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Abstract
A spanner is a sparse subgraph of a given graph G which preserves distances, measured w.r.t.
some distance metric, up to a multiplicative stretch factor. This paper addresses the problem of
constructing graph spanners w.r.t. the group Steiner metric, which generalizes the recently introduced
beer distance metric. In such a metric we are given a collection of groups of required vertices, and
we measure the distance between two vertices as the length of the shortest path between them that
traverses at least one required vertex from each group.

We discuss the relation between group Steiner spanners and classic spanners and we show that
they exhibit strong ties with sourcewise spanners w.r.t. the shortest path metric. Nevertheless, group
Steiner spanners capture several interesting scenarios that are not encompassed by existing spanners.
This happens, e.g., for the singleton case, in which each group consists of a single required vertex,
thus modeling the setting in which routes need to traverse certain points of interests (in any order).

We provide several constructions of group Steiner spanners for both the all-pairs and single-source
case, which exhibit various size-stretch trade-offs. Notably, we provide spanners with almost-optimal
trade-offs for the singleton case. Moreover, some of our spanners also yield novel trade-offs for
classical sourcewise spanners.

Finally, we also investigate the query times that can be achieved when our spanners are turned
into group Steiner distance oracles with the same size, stretch, and building time.
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1 Introduction

Given an edge-weighted graph G = (V, E), the distance between two vertices s, t is typically
measured as the length of a shortest path having s and t as endvertices. Such shortest path
metric is pervasive in the study of optimization problems on graphs, yet there are natural
scenarios that cannot be readily captured by such a metric. For example, consider the case
in which a route from s to t needs to pass through at least one vertex from a distinguished
set R ⊆ V of required vertices. These vertices might represent, e.g., grocery stores on your
commute to work, charging stations when planning a trip in an electric vehicle, or special
hosts when routing packets in a communication network. The above metric was introduced
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25:2 Graph Spanners for Group Steiner Distances

in [5] under the name beer-distance.1 In particular, several works have been devoted to
the problem of building a compact data structure that is able to quickly report (exact or
approximate) beer distances between pair of vertices for special classes of graphs, such as
outer planar graphs, interval graphs, or bounded tree-width graphs [5, 6, 15, 20, 21]. Such
data structures are the beer distance rendition of distance oracles, which are analogous data
structures for the shortest path metric. Distance oracles and the closely related concept of
graph spanners have received a vast amount of attention in the area of graph sparsification.
Informally, an α-spanner of G is a sparse subgraph H of G that preserves the all-pairs
distances in G up to a multiplicative stretch factor of α, and a distance oracle can be seen as
data structure which allows for quick queries on the underlying spanner.2
The above discussion begs the following two natural questions:

What happens if paths are required to traverse more than one kind of required vertices?
For example, in the commute from home to work one needs to visit both a grocery store
and a gas station, in some order.
What can be said about beer-distances for general graph, i.e., when G does not fall into
one of the special classes of graphs mentioned above?

Answering these questions is the focus of our paper, which will be devoted to designing
spanners and distance oracles for general graphs and for the natural generalization of beer
distance, which we name group Steiner distance.

Formally, given an undirected connected graph G = (V, E) on n vertices and with
non-negative edge weights, and a collection of k ≥ 1 (not necessarily disjoint) groups
R1, . . . , Rk ⊆ V of required vertices, a group Steiner path between two vertices s and t is
a (not necessarily simple) path π between s and t in G such that π includes at least one
vertex from each group Ri. The group Steiner distance between s and t is the length (w.r.t.
the edge weights, with multiplicity) of the shortest group Steiner path between s and t (see
Figure 1).

Not surprisingly, as we discuss in the full version of the paper, the problem of computing
the group Steiner distance between two vertices is NP-hard in general for large values of k.
On the other hand, the group Steiner distance between two vertices can be computed in
Fixed Parameter Tractable (FPT) time 2kknO(1), which is polynomial when k = O(log n).
Notice that it is easy to imagine scenarios in which k is a small constant.

The group Steiner distance coincides with the beer distance for k = 1, but it also captures
practical scenarios in which one wants to route entities through multiple points of interest,
as in waypoint routing and other related motion planning problems [16, 26, 4].

Using this novel metric, we can define a group Steiner α-spanner which is the analogous
of α-spanner when distances are measured w.r.t. the group Steiner distance metric. Group
Steiner spanners exhibit interesting relations with classical graph spanners (for the shortest
path metric). Indeed, one can observe that any shortest group Steiner path can be seen as
the concatenation of up to k + 1 sub-paths, each of which has s, t, or a vertex in R = ∪iRi

as endvertices, and is a shortest path in G (see Section 2.1 for the details). Hence any

1 In [5], the required nodes in R correspond to breweries, and one seeks a shortest path from s to t among
those that traverse at least one brewery.

2 Actually, a distance oracle does not immediately imply the existence of a corresponding spanner, while
a sparse spanner can always be thought as a compact distance oracle albeit with a large query time.
Nevertheless, it is often the case that a spanner and its corresponding oracle are provided together.
The main challenge in designing distance oracles lies in organizing the implicit distance information
contained in the spanner in a way that allows for quick queries.
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Figure 1 A shortest group Steiner path from s to t with length 9. The required vertices of the
two groups R1 and R2 are depicted as squares and triangles, respectively.

sourcewise3 R × V α-spanner for G is also a group Steiner spanner with the same stretch
factor. As a consequence, all the upper bounds on the sizes for classical sourcewise (and
all-pairs) α-spanners carry over to group Steiner spanners. It turns out that these two notions
coincide when R1 = · · · = Rk = R, which implies that, in general, it is not possible to obtain
better size-stretch trade-offs than the ones for sourcewise spanners. This is always the case
for k = 1.

1.1 Our results
We mainly focus on group Steiner spanners and we show that their landscape exhibits a quite
rich structure. In fact, while the problem of designing group Steiner spanners generalizes
the problem of computing sourcewise spanners w.r.t. the shortest path metric, there are
several interesting and natural classes of instances, like going from a source to a destination
by passing through k waypoints (in any order), for which the lower bounds for the sourcewise
spanners do not apply.

We start our investigation by considering exactly this scenario, that we call singleton case
because each group contains only one vertex. First, we pinpoint the extremal size-stretch
trade-offs: on the one hand it is possible to build a group Steiner spanner with O(kn)
edges that preserves exact distances; on the other hand n − 1 edges are already sufficient
to build a group Steiner tree spanner with stretch 2.4 Both spanners can be constructed
in polynomial-time. Moreover, we show that both results are tight, meaning that there
are instances in which any group Steiner spanner preserving exact distances must contain
Ω(kn) edges and instances for which any group Steiner spanner with stretch strictly less
than 2 must contain at least n edges. We then consider intermediate stretch factors and
show that O(n/ε2) edges suffice to build a group Steiner spanner having stretch γ + ε in
polynomial time, where γ is the approximation factor of a polynomial-time algorithm for the
minimum-cost metric Hamiltonian path problem5 and ε ∈ (0, 1). If one is willing to settle
for an FPT building time w.r.t. k, then the above stretch can be improved to 1 + ε. These
results are summarized in Table 1 (a).

For general instances, we provide two recipes, one of which can be thought as a general-
ization of Theorem 3 in [17]. These recipes use existing α-spanners w.r.t. the shortest-path
metric to construct group Steiner spanners with stretch 2α + 1 (see Table 1 (b)). One recipe

3 A sourcewise R × V α-spanner of G is a subgraph of G that approximates all the R × V distances within
a multiplicative factor of α.

4 We observe that, in general, no sourcewise spanner w.r.t. the shortest path metric with stretch 2 and
size n − 1 exists. As an example, consider a complete unweighted R × (V \ R) bipartite graph and
observe that none of the edges can be discarded if we are seeking for a sourcewise R × V α-spanner, for
any α < 3.

5 The formal definition of this problem is given in the full version of the paper.
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Table 1 Summary of our results. The size-stretch trade-offs of rows marked with ✩ are tight.
The rightmost column reports the query time attained by a distance oracle with the same stretch,
asymptotic size, and building time class (i.e., polynomial or FPT) of the associated spanner. We use
γ to denote the approximation ratio of a polynomial-time algorithm for the minimum-cost metric
Hamiltonian path problem, while R =

⋃
i
Ri denotes the set of all required vertices. Expanded

versions of (b) and (c) are respectively shown in Table 3 and in the full version of the paper.

(a) All-pairs, singleton case (|Ri| = 1 ∀i = 1, . . . , k).

Stretch Size Building time Reference D.O. query time
✩ 1 O(kn) polynomial Theorem 7 O(2k · k3)

1 + ε O(n/ε2) FPT Theorem 8 O(1/ε2)
γ + ε O(n/ε2) polynomial Theorem 9 O(1/ε2)

✩ 2 n − 1 polynomial Theorem 11 O(1)

(b) All-pairs, general group sizes.

Stretch Size Building time Reference D.O. query time
2α + 1 kn +|

⋃
i
(Ri × Ri α-spanner) | polynomial Theorem 13 O(2kk · |R|2 + |R|3)

2α + 1 n + |R × R α-spanner| polynomial Theorem 14 O(2kk · |R|2 + |R|3)

(c) Single-source, general group sizes.

Stretch Size Building time Reference D.O. query time
1 O(2kn) FPT See full version O(1)
3 n − 1 FPT See full version O(1)

α + 1 O(n) + |R × R α-spanner| polynomial See full version O(2kk · |R|2 + |R|3)

(Theorem 14) upper bounds the size of the group Steiner spanner in terms of n and |R|,
while the other (Theorem 13) provides bounds w.r.t. the sizes of the groups Ri. Despite the
simplicity of our constructions, by combining Theorem 14 with the spanners in [1, 8, 14, 18],
we obtain new trade-offs for sourcewise R×V spanners w.r.t. the shortest path metric. These
results are marked with ❉ in Table 3, which summarizes the current state of the art for
group Steiner spanners.

We also consider the single-source case6, and we show that any R×R α-spanner for the
shortest path metric can be used to construct a single-source group Steiner spanner with
stretch α + 1. We also provide ad-hoc constructions achieving either the minimum stretch
α = 1 or the minimum conceivable size n− 1. These results are summarized in Table 1 (c)),
while the corresponding current state of the art for the single-source case is given the full
version of the paper. Finally, as an instrumental result to achieve our trade-offs, we also
consider the single-pair case and show that any group Steiner path can be sparsified to have
O(n) edges without increasing its length (see Corollaries 5 and 6).

Turning our spanners into group Steiner distance oracles. We also investigate the problem
of turning our group Steiner spanners into group Steiner distance oracles. For each of our
spanners, we provide a corresponding oracle with the same stretch, the same asymptotic

6 Roughly speaking, a single-source group Steiner spanner is only required to contain approximate group
Steiner paths between a distinguished source vertex and all other vertices in V . See Section 2.1 for a
formal definition.
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Table 2 Known bounds for classical spanners for both weighted and unweighted graphs that
yield the best trade-offs when used in our recipes of Table 1 (b) and (c). Pairw. denotes a pairwise
spanner, i.e., a spanner which is only required to (approximately) preserve distances between pairs of
vertices in P ⊆ V 2. Randomized constructions are marked with . A mixed stretch of (α, β) means
that the corresponding spanner H approximates the distance from s to t in G within a multiplicative
stretch of α plus an additive stretch of β times the maximum edge-weight, say Ws,t, along a shortest
path from s to t in G, i.e., dH(s, t) ≤ αdG(s, t) + βWs,t. Notice that a spanner with a mixed stretch
of (α, β) is also a spanner with a purely multiplicative stretch of α + β.

Weighted
Type Stretch Size Ref.

V × V 2h − 1 O(n1+1/h) [3]
Pairw. 1 O(n + |P |n1/2) [13]
Pairw. 1 O(n|P |1/2) [13]
Pairw. (1, 2) O(n|P |1/3) [1]
Pairw. (1, 4) O(n|P |2/7) [1]
R × V 4h − 1 O(n + n

1/2|R|1+1/h) [17]
R × R (1, 2 + ε) O(n|R|1/2/ε) [18]

Unweighted
Type Stretch Size Ref.

Pairw. 1 O(n2/3|P |2/3 + n|P |1/3) [8]
R × V (1, 2) Õ(n5/4|R|1/4) [9]
R × V (1, 4) Õ(n11/9|R|2/9) [23]
R × V (1, 6) Õ(n6/5|R|1/5) [23]
R × R (1, 2) O(n|R|1/2) [14]

size and the same class of building time.7 The distance query times are reported in Table 1.
Some of these query times are constant, and in this case our oracles are also able to report a
corresponding group Steiner path in an additional time proportional to the number path’s
edges. The remaining query times are exponential in k and this is unavoidable. Indeed,
consider the group Steiner spanner in Table 1 (a) with stretch 1 and polynomial building
time. It can be shown (see full version of the paper for details) that any corresponding oracle
with polynomial query time would be able to report the cost of a minimum-cost metric
Hamiltonian path which is known to be NP-hard. For similar reasons, any oracle for general
group sizes that has polynomial building time and stretch log2−ε k, for constant ε > 0, cannot
have polynomial query time (regardless of its size), even for the single-pair oracle, due to the
inaproximability of computing group Steiner distances.

Finally, we emphasize that the two oracles for the singleton case with stretch 1 + ε and
γ + ε are, in some sense, tight. Indeed, since a distance oracle can be used to compute group
Steiner distances, the building time of the former oracle (having stretch 1 + ε) cannot be
improved to polynomial time since the minimum-cost metric Hamiltonian path problem
is APX-hard [22]; while improving the stretch to a value better than γ in the latter oracle
would provide a better than γ-approximation for the minimum-cost metric Hamiltonian path
problem.

Due to space limitations, the results for the single-source case, along with some construc-
tions of group Steiner oracles, and some proofs are omitted and can be found in the full
version of the paper.

1.2 Related work
There is a huge body of literature on graph spanners and distance oracles w.r.t. the shortest-
path metric. Since we mostly focus on the stretch-size trade-offs of our group Steiner spanners,
in the following we discuss the related work providing the best size-stretch trade-offs for
spanners. The reader interested in efficient computation of spanners is referred to [24] and
to the references therein.

7 We classify the building times into one of two coarse classes, namely polynomial and FPT, depending
on whether the spanner/oracle can be computed in time nO(1) or f(k)nO(1).

ESA 2024
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Table 3 State of the art for all-pairs group Steiner spanners of weighted graphs (left), along with
additional bounds that only apply to unweighted graphs (right). Randomized constructions are
marked with . Combinations that are dominated by results with a better size-stretch trade-off
are omitted. All building times are polynomial. Results marked with ❉ are also novel sourcewise
R × V spanners w.r.t. the shortest path metric. The classical spanners used for our combinations
are reported in Table 2.

All-pairs Weighted
α Size Reference

3 O(n4/3|R|1/3) Ob. 2 + [1]
3 O(kn + kR2

maxn
1/2) Th. 13 + [13]

3 O(n + |R|2n
1/2) Ob. 2 + [17]

3 O(n3/2) Ob. 2 + [3]
5 O(n9/7|R|2/7) Ob. 2 + [1]
5 O(n4/3) Ob. 2 + [3]

❉ 7 O(n|R|2/3) Th. 14 + [1]
7 O(n + |R|3/2n

1/2) Ob. 2 + [17]
7 O(n5/4) Ob. 2 + [3]

❉ 7 + ε O(n|R|1/2/ε) Th. 14 + [18]
2h − 1 O(n1+1/h) Ob. 2 + [3]
4h − 1 O(n + n

1/2|R|1+1/h) Ob. 2 + [17]

All-pairs Unweighted
α Size Reference

❉ 3 O(n2/3|R|4/3 + n|R|2/3) Th. 14 + [8]
3 O(kn

2/3R
4/3
max+knR

2/3
max) Th. 13 + [8]

3 Õ(n5/4|R|1/4) Ob. 2 + [9]
5 Õ(n11/9|R|2/9) Ob. 2 + [23]
7 Õ(n6/5|R|1/5) Ob. 2 + [23]
7 O(n + |R|3/2n

1/2) Ob. 2 + [17]
❉ 7 O(n|R|1/2) Th. 14 + [14]

A classical result shows that it is possible to build all-pairs spanners with stretch 2h− 1
and size O(n1+ 1

h ), for every integer h ≥ 1 [3] . For h ∈ {1, 2, 3, 5} these asymptotic bounds
are (unconditionally) tight [29, 32], and in general, for every h, matching asymptotic lower
bounds can be proved assuming the Erdős girth conjecture [19]. The reader is referred
to [2] for a survey which also discusses other notions of stretch (e.g., additive and mixed
distortions), as well as generalizations in which good distance approximations only need
to be maintained between specific pairs of vertices of interest (as sourcewise, subsetwise,
or pairwise spanners). In [28, 11, 12], the authors show how to build, in polynomial time,
distance oracles achieving the same size-stretch trade-offs and having constant query time.

As mentioned above, group Steiner paths for the special case k = 1 are known in the
literature as beer paths. The notion of beer paths (and the corresponding beer distance) has
been first introduced in [5, 6], where the authors show how to construct beer distance oracles
for outerplanar graphs that are able to report exact beer distances. Subsequent works showed
how to construct beer distance oracles for interval graphs [15] and graphs with bounded
treewidth [20]. Construction of beer distance oracles for graphs that admit either good tree
decomposition or good triconnected component decompositions have been studied in [21].
None of the above results yields a non-trivial beer distance oracle for general graphs, hence
they cannot readily be compared with group Steiner distance oracles (which also handle
k > 1 groups).

Several distance metrics involving paths that are required to traverse groups of vertices
have already been considered in the context of optimization problems. For example, the
generalized TSP problem [26] asks to find a shortest tour in a graph that visits at least one
vertex from each group, which corresponds to finding the shortest group Steiner path from a
required vertex in the optimal tour to itself. Elbassoni et al., studied a geometric version
of the above problem called Euclidean group TSP [16]. A related optimization problem
involving both waypoints and capacity constraints is known as waypoint routing and has
been studied in [4].

Finally, we point out that our metric should not be confused with a different measure also
called Steiner distance that is defined as the weight of the lightest Steiner tree connecting as
set of vertices (see, e.g., [10, 25]).
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2 Preliminaries

2.1 Notation
We denote by G = (V, E) a connected undirected graph with n vertices, m edges, and
with a non-negative edge-weight w(e) associated with each e ∈ E, We also denote by
R = {R1, . . . , Rk} a collection of k non-empty subsets of V , which we refer to as groups of
required vertices. We denote by R =

⋃k
i=1 Ri.

Throughout this work, we use the term path to refer to walks, i.e., our paths are not
necessarily simple. A group Steiner path from s to t in G w.r.t. R is a path from s to t that
contains at least one vertex from each group. The length w(π) of a path π is the sum of all
its edge weights, with multiplicity (see Figure 1). The group Steiner distance σG(s, t | R)
between s and t w.r.t. R in G is the length of the shortest group Steiner path from s to t in
G. Whenever R is clear from the context, we omit it from the notation.

Given α ≥ 1, a group Steiner α-spanner of G w.r.t. R is a spanning subgraph H of G

such that:

σH(s, t) ≤ α · σG(s, t), (1)

for every s, t ∈ V . We denote by |H| the size of H which corresponds to the number of
edges contained in H. When α = 1, a group Steiner 1-spanner of G is called a group Steiner
preserver as it preserves group Steiner distances between all-pairs of vertices.

The classical notion of graph α-spanner w.r.t. the shortest-path metric is analogous,
once the group Steiner distances σH(s, t) and σG(s, t) in Equation (1) are replaced with the
lengths dH(s, t) and dG(s, t) of a shortest path in H and G, respectively.

Regardless of the distance metric of interest, we can restrict the pairs of vertices for which
the distances in H must α-approximate the corresponding distances in G to those in the set
S × T , for some choice of S, T ⊆ V . The definition of α-spanner in Equation (1) corresponds
to the all-pairs case in which S, T = V . In sourcewise spanners we have S ⊆ V and T = V .
Single-source spanners are a special case of sourcewise spanners in which S = {s}, for some
source vertex s ∈ V . Finally, in subsetwise spanners we have S = T , with S ⊆ V .

Given a path π from s to v in G and a path π′ from v to t in G, we denote by π ◦ π′ the
path obtained by concatenating π with π′. Moreover, given two occurrences x, y of vertices in
π, we denote by π[x : y] the subpath of π between x and y. Notice that the same vertex can
appear multiple times in π however, whenever the occurrence of interest is clear from context,
we may slightly abuse the notation and use vertices in place of their specific occurrences.

We conclude this preliminary section by observing a structural property of group Steiner
paths and its important immediate consequences. The property can be proved by a simple
cut-and-paste argument, and intuitively shows that a shortest group Steiner path can be seen
as a concatenation of up to k + 1 subpaths, each of which is a shortest path in G between
two vertices in R ∪ {s, t}. This is formalized in the following:

▶ Lemma 1. Let π = ⟨s = v0, v1, . . . , vℓ = t⟩ be a shortest group Steiner path between two
vertices s and t in G. Let j1, . . . , jh be h indices such that 0 ≤ j1 < j2 < · · · < jh ≤ ℓ and
{vj1 , . . . , vjh

} ∩Ri ≠ ∅ for all i = 1 . . . , k. For every i = 0, . . . , h, ⟨vji
, vji+1, . . . , vji+1⟩ is a

shortest path between vji
and vji+1 in G, where j0 = 0 and jh+1 = ℓ.

The above property immediately implies the following results, whose simple proofs are
given in the full version of the paper:

▶ Observation 2. Any sourcewise R× V (and hence also any all-pairs V × V ) α-spanner
w.r.t. the shortest path metric is an all-pairs group Steiner α-spanner.

ESA 2024
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▶ Observation 3. Any group Steiner α-spanner with R1 = R2 = · · · = Rk = R is a sourcewise
R× V α-spanner w.r.t. the shortest path metric.

2.2 Single-pair group Steiner spanners
Our technical discussion begins with a result (whose proof is given in the full version of the
paper) for the single-pair case that, other than being interesting in its own regard, will also
be instrumental to construct our group Steiner spanners.

▶ Lemma 4. Let π be a group Steiner path from s to t in G. We can process π in polynomial
time to build a group Steiner path π′ from s to t in G that traverses at most 2(n− 1) edges
(with multiplicity) and such that w(π′) ≤ w(π).

From Lemma 4, we can easily derive the following corollaries. The first corollary is a
direct consequence that a shortest group Steiner path can be computed in 2kk · nO(1) time,
while the second corollary, which holds only for the singleton case, comes from the fact that
we can compute a 3/2-approximation of the shortest group Steiner path in G. Both the
aforementioned results are discussed in the full version of the paper.

▶ Corollary 5. We can compute a single-pair shortest group Steiner path of size at most
2(n− 1) in 2kk · nO(1) time.

▶ Corollary 6. For the singleton case in which |Ri| = 1 for all i = 1, . . . , k, there is a
polynomial-time algorithm that computes a single-pair group Steiner path with stretch 3/2
and size at most 2(n− 1).

3 Group Steiner spanners in the singleton case

In this section we consider the special case in which each group Ri in R contains a single
vertex ri, hence R = {r1, r2, . . . , rk}.

3.1 A group Steiner preserver
Lemma 1 implies that union of k shortest-path trees T1, . . . , Tk of G, where Ti is rooted in
ri, is a group Steiner preserver of size O(kn). The size of such a preserver is asymptotically
optimal, even when G is unweighted. To see this, let k ≥ 3 and consider a graph G consisting
of a cycle ⟨r1, r2, . . . , rk, r1⟩ on the k required vertices, along with n− k additional vertices
v1, . . . , vn−k (see Figure 4).8 All vertices vi have ⌊k/3⌋ incident edges, where the j-th such
edge is ei,j = (vi, r1+3(j−1)). Given any vi and r1+3(j−1), there exists a unique simple path
from vi to r2+3(j−1) spanning vi and {r1, . . . , rk}, and such a path uses the edge ei,j . As a
consequence, any group Steiner preserver H must contain all edges ei,j , which implies that
H must have size Ω(kn).

▶ Theorem 7. In the singleton case, it is possible to compute a group Steiner preserver of
size O(kn) in polynomial time. Moreover, there are unweighted graphs G such that any group
Steiner preserver of G has size Ω(kn).

A corresponding distance oracle with query time O(2kk3) is discussed in the full version
of the paper.

8 For k ∈ 1, 2, a trivial lower bound of Ω(n) = Ω(kn) clearly holds.
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s
ci

r′i r′j

πi,j

rs rt
cj t

Ti Tj

2 8

6

Figure 2 On the left: a tree with edge-weights, where unlabeled edges have weight 1, and a
possible decomposition into micro-trees as computed by our procedure with W = 6. The edges
(v, ui) are highlighted in red. On the right: a qualitative depiction of the paths used in the analysis
of the stretch of our group Steiner (1 + ε)-spanner. The shortest group Steiner path between s and t

is shown in bold, while πs and πt are shown in blue. The white triangles are the trees in Fi and Fj

rooted in ci and cj , respectively.

3.2 A spanner with stretch 1 + ε and O(n/ε2) edges

By the lower bound in Theorem 7, any group Steiner α-spanner of size o(kn) must have a
stretch of α > 1. In this section we present an algorithm that builds a group Steiner spanner
of linear size and stretch 1 + ε in time 2kknO(1), for every constant ε > 0. We then show
how to reduce the building time of our group Steiner spanner to polynomial at the cost of
increasing the stretch to γ + ε by using a γ-approximation algorithm for the minimum-cost
metric Hamiltonian path problem as a black-box. By keeping the same trade-offs among size,
stretch, and building time, we show how to convert both spanners to group Steiner distance
oracles with query time O(1/ε2). The pseudocode for constructing our (1 + ε) group Steiner
spanner can be found in Algorithm 1.

We start by defining an auxiliary clustering procedure that will be useful for describing
all our spanner constructions. Given a set of centers C ⊆ V , the procedure computes a
spanning forest F of G with |C| rooted trees with the following properties: (i) the root of
each tree is a distinct vertex in C, (ii) the unique path in F from a vertex v ∈ V to the root
c of its tree is a shortest path between v and c in G, (iii) c is (one of) the closest center(s) to
v. The procedure first constructs a graph G′ which is obtained from G by adding a dummy
source vertex s∗ along a dummy edge (s∗, c) of weight 0 for each c ∈ C. Then, it computes a
shortest-path tree T̃ of G′ from s∗ that contains all the dummy edges. Finally, it returns the
forest F obtained by deleting s∗ (and all its incident dummy edges) from T̃ .

We show how to compute our group Steiner spanner H. Let T be a Steiner tree of G

w.r.t. the required vertices R whose total weight w(T ) is at most twice that of the optimal
Steiner tree T ∗. It is known that T can be computed in polynomial time [31].

We subdivide T into O( 1
ε ) edge-disjoint micro-trees T1, . . . , Th that altogether span all

vertices of T and such that each micro-tree is a subtree of T of weight at most W = ε
4 w(T ).

The subdivision is computed by the following iterative procedure, which keeps track of the
part T ′ yet to be divided. Initially, T ′ is obtained by rooting T in an arbitrary vertex. As long
as T ′ has weight larger than W , we find a node v such that the weight of the subtree T ′

v of
T ′ rooted in v is larger than W and the depth of v in T ′ is maximized. Let u1, u2, . . . be the
children of v in T ′, and let i be the smallest index such that

∑i
j=1

(
w(T ′

uj
) + w(uj , v)

)
> W .

We create two micro-trees: one consists of the subtree of T ′
v induced by v and all the vertices

in T ′
u1

, . . . , T ′
ui−1

(if any), and the other consists of T ′
ui

. Notice that our choice of v and
i ensures that both micro-trees have weight at most W . Finally, we delete all vertices in
T ′

u1
, . . . , T ′

ui
from T ′ (along with their incident edges) and repeat.
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Algorithm 1 Our algorithm for computing a group Steiner (1 + ϵ)-spanner of a graph G

in the singleton case. R denotes the set of required vertices.

/* Returns a rooted forest F of G with one tree Tc for each c ∈ C.
If vertex v is in Tc then dTc

(v, c) = dG(v, c) ≤ dG(v, c′) for c′ ∈ C. */
1 Function Cluster(C):
2 G′ ← graph obtained from G by adding a new vertex s∗ and all edges (s∗, c) of

weight 0 for c ∈ C;
3 T̃ ← a shortest path tree of G′ from s∗ that contains all edges incident to s∗;
4 F ← the forest obtained from T̃ by deleting s∗ and all its incident edges;
5 return F ;

/* Returns a partition of a group Steiner tree T of G w.r.t. R into
a collection T containing O( 1

ϵ ) edge-disjoint micro-trees. */
6 Function PartitionIntoMicroTrees(T):
7 W ← ε

4 w(T );
8 T ← ∅; // A collection of micro-trees
9 T ′ ← tree obtained by rooting T in an arbitrary vertex;

10 while w(T ′) > W do
11 v ← deepest node in T ′ such that w(Tv) ≥W ;
12 u1, . . . , uk ← children of v in T ′, in an arbitrary order;
13 i← smallest index such that

∑i
j=1

(
w(T ′

uj
) + w(uj , v)

)
> W ;

14 T ′′ ← subtree of T ′ induced by v and all the vertices in Tuj
for j < i;

15 T ← T ∪ {T ′′, T ′
ui
};

16 T ′ ← tree obtained from T ′ by deleting all the vertices in Tuj
for j ≤ i;

17 return T ∪ {T ′};

18 T ← a Steiner tree w.r.t. R such that w(T ) is at most twice the weight of an
optimal Steiner tree;

19 T1, . . . , Th ← PartitionIntoMicroTrees (T );
20 G← complete graph with vertex set R, the weight of a generic edge (u, v) is dG(u, v);
21 for i← 1, . . . , h do
22 for j ← i, . . . , h do
23 π′

i,j ← minimum cost path among all Hamiltonian paths in G having an
endvertex in Ti and the other endvertex in Tj ;

24 π′′
i,j ← path obtained from π by replacing each edge (u, v) with a shortest
path from u to v in G (w.r.t. the shortest path metric);

25 πi,j ← sparsify π′′
i,j as shown in Lemma 4;

26 for i← 1, . . . , h do
27 Fi ← Cluster(V (Ti)), where V (Ti) denotes the set of vertices in Ti;

28 return H = T ∪
(⋃h

i=1
⋃h

j=i πi,j

)
∪

(⋃h
i=1 Fi

)
;

We stop the above procedure as soon as w(T ′) ≤W , and we choose T ′ as the last micro-
tree of our subdivision (see Figure 2). Notice that the edges deleted in each iteration have a
total weight of at least W , and that each iteration creates at most 2 micro-trees. It follows
that the resulting collection contains at most 2

(
w(T )

W + 1
)
≤ 8

ε + 2 = O( 1
ε ) micro-trees.
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We then compute a complete graph G on the required vertices, where the weight of a
generic edge (u, v) is dG(u, v). Then, for each unordered pair of (not necessarily distinct)
micro-trees {Ti, Tj}, we consider all pairs (r, r′) of required vertices such that r is in Ti and r′

is in Tj , compute a minimum-cost Hamiltonian path in G between r and r′, and we call πi,j

the shortest of such paths in which each edge of G has been replaced by the corresponding
shortest path in G. Thanks to Lemma 4, we can assume that each πi,j contains at most
O(n) edges.

Finally, we compute h forests F1, . . . , Fh, where Fi is obtained by our clustering procedure
using the vertices of Ti as centers.

Our group Steiner spanner H consists of the union of T , all paths πi,j for 1 ≤ i ≤ j ≤ h,
and all the edges in Fi for 1 ≤ i ≤ h. The size of H is O(n/ε2) as each of (i) T , (ii) the
O( 1

ε2 ) paths πi,j , and (iii) O( 1
ε ) forests Fi, all contain O(n) edges.

To analyze the stretch of H, fix a shortest group Steiner path π∗ between any two vertices
s, t in G and let rs (resp. rt) be the first (resp. last) required vertex encountered in a traversal
of π∗ from s to t. Let Ti and Tj the micro-trees containing rs and rt, respectively. Moreover,
let r′

i and r′
j be the endvertices of πi,j , where r′

i lies in Ti and r′
j lies in Tj . Finally, let ci

(resp. cj) be the root of the tree containing s in Fi (resp. t in Fj). The situation is depicted
in Figure 2.

Notice that the weight of a minimum-cost group Steiner tree is a lower bound to w(π∗),
hence w(T )

2 ≤ σG(s, t). Moreover, since rs is a center of the clustering procedure for Fi, we
have dFi

(s, ci) ≤ w(π∗[s : rs]), and symmetrically dFi
(cj , t) ≤ w(π∗[t : rt]). Therefore:

σH(s, t) ≤ dFi
(s, ci) + dTi

(ci, r′
i) + w(πi,j) + dTj

(r′
j , cj) + dFj

(rj , t) (2)
≤ w(π∗[s : rs]) + W + w(π∗[r′

i : r′
j ]) + W + w(π∗[rt, t])

≤ w(π∗) + 2 · ε

4w(T ) ≤ σG(s, t) + εσG(s, t) = (1 + ε)σG(s, t).

Observe that all steps of the above construction can be carried out in polynomial time,
except for the computation of the paths πi,j , which requires time 2kknO(1) (see the full
version of the paper). Hence, we have the following:

▶ Theorem 8. In the singleton case, it is possible to compute a group Steiner spanner having
stretch 1 + ε and size O( n

ε2 ) in 2kk · nO(1) time.

To obtain a polynomial building time, we can redefine each πi,j starting from a γ-
approximation of minimum-cost Hamiltonian path between (a vertex of) Ti and (a vertex of)
Tj in G. We use w(πi,j) ≤ γw(π∗[r′

i, r′
j ]) in Equation (2) to show that

σH(s, t) ≤ w(π∗[s : rs]) + W + γw(π∗[r′
i : r′

j ]) + W + w(π∗[rt, t])

≤ γw(π∗) + 2 · ε

4w(T ) ≤ γσG(s, t) + εσG(s, t) = (γ + ε)σG(s, t).

We can then state the following:

▶ Theorem 9. In the singleton case, it is possible to compute a group Steiner spanner having
stretch γ + ε and size O( n

ε2 ) in polynomial time, where γ is the approximation ratio for the
minimum-cost metric Hamiltonian path problem.

If G is weighted, we can choose γ = 3
2 [33], while if G is unweighted (i.e., G is the metric

closure of an unweighted graph) we can choose γ = 7
5 + δ [27, 30], for any constant δ > 0.
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cs = v1 v2 v` = ct. . .

π1 π2 π`
T1 T2 T`

Figure 3 A qualitative depiction of the path constructed in the proof of Lemma 10. The path in
bold is the unique path π from cs to ct in T . Each πi is the Eulerian tour of the corresponding tree
Ti, and the final path is in red.

A corresponding distance oracle. Here we show how to transform the above spanners into
group Steiner distance oracles with the same size, stretch and building time. The oracles will
be able to answer distance queries in O(1/ε2) time and report a corresponding path with an
additional time proportional to the number of the path’s edges.

We only discuss how to build the oracle with stretch 1 + ε since the version with stretch
γ + ε is analogous. Our oracle explicitly maintains all the O(1/ε2) paths πi,j and their
lengths, all the h = O(1/ε) micro-trees T1, . . . , Th and the forests F1, . . . , Fh. Moreover, for
each micro-tree Ti, we maintain a linear-size data structure that, given any two vertices a

and b of Ti, returns the length of the (unique) path in Ti between a and b in constant time,
and the corresponding path in time proportional to its number of edges.9 Notice that the
size of our oracle is O(n/ε2).

To answer a distance query for the vertices s and t, we look at all pairs of micro-trees
Ti, Tj . For each such pair, arguments analogous to the ones used in the analysis of the stretch
factor of the spanner, show that there exists a group Steiner path in H of length

ℓi,j(s, t) = dFi
(s, ci) + dTi

(ci, r′
i) + w(πi,j) + dTj

(r′
j , cj) + dFj

(cj , t),

where ci (resp. cj) is the root of the tree containing s in Fi (resp. t in Fj) and r′
i, r′

j are
the endpoints of πi,j . Notice that ℓi,j(s, t) can be evaluated in constant time. We return
min1≤i≤j≤h ℓi,j(s, t), which is guaranteed to be at most (1+ε)dG(s, t) by Equation (2). Once
the pair i, j minimizing ℓi,j(s, t) is known, we can also report a group Steiner path of length
ℓi,j(s, t) in constant time per path edge by navigating Fi (resp. Fj) from s (resp. t) to the
root of its tree, and by querying our data structures for the micro-trees Ti and Tj .

3.3 A tree spanner with a tight stretch of 2
We now describe how to obtain group Steiner tree spanner with stretch 2 (and n− 1 edges).

We first compute a complete graph G on the required vertices, where the weight of a
generic edge (u, v) is dG(u, v). We then compute an MST M of G, and we construct a
subgraph M̃ of G by replacing each edge (u, v) in M with a shortest path between u and v in
G. Finally, we select any spanning tree T of M̃ . Our spanner H is obtained as the union of
T with the forest F computed by our clustering procedure using the vertices in T as centers.

Notice that H has n− 1 edges since it is a spanning tree of G. We now show that the
stretch factor of H is at most 2. Consider any pair of vertices s, t and let cs and ct be the
roots of the trees of F containing s and t, respectively (notice that cs and ct might coincide).

▶ Lemma 10. There exists a path between cs and ct in T that traverses all vertices of T

and has length 2w(T )− dT (cs, ct).

9 For instance, such a data structure can be implemented by rooting Ti at an arbitrary vertex and using
the least-common-ancestor data structure in [7].



D. Bilò, L. Gualà, S. Leucci, and A. Straziota 25:13

Proof. Let π = ⟨cs = v1, v2, . . . , vℓ = ct⟩ be the unique path from cs to ct in T (if cs = ct

then π = ⟨cs⟩), and call Ti the unique tree containing vi in the forest obtained from T by
deleting the edges of π. Let πi be an Eulerian tour of Ti that starts and ends in vi and observe
that πi traverses each edge in Ti twice. The sought path is obtained by joining all tours
π1, . . . , πℓ with the edges of π, i.e., it is the path π1 ◦ (v1, v2)◦π2 ◦ (v2, v3)◦ · · · ◦ (vℓ−1, vℓ)◦πℓ

(see Figure 3). ◀

Using the above lemma, we consider the path from s to t in H consisting of the composition
of (i) the unique path πs from s to cs in F , (ii) a path π from cs to ct of length at most
2w(T ) that traverses all vertices in T (whose existence is guaranteed by Lemma 10), and (iii)
the unique path πt from ct to t.

We now argue that the length of the above path is at most 2σ(s, t). Let π∗ be the optimal
group Steiner path from s to t and let r∗

1 and r∗
k be the first and the last occurrences of a

required vertex in π∗, respectively. Since r∗
1 is a vertex of T , the length of π∗[s : r∗

1 ] is at least
w(πs). Similarly, the length of π∗[r∗

k : t] is at least w(πt). Moreover, observe that the weight
of M is a lower bound for the length of π∗[r∗

1 : r∗
k], and hence w(T ) ≤ w(M) ≤ w(π∗[r∗

1 : r∗
k]).

Therefore:

σH(s, t) ≤ w(πs) + w(π) + w(πt) = dF (s, cs) + 2w(T )− dT (cs, ct) + dF (ct, t) (3)
≤ w(π∗[s : r∗

1 ]) + 2w(T ) + w(π∗[r∗
k : t])

≤ w(π∗[s : r∗
1 ]) + w(π∗[r∗

1 : r∗
k]) + w(π∗[r∗

k : t]) + w(T )
≤ w(π∗) + w(T ) ≤ 2w(π∗) = 2σG(s, t).

▶ Theorem 11. In the singleton case, it is possible to compute a group Steiner tree spanner
having stretch 2 and n− 1 edges in polynomial time.

We can prove that the stretch of the above tree spanner is tight, since its stretch cannot
be improved even for the single-source case.

▶ Theorem 12. In the singleton case, there are unweighted graphs G such that any single-
source group Steiner spanner of G having stretch strictly smaller than 2− 2

k must contain at
least n edges.

Proof. To prove our lower bound consider a graph G consisting of a cycle C on the k

required vertices r1, . . . , rk, plus n − k additional vertices v1, . . . , vn−k connected to an
arbitrary required vertex r via the edges in F = {(v1, r), . . . , (vn−k, r)}, and let r1 be the
source vertex (see Figure 4). Clearly all single-source group Steiner spanners of G need
to contain all edges in F , since otherwise they would be disconnected. Consider now any
subgraph H obtained from G by deleting a generic edge e of the cycle. Observe that the
shortest group Steiner path from s to itself in H requires traversing each edge C − e twice,
hence σH(s, s) = 2(k − 1) = 2k − 2. Since the shortest group Steiner path in G from s to
itself has length k, the stretch factor of H is at least 2k−2

k = 2− 2
k . ◀

Our group Steiner spanner can also be turned a corresponding distance oracle with
constant query time, as we discuss in the full version of the paper.

4 Group Steiner spanners for general group sizes

We now describe how to obtain an all-pairs group Steiner spanner H with stretch factor
2α + 1, for each α ≥ 1. We will provide two different constructions that build different
spanners of sizes kn + |

⋃
i Ri ×Ri α-spanner| and n + |R×R α-spanner|, respectively. The
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Figure 4 The lower bound constructions of Theorem 12 (left) and Theorem 7 (right) with k = 10
required vertices. The generic required vertex ri is depicted as a squared labelled with i.

first construction is preferable over the second one when the k groups are somewhat disjoint
and of uniform sizes, i.e., |Ri| = O(|R|/k) for all i. Corresponding distance oracles having
query time O(2kk · |R|2 + |R|3) are discussed in the full version of the paper.

The first construction. The first construction is the following. For each group Ri ⊆ V , we
build the spanner H as the union of a subsetwise spanner Ri × Ri with stretch α, plus k

spanning forests F1, . . . , Fk, where each Fi is obtained by our clustering procedure using the
vertices in Ri as centers.

We now discuss the stretch factor of H. Fix any two vertices s, t ∈ V , and, without loss
of generality, assume that the shortest group Steiner path π∗ from s to t in G traverses the
groups R1, . . . , Rk in this order (otherwise, re-index the groups accordingly), and let ri be
the first required vertex in Ri reached by π∗ (see Figure 5).

Let r′
1 (resp. r′

k+1) be the root of the tree in F1 (resp. Fk) containing s (resp. t) and let
π1 (resp. πk+1) the unique path in F1 (resp. Fk) between s and r′

1 (resp. between t and r′
k+1).

Moreover, for each i = 2, . . . , k, let r′
i be the root of the tree in Fi containing ri−1, and let πi

be the corresponding path in Fi between them. Finally, denote by π′
i the path in H between

r′
i and ri, for i = 1, . . . , k, and by π′

k+1 the path in H between rk and r′
k+1. Consider now

the group Steiner path π̃ in H made by the concatenation of π1 ◦π′
1 ◦ · · · ◦πk ◦π′

k ◦π′
k+1 ◦πk+1

(see Figure 5). We now show that w(π̃) ≤ (2α + 1)w(π∗).
For technical convenience, we let r0 = s and rk+1 = t and we notice that, for i =

1, . . . , k + 1, we have w(πi) ≤ w(π∗[ri−1 : ri]).
For i = 1, . . . , k, w(π′

i) ≤ αdG(r′
i, ri) ≤ α(w(πi) + w(π∗[ri−1 : ri])) ≤ 2αw(π∗[ri−1 : ri]).

Finally, w(π′
k+1) ≤ αdG(rk, r′

k+1) ≤ α(w(π∗[rk : rk+1]) + w(πk+1)) ≤ 2αw(π∗[rk : rk+1]).

σH(s, t) ≤ w(π̃) =
k+1∑
i=1

(w(πi) + w(π′
i)) ≤

k+1∑
i=1

w(π∗[ri−1 : ri]) + 2α

k+1∑
i=1

w(π∗[ri−1 : ri])

= w(π∗) + 2αw(π∗) = (1 + 2α)σG(s, t).

▶ Theorem 13. Given k subsetwise spanners H1, . . . , Hk, where Hi is an Ri×Ri α-spanner
of G, it is possible to compute in polynomial time a group Steiner spanner of G with stretch
2α + 1 and size O

(
nk +

∣∣∣⋃k
i=1 Hi

∣∣∣).

The second construction. The second construction is the following. We build the spanner
H as the union of a subsetwise R×R α-spanner H ′ of G, plus a spanning forest F that is
obtained by our clustering procedure using the vertices in R as centers. Clearly, the size of
H is O(n + |H ′|).

We now show that the stretch factor of H is 2α + 1. Fix any two vertices s, t ∈ V , and,
without loss of generality, assume that the shortest group Steiner path π∗ from s to t in G

traverses the groups R1, . . . , Rk in this order (otherwise, re-index the groups accordingly).
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R1

t

r′1 r′2 r′k

r1 r2

. . .

r′k+1
π1

π2
πkπ′1 π′2

π′k π′k+1
πk+1

s

rk
R2 Rk

Figure 5 A qualitative depiction of analysis of the stretch 2α + 1. The shortest group Steiner
path π∗ from s to t is in bold, while the path π̃ in the spanner is in red.

Let ri be the first required vertex in Ri reached by π∗. Let rs be the vertex of R that
corresponds to the center of the cluster in F that contains s. Similarly, let rt be the vertex
of R that corresponds to the center of the cluster in F that contains t (it might happen that
rs = rt). We have dH(s, rs) = dG(s, rs) ≤ dG(s, r1) and dH(rt, t) = dG(rt, t) ≤ dG(rk, t).
Moreover, we can upper bound the group Steiner distance from rs to rt in G by the following

σG(rs, rt) ≤ dG(rs, s) + σG(s, t) + dG(t, rt) ≤ dG(s, r1) + σG(s, t) + dG(rk, t) ≤ 2σG(s, t).

As a consequence, since H contains an R × R α-spanner of G, using Lemma 1, we obtain
that σH(rs, rt) ≤ ασG(rs, rt) ≤ 2ασG(s, t). Therefore σH(s, t) is at most:

≤ dH(s, rs) + σH(rs, rt) + dH(rt, t) ≤ dG(s, r1) + 2ασG(s, t) + dG(rk, t) ≤ (2α + 1)σG(s, t).

▶ Theorem 14. Given a subsetwise R×R α-spanner H ′ of G, it is possible to compute in
polynomial time a group Steiner spanner of G with stretch 2α + 1 and size O (n + |H ′|).

5 Conclusions

We conclude this work by mentioning some problems that we deem significant. Our construc-
tion of the (1 + ε)-spanner with size O(n/ε2) for the singleton case requires a building time
of 2kk · nO(1), can a spanner with the same stretch and size O(f(ε) · n polylog(n)) be built in
polynomial time? Regarding the single-source case, we conjecture that the dependency on
k in the O(2k · n) size of our preserver is too weak. Can stronger upper bounds be proved
for either the same or novel constructions? Can a lower bound that is polynomial in k and
linear in n be shown?
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