
2−λn

)
(

αn
3βn/2

)((1−α)n
3βn/2

)(
n

3βn

) = 2−λn ⇐⇒ 1
n

log
(

n
3βn

)(
αn

3βn/2
)((1−α)n

3βn/2
) = λ ⇐⇒

⇐⇒ λ = h(3β) − αh

(
3β

2α

)
− (1 − α)h

(
3β

2(1 − α)

)
,

(by (1))

hence,

λ = h(3β) − αh

(
3β

2α

)
− (1 − α)h

(
3β

2(1 − α)

)
. (2)

By repeating this process 2λn times, we ensure that the event |(ML∪M ∪MR)∩S| = 3βn/2
happens with probability Ω∗(1) (recall Section 2.3). Further, we may assume that

|ML ∩ S| = |M ∩ S| = |MR ∩ S| = βn/2,

as by Lemma 8, |ML ∩ S| = |M ∩ S| = |MR ∩ S| = βn/2 + O(1) with probability Ω∗(1)
conditioned on the event that S touches 3βn/2 elements of ML ⊔ M ⊔ MR. An exact equality
can be assumed since we can search for an exact value in the neighbourhood of βn/2 and
the constant difference will not affect the memory and time complexity. In the following
applications of Lemma 8, we omit O(1) factors for similar considerations.

We argue that either S ∩M or M \S is an (≤ ε)-mixer. Indeed, M is an ε-mixer and hence
|w(2M)| = 2(1−ε)|M |. Now, |S ∩M | = |M \S| = |M |/2 and |w(2S∩M)| · |w(2M\S)| ≥ |w(2M)| .

Hence,

max
{

|w(2S∩M)|, |w(2M\S)|
}

≥ 2(1−ε)|M |/2,

implying that either S ∩ M or M \ S is indeed a (≤ ε)-mixer. In the following, we assume
that it is S ∩ M that is (≤ ε)-mixer. To assume this without loss of generality, we run the
final algorithm twice – for (I, t) and (I, w(I) − t).

For any (finite and non-empty) set A, there exists 1 ≤ k ≤ |A|, such that |w(
(

A
k

)
)| ≥

|w(2A)|/|A| (by the pigeonhole principle). Since |w(
(

A
k

)
)| = |w(

(
A

|A|−k

)
)|, we can even

assume that 1 ≤ k ≤ |A|/2. Consider the corresponding k for the set A = S ∩ M and let
µ = k/(2|S ∩ M |) (hence, 0 ≤ µ ≤ 0.25). Then,∣∣∣∣w ((

S ∩ M

2µ|S ∩ M |

))∣∣∣∣ ≥
∣∣w (

2S∩M
)∣∣

|S ∩ M |
. (3)

Partition I \ (ML ⊔ M ⊔ MR) randomly into L1 ⊔ L2 ⊔ L3 ⊔ L4 ⊔ R1 ⊔ R2 ⊔ R3 ⊔ R4
where the exact size of all eight parts will be specified later. Let L = L1 ⊔ L2 ⊔ L3 ⊔ L4 and
R = R1 ⊔ R2 ⊔ R3 ⊔ R4. By Lemma 8, with probability Ω∗(1) the set S covers the same
fraction of each of Li’s and Ri’s. We denote this fraction by γ:

γ = |(L ⊔ R) ∩ S|
|L ⊔ R|

= α − 3β/2
1 − 3β

. (4)

ESA 2024

21:10 Improved Space Bounds for Subset Sum

Now, we apply the representation technique. Note that there exist many ways to parti-
tion S into SL ⊔ SR such that

SL ⊆ ML ⊔ L ⊔ M and SR ⊆ M ⊔ R ⊔ MR. (5)

Indeed, the elements from S ∩ M can be distributed arbitrarily between SL and SR. Below,
we show that for a large random prime number p and a random remainder r modulo p,
the probability that there exists a partition S = SL ⊔ SR such that w(SL) ≡p r is Ω∗(1)
(informally, at least one representative SL ⊔ SR of the original solution S survives, even if we
“hit” all such partitions with a large prime).

▶ Lemma 11 ([3]). With constant probability over choices of a prime number p such that
p ∈ [X/2, X], where X ≤ |w(2S∩M)|, the number of remainders a ∈ Zp such that there exists
a subset M ′ ⊆ S ∩ M with |M ′| = 2µ|S ∩ M | and w(M ′) ≡p a is close to p:

Pr
[∣∣{a ∈ Zp : there exists M ′ ⊆ S ∩ M, |M ′| = 2µ|S ∩ M |, w(M ′) ≡p a

}∣∣ ≥ Ω
(
p/n2)]

≥ 9/10.

Take a random prime 2 1−ε
2 βn−1 ≤ p ≤ 2 1−ε

2 βn and a random remainder r ∈ Zp. Lemma 11
ensures that with probability Ω∗(1), there exists M ′ ⊆ S ∩ M such that |M ′| = 2µ|S ∩ M | =
µβn and w(M ′) ≡p r.

To find the partition SL ⊔ SR, we are going to enumerate all sets A ⊆ ML ⊔ L ⊔ M with
w(A) ≡p r and |A ∩ (M ∩ S)| = µβn as well as all sets B ⊆ M ⊔ R ⊔ MR with w(B) ≡p t − r

and |B ∩ (M ∩ S)| = (1/2 − µ)βn. Then, it suffices to solve WOV for the sets of A’s and B’s.
To actually reduce to WOV, we first construct set families ML ⊆ 2ML and MR ⊆ 2MR

such that |ML| = |w(2ML)| and |MR| = |w(2MR)|. That is, ML contains a single subset
of ML for each possible weight. One can construct ML (as well as MR) simply by going
through all subsets of ML and checking, for each subset, whether its sum is already in ML.

Then, construct the following families (see Figure 1).

Q1 = {M ′ ∪ L′ : M ′ ∈ ML, L′ ⊆ L1, |L′| = γ|L1|}, (6)
Q2 = {L′ : L′ ⊆ L2, |L′| = γ|L2|}, (7)
Q3 = {L′ : L′ ⊆ L3, |L′| = γ|L3|}, (8)
Q4 = {L′ ∪ M ′ : L′ ⊆ L4, M ′ ⊆ M, |L′| = γ|L4|, |M ′| = µβn}, (9)

Q′
1 = {M ′ ∪ R′ : M ′ ∈ MR, R′ ⊆ R1, |R′| = γ|R1|}, (10)

Q′
2 = {R′ : R′ ⊆ R2, |R′| = γ|R2|}, (11)

Q′
3 = {R′ : R′ ⊆ R3, |R′| = γ|R3|}, (12)

Q′
4 = {R′ ∪ M ′ : R′ ⊆ R4, M ′ ⊆ M, |R′| = γ|R4|, |M ′| = (1/2 − µ)βn}. (13)

Let Qmax stand for Qi or Q′
i with the maximum size. For a, p ∈ Z>0, let

Xa =
{

(Q1, Q2, Q3, Q4) : Qi ∈ Qi,
∑

w(Qi) = a
}

and Xa,p =
⋃

a′≡pa

Xa′ .

Then, it remains to solve WOV for Xr,p and X ′
(t−r),p. To do this, we use the idea used in

the Arthur–Merlin protocol: we reduce to 4-SUM and use a cutoff for the number of found
candidates. The following lemmas estimate the size of these set families.

▶ Lemma 12 ([3]). With probability Ω∗(1) over the choice of r, the size of Xr,p is at most
O∗(|Qmax|4/p) and there exists M1 ⊆ M ∩ S such that w((S ∩ (L ∪ ML)) ∪ M1) ≡p r.

T. Belova, N. Chukhin, A. S. Kulikov, and I. Mihajlin 21:11

ML L1 L2 L3 L4 M R4 R3 R2 R1 MR

L R

Q1 Q2 Q3

Q4

Q′
4

Q′
3 Q′

2 Q′
1

Figure 1 Partition of the instance I (white) and its solution S (gray) into parts.

To further reduce the size of these families, we choose another random prime number

q = Θ∗
(

2n/2

2λn|Qmax|2

)
,

and iterate over all possible remainders s ∈ Zq. We aim to find two families of sets as the
above ones, but with weights congruent to w(SL) and (t − w(SL)), respectively, modulo p

and q. While iterating on s, at some point we try s ≡q w(SL), so we can assume that we
guessed s correctly and construct the families for the fixed r and s. We now focus on the first
family only, since we can then find the second one independently using the same algorithm.

For a ∈ Z>0, let La = {(a, Q4 ∩ M) : (Q1, Q2, Q3, Q4) ∈ Xa}. For a1, a2, p, q ∈ Z>0, let

Xa1,p,a2,q =
⋃

a≡pa1
a≡qa2

Xa and La1,p,a2,q =
⋃

a≡pa1
a≡qa2

La.

Our goal is to find a family L containing Lw(SL) in order to guarantee that we later
find the solution using the WOV algorithm. But we need L to be small enough. Let
ℓ = |Qmax|4

pq +
(|M |

max{µ,1/2−µ}|M |
)

represent an upper bound on the sum of the average size of
Xa1,p,a2,q and the size of Lw(SL). We want L to be of size Õ(ℓ). The following lemma shows
that Xw(SL),p,w(SL),q contains not too many redundant sets.

▶ Lemma 13 ([3]). With probability Ω∗(1) over the choice of q, |Xr,p,w(SL),q \ Xw(SL)| ≤ ℓ.

Let us find the first ≤ 2ℓ + 1 elements of Xr,s using the algorithm from Lemma 14 which
runs in time Õ(|Qmax|2 + ℓ) and uses Õ(|Qmax| + ℓ) space.

▶ Lemma 14 ([3]). There is an algorithm that given Q1, Q2, Q3, Q4, (r, p, s, q) and integer
m, finds min(|Xr,p,s,q|, m) elements of Xr,p,s,q using Õ(|Qmax|2 +m) time and Õ(|Qmax|+m)
space.

Assume that s ≡q w(SL). If the algorithm yields at most 2ℓ elements then we know
the whole Xr,p,w(SL),q, so we can now just construct L from Xr,p,s,q in Õ(ℓ) time and space.
Otherwise, by Lemma 13, we have that |Xw(SL)| > ℓ with probability Ω∗(1). Since strictly
more than half of the outputted tuples have weight exactly w(SL), we can determine w(SL)
in Õ(ℓ) time. When we know w(SL), we use Lemma 15 to obtain Lw(SL) using Õ(|Qmax|2)
time and Õ(|Qmax|) space.

▶ Lemma 15. There is an algorithm that given Q1, Q2, Q3, Q4 and a, finds La using
Õ(|Qmax|2) time and Õ(|Qmax|) space.

ESA 2024

21:12 Improved Space Bounds for Subset Sum

Proof. Schroeppel and Shamir [15] use priority queues to implement a data structure D1
for the following task: output all elements from {w(Q1) + w(Q2) : Q1 ∈ Q1, Q2 ∈ Q2} in
non-decreasing order using Õ(|Q1| · |Q2|) time and Õ(|Q1| + |Q2|) space. Similarly, a data
structure D2 outputs all elements from {(w(Q3) + w(Q4), Q4 ∩ M) : Q3 ∈ Q3, Q4 ∈ Q4} in
non-increasing order (we compare elements by their first coordinate) using Õ(|Q3| · |Q4|) time
and Õ(|Q3| + |Q4|) space. By inc(w(Q1, Q2)) and dec(w(Q3, Q4)) we denote initilization
methods for these data structures, by pop() we denote their method that gives the next
element.

Algorithm 1 solves the problem using data structures D1 and D2. It works in time
Õ(|Q1| · |Q2|+ |Q3| · |Q4|), uses Õ(|Q1|+ |Q2|+ |Q3|+ |Q4|) space, and outputs |La| elements.
Since the number of outputted subsets is at most |Q4|, even if we store the output, we still
need only Õ(|Qmax|2) time and Õ(|Qmax|) space.

Algorithm 1 Pseudocode for Lemma 15.

Input : Q1, Q2, Q3, Q4, a

Output : La = {(a, Q4 ∩ M) : (Q1, Q2, Q3, Q4) ∈ Xa}
1 Initialize D1 = inc(w(Q1, Q2))
2 Initialize D2 = dec(w(Q3, Q4))
3 while (d2, A) = D2.pop() do
4 while d1 = D1.pop() and d1 + d2 < a do
5 skip d1
6 if d1 + d2 = a and not used[A] then
7 output((a, A))
8 used[A] = True

◀

Note that the size of La is at most
(|M |

µ|M |
)
. Summarizing, we get the following.

▶ Lemma 16. There is an algorithm that given Q1, Q2, Q3, Q4 and (r, p, s, q), uses
Õ

(
|Qmax|2 + |Qmax|4

pq +
(|M |

µ|M |
))

time and Õ
(

|Qmax| + |Qmax|4

pq +
(|M |

µ|M |
))

space. It returns

a set L ⊆ Z × Q4 of size Õ
(

|Qmax|4

pq +
(|M |

µ|M |
))

that satisfies the following.
If there exist a solution S ⊆ I with w(S) = t, and a partition S = SL ⊔ SR, such that:

|S| = αn;
|ML ∩ S| = |M ∩ S| = |MR ∩ S| = βn/2;
S ∩ M is a (≤ ε)-mixer;
|S ∩ Li| = γ|Li| for each i ∈ [4], the same for Ri;
SL ⊆ ML ⊔ L ⊔ M , SR ⊆ M ⊔ R ⊔ MR;
|SL ∩ M | = µβn, |SR ∩ M | = (1/2 − µ)βn;
w(SL) ≡p r, w(SL) ≡q s, w(SR) ≡p t − r, w(SR) ≡q t − s;
|Xr,p,s,q \ Xw(SL)| ≤ ℓ,

then Lw(SL) ⊆ L. Otherwise, L may be any set.

Similarly, using Lemma 16, we find subset R for the right side. We call WOV(L, R) and
return True if it finds a solution. The WOV algorithm works in time Õ((|L|+|R|)2βn(1−h(1/4)))
and space Õ(|L| + |R| + 2βn) by Lemma 10.

It is worth noting that for most choices of s our assumption that s ≡q w(SL) does not
hold. Also, with probability 1 − Ω∗(1), |Xr,p,w(SL),q \ Xw(SL)| may happen to be greater
than ℓ. If any of these cases occurs, we may find a set L that was not intended (i.e. it

T. Belova, N. Chukhin, A. S. Kulikov, and I. Mihajlin 21:13

does not contain Lw(SL)), or we may even not find anything at all (if after applying the
algorithm from Lemma 14 we obtain 2ℓ + 1 elements, each of which occurs less than ℓ + 1
times). In the second scenario, we simply continue with the next choice of s. Otherwise, we
cannot determine whether we have found the correct L or not. However, if an incorrect L is
found, the outcome of our algorithm remains unaffected. If OV(L, R) finds a solution, it is a
solution to the original problem; if not, we simply proceed to the next iteration of the loop
in line 8.

Now we are ready to present the final Algorithm 2. We will choose the exact values for
its parameters later.

Algorithm 2 The main algorithm.

Input : (I, t).
Output : True, if S ⊆ I with w(S) = t exists, otherwise False.

1 repeat 2λn times
2 Select random disjoint subsets ML, M, MR ⊆ I of size βn

3 foreach µ such that µβn ∈ [0, βn/2] do
4 Randomly partition I \ (ML ⊔ M ⊔ MR) into L, R with size as in (15)–(16)
5 Pick a prime p = Θ(2(1−ε)βn/2) and r ∈ Zp at random
6 Construct Q1, Q2, Q3, Q4 and Q′

1, Q′
2, Q′

3, Q′
4 as defined in (6)–(13)

7 Pick a random prime q = Θ∗ (
2n/2/(2λn|Qmax|2)

)
8 foreach s ∈ Zq do
9 Construct L and R (as in Lemma 16)

10 if WOV(L, R) (as in Lemma 10) then
11 return True
12 return False

4.2 Correctness
▶ Lemma 17. The success probability of the algorithm is Ω∗(1).

Proof. To detect that I is indeed a yes-instance, an algorithm iteration relies on a number
of events. The first one is |(ML ∪ M ∪ MR) ∩ S| = 3βn/2 ,that occurs with probability
Θ∗ (

2−λn
)
. All the others occur with probability Ω∗(1), conditioned on the event that all the

previous events occur. This implies that all of them occur with probability Ω∗ (
2−λn

)
, and

after repeating it 2λn times, the success probability of the resulting algorithm is Ω∗(1). Below,
we recall all the considered events and provide links to lemmas proving their conditional
probabilities.

1. |(ML ∪ M ∪ MR) ∩ S| = 3βn/2, see Eq. (2).
2. |ML ∩ S| = |M ∩ S| = |MR ∩ S| = β

2 n, see Lemma 8.
3. |S ∩ Li| = γ|Li| and |S ∩ Ri| = γ|Ri|, see Lemma 8.
4. p is a prime number, see Section 2.2.
5. |{a ∈ Zp : ∃M ′ ⊆ S ∩ M, |M ′| = 2µ|S ∩ M |, w(M ′) ≡p a}| ≥ Ω

(
p/n2)

, see Lemma 11.
6. |Xr,p| = O∗(|Qmax|4/p) and there exists a partition M1 ⊔ M2 = S ∩ M such that

w(S ∩ (ML ∪ L ∪ M1)) ≡p r and w(S ∩ (M2 ∪ R ∪ MR)) ≡p t − r, see Lemma 12.
7. q is a prime number, see Section 2.2.
8. |Xr,p,w(SL),q \ Xw(SL)| ≤ ℓ, see Lemma 13.
In case any of those events does not happen, the algorithm completes the iteration without
affecting the final result. ◀

ESA 2024

21:14 Improved Space Bounds for Subset Sum

4.3 Setting the Parameters

Recall that α = |S|
n and we iterate over all possible α. We define β = β(α) as follows:

β(α) =
{

0.13, α ∈ [0.45, 0.55]
0, otherwise.

(14)

Let us consider an iteration of the loop on line 3. To this point, we know the values of ε,
εL, εR and µ, so we consider them as fixed numbers. Since |ML| = |M | = |MR| = βn, we
have that |I \ (ML ⊔M ⊔MR)| = (1−3β)n. Let us consider a partition I \ (ML ⊔M ⊔MR) =
L1 ⊔ L2 ⊔ L3 ⊔ L4 ⊔ R1 ⊔ R2 ⊔ R3 ⊔ R4 and estimate the size of Qi and Q′

i. Recall that
γ = |(L∪R)∩S|

|L∪R| = α− 3
2 β

1−3β . Observe that we use ε instead of εL and εR since ε ≤ εL, εR.

|Q1| ≤
(

|L1|
γ|L1|

)
· 2(1−ε)βn |Q′

1| ≤
(

|R1|
γ|R1|

)
· 2(1−ε)βn

|Q2| =
(

|L2|
γ|L2|

)
|Q′

2| =
(

|R2|
γ|R2|

)
|Q3| =

(
|L3|

γ|L3|

)
|Q′

3| =
(

|R3|
γ|R3|

)
|Q4| =

(
|L4|

γ|L4|

)
·
(

|M |
µβn

)
|Q′

4| =
(

|R4|
γ|R4|

)
·
(

|M |(1
2 − µ

)
βn

)
.

We construct L and R in time depending on |Qmax|2 + |Q′
max|2. Note that this function

is minimized when all |Qi| and |Q′
i| are roughly the same. We can achieve that by a

careful choice of |Li| and |Ri| (in the full version of the paper [3], we provide evidence
of the non-contradictory nature of the chosen sizes). To make all |Qi| and |Q′

i| equal
n (h(γ)−3βh(γ)+2β−2εβ+βh(µ)+βh(1/2−µ))

8 we set sizes of Li and Ri as follows:

|L1| = n
h(γ) − 3βh(γ) − 6β + 6εβ + βh(µ) + βh

(1
2 − µ

)
8h(γ) = |R1|

|L2| = |L3| = n
h(γ) − 3βh(γ) + 2β − 2εβ + βh (µ) + βh

(1
2 − µ

)
8h(γ) = |R2| = |R3|

|L4| = n
h(γ) − 3βh(γ) + 2β − 2εβ − 7βh(µ) + βh

(1
2 − µ

)
8h(γ)

|R4| = n
h(γ) − 3βh(γ) + 2β − 2εβ + βh(µ) − 7βh

(1
2 − µ

)
8h(γ) .

We define the sizes of |L| and |R| as shown below and require that |L1|+|L2|+|L3|+|L4| =
|L| and |R1| + |R2| + |R3| + |R4| = |R|.

|L| = 1 − 3β − χβ

2 n, (15)

|R| = 1 − 3β + χβ

2 n, (16)

where χ = h(µ)−h(1
2 −µ)

h(γ) is a balancing parameter needed to ensure that |Qmax| ≈ |Q′
max|.

We have set all the parameters and now we are ready to estimate the time and space
complexity of Algorithm 2.

T. Belova, N. Chukhin, A. S. Kulikov, and I. Mihajlin 21:15

4.4 Time Complexity
The running time is dominated by the following parts.

Repeating the whole algorithm 2λn times (Line 1).
Constructing Q1, Q2, Q3, Q4 and Q′

1, Q′
2, Q′

3, Q′
4 takes O∗(|Qmax| + 2βn) time (Line 6).

Repeating q times (Line 8).
Finding L, R using Lemma 16 in time O∗

(
|Qmax|2 + |Qmax|4

pq +
(|M |

max{µ,1/2−µ}|M |
))

(Line 9).
Solving WOV(L, R) using Lemma 10 in time O∗ (

(|L| + |R|)2βn(1−h(1/4))) (Line 10). The
O∗ here hides logarithmic factor in |L| + |R| that grows polynomially in n.

Let us consider an iteration of the loop on line 3. Note that the values of p, q, |Qmax|
and µ are now determined. The running time of Algorithm 2 on this specific iteration is

O∗
(

q ·
(

|Qmax|2 + |Qmax|4

pq
+

(
|Qmax|4

pq
+ 2βnh(max{µ,1/2−µ})

)
2βn(1−h(1/4))

))
.

To bound the total running time of Algorithm 2, we can multiply the number of the
iterations Θ∗(2λn) by the upper bound on the slowest iteration (see calculations in the full
version [3]). As a result, we bound the running time of Algorithm 2 by O∗(2n/2 + 2T (α,β)·n),
where

T (α, β) = 1
2 (h(γ) − 3βh(γ) + 3β + 2λ) . (17)

▶ Lemma 18. If for every α ∈ [0, 1], T (α, β(α)) ≤ 0.5, then Algorithm 2 has running time
O∗ (

20.5n
)
.

We complete the analysis in Section 4.6.

4.5 Space Complexity
The space usage is dominated by the following parts.

Constructing Q1, Q2, Q3, Q4 and Q′
1, Q′

2, Q′
3, Q′

4 with O∗(|Qmax|) space (Line 6).
Finding L, R using Lemma 16 with O∗

(
|Qmax| + |Qmax|4

pq +
(|M |

max{µ,1/2−µ}|M |
))

space
(Line 9).
Solving WOV(L, R) using Lemma 10 with O∗ (

|L| + |R| + 2βn
)

space (Line 10).

For a specific iteration of the loop on line 3, the space usage is at most the sum of
the above expressions, where |L|, |R| = O∗(|Qmax|4

pq +
(|M |

max{µ,1/2−µ}
)
|M |). The total space

complexity of Algorithm 2 can be bounded by the space usage of an iteration, requiring the
most space.

Therefore, it suffices to prove that 2βn,
(|M |

max{µ,1/2−µ}|M |
)
, |Qmax| and |Qmax|4

pq are at most
O∗(20.246n) on each iteration. By some simplifications (see calculations in the full version [3])
we can show that the total space usage of our algorithm is O∗(20.246n + 2S(α,β)·n), where

S(α, β) = 1
4

(
3h(γ) − 9βh(γ) + 6βh(1

4) + 4β − 2 + 4λ

)
. (18)

We can see that the following lemma holds.

▶ Lemma 19. If for every α ∈ [0, 1], S(α, β(α)) ≤ 0.246, then the total space usage of
Algorithm 2 does not exceed O∗ (

20.246n
)
.

We complete the analysis in the following section.

ESA 2024

21:16 Improved Space Bounds for Subset Sum

4.6 Parameter Substitution
The proofs of the following two lemmas can be found in the full version [3].

▶ Lemma 20. [Maximum point for function of time complexity] The function T (α, β)
(see (17)) satisfies T (α, β) ≤ T (0.5, 0.13) when β is defined as in (14).

▶ Lemma 21. [Maximum point for function of space complexity] The function S(α, β)
(see (18)) satisfies S(α, β) ≤ S(0.5, 0.13) when β is defined as in (14).

Hence, the time and space complexity do not exceed T (0.5, 0.13) and S(0.5, 0.13), respec-
tively (for any α and β as in (14)). Recall that λ = h(3β) − αh(3β

2α) − (1 − α)h(3β
2(1−α)), and

γ = α− 3
2 β

1−3β , see Equation (4). By plugging α = 0.5, β = 0.13, we get the following values for
the parameters:

γ = 0.5,

h(γ) = 1,

λ = 0,

T (0.5, 0.13) = 1
2 · (1 − 3 · 0.13 + 3 · 0.13) = 1

2 ,

S(0.5, 0.13) ≤ 1
4 · (3 − 9 · 0.13 + 6 · 0.13 · 0.812 + 4 · 0.13 − 2) ≤ 0.246.

Combining Lemma 18 and Lemma 19, we get that the algorithm runs in time O∗ (
20.5n

)
and space O∗ (

20.246n
)
, which completes the proof of Theorem 6.

References
1 Shyan Akmal, Lijie Chen, Ce Jin, Malvika Raj, and Ryan Williams. Improved Merlin–Arthur

protocols for central problems in fine-grained complexity. In ITCS, volume 215 of LIPIcs,
pages 3:1–3:25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
3 Tatiana Belova, Nikolai Chukhin, Alexander S. Kulikov, and Ivan Mihajlin. Improved space

bounds for subset sum. CoRR, abs/2402.13170, 2024.
4 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,

and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis
and consequences for non-reducibility. In ITCS 2016, pages 261–270. ACM, 2016.

5 Timothy M. Chan. More logarithmic-factor speedups for 3sum, (median, +)-convolution, and
some geometric 3sum-hard problems. ACM Trans. Algorithms, 16(1):7:1–7:23, 2020.

6 Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Subset sum in time 2n/2/ poly(n).
In APPROX/RANDOM, volume 275 of LIPIcs, pages 39:1–39:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023.

7 Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. J. ACM, 21(2):277–292, 1974. doi:10.1145/321812.321823.

8 Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 235–256. Springer, 2010.

9 Hamidreza Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In ICALP 2015,
pages 749–760. Springer, 2015.

10 Hendrik W. Lenstra, Jr. and Carl Pomerance. Primality testing with gaussian periods. Journal
of the European Mathematical Society, 21(4):1229–1269, 2019.

https://doi.org/10.1145/321812.321823

T. Belova, N. Chukhin, A. S. Kulikov, and I. Mihajlin 21:17

11 Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams.
Deterministic time-space trade-offs for k-SUM. In ICALP, volume 55 of LIPIcs, pages
58:1–58:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

12 Jesper Nederlof. A short note on Merlin–Arthur protocols for subset sum. Inf. Process. Lett.,
118:15–16, 2017.

13 Jesper Nederlof and Karol Węgrzycki. Improving Schroeppel and Shamir’s algorithm for subset
sum via orthogonal vectors. In STOC, pages 1670–1683. ACM, 2021.

14 Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979. doi:10.1145/322123.322138.

15 Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput., 10(3):456–464, 1981.

ESA 2024

https://doi.org/10.1145/322123.322138

	1 Overview
	1.1 Known Results
	1.1.1 Time Complexity
	1.1.2 Space Complexity
	1.1.3 Proof Complexity

	1.2 New Results
	1.2.1 New Arthur–Merlin Algorithm
	1.2.2 New Conditional Lower Bounds for Circuit SAT
	1.2.3 Improved Space Upper Bound for Subset Sum

	2 General Setting
	2.1 Modular Arithmetic
	2.2 Prime Numbers
	2.3 Probability Amplification
	2.4 Growth Rate and Entropy
	2.5 Sets and Sums
	2.6 Weighted Orthogonal Vectors

	3 New Arthur–Merlin Algorithm
	4 Improved Space Upper Bound for Subset Sum
	4.1 Algorithm
	4.2 Correctness
	4.3 Setting the Parameters
	4.4 Time Complexity
	4.5 Space Complexity
	4.6 Parameter Substitution

