
String 2-Covers with No Length Restrictions
Itai Boneh #

Reichman University, Herzliya, Israel
University of Haifa, Israel

Shay Golan #Ñ

Reichman University, Herzliya, Israel
University of Haifa, Israel

Arseny Shur #

Bar Ilan University, Ramat Gan, Israel

Abstract
A λ-cover of a string S is a set of strings {Ci}λ

1 such that every index in S is contained in an
occurrence of at least one string Ci. The existence of a 1-cover defines a well-known class of
quasi-periodic strings. Quasi-periodicity can be decided in linear time, and all 1-covers of a string
can be reported in linear time as well. Since in general it is NP-complete to decide whether a
string has a λ-cover, the natural next step is the development of efficient algorithms for 2-covers.
Radoszewski and Straszyński [ESA 2020] analysed the particular case where the strings in a 2-cover
must be of the same length. They provided an algorithm that reports all such 2-covers of S in time
near-linear in |S| and in the size of the output.

In this work, we consider 2-covers in full generality. Since every length-n string has Ω(n2) trivial
2-covers (every prefix and suffix of total length at least n constitute such a 2-cover), we state the
reporting problem as follows: given a string S and a number m, report all 2-covers {C1, C2} of S

with length |C1| + |C2| upper bounded by m. We present an Õ(n + output) time algorithm solving
this problem, with output being the size of the output. This algorithm admits a simpler modification
that finds a 2-cover of minimum length. We also provide an Õ(n) time construction of a 2-cover
oracle which, given two substrings C1, C2 of S, reports in poly-logarithmic time whether {C1, C2} is
a 2-cover of S.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Quasi-periodicity, String cover, Range query, Range stabbing

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.31

Related Version Full Version: https://arxiv.org/abs/2405.11475 [8]

Funding Itai Boneh: supported by Israel Science Foundation grant 810/21.
Shay Golan: supported by Israel Science Foundation grant 810/21.
Arseny Shur : supported by the ERC grant MPM under the EU’s Horizon 2020 Research and
Innovation Programme (grant no. 683064) and by the State of Israel through the Center for
Absorption in Science of the Ministry of Aliyah and Immigration.

Acknowledgements We are grateful to anonymous reviewers for careful reading and useful comments.
Our special thanks for Mikhail Rubinchik and one of the reviewers for independently suggesting a
faster algorithm for Lemma 34.

1 Introduction

For a string S, the substring C of S is a cover of S if every index of S is covered by an
occurrence of C. Since the introduction of covers by Apostolico and Ehrenfeucht [4], many
algorithms have been developed for finding covers or variations of covers of a given string.
[4] presented an O(n log2 n) time algorithm for finding all covers of an input string of length
n. It was shown by Moore and Smyth [23, 24] that all covers of a string can be reported in

© Itai Boneh, Shay Golan, and Arseny Shur;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 31; pp. 31:1–31:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:itai.bone@biu.ac.il
https://orcid.org/0009-0007-8895-4069
mailto:golansh1@biu.ac.il
https://sites.google.com/view/shaygolan
https://orcid.org/0000-0001-8357-2802
mailto:shur@datalab.cs.biu.ac.il
https://orcid.org/0000-0002-7812-3399
https://doi.org/10.4230/LIPIcs.ESA.2024.31
https://arxiv.org/abs/2405.11475
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 String 2-Covers with No Length Restrictions

O(n) time. Li and Smyth [22] further extended this result by showing that the covers of all
prefixes of S can be computed in O(n) time. Further works on covers and variants of cover
include [1, 9, 18, 7, 2, 3, 15, 6, 25].

A natural generalization of a cover is a λ-cover. A set of strings {C1, C2, . . . , Cλ} is a
λ-cover of S if every index in S is covered by an occurrence of Ci for some i ∈ [λ]. The notion
of λ-cover was first studied by Cole et al. [11], who proved that it is NP-complete to decide,
given a string S and integers k and λ, whether S can be covered by λ substrings of length k.
Apparently, relaxing the length restrictions would not ease the problem, but we are unaware
of any other published hardness result. Moreover, Guo et al. [16] made an erroneous claim
that for a fixed λ and a constant-size alphabet all λ-covers of a string S can be computed in
O(n2) time; the flaw in their analysis was pointed out by Czajka and Radoszewski [12].

In this work, we focus on 2-covers. Radoszewski and Straszyński [26] considered the
“balanced” case mentioned above, where the two strings composing the 2-cover have equal
length. They proposed an Õ(n + output)-time algorithm reporting all balanced 2-covers of a
given length-n string S. They also provide two versions of this algorithm, one of which finds
a balanced 2-cover of each possible length and the other determines the shortest balanced
2-cover of S; both versions work in Õ(n) time. Designing efficient algorithms for the same
problems on 2-covers in the general case is posed in [26] as an open problem.

For a 2-cover {C1, C2}, its length is |C1|+|C2|. Following the open problem of Radoszewski
and Straszyński, we specify the following problems for 2-covers in the general case:

All_2-covers(S, m): for a string S, report all 2-covers of length at most m;
Shortest_2-cover(S): for a string S, find a 2-cover of minimum length;
2-cover_Oracle(S): for a string S, build a data structure that answers the queries of the
form “do given two substrings of S constitute a 2-cover of S?”

Note that every length-n string S trivially has Ω(n2) 2-covers. E.g., if C1 is a prefix
of S, C2 is a suffix of S, and |C1|+ |C2| ≥ n, then {C1, C2} is a 2-cover of S. The length
restriction made in the above formulation of the All_2-covers problem allows one to consider
instances with smaller outputs, thus returning the running times of type Õ(n + output) into
the game.

Our contribution. In this work, we solve the three above problems in near linear time.

▶ Theorem 1. There exists an algorithm that solves All_2-covers(S, m) in O(n log5 n +
output · log3 n) time for any value of the bound m.

▶ Theorem 2. There exists an algorithm that solves Shortest_2-cover(S) in O(n log3 n) time.

▶ Theorem 3. There exists an algorithm that solves 2-cover_Oracle(S) in O(n log5 n) pre-
processing time and O(log3 n) query time.

Techniques and Ideas. The main idea of our algorithms is the formulation of the property
“an index i in S is covered by an occurrence of a substring U of S” in terms of point location.
At a high level, each index i is assigned a compactly representable area Ai in the plane, and
every substring U that is not highly periodic corresponds to a point pU in the plane such
that pU ∈ Ai if and only if the index i is covered by some occurrence of U . The same idea,
implemented in three dimensions instead of two, covers the case of highly periodic substrings.

Given such a geometric representation, our algorithms make use of multi-dimensional
range-reporting and range-stabbing data structures to retrieve and organize the areas associ-
ated with each index in S. This organization facilitates the computation of a core set of the

I. Boneh, S. Golan, and A. Shur 31:3

2-covers, which consists of pairs of strings that are not highly periodic. This set provides
a solution to the Shortest_2-cover problem. Besides that, we create the oracle solving the
2-cover_Oracle problem and utilize the core set to finalize our solution to the All_2-covers
problem with a small number of queries to this oracle.

Organization. In Section 2 we present notation, auxiliary lemmas, and pre-existing data
structures that are used in our algorithms. In Section 3 we formalize and prove the connection
between covering an index in a string by an occurrence of a substring and multidimensional
point location. In Section 4 we build upon the insights presented in Section 3 to design the
2-cover oracle and prove Theorem 3. Finally, in Section 5 we present the reporting algorithms
proving Theorem 2 and Theorem 1 (the latter one executes the oracle). All details omitted
due to space constraints can be found in the full version [8].

2 Preliminaries

Here we present definitions, notation, and auxiliary lemmas. The proofs are omitted and can
be found in the full version [8].

We assume in this paper that 0 ∈ N. We denote [x..y] = {i ∈ N | x ≤ i ≤ y} for any real
numbers x, y, possibly negative. We also denote [x] = [1..x]. The notation output stands for
the size of output of a reporting algorithm.

All strings in the paper are over an alphabet Σ = {1, 2, . . . , O(nc)} for some constant c.
The letters of a string S are indexed from 1 to |S|. If X = S[i..j], X is called a substring of
S (a prefix of S if i = 1, a suffix of S if j = |S|, and an empty string if i > j). We also say
that S[i..j] specifies an occurrence of X at position i. If X is a substring of S, then S is a
superstring of X. A string X that occurs both as a prefix and as a suffix of S is a border
of S. A string S has period ρ if S[i] = S[i + ρ] for all i ∈ [|S| − ρ]. Clearly, S has period ρ

if and only if S[1..|S| − ρ] is a border of S. The minimal period of S is denoted by per(S).
Let per(S) = ρ. We say that S is aperiodic if |S| < 2ρ, (ρ-)periodic if |S| ≥ 2ρ, and highly
(ρ-)periodic if |S| ≥ 3ρ. We say that S is short (ρ)-periodic if |S| ∈ [2ρ..3ρ− 1]. Note that if
a string X occurs in S at positions i and j, then |j − i| ≥ per(X).

The following two lemmas specify some useful structure of periodic prefixes and borders.

▶ Lemma 4. Periodic prefixes of a length-n string have, in total, O(log n) different periods.

▶ Lemma 5. Every string of length n has O(log n) aperiodic borders and O(log n) short
periodic borders.

We use well known notion of the longest common prefix (LCP).

▶ Definition 6. For two strings S and T , LCP(S, T) = max{ℓ | S[1..ℓ] = T [1..ℓ]} is the
length of their longest common prefix and LCPR(S, T) = max{ℓ | S[|S| − ℓ + 1..|S|] =
T [|T | − ℓ + 1..|T |]} is the length of their longest common suffix.

Covers. Given a string S, we say that a substring X covers an index i if for some indices
j1, j2 ∈ [|S|] we have X = S[j1..j2] and i ∈ [j1..j2]. We also say that the occurrence of X at
j1 covers i. If X covers every i ∈ [|S|], we call X a 1-cover of S. A pair of substrings (X, Y)
is said to cover i if X or Y covers i. If a pair (X, Y) covers every i ∈ [|S|], we call (X, Y) a
2-cover of S. (It will be convenient to consider 2-covers as ordered pairs, though the notion
of 2-cover is symmetric with respect to X and Y .) We say that (X, Y) is highly periodic
if either X or Y is highly periodic, otherwise (X, Y) is non-highly periodic. The following
lemma considers a periodic string that covers index i.

ESA 2024

31:4 String 2-Covers with No Length Restrictions

▶ Lemma 7. Let S be a string, and let X be a ρ-periodic substring. If the string X covers
an index i, then the string X[1..|X| − ρ]] (= X[ρ + 1..|X|]) also covers i.

Runs. A ρ-periodic substring of S is a run if it is not contained in a longer ρ-periodic
substring. We use the following lemmas regarding runs.

▶ Lemma 8. Let S be a string, ρ ∈ [|S|]. Every index i in S is covered by at most two
ρ-periodic runs and by O(log n) highly periodic runs.

▶ Lemma 9. Let S be a string. For every ρ-periodic substring S[i..j], there is a unique
ρ-periodic run containing S[i..j].

▶ Lemma 10. If there is an integer ρ such that S[x..y] is ρ-periodic and S[x..y + 1] is not
ρ-periodic, then S[x..y + 1] is aperiodic.

▶ Lemma 11 ([5, Theorem 9]). The number of runs in any string S is smaller than |S|.

2.1 Range Data Structures
Our algorithms use data structures for orthogonal range queries. Such a data structure
is associated with a positive integer dimension d and deals with d-dimensional points and
d-dimensional ranges. A d-dimensional point is a d-tuple p = (x1, x2, . . . , xd) and a d-
dimensional range is the cartesian product R = [a1..b1]× [a2..b2]× . . .× [ad..bd] of d ranges.
We call a 2-dimensional range a rectangle and a 3-dimensional range a cuboid. We say that a
point p is contained in the range R (denoted by p ∈ R) if xi ∈ [ai..bi] for every i ∈ [d].

We make use of the following range data structures.

▶ Lemma 12 (Range Query Data Structure [28, 10]). For any integer d, a set P of n points
in Rd can be preprocessed in O(n logd−1 n) time to support the following queries.

Reporting: Given a d-dimensional range R, output all points in the set P ∩R.
Emptiness: Given a d-dimensional range R, report if P ∩R = ∅ or not.

The query time is O(logd−1 n) for Emptiness and O(logd−1 n + output) for Reporting.

▶ Lemma 13 (Range stabbing queries [10, Theorems 5 and 7]). For any integer d, a set of
d-dimensional ranges R1, R2, . . . , Rn can be preprocessed in O(n logd−1 n) time to support
the following queries.

Stabbing: Given a d-dimensional point p, report all ranges Ri such that p ∈ Ri.
Existence: Given a d-dimensional point p, report if no ranges Ri satisfy p ∈ Ri.

The query time is O(logd−1 n) for Existence and O(logd−1 n + output) for Stabbing.

2.2 Stringology Algorithms and Data Structures
Throughout the paper, we make use of the following string algorithms and data structures.

▶ Lemma 14 (Pattern Matching [17]). There exists an algorithm that, given a string T of
length n and a string P of length m ≤ n, reports in O(n) time all the occurrences of P in T .

▶ Lemma 15 (LCPS Data Structure [20, 14]). There exists a data structure LCPS that
preprocesses an arbitrary string S ∈ Σ∗ of length n in O(n) time and supports constant-time
queries LCPS(i, j) = LCP(S[i..n], S[j..n]) and LCPR

S (i, j) = LCPR(S[1..i], S[1..j]).

When S is clear from context, we simply write LCP(i, j) and LCPR(i, j).

I. Boneh, S. Golan, and A. Shur 31:5

▶ Lemma 16 (Internal Pattern Matching (IPM) [19]). There exists a data structure IPMS that
preprocesses an arbitrary string S ∈ Σ∗ of length n in O(n) time and supports the following
constant-time queries.

Periodic: given a substring X, return per(X) if X is periodic, and “aperiodic” otherwise.
Internal Matching: Given two substrings X and Y such that |Y | = O(|X|), return all
occurrences of X in Y represented as O(1) arithmetic progressions.

▶ Lemma 17 (Finding all Substrings, see [21]). There is an algorithm that reports all distinct
substrings of a string S[1..n] in time O(n + output).

▶ Lemma 18 (Finding all Runs [13, Theorem 1.4]). There is an algorithm that computes all
runs of a string S ∈ Σ∗ of length n in O(n) time.

3 Range Characterization of Covering an Index

In this section we translate the property “an index is covered by an occurrence of a given
substring” to the language of d-dimensional points and ranges. Then this property can
be checked with the queries described in Lemmas 12 and 13. We distinguish between the
2-dimensional case of not highly periodic substrings (Lemma 19) and 3-dimensional case of
highly periodic substrings (Lemma 26). Given a point p and a set R of ranges (both in d

dimensions), we slightly abuse the notation, writing p ∈ R instead of p ∈
⋃

R∈R R.
To present the algorithms that prove these lemmas, we first describe an O(n log2 n) time

preprocessing phase. Throughout the rest of the paper, we assume that this preprocessing
has already been executed.

Preprocessing. The algorithm computes LCPS data structure of Lemma 15 and IPMS data
structure of Lemma 16. In addition, the algorithm computes all runs of S using Lemma 18.
For every ρ ∈ [n], the algorithm stores all ρ-periodic runs of S in a 3-dimensional range
reporting data structure Dρ

run of Lemma 12 as follows. For every ρ-periodic run S[ℓ..r], the
data structure Dρ

run contains the point p = (ℓ, r, r − ℓ + 1). By Lemma 11, the total number
of runs stored in the structures Dρ

run over all ρ ∈ [n] is at most n. It follows from Lemmas 12,
15, 16, and 18 that the preprocessing time is O(n log2 n).

3.1 The Not Highly Periodic Case
In this section we prove the following lemma.

▶ Lemma 19. Let f, i ∈ [n] be two indices and let k ∈ N. There exists a set R of O(1)
rectangles such that for any ℓ, r ∈ N with ℓ+r+1 ∈ [1.5k..1.5k+1] the string sub = S[f−ℓ..f+r]
satisfies the following conditions:
1. If (ℓ, r) ∈ R, then sub covers i and per(sub) ≥ 1.5k

4 .
2. If sub covers i and is not highly periodic, then (ℓ, r) ∈ R.
Moreover, R can be computed in O(log2 n) time.

For f ∈ [n] and k ∈ N, let subleft = S[f −
⌊

1.5k

2

⌋
..f], and subright = S[f..f +

⌊
1.5k

2

⌋
]. If an

endpoint of a substring is outside S, the substring is undefined.

▶ Observation 20. Let f ∈ [n] be an index and k ∈ N. For every sub = S[f − ℓ..f + r] such
that ℓ, r ∈ N and |sub| ∈ [1.5k..1.5k+1], sub is a superstring of either subleft or subright.

ESA 2024

31:6 String 2-Covers with No Length Restrictions

Observation 20 allows us to prove Lemma 19 as follows. First we find a set R1 that
satisfies the conditions of the lemma for all pairs (ℓ, r) such that sub = S[f − ℓ..f + r] is a
superstring of subright. Similarly, we find a set R2 for the case where sub is a superstring of
subleft. Then R1 ∪R2 is the set required by the lemma.

In the rest of the section we show how to find the set R1. (The argument for the set R2

is similar, so we omit it.) Let us fix f, ℓ, and r ≥
⌊

1.5k

2

⌋
= |subright| − 1. Let iright denote the

starting index of an occurrence of subright. We make the following claim.

▷ Claim 21. There exists a rectangle R such that for any ℓ, r ∈ N with ℓ+r+1 ∈ [1.5k..1.5k+1]
and r ≥

⌊
1.5k

2

⌋
the substring sub = S[f − ℓ..f + r] covers the index i with the occurrence

at position iright − ℓ if and only if (ℓ, r) ∈ R. Moreover, R can be computed in O(1) time.

Proof. Let er = LCP(f, iright), eℓ = LCPR(f, iright). Using LCPS , we compute in O(1) time
the rectangle R = [iright − i .. eℓ − 1]× [i− iright .. er − 1] and check the required conditions.

First assume (ℓ, r) ∈ R. Since ℓ ≤ eℓ − 1 and r ≤ er − 1, one has sub = S[f − ℓ..f + r] =
S[iright − ℓ..iright + r], so sub occurs at iright − ℓ. Since ℓ ≥ iright − i and r ≥ i− iright, we have
i ∈ [iright − ℓ..iright + r], so this occurrence covers i.

Now assume that sub covers i with the occurrence at iright − ℓ. Since sub occurs at
iright − ℓ, one has ℓ ≤ eℓ − 1 and r ≤ er − 1. Since this occurrence covers i, one also has
i ∈ [iright − ℓ..iright − ℓ + |sub| − 1] = [iright − ℓ..iright + r]. Then ℓ ≥ iright − i and r ≥ i− iright,
which finally proves (ℓ, r) ∈ R. ◁

If sub covers index i, its substring subright must occur close to i. Since |sub| ≤ 1.5k+1, if
an occurrence of sub at iright − ℓ covers i, then the position iright, at which subright occurs, is
inside the range [i− 1.5k+1..i + 1.5k+1]. Let occright be the set of all such indices iright from
this range. We distinguish between two cases, regarding the period of subright.

Case 1: per(subright) ≥ 1.5k

4 . The following claim is easy.

▷ Claim 22. If per(subright) ≥ 1.5k

4 , then |occright| = O(1).

Proof. The distance between two consecutive occurrences of subright is at least 1.5k

4 . Since a
range of length 2 · 1.5k+1 contains O(1) disjoint ranges of length 1.5k

4 , the claim follows. ◁

Now we build the set R1. We compute occright in O(1) time using the IPMS data structure.
For every j ∈ occright, we take the rectangle Rj from Claim 21. Let R1 = {Rj | j ∈ occright}.
By Claim 22, |R1| = O(1). Consider a pair (ℓ, r) such that ℓ + r + 1 ∈ [1.5k..1.5k+1] and
r ≥

⌊
1.5k

2

⌋
, and let sub = S[f − ℓ..f + r]. If (ℓ, r) ∈ R1, then (ℓ, r) ∈ Rj for some j ∈ occright.

Hence by Claim 21 sub covers i with an occurrence at j−ℓ and per(sub) ≥ per(subright) ≥ 1.5k

4 ,
as required. Conversely, if sub covers i with an occurrence at j, then j′ = j + ℓ belongs to
occright. Then by Claim 21 (ℓ, r) ∈ Rj′ and thus (ℓ, r) ∈ R1. This concludes the proof of
Lemma 19 in the case per(subright) ≥ 1.5k

4 .

Case 2: ρ = per(subright) < 1.5k

4 . Let runf = S[f − ℓf
run..f + rf

run] be the ρ-periodic run
containing S[f..f + |subright| − 1] (such a run exists by Lemma 9). Consider a pair (ℓ, r) such
that ℓ + r + 1 ∈ [1.5k..1.5k+1] and r ≥

⌊
1.5k

2

⌋
, and let the string sub = S[f − ℓ..f + r] be

not highly periodic. Then per(sub) > 1.5k

3 > ρ. Hence sub is not a substring of runf , which
means that either ℓ > ℓf

run or r > rf
run. Below we assume r > rf

run; the other case is symmetric.
We first observe that this inequality guarantees that per(sub) is big enough.

I. Boneh, S. Golan, and A. Shur 31:7

▷ Claim 23. For every sub = S[f − ℓ..f + r] with r > rf
run one has per(sub) ≥ 1.5k

4 .

Proof. The substring S[f..f + rf
run] is ρ-periodic and u = S[f..f + rf

run + 1] is not (otherwise,
runf is not a run). By Lemma 10, u is aperiodic. Then per(u) > |u|

2 ≥
1.5k

4 . It remains to
note that u is a substring of sub. ◁

Let sub→
right = S[f..f + rf

run]. Note that sub→
right is a ρ-periodic suffix of the ρ-periodic run

runf and sub contains sub→
right followed by a letter that breaks the period ρ. This means that

if sub covers i, then S contains, close to i, a ρ-periodic run with the suffix sub→
right. Let us

say that a ρ-periodic run S[arun .. brun] is close to i if arun ≤ i + 1.5k+1 and brun ≥ i− 1.5k+1.
Clearly, if sub covers i, it contains the suffix sub→

right of a run close to i.
Let Runclose be the set of ρ-periodic runs close to i with length at least |sub→

right|.

▷ Claim 24. |Runclose| = O(1). Moreover, Runclose can be computed in O(log2 n) time.

Proof. Assume that Runclose is ordered by the positions of runs. Each of these runs has length
at least 1.5k

2 and any two ρ-periodic runs overlap by less than ρ < 1.5k

4 positions. Then
the positions of any two consecutive runs from Runclose differ by more than 1.5k

4 and any
two non-consecutive runs are disjoint. Since the first run ends no later than the position
i − 1.5k+1 by definition of being close to i, the third and all subsequent runs start after
this position. Again by definition, all runs start before the position i + 1.5k+1. The range
[i − 1.5k+1..i + 1.5k+1] contains O(1) positions such that any two of them differ by more
than 1.5k

4 . Hence we get |Runclose| = O(1).
Querying Dρ

run with the range [−∞..i + 1.5k+1]× [i− 1.5k+1..∞]× [|sub→
right|..∞] we get

all ρ-periodic runs that are close to i (due to the first two coordinates) and have length at
least |sub→

right| (due to the last coordinate); i.e., what we get is Runclose. The query time is
O(log2 n) by Lemma 12. ◁

Now we construct the set R1. We query Dρ
run with [−∞..f]× [f +

⌊
1.5k

2

⌋
..∞]× [−∞..∞]

to get the unique ρ-periodic run runf = [f − ℓf
run..f + rf

run] containing the substring subright =
S[f..f +

⌊
1.5k

2

⌋
]. Then we compute the O(1)-size set Runclose (Claim 24). For every run ∈

Runclose we check, with an LCP query, whether sub→
right is a suffix of run. If yes, we compute

the position iright of this suffix from the parameters of the run. Since iright is the position
of an occurrence of subright, we apply Claim 21 to obtain a rectangle R = [ℓ1, ℓ2]× [r1, r2].
Since in our argument we assume r > rf

run, we replace r1 with max{r1, rf
run + 1}. If the range

for r remains nonempty, we denote the obtained rectangle by Rrun.
Let Rright = {Rrun | run ∈ Runclose}. In a symmetric way, we consider the case ℓ > ℓf

run
and build the set Rleft. Finally we set R1 = Rright ∪Rleft. The time complexity is dominated
by O(1) queries to Dρ

run, which take O(log2 n) by Lemma 12.
Now consider a pair (ℓ, r) such that ℓ + r + 1 ∈ [1.5k..1.5k+1] and r ≥

⌊
1.5k

2

⌋
, and let

sub = S[f − ℓ..f + r]. If (ℓ, r) ∈ R1, then (ℓ, r) belongs to some rectangle from Rright or Rleft;
these cases are symmetric, so let this rectangle be Rrun ∈ Rright, where run = [arun..brun]. Hence
by Claim 21 sub covers i with an occurrence at brun−rf

run−ℓ. We also have per(sub) ≥ 1.5k

4 by
Claim 23. Conversely, if sub is not highly periodic, then either r > rf

run or ℓ > ℓf
run. Without

loss of generality, let r > rf
run. Now if sub covers i with an occurrence at j, then there is an

occurrence of sub→
right at j′ = j + ℓ that is a suffix of a ρ-periodic run run. Then by Claim 21

we have (ℓ, r) ∈ Rrun and thus (ℓ, r) ∈ R1. Thus, we finished the proof of Lemma 19.

ESA 2024

31:8 String 2-Covers with No Length Restrictions

3.2 The Highly Periodic Case
In this section we prove Lemma 26, which is the analog of Lemma 19 for periodic strings.

We begin with more notation. Let u be a ρ-periodic string having a substring v of length ρ.
Since ρ = per(u), the positions of any two occurrences of v in u differ by a multiple of ρ. Then
there exist unique integers t1, t2 ∈ [0..ρ− 1] and q ∈ N such that u = v[ρ−t1+1..ρ]vqv[1..t2].
We abbreviate this representation as u = v[t1;q;t2].

▶ Observation 25. Let u = v[t1;q;t2]. The numbers t1, t2, and q can be computed in O(1)
time given |u|, |v|, and the position of any occurrence of v in u.

For a ρ-periodic substring sub = S[f − ℓ..f + r], we define its root by

root =
{

S[f..f + ρ− 1], if r ≥ ρ− 1,

S[f − ρ..f − 1], otherwise.

Thus, sub = root[tℓ;qℓ,r;tr] for some unique integers tℓ, tr ∈ [0..ρ− 1] and qℓ,r > 0.

▶ Lemma 26. Let f, i ∈ [n] be two indices and let ρ ∈ [n]. There exists a set C of O(1)
cuboids such that every highly ρ-periodic substring of the form sub = S[f − ℓ..f + r] with
ℓ, r ∈ N satisfies the following: sub covers index i if and only if (tℓ, tr, qℓ,r) ∈ C. Moreover, C
can be computed in O(log2 n) time.

Let sub = S[f − ℓ..f + r] be highly ρ-periodic. By Lemma 9, each occurrence of sub
is contained in a unique ρ-periodic run. By Lemma 8, there are at most two such runs
containing i (say, run1 and run2). Hence if sub covers i, it does so with an occurrence
contained either in run1 or in run2. Then Lemma 26 follows from Lemma 27 below: we query
Dρ

run to get run1 and run2 (in O(log2 n) time by Lemma 12), take the sets C1 and C2 given by
Lemma 27 for run1 and run2 respectively, and let C = C1 ∪ C2.

▶ Lemma 27. Let run = S[arun..brun] be a ρ-periodic run containing i. There is a set C of
O(1) cuboids such that sub covers i with an occurrence fully contained in run if and
only if (tℓ, tr, qℓ,r) ∈ C. Moreover, the set C can be computed in O(1) time.

In the rest of the section we describe the algorithm computing the set C of Lemma 27.
First the algorithm checks the length of run. Since sub is highly ρ-periodic, sub ≥ 3ρ. If

|run| < 3ρ, then sub has no occurrences in run. Hence in this case C = ∅. Next, the algorithm
verifies if root is a substring of run. Due to ρ-periodicity of run, it is sufficient to check for an
occurrence of root the prefix of run having length 2ρ = 2|root|. By Lemma 16, this check can
be done in O(1) time with the IPMS data structure. If root is not a substring of run, then
once again sub has no occurrences in run and so C = ∅.

From now on, we assume that |run| ≥ 3ρ and run contains an occurrence of root. Then the
algorithm computes, in O(1) time by Observation 25, the parameters of the representation
run = root[trun

ℓ ;qrun;trun
r]. One has qrun ≥ 2 since |run| ≥ 3ρ. We recall that sub = root[tℓ;qℓ,r;tr].

Note that sub covers index i of S with an occurrence contained in run if and only if it
covers the index j = i− arun + 1 of the string run. In order to build the set C, we describe, in
Claim 30, a set of necessary and sufficient conditions for sub to cover an index j of run. We
denote bℓ = [tℓ > trun

ℓ], br = [tr > trun
r] (Iverson bracket notation). We need two auxiliary

claims.

▷ Claim 28. Let sub occur in run. If x is the starting index of its leftmost occurrence
and y is the ending index of its rightmost occurrence, then x = trun

ℓ − tℓ + 1 + bℓρ, y =
trun
ℓ + (qrun − br)ρ + tr, and [x..y] is exactly the set of indices covered by sub in run.

I. Boneh, S. Golan, and A. Shur 31:9

Proof. We prove the formula for x as the argument for y is similar. Since run is ρ-periodic, we
have x ∈ [1..ρ] (otherwise, there is another occurrence at position x− ρ). Since root occurs in
sub at position tℓ +1, run has a matching occurrence of root at position tℓ +x ∈ [tℓ +1..tℓ +ρ].
The occurrences of root in run are at positions trun

ℓ +1, trun
ℓ +ρ+1, . . ., so exactly one of them

starts in the range [tℓ + 1..tℓ + ρ]. If tℓ ≤ trun
ℓ , one has trun

ℓ + 1 ∈ [tℓ + 1..tℓ + ρ]. Therefore, we
have trun

ℓ + 1 = tℓ + x, implying x = trun
ℓ − tℓ + 1 + 0 · ρ as required. Similarly, if tℓ > trun

ℓ , one
has trun

ℓ +ρ+1 ∈ [tℓ +1..tℓ +ρ]. Then trun
ℓ +ρ+1 = tℓ +x, which implies x = trun

ℓ − tℓ +1+1 ·ρ
as required.

Since run is ρ-periodic, the positions of any two consecutive occurrences of sub in run
differ by ρ (see Figure 1). As |sub| > ρ, the indices in run covered by occurrences of sub form
a single range from the first index of the leftmost occurrence (i.e., x) to the last index of the
rightmost occurrence (i.e., y). ◁

▷ Claim 29. The string sub occurs in run if and only if qℓ,r ≤ qrun − bℓ − br.

Proof. Let sub occur in run. By Claim 28, its leftmost occurrence is at x = drun
ℓ − tℓ + 1 + bℓρ

and its rightmost occurrence ends at y = trun
ℓ + (qrun − br)ρ + tr. Clearly, we have the

inequality y − x + 1 ≥ |sub| = tℓ + qℓ,rρ + tr, which is equivalent to qℓ,r ≤ qrun − bℓ − br.
For the converse, we assume that this inequality holds and show that sub occurs in run at

position x = trun
ℓ − tℓ + 1 + bℓρ. Since sub and run are both ρ-periodic and share the substring

root of length ρ, it suffices to prove that |run[x..|run|]| ≥ |sub|. Observing that brρ ≥ tr− trun
r ,

we obtain

|run[x..|run|]| = qrunρ + trun
ℓ + trun

r − x + 1 = (qrun − bℓ)ρ + tℓ + trun
r

≥ (qrun − bℓ − br)ρ + tℓ + tr ≥ qℓ,rρ + tℓ + tr = |sub|,

as required. ◁

▷ Claim 30. The string sub = root[tℓ;qℓ,r;tr] covers index j in run = root[trun
ℓ ;qrun;trun

r] if and
only if one of the following mutually exclusive conditions holds:
1. tℓ ≤ trun

ℓ , tr ≤ trun
r , qℓ,r ≤ qrun , and j ∈ [trun

ℓ − tℓ + 1 .. trun
ℓ + qrunρ + tr];

2. tℓ > trun
ℓ , tr ≤ trun

r , qℓ,r ≤ qrun − 1, and j ∈ [trun
ℓ − tℓ + 1 + ρ .. trun

ℓ + qrunρ + tr];
3. tℓ ≤ trun

ℓ , tr > trun
r , qℓ,r ≤ qrun − 1, and j ∈ [trun

ℓ − tℓ + 1 .. trun
ℓ + (qrun − 1)ρ + tr];

4. tℓ > trun
ℓ , tr > trun

r , qℓ,r ≤ qrun − 2, and j ∈ [trun
ℓ − tℓ + 1 + ρ .. trun

ℓ + (qrun − 1)ρ + tr].

Proof. If sub covers index j, then sub occurs in run. Hence Claim 29 implies the inequalities
and Claim 28 implies the range for each of conditions 1–4.

For the converse, if one of the conditions 1–4 is true, then sub indeed occurs in run
according to Claim 29. Then again Claim 28 implies the range of indices covered by
occurrences of sub. As j belongs to this range, it is covered. ◁

The algorithm builds the set C by running through conditions 1–4 of Claim 30. If j = i−
arun+1 belongs to the range from a condition, the algorithm adds to C the cuboid defined by the
inequalities listed in this condition; otherwise, it does nothing. The cuboids for the conditions
1, 2, 3, and 4 are, respectively, [0..trun

ℓ]× [0..trun
r]× [1..qrun]; [trun

ℓ +1..ρ−1]× [0..trun
r]× [1..qrun−1];

[0..trun
ℓ]× [trun

r +1..ρ− 1]× [1..qrun−1]; [trun
ℓ +1..ρ− 1]× [trun

r +1..ρ− 1]× [1..qrun−2].

ESA 2024

31:10 String 2-Covers with No Length Restrictions

root root root root

Figure 1 Occurrences of sub in run (Claims 28 and 30). The grey strip is run, occurrences of sub
are shown as color strips (one color for one substring sub). The substrings drawn red, green, and
blue realize, respectively, conditions 1, 3, and 4 of Claim 30. Dash lines show ranges covered by sub
in each case.

Correctness. Let sub cover i with an occurrence contained in run. Then sub covers the index
j = i − arun + 1 in run. By Claim 30, the triple (tℓ, tr, qℓ,r) satisfies one of conditions 1–4,
say, condition N. In particular, j belongs to the interval of condition N. Then the algorithm
built a cuboid C from the inequalities of condition N such that (tℓ, tr, qℓ,r) ∈ C. Conversely,
if (tℓ, tr, qℓ,r) ∈ C, where C was built from condition N of Claim 30, then j belongs to the
interval of condition N. Hence condition N holds; by Claim 30, sub covers the index j in run,
and thus covers i in S.

As the time complexity is straightforward, Lemma 27, and then Lemma 26, is proved.

4 2-Covers Oracle

In this section, we present a solution to the 2-cover_Oracle problem (Theorem 3). The
preliminary part of the solution is common to all three problems.

Every 2-cover of S contains a prefix and a suffix of S. Respectively, each 2-cover has one
of two types (see [26]): a prefix-suffix 2-cover (ps-cover) consists of a prefix of S and a suffix
of S while in a border-substring 2-cover (bs-cover) one string is a border of S. We process
these two cases separately.

Let (U1, U2) be a pair of substrings. Lemmas 19 and 26 allow us to express each predicate
“Uj covers index i” as pj ∈ Ri

j , where pj is a point and Ri
j is a set of O(1) ranges in dj

dimensions. Then the predicate “(U1, U2) is a 2-cover” is expressed by the 2CNF formula∧n
i=1(p1 ∈ Ri

1 ∨ p2 ∈ Ri
2). We answer the instances of this predicate with a new data

structure based on rectangle stabbing (Lemma 13).

▶ Lemma 31 (2-CNF Range Data Structure). Let dℓ, dr be integer constants and let Pairs =
{(L1,R1), (L2,R2), . . . , (Ln,Rn)} be a set of pairs such that for every i ∈ [n], Li is a set of
O(1) dℓ-dimensional orthogonal ranges and Ri is a set of O(1) dr-dimensional orthogonal
ranges. The set Pairs can be preprocessed in O(n logdℓ+dr−1 n) time to a data structure that
supports the following query in O(logdℓ+dr−1 n) time:

query(pℓ, pr): for a dℓ-dimensional point pℓ and a dr-dimensional point pr, decide if for
every i ∈ [n] either pℓ ∈ Li or pr ∈ Ri.

In order to prove Lemma 31, we need an auxiliary statement.

I. Boneh, S. Golan, and A. Shur 31:11

▶ Lemma 32 (Inverse of Ranges). Let R be a set of O(1) d-dimensional ranges, where d is
an integer constant. There is a set R of O(1) d-dimensional ranges such that

⋃
R∈R R =

[−∞..∞]d \
⋃

R∈R R. Moreover, the set R can be computed in O(1) time given R.

Proof. We present a proof for a set of 2-dimensional ranges, i.e., rectangles. This proof
can be easily generalized to any constant dimension. For every rectangle R ∈ R, say,
R = [x1..x2]× [y1..y2], consider extensions of its sides, which are the lines x = x1, x = x2,
y = y1 and y = y2. The extensions of the sides of all rectangles in R partition the plane
into O(|R|2) = O(1) rectangles. Every rectangle in this partition is either contained in a
rectangle of R, or is disjoint from all rectangles of R. The set of rectangles in the partition
disjoint from all rectangles of R satisfies the claim. Moreover, this set can be computed in
O(1) time straightforwardly. ◀

Proof of Lemma 31. Let d = dℓ + dr. We build a set B of d-dimensional ranges, processing
each pair (Li,Ri) as follows. We start with the set Bi of d-dimensional ranges defined by

Bi = {L× [−∞..∞]dr | L ∈ Li} ∪ {[−∞..∞]dℓ ×R | R ∈ Ri}.

As |Bi| = |Li| + |Ri| = O(1), we apply Lemma 32 to get, in O(1) time, its inverse set of
ranges Bi, which is also of size O(1). Now let B =

⋃
i∈[n] Bi.

We preprocess the set B into a range stabbing data structure (Lemma 13). To answer
query(pℓ, pr), where pℓ = (x1, . . . , xdℓ

) and pr = (y1, . . . , ydr
), we perform the Existence

query to this structure with the d-dimensional point p = (x1, . . . , xdℓ
, y1, . . . , ydr) and report

the negation of the obtained answer. The required time complexities follow from Lemma 13.

Correctness. We need to prove that p /∈
⋃

B∈B B if and only if for every i ∈ [n] either
pℓ ∈ L for some L ∈ Li or pr ∈ R for some R ∈ Ri.

Let p /∈
⋃

B∈B B and let i ∈ [n]. By definition of B, p /∈
⋃

B∈Bi
B. Then p ∈

⋃
B∈Bi

B.
By definition of Bi, this implies that pℓ ∈ L for some L ∈ Li of pr ∈ R for some R ∈ Ri.

For the converse note that if pℓ ∈ L for some L ∈ Li of pr ∈ R for some R ∈ Ri, then
p ∈ B for some B ∈ Bi and hence p /∈ B′ for all B′ ∈ Bi. If this is the case for all i, then
p /∈

⋃
B∈B B by definition. ◀

As Lemma 19 refers to particular ranges and Lemma 26 refers to particular periods, we
partition substrings into groups and build a separate 2CNF data structure for each pair
of groups. For prefixes, suffixes, and borders, we have O(log n) periods (Lemma 4) and
thus O(log n) groups of highly periodic prefixes (suffixes, borders). The remaining prefixes
(suffixes) form O(log n) groups associated with length ranges [1.5k..1.5k+1] for some k. There
are O(log n) remaining borders (Lemma 5), so each of them forms a separate group. For
each group of borders we choose a fixed position f . Highly periodic substrings containing f

form O(log n) groups (Lemma 8); the other are grouped according to O(log n) length ranges.
Therefore, in total we build O(log2 n) 2CNF data structures for ps-covers and bs-covers.

Effective dimension. A direct implementation of Lemmas 19 and 26 leads to the 2CNF
structures of dimension 4 to 6. Let us show how to lower the dimension. For any group pref
of prefixes we take f = 1. Then in Lemma 19 all points have the form (0, r). So we have fixed
first coordinate and variable second coordinate. In Lemma 26, one has root = S[1..ρ], and
thus all points have the form (0, dr, qr) with two variable coordinates. For groups of suffixes
we take f = n and symmetrically get the points of the form (ℓ, 0) or (dℓ, 0, qℓ). Since borders
are simultaneously prefixes and suffixes, we get two fixed coordinates in the corresponding

ESA 2024

31:12 String 2-Covers with No Length Restrictions

points. (Assuming f = 1, a group consisting of a single border U , has the point (0, |U |);
the group bor of highly ρ-periodic borders has the points (0, dr, q), where the remainder
dr = |U | mod ρ is also fixed: it is the same for all U ∈ bor.) Finally, for general substrings
all coordinates are variable. The effective dimension of a point is the number of its variable
coordinates. Given a pair of groups of substrings, where the first (second) group has points
of effective dimension d1 (respectively, d2), we construct for them the 2CNF structure of
dimension d1 + d2. In order to do this, we replace each involved range with its projection
onto variable coordinates.

Building an oracle. Given a group pref of not highly periodic (resp., highly periodic)
prefixes, we apply Lemma 19 (resp., Lemma 26) for every i ∈ [n]. Let L1, . . .Ln be the
projections of the obtained ranges onto variable coordinates. A group suff of suffixes is
processed in the same way, resulting in the ranges R1, . . . ,Rn. Then we apply Lemma 31,
constructing the 2CNF structure over the set Pairs = {(L1,R1), . . . , (Ln,Rn)}. This 2CNF
thus represents the set pref × suff of pairs of substrings. We also memorize the values of fixed
coordinates. Iterating over all pairs of prefix and suffix groups, we obtain the ps-cover part
of the oracle.

Given a group bor of borders, we first determine the reference position fbor for groups of
substrings and store it. If bor = {U}, we use Lemma 14 to find all occurrences of U in S

and choose fbor to be any position not covered by U ; if there is no such position, i.e., if U is
a 1-cover, we set fbor =∞. If bor is a group of highly ρ-periodic borders, we run a binary
search on it, finding the shortest border U that is not a 1-cover. Then we choose a position
fbor not covered by U . Additionally, we store |U |. If U does not exist, we set fbor =∞. After
determining fbor, and only if it is finite, we build a 2CNF structure similar to the prefix-suffix
case. Iterating over all pairs of border and substring groups (for the latter, we fix f = fbor),
we obtain the bs-cover part of the oracle.

The time complexity of the construction is dominated by building O(log2 n) 2CNF
structures, each of dimension at most 4 (in the case where both groups consist of highly
periodic strings). By Lemma 31, we get the required O(n log5 n) time bound.

Querying an oracle. Given a pair (U1, U2) of substrings of S, the oracle decides with LCP
queries, to which of the cases (prefix-suffix, border-substring, both, or neither) this pair can
be attributed, and proceeds accordingly. For prefix, suffix, or border, the oracle finds its
group deciding high periodicity with a query to IPMS (Lemma 16). In the prefix-suffix case
the oracle then creates points for U1 and U2, “trims” them by dropping fixed coordinates,
and queries with this pair of trimmed points the 2CNF structure built for the set pref × suff,
where the groups pref and suff contain U1 and U2 respectively.

Consider the border-substring case (let U1 be the border). After determining the group
bor of U1, we check fbor. If fbor = ∞, the oracle returns True since U1 is a 1-cover. The
same applies for the case where fbor is finite, bor is highly periodic, and U1 is shorter than
the saved length |U |. Otherwise, we create the point for U1, drop its fixed coordinates, and
create the point for U2 using f = fbor. Then we query with the obtained pair of points the
2CNF structure built for the pair bor × subf , where the group subf contains U2.

Finally, the oracle returns True if it met a condition for “True” in the border-substring
case or if some query made to a 2CNF structure returned True. Otherwise, the oracle returns
False. The query time is dominated by O(1) queries to 2CNF structures, each of dimension
at most 4. By Lemma 31, we get the required O(log3 n) time bound.

As a result, we proved Theorem 3. The omitted details can be found in [8].

I. Boneh, S. Golan, and A. Shur 31:13

5 Reporting 2-Covers

A possible, but in general highly inefficient, approach to the All_2-covers and Shortest_2-cover
problems is to construct the oracle of Theorem 3 and query it with every pair (of substrings)
that can be in the answer. In this section, we describe our approach to achieve near-linear
running time. In a high level, we build a fast reporting procedure for “simple” cases and use
its answer to determine the rest of the output with a small number of oracle queries. To
rule out the trivial situation, we assume that all 2-covers containing a 1-cover are already
reported just by listing the 1-covers.

We call a 2-cover (X, Y) core if both substrings X and Y are not highly periodic. This
means that the 2CNF structure for their groups is built by using only Lemma 19, and thus
is 2-dimensional. In particular, a core cover is associated with a 2-dimensional point (x, y).
Note that 2-dimensional 2CNF structures represent all core 2-covers (and may represent
some non-core 2-covers as certain highly periodic substrings pass the restriction on periods
in statement 1 of Lemma 19). The shortest 2-cover is core in view of Lemma 7.

On the ground level, a d-dimensional 2CNF structure stores a set R of O(n) d-dimensional
ranges and checks whether a d-dimensional point, sent as a query, is outside all rectangles.
Such a view inspires the following definition for the case d = 2 we are interested in.

▶ Definition 33 (Free Point). Let R be a set of rectangles with corners in [n]2. A point
p ∈ [n]2 is R-free if p /∈ R for every R ∈ R.

The following lemma is crucial.

▶ Lemma 34 (Free Points Reporting). Let R be a set consisting of Θ(n) rectangles with
corners in [n]2. There is an algorithm that reports, for the input R,

all R-free points in O(n log n + output · log n) time, or
for each x ∈ [n], the R-free point (x, y) with minimal y (if any) in O(n log n) time, or
for an additional input m ∈ [n], all R-free points (x, y) with x+y ≤ m in time O(n log n+
output · log n).

Let A be a data structure storing an array A of n nonnegative integers and performing the
following updates and queries. The update Add(y1, y2, δ) adds the integer δ to all elements of
A[y1..y2] (δ can be negative if A is guaranteed to stay nonnegative at all times). The queries
left0, all0, and range0(y1, y2) return, respectively, the index of the leftmost 0 in A, of all 0’s
in A, and of all 0’s in A[y1..y2]; a query returns ∅ if the requested set of indices is empty.
The proof of Lemma 34 is based on the following lemma.

▶ Lemma 35. The data structure A can be implemented in O(n) preprocessing time, O(log n)
update time, and O(output · log n) query time, where output is the output size.

Proof. We organize A as a lazy segment tree (see, e.g., [27]). The details are as follows.
We take a fully balanced binary tree with 2⌈log n⌉ leaves and delete 2⌈log n⌉ − n rightmost

leaves together with all internal nodes having no leaves remained in their subtrees. The
remaining leaves are enumerated from 1 to n in a natural order; every node is identified
with the range of leaves in its subtree. Thus, leaf i represents A[i] and node [i..j] represents
A[i..j]. Each node I stores links I.left and I.right to its children and also the numbers I.val
(value), I.min (minimum), and I.mincnt (counter), supporting the following invariants:

(i) for any leaf i, A[i] =
∑

I∋i I.val;
(ii) for any node I = [i..j], min{A[y] | y ∈ I} = I.min +

∑
I⊂I′ I ′.val;

(iii) for any node I = [i..j], min{A[y] | y ∈ I} occurs in A[i..i] I.mincnt times.

ESA 2024

31:14 String 2-Covers with No Length Restrictions

As a preprocessing, we assign each A[i] to the corresponding leaf as both the value and the
minimum, set values of internal nodes to 0, and compute their minima and counters in one
bottom-up traversal. This procedure clearly takes O(n) time.

The update Add(y1, y2, δ) is performed by calling the recursive function Update(I, y1, y2, δ)
with I = [1..n] (i. e., at the root of A). The tree of recursive calls contains at most four
nodes per level of A. Therefore, the update takes O(log n) time.

Update(I, y1, y2, δ):
If I ∩ [y1..y2] = ∅: return I.min, I.mincnt
If I ⊆ [y1..y2]: add δ to both I.val and I.min; return I.min, I.mincnt
Else: min1, mincnt1 = Update(I.left, y1, y2, δ)

min2, mincnt2 = Update(I.right, y1, y2, δ)
I.min = I.val + min{min1, min2}
I.mincnt = mincnt1 · [min1 ≤ min2] + mincnt2 · [min2 ≤ min1]
return I.min, I.mincnt

Let us prove that Update(I, y1, y2, δ) preserves all invariants. For (i) note that both sides
remain the same if i /∈ [y1..y2] and get +δ if i ∈ [y1..y2] (in the latter case, the value of
exactly one node in the path from the root to i is changed). Similarly, both sides of (ii)
remain the same if I ∩ [y1..y2] = ∅ and increase by δ if I ⊆ [y1..y2] (in the latter case, δ is
added either to I.min or to .val of exactly one ancestor of I). In both cases (iii) holds as no
changes were made. In particular, (ii) and (iii) hold for all leaves of A.

In the remaining case ∅ ⊂ I ∩ [y1..y2] ⊂ I both (ii) and (iii) hold for the computed
numbers I.min and I.mincnt if they hold for the minima and counters of the children of
I. Hence, if an invariant is violated for I, it is also violated for a child of I. Since both
invariants (ii) and (iii) hold for all leaves, they hold for all nodes.

It remains to describe queries. We say that I is a 0-node if min{A[i] | i ∈ I} = 0.
Obviously, all ancestors of a 0-node are 0-nodes, and at least one child of an internal 0-node
is a 0-node. Note that min(A) = [1..n].min. Thus, if [1..n].min ≠ 0, the root is not a 0-node
and so any query returns ∅. Otherwise, all or some 0-nodes that are leaves of A should be
reported. To answer all0, we perform a depth-first traversal of A, visiting only 0-nodes. For
range0(y1, y2), we do a similar traversal but ignore all nodes representing ranges disjoint from
[y1..y2]. Finally, to answer left0 we just follow the leftmost path that consists of 0-nodes and
connects the root to a leaf.

Observe that using (ii) one can decide in O(1) time whether a child of a 0-node is a
0-node. Hence each of the queries spends O(log n) time per reported index, as required. ◀

Proof of Lemma 34. Let M be an n×n matrix such that M [x, y] is the number of rectangles
from R containing the point (x, y). Hence (x, y) is R-free if and only if M [x, y] = 0. We
report R-free points in n phases, using the data structure A to implement a “sweeping line”
strategy. At phase x, we compute the x’th row of M from its (x − 1)’th row (the virtual
“0th row” consists of all 0’s) and then report the indices of 0’s in the x’th row.

Let R = [x1..x2]× [y1..y2] ∈ R be a rectangle. The points of the range [y1..y2] are covered
by R during the phases x1, x1 +1, . . . , x2. According to this, we associate with R two updates
of A: Add(y1, y2, 1) at phase x1 and Add(y1, y2,−1) at phase x2 + 1 (if x2 < n). We group
all updates by the phase they belong to and initialize A with an all-zero array A. In each
phase, we perform all operations Add() of this phase and then query the indices of zeroes in
the current array (the queries all0, left0, and range0(1, m− x) correspond to the first, second,
and third statements of the lemma, respectively). As |R| = O(n), we perform, in total, O(n)
updates and O(n) queries. Now the lemma follows from Lemma 35. ◀

I. Boneh, S. Golan, and A. Shur 31:15

To present a solution to the Shortest_2-cover problem, we need one more claim.

▷ Claim 36. If a point (x, y) is associated with a core 2-cover (X, Y), then |X|+ |Y | = x + y

in the prefix-suffix case and |X|+ |Y | = x + y + 1 + b in the border-substring case with the
border of length b.

Proof. In the prefix-suffix case, X = S[1..x] and Y = S[n− y + 1..n]. In the border-substring
case, X = S[1..b] and Y = S[f − x..f + y] for some position f . The claim follows. ◁

Proof of Theorem 2. The next algorithm solves Shortest_2-cover. We build all 2-dimensional
2CNF structures (Lemma 31). For the set R of each structure, we run the algorithm of
Lemma 34 with the second option and choose the point (x, y) with the minimum sum of
coordinates. From this pair we restore the associated 2-cover (X, Y). Due to Claim 36,
(X, Y) has the minimum length among all 2-covers corresponding to this 2CNF structure.
After processing all sets R, we return the 2-cover of minimum length among those found.

Since each of O(log2 n) sets R is computed in O(n log n) time (Lemma 31) and processed
in O(n log n) time (Lemma 34), the time complexity is O(n log3 n), as required. ◀

5.1 Report All 2-Covers Of Bounded Length
In this section, we sketch the proof of Theorem 1. As a preliminary step, the algorithm
constructs the 2-cover oracle of Theorem 3. The first main step is similar to the proof of
Theorem 2: the algorithm computes the set Cm of all core 2-covers of length at most m using
the third statement of Lemma 34. The final step is to report all highly periodic 2-covers of
length at most m by “extending” the core 2-covers.

For a string X, we define its trimmed form by setting Xtrim = X if X is not highly
periodic and Xtrim = X[1..2ρ + |X| mod ρ] if X is highly ρ-periodic.

▷ Claim 37. If (X, Y) is a 2-cover of S and |X|+ |Y | ≤ m, then (Xtrim, Ytrim) ∈ Cm.

Proof. The pair (Xtrim, Ytrim) is a 2-cover by Lemma 7, a core 2-cover by definitions of trimmed
form and core 2-cover, and |Xtrim|+ |Ytrim| ≤ |X|+ |Y | ≤ m. Hence (Xtrim, Ytrim) ∈ Cm. ◁

Consider the following process: for every 2-cover (X, Y) ∈ Cm, report all its associates,
which are 2-covers (X ′, Y ′) /∈ Cm such that X = X ′

trim, Y = Y ′
trim, and |X ′| + |Y ′| ≤ m.

Claim 37 guarantees that the process reports all non-core 2-covers of length at most m. Note
that a pair (X, Y) may have an associate only if X or Y is short periodic.

Let us describe how one pair is processed. Assume that (X, Y) ∈ Cm is a ps-cover. Let
X = S[1..2ρ + d] be short ρ-periodic and let Y be aperiodic. We initialize an iterator q = 3,
and check if the following conditions hold:
(1) q · ρ + d + |Y | ≤ m (in O(1) time);
(2) Xq = S[1..q · ρ + d] is ρ-periodic (in O(1) time by Lemma 16);
(3) the pair (Xq, Y) is a 2-cover (in one call to the oracle, O(log3 n) time by Theorem 3).
If all three conditions are true, the algorithm reports (Xq, Y) as a 2-cover, assignes q ← q + 1
and checks the conditions again. Otherwise, the algorithm halts. It is easy to see that exactly
all associates of (X, Y) are reported this way.

The case of aperiodic X and short periodic Y is symmetric to the above one. Now let X

be short ρ-periodic and let Y be short τ -periodic; denote the suffix of S of length |Y |+ iτ

by Yi. The algorithm first runs the above procedure for the pair (X, Y). Then it checks by
Lemma 16 whether Y1 is τ -periodic, and if yes, checks with the oracle whether (X, Y1) is a
2-cover. If any of the conditions fail, the algorithm stops as Lemma 7 guarantees that the

ESA 2024

31:16 String 2-Covers with No Length Restrictions

pair (X, Y) has no unreported associates. Otherwise, the algorithm runs the above procedure
for the pair (X, Y1), checks the conditions for Y2, runs the above procedure for (X, Y2) if the
conditions hold, and so on.

The time complexity of the described algorithm is dominated by the queries to the
oracle. We count separately T-queries and F-queries, which were answered by True and
False, respectively. Consider processing the pair (X, Y) ∈ Cm. Each T-query corresponds
to a unique reported 2-cover. Each F-query ends an iteration of the outer loop (in the case
where only one of X, Y is periodic, we count just one iteration). Every iteration, except
possibly the last one, contains a T-query. Thus, we can charge at most two queries on each
reported 2-cover, and charge the F-query from the last iteration on (X, Y). Therefore, the
total number of queries over all pairs (X, Y) ∈ Cm is O(output). By Theorem 3, the total
running time is O(output · log3 n). Adding the time for constructing the oracle, we get the
bound required by Theorem 1.

The case of a bs-cover (X, Y) ∈ Cm is similar to the above one. We just point out a
couple of important details. First, the border X can be a 1-cover. If X is aperiodic, then
no processing is needed. But if X belongs to the group bor of ρ-periodic borders, we use
the information obtained during the oracle construction: the length of the shortest border
U ∈ bor that is not 1-cover, and the position fbor not covered by U . We check with Lemma 16
whether Y covers fbor, and if yes, run a reporting procedure, similar to the above, for the
pair (U, Y). Second, when we extend a τ -periodic substring Y = S[fbor − ℓ..fbor + r] by a
period, we can do it either to the right or to the left; respectively, we check whether any of
the substrings S[fbor − ℓ− τ..fbor + r], S[fbor − ℓ..fbor + r + τ] is τ -periodic.

The detailed proof of Theorem 1 can be found in [8].

6 Conclusion and Future Work

In this paper we solved, in Õ(n) time, a string problem with Θ(n3) search space (this is the
number of options to choose a prefix and a substring in a given string). A natural question
for future study is how efficient our methods can be extended to compute λ-covers for λ > 2,
where the search space is of size Θ(n2λ−1).

The algorithm of Radoszewski and Straszyński [26] for 2-covers with substrings of equal
length smoothly generalizes to an Õ(nλ−1)-time algorithm computing the minimal λ-cover
with the same length restriction. However, the search space in the restricted problem is only
Θ(nλ). It is not clear if our approach can be extended to obtain a similar running time for
general λ-covers. Indeed, each substring in the λ-cover needs its own “anchor” point f to
be represented as S[f − ℓ..f + r]. This adds 2 to the dimension of the problem even in the
aperiodic case. While such an increase seems to be not a problem for the oracle construction,
it heavily affects the free point reporting.

Another interesting challenge is to provide conditional lower bounds of the order nΩ(λ)

for λ-covers.

References
1 Ali Alatabbi, M. Sohel Rahman, and W. F. Smyth. Computing covers using prefix tables.

Discret. Appl. Math., 212:2–9, 2016. doi:10.1016/J.DAM.2015.05.019.
2 Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat. Can we

recover the cover? Algorithmica, 81(7):2857–2875, 2019. doi:10.1007/S00453-019-00559-8.
3 Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat. Approximate cover of strings. Theor.

Comput. Sci., 793:59–69, 2019. doi:10.1016/J.TCS.2019.05.020.

https://doi.org/10.1016/J.DAM.2015.05.019
https://doi.org/10.1007/S00453-019-00559-8
https://doi.org/10.1016/J.TCS.2019.05.020

I. Boneh, S. Golan, and A. Shur 31:17

4 Alberto Apostolico and Andrzej Ehrenfeucht. Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science, 119(2):247–265, 1993. doi:10.1016/0304-3975(93)90159-Q.

5 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The "runs" theorem. SIAM J. Comput., 46(5):1501–1514, 2017. doi:
10.1137/15M1011032.

6 Carl Barton, Tomasz Kociumaka, Chang Liu, Solon P. Pissis, and Jakub Radoszewski. Indexing
weighted sequences: Neat and efficient. Inf. Comput., 270, 2020. doi:10.1016/J.IC.2019.
104462.

7 Omer Berkman, Costas S. Iliopoulos, and Kunsoo Park. The subtree max gap problem with
application to parallel string covering. Inf. Comput., 123(1):127–137, 1995. doi:10.1006/
INCO.1995.1162.

8 Itai Boneh, Shay Golan, and Arseny M. Shur. String 2-covers with no length restrictions.
CoRR, abs/2405.11475, 2024. doi:10.48550/arXiv.2405.11475.

9 Dany Breslauer. An on-line string superprimitivity test. Inf. Process. Lett., 44(6):345–347,
1992. doi:10.1016/0020-0190(92)90111-8.

10 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput., 17(3):427–462, 1988. doi:10.1137/0217026.

11 Richard Cole, CS Ilopoulos, Manal Mohamed, William F Smyth, and Lu Yang. The complexity
of the minimum k-cover problem. Journal of Automata, Languages and Combinatorics,
10(5-6):641–653, 2005.

12 Patryk Czajka and Jakub Radoszewski. Experimental evaluation of algorithms for computing
quasiperiods. Theoretical Computer Science, 854:17–29, 2021.

13 Jonas Ellert, Pawel Gawrychowski, and Garance Gourdel. Optimal square detection over
general alphabets. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the
2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 5220–5242. SIAM, 2023. doi:10.1137/1.9781611977554.CH189.

14 Zvi Galil and Raffaele Giancarlo. Data structures and algorithms for approximate string
matching. Journal of Complexity, 4(1):33–72, 1988. doi:10.1016/0885-064X(88)90008-8.

15 Pawel Gawrychowski, Jakub Radoszewski, and Tatiana Starikovskaya. Quasi-periodicity
in streams. In Nadia Pisanti and Solon P. Pissis, editors, 30th Annual Symposium on
Combinatorial Pattern Matching, CPM 2019, June 18-20, 2019, Pisa, Italy, volume 128 of
LIPIcs, pages 22:1–22:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPICS.CPM.2019.22.

16 Qing Guo, Hui Zhang, and Costas S Iliopoulos. Computing the λ-covers of a string. Information
Sciences, 177(19):3957–3967, 2007.

17 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977.

18 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Walen. Fast algorithm for partial covers in words. Algorithmica, 73(1):217–233, 2015. doi:
10.1007/S00453-014-9915-3.

19 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Optimal
data structure for internal pattern matching queries in a text and applications. CoRR,
abs/1311.6235, 2013. arXiv:1311.6235.

20 Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. Journal of Computer
and System Sciences, 37(1):63–78, 1988. doi:10.1016/0022-0000(88)90045-1.

21 Laurentius Leonard and Ken Tanaka. Suffix tree-based linear algorithms for multiple prefixes,
single suffix counting and listing problems. CoRR, abs/2203.16908, 2022. arXiv:2203.16908.

22 Yin Li and William F. Smyth. Computing the cover array in linear time. Algorithmica,
32:95–106, 2002.

23 Dennis Moore and W.F. Smyth. An optimal algorithm to compute all the covers of a string.
Information Processing Letters, 50(5):239–246, 1994. doi:10.1016/0020-0190(94)00045-X.

ESA 2024

https://doi.org/10.1016/0304-3975(93)90159-Q
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
https://doi.org/10.1016/J.IC.2019.104462
https://doi.org/10.1016/J.IC.2019.104462
https://doi.org/10.1006/INCO.1995.1162
https://doi.org/10.1006/INCO.1995.1162
https://doi.org/10.48550/arXiv.2405.11475
https://doi.org/10.1016/0020-0190(92)90111-8
https://doi.org/10.1137/0217026
https://doi.org/10.1137/1.9781611977554.CH189
https://doi.org/10.1016/0885-064X(88)90008-8
https://doi.org/10.4230/LIPICS.CPM.2019.22
https://doi.org/10.4230/LIPICS.CPM.2019.22
https://doi.org/10.1007/S00453-014-9915-3
https://doi.org/10.1007/S00453-014-9915-3
https://arxiv.org/abs/1311.6235
https://doi.org/10.1016/0022-0000(88)90045-1
https://arxiv.org/abs/2203.16908
https://doi.org/10.1016/0020-0190(94)00045-X

31:18 String 2-Covers with No Length Restrictions

24 Dennis Moore and W.F. Smyth. A correction to “an optimal algorithm to compute all
the covers of a string”. Information Processing Letters, 54(2):101–103, 1995. doi:10.1016/
0020-0190(94)00235-Q.

25 Alexandru Popa and Andrei Tanasescu. An output-sensitive algorithm for the minimization
of 2-dimensional string covers. In T. V. Gopal and Junzo Watada, editors, Theory and
Applications of Models of Computation - 15th Annual Conference, TAMC 2019, Kitakyushu,
Japan, April 13-16, 2019, Proceedings, volume 11436 of Lecture Notes in Computer Science,
pages 536–549. Springer, 2019. doi:10.1007/978-3-030-14812-6_33.

26 Jakub Radoszewski and Juliusz Straszyński. Efficient computation of 2-covers of a string. In
28th Annual European Symposium on Algorithms (ESA 2020). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2020.

27 Mikhail Rubinchik and Arseny M. Shur. Counting palindromes in substrings. In Gabriele
Fici, Marinella Sciortino, and Rossano Venturini, editors, String Processing and Information
Retrieval - 24th International Symposium, SPIRE 2017, Proceedings, volume 10508 of Lecture
Notes in Computer Science, pages 290–303. Springer, 2017.

28 Dan E. Willard. New data structures for orthogonal range queries. SIAM J. Comput.,
14(1):232–253, 1985. doi:10.1137/0214019.

https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1007/978-3-030-14812-6_33
https://doi.org/10.1137/0214019

	1 Introduction
	2 Preliminaries
	2.1 Range Data Structures
	2.2 Stringology Algorithms and Data Structures

	3 Range Characterization of Covering an Index
	3.1 The Not Highly Periodic Case
	3.2 The Highly Periodic Case

	4 2-Covers Oracle
	5 Reporting 2-Covers
	5.1 Report All 2-Covers Of Bounded Length

	6 Conclusion and Future Work

