
From Donkeys to Kings in Tournaments
Amir Abboud #

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot, Israel

Tomer Grossman #

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot, Israel

Moni Naor #

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot, Israel

Tomer Solomon #

Tel Aviv University, Israel

Abstract
A tournament is an orientation of a complete graph. A vertex that can reach every other vertex
within two steps is called a king. We study the complexity of finding k kings in a tournament graph.

We show that the randomized query complexity of finding k ≤ 3 kings is O(n), and for the
deterministic case it takes the same amount of queries (up to a constant) as finding a single king
(the best known deterministic algorithm makes O(n3/2) queries). On the other hand, we show that
finding k ≥ 4 kings requires Ω(n2) queries, even in the randomized case.

We consider the RAM model for k ≥ 4. We show an algorithm that finds k kings in time O(kn2),
which is optimal for constant values of k. Alternatively, one can also find k ≥ 4 kings in time nω (the
time for matrix multiplication). We provide evidence that this is optimal for large k by suggesting a
fine-grained reduction from a variant of the triangle detection problem.
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1 Introduction

A tournament is an orientation of a complete graph on n vertices; that is, between any two
distinct vertices u, v, there is exactly one edge, either u → v or v 7→ u (but not both). Often
we think of this as a tournament where each vertex is a player and all players play against
all other players, where u beats v then there is an edge from u to v. Tournaments are a very
basic combinatorial structure. A fundamental object we can study in tournaments is their
kings:

© Amir Abboud, Tomer Grossman, Moni Naor, and Tomer Solomon;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir.abboud@weizmann.ac.il
mailto:tomer.grossman@weizmann.ac.il
mailto:moni.naor@weizmann.ac.il 
https://orcid.org/0000-0003-3381-0221
mailto:tomer.solomon1@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2024.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 From Donkeys to Kings in Tournaments

▶ Definition 1 (King). We say that a vertex v of a tournament graph is a king if for every
other vertex u there is a path from v to u of length at most 2.

It is well known that every tournament contains at least one king (for instance, a vertex
with the maximum outdegree is necessarily a king). Some tournaments contain just one
king (e.g. the transitive tournament1), whereas others contain many kings (e.g. in a random
tournament all the nodes are kings with high probability). The complexity of finding kings is
interesting because it is arguably the simplest combinatorial structure of tournament graphs,
yet, the complexity of finding kings is not well understood.

Models

We are interested in the query model, that is where the important measure is the number of
probes to the adjacency matrix, when the complexity is sublinear (i.e. o(n2), since the input
size is

(
n
2
)
), as well as in the standard RAM model in the regime when we cannot achieve

sublinearity. In this regime every algorithm has to query the entire input and the question is
how much computation is needed. The question of the query complexity of finding one king
has received attention in the query-based model [25, 6, 9, 20]. We concentrate on the case of
finding multiple kings:

What is the complexity of finding k kings in a tournament graph?

Interestingly we discovered that there is a “phase transition”: when k ≤ 3 finding k

kings is a relatively easy problem and can be done in sublinear time, even by deterministic
algorithms. On the other hand, when k ≥ 4, even randomized algorithms require Ω(n2) time.

1.1 Our Results
We characterize the complexity of finding k kings by providing both upper and lower bounds
as a function of k.

We characterize the complexity of finding kings in the query model, i.e. when we do not
take into account any computation except edge queries. We note that our upper bounds can
actually be implemented efficiently, that is we do not abuse this freedom.

We start by providing a simple randomized time linear algorithm for finding a king,
improving the result of [20] who showed a n log log n algorithm. While we did not find in the
literature any explicit claim for a linear time randomized algorithm, the proposed one is very
similar to [25] who show that finding the sorted sequence of kings can be done roughly by a
randomized quick sort with n log n queries.

▶ Theorem 2. There exists a randomized algorithm for finding a king that makes 2n queries
in expectation.

The best-known deterministic algorithm for finding a single king takes O(n3/2) queries
[25]. We generalize the results of finding a single king to finding 2 or 3 kings for both
deterministic and randomized algorithms:

▶ Theorem 3. There exists a randomized algorithm that finds 2 or 3 kings in time O(n) and
there exists a deterministic algorithm that finds 2 or 3 kings in time O(n3/2).

1 A transitive tournament is a tournament with the property that for all vertices a, b, c if a → b and b → c
then a → c.



A. Abboud, T. Grossman, M. Naor, and T. Solomon 3:3

On the other hand, finding 4 or more kings is hard in the query model:

▶ Theorem 4. Finding 4 or more kings requires Ω(n2) queries, even for randomized al-
gorithms.

The proof of this theorem uses the fact that it’s hard to distinguish kings from donkeys (i.e.
nodes that would be kings if a single edge is flipped).

Since finding k ≥ 4 kings requires Ω(n2) queries in the query model, and thus the trivial
algorithm of querying all the edges is optimal in this respect. For studying the complexity of
finding k ≥ 4 kings we turn to the standard Word-RAM model in order to take into account
the actual computation. Here, for small k we suggest an O(kn2) algorithm and when k is
large or finding all kings we suggest an O(nω) algorithm (where nω is the time for n × n

matrix multiplication). Currently, the best-known value for ω is ω ≈ 2.371552 [27].

▶ Theorem 5. There exists a deterministic algorithm that finds k kings in time complexity
O(min{nω, kn2}).

Finally, we show that the above is likely optimal by showing a reduction from the ∃∀-
Triangle Problem: Given a tripartite graph on sets A, B, C deciding if every edge between
A and C belongs to some triangle. See Section 4.2 for more detail about the ∃∀-Triangle
Problem.

▶ Theorem 6 (Informal). Assuming that the ∃∀-Triangle Problem cannot be solved faster
than nω, then nω is the optimal algorithm for finding k kings when k ∈ Ω(n).

1.2 Related Work
Interest in the notion of Kings started in the mathematical biology literature, in particular
the work of Hyman Landau [17]. See Maurer [21] for many basic mathematical properties
about kings. Shen, Sheng and Wu [25] showed that a king can be found in O(n3/2) and gave
a lower bound of Ω(n4/3). Ajtai et al. [6] generalized the above results for finding a vertex
that is within distance d to every other vertex. Their setting is for imprecise comparisons
when it is hard to distinguish similar physical stimuli, e.g. by human subjects, and the goal
is to minimize the number of comparisons for tasks such a max finding, selection and sorting.
Biswas et al. [9] study the d-king cover problem – that is finding a set, S where every vertex
is reachable within distance d from some vertex in S. Lastly, they study the streaming
problems of determining whether a new vertex added to a tournament is a king. Mande,
Paraashar and Saurabh [20] gave an O(n log log n) randomized algorithm and an Õ(

√
n)

quantum algorithm for finding a king; these bounds are tight up to logarithmic factors.
The query complexity of other problems on tournaments was studied as well. For instance,

Hamiltonian paths via comparison based sorting, resulting with complexity O(n log n) [8].
Other types of problems are those related to voting notions. Finding whether there is
a “Condorcet winner”, i.e. a node of degree n − 1, takes 2n − ⌊log n⌋ − 2 queries [7, 24].
Other problems in voting, such as finding the Copeland set, require Ω(n2) queries [19]. The
problem of finding the maximum degree node requires Ω(n2) queries and is close but not
quite evasive [13].

Lastly, one of the first fine-grained reductions is related to tournaments, by Megiddo and
Vishkin [22] showing that the problem of finding a minimum dominating set in a tournament
(we know that there exists one of size at most log n) is as hard as solving satisfiability with
O(log2 n) variables. In modern terminology, they showed ETH hardness.

ESA 2024



3:4 From Donkeys to Kings in Tournaments

1.3 Open Problems

▶ Question 7. What is the deterministic query complexity of finding a single king?
The bounds suggested in Shen, Sheng and Wu [25] are still the best - somewhere between

the Ω(n4/3) lower bound and the O(n3/2) upper bound

We show that the complexity of finding k ∈ Ω(n) kings is at least as hard as a variant of
the triangle detection problem, and at least as easy as matrix multiplication.

▶ Question 8. Is there a fine grained reduction from the k-king problem to ∃∀-Triangle
Problem?

We introduce a variant of the triangle detection problem, where the quantifiers are
changed. It is interesting to understand the relationship between these two problems.

▶ Question 9. What is the relationship between ∃∀-Triangle Problem and the more common
problem of triangle detection. Are they subcubic equivalent?

2 Preliminaries

A tournament graph is a complete directed graph. A king in a tournament graph is a vertex
that is within distance two of every other vertex. We assume that the tournament is given via
an adjacency matrix, and each query inputs two vertices, u and v and returns the orientation
of the edge between u and v. More formally:

▶ Definition 10. A graph G = (V, E) is defined by two sets, V, E where V is the set of
Vertices and E is the set of Edges. We call the graph undirected if an edge e ∈ E is a
(unordered) set of two vertices, i.e. e = {v, u} for v, u ∈ V . Similarly, we say a graph is
directed if each edge e ∈ E is an ordered tuple, (i.e. e = v → u for v, u ∈ V ).

▶ Definition 11. A tournament T is a directed graph, where for every vertex pair (u, v) ∈ V ,
there exists a directed edge u → v or a directed edge v → u (but not both).

▶ Definition 12. A path of length k in graph G = (V, E) is a sequences of k consecutive
edges (a1, a2), (a2, a3), ..., (ak−1, ak).

▶ Definition 13 (King). We say that a vertex v of a tournament graph is a king if for every
other vertex u there is a path from v to u of length at most 2.

▶ Definition 14 (k-King Problem2). The (k, n)− king search problem has as input a tourna-
ment graph on n vertices and a number k ∈ N . A solution to the problem is a set of any k

kings in the graph, or ⊥ if the graph does not contain k kings.

▶ Notation 15. Let v be a vertex. We denote by N(v) the set of all vertices u with an edge
v → u. Similarly, we denote by N c(v) the set of all vertices u with u → v.

▶ Definition 16 (∃∀-Triangle Problem). The ∃∀-Triangle Problem inputs a tripartite graph
on sets A, B, C with |A| ∈ Ω(n), |B| ∈ Ω(n) and |C| ∈ Ω(n). The goal is to determine if
there exists a vertex a ∈ A such that for all edges e = (a, c) with a ∈ A and c ∈ C, e belongs
to some triangle.
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Query Complexity
The query model (also known as the Decision Tree model) is one of the simplest computational
models. In this model, in the context of tournament graphs, the algorithm makes queries
to an oracle, where each query inputs two vertices, u and v and the oracle returns whether
u → v or v → u. The goal is to design an algorithm that makes as few queries as possible.
In the randomized setting, the algorithm is allowed to use randomness in order to decide
what to query next. Alternatively, a randomized algorithm randomly picks a deterministic
decision tree.

There are many complexity measures of interest in the query model. For instance, the
sensitivity is the minimum amount of input bits needed to change in order to change the value
of the function. The certificate complexity is analogous to the non-deterministic complexity –
that is the number of queries an algorithm needs to make to verify the output of a function.
There are many other complexity measures, such as block sensitivity, randomized certificate
complexity, degree, approximate degree, etc. For total decision problems, all these complexity
measures are polynomialy related. See, for example, Buhrman and de Wolf [11], Jukna [16,
Chapter 14] and O’Donnell [23, Chapter 8.6] for a detailed survey of the query model.

Yao Minmax Principle

When proving lower bounds on the randomized query complexity of a function f it is often
easier to rephrase the problem by applying Yao’s [28] Minimax Principle. This says that in
order to prove a randomized lower bound, it suffices to show an input distribution, and to
prove every deterministic algorithm has a lower bound on this distribution.

2.1 Preliminary Results
We give a few basic results about kings. Many of these lemmas are used later on.

Many algorithms (upper bounds) of finding kings make use of the Pivot Lemma:

▶ Lemma 17 (Pivot Lemma [6], [9] [25], [21], [20]). For every vertex u, it holds that every
king in the sub-graph N c(u) is also a king in G. We refer to u as a Pivot.

Proof. Consider a vertex v that is a king in the subgraph N c(u). By definition, v is within
distance 2 to every vertex in N c(u) and of distance 1 to u. Every other vertex in the graph
is of distance 1 to u and thus of distance 2 from v. ◀

▶ Lemma 18 ([21] Thm 14). There exists a graph where all nodes are kings.

Sketch. Consider the random graph.2 For a vertex v, the probability that v is not a king is
the probability that there exists some vertex u with u → v and u → z for every z ∈ N c(v).
For each vertex u this happens with probability

( 1
2
)|Nc(v)|+1. Due to Chernoff’s inequality,

with high probability |N c(v)| ≥ n
10 . Taking the union bound over all vertices u, we have that

v is a king with high probability. Finally, taking the union bound over all vertices gives the
desired result. ◀

▶ Lemma 19 ([17],[21]). A vertex of max outdegree is a king.

2 There also exists an explicit construction, see [21] for details.

ESA 2024



3:6 From Donkeys to Kings in Tournaments

Proof. Let v be a vertex of maximum degree. Assume towards a contradiction that v is not
a king, that is there exists a vertex u with u → v and u → z for each z ∈ N(v). The degree
of u is thus at least N(v) + 1, a contradiction. ◀

▶ Lemma 20 ([21]). A tournament has exactly one king, if and only if this king has an
outgoing edge to every other vertex.

Proof. If a vertex, v has an outgoing edge to every other vertex, then no vertex u can reach
v, and thus v is the only king.

For the other direction, let v be the only king, and suppose towards a contradiction
that N c(v) ̸= ∅. Finding a king in the subgraph N c(v) will result in a second king due to
Lemma 17, a contradiction. ◀

▶ Lemma 21 ([21]). No tournament contains exactly 2 kings.

Proof. Suppose towards a contradiction that a tournament contains two kings, k1 and k2.
WLOG, assume that k1 → k2. Consider the set N c(k1). Due to Lemma 17 the king in the
subgraph N c(k1) is also a king in T . Since k1 → k2, k2 /∈ N c(k1), the king in N c(k1) is a
third king. ◀

▶ Lemma 22 ([25]). There exists a deterministic algorithm for finding a king with O(n3/2)
queries in the query model.

Sketch. Pick an arbitrary sub-graph of 2
√

n vertices. By a counting argument, in this
subgraph there must be a vertex, v, of out-degree at least

√
n (See e.g.[18]). Pick v as a

pivot and consider the set N c(v). Due to Lemma 17 the king in N c(v) will also be a king in
T . The algorithm then repeats this process recursively. The running time is n1.5: Letting N

be the size of the graph at each recursion level, the amount of queries made at each step of
the recursion is N , and the algorithm eliminates

√
N vertices in each recursion level. ◀

▶ Lemma 23 ([25]). Every deterministic algorithm in the query model requires Ω(n4/3)
queries to find a king.

Sketch. The adversarial strategy is as follows: When an algorithm queries a vertex pair u, v,
if the outdegree of u is larger than the outdegree of v then direct the edge from v to u and
otherwise direct the edge from u to v.

Suppose vertex k is a king. We will calculate the amount of queries that the algorithm

must have made. Let kout be outdegree of k. The algorithm must make
kout∑
i=1

i ∈ Ω(k2
out)

queries, since for every vertex v with an edge directed from k to v there must be at least as
many queries made to v as to k.

In order for k to be a king, for each vertex in v ∈ N c(k) there be an edge directed from
some u ∈ N(k). That is a total of:

(
n−kout

kout

)2
. Thus the algorithm must make a total queries

of k2
out +

(
n−kout

kout

)2
. Minimizing this equation gives the Ω(n4/3) lower bound. ◀

▶ Theorem 24 (Theorem 2 Restated). There exists a (zero-error) randomized algorithm that
finds a king in 2n queries in expectation.

Proof. We suggest a simple algorithm that works as follows: Pick a vertex v at random. If
N c(v) = ∅ then return v, if not, then repeat on the subgraph N c(v). Correctness follows
immediately from Lemma 17.
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In order to analyze the expected number of queries, note that in each level of recursion,
in expectation, half of the vertices will be eliminated. Formally, we denote as Ai the vertices
the algorithm considers at stage i (A0 = V ), and note that |Ai| bounds the number of queries
performed in stage i. Next, by the law of total expectation, we have that

E(Ai+1) = E(E(Ai+1|Ai)) = E
(

1
2Ai

)
Finally, by the linearity of expectation and induction, we get that the expected number

of queries is bounded by

∞∑
i=0

|Ai| =
∞∑

i=0

1
2i

|V | = 2|V | = 2n ◀

▶ Remark 25. Note that no “sophisticated" data structures are needed to implement the
above algorithm efficiently. We simply need to list the nodes of the current subgraph in an
array so that it will be possible to pick one at random. Given a vertex v partition the listed
vertices so that the first part contains N c(v) (those pointing into v) and continue recursively
with the first part of the array (and record the size of |N c(v)|), as in Quicksort.

3 The Complexity of Finding Multiple Kings in the Query Model

In this section we study the complexity of finding k kings in the query model. We present
both upper and lower bounds. We generalize the algorithms for finding a single king, and
show that the upper bound for finding one king also applies for finding two or three kings.
However, the technique breaks down when looking for four or more kings, for which we
prove an unconditional lower bound of Ω(n2) queries. Formally, we prove Theorem 3 and
Theorem 4.

▶ Theorem 26 (Theorem 3 Restated). If there exists an algorithm that finds one king in time
T then there exists an algorithm that finds k kings, for k ≤ 3 in time O(T ).

Proof. The idea of the algorithm is to find a king, use it as a pivot, and then find a new king
in the subgraph. More formally: Find a king k1 in G. If there is an edge from k1 to every
other vertex, then there can’t be an additional king, since every other vertex can’t reach
k1 in two steps. If this isn’t the case, we provide an algorithm for finding two additional
kings. First, find a king k2 in N c(k1). By Lemma 17, k2 is a king in G. Next, consider the
subgraph N c(k2). Note that this set can’t be empty, since if it were empty then k1 wouldn’t
be a king. Similarly, the king k3 of N c(k2) is a king in the entire graph G due to Lemma 17.
Note that k1 /∈ N c(k2) since by construction k2 ∈ N c(k1), and thus this third king can’t
be k1. Further note that the complexity of finding k2 and k3 is at most the complexity of
finding k1, since it simply involves finding a king in a smaller subgraph. ◀

▶ Remark 27. We note that the above algorithm cannot be used to find 4 kings. This is
because if we pick k3 as a pivot point, the algorithm may find k1. Indeed, as we see next,
the ability to have three non-transitive kings (that is 3 kings with k1 → k2 → k3 → k1) is
the basis of the n2 lower bound for finding 4 or more kings.

▶ Theorem 28 (Theorem 4 Restated). For every k ≥ 4 any randomized algorithm for finding
k kings has Ω(n2) query complexity.

ESA 2024



3:8 From Donkeys to Kings in Tournaments

Figure 1 If there is no edge between A, B, C to k1, k2, k3 then that means that the edges goes
from ki to the set.

Proof. We construct a tournament with high sensitivity, that is there are Ω(n2) edges where
if any is flipped then the number of kings increases. This implies our lower bound, since
it suggests the existence of a hard distribution: either the original graph is given or a
random edge (among the sensitive ones) is flipped. It is impossible to distinguish these two
distributions with less than Ω(n2) queries. We can then appeal to the Yao Minmax principle
to argue that no query algorithm can succeed in deciding whether there are three or four
kings with fewer than Ω(n2) queries in expectation.

Let k1, k2, k3 be three vertices satisfying k1 → k2 → k3 → k1. These vertices will each
be a king. The remaining n − 3 vertices are then grouped into 3 sets each of size (n − 3)/3.
Denote these sets by A, B, C. Each set induces an “all king" subgraph (such a graph exists,
see Lemma 18). For each ai ∈ A and bi ∈ B direct the edge ai → bi. For each bi ∈ B and
ci ∈ C direct the edge bi → ci. For each ci ∈ C and ai ∈ A direct the edge ci → ai. For each
ai ∈ A ai → k1 and k2, k3 → ai. For each bi ∈ B bi → k2 and k1, k3 → bi. For each ci ∈ C

ci → k3 and k1, k2 → ci. See Figure 1.
We observe that each ki is a king and no other vertex is a king. Note that thus far the

construction is deterministic.
We call a vetrex a ∈ A (resp b ∈ B, c ∈ C) a donkey if flipping a single edge to any

vertex c ∈ C (resp a ∈ A, b ∈ B) makes a a king. Indeed, all vertices in A,B, and C are
donkeys: flipping any edge between any vertex a ∈ A and c ∈ C results in a becoming a king.
Similarly, flipping any edge between b ∈ B and a ∈ A results in b becoming a king. Lastly,
flipping any edge between c ∈ C and b ∈ B results in c becoming a king.

Consider A′ ⊂ A. Observe that if we flip any edges between vertices in A′ and C then for
each a ∈ A but a /∈ A′, a is still not a king as it can’t reach k3 within two hops. Similarly,
vertices in B can’t reach k1 in two hops and vertices in C can’t reach k2 in two hops

Define ∆ to be the input distribution where we take this construction and pick uniformly
at random k − 3 vertices. If the chosen vertex is in A (resp B, C), then pick a random vertex
in C (resp A, B) and flip the orientation of the edge between these two vertices.

Consider any deterministic algorithm. Once an algorithm makes n
60 queries to some

vertex u the algorithm is given for free the orientation all edges adjacent to u, and thus as
a result the algorithm knows if u is a king. We call a vertex u saturated if the algorithm
knows whether u is a king or not, this is done by either the algorithm making n

60 queries to
it, or by finding a flipped edge in fewer queries.
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Consider an algorithm that has made fewer than n2

600 queries. We will argue that with
high probability fewer than n

3 vertices will be saturated. Suppose each vertex that has
become saturated in fewer than n

60 queries has become saturated in 0 queries. We call such a
vertex quickly saturated. The probability that a vertex that is a king (Note that a vertex
which is not a king can’t become saturated in fewer than n

60 queries.) becomes saturated in
fewer than n

60 queries is at most 1
10 , since there are n

3 − 1 edges and each one is equally likely
to be flipped. Thus, an algorithm that makes n2

600 queries, will quickly saturate at most n
6000

vertices in expectation. The remaining of the saturated vertices each require n
60 queries, and

thus the algorithm will slowly saturate at most n2/600
n/60 = n

10 . Thus, in total, the algorithm
will saturate in expectation at most n

10 + n
6000 < n

9 .
Thus, by Markov’s inequality, the probability that the number of saturated vertices is at

least n
3 is at most n/9

n/3 = 1
3 . We conclude that by Yao’s Minmax Principle we are done. ◀

Is it possible to get an instance optimal algorithm for finding k > 3 kings?

An alternative to worst-case complexity is instance complexity. Here the goal is to design an
algorithm that on each instance performs as well as any algorithm [14]. Such algorithms are
called Instance Optimal. In other words, we would like an algorithm that is competitive with
an algorithm that receives as an “untrusted hint" the full graph, and the number of queries
it performs is measured only on correct hints. It turns out that the previous construction
also shows that it is impossible to achieve instance optimality.

4 The Complexity of Finding Multiple Kings in the RAM Model

So far, we have seen that finding k ≥ 4 kings requires Ω(n2) queries in the query model, and
thus, the trivial algorithm of querying all the edges is optimal.

Thus, studying the complexity of finding k ≥ 4 kings is more interesting in the standard
Word-RAM model. One can find k kings in O(nω), which we show is likely to be optimal for
large k, by making a fine-grained reduction from the ∃∀-Triangle Problem. For small k, we
provide an algorithm running in time O(n2k).

We now explore the complexity of finding k ≥ 4 and prove Theorem 5.

4.1 Upper Bounds
▶ Theorem 29 (Theorem 5 Restated). There exists a deterministic algorithm for finding k

kings that runs in time

O
(
min{nω, kn2}

)
.

Proof. We first show the O(nω) upper bound. Given a tournament T , define the matrix,
M , to be the adjacency matrix of T, that is M [i, j] = 1 if i → j and M [i, j] = 0 if j → i. A
vertex i is a king iff there is a row in M2 where every entry is non-zero. If M2[i, j] ≥ 1 then
that means that there exists some k where M [i, k] = 1 and M [k, j] = 1. That is, i → k → j,
and thus vertex i can reach j in two hops. Thus, the algorithm simply computes M2 by
matrix multiplication and checks whether it has k nonzero rows.

Next, we show the O(kn2) upper bound. The proof is based on the following lemma:

▶ Lemma 30. Let K be a set of vertices (K will be the set of kings found thus far). Let K2

be the set of vertices where each vertex in K2 is of distance at most 2 from every vertex in
K. A king in the subgraph K2, is also a king in G.

ESA 2024



3:10 From Donkeys to Kings in Tournaments

Proof. Let v be a king in the subgraph K2. By definition v is of distance at most 2 from
every other vertex in K2, and from every other vertex in K. Suppose, towards a contradiction,
that there exists a vertex u who isn’t in K or K2, and v cannot reach u in one or two hops.
Thus it must be that u → v. Furthermore, it must be that u → z for every z ∈ N(v). Thus
each path of length at most 2 from v to some k ∈ K induces a path of the same length from
u to k, hence u is also in K2, a contradiction to v being a king in K2. ◀

The algorithm proceeds in rounds. In each round, K is the set of kings found thus far,
and K2 is the set of vertices V \ K such that each vertex in K2 is of distance at most 2 from
every vertex in K (i.e it can reach all the kings found so far in at most two hops). In each
round one vertex v ∈ K2 is added to K, by finding a king in K2 deterministically in time
O(n1.5) (Lemma 22). Due to Lemma 30, v is also a king in the the full tournament. In time
O(n2), K2 is modified to ensure that all vertices in K2 are of distance at most 2 from v.
This is simply done by checking for every vertex u in K2 if u has an edge to v, or if one of
the vertices in N(u) has an edge to v. Since there are a total of k rounds and in each round
O(n2) time is spent, the total running time is O(kn2). ◀

4.2 Conditional Lower Bound Based On Triangle Detection
Can these upper bounds be improved when k is large?

For polynomial time problems, there are currently no techniques for proving Ω(n2+ε)
lower bounds unconditionally; instead, in fine-grained complexity, one seeks conditional lower
bounds that are based on the hardness of other, more basic problems.

The most popular assumption for proving lower bounds of the form Ω(nω) is the conjecture
that Triangle detection cannot be solved in O(nω−ε) time, for some ε > 0 [4]. In its most
basic form, the problem asks if a given tripartite graph on parts A, B, C contains any triangle
a ∈ A, b ∈ B, c ∈ C s.t. (a, b), (b, c), (a, c) are edges.

The conditional lower bound in this paper is based on a variant of the triangle detection
problem in which we change the quantifiers in the problem definition and ask whether there
exists a node a ∈ A that is in a triangle with all its neighbors in C.

▶ Definition 31 (∃∀-Triangle Problem). The (n, |A|)−∃∀-Triangle Problem inputs a tripartite
graph on sets A, B, C with |A| ∈ Ω(n), |B| ∈ Ω(n) and |C| ∈ Ω(n). The goal is to determine
if there exists a vertex a ∈ A such that for all edges e = (a, c) with c ∈ C, e belongs to some
triangle.

Throughout our paper we will be using the following definition, which due to basic fine
grained reduction techniques, is equivalent:

▶ Definition 32. The (n, |A|)−∃∀-Triangle Problem inputs a tripartite graph on sets A, B, C

with |A| ∈ Ω(n), |B| ∈ Ω(n) and |C| ∈ Ω(n). Furthermore, each vertex has degree at least 1
to each of its neighboring sets. The goal is to determine if there exists a vertex a ∈ A such
that for all edges e = (a, c) with c ∈ C, e belongs to some triangle.

While there is no reduction from the basic Triangle detection problem to the ∃∀-Triangle
Problem, it is natural to conjecture they are equally hard. None of the currently known
existing techniques is able to benefit from the difference in quantifiers.

The concept of assuming that the core problems of fine-grained complexity remain hard
when changing their quantifiers was suggested in [5], and has since been employed multiple
times [10, 1, 15, 2] when reducing to problems that encode certain quantifications (as is the
case in the current paper). Further justification for this practice was provided in [12], where
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Figure 2 Relationship between A, A′ B and C. A red arrow indicates that this is the direction
of the edge if the two vertices have an edge in G. A blue arrow indicates that this is the direction
of the edge if there is no edge in G. A black arrow indicates that this is the direction of the edge
regardless of G. For A and A′, we have ai → a′

j if i = j and otherwise a′
j → ai.

it was argued that the hardness of such problems cannot be based on the hardness basic
forms of the problems due to differences in their nondeterministic time complexity. We are
not aware of a prior work that uses the specific variant in our ∃∀-Triangle Problem.

▶ Theorem 33 (Theorem 6 Restated). There is a linear time fine-grained reduction between
(n, |A|)− ∃∀-Triangle Problem to the (k,n’)-king problem, for n′ = n + |A| + 2 and k =
n − |A| + 3.

Proof. Given a tri-partite graph on set of vertices AG, BG, CG, with edge set EG, define
the following tournament graph on n′ vertices:

Let AT , A′
T , BT , CT each be a set of vertices, with |AT | = |A′

T | = |AG|. And |BT | = |BG|
and |CT | = |CG|. Let x2 → x1 be two additional vertices.

Next, we define the orientation of the edges:
Within each AT , A′

T , BT , and CT each of the edges induces an all-kings sub graph (Such
a graph exists, see Lemma 18). For relationships between different sets define:

For all aT ∈ AT , bT ∈ BT orient the edge aT → bT iff (a, b) ∈ E.
For all bT ∈ BT , CT ∈ C orient the edge bT → cT iff (b, c) ∈ E.
For all cT ∈ C, a′

T ∈ A′ orient the edge cT → a′
T iff (c, a) ∈ E.

For all ai ∈ AT , a′
j ∈ A′

T orient the edge a → a′ iff i = j.
For all cT ∈ CT , aT ∈ AT orient the edge cT → aT .
For all bT ∈ BT , a′

T ∈ BT orient the edge bT → a′
T .

For all v ∈ A′
T ∪ BT , orient the edge x1 → v.

For all v ∈ AT ∪ CT ∪ A′
T orient the edge x2 → v.

For all bT ∈ BT , orient the edge bT → x2.

See Figure 2 and Figure 3.

▷ Claim 34. All vertices bT ∈ BT and cT ∈ CT are kings, and also x1 and x2 are kings.

ESA 2024



3:12 From Donkeys to Kings in Tournaments

Figure 3 Relationship between x1, x2 and the remaining sets.

Proof. Let bT ∈ BT . It reaches x2 directly, and from there it reaches C, A, x1 in a single step.
In addition, it reaches each other node in B within two steps with the edges on the induced
subgraph on B, which is the all-kings subgraph by construction.

Let cT ∈ CT . cT can reach every vertex b, a′ ∈ B, A′ in two steps via x1. c reaches each
a ∈ A and x1 in one hop. c reaches x2 in two steps via some vertex in B (each vertex in c is
connected to some vertex in B). ◁

▶ Observation 35. No vertex a′
T ∈ A′

T is a king.

Proof. Observe that a′
T can’t reach x2 in two steps. ◀

▷ Claim 36. A vertex aT ∈ AT is a king if and only if for all cG ∈ CG, with e = (a, c) ∈ E,
e is part of a triangle in G.

Proof. First we will show that aT is within distance two from every vertex that isn’t in CT .
Note that a can reach each vertex bT ∈ BT and a′

T ∈ A′
T in two steps via the vertex x1.

Also, aT can reach x2 in two steps via some vertex bT ∈ BT , as by definition aG has at least
one neighbor in BG, and each vertex bT ∈ BT has an edge to x2.

Let aG ∈ AG such that for every e = (aG, cG), the edge e is in a triangle. We will show
that the corresponding vertex aT is king.

Let cT ∈ CT such that for the corresponding vertex c ∈ CG there is an e = (aG, cG) ∈ EG.
Then, since this edge is on a triangle, there are edges (aG, bG), (bG, cG) ∈ EG, which imply
corresponding edges in ET , which in turn imply a path of length 2 in T from aT to cT .

Let cT ∈ CT such that for the corresponding vertex c ∈ CG there isn’t an e = (aG, cG) ∈
EG. Let a′

T ∈ A′ be the mirror vertex of aT . In this case, aT can reach cT via a′
T . This holds

as by definition there is an edge from aT to a′
T , and since (aG, cG) ̸∈ EG, (a′

T , cT ) ∈ ET .
Suppose a is a king. Let e = (a, c) ∈ EG, we want to show that it is part of a triangle.
Since aT is a king, it must be within distance 2 from cT . Since there is no edge from x1

to cT , and no edge from aT to x2, it must be the case that aT reaches cT in distance 2 via
A′

T or BT . Since e ∈ E, aT can’t reach cT through A′. This is because by construction the
only vertex a′

T ∈ A′
T accessible from aT doesn’t have an edge to cT . Thus aT reaches cT via

some vertex bT ∈ BT , implying that (aG, bG), (bG, cG), e is a triangle. ◁
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Thus we conclude that a vertex a ∈ AT is a king precisely when the corresponding vertex
a ∈ G satisfies the requirement of the ∃∀-Triangle Problem: that each edge (a, c) belongs to
some triangle. ◀

▶ Remark 37. Our reduction not only shows that the O(nω) bound is conditionally tight
for large k, but also that “combinatorial” techniques (as employed in our kn2 algorithm)
are unlikely to achieve n3−ε time. This is because such running times are conjectured to be
impossible for Triangle detection [26, 4], and there is no reason to suppose that the ∃∀-Triangle
Problem is easier. We refer to [3] for more background on combinatorial algorithms.
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