
Hypergraph Connectivity Augmentation in Strongly
Polynomial Time
Kristóf Bérczi #

MTA-ELTE Matroid Optimization Research Group and HUN-REN-ELTE Egerváry Research
Group, Department of Operations Research, Eötvös Loránd University, Budapest, Hungary

Karthekeyan Chandrasekaran
University of Illinois, Urbana-Champaign, IL, USA

Tamás Király #

MTA-ELTE Matroid Optimization Research Group and HUN-REN-ELTE Egerváry Research
Group, Department of Operations Research, Eötvös Loránd University, Budapest, Hungary

Shubhang Kulkarni #

University of Illinois, Urbana-Champaign, IL, USA

Abstract
We consider hypergraph network design problems where the goal is to construct a hypergraph that
satisfies certain connectivity requirements. For graph network design problems where the goal is
to construct a graph that satisfies certain connectivity requirements, the number of edges in every
feasible solution is at most quadratic in the number of vertices. In contrast, for hypergraph network
design problems, we might have feasible solutions in which the number of hyperedges is exponential
in the number of vertices. This presents an additional technical challenge in hypergraph network
design problems compared to graph network design problems: in order to solve the problem in
polynomial time, we first need to show that there exists a feasible solution in which the number of
hyperedges is polynomial in the input size.

The central theme of this work is to overcome this additional technical challenge for certain
hypergraph network design problems. We show that these hypergraph network design problems
admit solutions in which the number of hyperedges is polynomial in the number of vertices and
moreover, can be solved in strongly polynomial time. Our work improves on the previous fastest
pseudo-polynomial run-time for these problems. As applications of our results, we derive the first
strongly polynomial time algorithms for (i) degree-specified hypergraph connectivity augmentation
using hyperedges and (ii) degree-specified hypergraph node-to-area connectivity augmentation using
hyperedges.

2012 ACM Subject Classification Mathematics of computing → Hypergraphs; Mathematics of
computing → Combinatorial algorithms; Theory of computation → Network optimization

Keywords and phrases Hypergraphs, Hypergraph Connectivity, Submodular Functions, Combinat-
orial Optimization

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.22

Related Version Full Version: https://arxiv.org/abs/2402.10861 [10]

Funding Karthekeyan Chandrasekaran and Shubhang Kulkarni were supported in part by NSF
grants CCF-1814613, CCF-1907937, and CCF-2402667. Karthekeyan was supported in part by the
Distinguished Guest Scientist Fellowship of the Hungarian Academy of Sciences – grant number
VK-6/1/2022. Kristóf and Tamás were supported in part by the Lendület Programme of the
Hungarian Academy of Sciences – grant number LP2021-1/2021, by the Ministry of Innovation and
Technology of Hungary from the National Research, Development and Innovation Fund – grant
number ELTE TKP 2021-NKTA-62 funding scheme, and by the Dynasnet European Research
Council Synergy project – grant number ERC-2018-SYG 810115.

Acknowledgements Part of this work was done while Karthekeyan and Shubhang were visiting
Eötvös Loránd University.

© Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, and Shubhang Kulkarni;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 22; pp. 22:1–22:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kristof.berczi@ttk.elte.hu
mailto:tamas.kiraly@ttk.elte.hu
https://orcid.org/0000-0001-7218-2112
mailto:smkulka2@illinois.edu
https://orcid.org/0000-0002-1670-6011
https://doi.org/10.4230/LIPIcs.ESA.2024.22
https://arxiv.org/abs/2402.10861
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Hypergraph Connectivity Augmentation in Strongly Polynomial Time

1 Introduction

In the degree-specified graph connectivity augmentation using edges problem (DS-Graph-
CA-using-E), we are given an edge-weighted undirected graph (G = (V, EG), cG : EG →
Z+), a degree-requirement function m : V → Z≥0, and a target connectivity function
r :

(
V
2
)

→ Z≥0. The goal is to verify if there exists an edge-weighted undirected graph
(H = (V, EH), wH : EH → Z+) such that the degree of each vertex u in (H, wH) is m(u) and
for every distinct pair of vertices u, v ∈ V , the edge connectivity between u and v in the
union of the weighted graphs (G, cG) and (H, wH) is at least r(u, v); moreover, the problem
asks to construct such a graph (H, wH) if it exists. Watanabe and Nakamura [52] introduced
DS-Graph-CA-using-E for the case of uniform requirement function (i.e., r(u, v) = k for all
distinct u, v ∈ V for some k ∈ Z+) and showed that this case is solvable in polynomial time in
unweighted graphs. Subsequently, Frank [25] gave a strongly polynomial-time algorithm for
DS-Graph-CA-using-E. Since then, designing fast algorithms as well as parallel algorithms
for DS-Graph-CA-using-E has been an active area of research [5, 6, 8, 11, 26, 27, 37, 41].
The last couple of years has seen exciting progress for the uniform requirement function
culminating in a near-linear time algorithm [12,13,14]. In addition to making progress in
the algorithmic status of the problem, these works have revealed fundamental structural
properties of graph cuts which are of independent interest in graph theory. In this work, we
consider generalizations of these connectivity augmentation problems to hypergraphs and
design the first strongly polynomial-time algorithms for these generalizations.

We emphasize that DS-Graph-CA-using-E is a feasibility problem, i.e., the goal is to
verify if there exists a feasible solution and if so, then find one. There is a closely related
optimization variant: the input to the optimization version is a graph (G = (V, EG), cG :
EG → Z+) and a target connectivity function r :

(
V
2
)

→ Z+ and the goal is to find a graph
(H = (V, EH), wH : EH → Z+) with minimum total weight

∑
e∈EH

wH(e) such that for
every pair of distinct vertices u, v ∈ V , the edge connectivity between u and v in the union
of the weighted graphs (G, cG) and (H, wH) is at least r(u, v). This optimization version is
different from the NP-hard min-cost connectivity augmentation problems (like Steiner tree
and tree/cactus/forest augmentation) whose approximability have been improved recently
[9,29,47,48,49]. All algorithms to solve the optimization version [5,6,8,11,25,26,27,37,41,52]
reduce it to solving the degree-specified feasibility version, i.e., DS-Graph-CA-using-E, so
we focus only on the degree-specified feasibility variant and their generalization to hypergraphs
throughout this work. All our results can be extended to an appropriate optimization variant,
but we avoid stating them in the interests of brevity.

Hypergraphs. Edges are helpful to model relationships between pairs of entities. Hyperedges
are helpful to model relationships between arbitrary number of entities. For this reason,
hypergraphs are more accurate models for a rich variety of applications in bioinformatics,
statistical physics, and machine learning (e.g., see [21, 22, 23,35, 39, 42, 44,50, 51, 53]). These
applications have in turn, renewed interests in algorithms for hypergraph optimization
problems [1,2,3,4,15,16,17,18,19,24,28,30,32,33,34,36,38,43,45]. A hypergraph G = (V, E)
consists of a finite set V of vertices and a set E of hyperedges, where every hyperedge e ∈ E

is a subset of V . Equivalently, a hypergraph is a set system defined over a finite set. We
will denote a hypergraph G = (V, E) with hyperedge weights w : E → Z+ by the tuple
(G, w). Throughout this work, we will be interested only in hypergraphs with positive integral
weights and for algorithmic problems where the input/output is a hypergraph, we will require
that the weights are represented in binary. If all hyperedges have size at most 2, then the
hyperedges are known as edges and we call such a hypergraph as a graph.

K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 22:3

We emphasize a subtle but important difference between hypergraphs and graphs: the
number of hyperedges in a hypergraph could be exponential in the number of vertices. This
is in sharp contrast to graphs where the number of edges is at most the square of the number
of vertices. Consequently, in hypergraph network design problems where the goal is to
construct a hypergraph with certain properties, we have to be mindful of the number of
hyperedges in the solution hypergraph (to be returned by the algorithm). This nuanced
issue adds an extra challenging layer to hypergraph network design compared to graph
network design problems – e.g., membership in NP becomes non-trivial. Recent works in
hypergraph algorithms literature have focused on the number of hyperedges in the context
of cut/spectral sparsification of hypergraphs [2, 18, 19, 32, 33, 34, 36, 38, 43, 45]. We will return
to the membership in NP issue after we define the relevant problems of interest to this work.

Notation. Let (G = (V, E), w : E → Z+) be a hypergraph. For X ⊆ V , let δG(X) := {e ∈
E : e ∩ X ̸= ∅, e \ X ≠ ∅} and BG(X) := {e ∈ E : e ∩ X ̸= ∅}. We define the cut function
d(G,w) : 2V → Z≥0 by d(G,w)(X) :=

∑
e∈δG(X) w(e) for every X ⊆ V and the coverage

function b(G,w) : 2V → Z≥0 by b(G,w)(X) :=
∑

e∈BG(X) w(e) for every X ⊆ V . For a vertex
v ∈ V , we use d(G,w)(v) and b(G,w)(v) to denote d(G,w)({v}) and b(G,w)({v}) respectively.
We define the degree of a vertex v to be b(G,w)(v) – we note that the degree of a vertex
is not necessarily equal to d(G,w)(v) since we could have {v} itself as a hyperedge (i.e., a
singleton hyperedge that contains only the vertex v). For distinct vertices u, v ∈ V , the
connectivity between u and v in (G, w) is λ(G,w)(u, v) := min{d(G,w)(X) : u ∈ X ⊆ V \{v}} –
i.e., λ(G,w)(u, v) is the value of a minimum {u, v}-cut in the hypergraph. For two hypergraphs
(G = (V, EG), cG : EG → Z+) and (H = (V, EH), wH : EH → Z+) on the same vertex set V ,
we define the hypergraph (G + H = (V, EG+H), cG + wH) as the hypergraph with vertex set
V and hyperedge set EG+H := EG ∪ EH with the weight of every hyperedge e ∈ EG ∩ EH

being cG(e) + wH(e), the weight of every hyperedge e ∈ EG \ EH being cG(e), and the weight
of every hyperedge e ∈ EH \ EG being wH(e).

1.1 Degree-Specified Hypergraph Connectivity Augmentation
We now define the variant of the DS-Graph-CA-using-E for hypergraphs which will be
the focus of this work.

▶ Definition 1 (DS-Hypergraph-CA-using-H). Degree-specified Hypergraph Connectivity
Augmentation using Hyperedges problem is defined as follows:

Input: A hypergraph (G = (V, EG, cG : EG → Z+),
target connectivity function r :

(
V
2
)

→ Z≥0, and
degree requirement function m : V → Z≥0.

Goal: Verify if there exists a hypergraph (H = (V, EH), wH : EH → Z+) such that
b(H,wH)(u) = m(u) for every u ∈ V , λ(G+H,cG+wH)(u, v) ≥ r(u, v) for every
distinct u, v ∈ V , and if so, then find such a hypergraph.

Before discussing our results, we emphasize a fundamental difference between DS-
Hypergraph-CA-using-H and DS-Graph-CA-using-E. It is clear that DS-Graph-
CA-using-E is in NP since a YES instance admits a weighted graph (H, wH) as a feasible
solution which serves as a polynomial-time verifiable certificate for the YES instance; in
contrast, it is not immediately clear if DS-Hypergraph-CA-using-H is in NP. This is
because, the number of hyperedges in the desired hypergraph (H, wH) could be exponential
in the number of vertices, and consequently, exponential in the size of the input. We give a
concrete example in Remark 2 below to illustrate this issue.

ESA 2024

22:4 Hypergraph Connectivity Augmentation in Strongly Polynomial Time

▶ Remark 2. Suppose that the input instance is given by the empty hypergraph (G, cG) on
n vertices, the target connectivity function r is given by r(u, v) := 2n−1 − 1 for every pair
of distinct vertices u, v ∈ V and the degree requirement function m : V → Z≥0 is given by
m(u) := 2n−1 − 1 for every vertex u ∈ V . We note that the input specification needs only
nO(1) bits. Now, consider the hypergraph (H = (V, EH), wH) where EH := {e ⊆ V : |e| ≥ 2}
with all hyperedge weights being one. The hypergraph (H, wH) is a feasible solution to
the input instance but the number of hyperedges in this hypergraph is 2n − n − 1 which is
exponential in the number of vertices (and hence, the input size). However, we emphasize
that for the given input instance, there is an alternative feasible solution with polynomial
number of hyperedges: the hypergraph containing a single hyperedge that contains all vertices
with the weight of that hyperedge being 2n−1 − 1 is also a feasible solution.
Thus, in order to design a polynomial-time algorithm for DS-Hypergraph-CA-using-H, a
necessary first step is to exhibit the existence of a feasible solution in which the number of
hyperedges is polynomial in the input size.
▶ Remark 3. Given that membership in NP is non-trivial, it is tempting to constrain the
target hypergraph (H, wH) to be a graph. This leads to the degree-specified hypergraph
connectivity augmentation using edges problem (DS-Hypergraph-CA-using-E). Here, the
input is the same as that in DS-Hypergraph-CA-using-H, but the goal is to verify if
there exists a graph with the same desired properties (and if so, find one). Clearly, DS-
Hypergraph-CA-using-E is in NP since YES instances admit a weighted graph (H, wH)
as a feasible solution which serves as a polynomial-time verifiable certificate of YES instances.
However, DS-Hypergraph-CA-using-E is NP-complete [20,40] (see Table 1).
▶ Remark 4. Showing the existence of a feasible solution hypergraph with small number of
hyperedges is a technical challenge in hypergraph network design problems. During first read,
we encourage the reader to focus on this issue for all problems that we define and how it is
addressed by our results and techniques. The strongly polynomial run-time results that we
present are consequences of our techniques to address this issue (using standard algorithmic
tools in submodularity).

Keeping the issue of polynomial-sized solutions in mind, we now discuss the status of
DS-Hypergraph-CA-using-H. Szigeti [46] showed that DS-Hypergraph-CA-using-H
can be solved in pseudo-polynomial time: in particular, if the target connectivity function
r :

(
V
2
)

→ Z≥0 is given in unary, then the problem can be solved in polynomial time. Moreover,
his result implies that if the input instance is feasible, then it admits a solution hypergraph
(H, wH) such that the number of hyperedges in H is at most max{2|V |, max{r(u, v) : {u, v} ∈(

V
2
)
}}. In this work, we strengthen both the structural and algorithmic results of Szigeti. In

particular, we show that feasible instances admit solutions with O(|V |) hyperedges and give
a strongly polynomial time algorithm to compute such solutions.
▶ Theorem 5. There exists an algorithm to solve DS-Hypergraph-CA-using-H that runs
in time O(n7(n + m)2), where n is the number of vertices and m is the number of hypergedges
in the input hypergraph. Moreover, if the instance is feasible, then the algorithm returns a
solution hypergraph that contains at most 4n hyperedges.

We refer the reader to Table 1 for a list of graph/hypergraph connectivity augmentation
problems using edges/hyperedges, previously known results, and our results.

1.2 Degree-Specified Skew-Supermodular Cover Problems
We prove Theorem 5 by focusing on more general function cover problems. These general
function cover problems encompass several applications in connectivity augmentation (includ-
ing DS-Hypergraph-CA-using-H and several others that are discussed in the complete

K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 22:5

version [10]). The main contribution of this work is the first strongly polynomial time
algorithm for these general function cover problems. We recall certain definitions needed to
describe the general function cover problems.

▶ Definition 6. Let V be a finite set, (H = (V, E), w : E → Z+) be a hypergraph, and
p : 2V → Z be a set function.
1. The hypergraph (H, w) weakly covers the function p if b(H,w)(X) ≥ p(X) for every X ⊆ V .
2. The hypergraph (H, w) strongly covers the function p if d(H,w)(X) ≥ p(X) for every

X ⊆ V .

We will be interested in the problem of finding a degree-specified hypergraph that
strongly/weakly covers a given function p. In all our applications (including DS-
Hypergraph-CA-using-H), the function p of interest will be skew-supermodular and/or
symmetric.

▶ Definition 7. Let p : 2V → Z be a set function. We will denote the maximum function
value of p by Kp, i.e., Kp := max{p(X) : X ⊆ V }. The set function p

1. is symmetric if p(X) = p(V − X) for every X ⊆ V , and
2. is skew-supermodular if for every X, Y ⊆ V , at least one of the following inequalities

hold:
a. p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y). If this inequality holds, then we say that p is

locally supermodular at X, Y .
b. p(X) + p(Y) ≤ p(X − Y) + p(Y − X). If this inequality holds, then we say that p is

locally negamodular at X, Y .

We will assume access to the skew-supermodular function p via the following oracle.

▶ Definition 8. Let p : 2V → Z be a set function. p-max-sc-Oracle
(
(G0, c0) , S0, T0, y0

)
takes as input a hypergraph (G0 = (V, E0), c0 : E0 → Z+), disjoint sets S0, T0 ⊆ V , and a
vector y0 ∈ RV ; the oracle returns a tuple (Z, p(Z)), where Z is an optimum solution to the
following problem:

max
{

p(Z) − d(G0,c0)(Z) + y0(Z) : S0 ⊆ Z ⊆ V − T0

}
. (p-max-sc-Oracle)

We note that p-max-sc-Oracle is strictly stronger than the function evaluation oracle1:
function evaluation oracle can be implemented using one query to p-max-sc-Oracle while it
is impossible to maximize a skew-supermodular function using polynomial number of queries
to its function evaluation oracle [31]. However, we will see later that p-max-sc-Oracle can
indeed be implemented in strongly polynomial time for the functions p of interest to our
applications. In our algorithmic results, we will ensure that the size of hypergraphs (G0, c0)
used as inputs to p-max-sc-Oracle are polynomial in the input size (in particular, the number
of hyperedges in these hypergraphs will be polynomial in the size of the ground set V). We
now describe the general function cover problems that will be of interest to this work.

1 For a function p : 2V → Z, the function evaluation oracle takes a subset X ⊆ V as input and returns
p(X).

ESA 2024

22:6 Hypergraph Connectivity Augmentation in Strongly Polynomial Time

Strong Cover Problem. In all our applications, we will be interested in obtaining a degree-
specified strong cover of a function in strongly polynomial time.

▶ Definition 9 (DS-Sym-Skew-SupMod-StrongCover-using-H). Degree-specified sym-
metric skew-supermodular strong cover using hyperedges problem is defined as follows:

Input: A degree requirement function m : V → Z≥0 and
a symmeric skew-supermodular function p : 2V → Z via p-max-sc-Oracle.

Goal: Verify if there exists a hypergraph (H = (V, E), w : E → Z+) such that
b(H,w)(u) = m(u) for every u ∈ V and (H, w) strongly covers the function p,
and if so, then find such a hypergraph.

DS-Sym-Skew-SupMod-StrongCover-using-H was introduced by Bernáth and
Király [7] as a generalization of DS-Hypergraph-CA-using-H (and the other applications
discussed in the full version [10]). They showed that it is impossible to solve DS-Sym-Skew-
SupMod-StrongCover-using-H using polynomial number of queries to the function
evaluation oracle. They suggested access to p-max-sc-Oracle and we work in the same
function access model as Bernáth and Király. We note that it is not immediately clear
if feasible instances of DS-Sym-Skew-SupMod-StrongCover-using-H admit solution
hypergraphs with polynomial number of hyperedges (see Remark 2), so membership of the
problem in NP is not obvious.

Weak Cover Problem. Although our applications will be concerned with degree-specified
strong cover, our techniques will be concerned with degree-specified weak cover problems.

▶ Definition 10 (DS-Skew-SupMod-WeakCover-using-H). Degree-specified skew-
supermodular weak cover using hyperedges problem is defined as follows:

Input: A degree requirement function m : V → Z≥0 and
a skew-supermodular function p : 2V → Z via p-max-sc-Oracle.

Goal: Verify if there exists a hypergraph (H = (V, E), w : E → Z+) such that∑
e∈E w(e) = Kp, b(H,w)(u) = m(u) for every u ∈ V , and (H, w) weakly

covers the function p, and if so, then find such a hypergraph.

There is a close relationship between weak cover and strong cover of symmetric skew-
supermodular functions: If a hypergraph (H = (V, E), w : E → Z+) strongly covers
a function p : 2V → Z, then it also weakly covers the function p; the converse state-
ment is false2. However, imposing the constraint

∑
e∈E w(e) = Kp implies the con-

verse – we elaborate on this now. We note that the requirement
∑

e∈E w(e) = Kp is
present in DS-Skew-SupMod-WeakCover-using-H but not in DS-Sym-Skew-SupMod-
StrongCover-using-H. Firstly, if we drop this constraint from the definition of DS-Skew-
SupMod-WeakCover-using-H, then feasible instances of the resulting problem admit
trivial solutions3. Thus, imposing this constraint makes the problem non-trivial. Secondly,
Szigeti [46] showed that if an instance of DS-Skew-SupMod-WeakCover-using-H is
feasible, then it admits a solution hypergraph (H = (V, E), w : E → Z+) satisfying the

2 For example, consider the function p : 2V → Z defined by p(X) := 1 for every non-empty proper subset
X ⊊ V and p(∅) := p(V) := 0, and the hypergraph (H = (V, E := {{u} : u ∈ V }), w : E → {1}).

3 Consider the hypergraph (H = (V, E), w : E → Z+), where E := {{u} : u ∈ V, m(u) ≥ 1} with
w({u}) := m(u) for every {u} ∈ E.

K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 22:7

constraint
∑

e∈E w(e) = Kp. Moreover, Bernáth and Király [7] observed that if a hy-
pergraph (H = (V, E), w : E → Z+) with

∑
e∈E w(e) = Kp weakly covers a symmetric

skew-supermodular function p, then (H, w) also strongly covers p. Thus, the converse of
the previously mentioned relationship between weak and strong covers is in fact true after
imposing the constraint. The observations of Szigeti [46] and Bernath and Kiraly [7] together
imply that in order to solve DS-Sym-Skew-SupMod-StrongCover-using-H, it suffices
to solve the DS-Skew-SupMod-WeakCover-using-H problem for the same function p.
We will henceforth focus on the latter weak cover problem (and derive results for strong
cover problems via the known reduction).

Before stating the main result of the work, we briefly emphasize the technical challenge in
addressing the weak cover problem. As before, it is not immediately clear if feasible instances
of the DS-Skew-SupMod-WeakCover-using-H problem admits solution hypergraphs in
which the number of hyperedges is polynomial in |V |. Remark 11 below illustrates the issue
with an example that is a modification of the example in Remark 2.

▶ Remark 11. Let n := |V | and consider the degree requirement function m : V → Z≥0 given
by m(u) := 2n−1 − 1 for every u ∈ V and the function p : 2V → Z given by p(X) := 2n−1 − 1
for every non-empty proper subset X ⊊ V , p(V) := 2n − n − 1, and p(∅) := 0. We note that
this function p is skew-supermodular. Consider the hypergraph (H = (V, EH), wH), where
EH := {e ⊆ V : |e| ≥ 2} and all hyperedge weights are one. The hypergraph (H, wH) is a
feasible solution to the input instance but the number of hyperedges in this hypergraph is
2n − n − 1 which is exponential in the number of vertices. However, we emphasize that the
input instance has an alternative feasible solution with polynomial number of hyperedges:
pick an arbitrary vertex u0 ∈ V and consider the hypergraph (H ′ = (V, E′), w′ : E′ → Z+),
where the set of hyperedges is E′ := {{u0}, V − {u0}, V } and their weights are given by
w′({u0}) = 2n−1 − n = w′(V − {u0}) and w′(V) = n − 1.

Thus, a necessary step in designing a polynomial-time algorithm for DS-Skew-SupMod-
WeakCover-using-H is to show that feasible instances admit a solution hypergraph in
which the number of hyperedges is polynomial in the input size. Szigeti [46] gave a complete
characterization for the existence of a feasible solution to DS-Skew-SupMod-WeakCover-
using-H. His proof implies that if a given instance is feasible, then it admits a solution
hypergraph (H = (V, E), w : E → Z+) in which the number of hyperedges is Kp. We
note that Kp need not be polynomial in |V |. His proof also leads to a pseudo-polynomial
time algorithm to solve DS-Skew-SupMod-WeakCover-using-H (the algorithm is only
pseudo-polynomial time and not polynomial time since the number of hyperedges in the
returned hypergraph could be Kp and hence, the run-time depends on Kp). In this work, we
show that feasible instances admit a solution with O(|V |) hyperedges and give a strongly
polynomial-time algorithm to solve DS-Skew-SupMod-WeakCover-using-H.

▶ Theorem 12. There exists an algorithm to solve DS-Skew-SupMod-WeakCover-
using-H that runs in time O(|V |5) using O(|V |4) queries to p-max-sc-Oracle, where V is
the ground set of the input instance. Moreover, if the instance is feasible, then the algorithm
returns a solution hypergraph that contains at most 4|V | hyperedges. For each query to
p-max-sc-Oracle made by the algorithm, the hypergraph (G0, c0) used as input to the query
has O(|V |) vertices and O(|V |) hyperedges.

Theorem 5 along with the observations of Szigeti [46] and Bernáth and Király [7] together
lead to a strongly polynomial-time algorithm for DS-Sym-Skew-SupMod-StrongCover-
using-H. We discuss this result for strong cover and its applications in the full version [10]
(Theorem 5 is derived as one of the applications).

ESA 2024

22:8 Hypergraph Connectivity Augmentation in Strongly Polynomial Time

1.3 Extension to Near-Uniform and Simultaneous Covers
In the complete version [10], we prove several additional results which we briefly describe now.
A hypergraph is uniform if all hyperedges have the same size; a hypergraph is near-uniform if
every pair of hyperedges differ in size by at most one. Uniformity/near-uniformity is a natural
constraint in network design applications involving hypergraphs – we might be able to create
only equal-sized hyperedges in certain applications. Requiring uniform (or near-uniform)
hyperedges can also be viewed as a fairness inducing constraint in certain applications. We
show that feasible instances of DS-Simul-Skew-SupMod-WeakCover-using-H (and
consequently, DS-Hypergraph-CA-using-H) admit a solution with O(|V |) near-uniform
hyperedges and give a strongly polynomial time algorithm to construct such a solution. We
also address simultaneous connectivity augmentation problems using hyperedges, where the
goal is to simultaneously augment two input hypergraphs using the same set of hyperedges
to satisfy given connectivity requirements and degree specifications. These algorithms are
LP-based in contrast to the combinatorial algorithm presented in this extended abstract.
Moreover, the analysis techniques for these LP-based algorithms build on the analysis
techniques of this extended abstract. We omit these more general results from this extended
abstract in the interests of brevity. For a summary of these results, refer to Tables 1 and 2.

In Table 1 below, we list graph/hypergraph connectivity augmentation problems using
edges/hyperedges, previously known results, and our results. In Table 2 below, we list the
general function cover problems using hyperedges, previously known results, and our results.

Table 1 Complexity of Graph and Hypergraph Connectivity Augmentation Problems using Edges
and Hyperedges. Here, n and m denote the number of vertices and hyperedges respectively in the
input hypergraph. Problems having “Near-Uniform” in their title are similar to the corresponding
problems without “Near-Uniform” in their title but have the additional requirement that the
returned solution hypergraph be near-uniform. Results marked with an asterisk are proved in the
complete version of the paper [10]. The problems in the last two rows correspond to connectivity
augmentation using hyperedges problems where the goal is to simultaneously augment two input
hypergraphs using the same set of hyperedges (see the complete version of the paper [10] for their
definitions).

Problem Complexity Status
DS-Graph-CA-using-E Strong Poly [25]
DS-Hypergraph-CA-using-E NP-comp [20,40]

DS-Hypergraph-CA-using-H Psuedo Poly [46]
O(n7(n + m)2) time (Thm 5)

DS-Hypergraph-CA-using-near-uniform-H Pseudo Poly [7]
Strong Poly*

DS-Simul-Hypergraph-CA-using-H Pseudo Poly [7]
Strong Poly*

DS-Simul-Hypergraph-CA-using-near-uniform-H Pseudo Poly [7]
Strong Poly*

1.4 Techniques: Structural and Algorithmic Result
In this section, we discuss our techniques underlying the proof of Theorem 12. For a function
m : V → R, we denote m(X) :=

∑
u∈X m(u). Szigeti [46] gave a complete characterization

of feasible instances of DS-Skew-SupMod-WeakCover-using-H. He showed that an
instance (m : V → Z≥0, p : 2V → Z) of DS-Skew-SupMod-WeakCover-using-H is
feasible if and only if m(X) ≥ p(X) for every X ⊆ V and m(u) ≤ Kp for every u ∈ V . We
note that this characterization immediately implies that feasibility of a given instance of DS-

K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 22:9

Table 2 Complexity of degree-specified skew-supermodular cover using hyperedges problems.
Problems having “Near-Uniform” in their title are similar to the corresponding problems without
“Near-Uniform” in their title but have the additional requirement that the returned solution
hypergraph be near-uniform. Results marked with an asterisk are proved in the complete version of
the paper [10]. The problems in the last two rows correspond to cover using hyperedges problems
where the goal is to simultaneously cover two different functions using the same set of hyperedges
(see the complete version of the paper [10] for their definitions).

Problem Complexity Status

DS-Skew-SupMod-WeakCover-using-H Pseudo Poly [46]
Strong Poly (Thm 12)

DS-Sym-Skew-SupMod-StrongCover-using-H Pseudo Poly [46]
Strong Poly*

DS-Skew-SupMod-WeakCover-using-near-uniform-H Pseudo Poly [7]
Strong Poly*

DS-Sym-Skew-SupMod-StrongCover-using-near-uniform-H Pseudo Poly [7]
Strong Poly*

DS-Simul-Skew-SupMod-WeakCover-using-near-uniform-H Pseudo Poly [7]
Strong Poly*

DS-Simul-Sym-Skew-SupMod-StrongCover-using-near-uniform-H Pseudo Poly [7]
Strong Poly*

Skew-SupMod-WeakCover-using-H can be verified using two calls to p-max-sc-Oracle.
Our main result, stated in Theorem 13 below, is that feasible instances admit a solution with
linear number of hyperedges; moreover, such a solution can be found in strongly polynomial
time. Theorem 13 immediately implies Theorem 12 via Szigeti’s characterization.

▶ Theorem 13. Let p : 2V → Z be a skew-supermodular function and m : V → Z≥0 be a
non-negative function such that:
(a) m(X) ≥ p(X) for every X ⊆ V and
(b) m(u) ≤ Kp for every u ∈ V .
Then, there exists a hypergraph

(
H = (V, E) , w : E → Z+

)
satisfying the following four

properties:
(1) b(H,w)(X) ≥ p(X) for every X ⊆ V ,
(2) b(H,w)(u) = m(u) for every u ∈ V ,
(3)

∑
e∈E w(e) = Kp, and

(4) |E| ≤ 4|V |.
Furthermore, given a function m : V → Z≥0 and access to p-max-sc-Oracle of a skew-
supermodular function p : 2V → Z where m and p satisfy conditions (a) and (b) above, there
exists an algorithm that runs in time O(|V |5) using O(|V |4) queries to p-max-sc-Oracle
and returns a hypergraph satisfying properties 1-4 above. The run-time includes the time to
construct the hypergraphs that are used as inputs to p-max-sc-Oracle. Moreover, for each
query to p-max-sc-Oracle, the hypergraph (G0, c0) used as input to the query has O(|V |)
vertices and O(|V |) hyperedges.

In the rest of this section, we describe our proof technique for Theorem 13. The algorithmic
result in Theorem 13 follows from our techniques for the existential result using known tools
for submodular functions. So, we focus on describing our proof technique for the existial
result here. Let p : 2V → Z be a skew-supermodular function and m : V → Z≥0 be a
non-negative function such that m(X) ≥ p(X) for every X ⊆ V and m(u) ≤ Kp for every
u ∈ V . Our proof of the existential result builds on the techniques of Szigeti [46] who proved
the existence of a hypergraph (H = (V, E), w : E → Z+) satisfying properties (1)-(3), so we

ESA 2024

22:10 Hypergraph Connectivity Augmentation in Strongly Polynomial Time

briefly recall his techniques. His proof proceeds by picking a minimal counterexample and
arriving at a contradiction. Consequently, the algorithm implicit in the proof is naturally
recursive. We present the algorithmic version of his proof since it will be useful for our
purposes.

For the purposes of the algorithmic proof of Szigeti’s result, we assume that m is a
positive-valued function. We show that this assumption is without loss of generality since an
arbitrary instance can be reduced to such an instance (for details, see first two paragraphs in
Section 2). The main insight underlying Szigeti’s proof is the following characterization of
hyperedges in a feasible hypergraph.

▶ Proposition 14. Let p : 2V → Z be a skew-supermodular function and m : V → Z+ be a
positive function such that m(X) ≥ p(X) for every X ⊆ V and m(u) ≤ Kp for every u ∈ V .
Let A ⊆ V . Then, there exists a hypergraph (H = (V, E), w : E → Z+) satisfying properties
(1)-(3) such that A ∈ E if and only if A satisfies the following:

(i) A is a transversal for the family of p-maximizers,
(ii) A contains the set {u ∈ V : m(u) = Kp},
(iii) m(v) ≥ 1 for each v ∈ A, and
(iv) m(X) − |A ∩ X| ≥ p(X) − 1 for every X ⊆ V .

Szigeti’s Algorithm [46]. Proposition 14 leads to the following natural recursive strategy
to compute a feasible hypergraph. If Kp = 0, then the algorithm is in its base case and
returns the empty hypergraph (with no vertices) – here, we note that 0 < m(u) ≤ Kp = 0
for every u ∈ V , and consequently, V = ∅ and thus, the empty hypergraph satisfies
properties (1)-(3) as desired. Alternatively, if Kp > 0, then the algorithm recurses on
appropriately revised versions of the input functions p and m. In particular, the algorithm
picks an arbitrary minimal transversal T for the family of p-maximizers and computes the
set A := T ∪ {u ∈ V : m(u) = Kp}. It can be shown that this set A satisfies properties
(i)-(iv) of Proposition 14; consequently, there exists a feasible hypergraph containing the
hyperedge A. In order to revise the input functions, the algorithm defines (H0, w0) to be
the hypergraph on vertex set V consisting of the single hyperedge A with weight w0(A) = 1
and constructs the set Z := {u ∈ A : m(u) = 1}. Next, the algorithm defines revised
functions m′′ : V − Z → Z and p′′ : 2V −Z → Z as m′′(u) := m(u) − 1 if u ∈ A − Z and
m′′(u) := m(u) if u ∈ V − A − Z and p′′(X) := max{p(X ∪ R) − b(H0,w0)(X ∪ R) : R ⊆ Z}
for every X ⊆ V − Z. The algorithm recurses on the revised input functions m′′ and p′′

to obtain a hypergraph (H ′′, w′′). Finally, the algorithm obtains the hypergraph (G, c) by
adding vertices Z to (H ′′, w′′), and returns the hypergraph (G + H0, c + w0). It can be
shown that p′′ is a skew-supermodular function and m′′ is a positive function such that
m′′(X) ≥ p′′(X) for all X ⊆ V − Z and m′′(u) ≤ Kp′′ for every u ∈ V − Z. We note that
Kp′′ = Kp − 1 by the definition of the function p′′ and the choice of set A being a transversal
for the family of p-maximizers. Consequently, by induction on Kp and Proposition 1, the
algorithm can be shown to terminate in Kp recursive calls and return a hypergraph (H, w)
satisfying properties 1-3. Furthermore, we observe that the number of distinct hyperedges
added by the algorithm is at most the number of recursive calls since each recursive call adds
at most one new hyperedge to (H, w). Thus, the number of distinct hyperedges in (H, w)
is also at most Kp. Consequently, in order to reduce the number of distinct hyperedges, it
suffices to reduce the recursion depth of Szigeti’s algorithm. We note that there exist inputs
for which Szigeti’s algorithm can indeed witness an execution with exponential recursion
depth, and consequently may construct only exponential sized hypergraphs on those inputs
(see example in Remark 11). So, we necessarily have to modify his algorithm to reduce the
recursion depth.

K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 22:11

Our Algorithm. We now describe our modification of Szigeti’s algorithm to reduce the
recursion depth. We observe that the hyperedge A chosen during a recursive call of Szigeti’s
algorithm could also be the hyperedge chosen during a subsequent recursive call. In fact,
this could repeat for several consecutive recursive calls before the algorithm cannot pick the
hyperedge A anymore. We avoid such a sequence of consecutive recursive calls by picking as
many copies of the hyperedge A as possible into the hypergraph (H0, w0) (i.e., set the weight
to be the number of copies picked) and revising the input functions m and p accordingly for
recursion. We describe this formally now. Let (p, m) be the input tuple and A ⊆ V be as
defined by Szigeti’s algorithm. Let

α = min

α(1) := min

{
m(u) : u ∈ A

}
α(2) := min

{
Kp − p(X) : X ⊆ V − A

}
α(3) := min

{
Kp − m(u) : u ∈ V − A

}
We construct the hypergraph (H0, w0) on vertex set V consisting of a single hyperedge A

with weight w0(A) = α. Next, we proceed similar to Szigeti’s algorithm as follows: We
construct the sets Z := {u ∈ A : m(u) = α} and V ′′ := V − Z. Next, we define the set
function p′′ : 2V ′′ → Z as p′′(X) := max{p(X ∪ R) − b(H0,w0)(X ∪ R) : R ⊆ Z} for every
X ⊆ V ′′, and the function m′′ : V ′′ → Z as m′′(u) := m(u) − α1u∈A for every u ∈ V ′′,
where 1u∈A evaluates to one if u ∈ A and evaluates to zero otherwise. Next, we recurse on
the input tuple (p′′, m′′) to obtain a hypergraph (H ′′, w′′); obtain the hypergraph (G, c) by
adding vertices Z to (H ′′, w′′), and return (G + H0, c + w0).

Recursion Depth Analysis. By induction on Kp (generalizing Szigeti’s proof), it can be
shown that our algorithm returns a hypergraph satisfying properties 1-3 of Theorem 13 and
also terminates within finite number of recursive calls. We now sketch our proof to show a
strongly polynomial bound on the recursion depth of our modified algorithm. For this, we
consider how the value α is computed. We recall that α is the minimum of the three values
{α(1), α(2), α(3)}. Using this, we identify a potential function which strictly increases with
recursion depth. For this, we consider three set families that we define now. Let ℓ be the
recursion depth of the algorithm on an input instance and let i ∈ [ℓ]. Let Zi be the set Z
and Di be the set {u ∈ V : m(u) = Kp} in the ith recursive call. Let Fi be the family of
inclusionwise minimal p-maximizers where p is the set function input to the ith recursive
call (a set X is a p-maximizer if p(X) = Kp). Let Z≤i := ∪i

j=1Zj and F≤i := ∪i
j=1Fj . We

consider the potential function ϕ(i) := |Z≤i| + |F≤i| + |Di| and show that each of the three
terms in the function is non-decreasing with i. Furthermore, if α is determined by α(1), then
|Z≤i| strictly increases; if α is determined by α(2), then |F≤i| strictly increases; and if α is
determined by α(3), then |Di| strictly increases (see Lemma 20). We note that Z≤ℓ ⊆ V and
Dℓ ⊆ V . Moreover, we examine how the input functions p across recursive calls relate to
each other and exploit skew-supermodularity of p to show that the family F≤ℓ is laminar
over the ground set V (see Lemma 3.2 of [10]). These facts together imply that the recursion
depth is at most 4|V | − 1.

▶ Remark 15. Our main algorithmic contribution is the modification to Szigeti’s algorithm
to pick as many copies of a chosen hyperedge as possible during a recursive call, i.e., pick
hyperedge A with weight α as opposed to weight 1. Without our modification, there exist
inputs for which Szigeti’s original algorithm can indeed witness an execution with exponential
recursion depth, and consequently may construct only exponential sized hypergraphs on

ESA 2024

22:12 Hypergraph Connectivity Augmentation in Strongly Polynomial Time

those inputs (see example in Remark 11). We do note that our style of modification is
fairly common while converting inductive proofs into efficient algorithms in combinatorial
optimization literature. However, there is no standard run-time analysis technique for such
modifications – analyzing the run-time of such modifications of inductive proofs to algorithms
has required adhoc combinatorial potential functions based on problem structure. Our main
analysis contribution here is identifying an appropriate potential function to show that our
modified algorithm indeed has linear recursion depth. In the complete version of this work
available in arXiv, we build on these analysis ideas to design and analyze LP-based algorithms
for the same problems. The LP-based algorithms have two additional advantages: they can
return near-uniform hypergraphs as solutions and have the ability to address simultaneous
function cover problems.

2 Weak Cover with Linear Number of Hyperedges

In this section, we prove the existential result in Theorem 13. The strongly polynomial-time
algorithm follows from our proof for the existential result via standard tools in submodularity
and their details are given in the complete version [10].

Notation. For a function f : 2V → Z and a set Z ⊆ V , we denote the contraction of f to
V − Z as f/Z : 2V −Z → Z, where p/Z(X) := max{p(X ∪ R) : R ⊆ Z} for every X ⊆ V − Z.
For a function m : V → Z and a set Z ⊆ V , we denote the restriction of m to V − Z as
m\Z : V − Z → Z+, where m\Z(u) = m(u) for every u ∈ V − Z.

We first describe our proof of Theorem 13 under the assumption that the input function
m : V → Z+ is a positive function: In Section 2.1, we present our algorithm (see Algorithm 1).
In Section 2.2, we show that our algorithm terminates within a finite (pseudo-polynomial)
number of recursive calls and returns a hypergraph satisfying properties (1), (2) and (3)
of Theorem 13 (see Lemma 17). In Section 2.3, we give a tighter bound on the number of
recursive calls witnessed by our algorithm and show that the hypergraph returned by the
algorithm also satisfies property (4) of Theorem 13 (see Lemma 21). In the complete version,
we show that our algorithm runs in strongly polynomial time, given the appropriate function
evaluation oracle (see Lemma 4.11 of [10]) – we note that this component of the proof is
omitted here since it involves standard tools and arguments in submodularity. Lemmas 17, 21,
and the polynomial-time implementation details from the full version [10] together complete
the proof of Theorem 13 under the assumption that the input function m : V → Z+ is a
positive function. All missing proofs can be found in the complete version of the paper [10].

We now briefly remark on how to circumvent the positivity assumption on the input
function m in the above proof. Suppose that the input function m is not a positive function.
Let Z := {u ∈ V : m(u) = 0} ≠ ∅. Then, p/Z : 2V −Z → Z is a skew-supermodular function
and m\Z : V − Z → Z+ is a positive function satisfying the two hypothesis conditions of
Theorem 13, i.e. m\Z(X) ≥ p/Z(X) for every X ⊆ V − Z and m\Z(u) ≤ Kp/Z for every
u ∈ V − Z. Furthermore, we observe that a hypergraph satisfying properties (1)-(4) for the
functions p/Z and m\Z also satisfies the four properties for the functions p and m. Finally,
p/Z -max-sc-Oracle can be implemented using p-max-sc-Oracle in strongly polynomial time.
Hence, applying our result for the input (p/Z , m\Z) implies the result for (p, m).

K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 22:13

2.1 The Algorithm
Our algorithm takes as input (1) a skew-supermodular function p : 2V → Z, and (2) a positive
function m : V → Z+ and returns a hypergraph

(
H = (V, E) , w

)
. We note that in contrast

to the non-negative function m appearing in the statement of Theorem 13, the function m

that is input to our algorithm should be positive.
We now give an informal description of the algorithm (refer to Algorithm 1 for a formal

description). Our algorithm is recursive. If V = ∅, then the algorithm is in its base case and
returns the empty hypergraph. Otherwise, the algorithm is in its recursive case. First, the
algorithm computes an arbitrary minimal transversal T ⊆ V for the family of p-maximizers
– i.e., an inclusionwise minimal set T ⊆ V such that T ∩ X ̸= ∅ for every X ⊆ V with
p(X) = Kp. Next, the algorithm computes the set D := {u ∈ V : m(u) = Kp} and defines
the set A := T ∪ D. Next, the algorithm uses the set A to compute the following three
intermediate quantities:

α(1) := min{m(u) : u ∈ A},

α(2) := min
{

Kp − p(X) : X ⊆ V − A
}

,

α(3) := min
{

Kp − m(u) : u ∈ V − A
}

,

and defines α := min
{

α(1), α(2), α(3)
}

. Next, the algorithm computes the set Z := {u ∈ V :
m(u) − α = 0} and defines (H0, w0) to be the hypergraph on vertex set V consisting of a
single hyperedge A with weight w0(A) = α. Next, the algorithm defines the two functions
m′ : V → Z and m′′ : V − Z → Z as m′ := m − αχA, and m′′ := m′\Z . Next, the
algorithm defines the two functions p′ : 2V → Z and p′′ : 2V −Z → Z as p′ := p − b(H0,w0)
and p′′ := p′/Z . The algorithm then recursively calls itself with the input tuple (p′′, m′′) to
obtain a hypergraph

(
H ′′ =

(
V ′′ := V − Z, E′′) , w′′

)
. Finally, the algorithm extends the

hypergraph H ′′ with the set Z of vertices, adds the set A with weight α as a new hyperedge
to the hyperedge set E′′, and returns the resulting hypergraph. If the hyperedge A already
has non-zero weight in (H ′′, w′′), then the algorithm increases the weight of the hyperedge A

by α, and returns the resulting hypergraph.

2.2 Termination and Partial Correctness
In this section, we show that Algorithm 1 terminates within a finite (pseudo-polynomial)
number of recursive calls, and moreover, returns a hypergraph satisfying properties (1)-(3) of
Theorem 13. The proofs in this section are appropriate generalizations of those by Szigeti [46]
and so we defer the details of the proofs to the complete version [10]. The following lemma
states useful properties of Algorithm 1.

▶ Lemma 16. Suppose that V ̸= ∅ and the input to Algorithm 1 is a tuple (p, m), where
p : 2V → Z is a skew-supermodular function and m : V → Z+ is a positive function such
that m(X) ≥ p(X) for all X ⊆ V and m(u) ≤ Kp for all u ∈ V . Let α, Z, m′, p′, m′′, p′′ be
as defined by Algorithm 1. Then, we have that
(a) α ≥ 1,
(b) the function m′′ : V − Z → Z+ is a positive function,
(c) p′′ = (p − b(H0,w0))/Z ; moreover, the function p′′ is skew-supermodular,
(d) m′′(u) ≤ Kp′′ for all u ∈ V − Z,
(e) m′′(X) ≥ p′′(X) for all X ⊆ V − Z,
(f) Kp′′ = Kp′ = Kp − α, and
(g) m′′(V − Z) < m(V).

ESA 2024

22:14 Hypergraph Connectivity Augmentation in Strongly Polynomial Time

Algorithm 1 Weak covering with hyperedges.

Input: Skew-supermodular function p : 2V → Z and positive function m : V → Z+
Output: Hypergraph (H = (V, E), w : E → Z+)

Algorithm (p, m) :

1: if V = ∅ then return Empty Hypergraph
((

∅, ∅
)

, ∅
)

.
2: else:
3: D := {u ∈ V : m(u) = Kp}
4: T := an arbitrary minimal transversal for the family of p-maximizers
5: A := T ∪ D

6: α := min

α(1) := min

{
m(u) : u ∈ A

}
α(2) := min

{
Kp − p(X) : X ⊆ V − A

}
α(3) := min

{
Kp − m(u) : u ∈ V − A

}
7: Z :=

{
u ∈ A : m(u) − α = 0

}
8: Construct

(
H0 :=

(
V, E0 := {A}

)
, w0 : E0 → {α}

)
9: m′ := m − αχA and m′′ := m′\Z

10: p′ := p − b(H0,w0) and p′′ := p′/Z
11: (H ′′, w′′) := Algorithm

(
p′′, m′′)

12: Obtain hypergraph (G, c) from (H ′′, w′′) by adding vertices Z.
13: return (G + H0, c + w0)

The above lemma implies that if the input functions p and m to a recursive call of
Algorithm 1 satisfy conditions (a) and (b) of Theorem 13, then the input functions to the
subsequent recursive call p′′, m′′ as constructed by Algorithm 1 also satisfy conditions (a)
and (b) of Theorem 13. Moreover, Kp′′ < Kp thus guaranteeing that the recursion makes
progress. These facts can together be used to prove the following lemma which shows finite
termination and partial correctness – partial correctness since it proves only the first three
conclusions of Theorem 13.

▶ Lemma 17. Suppose that the input to Algorithm 1 is a tuple (p, m), where p : 2V →
Z is a skew-supermodular function and m : V → Z+ is a positive function such that
m(X) ≥ p(X) for all X ⊆ V and m(u) ≤ Kp for all u ∈ V . Then, Algorithm 1 terminates
within a finite (pseudo-polynomial) number of recursive calls. Furthermore, the hypergraph(
H = (V, E) , w : E → Z+

)
returned by Algorithm 1 satisfies the following three properties:

1. b(H,w)(X) ≥ p(X) for all X ⊆ V ,
2. b(H,w)(u) = m(u) for all u ∈ V , and
3.

∑
e∈E w(e) = Kp.

2.3 Recursion Depth and Hypergraph Support Size
In this section, we prove that our algorithm achieves the fourth conclusion of Theorem 13.
For this, it suffices to prove an upper bound on the number of recursive calls witnessed by an
execution of Algorithm 1. We will prove this in Lemma 21 which is at the end of the section.

Notation. By Lemma 17, the number of recursive calls made by Algorithm 1 is finite. We
will use ℓ to denote the depth of recursion. We will refer to the recursive call at depth i ∈ [ℓ]
as recursive call i or the ith recursive call. We let Vi denote the ground set at the start of

K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 22:15

recursive call i, and pi : 2Vi → Z and mi : Vi → Z≥0 denote the input functions to recursive
call i. Furthermore, for i ∈ [ℓ − 1] we use a subscript i to denote the value of a variable
during the ith recursive call of Algorithm 1 – the only exception to this notation is that we
use (Hi

0, wi
0) to denote (H0, w0) during the ith recursive call. For convenience, we also define

the relevant sets, values and functions during the base case (ℓth recursive call) as follows:
Aℓ, Dℓ, Zℓ := ∅, αℓ, α

(1)
ℓ , α

(2)
ℓ , α

(3)
ℓ := 0, m′

ℓ, m′′
ℓ , mℓ+1 := mℓ, and p′

ℓ, p′′
ℓ , pℓ+1 := pℓ. Finally,

let
(
Hi = (Vi, Ei) , wi

)
denote the hypergraph returned by the ith recursive call.

We note that Lemma 16 and induction on the recursion depth i immediately imply
the following lemma which says that for every i ∈ [ℓ], the input tuple (pi, mi) satisfies the
hypothesis of Theorem 13.

▶ Lemma 18. Suppose that the input to Algorithm 1 is a tuple (p1, m1), where p1 : 2V1 → Z
is a skew-supermodular function and m1 : V1 → Z+ is a positive function such that m1(X) ≥
p1(X) for all X ⊆ V1 and m1(u) ≤ Kp1 for all u ∈ V1. Let ℓ ∈ Z+ be the number of
recursive calls witnessed by the execution of Algorithm 1 and, for all i ∈ [ℓ], let (pi, mi) be
the input tuple to the ith recursive call of the execution. Then, for all i ∈ [ℓ] we have that
pi : 2Vi → Z is a skew-supermodular function and mi : Vi → Z+ is a positive function such
that mi(X) ≥ pi(X) for all X ⊆ Vi and mi(u) ≤ Kpi for all u ∈ Vi.

Set Families. To analyze the recursion depth, we will focus on certain set families associated
with an execution of Algorithm 1. Let i ∈ [ℓ] be a recursive call of Algorithm 1. We define
Z≤i := ∪j∈[i]Zi. We use Fi and F ′

i to denote the families of minimal pi-maximizers and
p′

i-maximizers respectively, i.e., Fi is the collection of inclusionwise minimal sets in the family
{X ⊆ Vi : pi(X) = Kpi

} and F ′
i is the collection of inclusionwise minimal sets in the family

{X ⊆ Vi : p′
i(X) = Kp′

i
}. Lemma 19 below shows the progression of these families across

recursive calls of an execution of Algorithm 1. We will also be interested in families of all
minimal maximizers of the input functions witnessed by the algorithm up to a given recursive
call. Formally, we define the family F≤i := ∪j∈[i]Fj . Lemma 20 below summarizes useful
properties of the stated families.

▶ Lemma 19. Suppose that the input to Algorithm 1 is a tuple (p1, m1), where p1 : 2V → Z
is a skew-supermodular function and m1 : V → Z+ is a positive function such that m1(X) ≥
p1(X) for all X ⊆ V1 and m1(u) ≤ Kp1 for all u ∈ V1. Let ℓ ∈ Z+ be the number of recursive
calls witnessed by the execution of Algorithm 1 and, for all i ∈ [ℓ], let (pi, mi) be the input
tuple to the ith recursive call of the execution. Then, for all i ∈ [ℓ], we have the following:
(a) if Y ⊆ Vi is a pi-maximizer, then Y is also a p′

i-maximizer, and
(b) if Y ⊆ Vi is a p′

i-maximizer such that Y − Zi ̸= ∅, then Y − Zi is a pi+1-maximizer.

▶ Lemma 20. Suppose that the input to Algorithm 1 is a tuple (p1, m1), where p1 : 2V → Z
is a skew-supermodular function and m1 : V → Z+ is a positive function such that m1(X) ≥
p1(X) for all X ⊆ V1 and m1(u) ≤ Kp1 for all u ∈ V1. Let ℓ ∈ Z+ be the number of recursive
calls witnessed by the execution of Algorithm 1 and, for all i ∈ [ℓ], let (pi, mi) be the input
tuple to the ith recursive call of the execution. Then, for all i ∈ [ℓ − 1], we have the following:
(a) Z≤i ⊆ Z≤i+1; furthermore, αi = α

(1)
i if and only if Zi ̸= ∅ (i.e., Z≤i ⊊ Z≤i+1),

(b) F≤i ⊆ F≤i+1; furthermore, if αi = α
(2)
i < α

(1)
i , then F≤i ⊊ F≤i+1,

(c) Di ⊆ D′
i ⊆ Di+1; furthermore, if αi = α

(3)
i , then Di ⊊ D′

i.
We now show the main result of the section which says that an execution of Algorithm 1

witnesses at most 4|V | recursive calls. Since every recursive call adds at most one new
hyperedge to the hypergraph returned by the execution, this also implies that the number of
hyperedges in a solution returned by Algorithm 1 is at most 4|V |. This shows property (4)
of Theorem 13.

ESA 2024

22:16 Hypergraph Connectivity Augmentation in Strongly Polynomial Time

▶ Lemma 21. Suppose that V1 ̸= ∅ and the input to Algorithm 1 is a tuple (p1, m1), where
p1 : 2V1 → Z is a skew-supermodular function and m1 : V1 → Z+ is a positive function such
that m1(X) ≥ p1(X) for all X ⊆ V1 and m1(u) ≤ Kp1 for all u ∈ V1. Let ℓ ∈ Z+ be the
number of recursive calls witnessed by the execution of Algorithm 1. Then,
1. the recursion depth ℓ of Algorithm 1 is at most 4|V1| − 1, and
2. the number of hyperedges in the hypergraph (H = (V1, E), w) returned by Algorithm 1 is

at most 4|V1| − 1.

Proof. We note that part (2) of the current lemma follows from part (1) since every recursive
call adds at most one new hyperedge to the hypergraph returned by the execution in Step
11. Thus, it suffices to show part (1). We define a potential function ϕ : [ℓ] → Z≥0 as follows:
for each i ∈ [ℓ],

ϕ(i) := |Z≤i| + |F≤i| + |Di|.

By Lemma 20, we have that ϕ is a monotone increasing function, since each of the three
terms is non-decreasing and at least one of the three terms strictly increases with increasing
i ∈ [ℓ]. Consequently, the number of recursive calls witnessed by the execution of Algorithm 1
is at most ϕ(ℓ) − ϕ(0) ≤ |Z≤ℓ| + |F≤ℓ| + |Dℓ| ≤ 2|V1| + |F≤ℓ|. It remains to bound the size of
the family F≤ℓ. By Lemma 16(c) and induction on i, we have that pi+1 = (pi − b(Hi

0,wi
0))/Zi

for every recursive call i ∈ [ℓ − 1]. In the complete version, we show that for such a sequence
p1, . . . , pℓ of skew-supermodular functions, the family Fp≤ℓ

is laminar (see Lemma 3.2 of [10]).
Consequently, we have that the number of recursive calls witnessed by the execution of
Algorithm 1 is at most 2|V1| + |F≤ℓ| ≤ 4|V1| − 1. ◀

3 Conclusion

The theme of this work is showing that certain hypergraph network design problems admit
solution hypergraphs with polynomial number of hyperedges and moreover, can be solved in
strongly polynomial time. We believe that this is a necessary step to understand hypergraph
network design problems further - both in polynomial-time solvable cases as well as NP-hard
cases. Our results are for certain abstract hypergraph function cover problems but they
have numerous applications; in particular, they enable the first strongly polynomial time
algorithms for (i) degree-specified hypergraph connectivity augmentation using hyperedges
and (ii) degree-specified hypergraph node-to-area connectivity augmentation using hyperedges.
Previous best-known run-time for these problems were pseudo-polynomial. We believe that
the abstract hypergraph function cover problems might find more applications in the future.
We refer the reader to the complete version of this work for additional results and a discussion
of future directions [10].

We note that recent results have shown that DS-Graph-CA-using-E for the case of
uniform requirement function can be solved in near-linear time [12, 13, 14]. These results
lead to the following natural questions – Algorithmic question: Is it possible to solve DS-
Hypergraph-CA-using-H in near-linear time? Structural question: For feasible instances
of DS-Hypergraph-CA-using-H, does there exist a solution hypergraph whose size is
linear in the number of vertices? We define the size of a hypergraph to be the sum of the
sizes of the hyperedges (and not simply the number of hyperedges). Our results show that
there exists a solution hypergraph in which the number of hyperedges is linear and hence,
the size of such a solution hypergraph is quadratic in the number of vertices. We believe that
an affirmative answer to the algorithmic question would also imply an affirmative answer to
the structural question. On the other hand, answering the structural question would be a
helpful stepping stone towards the algorithmic question.

K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 22:17

References
1 O. Alrabiah, V. Guruswami, and R. Li. Randomly punctured Reed-Solomon codes achieve

list-decoding capacity over linear-sized fields. Preprint on arXiv: 2304.09445, 2023.
2 N. Bansal, O. Svensson, and L. Trevisan. New notions and constructions of sparsification

for graphs and hypergraphs. In IEEE 60th Annual Symposium on Foundations of Computer
Science, FOCS, pages 910–928, 2019.

3 C. Beideman, K. Chandrasekaran, and W. Wang. Deterministic enumeration of all minimum
k-cut-sets in hypergraphs for fixed k. In Proceedings of the 33rd annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 2208–2228, 2022.

4 C. Beideman, Ka. Chandrasekaran, and W. Wang. Counting and enumerating optimum
cut sets for hypergraph k-partitioning problems for fixed k. In International Colloquium on
Automata, Languages and Programming, ICALP, pages 16:1–16:18, 2022.

5 A. Benczúr. Parallel and fast sequential algorithms for undirected edge connectivity augment-
ation. Math. Program., 84:595–640, 1999.

6 A. Benczúr and D. Karger. Augmenting Undirected Edge Connectivity in Õ(n2) Time. Journal
of Algorithms, 37(1):2–36, 2000.

7 A. Bernáth and T. Király. Covering skew-supermodular functions by hypergraphs of minimum
total size. Operations Research Letters, 37(5):345–350, 2009.

8 A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. Fast Edge Splitting and Edmonds’
Arborescence Construction for Unweighted Graphs. In Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 455–464, 2008.

9 J. Byrka, F. Grandoni, and A. J. Ameli. Breaching the 2-approximation barrier for connectivity
augmentation: a reduction to steiner tree. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, pages 815–825, 2020.

10 K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni. Hypergraph connectivity augment-
ation in strongly polynomial time, 2024. arXiv:2402.10861.

11 G.-R. Cai and Y.-G. Sun. The minimum augmentation of any graph to k-edge-connected
graph. Networks, 19:151–172, 1989.

12 R. Cen, W. He, J. Li, and Debmalya Panigrahi. Steiner connectivity augmentation and
splitting-off in poly-logarithmic maximum flows. In Proceedings of the 34th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 2449–2488, 2023.

13 R. Cen, J. Li, and D. Panigrahi. Augmenting edge connectivity via isolating cuts. In Proceedings
of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 3237–3252,
2022.

14 R. Cen, J. Li, and D. Panigrahi. Edge connectivity augmentation in near-linear time. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC,
pages 137–150, 2022.

15 K. Chandrasekaran and C. Chekuri. Hypergraph k-cut for fixed k in deterministic polynomial
time. Mathematics of Operations Research, 47(4), 2022. Prelim. version in FOCS 2020.

16 K. Chandrasekaran and C. Chekuri. Min-max partitioning of hypergraphs and symmetric
submodular functions. Combinatorica, 43:455–477, 2023. Prelim. version in SODA 2021.

17 K. Chandrasekaran, C. Xu, and X. Yu. Hypergraph k-Cut in randomized polynomial time.
Mathematical Programming, 186:85–113, 2021. Prelim. version in SODA 2018.

18 C. Chekuri and C. Xu. Minimum cuts and sparsification in hypergraphs. SIAM Journal on
Computing, 47(6):2118–2156, 2018.

19 Y. Chen, S. Khanna, and A. Nagda. Near-linear size hypergraph cut sparsifiers. In IEEE 61st
Annual Symposium on Foundations of Computer Science, FOCS, pages 61–72, 2020.

20 B. Cosh, B. Jackson, and Z. Király. Local edge-connectivity augmentation in hypergraphs is
NP-complete. Discrete Applied Mathematics, 158(6):723–727, 2010.

21 Q. Dai and Y. Gao. Hypergraph Modeling, pages 49–71. Artificial Intelligence: Foundations, The-
ory, and Algorithms. Springer Nature, Singapore, 2023. doi:10.1007/978-981-99-0185-2_4.

ESA 2024

https://arxiv.org/abs/2402.10861
https://doi.org/10.1007/978-981-99-0185-2_4

22:18 Hypergraph Connectivity Augmentation in Strongly Polynomial Time

22 S. Feng, E. Heath, B. Jefferson, C. Joslyn, H. Kvinge, H. D. Mitchell, B. Praggastis, A. J.
Eisfeld, A. C. Sims, L. B. Thackray, S. Fan, K. B. Walters, P. J. Halfmann, D. Westhoff-Smith,
Q. Tan, V. D. Menachery, T. P. Sheahan, A. S. Cockrell, J. F. Kocher, K. G. Stratton,
N. C. Heller, L. M. Bramer, M. S. Diamond, R. S. Baric, K. M. Waters, Y. Kawaoka,
J. E. McDermott, and E. Purvine. Hypergraph models of biological networks to identify
genes critical to pathogenic viral response. BMC Bioinformatics, 22(1):287, May 2021.
doi:10.1186/s12859-021-04197-2.

23 Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao. Hypergraph neural networks. Proceedings of
the AAAI Conference on Artificial Intelligence, 33(01):3558–3565, July 2019. doi:10.1609/
aaai.v33i01.33013558.

24 K. Fox, D. Panigrahi, and F. Zhang. Minimum cut and minimum k-cut in hypergraphs via
branching contractions. ACM Trans. Algorithms, 19(2), 2023. Prelim. version in SODA 2019.

25 A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on
Discrete Mathematics, 5(1):25–53, 1992.

26 A Frank. Connectivity augmentation problems in network design. Mathematical Programming:
State of the Art 1994, pages 34–63, 1994.

27 H. N. Gabow. Efficient splitting off algorithms for graphs. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing, STOC, pages 696–705, 1994.

28 M. Ghaffari, D. Karger, and D. Panigrahi. Random Contractions and Sampling for Hypergraph
and Hedge Connectivity. In Proceedings of the 28th annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 1101–1114, 2017.

29 F. Grandoni, A. J. Ameli, and V. Traub. Breaching the 2-approximation barrier for the forest
augmentation problem. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2022, pages 1598–1611, 2022.

30 Z. Guo, R. Li, C. Shangguan, I. Tamo, and M. Wootters. Improved List-Decodability and List-
Recoverability of Reed-Solomon Codes via Tree Packings. In IEEE 62nd Annual Symposium
on Foundations of Computer Science, FOCS, pages 708–719, 2022.

31 M. M. Halldórsson, T. Ishii, K. Makino, and K. Takazawa. Posimodular function optimization.
Algorithmica, 84(4):1107–1131, 2022.

32 A. Jambulapati, Y. P. Liu, and A. Sidford. Chaining, group leverage score overestimates, and
fast spectral hypergraph sparsification. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC, pages 196–206, 2023.

33 M. Kapralov, R. Krauthgamer, J. Tardos, and Y. Yoshida. Towards tight bounds for spectral
sparsification of hypergraphs. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, STOC, pages 598–611, 2021.

34 M. Kapralov, R. Krauthgamer, J. Tardos, and Y. Yoshida. Spectral Hypergraph Sparsifiers of
Nearly Linear Size. In IEEE 62nd Annual Symposium on Foundations of Computer Science,
FOCS, pages 1159–1170, 2022.

35 S. Klamt, U.-U. Haus, and F. Theis. Hypergraphs and cellular networks. PLoS Computational
Biology, 5(5):e1000385, May 2009. doi:10.1371/journal.pcbi.1000385.

36 D. Kogan and R. Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, ITCS, pages 367–376,
2015.

37 L. C. Lau and C. K. Yung. Efficient Edge Splitting-Off Algorithms Maintaining All-Pairs
Edge-Connectivities. SIAM Journal on Computing, 42(3):1185–1200, 2013.

38 J. R. Lee. Spectral hypergraph sparsification via chaining. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC, pages 207–218, 2023.

39 P. Li and O. Milenkovic. Inhomogeneous hypergraph clustering with applications. Advances
in neural information processing systems, 30, 2017.

40 H. Miwa and H. Ito. NA-edge-connectivity augmentation problems by adding edges. J. Oper.
Res. Soc Japan, 47:224–243, 2004.

https://doi.org/10.1186/s12859-021-04197-2
https://doi.org/10.1609/aaai.v33i01.33013558
https://doi.org/10.1609/aaai.v33i01.33013558
https://doi.org/10.1371/journal.pcbi.1000385

K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 22:19

41 D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally increasing the edge
connectivity. SIAM Journal on Computing, 26(4):1139–1165, 1997.

42 S. Ornes. How big data carried graph theory into new dimen-
sions. Quanta Magazine, 2021. URL: https://www.quantamagazine.org/
how-big-data-carried-graph-theory-into-new-dimensions-20210819/.

43 K. Quanrud. Quotient sparsification for submodular functions. Manuscript available at
kentquanrud.com, November 2022.

44 S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz, and P. Sanders. High-quality
hypergraph partitioning. ACM Journal of Experimental Algorithmics, 27:1–39, 2023.

45 T. Soma and Y. Yoshida. Spectral sparsification of hypergraphs. In Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 2570–2581, 2019.

46 Z. Szigeti. Hypergraph connectivity augmentation. Math. Program., 84(3):519–527, 1999.
47 V. Traub and R. Zenklusen. A better-than-2 approximation for weighted tree augmentation.

In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
1–12, 2022.

48 V. Traub and R. Zenklusen. Local search for weighted tree augmentation and steiner tree.
In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 3253–3272, 2022.

49 V. Traub and R. Zenklusen. A (1.5 + ϵ)-Approximation Algorithm for Weighted Connectivity
Augmentation. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, pages 1820–1833, 2023.

50 N. Veldt, A. R. Benson, and J. Kleinberg. Hypergraph cuts with general splitting functions.
SIAM Review, 64(3):650–685, 2022. doi:10.1137/20M1321048.

51 Y. Wang and J. Kleinberg. From graphs to hypergraphs: Hypergraph projection and its
remediation. In (To appear) The Twelfth International Conference on Learning Representations,
2024. URL: https://openreview.net/forum?id=qwYKE3VB2h.

52 T. Watanabe and A. Nakamura. Edge-connectivity augmentation problems. Journal of
Computer and System Sciences, 35(1):96–144, 1987.

53 J.-G. Young, G. Petri, and T. P. Peixoto. Hypergraph reconstruction from network data.
Communications Physics, 4(11):1–11, June 2021. doi:10.1038/s42005-021-00637-w.

ESA 2024

https://www.quantamagazine.org/how-big-data-carried-graph-theory-into-new-dimensions-20210819/
https://www.quantamagazine.org/how-big-data-carried-graph-theory-into-new-dimensions-20210819/
kentquanrud.com
https://doi.org/10.1137/20M1321048
https://openreview.net/forum?id=qwYKE3VB2h
https://doi.org/10.1038/s42005-021-00637-w

	1 Introduction
	1.1 Degree-Specified Hypergraph Connectivity Augmentation
	1.2 Degree-Specified Skew-Supermodular Cover Problems
	1.3 Extension to Near-Uniform and Simultaneous Covers
	1.4 Techniques: Structural and Algorithmic Result

	2 Weak Cover with Linear Number of Hyperedges
	2.1 The Algorithm
	2.2 Termination and Partial Correctness
	2.3 Recursion Depth and Hypergraph Support Size

	3 Conclusion

