
Separable Convex Mixed-Integer Optimization:
Improved Algorithms and Lower Bounds
Cornelius Brand #

Chair of Algorithms and Complexity Theory, Faculty for Informatics and Computer Science,
University of Regensburg, Germany

Martin Koutecký #

Computer Science Institute, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Alexandra Lassota #

Eindhoven University of Technology, The Netherlands

Sebastian Ordyniak #

University of Leeds, UK

Abstract

We provide several novel algorithms and lower bounds in central settings of mixed-integer (non-)linear
optimization, shedding new light on classic results in the field. This includes an improvement on
record running time bounds obtained from a slight extension of Lenstra’s 1983 algorithm [Math.
Oper. Res. ’83] to optimizing under few constraints with small coefficients. This is important for
ubiquitous tasks like knapsack–, subset sum– or scheduling problems [Eisenbrand and Weismantel,
SODA’18, Jansen and Rohwedder, ITCS’19].

Further, we extend our algorithm to an intermediate linear optimization problem when the
matrix has many rows that exhibit 2-stage stochastic structure, which adds to a prominent line
of recent results on this and similarly restricted cases [Jansen et al. ICALP’19, Cslovjecsek et al.
SODA’21, Brand et al. AAAI’21, Klein, Reuter SODA’22, Cslovjecsek et al. SODA’24]. We also
show that the generalization of two fundamental classes of structured constraints from these works
(n-fold and 2-stage stochastic programs) to separable-convex mixed-integer optimization are harder
than their mixed-integer, linear counterparts. This counters a widespread belief popularized initially
by an influential paper of Hochbaum and Shanthikumar, namely that “convex separable optimization
is not much harder than linear optimization” [J. ACM ’90].

To obtain our algorithms, we employ the mixed Graver basis introduced by Hemmecke [Math.
Prog. ’03], and our work is the first to give bounds on the norm of its elements. Importantly, we use
these bounds differently from how purely-integer Graver bounds are exploited in related approaches,
and prove that, surprisingly, this cannot be avoided.
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1 Introduction

We study the Mixed Integer Programming problem, which asks to minimize a (linear
or non-linear) objective function over a linearly constrained, mixed-integer set of numerical
variables, that is, some of them are required to be integral, while others may be fractional.
The case where all variables are required to remain integral is the purely-integer case. This
problem is of enormous importance for applications, as Bixby [3] says in his famous analysis
of speed-ups for linear programming solvers: “[I]nteger programming, and most particularly
the mixed-integer variant, is the dominant application of linear programming in practice[,]”.
Moreover, concerning non-linear optimization, Bertsimas et al. note in their spectacular
work [2] on the notorious subset selection problem in statistical learning that, over the
past decades, algorithmic and hardware advances have elevated convex (and therefore, in
particular, non-linear) mixed-integer optimization to a comparable level of relevance in
applications.

Despite its practical ubiquity, the algorithmic theory of both linear and non-linear mixed
integer optimization is much less developed compared to purely-integer problems. Indeed,
the little insight we do have into the algorithmics of the mixed-integer case so far derives
mainly from the purely-integer case (see the discussion of related work below): The best
algorithms relevant to the setting of our article follow as a corollary of a 40 year-old result,
namely, Lenstra’s famous algorithm [23] (which can be extended, e.g. using [14, Theorem
6.7.9], to the setting of arbitrary convex target functions).

In this article, we focus on central special cases of the problem. We embark from the
important case when there are only few constraints with small entries, which plays a key role
in ubiquitous algorithmic applications such as scheduling problems, subset sum problems
and knapsack-type problems, and has increasingly come into focus in recent years [13, 19].
The gained insight in this domain is then supercharged to attack a linear, mixed-integer
optimization problem that arises in analogy to a long and prominent line of recent works on
purely-integer problems with structured sets of constraints [10, 5, 9, 8, 12, 20].

Our Contributions

We design faster algorithms for non-linear mixed-integer optimization in the case where there
are only few constraints, and the coefficients appearing in them are of small absolute value
(Theorem 1). Building on this, we give parameterized algorithms for a generalized, hard
linear mixed-integer optimization problem (Theorem 2). In addition, we prove new lower
bounds for separable convex optimization problems, showing that the result on polynomial-
time solvability of mixed-integer linear programming [4] subject to constraints of bounded
treedepth does not translate to the separable convex case (Theorems 3 and 4). This may
come as a surprise, considering the generally observed, tight connection between tractability
for separable convex and linear target functions in the case of both fully continuous and
purely-integer optimization (see [16, 6]), which might make it tempting to conjecture a
similarly close relationship also in the mixed-integer case.

In terms of technical innovation, our algorithmic results are based on novel insights into
as-of-yet poorly understood mixed Graver bases. We prove that, somewhat unexpectedly,
the usual manner in which these bases are employed in the literature to aid the design of
algorithms for integer programming problems can not yield much in the mixed-integer setting.
One key contribution of our algorithmic results is that they demonstrate how to circumvent
this limitation, and how to exploit the mixed Graver bases algorithmically nonetheless.
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Importantly, and in contrast to most results in the mixed-integer realm to date, our
results do not rely on expanding the results for purely-integral cases, which we prove to have
only limited power, but instead, use new insights about the structure of the mixed-integer
problem itself.

Results on Algorithms and Complexity of MIPs. To set the stage somewhat more formally,
we consider with the following problem:

min f(x) : Ex = b, l ≤ x ≤ u, x ∈ ZnZ × RnR . (MIP)

Here the number of columns is n = nZ + nR, the objective function f : Rn → R is
separable convex, that is, f(x) =

∑n
i=1 fi(xi) for some sequence of univariate convex functions

f1, . . . , fn : R → R, E ∈ Zm×n, E denotes the constraint matrix, b ∈ Rm is the right-hand
side, and the lower and upper bounds are l, u ∈ (R ∪ {±∞})n.

We set X = ZnZ ×RnR , where nZ and nR should be clear from the context. An important
special case is that of an integral right-hand side b ∈ Zm and bounds l, u ∈ Zn, and a linear
target function f(x) = wx =

∑
i wixi. In this setting, (MIP) specializes to

min wx : Ex = b, l ≤ x ≤ u, x ∈ X. (MILP)

On the front of algorithms for this problem, we improve the current, double-exponential record
bound for mixed-integer programs with few rows and small coefficients to single-exponential,
even when the target function is non-linear:1

▶ Theorem 1 (Algorithm for MIPs with few rows). The problem (MIP) can be solved in single-
exponential time (m∥E∥∞)O(m2) · R, where R is the time needed to solve the continuous
relaxation of any (MIP) with the constraint matrix E.

Until now, the best way to solve a (MIP) with few rows and small coefficients would
be to remove duplicate columns from E in a preprocessing step, and then use Lenstra’s
1983 algorithm for mixed integer programming [23]. Since there are 2∥E∥∞ + 1 numbers of
absolute value at most ∥E∥∞, the preprocessing ensures that there are at most (2∥E∥∞ +1)m

columns in E. This, however, leads to a double-exponential running time in terms of m.
Moreover, we use the above algorithm as a starting point for developing a novel algorithm

for an intermediate problem. Namely, we now allow the bounds l, u ∈ X and right-hand side
b ∈ Rm to be fractional, that is, we consider the problem

min wx : Ex = b, l ≤ x ≤ u, x ∈ X. (MILPfrac)

Already deciding feasibility of this variant has been shown to be NP-hard for totally unim-
odular matrices [7]. We are interested in algorithms that deal with constraint structures
that were extensively treated in recent works in the purely integer setting [10, 5, 9, 8, 12, 20].
Namely, n-fold and 2-stage stochastic matrices with bounded block-size, as depicted in Figure
1.2 The matrices Ai and Bi in Figure 1 are called the blocks of the constraint matrices;
furthermore, n denotes the number of blocks Ai and Bi. For the case of 2-stage stochastic
constraints, we prove:

1 As is common in the literature, we use the term single-exponential in x for functions of the form
2poly(x), as opposed to e.g. 2O(x). Similarly, we call exponential towers of height two, that is, 22poly(x)

double-exponential in x.
2 Formal definitions of all terms used in the introduction will be given in the preliminaries.
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B1 B2 . . . Bn

A1 0 . . . 0
0 A2 . . . 0
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B1 A1 0 . . . 0
B2 0 A2 . . . 0
...

...
...

. . .
...

Bn 0 0 . . . An


(a) An n-fold matrix (b) A 2-stage stochastic matrix

Figure 1 The Ai and Bi are matrices of dimension bounded by a parameter. Note that n-folds
and 2-stage stochastic matrices are transpositions of each other.

▶ Theorem 2 (Algorithm for 2-stage stochastic (MILPfrac)). The problem (MILPfrac) where
E is a 2-stage stochastic matrix with block-dimensions Bi ∈ Zt×r and Ai ∈ Zt×s can be
solved in time g(r, s, ∥E∥∞) · nr, for some computable function g.

Turning to lower bounds, we show that this result is likely optimal:

▶ Theorem 3 (Hardness for 2-stage stochastic MIP). The problem (MIP) with integral data is
W[1]-hard when E is a 2-stage stochastic matrix with blocks of size bounded by a parameter
and ∥E∥∞ = 1 already for linear objective functions.

In particular, under the common parameterized complexity assumption that FPT ̸= W[1]
holds, this rules out algorithms for (MIP) with running times of the form g(k) · poly(n),
where k is the maximal block-dimension of each Bi, Ai in the 2-stage stochastic constraint
matrices. Such a (double exponential) algorithm does exist for the pure integer case [12].

Moreover, we prove that the algorithm from Theorem 2 cannot be extended to the related
case of n-fold constraint structure:

▶ Theorem 4 (NP-hardness for n-fold MIP). The problem (MIP) with integral data is NP-hard
when E is an n-fold matrix with blocks of constant dimensions and ∥E∥∞ = 1 already for
linear objective functions.

Interestingly, the above hardness results demonstrate that the relationship between n-folds
and 2-stage stochastic programs in the mixed case is different from purely-integer case: In
the purely integer case, n-folds are solvable faster (in time FPT and single-exponentially [8])
than 2-stage stochastic programs [18], while in the mixed-integer case, the situation seems to
be reversed.

Results on Mixed Graver Bases. Our algorithmic approach uses the mixed Graver basis of
the constraint matrix. This is a mixed analogue of the usual integral Graver basis, which is
a central object in all the recent developments around block-structured integer programs.
Deeper insights into the Graver basis have led to new dynamic data structures [12], proximity
theorems [8, 9, 12, 20, 21] and better convergence rate analyses [12]. Intuitively speaking,
the elements of the Graver basis comprise all possible improving directions that have to be
considered by an algorithm that seeks to iteratively augment suboptimal solutions.

The mixed Graver basis was introduced by Hemmecke [15] already in 2003, but not
understood well enough to be used. On our way to showing Theorem 2, we prove several
results about the mixed Graver basis which are of independent interest, and disprove the
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typical intuitions gained by studying the ordinary integral Graver basis. First, all elements
of the integral Graver basis of an n-fold matrix with bounded block-dimension also have
entries of bounded absolute value, whence they derive their algorithmic usefulness. We show
that this is not true for the mixed Graver basis:

▶ Theorem 5 (n-fold mixed Graver lower bound). There is an n-fold matrix E with constant-
sized blocks and ∥E∥∞ = 1 such that the mixed Graver basis of E contains an element with
1-norm of size Ω(n).

On the other hand, for 2-stage stochastic matrices, the ∞-norm of its elements can be
bounded by a function of the block-dimensions and ∥E∥∞:

▶ Theorem 6 (2-stage stochastic mixed Graver upper bound). For any 2-stage stochastic
matrix E, the maximum ∞-norm of an element of its mixed Graver basis is bounded by
h(r, s, ∥E∥∞) for some computable function h.

This bound also implies a proximity result: for any integer optimum z∗, there is a nearby
mixed optimum x∗. Thus, we can first find z∗ (which can be done efficiently), and then only
search in a small neighborhood around z∗.

Until now, a bound such as h(r, s, ∥E∥∞) on the Graver elements has always led to an
algorithm with a corresponding running time h(r, s, ∥E∥∞) poly(n). However, in the mixed
case, such an algorithm is ruled out by Theorem 3. This shows that, in the mixed case, the
common intuition of good bounds on the Graver norm directly leading to fast algorithms
fails.

Related Work

We have already pointed to the most directly related recent works on block-structured
(integer) linear programming. For an overview on the vast literature concerning practical
attempts to deal with mixed-integer programming, the excellent article of Bertsimas et
al. [2] provides pointers to relevant literature on this fascinating matter. We now sketch
the theoretical literature in the field to contextualize the results obtained in the present
paper, and in particular, how they contrast the typical, expected relationship between linear
and convex optimization results observed heuristically in other situations. Since the limited
insight we do have into the mixed-integer case so far derives mainly from the purely-integer
case, we emphasize the comparison to the literature treating the latter setting to highlight
patterns of lifting algorithmic results along two axes: From purely-integer to mixed domains,
and from linear to convex objectives.

Towards the first axis, one first has to mention Lenstra’s [23] algorithm for purely-integer
linear optimization, which was seminal for the entire area. Notably, it extends to mixed-
integer domains with a fixed number of integer coordinates. By the same token, there are
other cases besides fixed integer dimension where tractability lifts from the purely-integer
to the mixed case. For one, this includes the by-now classic polynomial-time solvability of
linear integer optimization with totally unimodular constraint matrices [17]. In addition,
it was shown more recently [4] how to obtain efficient algorithms for mixed-integer linear
optimization subject to constraints of a particular structure (namely bounded treedepth,
which includes n-fold and 2-stage stochastic programs), by leveraging the flurry of tractability
results on purely-integer optimization in structurally restricted settings that we already
pointed out above.

We now turn to the second axis, linear versus convex optimization. Indeed, as mentioned
already above, the algorithm of Lenstra [23] for mixed- and purely-integer optimization
with a fixed number of purely-integer coordinates can also be extended (e.g. using [14,

ESA 2024
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Theorem 6.7.9]) to the setting of arbitrary convex target functions. In a similar vein, a
general result of Hochbaum and Shanthikumar [16] establishes the following: Whenever the
linear integer optimization problem with constraint matrices of bounded subdeterminants
is polynomial-time solvable, then so is also the non-linear integer optimization problem for
target functions that are separable convex (that is, a sum of univariate convex functions
on the coordinates). Their paper’s eponymous heuristic observation that “convex separable
optimization is not much harder than linear optimization” has since become common
wisdom, further consolidated e.g. by Chubanov’s result on reducing linear to separable convex
optimization over the fully (non-mixed) continuous domain. What is more, also the series of
results on integer optimization subject to constraints of bounded treedepth mentioned above
apply, especially, to separable convex target functions. It is worth noting that, since it is
already NP-hard to optimize a quadratic (non-separable) convex function over the boolean
hypercube {0, 1}n [12, Proposition 101], and the constraint matrix describing (the facets
of) the hypercube is both totally unimodular and of bounded treedepth, the algorithms for
separable convex optimization are most likely not extensible to general convex objectives.

We emphasize that our results shed light on the algorithmic properties of mixed-integer op-
timization that defies the intuition that the body of work outlined above may suggest. Indeed,
our results can be interpreted to mean that mixed-integer separable-convex optimization
behaves rather unexpectedly from this point of view.

Organization

We give all necessary preliminaries in Sect. 2. Then, we give new results on mixed Graver
bases and algorithmic consequences for mixed-integer linear programs with few rows in Sect.
3. In Sect. 4, we then extend this to an algorithm for the 2-stage stochastic case, and Sect.
5 contains a matching lower bound. In Sects. 6 and 7, we prove both complexity and Graver
norm lower bounds for the n-fold case.

Due to the page limit, we postpone the proofs of some statements to the full version.

2 Preliminaries

We write vectors in boldface (e. g., x, y) and their entries in normal font (e. g., the i-th entry
of x is xi). Any (MIP) instance with infinite bounds l, u can be reduced to an instance
with finite bounds using standard techniques in polynomial time (solving the continuous
relaxation and using proximity bounds to restrict the relevant region). So from now on we
assume finite bounds l, u ∈ X with X = ZnZ × RnR

The set of indices at which x is non-zero is the support of x, denoted supp(x). For
positive integers m ≤ n we set [m, n] := {m, . . . , n} and [n] := [1, n], and we extend this
notation to vectors: for l, u ∈ Zn with l ≤ u, [l, u] := {x ∈ Zn | l ≤ x ≤ u}. If A is a matrix,
Ai,j denotes the j-th coordinate of the i-th row, Ai,• denotes the i-th row and A•,j denotes
the j-th column. We use log := log2. We define ⌊x⌉ to be ⌊x⌋ if x ≥ 0 and ⌈x⌉ otherwise,
and we define the fractional part of x to be {x} := x − ⌊x⌉. The division of variables into
integer and continuous ones induces a division of the constraint matrix E = (EZ ER) where
EZ ∈ Zm×nZ and ER ∈ Rm×nR , and analogously x = (xZ, xR) and f(x) = fZ(xZ) + fR(xR).
More generally, whenever we make reference to any subset E′ of columns or even submatrix
of E, we will freely denote with E′

Z and E′
R the analogous division of E′ into its integral

and fractional part, respectively. Throughout, we assume that the rows of E are linearly
independent.
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We consider n-fold and 2-stage stochastic matrices. A matrix is of 2-stage stochastic
structure if non-zero entries appear only in the first r columns and in n blocks of size t × s

along the diagonal beside. The overall size is nt × (r + sn). An n-fold matrix is the transpose
of a 2-stage stochastic matrix. It has thus (r + sn) rows and nt columns. For an illustration,
see Figure 1.

A vector g ∈ ker(E) \ {0} is a circuit of E if it is integral, its entries are co-prime, and it
is support-minimal, that is, there is no vector g′ ∈ ker(E) \ {0} with supp(g′) ⊂ supp(g); let
C(E) denote the set of circuits of E. For two vectors x, y ∈ Rn, we say that x is conformal
to y and write x ⊑ y if, for each i ∈ [n], |xi| ≤ |yi| and xi · yi ≥ 0. Intuitively, x and y
are in the same orthant, and y is at least as far from 0 as x in each coordinate. We say
that x =

∑
i gi is a conformal sum or a conformal decomposition of x if, for all i, gi ⊑ x.

For an arbitrary set S, we write kerS(E) as a shorthand for ker(E) ∩ S. In particular, the
mixed kernel of E is defined as kerX(E). The Graver basis of E, denoted G(E), is the set
G(E) = {g ∈ kerZn(E) \ {0} | g is ⊑-minimal}.

▶ Definition 7 (Mixed Graver basis [15]). Let E = (EZ ER) ∈ Zm×n. The mixed Graver basis
GX(E) of E with respect to X consists of all vectors (0, gR), where gR ∈ C(ER), together with
all vectors (gZ, gR) ∈ kerX(E) such that gZ ≠ 0 and there is no (g′

Z, g′
R) ∈ (kerX(E) \ {0})

(unequal to (gZ, gR)) such that (g′
Z, g′

R) ⊑ (gZ, gR).

For any p, 1 ≤ p ≤ ∞, define gX
p (E) := maxg∈GX(E) ∥g∥p.

The following is a helpful trick to reduce a (MILPfrac) to a (MIP) with integer input data
and a constraint matrix (E I).

▶ Lemma 8. Let an (MILPfrac) instance be given. It is possible to construct an equival-
ent (MIP) instance in linear time with a constraint matrix E′ = (E I), bounds l′, u′ ∈ Zn+m,
and a right-hand side b′ ∈ Zm.

Proof sketch. The proof works by first moving fractional right-hand sides into the lower
and upper bounds. Then, we relax any fractional lower and upper bounds to their closest
integers, and penalize violations of the original bounds in the new objective function, which
is what introduces non-linearity (the resulting function is piece-wise linear convex with 3
pieces in each coordinate). ◀

3 The Basic Case: Matrices with Few Rows and Small Coefficients

This section develops the basic version of our algorithmic result. We begin by giving upper
bounds for a certain notion of decompositions of elements in the mixed Graver basis, and
then employ these bounds to our algorithmic ends.

3.1 Mixed-Graver Bound
We begin with an upper bound on the 1-norm for matrices with few rows and small coefficients.
For this, we will need the Steinitz lemma:

▶ Proposition 9 (Steinitz [26], Sevastjanov, Banaszczyk [25]). Let ∥ · ∥ be any norm, and
let x1, . . . , xn ∈ Rd be such that ∥xi∥ ≤ 1 for i ∈ [n] and

∑n
i=1 xi = 0. Then there exists a

permutation π ∈ Sn such that for each k ∈ [n], ∥
∑k

i=1 xπ(i)∥ ≤ d.

▶ Lemma 10. Let E ∈ Zm×(nZ+nR). Then every g ∈ GX(E) satisfies

∥g∥1 ≤ (2m∥E∥∞(2∥E∥∞ + 1)m + 1)m + (2∥E∥∞ + 1)m

ESA 2024
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Proof. Let g ∈ GX(E) and assume that all columns of E are distinct; we will show how to
deal with doubled columns later. We define a sequence of vectors in the following manner: If
gi ≥ 0, we add ⌊gi⌋ copies of the i-th column of E to the sequence, if gi < 0 we add |⌈gi⌉|
copies of the negation of column i to the sequence. Thus, for each i ∈ [n], we obtained
vectors vi

1, . . . , vi
⌊gi⌉. Finally, we add the vector o =

∑n
i=1{gi}E•,i to the sequence. Notice

that this vector is integral. Let q be the number of vectors in this sequence.
Clearly, the sequence of vectors sums up to 0 as it exactly corresponds to Eg and

g ∈ kerX(E). Moreover, their ℓ∞-norm is bounded by ∥E∥∞(2∥E∥∞ + 1)m since there are at
most (2∥E∥∞ + 1)m distinct columns, ∥E∥∞ is the largest number appearing in any of them,
and this is an upper bound on any number appearing in o =

∑n
i=1{gi}E•,i. The remaining

vectors vi
j are bounded by ∥E∥∞ in ℓ∞-norm.

Using the Steinitz Lemma, there is a reordering u1, . . . , uq (i. e., vi
j = uπ(i,j) for some

permutation π) of this sequence such that each prefix sum pk :=
∑k

j=1 uj is bounded by
m∥E∥∞(2∥E∥∞ + 1)m in the l∞-norm. Clearly,∣∣{x ∈ Zm | ∥x∥∞ ≤ m∥E∥∞(2∥E∥∞ + 1)m}

∣∣ = (2m∥E∥∞(2∥E∥∞ + 1)m + 1)m =: P.

Assume for contradiction that q > P . Then two of these prefix sums are the same, say,
pα = pβ with 1 ≤ α < β ≤ q. Obtain a vector g′ from the sequence u1, . . . , uα, uβ+1, . . . , uq

as follows: begin with g′
i := 0 for each i ∈ [n], and for every uℓ in the sequence, set

g′
i :=


g′

i + 1 if π−1(ℓ) = (i, j) and gi ≥ 0
g′

i − 1 if π−1(ℓ) = (i, j) and gi < 0
g′

i + {gi} if uℓ = o, for each i ∈ [n] .

Here, (i, j) indicates the j-th copy of the i-th vector. Similarly obtain g′′ from the sequence
uα+1 . . . , uβ . We have Eg′′ = 0, as pα − pβ = 0 and thus, g′′ ∈ kerX(E) and hence,
g′ ∈ kerX(E). Moreover, both g′ and g′′ are non-zero and satisfy g′, g′′ ⊑ g. This is a
contradiction with ⊑-minimality of g which is a condition needed for g ∈ GX(E), hence
q ≤ P . Notice that only one of g′ or g′′ may be fractional, as o will be in exactly one
subsequence. For each of the at most (2∥E∥∞ + 1)m columns, the respective fractional part
in g contributes less than 1, so it follows that ∥g∥1 < P + (2∥E∥∞ + 1)m holds.

We are left to deal with the situation that E contains doubled columns. The solution
is to adjust the construction of the sequence accordingly. Fix a column E•,i and let S be
the set of all indices j such that E•,i = E•,j . Let u =

∑
j∈S gj . If u > 0, add ⌊u⌋ copies of

E•,i into the sequence, else add |⌈u⌉| copies of −E•,i into the sequence. The contribution of
this column type to o will be {u}E•,i. Since −1 < {u} < 1 for each column type, and the
number of column types is bounded by (2∥E∥∞ + 1)m, our previous arguments hold. ◀

The proof of the above Lemma actually shows that there exists a particular decomposition
of every element of kerX(E) into an element of kerZn(E) (which can be further decomposed
into elements of G(E)) and one element of kerX(E), which we can bound. This mixed element
might not be an element of GX(E), and a bound on the elements of GX(E) does not imply
a bound on this element. We crucially need this property in our proximity bound and
the bounds on GX(E) for 2-stage matrices, as well as the prospect of extending these to
multi-stage matrices. Thus, this emerges as an important feature:

▶ Definition 11 (One-fat decomposition bound). Let x ∈ kerX(E). We say that x = h + g is
a one-fat decomposition if it is a conformal decomposition, h ∈ kerX(E) and g ∈ kerZn(E),
and we call h the fat element of the decomposition. For every p, 1 ≤ p ≤ ∞, define
wtXp (x) = min ∥h∥p, where the minimum goes over all one-fat decompositions of x. Define
the ℓp-weight of E with respect to X as wtXp (E) = maxx∈kerX(E) wtXp (x).
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▶ Corollary 12. For any matrix E, wtX1 (E) ≤ (2m∥E∥∞(2∥E∥∞ + 1)m + 1)m.

Proof. Note that if x ∈ kerX(E) is decomposable, then it has a decomposition into conformal
g′, g′′, only one of which is fractional. Iterating this, we obtain the decomposition of x into
several elements of GZn(E), and one element of kerX(E) which is bounded as stated. ◀

We will obtain a better bound on both gX
1 (E) and the ℓ1-weight of E, using a recent

result:

▶ Proposition 13 ([24, Lemma 1]). Let x1, . . . , xn ∈ Zd and α1, . . . , αn ∈ R+ such that∑n
i=1 αixi ∈ Zd. If

∑n
i=1 αi > d, then there exist numbers β1, . . . , βn ∈ R+ such that, for

all i ∈ [n], βi ≤ αi and
∑n

i=1 βi ≤ d, and
∑n

i=1 βixi ∈ Zd.

An iterated use of this lemma gives rise to the following statement:

▶ Lemma 14 (Packing Lemma). Let x1, . . . , xn ∈ Zd and α = (α1, . . . , αn) ∈ Rn
+ such that∑n

i=1 αixi ∈ Zd. If
∑n

i=1 αi > d, there exist vectors β1, . . . , βm ∈ Rn
+ such that, for each

j ∈ [m], βj ≤ α,
∑n

i=1 βj
i xi ∈ Zd, ∥βj∥1 ≤ d, and

∑m
j=1 βj = α. Moreover, for all but at

most one j ∈ [m], ∥βj∥1 ≥ d/2.

Proof. The only potentially non-obvious part is the last sentence of the statement. Notice
that if there are βj and βj′

, j ̸= j′, with ∥βj∥1, ∥βj′
∥1 ≤ d/2, then we can merge them.

Formally, we set βj := βj + βj′
, and delete βj′

. ◀

Intuitively, the lemma allows us to take a non-negative linear combination of integer vectors
whose result is an integer vector, and divide it into smaller such combinations while preserving
the property that each smaller combination still results in an integer vector.

▶ Lemma 15. Let E ∈ Zm×(nZ+nR). Then gX
1 (E) ≤ (2m2∥E∥∞ + 1)m+1 and wtX1 ≤

(2m2∥E∥∞ + 1)2m+2.

Proof sketch. As in Lemma 10, we will construct a sequence of vectors summing up to zero
and then apply the Steinitz Lemma. However, this time we will use the Packing Lemma 14
to obtain a better bound on each element of the vector sequence and thus, a better bound
on the elements of GX(E) overall. Unfortunately, this approach does not yield a one-fat
decomposition, so we have to use the Steinitz Lemma in a more clever way to get a bound
on wtX1 (E). ◀

The one-fat decomposition also allows us to prove a bound on the distance between an
integer and mixed optimum, which we will use in both of our algorithmic results:

▶ Lemma 16 (MIP Proximity). Let z∗ ∈ Zn be an integer optimum of a (MIP) instance, and
let x∗ be a mixed optimum closest to z∗ in ℓp-norm, 1 ≤ p ≤ ∞. Then ∥z∗ − x∗∥p ≤ wtXp (E).

We will need a small technical proposition before we prove Lemma 16:

▶ Proposition 17 ([12, Proposition 60]). Let x, y1, y2 ∈ Rn, y1, y2 be from the same orthant,
and f be a separable convex function. Then f(x + y1 + y2) − f(x + y1) ≥ f(x + y2) − f(x).

Proof of Lemma 16. Assume for contradiction that ∥z∗ −x∗∥p > wtXp (E). Since (z∗ −x∗) ∈
kerX(E), it has a one-fat decomposition h+g where ∥h∥p ≤ wtXp (E). As ∥z∗−x∗∥p > wtXp (E),
the integral part g is non-zero. Let ẑ := z∗ − g = x∗ + h and x̂ := x∗ + g = z∗ − h. Thus,
z∗ − x∗ = h + g = (z∗ − x̂) + (z∗ − ẑ). Now Proposition 17 with x = x∗, y1 = h, y2 = g
shows

f(z∗) − f(ẑ) ≥ f(x̂) − f(x∗) .
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By the conformality of the decomposition, x̂ and ẑ are within the l, u bounds. As g ∈
kerZn(E), ẑ is an integer feasible solution, and because h ∈ kerX(E), x̂ is a mixed feasible
solution. Furthermore, because z∗ was an integer optimum and ẑ is integer feasible, the left
hand side is non-positive, and so is f(x̂) − f(x∗), thus x̂ must be another mixed optimum
and the right hand side must be zero, and so the left hand side, showing ẑ to be another
integer optimum. However, x̂ is closer to z∗, a contradiction. ◀

3.2 A Single-Exponential Algorithm
Armed with the bounds on the mixed Graver basis and our insights into one-fat decom-
positions, we are now ready to develop the single-exponential algorithm. Before we do so,
however, a few general remarks are in order. These also apply to the two-stage stochastic
algorithm for fixed block-dimensions later on.

▶ Remark 18. Both algorithmic results make use of the fact that if both the mixed and
the integer version of the problem are feasible, then for every integral optimum, there is a
mixed optimum nearby. It then suffices to first solve the (generally easier) integral version
of the problem, and then solve an auxiliary mixed-integer program with the feasible region
bounded by a small n-dimensional box around x. Indeed, if x is an integral solution of
Ex = b, l ≤ x ≤ u, then we will resort to solving the program E(x + y) = b, ∥y − x∥∞ ≤
P, l ≤ x + y ≤ u for y, which amounts to finding y with Ey = 0, l′ ≤ y ≤ u′ for some new
bounds l′, u′ such that ∥l′ − u′∥∞ is small. For general objectives, one optimizes the auxiliary
objective f ′(y) = f(x + y), whereas for linear objectives no change is needed. Hence, all of
the algorithmic heavy lifting will be done in order to solve problems of this form.

Of course, this strategy rests on the assumption that both the mixed and the integral
variant of the problem are feasible. This assumption can in turn be removed by a standard
two-phase approach, similar to what is customary e.g. for the Simplex algorithm, in order to
find an initial feasible solution. In short, this is done by introducing slack variables that are
penalized in the objective, but admit a trivial feasible solution. In the sequel, we will hence
always assume feasibility.

We say that xϵ is an ϵ-accurate solution to (MIP) if there exists an optimum x∗ such
that ∥x∗ − xϵ∥∞ ≤ ϵ. (For a discussion on the relationship of ϵ-accurate and ϵ-approximate
optima and also the motivation to use the notion of ϵ-accuracy, see [16, Section 1.2].)

▶ Theorem 1 (Algorithm for MIPs with few rows). The problem (MIP) can be solved in single-
exponential time (m∥E∥∞)O(m2) · R, where R is the time needed to solve the continuous
relaxation of any (MIP) with the constraint matrix E.

Proof of Theorem 1. The integer problem can be solved in time (m∥E∥∞)O(m2) + R(ϵ) by
known techniques [12, 13] where R(ϵ) is the ϵ-accurate solution to the continuous relaxation
– essentially, first solve the continuous relaxation, then reduce b, l, u using proximity bounds,
then solve a dynamic program. Now by Lemma 16, a mixed optimum x∗ is at most
wtX1 (E) ≤ (2m2∥E∥∞ + 1)2m+2 =: P far in 1-norm. The proximity bound implies that all
prefix sums of x∗

Z with EZ belong to the integer box R := [−∥E∥∞ · P, ∥E∥∞ · P ]m, which
has at most (2∥E∥∞ · P + 1)m = (m∥E∥∞)O(m2) elements.

This allows us to construct a dynamic program with nZ + 1 stages. Our DP table D

shall have an entry D(i, r) for i ∈ [nZ] and r ∈ R whose meaning is the minimum objective
attainable if the prefix sum of x∗

Z and EZ restricted to the first i coordinates is r. To that
end, for all r ∈ R, define x∗

i (r) to be the choice of x∗
i ∈ [−P, P ] which minimizes fi and

such that E•,ix
∗
i = r; it is possible for the solution to be undefined if no number in [−P, P ]
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satisfies the conditions. Similarly, define x∗
R(r) to be an ϵ-accurate minimizer of fR satisfying

ERx∗
R = r. To compute D, set D(0, r) := 0 for r = 0 and D(0, r) := +∞ otherwise, and for

i ∈ [nZ], set

D(i, r) := min
r′,r′′∈R:
r′+r′′=r

D(i − 1, r′) + f i(x∗
i (r′′)) .

The last stage is defined as

D(nZ + 1, 0) := min
r′,r′′∈R:
r′+r′′=0

D(nZ, r′) + fR(x∗
R(r′′)) .

The value of the optimal solution is D(nZ+1, 0) and the solution x∗ itself can be computed
easily with a bit more bookkeeping in the table D.

As for complexity, the first nZ stages of the DP can be computed in time at most
nZ · |R|2 = (m∥E∥∞)O(m2)nZ, and the last stage solves the continuous relaxation |R| times,
taking time |R|R(ϵ). Altogether, the algorithm takes time at most (m∥E∥∞)O(m2)R(ϵ).
Regarding correctness, note that any ϵ-accurate solution x∗ is such that x∗

R is an ϵ-accurate
minimizer of ERxR = −EZx∗

Z, lR ≤ xR ≤ uR, and x∗
Z is an integer minimizer of EZxZ =

−ERx∗
R, lZ ≤ xZ ≤ uZ. Since the algorithm finds exactly such minimizers, its correctness

follows. ◀

4 Algorithms for the 2-Stage Stochastic Case

After giving the basic version of our algorithm for the case of few rows, we now develop
our algorithm for the case of fixed block-dimension. We first prove our bound of the mixed
Graver basis:

▶ Theorem 6 (2-stage stochastic mixed Graver upper bound). For any 2-stage stochastic
matrix E, the maximum ∞-norm of an element of its mixed Graver basis is bounded by
h(r, s, ∥E∥∞) for some computable function h.

Proof sketch. We first decompose the element of GX(E) blockwise according to Lemma 15.
Then, we apply a recent result of [9] on the existence of submultisets with equal sums in
certain multisets of vectors with similar (but, notably, not identical) sums. This is made
possibly by the fact that we have not only a bound on gX

∞(E) but a bound on the weight
of a one-fat decomposition. This gives us the desired one-fat decomposition for the 2-stage
stochastic case. ◀

From Theorem 6 and Lemma 16, it follows that:

▶ Corollary 19. Let z∗ ∈ Zn be an integer optimum of a 2-stage stochastic (MIP) instance.
Then there exists a mixed optimum x∗ ∈ X such that ∥z∗ −x∗∥∞ ≤ h(r, s, ∥E∥∞) for a double
exponential function h.

4.1 A Polynomial Algorithm for Fixed Block-Dimension
Using the upper bounds for 2-stage stochastic MIPs on proximity and weight as combined in
Corollary 19, we can now formulate an algorithm which solves the 2-stage stochastic MILP
problem in polynomial time whenever the block-dimensions are fixed. We recall that h is
the function from Theorem 6. In accordance with Remark 18, we note two things: Firstly,
by following a standard two-phase approach, we may assume that the problem at hand is
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integrally feasible. Then, secondly, the algorithm solves the integer program corresponding
to the instance to optimality, which is fixed-parameter tractable [1, 22]. We thereby obtain
an integer optimum z∗, and we can now restrict ourselves to solving the following auxiliary
MILP to optimality:

min wx : Ex = 0, l̂ ≤ x ≤ û, x ∈ ZnZ × RnR , l, u ∈ Rn, b ∈ Zm. (AuxMILP)

Here, ℓ̂i = max{ℓi − z∗
i , −h(r, s, ∥E∥∞)} and ûi = min{ui − z∗

i , h(r, s, ∥E∥∞)}. Observe that

∥̂l − û∥∞ ≤ 2h(r, s, ∥E∥∞) (1)

holds. For an optimal solution x∗ to (AuxMILP), the augmented solution x∗ + z∗ is then an
optimal solution to the original MILP, by Corollary 19.

What remains is to show how to solve (AuxMILP) in the claimed time bound. This is
effected by proving the following Lemma:

▶ Lemma 20. Let V be the set of vertices of all integer slices of the auxiliary mixed-integer
program (AuxMILP). There are at most (8h(r, s, ∥E∥∞))(r+1)(s+1)nr distinct global parts
appearing in V , and they can be enumerated with polynomial delay.

Proof sketch. The proof goes by analyzing the structure of invertible submatrices of two-
stage stochastic matrices. Then, it becomes apparent that the global part of a basic solution
is essentially determined by which subset of r blocks out of all n blocks influences the global
part. The number of such choices is clearly bounded by nr. The remainder of the bound
stems from various guessing steps, including some of the values for the integer variables.
Hence the appearance of h in the bound, making also the bounds from Theorem 6 crucially
come into play. ◀

Lemma 20 now suggests an obvious strategy to solve the (AuxMILP) to optimality:

▶ Proposition 21. (AuxMILP) can be solved in time h(r, s, ∥E∥∞)O(rs) · nr.

Proof sketch. By Lemma 20, we may enumerate all possible global parts of vertices in
the required time bound, guess the corresponding global integer values, and then solve the
resulting block-diagonal mixed-integer system to optimality using the algorithm of Theorem 1
(notice that here we are in the special case of LP which can be solved exactly, i.e., with ϵ = 0,
and in strongly polynomial time since ∥E∥∞ is small, so R(0) = poly(n)). Among all choices
of global parts, pick the one that yields the optimal value for the full program. ◀

We have now obtained:

▶ Theorem 2 (Algorithm for 2-stage stochastic (MILPfrac)). The problem (MILPfrac) where
E is a 2-stage stochastic matrix with block-dimensions Bi ∈ Zt×r and Ai ∈ Zt×s can be
solved in time g(r, s, ∥E∥∞) · nr, for some computable function g.

Proof. As mentioned before, it is enough to first solve the integer program corresponding to
the MILP instances, and then solving the auxiliary problem using Proposition 21. ◀

▶ Remark 22. Let us note two things: Firstly, the exponent of n in our algorithm is
only dependent on the number r of global variables. Hence, for values of s such that
h(r, s, ∥E∥∞)s ≤ nf(r) for some function f , our algorithm remains polynomial for fixed r.

Secondly, note that we may choose strongly polynomial (or rather, strongly fpt) sub-
routines to solve the arising integer and mixed-integer programs. In this case, also the
algorithm we obtain is strongly polynomial for fixed block-dimensions.
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5 W[1]-Hardness of 2-Stage Stochastic MILPs with Fractional Bounds

In the following we show that 2-stage stochastic (MILPfrac) and (MIP) with integral data is
W[1]-hard parameterized by the block-dimension even if ∥E∥∞ = 1.

▶ Theorem 3 (Hardness for 2-stage stochastic MIP). The problem (MIP) with integral data is
W[1]-hard when E is a 2-stage stochastic matrix with blocks of size bounded by a parameter
and ∥E∥∞ = 1 already for linear objective functions.

Proof Sketch of Theorem 3. We show the theorem using a parameterized reduction from
the well-known Subset Sum problem, which is W[1]-hard when parameterized by the number
of elements in a solution [11].

Subset Sum
Input: A set A of pairwise distinct natural numbers and two natural numbers k and t.
Goal: Decide whether there is a subset S ⊆ A with |S| = k and

∑
s∈S

s = t?

Transformation: We give a formulation of Subset Sum as a 2-stage stochastic MILP. To do
so, we first scale all input numbers a1, a2, . . . , an in A and t by 1/ maxi{ai}. Denote the new
numbers as a′

1, a′
2, . . . , a′

n and t′. The scaling ensures that all considered sums are smaller or
equal to 1, which comes in handy later on.

Let xi
j be a binary variable that will indicate that a′

i is the jth number appearing in the
sum for all i ∈ [n] and j ∈ [k]. We collect those numbers not appearing in a solution in a
binary slack variable xi

k+1 for each i ∈ [n], yielding the constraints:

k+1∑
j=1

xi
j = 1 ∀i ∈ [n] (2)

To express the condition on the sum of the solution being t′, we introduce fractional variables
yi

j that take on the value a′
i if and only if xi

j = 1 for i ∈ [n] and j ∈ [k]. While this is trivially
achieved by yi

j = a′
ix

i
j , the crux is to model this without including a′

i as a coefficient, which
would not be bounded by the parameter any more. This is accomplished by requiring the
following:

yi
j ≤ xi

j ∀i ∈ [n], ∀j ∈ [k] (3)
k+1∑
j=1

yi
j = a′

i ∀i ∈ [n] (4)

This has the intended effect since a′
i ≤ 1 by construction. We will then store the solution

indicated by the assignment to the xi
j variables in yet another set of variables, denoted as zj ,

where j ranges from 1 to k

k∑
j=1

zj = t′ (5)

While it is easy to project the yi
j to zj , the straightforward way to do so would blow up

the block size to Ω(n). Indeed, to ensure that the zj have the intended semantics, consider
the following: The equality zj = yi

j ought to be satisfied for exactly one choice of i, say
when i = i′ (assuming distinct inputs); otherwise, zj = yi

j + si
j holds for some non-zero

compensation term si
j , whenever i ̸= i′. Note that, while the si

j do satisfy a function similar
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to slack variables, they may well need to be negative. In addition, we introduce binary
variables ri

j for all i ∈ [n] and j ∈ [k], indicating whether or not si
j = 0. The above semantics

are captured in the following constraints:

zj = yi
j + si

j ∀i ∈ [n], ∀j ∈ [k] (6)
zj ≥ min

i
a′

i (7)

− ri
j ≤ si

j ≤ ri
j ∀i ∈ [n], ∀j ∈ [k] (8)

Our aim is then to minimize the number of times any of the si
j are used, or conversely, to

make zj = yi
j for some i as often as possible, which is expressed in the choice of the objective

function

min
k∑

j=1

n∑
i=1

ri
j (9)

As argued, note that in a solution of a yes instance, for a fixed j, zj = yi
j ≥ mini a′

i

(equivalently, ri
j = 0) holds for exactly one choice of i, making the optimum equal to k(n − 1).

The above constraints define a 2-stage stochastic MILP formulation with fractional
variables zj , yi

j and si
j , and binary variables xi

j and ri
j . The global part is made up by the zj ,

of which there are k. The remaining variables are distributed across n blocks of dimension
O(k) each, including the respective slack variables for the inequality constraints. The largest
entry in the constraint matrix is 1 = O(k), and clearly, the transformation can be carried
out in time polynomial in n and k. ◀

6 NP-hardness of n-Fold MIPs

The algorithmic upper bound for 2-stage stochastic programs stands in contrast to a much
stronger bound for the n-fold case. Namely, we show NP-hardness of n-fold (MILPfrac) for
constant parameter values. By Lemma 8, we immediately get that n-fold (MIP) is also
NP-hard for constant parameter values.

▶ Theorem 4 (NP-hardness for n-fold MIP). The problem (MIP) with integral data is NP-hard
when E is an n-fold matrix with blocks of constant dimensions and ∥E∥∞ = 1 already for
linear objective functions.

Proof of Theorem 4. We reduce from the well-known Partition problem. That is, given
integers a1, . . . , an the Partition problems asks for the existence of a subset I ⊆ [n] such
that

∑
i∈I ai =

∑
i ̸∈I ai.

Let an instance of Partition be given. Without loss of generality, assume that amax :=
maxi ai ≤ 1; this can be achieved, e. g., by scaling every number of the original instance by
1/amax. We will have n bricks, with brick i ∈ [n] representing the choice whether i ∈ I or
i ̸∈ I.

Specifically, for each i ∈ [n], introduce integer variables xi
1, xi

2 ∈ {0, 1} and continuous
variables yi

1, yi
2 with bounds 0 ≤ yi

1, yi
2 ≤ 1. The local constraints (matrix A) are as follows.

We enforce a disjunction on the x-variables by the constraint xi
1 + xi

2 = 1 for every i and we
enforce that yi

1 = ai iff xi
1 = 1 and similarly yi

2 = ai iff xi
2 = 1 by the constraints yi

1 +yi
2 = a1,

yi
1 ≤ xi

1, and yi
2 ≤ xi

2 for every i.
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It is now easy to see that the following global constraint encodes the requirement that∑
i∈I ai =

∑
i̸∈I ai:

n∑
i=1

yi
1 =

n∑
i=1

yi
2. (10)

Altogether, the instance has four variables per block, four local constraints and one global
constraint, and is feasible if and only if the original Partition instance is. ◀

7 Lower Bound on the Graver Norm of n-fold MIPs

In this section, we show that the 1-norm of the mixed Graver norm can be unbounded even
for n-fold matrices.

We start with the following auxiliary lemma, which is crucial for constructing an element
of the mixed Graver basis with unbounded 1-norm.

▶ Lemma 23. Let n be an integer. There are two sets S and T of natural numbers with
|S| = |T | = n such that:
(1)

∑
s∈S s =

∑
t∈T t = 2n2 − 1 and

(2) for every two subsets S′ ⊆ S and T ′ ⊆ T , with 0 < |S′ ∪ T ′| < 2n, it holds that∑
s∈S′ s ̸=

∑
t∈T ′ t.

Proof. Let X ⊆ N \ {0}. We denote by N(X), the natural number whose binary repres-
entation has a 1 at the i-th bit (with 1 being the lowest-value bit) if and only if i ∈ X.
Conversely, for a natural number x, let B(x) be the set of all indices i such that the binary
representation of x is 1 at the i-th bit. Note that B(N(X)) = X for every X ⊆ N \ {0}.

For every i and j with 1 ≤ i, j ≤ n, let p(i, j) = (i − 1)n + j. For every i with 1 ≤ i ≤ n,
we set:

si is equal to N(Ri), where Ri = {p(i, j) | 1 ≤ j ≤ n},
ti is equal to N(Ci), where Ci = {p(j, i) | 1 ≤ j ≤ n}.

We claim that setting S = {s1, . . . , sn} and T = {t1, . . . , tn} satisfies the statement of the
lemma: As {B(s1), . . . , B(sn)} and {B(t1), . . . , B(tn)} form a partition of [n2], it holds
that

∑
s∈S′ s = N(

⋃
s∈S′ B(s)) and

∑
t∈T ′ t = N(

⋃
t∈T ′ B(t)) for every subsets S′ ⊆ S and

T ′ ⊆ T . Therefore,
∑

s∈S s =
∑

t∈T t = N([n2]) = 2n2 − 1, which shows (1).
Towards showing (2), let S′ and T ′ be any two subsets with S′ ⊆ S and T ′ ⊆ T such that

0 < |S′ ∪ T ′| < 2n. As 0 < |S′ ∪ T ′| < 2n, we obtain that either:
there are i and j with 1 ≤ i, j ≤ n such that si ∈ S \ S′ and tj ∈ T ′ or
there are i and j with 1 ≤ i, j ≤ n such that ti ∈ T \ T ′ and sj ∈ S′.

Since the proofs for the two cases are analogous, we only give the proof for the former case.
Let O = B(si) ∩ B(tj) and note that O = Ri ∩ Cj = {p(i, j)} ̸= ∅. Since ti ∈ T ′, it holds
that O ∈

⋃
t∈T ′ B(t). However, due to si /∈ S′, we have that O /∈

⋃
s∈S′ B(s). Consequently,⋃

s∈S′ B(s) ̸=
⋃

t∈T ′ B(t) and therefore also
∑

s∈S′ s ̸=
∑

t∈T ′ t. ◀

▶ Theorem 5 (n-fold mixed Graver lower bound). There is an n-fold matrix E with constant-
sized blocks and ∥E∥∞ = 1 such that the mixed Graver basis of E contains an element with
1-norm of size Ω(n).

Proof sketch. Let n be an integer, Xn = (Z × R × R)n, and En be the matrix given by the

n-fold of
(

0 I3
0 A

)
, where I3 is the identity matrix of dimension 3 and A = (1, 1, 1). Note first

that the structure of the matrix E together with the fact that the first coordinate in each
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block is integer ensures that any vector of the form (−1, s/V, 1 − s/V ) and (1, −t/V, 1 + t/V )
for some s, t, V with 0 ≤ s, t ≤ V is contained in the mixed Graver basis GX1(E) of E. This
allows us to construct g by using n/2 blocks of the form (−1, s/V, 1 − s/V ) and n/2 blocks
of the form (1, −t/V, 1 + t/V ), where s ∈ S and t ∈ T for some well-constructed sets S and
T of integers. Moreover, because of the first three rows (given by n-repetitions of I3) the
sum of the i-th coordinate over all blocks has to be 0. Therefore, to force that all n blocks of
g use non-zero kernel elements (of GX1(E)), it suffices to construct the sets S and T in such
a way that

∑
s∈S′ s =

∑
t∈T ′ t for some subsets S′ ⊆ S and T ′ ⊆ T if and only if S′ = S and

T ′ = T . We show that this is possible in an auxiliary lemma. ◀

8 Open Questions

Our work points towards two main directions for further research. First, note that we
formulate our algorithms in reference to 2-stage stochastic constraint matrices. As mentioned,
these are generalized by matrices of bounded primal treedepth, so-called multi-stage stochastic
matrices. They are structured in much the same way as in Fig. 1, but with diagonal blocks of
recursive multi-stage stochastic form (and the depth of this recursion is bounded). Judging
from previous results in the area, there is reason to believe that our algorithmic results
generalize to multi-stage stochastic programs. However, some caution seems appropriate.
After all, one key takeaway of both the lower bounds and the algorithms shown in this paper
is that block-structured mixed-integer programs do not behave as predictably as one might
hope.

A second natural, much more ambitious direction of investigation is to try to extend the
present algorithmic results on linear optimization to arbitrary separable convex objective
functions. Despite significant efforts, we were not able to push beyond the algorithms
obtained here. As for some intuition on why extending Theorem 2 to the separable convex
case in the style of Theorem 1 seems to fail: For the latter, the search space for optima is
naturally restricted already by the fact that there are only few constraints. For the former,
however, such a restriction is not possible based on rows alone; instead, we argue about
vertices of the associated polytope, which are related to mixed-integer optimal solutions. In
the separable convex case, this connection between optimal solutions and vertices disappears,
and we are left with no handle on the size of the search space. We consider the problem of
circumventing these roadblocks an intriguing and hard open question.
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