Art Galleries and Mobile Guards: Revisiting O'Rourke's Proof

Ahmad Biniaz [#](mailto:abiniaz@uwindsor.ca) [Ñ](https://cglab.ca/~biniaz/)

School of Computer Science, University of Windsor, Canada

Abstract

O'Rourke (1983) proved that every *n*-vertex polygon, with $n \ge 4$, can be guarded by $\lfloor \frac{n}{4} \rfloor$ edges or diagonals – a variant of Chvátal's theorem for sufficiency of $\lfloor \frac{n}{3} \rfloor$ vertices. We present a short proof for a somewhat stronger result that allows us to impose some constraints on the guards. We prove that for every given subset *V* of vertices, the polygon can be guarded by $\lfloor \frac{n+2|V|}{4} \rfloor$ edges or diagonals that include at least one edge or diagonal incident to every vertex of *V*. This bound is the best achievable given the constraint for *V* . Our proof is by induction and suggests a simple linear-time algorithm after triangulating the polygon. The sufficiency of $\lfloor \frac{n}{4} \rfloor$ guards is a special case of the new result where *V* is the empty set.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Polygon guarding, Edge guarding, Short proof, Simple algorithm

Digital Object Identifier [10.4230/LIPIcs.ESA.2024.27](https://doi.org/10.4230/LIPIcs.ESA.2024.27)

Funding *Ahmad Biniaz*: Supported by NSERC.

1 Introduction

The problems of guarding polygons with vertices, edges, and diagonals have a rich background. They are usually referred to as the "art gallery problems"; see, for instance, the book by O'Rourke [\[8\]](#page-3-0) and the survey by Shermer [\[9\]](#page-3-1). This type of problems has been initiated as early as 1973 by Victor Klee [\[4,](#page-3-2) [8,](#page-3-0) [9\]](#page-3-1) and still is an active research area from both combinatorial and computational points of view, see e.g. [\[1,](#page-3-3) [2,](#page-3-4) [6,](#page-3-5) [10\]](#page-3-6).

In 1983, O'Rourke [\[7\]](#page-3-7) proved that $\lfloor \frac{n}{4} \rfloor$ mobile guards are always sufficient to *guard* – see the interior of – an *n*-vertex polygon with $n \geqslant 4$. A *mobile guard* is an edge or a diagonal of the polygon.^{[1](#page-0-0)} This bound is the best achievable as some polygons need these many mobile guards, see Figure [1\(](#page-1-0)a) for an example, attributed to Toussaint [\[8,](#page-3-0) [9\]](#page-3-1). This is a variant of Chvátal's theorem (1975) on the sufficiency of $\lfloor \frac{n}{3} \rfloor$ vertices to guard the polygon [\[4\]](#page-3-2). A short proof of Chvátal's theorem was given by Fisk in 1987 [\[5\]](#page-3-8) and it has been extended by Michael and Pinciu in 2016 [\[6\]](#page-3-5).

To the best of our knowledge, O'Rourke's original proof serves as the only proof of the sufficiency of $\lfloor \frac{n}{4} \rfloor$ mobile guards for almost 40 years. In this note we present an alternative proof for a more general result. The new proof is significantly shorter than the original proof, and allows us to impose some constraints on the guards. The trick is to find a suitable extension of the claim.

Let *P* be a simple polygon and *G* be a triangulation of *P*. To guard *P* it suffices to have one vertex of each triangular face of *G* on some mobile guard. We use the terms *edge* and *diagonal* to refer to the edges and diagonals of *P*. A *guard set* is a set of mobile guards that guard *P*.

© Ahmad Biniaz; licensed under Creative Commons License CC-BY 4.0

- 32nd Annual European Symposium on Algorithms (ESA 2024).
- Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 27; pp. 27:1–27:4 [Leibniz International Proceedings in Informatics](https://www.dagstuhl.de/lipics/)

 $^1\,$ O'Rourke uses the terms "mobile guard" and "diagonal guard" interchangeably.

27:2 Art Galleries and Mobile Guards: Revisiting O'Rourke's Proof

O'Rourke's Proof Technique

This proof is by induction, and it is mainly combinatorial. It involves careful edge contractions in *G*, which result in a somewhat different triangulation, without affecting the guarding process. To incorporate induction, it finds a diagonal *d* in *G* that cuts off 5, 6, 7, or 8 edges of *P*, and then applies the induction hypothesis on the remaining portion of *P*. The proof then involves thorough case analysis, crafted nicely, to patch the two parts together.

The existence of *d* is implied by a useful result of Chvátal [\[4\]](#page-3-2) that, for any $k \geq 2$, *G* has a diagonal that cuts off at least *k* and at most 2*k* − 2 edges *P*. The original proof of Chvátal shows this for $k = 4$. O'Rourke applies it for $k = 5$, but it can be generalized to any $k \ge 2$.

New Proof Technique

We first find a suitable extension of the result that incorporates a stronger induction hypothesis. This allows us to cut a smaller portion of *P* that results in fewer cases with shorter proofs. We use a diagonal *d* that cuts off 3 or 4 edges of *P*. Such a diagonal exists by Chvátal's result for $k = 3$. In Lemma [2](#page-1-1) we give an alternative existential proof, that is just as simple, but uses the dual of *G*.

2 The New Proof

In this section we prove the following theorem. The sufficiency of $\lfloor \frac{n}{4} \rfloor$ guards is a special case of the theorem where *V* is the empty set.

 \blacktriangleright **Theorem 1.** Let P be a polygon with $n \geq 4$ vertices and V be a subset of the vertices. *Then* $\lfloor \frac{n+2|V|}{4} \rfloor$ $\frac{2|V|}{4}$ mobile guards are sufficient to guard P such that each vertex in V is incident *to a mobile guard.*

The bound in Theorem [1](#page-1-2) is the best achievable given the constraint for *V* ; see Figure [1\(](#page-1-0)b). It is well-known that the dual of any triangulation of *P* is a tree *T* of degree at most three. Moreover, each edge of *T* corresponds to a diagonal of *P*. Each leaf of *T* corresponds to an *ear* of P – a triangle formed by three consecutive vertices of P .

Figure 1 (a) A polygon that needs $\lfloor \frac{n}{4} \rfloor$ guards. (b) A polygon that needs $\lfloor \frac{n+2|V|}{4} \rfloor$ guards; bold vertices are in *V* . (c)-(d) Illustration of the proofs of Lemma [2](#page-1-1) and Theorem [1;](#page-1-2) The tree *T* is in red, and the polygon P' is shaded.

 \triangleright **Lemma 2.** Every triangulation of a polygon with $n \geq 6$ vertices has a diagonal that cuts *off* 3 *edges of the polygon, or* 4 *edges of the polygon that are incident to two adjacent ears.*

A. Biniaz 27:3

Proof. Consider the dual tree *T*, and root it at a vertex of degree 1. Let *l* be a deepest leaf, *p* be its parent, and *g* be its grandparent. The node *p* has at most two children, which are leaves due to our choice of *l*. The diagonal of *P* that corresponds to the edge (*g, p*) cuts off 3 edges if p has one child or 4 edges if p has two children; see Figure [1\(](#page-1-0)c) and 1(d). In the latter case the two children correspond to two adjacent ears.

Proof of Theorem [1.](#page-1-2) Let *G* be a triangulation of *P*. We will guard the triangular faces of *G* by choosing the edges of *G* (which are edges or diagonals of *P*) as our mobile guards. We prove by induction on *n* that *P* can be guarded by $\frac{n+2|V|}{4}$ $\frac{2|V|}{4}$ edges of *G* such that each vertex in V is incident to an edge in the guard set. The base cases are proved at the end. Now we proceed with the induction step. Take a diagonal *d* in *G* (as in Lemma [2\)](#page-1-1) that cuts off 3 or 4 edges of *P*.

Case 1. The diagonal *d* cuts 3 edges say wx , xy , and yz . Then $d = wz$. Since *G* is a triangulation, $wy \in G$ or $xz \in G$. Without loss of generality assume that $xz \in G$. Let P' be the polygon with $n-2$ vertices that is obtained from P by cutting triangles xyz and wxz , as in Figure [1\(](#page-1-0)c). Let G' be the graph obtained by removing vertices x, y and their incident edges from *G*. We set $V' = V \setminus \{x, y\}$ and consider the following cases.

- **Case 1(a).** $(x \notin V \text{ and } y \notin V)$ If $z \notin V'$ then we add z to V' . Hence $|V'| \leq |V| + 1$. By the induction hypothesis we guard P' , with respect to G' and V' , by at most $\frac{(n-2)+2(|V|+1)}{4}$ $\frac{2(|V|+1)}{4}$ = $\frac{n+2|V|}{4}$ $\frac{2|V|}{4}$ edges of *G'*. These mobile guards also guard triangles *xyz* and *wxz*, and hence *P*, because *z* is incident to a mobile guard.
- **Case 1(b).** $(x \in V \text{ and/or } y \in V)$ Then $|V'| \leq |V| 1$. By the induction hypothesis we guard P' , with respect to G' and V' , by at most $\lfloor \frac{(n-2)+2(|V|-1)}{4} \rfloor$ $\frac{2(|V|-1)}{4}$ = $\frac{n+2|V|}{4}$ $\frac{2|V|}{4}$ – 1 edges of *G*′ . By adding the edge *xy* to these mobile guards we obtain a desired guard set for *P*.

Case 2. The diagonal *d* cuts 4 edges say *vw*, *wx*, *xy*, and *yz*. Then $d = vz$, and, by Lemma [2,](#page-1-1) *vwx* and xyz are two adjacent ears in *P*. Let *P*^{\prime} be the polygon with $n-2$ vertices that is obtained from P by cutting these ears, as in Figure [1\(](#page-1-0)d). Let G' be the graph obtained by removing vertices w, y and their incident edges from *G*. We set $V' = V \setminus \{w, y\}$ and consider three cases.

- **Case 2(a).** $(w \notin V \text{ and } y \notin V)$ If $x \notin V'$ then we add x to V' . Hence $|V'| \leq |V| + 1$. By the hypothesis we guard P', with respect to G' and V', by at most $\frac{(n-2)+2(|V|+1)}{4}$ $\frac{2(|V|+1)}{4}$ = $\frac{n+2|V|}{4}$ $rac{2|V|}{4}$ edges of G' . These guards also guard P because x is incident to a guard.
- **Case 2(b).** $(w \in V \text{ or } y \in V \text{ but not both})$ Due to symmetry assume that $w \in V$, and hence $|V'| = |V| - 1$. We guard *P*['] by at most $\frac{(n-2)+2(|V|-1)}{4}$ $\frac{2(|V|-1)}{4}$ = $\frac{n+2|V|}{4}$ $\frac{2|V|}{4}$ – 1 guards, and then add *wx* to obtain a desired guard set for *P*.
- **Case 2(c).** $(w \in V \text{ and } y \in V)$ If $x \notin V'$ then we add x to V' . Hence $|V'| \leq |V| 1$. Then we guard *P*['] by a guard set of size at most $\frac{(n-2)+2(|V|-1)}{4}$ $\frac{2(|V|-1)}{4}$ = $\frac{n+2|V|}{4}$ $\frac{2|V|}{4}$ – 1. This guard set has at least one of the two edges of *G*′ incident to *x*, say the edge *xz*. We remove *xz* from this set and add *wx* and *yz*. This gives a desired guard set for *P* (the triangles in *G*′ that were guarded by *xz* are now guarded by *wx* or *yz*).

Base Cases. Each inductive step decreases n down by 2. Thus, for the base case it suffices to consider $n = 4, 5$. First assume that $n = 4$. Then any edge of P (which is also an edge of *G*) would guard *P*. If $|V| = 0$ then we guard *P* by an arbitrary edge. If $|V| = 1$ then we guard *P* by one edge incident to the only vertex of *V*. If $|V| = 2, 3, 4$ then we guard *P* by two opposite edges which are incident to all four vertices; in this case $2 = \lfloor \frac{4+2*2}{4} \rfloor \leq \lfloor \frac{4+2|V|}{4} \rfloor$ $rac{2|V|}{4}$.

27:4 Art Galleries and Mobile Guards: Revisiting O'Rourke's Proof

Now assume that $n = 5$. Then *G* has two diagonals of *P* that are incident to the same vertex *x*. Hence any edge or diagonal incident to *x*, or any two arbitrary edges would guard *P*. If $|V| = 0$ then we guard *P* by an edge incident to *x*. If $|V| = 1$ then we guard *P* by an edge or diagonal that is incident to *x* and to the vertex of *V*. If $|V| = 2,3$ then we guard *P* by two edges that are incident to all vertices of *V*, in this case $2 = \lfloor \frac{4+2*2}{4} \rfloor \leq \lfloor \frac{4+2|V|}{4} \rfloor$ $rac{2|V|}{4}$. If $|V| = 4, 5$ then we guard P by three edges incident to all five vertices, in this case $3=\lfloor \frac{4+2*4}{4}\rfloor \leqslant \lfloor \frac{4+2|V|}{4}$ $\frac{2|V|}{4}$. This finishes the proof.

Algorithmic Implication

Our proof of Theorem [1](#page-1-2) suggests a linear-time algorithm for finding such a guard set. First we obtain an arbitrary triangulation *G* of *P* using Chazelle's linear-time algorithm [\[3\]](#page-3-9). Then we maintain two sets D_3 and D_4 of diagonals of G that cut 3 or 4 edges, respectively, of the current polygon. We initialize these sets in linear time by checking, for each vertex v of P , at most 4 vertices that appear before *v* and at most 4 vertices that appear after *v* along *P*. In each induction step, after cutting P by a diagonal d we update D_3 and D_4 in constant time by checking at most 4 vertices that appear before or after each endpoint of *d* along P'.

Notice that, in view of Lemma [2,](#page-1-1) one can maintain D_3 and D_4 in linear time also by checking the leaves of the dual tree *T* iteratively.

3 Concluding Remarks

One can extend Theorem [1](#page-1-2) further by imposing more constraints. In particular, if *E* and *F* are subsets of the edges of *P*, then one can show the sufficiency of $\frac{n+3|E|+2|V|+|F|}{4}$ $\frac{-2|V|+|F|}{4}$ mobile guards that include every edge of *E* and at least one endpoint of every edge of *F*. This can be proven by considering a few more subcases in our proof, however, due to our desire of having a shorter proof we leave this to the interested reader.

References

- **1** Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is ∃R-complete. *Journal of the ACM*, 69(1):4:1–4:70, 2022. Also in STOC 2018.
- **2** Therese Biedl, Timothy M. Chan, Stephanie Lee, Saeed Mehrabi, Fabrizio Montecchiani, Hamideh Vosoughpour, and Ziting Yu. Guarding orthogonal art galleries with sliding *k*transmitters: Hardness and approximation. *Algorithmica*, 81(1):69–97, 2019.
- **3** Bernard Chazelle. Triangulating a simple polygon in linear time. *Discrete & Computational Geometry*, 6:485–524, 1991. Also in FOCS 1990.
- **4** Vasek Chvátal. A combinatorial theorem in plane geometry. *Journal of Combinatorial Theory, Series B*, 18(1):39–41, 1975.
- **5** Steve Fisk. A short proof of Chvátal's watchman theorem. *Journal of Combinatorial Theory, Series B*, 24(3):374, 1978.
- **6** T. S. Michael and Val Pinciu. The art gallery theorem, revisited. *The American Mathematical Monthly*, 123(8):802–807, 2016.
- **7** Joseph O'Rourke. Galleries need fewer mobile guards: A variation on Chvátal's theorem. *Geometriae Dedicata*, 14:273–283, 1983.
- **8** Joseph O'Rourke. *Art Gallery Theorems and Algorithms*. Oxford University Press, 1987.
- **9** Thomas C. Shermer. Recent results in art galleries. *Proceedings of the IEEE*, 80(9):1384–1399, 1992.
- **10** Csaba D. Tóth, Godfried T. Toussaint, and Andrew Winslow. Open guard edges and edge guards in simple polygons. In *Proc. of the 23rd Canadian Conference on Computational Geometry, CCCG*, 2011.