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Abstract
Computing persistent homology of large datasets using Gaussian kernels is useful in the domains of
topological data analysis and machine learning as shown by Phillips, Wang and Zheng [SoCG 2015].
However, unlike in the case of persistent homology computation using the Euclidean distance or the
k-distance, using Gaussian kernels involves significantly higher overhead, as all distance computations
are in terms of the Gaussian kernel distance which is computationally more expensive. Further,
most algorithmic implementations (e.g. Gudhi, Ripser, etc.) are based on Euclidean distances, so
the question of finding a Euclidean embedding – preferably low-dimensional – that preserves the
persistent homology computed with Gaussian kernels, is quite important.

We consider the Gaussian kernel power distance (GKPD) given by Phillips, Wang and Zheng.
Given an n-point dataset and a relative error parameter ε ∈ (0, 1], we show that the persistent
homology of the Čech filtration of the dataset computed using the GKPD can be approximately
preserved using O

(
ε−2 log n

)
dimensions, under a high stable rank condition. Our results also extend

to the Delaunay filtration and the (simpler) case of the weighted Rips filtrations constructed using
the GKPD.

Compared to the Euclidean embedding for the Gaussian kernel function in ∼ n dimensions, which
uses the Cholesky decomposition of the matrix of the kernel function applied to all pairs of data
points, our embedding may also be viewed as dimensionality reduction – reducing the dimensionality
from n to ∼ log n dimensions.

Our proof utilizes the embedding of Chen and Phillips [ALT 2017], based on the Random Fourier
Functions of Rahimi and Recht [NeurIPS 2007], together with two novel ingredients. The first
one is a new decomposition of the squared radii of Čech simplices computed using the GKPD, in
terms of the pairwise GKPDs between the vertices, which we state and prove. The second is a new
concentration inequality for sums of cosine functions of Gaussian random vectors, which we call
Gaussian cosine chaoses. We believe these are of independent interest and will find other applications
in future.
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1 Introduction

Persistent homology (PH) is one of the main tools to extract information from data in
topological data analysis. Given a data set as a point cloud in some ambient space, the idea
is to construct a filtration sequence of topological spaces from the point cloud, and extract
topological information from this sequence.

Two main issues are to be faced. First, the data points often live in a very high dimensional
space and computing PH has exponential or worse dependence on the ambient dimension. It
follows that PH rapidly becomes unusable once the dimension grows beyond a few dozens
– which is indeed the case in many applications, for example in image processing, neuro-
biological networks, and data mining (see e.g. Giraud [17]). This phenomenon is often
referred to as the curse of dimensionality. A second major difficulty comes from the fact
that data is usually corrupted by noise and outliers. Indeed, while the PH (computed using
offsets to a distance function) is quite robust to Hausdorff noise, it is not hard to see that
the presence of even a single outlier can significantly affect the PH (see e.g. [11]).

1.1 State of the Art
Persistent Homology with Outliers

One approach to circumvent the issue of outliers is to use distance functions that are more
robust to outliers, such as the distance-to-a-measure (DTM) and the related k-distance (for
finite data sets), proposed recently by Chazal et al. [8]. This approach also has the advantage
of compatibility with de-noising techniques such as [9]. Though the DTM-based approach is
promising, it tends to come with a significant increase in run-time complexity, and several
approximation-based techniques [18, 8, 2] have been proposed to address this. Another
approach to circumvent the issue of outliers, introduced by Phillips et al. [28], involves
using kernels, which are similarity functions on pairs of points in an ambient space, and
widely used in machine learning and data analysis. Computing the PH using the kernel
distance has certain advantages compared to the Euclidean or the k-distance, especially for
machine learning applications. These include the existence of ε-coresets [20, 26] as well as
some properties of the kernel distance function, e.g. correspondence of its sublevel sets to
superlevel sets of kernel density estimates, stability with respect to a variable smoothing
parameter, and an asymptotic bound for the distance between two measures in terms of the
Wasserstein 2-distance. These properties of the Gaussian kernel distance were proved in [28],
where an approximate power distance version of the kernel distance – which we call the
Gaussian Kernel Power Distance (GKPD) – was used to compute the PH of some datasets
and compare with the PH computed using existing distance functions. Further progress in
constructing robust persistence diagrams has been recently made in [35] using this approach.

The Kernel Trick and Random Fourier Features

As mentioned earlier, a kernel is a similarity function on pairs of points. Commonly used
kernels include the Gaussian kernel (given by K(x, p) = exp{−∥x − p∥2/2σ2}), polynomial
kernel, Laplace kernel, Cauchy kernel, etc. Kernels methods are widely used in machine
learning, AI and data analysis [19]. Their popularity in these areas owes to the fact that
they allow non-linear analysis of the data using linear techniques such as regression. This is
accomplished by lifting the input to a higher-dimensional target space where linear methods
can be applied. Although in many cases, this target space can have high or even infinite
dimension, for a large class of kernels, it is possible to avoid operating directly in this space
using the so-called kernel trick, which allows inner products in the space to be expressed
using only the kernel function in the original space.



J.-D. Boissonnat and K. Dutta 29:3

Although the kernel trick avoids direct computations in a high-dimensional target space,
many kernel based algorithms require operations on the matrix of all pairwise inner products.
For instance, a Euclidean embedding approximating the kernel function could be obtained
using a Cholesky decomposition of this matrix, but would require Ω(n2) operations – untenable
for e.g. n = 109. Further, the embedding would lose the desirable property of data-
obliviousness. Making the kernel distance scalable by a kernel distance embedding - preferably
data-oblivious, is therefore of significant importance [23, 1].

In this direction, the celebrated result of Rahimi and Recht [30] gives an approximate
Euclidean embedding which works for a broad class of kernel functions – including Gaussian
kernels. Their idea is to use Random Fourier Features (RFFs), which preserve the kernel
function up to a (1 ± ε)-factor. RFFs have since found widespread applicability in machine
learning and AI algorithms involving kernel methods [21] – as attested to by more than 4000
citations of [30], as well as the NeurIPS (2017) Test of Time award. Besides learning theory,
RFFs for Gaussian kernels have also been used for metric embeddings [6], where they are
known as randomized Nash devices, as they are a randomized version of Nash’s embedding
in his celebrated proof of the C1 imbeddability theorem [25].

Euclidean Embedding for Persistent Homology using Kernel Distance

When it comes to computing PH, as discussed previously, using Gaussian kernels – specifically
the GKPD – has significant advantages. However, most algorithmic implementations (e.g.
Gudhi, Ripser, etc.) work with Euclidean distances and so it becomes important to have
a Euclidean embedding for the GKPD, preferably low-dimensional. Observe that directly
approximating the matrix of pairwise Gaussian kernel distances would require O(n3) dimen-
sions. Further, even the RFF map of Rahimi-Recht does not directly work here, as it only
approximates the Gaussian kernel function (K(x, y), x, y ∈ RD), thus giving an additive
error for the Gaussian kernel distance (given by

√
2(1 − K(x, y))).

To address this issue, recently Chen and Phillips [13] gave a relative approximation of
Gaussian kernel distances using RFFs. Further using lower bounds on the well-known
Johnson-Lindenstrauss lemma, they also showed that their bound on the number of dimen-
sions used is tight up to a factor of O (log 1/ε).

However, another key issue under the GKPD is that the weights associated to the data
points are not just a function of the points themselves, but of the pairwise kernel distances of
all the points in the data set. This means that for any metric embedding of the data points,
the weights of the points must be recomputed in the new space, and cannot be simply set to
the value of the old weights.

For an approximate embedding, it is therefore necessary to preserve the weight function
as well as the pairwise distances between the point. A sufficient condition for this, is to
preserve kernel distances between measures on the point set. Unfortunately, the Chen-Phillips
mapping does not preserve distances between measures, and a priori does not preserve the
weights of the points. Similarly, other different approaches (e.g. [36, 24, 5, 10]) are not
efficient in preserving distances between point sets, or between general measures.

A different embedding, obtained by Phillips and Tai [27] gives a relative approxima-
tion with a small additive error for kernel distances between sets of points, though using
O
(
ε−2 log2 n

)
dimensions (compared to O

(
ε−2 log n

)
in our case) and a computationally

involved implementation. Moreover, even given such a mapping (i.e. preserving kernel
distances between point distributions), it is not clear that it can preserve the PH, since this
involves preserving intersections of multiple balls under a power distance (see e.g. [4, 28]).

ESA 2024
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As mentioned in the conclusion of Arya, Boissonnat, Dutta and Lotz [4], it is possible
to obtain a constant factor approximation ≥ 4 of the PH, essentially by approximating the
kernel distance by the Euclidean distance for small values of the Euclidean distance. However,
the question of finding a (1 + ε)-factor approximation for PH computation using the GKPD
remained open.

1.2 Our Contribution
In this paper, we show that given an n-point dataset P in a space RD and any ε ∈ (0, 1], it is
possible to approximate the PH of P computed using the GKPD, by a (1 + ε)-factor together
with an additive o(1)-factor, using a Euclidean embedding with O

(
ε−2 log n

)
dimensions –

under a high stable rank condition.
The formal statement, Theorem 13, is in Section 6. It yields a map allowing us to

approximately compute the PH of a set of points in a high dimensional space, using the
GKPD, while actually working with Euclidean distances. Thus, we affirmatively answer the
question asked in the conclusion of [4].

We also obtain an analogous result for the PH computed over the weighted Rips filtration
using the GKPD. Our results are in a sense analogous to the dimensionality reduction results
of Sheehy [31] and Lotz [22] for PH using Euclidean distances, and Arya et al. [4] for the
Euclidean k-distance.

From the lower bound result of Chen and Phillips [13][Section 6] it can also be seen that
the number of dimensions used in their Gaussian kernel distance approximation is tight up
to a factor of O (log 1/ε). This implies our target dimension is also tight up to an O (log 1/ε)
factor.

Our results require a stable rank condition on certain matrices formed using the position
vectors of the points, where the stable rank of a matrix is the squared ratio of its Frobenius
norm to its operator norm [34]. Hence, our high stable rank condition may be interpreted as
requiring the pairwise difference vectors of the data points to be well-spread in a subspace
of at least ω(1) dimensions. For high-dimensional datasets – typical in machine learning
applications – where the ambient dimension can be of the order of the size of the dataset,
it is natural to assume that the intrinsic dimension is not arbitrarily small and is ω(1).
For example, the dimensionality reduction using random projections reduces the data to
Ω
(
ε−2 log n

)
dimensions, which is tight. This indicates that for some datasets, the intrinsic

dimension can be as high as log n. In contrast, we assume a much weaker lower bound of
ω(1).

For more information on the stable rank as well as further applications, we refer the
interested reader to Vershynin [34][Chapter 7].

New Tools

Our result is based on two main new tools – one geometric and the other probabilistic. On
the geometric side, we give a new geometric decomposition in Section 5 (Simplex Distortion
Lemma 12) showing that the distortion of the squared radius of a minimum enclosing ball of a
set of weighted points, computed using the GKPD, can be expressed as a linear combination
of the distortion of the pairwise power distances between the points. We shall show that
although the squared GKPD is non-linear, when lifted to a certain Hilbert space, it has
several nice properties, which we then use to prove the lemma.

However, the above decomposition is still not sufficient to show that the weights of the
points will also be approximately preserved. This is because, as we shall see, each weight is
the difference of two mean squared kernel distances. Thus if each pairwise kernel distance is
approximately preserved this only preserves their sum and not the difference.
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To handle this, on the probabilistic side we prove a new concentration inequality (Section 4,
Theorem 8) for a class of trigonometric functions of Gaussian random vectors. Under a
condition on the matrix having its columns as the vectors p ∈ P , together with a bound on
the Euclidean norm of the vectors, we show that the average squared kernel distance between
pairs of input data points is preserved with a (1 + o(1))-factor distortion, and therefore the
weight of each point is actually (1 ± ε)-preserved alongwith a o(1)-additive factor.

Our new concentration inequality holds for sums of cosines of projections of Gaussian
random vectors, and can be thought of as an analogue of the Hanson-Wright inequality
(see e.g. [34]) for sums of squares of projections of Gaussian random vectors. It can be
viewed as extending the theory of concentration of the original RFF map of Rahimi and
Recht [30], as well as the low-dimensional embedding of Chen and Phillips [13] (see Remark 9).
Such trigonometric functions of Gaussian random vectors seem to not have been previously
investigated in the literature [29, 33], and we call them Gaussian cosine chaoses 1. We believe
that the study of cosine chaoses is of independent interest and will find further applications.

Organization of the paper

The rest of this paper is organized as follows. In Section 2 we provide some necessary
background and preliminary details. In Section 3 we study the stability of the GKPD weight
function over P , under low-distortion dimensionality-reducing maps, and state Lemma 7.
Section 4 has the statement of the concentration inequality for Gaussian cosine chaoses,
essential for the proof of Lemma 7. In Section 5 we prove some properties of minimum
enclosing balls of weighted points in a Hilbert space, and prove the Simplex Distortion
Lemma 12. In Section 6 we show how the Random Fourier Features map together with
Lemma 7 and the Simplex Distortion Lemma give the proof of our main result, Theorem 13.
We conclude with a few remarks and open questions in Section 7.

2 Background

We briefly introduce some of the definitions and tools needed for our results and proofs. For
a deeper picture, the references [8, 11] would be greatly beneficial to the reader. We also
refer the interested reader to [4, 28] for further reading.

2.1 Persistent Homology
Let V be a finite set. An (abstract) simplicial complex with vertex set V is a set K of finite
subsets of V such that if A ∈ K and B ⊆ A, then B ∈ K. The sets in K are the simplices of
K. A simplex F ∈ K that is contained (resp. strictly contained) in a simplex A ∈ K, is said
to be a face (resp. proper face) of A.

A simplicial complex K with a function f : K → R such that f(σ) ≤ f(τ) whenever σ

is a face of τ is a filtered simplicial complex. The sublevel set of f at r ∈ R, f−1 (−∞, r],
is a subcomplex of K. By considering different values of r, we get a nested sequence of
subcomplexes (called a filtration) of K, ∅ = K0 ⊆ K1 ⊆ ... ⊆ Km = K, where Ki is the
sublevel set at value ri. The Čech filtration associated to a finite set P of points in RD

plays an important role in Topological Data Analysis. The Čech complex Čα(P ) is the set of

1 In the high-dimensional probability literature [34], a chaos is a quadratic function of Gaussian random
variables. More generally, polynomials of these variables of degree d are sometimes referred to as chaoses
of order d [29].

ESA 2024
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simplices σ ⊂ P such that rad(σ) ≤ α, where rad(σ) is the radius of the smallest enclosing
ball of σ, i.e. rad(σ) ≤ α ⇔ ∃x ∈ RD, ∀pi ∈ σ, ∥x − pi∥ ≤ α. When α goes from 0 to +∞,
we obtain the Čech filtration of P . Čα(P ) can be equivalently defined as the nerve of the
closed balls B(p, α), centered at the points in P and of radius α:

Čα(P ) = {σ ⊂ P | ∩p∈σ B(p, α) ̸= ∅}.

By the Nerve Lemma (e.g. [16, 7]), we know that the union of balls Uα = ∪p∈P B(p, α), p ∈ P ,
and Čα(P ) have the same homotopy type. Moreover, since the union of balls of a good sample
P of a reasonably regular shape X captures the homotopy type of X, computing the Čech
complex of P will provide the homotopy type of X. We also recall that a simpler complex
called the α-complex of P (see e.g. [14]) also captures the homotopy type of

⋃
p∈P B(p, α).

Our results will apply to both complexes. Finally, given a Čech complex, the Vietoris-Rips or
Rips complex is the maximal simplicial complex that can be built with the same 1-skeleton.
The Rips complex and the corresponding Rips filtration are often used in computational
topology, as they can be constructed using only pairwise distances.

Persistence Diagrams. Persistent homology is a means to compute and record the changes
in the topology of the filtered complexes as the parameter α increases from zero to infinity.
Edelsbrunner, Letscher and Zomorodian [15] gave an algorithm to compute the PH, which
takes a filtered simplicial complex as input, and outputs a sequence of pairs (αbirth, αdeath)
of real numbers. Each such pair corresponds to a topological feature, and records the values
of α at which the feature appears and disappears, respectively, in the filtration. Thus the
topological features of the filtration can be represented using this sequence of pairs, which
can be represented either as points in the extended plane R̄2 = (R ∪ {−∞, ∞})2, called the
persistence diagram or as a sequence of barcodes (the persistence barcode) (see, e.g., [14]).
A pair of persistence diagrams G and H corresponding to the filtrations (Gα) and (Hα)
respectively, are (β, ζ)-interleaved, (β ≥ 1), if for all α, we have that Gα/β−ζ ⊆ Hα ⊆ Gαβ+ζ .

The Persistent Nerve Lemma [12] shows that the PH of the Čech filtration is the same as
the homology of the sublevel filtrations of the distance function. The same result also holds
for the Delaunay filtration [12].

2.2 Distance to Measure and PH with Power Distances
The most common approach in Topological Data Analysis is to consider the distance function
given by the shortest distance to a point in V , i.e. dV : RD → R+ is dV (x) = infy∈V d(x, y).
(Here V is the finite set from Section 2.1). Given this distance function one can construct the
Čech filtration by considering the α-offsets of dV (.) (i.e. the sublevel sets {x ∈ RD | dV (x) ≤
α}) as unions of balls, and computing the nerve of these unions. To address the significant
problem of outliers mentioned earlier in the Introduction, Chazal et al. [8] introduced the
notion of distance to measure (DTM). In practice, computing the nerve of the α-offsets
requires measuring the distance at every point in the space, and so, an approximation to the
DTM function is required, which is achieved by considering a finitary version of this distance,
called the k-distance, which translates to a power distance on the set of k-barycenters of
the original point cloud [8, 4]. In general, power distances are often used to approximate
unwieldy distance functions for computing the PH. The idea is to approximate the square of
the distance to P at a point x ∈ RD by the sum of an easily computable squared distance
to a point p ∈ P , together with the square of the weight of p: dP (x)2 := d′(x, p)2 − w(p),
where d′(x, p) is chosen to be a simpler distance function, easier to compute than dP (x), and



J.-D. Boissonnat and K. Dutta 29:7

w(p) ∈ R is the weight of p, which is set to be the negative of a local approximation of the
distance function dP (.) for points in the neighbourhood of p. In the following paragraphs,
we discuss the computation of PH with power distances.

Given a set X and a distance function d : X × X → R, the pair (X, d) is a metric space
if the distance function d(., .) is reflexive, symmetric and obeys the triangle inequality. Let
P̂ be a set of weighted points p̂ = (p, w(p)) in a metric space (M, d). The power distance
between two weighted points p̂, q̂ ∈ (M, d) is defined as D(p̂, q̂) := d(p, q)2 − w(p) − w(q).
Accordingly, we need to extend the definition of the Čech complex to sets of weighted points.

▶ Definition 1 (Weighted Čech Complex). Let P̂ = {p̂1, ..., p̂n} be a set of weighted points,
where p̂i = (pi, wi) ∈ RD × R. The α-Čech complex of P̂ , Čα(P̂ ), is the set of all simplices
σ satisfying ∃x, ∀pi ∈ σ, d(x, pi)2 ≤ wi + α2 which means ∃x, ∀pi ∈ σ, D(x, p̂i) ≤ α2.
Here D(x, p̂i) indicates the power distance between the unweighted point x (i.e. w(x) = 0)
and the weighted point p.

In other words, the α-Čech complex of P̂ is the nerve of the closed balls B(pi, r2
i = wi + α2),

centered at the pi and of squared radius wi + α2 (if negative, B(pi, r2
i ) is imaginary).

The notions of weighted Čech filtrations and their PH now follow naturally.
In the Euclidean case, we equivalently defined the α-Čech complex as the collection of

simplices whose smallest enclosing balls have radius at most α. We can proceed similarly in
the weighted case. Let X̂ ⊆ P̂ . We define the radius of X̂ as

rad2(X̂) = inf
x∈RD

max
p̂i∈X̂

D(x, p̂i), (1)

and the weighted center or simply the center of X̂ as a point, denoted by c(X̂), where this
minimum is reached, i.e.

c = c(X̂) = arg inf
x∈RD

max
p̂i∈X̂

D(x, p̂i). (2)

Later we shall see the uniqueness of the center and the radius under the above definitions 10.
Analogous to the definition of the Rips complex from the Čech complex in the Euclidean

case, we define VRα(P̂ ), the weighted Rips complex with parameter α, as the maximal
simplicial complex that has the same 1-skeleton as the weighted Čech complex Čα(P̂ ),
computed using the weighted set of points P̂ .

2.3 Kernels and Gaussian Kernel Power Distance
A kernel K : RD ×RD → R is a similarity function on points in RD, such that K(x, x) = 1 for
all x ∈ RD. Reproducing kernels are a large class of kernels, having the property that given a
reproducing kernel K, there exists a lifting map ϕ to a Hilbert space HK such that the kernel
function lifts to the inner product on HK , i.e. for all x, y ∈ RD, K(x, y) = ⟨ϕ(x), ϕ(y)⟩HK

(see e.g. Aronszajn [3]). The natural distance function induced by the norm on the Hilbert
space HK gives a distance using the kernel on RD, as follows.

∥ϕ(x) − ϕ(y)∥ =
√

⟨ϕ(x) − ϕ(y), ϕ(x) − ϕ(y)⟩HK

=
√

K(x, x) + K(y, y) − 2K(x, y) =
√

2(1 − K(x, y)),

where the last step follows since K(x, x) = 1 for all x ∈ RD. For characteristic kernels,
a slightly smaller subset of reproducing kernels, this distance function is a metric [32].
In this paper, we use the Gaussian kernel, which is a characteristic kernel defined as
K(x, y) = exp

(
−∥x − y∥2/2σ2). For x, y ∈ RD, the kernel distance DK(., .) for the Gaussian

kernel is thus, D2
K(x, y) := 2(1 − e−∥x−y∥2/2σ2).

ESA 2024
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Kernel Distance to Measure

Let µ be the empirical measure on P defined as µ = 1
|P |

∑
p∈P δp, where δp is the Dirac

delta measure on P . Using this, given x ∈ RD, one can conceive of the kernel distance
of the point mass δx to the measure µ, as a function of x, which we denote by dK

µ (x) :=(
1

|P |
∑

p∈P D2
K(p, x)

)1/2
. In [28], Phillips, Wang and Zheng investigated the persistent

homology of point sets using dK
µ (.), when K is a Gaussian kernel. They showed ([28],

Theorems 4.1 and 4.2) that the offsets of P obtained using sublevel sets of dK
µ (x) in a given

range of thresholds, are homotopically equivalent as long as there is no critical point of
dK

µ (x) in this range, and are stable under perturbations of the input with bounded Hausdorff
distance. Thus the offsets of dK

µ can be used to estimate the topological properties of the
point cloud P .

Gaussian Kernel Power Distance

As mentioned in the Introduction and in Section 2.2, computing the persistent homology
using dK

µ precisely would require computing dK
µ everywhere in RD. So in order to avoid

this computational expense, Phillips, Wang and Zheng [28] approximated dK
µ by a power

distance using weights on the points in P , as minp∈P

(
D2

K(x, p) − w(p)
)
, where w : P → R

is the Gaussian kernel weight function at p:

w(p) := −D2
K(µ, p) = −

 1
|P |

∑
y∈P

D2
K(p, y) − 1

2|P |2
∑

x,y∈P

D2
K(x, y)

 . (3)

Now we can define weighted points p̂ = (p, w(p)), p ∈ P , with the weight w(p) being defined
as in (3). Let P̂ denote the set of weighted points p̂ with p ∈ P . The Gaussian Kernel Power
Distance (GKPD) between a point x ∈ RD and the pointset P , can be expressed as

min
p∈P

(
D2

K(x, p) − w(p)
)

= min
p∈P

D2
K(x, p) + 1

|P |
∑
y∈P

D2
K(y, p) − 1

2|P |2
∑

y,z∈P

D2
K(y, z)

 . (4)

The GKPD between a pair of weighted points p̂, q̂ ∈ P̂ is defined as

D2
K(p̂, q̂) = D2

K(p, q) − w(p) − w(q). (5)

This can be extended to a power distance on pairs of points in RD by taking w(x) = 0 when
x ∈ RD \ {P}. Thus the GKPD between a point x and the pointset P (4) can be concisely
expressed as minp∈P

(
D2

K(x̂, p̂)
)
.

Since the Gaussian kernel distance is a radial function of the Euclidean distance, the
level sets of the kernel power distance are also unions of balls. Moreover Phillips, Wang
and Zheng [28][Theorem 3.1, Lemma 3.1] showed that up to constant factors, the GKPD
approximates the Gaussian power distance to the uniform measure dK

µ , i.e. for any x ∈ RD,
the GKPD between x and P , is at least dK

µ (x)2/2 and at most 2dK
µ (x)2 + 3D2

K(p, x), where
p ∈ P is the point that achieves the minimum in (4).
▶ Remark 2. Note that the weight w(p) of a point p ∈ P depends not only on p, but on
the pairwise squared Gaussian kernel distances between points in P . This fact introduces a
crucial requirement for any embedding or dimensionality reduction procedure: the kernel
weight function needs to be recomputed in the image space – since otherwise for each point
p ∈ P , we could set w(f(p)) = w(p).
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2.4 Random Fourier Features
For points in RD, there exists a mapping to R2t, with t = O

(
ε−2 log n

)
that gives a relative

approximation of the kernel distance on RD, as the natural inner product on R2t. This is the
well-known Random Fourier Features (RFF) map of Rahimi and Recht [30], which was shown
by Chen and Phillips in [13] to give a relative approximation of Gaussian kernel distances in
RD by Euclidean distances in R2t. Their mapping is given as follows: For i = 1, . . . , t, given
σ ≥ 0, let ωi ∼ ND(0, σ−2) be independent D-dimensional Gaussian vectors, and define the
random map fi : RD → R2, as

fi(x) = (cos(⟨ωi, x⟩), sin(⟨ωi, x⟩)). (6)

Finally, define the mapping f : RD → R2t as

f(x) = 1√
t

(
t⊕

i=1
fi(x)

)
. (7)

▶ Theorem 3 (Chen, Phillips [13]). Given any ε, δ ∈ (0, 1), for any set P ⊂ RD of n points,
the RFF map f : RD → R2t as defined above with t := Ω

(
ε−2 log(n/δ)

)
dimensions is an

ε-distortion map for the Gaussian kernel distance, i.e. f satisfies ∥f(x)−f(y)∥2

D2
K

(x,y) ∈ (1 − ε, 1 + ε)
for all pairs of points x, y ∈ P , with probability at least 1 − δ.

Moreover, the RFF map f : RD → R2t can be computed in time O (nt).

▶ Remark 4. Recall from Section 2.3 that for the Gaussian kernel, there exists a lifting map
to a Hilbert space HK such that the RFF lifts to the inner product on HK . Theorem 3
shows that for any given finite set of points, the inner product on HK (infinite-dimensional)
can be approximated by the Euclidean inner product on a finite-dimensional space.

3 Low-Distortion Maps for Power Distances

In this section, we shall look at low-distortion mappings of power distances. First we need
the notion of an ε-distortion map for power distances between metric spaces.

▶ Definition 5. Given metric spaces (X, dX) and (Y, dY ), a point set P ⊂ X, η ≥ 0, and
ε ∈ (0, 1), a mapping f : X → Y is an ε-distortion map with additive factor η, or an
(ε, η)-distortion map, between pairwise dX-distances in P and dY - distances in f(P ), if

∀x, y ∈ P : (1 − ε)dX(x, y)2 − η ≤ dY (f(x), f(y))2 ≤ (1 + ε)dX(x, y)2 + η.

Further, given a pair of weight functions wX : P → R and wY : P → R, f is an (ε, η)-
distortion map between wX and wY , if, ∀x ∈ P : |wY (f(x)) − wX(x)| ≤ ε|wX(x)| + η.

∀x ∈ P : |wY (f(x)) − wX(x)| ≤ ε|wX(x)|.

The definition of an (ε, η) distortion map now extends naturally to the case of the GKPD.

▶ Definition 6. Given D, t > 0 and the power distance D2
K defined as in (5), the mapping

f : R̂D → R̂2t is an (ε, η)-distortion mapping between D2
K in R̂D and Euclidean distances in

R̂2t, if f is an (ε, η)-distortion mapping between the unweighted Gaussian kernel distance
D2

K in RD and Euclidean distances in R2t, and is also an (ε, η)-distortion mapping for the
weight function w(.) defined in (3).
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In the context of Gaussian kernels, perhaps the most well-known example of an (ε, 0)-distortion
map is the RFF map, as applied by Chen and Phillips in [13].

Let f be an (ε, η)-distortion mapping for some ε, η ∈ R+. From Remark 2, we know that
the Gaussian weight function needs to be recomputed in the image space. For each p ∈ P ,
let us define

w(f(p)) := −

 1
|P |

∑
y∈P

∥f(p) − f(y)∥2 − 1
2|P |2

∑
x,y∈P

∥f(x) − f(y)∥2

 . (8)

Now we have a natural extension of f which acts on the weighted points p̂ – we define
f(p̂) := (f(p), w(f(p))). This notion also extends to sets of weighted points. Thus for a set
Σ of points, we use f(Σ̂) to mean the set {f(ŝ)|s ∈ Σ}.

We now turn to the distortion bound for the weights w(p) under the map f . Let
us define T1(p) := 1

|P |
∑

y∈P \{p} D2
K(y, p), and T2 := 1

2|P |2

∑
x ̸=y; x,y∈P D2

K(x, y). Then
−w(p) = T1(p) − T2. Observe that both T1(p) and T2 are averages of GKPDs, and thus,
−w(p) is a difference of mean GKPDs. Therefore, in order to bound the distortion of −w(p),
it is not enough to have an ε-distortion map since, if both T1(p) and T2 are ε-distorted,
then w(f(p)) − w(p) ≤ ((1 + ε)T1(p) − T1(p)) − ((1 − ε)T2 − T2), which can be as large
as ε(T1(p) + T2). Note that the ratio T1(p)+T2

T1(p)−T2
could be arbitrarily large, as T1(p) can be

arbitrarily close to T2. Therefore, we need a stronger condition on the distortion of T1(p)
and T2 to ensure that the distortion of −w(p), is at most an additive factor of ε(T1(p) − T2).
This is where the following lemma comes to our aid. Before stating the lemma, we recall the
definition of the stable rank of a matrix.

The stable rank of a matrix M is the ratio i.e. rst(M) := ∥M∥2
F /∥M∥2, where ∥M∥F

is the Frobenius norm of M , (given by (
∑

i,j M2
ij)1/2) and ∥M∥ is the operator norm of M

(max∥x∥=1 ∥Mx∥), see e.g. [34] [Chapter 6]. Given a set S of vectors, let rst denote the stable
rank of the D × s matrix S̃, whose columns are the vectors v ∈ S. For each p ∈ P , define
S(p) := {p − y | y ∈ P \ {p}}. Further, define S2 := {x − y | x ̸= y ∈ P}, and let S̃(p), S̃2
denote the corresponding matrices.

▶ Lemma 7 (Distortion of Weights). Given δ ∈ (0, 1], and a function γ = γ(n) such that for
each p ∈ P , rst(S̃(p)) ≥ γ(n) and rst(S̃2) ≥ γ(n), then with probability at least 1 − δ, for
each p ∈ P , the RFF map (7) with t ≥ C log n/δ

ε2 satisfies the following

(1 − ε)w(p) − (γ(n))−1/2 ≤ w(f(p)) ≤ (1 + ε)w(p) + (γ(n))−1/2.

Utilizing the fact that both T1(p) and T2 are averages of squared distances, Lemma 7 shows
that under certain conditions, we can get a stronger concentration of T1(p), for each p ∈ S,
as well as for T2. This will allow us to bound the distortion for the weights w(p), p ∈ P , by
a o(1) additive error.

4 Concentration Inequality for Gaussian Cosine Chaos

In this section, we shall state a concentration inequality for certain trigonometric functions
of projections of Gaussian random vectors, which will be crucially used in our bound on the
distortion of the GKPD weight function under the RFF map. The inequality is described
in the following general framework. Let S = {v1, . . . , vs} be a set of s vectors in RD. For
k = 1, . . . , t, let gk be independent and identically distributed standard normal vectors in
RD, and define

Lt = Lt(S) := 1
4s

∑
v∈S

1
t

t∑
k=1

(1 − cos(⟨v, gk⟩)) .
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As we shall see in the proof of Lemma 7, under the RFF map, the sum of squares of
Gaussian kernel distances of a given set of pairs of points has the same distribution as a
random variable of the form Lt. Thus, a concentration bound for Lt shall allow us to bound
the distortions of T1(p), for every p ∈ P as well as T2, up to a (1 ± o(1))-factor (under the
stable rank assumption). Here T1(p) and T2 are as defined in Section 2.3.

To understand the need for a new inequality, let us consider the analogous situation when
we have a set of vectors S and t standard Gaussian vectors gi ∈ N (0, ID), i ∈ [t], and we are
interested in concentration bounds for the function Q(S) :=

∑
v∈S

∑t
i=1⟨v, gi⟩2 = ∥G⊤V ∥2

F ,
where V is the matrix whose columns are v ∈ S, and G has column vectors gi, i ∈ [t]. Q(S) is
a quadratic function of Gaussian random vectors, often referred to as a Gaussian chaos [34].
In this case, the Hanson-Wright inequality [34][Chapter 6] could be used to obtain a strong
concentration bound in terms of the stable rank of V , allowing us to exploit any mutual
orthogonality present between the vectors v ∈ S. Using the Taylor series expansion for
cos(x), Lt can be rewritten as Lt =

∑t
i=1
∑

j≥1
(−1)j−1

(2j)! ∥V ⊤gi∥2j
2j . Thus Lt(S) – which we

call a Gaussian cosine chaos – is a linear combination of infinitely many Gaussian chaoses of
increasing order, and therefore cannot be addressed by existing concentration inequalities
for Gaussian chaoses of bounded order (see e.g. Latała [29] and Talagrand [33] for recent
results on chaoses.) We are not aware of the existence of any such inequality for chaoses of
unbounded order, prior to our result.

Let uj ∈ RD, j = 1, . . . , r be an orthonormal basis for the span of v1, . . . , vs. For each
i, i′ = 1, . . . , s, define wii′ ∈ Rr as (wii′)j = |⟨vi, uj⟩| − |⟨vi′ , uj⟩|, j ∈ [r]. Finally, recall that
rst := rst(S̃) is the stable rank of the matrix S̃ having column vectors v1, . . . , vs. We obtain
the following concentration inequality for Lt. (For the proof, we refer the reader to the
complete version).

▶ Theorem 8 (Concentration inequality for Gaussian cosine chaos). For any ε ∈ [0, 1], the
following holds.
1. For any set S of vectors in RD,

P [|Lt − E [Lt] | ≥ εE [Lt]] ≤ 2 · exp
(

− ε2tE [Lt]2

3r
∑

1≤i<i′≤s e−∥wii′ ∥2/(2r)

)
. (9)

2. If every vector v ∈ S has Euclidean norm at most 1, then there exists C > 0 such that
P [|Lt − E [Lt] | ≥ εE [Lt]] ≤ 2 · exp

(
−
(
Cε2trst

))
. (10)

▶ Remark 9. The above inequality generalizes and extends the concentration inequality of
Chen and Phillips [13] (Appendix) for RFF maps. Further, since the square of the Gaussian
kernel distance is a norm obtained using the kernel density estimate as an inner product,
Theorem 8 may also be viewed as a generalization of the concentration inequality of Rahimi
and Recht [30] for the RFF map. For the case when the vectors in S have bounded norm,
Theorem 8 improves with the stable rank rst. In the worst case, when rst = 1, we get back
the Chen-Phillips inequality.

To prove Theorem 8, we implicitly build a Doob martingale on the random variable, by
sequentially exposing the coordinates of the Gaussian random vector with respect to an
orthonormal basis for the subspace spanned by them. (Typically we shall choose the basis
given by the left singular vectors of S̃, where S̃ is as defined before Lemma 7.) Theorem 8 is
then proved by computing explicit bounds for the path variance of this martingale. In the case
when the vectors have bounded Euclidean norm, we use the Singular Value Decomposition
(SVD) of the matrix S̃, to bound the path variance in terms of the stable rank of S̃, getting
a condition similar to the Hanson-Wright inequality.

ESA 2024



29:12 Euclidean Embedding for Persistent Homology with Gaussian Kernels

5 Minimum Enclosing Power Balls

As mentioned earlier, the weighted Čech complex can be easily constructed once we know the
minimum enclosing ball of subsets of weighted points. We thus need to show that such balls
are almost preserved under our dimensionality reduction procedure. This will be obtained
via the main result of this section – a decomposition theorem for the squared radius of the
minimum enclosing ball of a set of weighted points under the GKPD, in terms of a linear
combination of pairwise GKPDs of the weighted points. To prove such a decomposition, we
need to understand some properties of minimum enclosing balls of collections of weighted
points under power distances, in particular the GKPD. These properties will be central in
the proof of our main result, proved in the next section.

The primary challenge in proving such a result comes from the fact that squared Gaussian
kernel distances are non-linear, so that techniques used for squared Euclidean distances do
not apply. To address, we need the crucial fact that there exists a lifting map from RD to an
(infinite dimensional) Hilbert space HK , which maps RFFs to the inner product on HK .

Consider a set of points p1, . . . , pk ∈ RD weighted using the GKPD as defined in (3),
and let σ̂ denote the associated abstract simplex formed by {p̂1, . . . , p̂k}. Using the map
to the Hilbert space HK discussed in Section 2.3, which lifts the Gaussian kernel function
to the inner product on HK , together with convexity and perturbation arguments, we
prove properties of the minimum enclosing balls of subsets of weighted points, such as the
uniqueness of their centre and the radius. These properties – summarised in Proposition 10 –
will be useful in obtaining our distortion bound on the radius of the minimum enclosing ball.
(For their proofs, we refer the reader to the complete version.)

▶ Proposition 10.
1. For the simplex σ̂, its center c(σ̂) and radius rad(σ̂) are unique.
2. There exists a set of non-negative reals (λi)i∈[k], such that

∑
i∈[k] λi = 1,

∑
i∈[k] λipi = c,

and

rad2(σ̂) = 1
2
∑
i∈[k]

∑
j∈[k]

λiλjD2
K(p̂i, p̂j).

Further, λi = 0 for all i ∈ [k] such that DK(c, p̂i) < rad2(σ̂).

From the above proposition the following Decomposition Lemma can be proved, which
shows that the squared radius of the minimum enclosing ball of the weighted point set X̂

can be expressed as a combination of pairwise power distances of the points in X̂.
Let I be the set of indices of p̂j ∈ X̂, such that rad2(X̂) = DK(c, p̂j). Let λi, i ∈ I be

such that
∑

i∈I λipi = c, where c is the center of σ̂.

▶ Lemma 11 (Decomposition Lemma). Let I be the set of indices as defined above, and let
(λi)i∈I be the corresponding set of non-negative reals, as defined above. Then

rad2(X̂) = 1
2
∑
i∈I

∑
j∈I

λiλjDK(p̂i, p̂j).

As a direct consequence of Proposition 10 together with the Decomposition Lemma 11,
we obtain the Simplex Distortion Lemma, which bounds the distortion of the radius of the
minimum enclosing ball of each simplex under the Čech filtration.

▶ Lemma 12 (Simplex Distortion Lemma). Let σ̂ ⊂ P̂ be a simplex in the weighted Čech
complex Čα(P̂ ) using the GKPD D2

K(p̂, q̂) defined in (5), where p̂, q̂ ∈ P̂ and the weights
are defined in (3) and let f : (RD, DK) → (R2t, ∥.∥) be an (ε, η)-distortion map for the
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pairwise GKPD Then with f(σ̂) denoting the image of the simplex σ in R2t, with the weights
recomputed using (8),

(1 − ε)(rad2(σ̂) − η) ≤ rad2(f(σ̂)) ≤ (1 + ε)(rad2(σ̂) + η),

Proof of Simplex Distortion Lemma 12. Let the simplex σ̂ = {p̂1, . . . , p̂k}, where for all
i ∈ [k], p̂i := (pi, w(pi)) is a weighted point, and let c(σ̂) and rad(σ̂) denote its center and
radius respectively.

Since the Gaussian kernel is a characteristic kernel, there exists a Hilbert space HK , and
a lifting map ϕ : RD → HK , such that for all x, y ∈ RD, DK(x, y) = ∥ϕ(x) − ϕ(y)∥HK

(see
e.g. [13, 27]). By eqn. (3) the weight of a point p ∈ P is a weighted sum of squared kernel
distances:

w(p) := −D2
K(µ, p) = −

 1
|P |

∑
y∈P

D2
K(p, y) − 1

2|P |2
∑

x,y∈P

D2
K(x, y)

 .

Thus the lifting map ϕ extends naturally to the weights w(pi), i ∈ [k], as

ϕ(w(pi)) = −

 1
|P |

∑
y∈P

∥ϕ(p) − ϕ(y)∥2
HK

− 1
2|P |2

∑
x,y∈P

∥ϕ(x) − ϕ(y)∥2
HK

 ,

which allows us to define the weights in the lifted space as w(ϕ(p)) := ϕ(w(p)).
Applying the Decomposition Lemma 11 with H = HK , and the lifted weighted points

given by ϕ(p̂i) := (ϕ(pi), ϕ(w(pi))), we have

rad2(σ̂) = 1
2
∑

i,j∈[k]

λiλjD2
K(p̂i, p̂j). (11)

Since f is an (ε, η)-distortion map, for each pair p̂i, p̂j ∈ σ̂, we have

(1 − ε)∥ϕ(pi) − ϕ(pj)∥2
HK

≤ ∥f(pi) − f(pj)∥2 ≤ (1 + ε)∥ϕ(pi) − ϕ(pj)∥2
HK

(12)

Since f is an (ε, η)-distortion map for the weight function, we get for each p̂i ∈ σ̂,

(1 − ε)w(p̂i) − η ≤ w(f(p̂i)) ≤ (1 + ε)w(p̂i) + η. (13)

Subtracting the weights w(f(p̂i)), w(f(p̂j)) from the squared distance ∥f(pi) − f(pj)∥2, and
using that D2

K(p̂i, p̂j) = D2
K(pi, pj) − w(pi) − w(pj) = ∥ϕ(pi) − ϕ(pj)∥2

HK
− w(pi) − w(pj),

we get

(1 − ε)D2
K(p̂i, p̂j) − 2η ≤ D2

K(f(p̂i), f(p̂j)) ≤ (1 + ε)D2
K(p̂i, p̂j) + 2η. (14)

Let f(σ̂) denote the image of the simplex σ̂ under the map f , and c(f(σ̂)) be its center.
Applying Proposition 10(i) on the space (R2t, ∥.∥), we get that c(f(σ̂)) is a convex combination
of the vertices of f(σ̂), say

c(f(σ̂)) =
∑
i∈[k]

µif(p̂i),
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where ∀i ∈ [k]; µi ≥ 0 and
∑

i∈[k] µi = 12. Since f is an (ε, η)-distortion map, using the
Decomposition Lemma 11 we get

rad2(f(σ̂)) =
∑

i,j∈[k]

µiµj

(
1
2D2

K(f(p̂i), f(p̂j))
)

≥
∑

i,j∈[k]

µiµj

2
(
(1 − ε)D2

K(p̂i, p̂j) − 2η
)

(15)

i.e.
∑

i,j∈[k]

µiµj

2
(
D2

K(p̂i, p̂j) − η
)

≤ rad2(f(σ̂))
1 − ε

. (16)

Also, by the minimality in the definition of the squared radius of a weighted simplex, we have

rad2(σ̂) = 1
2
∑

i,j∈[k]

λiλjD2
K(p̂i, p̂j) ≤ 1

2
∑

i,j∈[k]

µiµjD2
K(p̂i, p̂j), and (17)

rad2(f(σ̂)) = 1
2
∑

i,j∈[k]

µiµjD2
K(f(p̂i), f(p̂j)) ≤ 1

2
∑

i,j∈[k]

λiλjD2
K(f(p̂i), f(p̂j)),

≤
∑

i,j∈[k]

λiλj

2
(
(1 + ε)D2

K(p̂i, p̂j) + 2η
)

, (18)

= (1 + ε)(rad2(σ̂) + η) (19)

where in step (18) we again used that G is an ε-distortion map, and the last step followed
from the Decomposition Lemma 11. Combining equations (16), (17) and (19) gives

(1 − ε)(rad2(σ̂) − η) ≤ rad2(f(σ̂)) ≤ (1 + ε)(rad2(σ̂) + η), (20)

which completes the proof of the lemma. ◀

6 Main Result

In this section we shall prove the following theorem, which is our main result. Recall that
for each p ∈ P , S̃(p) is the matrix with column vectors x − p, x ∈ P \ {p}, and that S̃2 is
the matrix with column vectors x − y, where x, y ∈ P and x ̸= y. Further, recall that Čα(P̂ )
is the Čech filtration computed on P̂ using the GKPD and Čα(f(P̂ )) is the Čech filtration
computed using Euclidean distances between the images of the weighted points P̂ under
the RFF map f : RD → R2t, and the Rips filtrations VRα(P̂ ) and VRα(f(P̂ )) are defined
similarly.

▶ Theorem 13. Given σ > 0, ε, δ0 ∈ (0, 1), K > 0, a finite set P ⊂ B(0, K) ⊂ RD

consisting of n points, then with probability at least 1 − δ0, a Random Fourier Features
projection map f : RD → R2t onto 2t := Ω

(
ε−2 log(n/δ)

)
dimensions is such that Čα(f(P̂ ))

is ((1 − ε)−1/2, γ−1/2)-interleaved with Čα(P̂ ) provided that the matrices S̃(p), p ∈ S, and
S̃2 have stable rank at least γ(n), where limn→∞ γ(n) = ∞. Further, the corresponding Rips
filtrations V Rα(P̂ ) and V Rα(f(P̂ )) are also ((1 − ε)−1/2, γ−1/2)-interleaved.

2 Note that the convex combination (µi)i∈[k] need not be the same as the combination (λi)i∈[k] for c(σ̂))
in the original space.
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Proof of Theorem 13. In order to prove that an RFF mapping onto 2t dimensions gives a
data set whose weighted Čech filtration (with the weights being recomputed in the image
space) is interleaved with the original filtration, it suffices to show that with high probability,
for an arbitrary weighted simplex σ the radius of σ under the GKPD is (1 ± ε)-distorted
with an additive factor which is o(1), under the RFF mapping. We set t ≥ C ′ε−2 log n,
choosing C ′ sufficiently large, and construct the RFF map f : RD → R2t defined as in
(7), By applying Theorem 3 and Lemma 7 setting δ = δ0/2 in each case, we get that the
statements (i) ∀x, y ∈ P : (1 − ε)D2

K(x, y) ≤ ∥f(x) − f(y)∥2 ≤ (1 + ε)D2
K(x, y), and (ii)

∀x ∈ P : (1 − ε)w(f(x)) − 1/γ ≤ ∥f(x) − f(y)∥2 ≤ (1 + ε)w(f(x)) + 1/γ, each hold with
probability at least 1 − δ0/2, and therefore, they hold simultaneously with probability at
least 1 − δ0. Thus with probability at least 1 − δ0, f is an (ε, 1/γ)-distortion map for the
kernel distance DK .

This immediately implies the statement for the Rips filtration, since the weighted Rips
filtration on P̂ is defined using only pairwise distances and pointwise weights.

For the Čech filtration, we apply the Simplex Distortion Lemma 12 with the mapping f

obtained above and t ≥ Cε−2 log n for a sufficiently large constant C, to get that for each
simplex in Čα(f(P̂ )), the square of its radius is distorted by at most a multiplicative factor
of (1 ± ε), together with a o(1) additive factor. Therefore, the weighted Čech filtration
Čα(P̂ ) built using the kernel distance function DK interleaves with Čα(f(P̂ )), i.e. the
Čech filtration built on the image of the weighted point set P̂ under f using the Euclidean
distance, as follows, Čα−(P̂ ) ⊆ Čα(f(P̂ )) ⊆ Čα+(P̂ ). where α− := α

√
(1 − ε) − 1/γ(n) and

α+ := α
√

(1 + ε) + 1/γ(n). Together with the fact that 1 + ε ≤ (1 − ε)−1 for ε ∈ (0, 1), this
completes the proof for the Čech filtration. ◀

7 Conclusion

We have shown that the Random Fourier Features map can be used to reduce the dimension-
ality of input data, for building persistence diagrams using the Čech filtration. Our results
also apply to the weighted Rips filtration constructed using the GKPD. Further, since the
Čech and the Delaunay complexes are nerves of good coverings of the same union of balls, it
follows that our results also hold for the Delaunay filtration.

The computational complexity of our embedding may be bounded by observing that it
involves a one-time pre-multiplication of the data matrix by a D × t Gaussian matrix; thus a
naive implementation would require O(nDt) operations. Further, computing the weights of
the data points involves another O(n2) operations, so that the total time complexity comes to
O(n(n + Dt)). While this may seem expensive, note that it is just a preprocessing step, and
the computational cost is more than offset by the subsequent ease of working with Euclidean
distances instead of Gaussian kernel distances.

Our embedding works well for datasets with high stable rank. This is complementary to
the zone of operability of traditional dimensionality reduction techniques such as Principal
Component Analysis (PCA), which work well when most of the energy of the data vectors is
concentrated in a few principal directions. By combining PCA for the principal components
of the data matrix with our embedding for the other components, it may be possible to
obtain hybrid low-dimensional embeddings which would work well in practice with both
high and low stable rank datasets. On the other hand, PCA can widely distort individual
pairwise distances, and therefore often does not yield theoretical guarantees on the distortion
of the output.
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An interesting application of our technique could therefore be to combine it with other
dimensionality reduction techniques such as PCA or gradient descent based techniques, to
obtain mixed dimensionality reduction schemes which would work independent of stable rank
assumptions.

Finally, it would also be interesting to prove similar dimensionality reduction results for
PH computed using other classes of characteristic kernels, or even more general kernels.
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