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Abstract
We present a pseudopolynomial-time algorithm for the Knapsack problem that has running time
Õ(n+ t

√
pmax), where n is the number of items, t is the knapsack capacity, and pmax is the maximum

item profit. This improves over the Õ(n + t pmax)-time algorithm based on the convolution and
prediction technique by Bateni et al. (STOC 2018). Moreover, we give some evidence, based on a
strengthening of the Min-Plus Convolution Hypothesis, that our running time might be optimal.

Our algorithm uses two new technical tools, which might be of independent interest. First,
we generalize the Õ(n1.5)-time algorithm for bounded monotone min-plus convolution by Chi et
al. (STOC 2022) to the rectangular case where the range of entries can be different from the sequence
length. Second, we give a reduction from general knapsack instances to balanced instances, where all
items have nearly the same profit-to-weight ratio, up to a constant factor.

Using these techniques, we can also obtain algorithms that run in time Õ(n + OPT√
wmax),

Õ(n + (nwmaxpmax)1/3t2/3), and Õ(n + (nwmaxpmax)1/3OPT2/3), where OPT is the optimal total
profit and wmax is the maximum item weight.
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1 Introduction

In the Knapsack problem1 the input consists of a set of n items, where item i has weight wi ∈ N
and profit pi ∈ N, as well as a weight budget t ∈ N (also referred to as knapsack capacity).
The task is to compute the maximum total profit of any subset of items with total weight

1 Some related works refer to this problem as 0-1-Knapsack to distinguish it from its variants that allow
picking an item multiple times in a solution, e.g., Multiple Knapsack or Unbounded Knapsack. In this
paper we consider only the 0-1-Knapsack variant, hence we write Knapsack for short.
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at most t, i.e., we want to compute OPT := max{
∑n

i=1 pixi | x ∈ {0, 1}n,
∑n

i=1 wixi ⩽ t}.
Knapsack is one of the most fundamental problems in the intersection of computer science,
mathematical optimization, and operations research. Since Knapsack is one of Karp’s original
21 NP-complete problems [17], we cannot hope for polynomial-time algorithms. However,
when the input integers are small, we can consider pseudopolynomial-time algorithms where
the running time depends polynomially on n and the input integers. A well-known example
is Bellman’s dynamic programming algorithm that runs in time O(n · t), or alternatively in
time O(n ·OPT) [4].

Cygan et al. [12] and Künnemann et al. [20] showed that under the Min-Plus Convolution
Hypothesis there is no algorithm solving Knapsack in time Õ((n+ t)2−ε) or Õ((n+OPT)2−ε)
for any constant ε > 0. Hence in the regimes t = Θ(n) or OPT = Θ(n) Bellman’s dynamic
programming algorithms are near-optimal. To overcome this barrier, recent works study the
complexity of Knapsack in terms of two additional parameters: the maximum weight wmax
and the maximum profit pmax of the given items. Note that we can assume without loss
of generality that wmax ⩽ t and pmax ⩽ OPT. Clearly, by the same lower bounds as above
there is no algorithm solving Knapsack in time Õ((n + wmax)2−ε) or Õ((n + pmax)2−ε) for
any ε > 0. However, in certain regimes small polynomial dependencies on wmax and pmax can
lead to faster algorithms compared to the standard dynamic programming algorithm. Table 1
lists the results of prior work with this parameterization. To compare these running times,
observe that we can assume without loss of generality that t ⩽ n ·wmax and OPT ⩽ n · pmax,
since any feasible solution includes at most all n items. We remark that most of the cited
algorithms, including our contributions, are randomized.

Table 1 Pseudopolynomial-time algorithms for Knapsack.

Reference Running Time
Bellman [4] O(n · min{t, OPT})
Pisinger [21] O(n · wmax · pmax)
Kellerer and Pferschy [18], also [3, 2] Õ(n + min{t · wmax, OPT · pmax})
Bateni, Hajiaghayi, Seddighin and Stein [3] Õ(n + t · pmax)
Axiotis and Tzamos [2] Õ(n · min{w2

max, p2
max})

Polak, Rohwedder and Węgrzycki [22] Õ(n + min{w3
max, p3

max})
Bringmann and Cassis [7] Õ(n + (t + OPT)1.5)
Bringmann and Cassis [8] Õ(n · min{wmax · p

2/3
max, pmax · w

2/3
max})

Jin [15] and He and Xu [14] Õ(n + min{w
5/2
max, p

5/2
max})

Jin [15] Õ(n · min{w
3/2
max, p

3/2
max})

Chen, Lian, Mao and Zhang [10] Õ(n + min{w
12/5
max , p

12/5
max })

Bringmann [6] and Jin [16] Õ(n + min{w2
max, p2

max})
He and Xu [14] Õ(n3/2 · min{wmax, pmax})
Theorem 1, this work Õ(n + t

√
pmax)

Theorem 3, this work Õ(n + OPT√
wmax)

Theorem 2, this work Õ(n + (nwmaxpmax)1/3 · t2/3)
Theorem 4, this work Õ(n + (nwmaxpmax)1/3 · OPT2/3)

1.1 Our results
Our main contribution is an Õ(n + t

√
pmax)-time algorithm for Knapsack.

▶ Theorem 1. There is a randomized algorithm for Knapsack that is correct with high
probability and runs in time Õ(n + t

√
pmax).
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Let us put this result in context. Bellman’s algorithm and many other Knapsack algorithms
in Table 1 run in pseudopolynomial time with respect to either weights or profits. The first
exception is Pisinger’s O(n ·wmax · pmax)-time algorithm [21], which offers an improvement in
the regime where both weights and profits are small. Later, Bateni et al. [3] introduced the
convolution and prediction technique, which enabled them to improve over Pisinger’s running
time to Õ(n + tpmax). Prior to our work, this was the best known pseudopolynomial upper
bound in terms of n, t and pmax. In Theorem 1 we improve this running time by a factor√

pmax. We will discuss below that further improvements in terms of this parameterization
seem difficult to obtain (see Theorem 6).

Further upper bounds. A long line of research [2, 22, 15, 14, 10, 6, 16] recently culminated
into an Õ(n + w2

max)-time algorithm for Knapsack [6, 16], which matches the conditional
lower bound ruling out time Õ((n + wmax)2−ε) for any ε > 0 [12, 20]. The biggest remaining
open problem in this line of research is whether Knapsack can be solved in time Õ(n ·wmax),
which again would match the conditional lower bound and would be favourable if n is smaller
than wmax. Our next result is a step in this direction: We design a Knapsack algorithm
whose running time is the weighted geometric mean (with weights 1/3 and 2/3) of Õ(n ·wmax)
and the running time Õ(t√pmax) of Theorem 1 (ignoring additive terms Õ(n)).

▶ Theorem 2. There is a randomized algorithm for Knapsack that is correct with high
probability and runs in time Õ(n + (nwmaxpmax)1/3 · t2/3).

We also show that one can change our previous two algorithms to obtain symmetric
running times where weight and profit parameters are exchanged.

▶ Theorem 3. There is a randomized algorithm for Knapsack that is correct with high
probability and runs in time Õ(n + OPT√wmax).

▶ Theorem 4. There is a randomized algorithm for Knapsack that is correct with high
probability and runs in time Õ(n + (nwmaxpmax)1/3 ·OPT2/3).

Lower bound? Finally, we give some argument why it might be difficult to improve upon
any of our running times by a factor polynomial in any of the five parameters n, wmax, pmax,
t and OPT. Specifically, we present a fine-grained reduction from the following variant of
min-plus convolution.

▶ Definition 5 (Bounded Min-Plus Convolution Verification Problem). Given sequences
A[0 . . . n − 1], B[0 . . . n − 1], and C[0 . . . 2n − 2] with entries in {0, 1, . . . , n}, determine
whether for all k we have C[k] ⩽ mini+j=k A[i] + B[j].

Min-plus convolution can be naively solved in time O(n2), and the Min-Plus Convolution
Hypothesis postulates that this time cannot be improved to O(n2−ε) for any ε > 0 even for
integer entries bounded by M = poly(n). For small M , min-plus convolution can be solved
in time Õ(nM) using Fast Fourier Transform (FFT). Thus, M = Θ(n) is the smallest bound
for which min-plus convolution conceivably might require quadratic time (although this is
not asserted or implied by any standard hypothesis). This situation can be compared to the
Strong 3SUM Hypothesis, which asserts hardness of the 3SUM problem with the smallest
universe size that is not solved in subquadratic time by FFT.

Our reduction is not from the problem of computing the convolution, but only from the
problem of verifying whether a given third sequence lower bounds the convolution element-
wise. These two variants – computation and verification – are equivalent for the general
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unbounded min-plus convolution [12], but no such equivalence is known for the bounded
version (because the relevant reduction blows up the entries). We can show a reduction from
the (potentially easier) verification problem.

▶ Theorem 6. If Knapsack can be solved faster than the running time of any of Theorems 1–4
by at least a factor polynomial in any of n, wmax, pmax, t, or OPT, then Bounded Min-Plus
Convolution Verification can be solved in time O(n2−ε) for some ε > 0.

Specifically, we show that if Knapsack with parameters wmax, t = Θ(n) and pmax, OPT =
Θ(n2) can be solved in time O(n2−ε), then so can Bounded Min-Plus Convolution Verification.
The same holds for Knapsack with parameters wmax, t = Θ(n2) and pmax, OPT = Θ(n).

This gives some evidence that our running times achieved in Theorems 1–4 are near-
optimal. While this lower bound is not assuming a standard hypothesis from fine-grained
complexity, it still describes a barrier that needs to be overcome by any improved algorithm.

1.2 Technical overview
The algorithms in Theorems 1–4 follow the convolve and partition paradigm used in many
recent algorithms for Knapsack and Subset Sum (see, e.g., [5, 7, 8, 3]). Our general setup
follows [8]: We split the items at random into 2q groups. In the base case, for each group
and each target weight j we compute the maximum profit attainable with weight at most j

using items from that group. These groups are then combined in a tree-like fashion by
computing max-plus convolutions. A key observation is that those sequences are monotone
non-decreasing with non-negative entries, and one can bound the range of entries. We
deviate from [8] in the algorithms for solving the base case and for combining subproblems
by max-plus convolution: For the base case, we use improved variants of the Knapsack
algorithms of [7] or [14] to obtain Theorems 1 and 3 or Theorems 2 and 4, respectively.
For the combination by max-plus convolution, we use the specialized max-plus convolution
algorithm that we discuss next.

Rectangular Monotone Max-Plus Convolution

The max-plus convolution of two sequences A, B ∈ Zn is defined as the sequence C ∈ Z2n−1

such that C[k] = maxi+j=k{A[i] + B[j]}. This is well-known to be equivalent to min-plus
convolution, and is more relevant for Knapsack applications, therefore from now on we
only consider max-plus convolution. Despite the quadratic time complexity of max-plus
convolution on general instances, there are algorithms running in strongly subquadratic time
if we assume some structure on the input sequences, see [9, 11]. In fact, fast algorithms for
structured max-plus convolution are exploited in multiple Knapsack algorithms: Kellerer
and Pferschy [18], Axiotis and Tzamos [2] and Polak, Rohwedder, and Węgrzycki [22] use the
SMAWK algorithm [1], which can be used to compute in linear time the max-plus convolution
of two sequences where one is concave. Bringmann and Cassis [8] develop a subquadratic
algorithm to compute the max-plus convolution between two near-concave sequences, and
use this algorithm to solve Knapsack in time Õ(n ·min{wmax · p2/3

max, pmax · w2/3
max}). Finally,

another Knapsack algorithm of Bringmann and Cassis in [7] uses the algorithm due to
Chi, Duan, Xie and Zhang [11] that computes the max-plus convolution between monotone
sequences of non-negative entries bounded by O(n) in time Õ(n1.5).

To obtain our Theorems 1–4 we exploit a modification of the algorithm of Chi, Duan,
Xie and Zhang [11]. In particular, the following theorem generalizes the result of [11] to
monotone sequences with non-negative entries bounded by an arbitrary parameter M .
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▶ Theorem 7 (Slight modification of [11]). The min-plus or max-plus convolution of two
monotone (either both non-decreasing or both non-increasing) sequences of length at most n

with entries in {0, 1, . . . , M} can be computed by a randomized algorithm that is correct with
high probability and runs in time Õ(n

√
M).

As a side result that might be of independent interest, we show that the assumption
in Theorem 7, that both input sequences are monotone, can be replaced without loss of
generality by the assumption that at least one input sequence is monotone, see Theorem 8.

▶ Theorem 8. Suppose that there is an algorithm computing the max-plus convolution of two
monotone non-decreasing sequences A, B ∈ {0, 1, . . . , M}n in time T2(n, M), and assume
that T2(n, M) is monotone in n. Then there also is an algorithm computing the max-plus
convolution of a monotone non-decreasing sequence A ∈ {0, 1, . . . , M}n and an arbitrary (i.e.,
not necessarily monotone) sequence B ∈ {0, 1, . . . , M}n in time T1(n, M) which satisfies the
recurrence T1(n, M) ⩽ 2 T1(n/2, M) + O(T2(n, M)).

The same statement holds with “non-decreasing” replaced by ”non-increasing”, or with
“max-plus” replaced by “min-plus”, or both.

Balancing

In the above described Knapsack algorithm of Theorems 1–4, the sequences for which we want
to compute the max-plus convolution are monotone non-decreasing and contain non-negative
entries. To use Theorem 7 for the computation of their max-plus convolution, we need to
ensure that the entries also have bounded values. We will show that under the balancedness
assumption t/wmax = Θ(OPT/pmax), and due to the random splitting, it suffices to consider
entries in a small weight interval and in a small profit interval. In order to use this observation,
the algorithms of Theorems 1–4 first reduce a Knapsack instance (I, t) to another instance
(I ′, t′) where the balancedness assumption is satisfied, and then solve Knapsack on this
balanced instance (I ′, t′).

▶ Lemma 9. Solving Knapsack can be reduced, in randomized time Õ(n + wmax
√

pmax)
(respectively Õ(n + pmax

√
wmax)), to solving a Knapsack instance for O(wmax) consecutive

capacities (respectively O(pmax) consecutive profits), where the reduced instance satisfies
t/wmax = Θ(OPT/pmax) and consists of a subset of the items of the original instance; in
particular, all relevant parameters n, wmax, pmax, t, and OPT of the reduced instance are no
greater than those of the original instance.

1.3 Outline
After preliminaries in Section 2, in Section 3 we focus on the core ideas behind Theorem 1
by presenting the corresponding Knapsack algorithm that assumes the instance is balanced.

Due to space constraints, all the remaining results are deferred to the full version of this
paper. In particular, the full version contains a justification of the balancedness assumption
(Lemma 9), which together with the algorithm of Section 3 proves Theorem 1. Additionally,
in the full version, we explain how the result of [11] generalizes to Theorem 7, and we prove
the conditional lower bound (Theorem 6), as well as the side result that in Theorem 7 the
assumption that both input sequences are monotone can be replaced without loss of generality
by the assumption that at least one input sequence is monotone (Theorem 8). Finally, the
full version also includes variations of the Knapsack algorithm of Section 3 corresponding to
Theorems 2–4, as well as a discussion that shows how to derive from [7] the algorithm of
Theorem 12 used in Section 3.

ESA 2024
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2 Preliminaries

We use the notation N = {0, 1, 2, . . . } and define [n] := {1, 2, . . . , n} for n ∈ N. Let A[is . . . if ]
be an integer array of length if − is + 1 with start index is and end index if . We interpret
out-of-bound entries as −∞, and thus, when it is clear from context, simply denote the
array A[is . . . if ] by A. Then −A is the entry-wise negation of A. We call A monotone
non-decreasing (respectively non-increasing), if for every i, j such that is ⩽ i ⩽ j ⩽ if we
have A[i] ⩽ A[j] (resp. A[i] ⩾ A[j]). A is monotone if it is either monotone non-decreasing
or monotone non-increasing.

▶ Definition 10 (Restriction to index and entry interval). Suppose that A is monotone and
consider intervals I ⊆ N and V ⊆ Z. We define the operation D ← A[I; V ] as follows.
If there exist no index i ∈ I with A[i] ∈ V , then set D to the empty array. Otherwise,
let imin := min{i ∈ I : A[i] ∈ V } and imax := max{i ∈ I : A[i] ∈ V }, and set D to the
subarray A[imin . . . imax]. Note that since A is monotone, for every i ∈ {imin, . . . , imax} we
have A[i] ∈ V . Thus A[I; V ] returns the subarray of A with indices in I and values in V .

We sometimes abbreviate A[{0, . . . , i}; {0, . . . , v}] by A[0 . . . i; 0 . . . v].

Max-plus convolution. Let A[is . . . if ] and B[js . . . jf ] be two integer arrays of length
n := if − is + 1 and m := jf − js + 1, respectively. Assume without loss of generality that
n ⩾ m. The max-plus convolution problem on instance (A, B) asks to compute the finite
values of the array C := MaxConv(A, B), which is defined as C[k] := maxi+j=k{A[i]+B[j]}
for every k ∈ N; here i, j range over all integers with i + j = k. Note that C[k] is finite only
for k ∈ {is + js, . . . , if + jf}.

The min-plus convolution problem is defined analogously by replacing max by min. Note
that the two operations are equivalent since MinConv(A, B) = −MaxConv(−A,−B). In
the context of min-plus convolution, we interpret out-of-bound entries as ∞ instead of −∞.

When the sequences A[is . . . if ] and B[js . . . jf ] are either both monotone non-decreasing
or both monotone non-increasing, and with values contained in {0, 1, . . . , M}, for some
integer M , then the problem of computing MaxConv(A, B) is called the bounded monotone
max-plus convolution problem. We call the general case with arbitrary M rectangular, as
opposed to the square bounded monotone max-plus convolution where M = Θ(n). Chi et
al. [11] showed that square bounded monotone max-plus convolution can be solved in time
Õ(n1.5). By slightly adapting their algorithm, we show in the full version of this paper that
rectangular bounded monotone max-plus convolution can be solved in time Õ(n

√
M).

▶ Theorem 7 (Slight modification of [11]). The min-plus or max-plus convolution of two
monotone (either both non-decreasing or both non-increasing) sequences of length at most n

with entries in {0, 1, . . . , M} can be computed by a randomized algorithm that is correct with
high probability and runs in time Õ(n

√
M).

Knapsack. The Knapsack problem is defined as follows. Let I = {(w1, p1), (w2, p2),
. . . , (wn, pn)} be a (multi-)set of n items, where item i has weight wi and profit pi. Let
t ∈ N be a weight capacity. The goal is to compute OPT = max

∑n
i=1 pixi subject to the

constraints x ∈ {0, 1}n and
∑n

i=1 wixi ⩽ t. We denote by wmax = maxi wi the maximum
weight and by pmax = maxi pi the maximum profit of the items in I. Note that by removing
items that have weight larger than t we can assume without loss of generality that wmax ⩽ t.
Then every single item is a feasible solution, so pmax ⩽ OPT. If t ⩾ nwmax then all items can
be picked in a solution and the result is OPT =

∑
i pi, so the instance is trivial; therefore we



K. Bringmann, A. Dürr, and A. Polak 33:7

can assume without loss of generality that t < nwmax. Since any feasible solution contains at
most all n items we also have OPT ⩽ n · pmax. We can also assume that n ⩾ 10, since for
n = O(1) a standard O(2n)-time algorithm runs in time O(1).

We identify each item (wi, pi) ∈ I with its index i ∈ [n] so that any subset of items
J ⊆ I can be identified with the set of indices S ⊆ [n] such that J = {(wi, pi) : i ∈ S}.
With slight abuse of notation we sometimes write J = S. We define the partial weight and
partial profit functions wJ (x) :=

∑
i∈J wixi and pJ (x) :=

∑
i∈J pixi for J ⊆ I. We also

define the profit sequence PJ [·] such that

PJ [k] = max{pJ (x) | x ∈ {0, 1}n, wJ (x) ⩽ k}

for any k ∈ N. Note that the task is to compute OPT = PI [t].

Computing PI . A standard way to compute (part of) the profit sequence PI is to use
dynamic programming:

▶ Theorem 11 (Bellman [4]). Given a Knapsack instance (I, t) and k ∈ N, the sequence
PI [0 . . . k] can be computed in time O(|I| · k).

Bringmann and Cassis exploit in [7] the fact that PI is monotone non-decreasing. They
show that one can compute PI [0 . . . j; 0 . . . j] in roughly the same time as it takes to compute
a square bounded monotone max-plus convolution of length j. In the full version of this paper
we slightly generalize their algorithm so that it computes the entries of PI [0 . . . j; 0 . . . v].
The modified algorithm uses rectangular instead of square bounded monotone max-plus
convolutions. Combining the result with Theorem 7, we prove the following theorem in the
full version of this paper.

▶ Theorem 12 (Slight modification of [7]). Given a Knapsack instance (I, t) and v ∈ N, the
sequence PI [0 . . . t; 0 . . . v] can be computed by a randomized algorithm that is correct with
high probability and runs in time Õ(n + t

√
v).

Approximating OPT. We use the following variant of the greedy algorithm for Knapsack.

▶ Lemma 13 (e.g. [19, Theorem 2.5.4]). Given a Knapsack instance (I, t), one can compute
ÕPT ∈ N such that OPT ⩽ ÕPT ⩽ OPT + pmax and pmax ⩽ ÕPT ⩽ n · pmax in Õ(n) time.

Proof. The greedy algorithm works as follows. Sort and relabel the elements in decreasing
order of profit-to-weight ratio such that p1/w1 ⩾ p2/w2 ⩾ · · · ⩾ pn/wn. Select the maximum
prefix of items {1, 2, . . . , i∗} such that

∑i∗

i=1 wi ⩽ t. We define ÕPT :=
∑min{i∗+1,n}

i=1 pi.
The fractional solution xLP which fully selects the items in {1, 2, . . . , i∗} and selects a

(t− wI(x))/wi∗+1-fraction of item i∗ + 1 is the optimal solution to the linear programming
relaxation of the Knapsack problem (see [19, Theorem 2.2.1]). Thus, OPT ⩽ pI(xLP) ⩽ ÕPT.
Since we assumed without loss of generality that wmax ⩽ t, each single item fits into the
knapsack, which implies pmax ⩽ OPT ⩽ ÕPT. Since the solution {1, 2, . . . , i∗} is feasible
and item i∗ + 1 has profit at most pmax, we have ÕPT ⩽ OPT + pmax. Finally, we have
ÕPT ⩽

∑n
i=1 pi ⩽ n · pmax. ◀

Pareto optimum of PI . The sequence PI is monotone non-decreasing, so we can define
the break points of PI as the integers k ∈ N such that PI [k − 1] < PI [k]. In particular, PI
is constant between two break points, and thus it is enough to focus on the values taken at
break points of PI . For every break point k ∈ N, there exists x ∈ {0, 1}n with wI(x) = k

ESA 2024
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and PI [k] = pI(x). We call such a vector a Pareto optimum of PI . Indeed, by the definition
of PI , if a vector y ∈ {0, 1}n has higher profit pI(y) > pI(x) = PI [wI(x)] then it necessarily
has higher weight wI(y) > wI(x). We observe the following property of Pareto optima.

▶ Lemma 14. Let x ∈ {0, 1}n be a Pareto optimum of PI and let J ⊆ I. Consider a vector
y ∈ {0, 1}n such that wJ (y) ⩽ wJ (x) and pJ (y) ⩾ pJ (x). Then necessarily pJ (y) = pJ (x).

Proof. Suppose for the sake of contradiction that pJ (y) > pJ (x). Consider the vector y′

that is equal to y on J and equal to x on I \ J . Then pI(y′) = pJ (y) + pI\J (x) > pJ (x) +
pI\J (x) = pI(x). We also have wI(y′) = wJ (y) + wI\J (x) ⩽ wJ (x) + wI\J (x) = wI(x).
This contradicts x being a Pareto optimum. ◀

We use Õ-notation to hide poly-logarithmic factors in the input size n and the largest
input number U , i.e., Õ(T ) :=

⋃
c⩾0 O(T logc(n · U)). In particular, for Knapsack we hide

polylogarithmic factors in n, wmax, pmax. Many subroutines that we use throughout the paper
are randomized and compute the correct output with probability at least 1− 1/n. Standard
boosting improves the success probability to 1− 1/n10 at the cost of only a constant factor
increase in running time. We can therefore assume that these subroutines have success
probability 1− 1/n10.

3 Knapsack algorithm for balanced instances

In this section we focus on balanced Knapsack instances, i.e., instances satisfying t/wmax =
Θ(OPT/pmax). We call this the balancedness assumption. In the full version of this paper
we show that any Knapsack instance can be reduced to a balanced instance (see Lemma 9).
Combined with the following Lemma 15, this proves Theorem 1.

▶ Lemma 15. For any Knapsack instance (I, t) satisfying t/wmax = Θ(OPT/pmax) the

sequence PI [T ; P ] for T := [t −
√

t · wmax, t +
√

t · wmax], P := [ÕPT −
√

ÕPT · pmax,

ÕPT +
√

ÕPT · pmax] and OPT ⩽ ÕPT ⩽ OPT + pmax can be computed by a randomized
algorithm in time Õ(n + t

√
pmax).

We prove Lemma 15 in the remainder of this section. Observe that, with the notation
of Lemma 15, we have PI [t] = OPT, t ∈ T and OPT ∈ P , since pmax ⩽ OPT. Hence the
algorithm in Lemma 15 computes in particular the value PI [t] = OPT.

Idea. The idea of the algorithm is to randomly split the items of I into 2q groups Iq
1 , . . . , Iq

2q ,
for some parameter q which we define later. Using the Õ(n + t

√
v) time Knapsack algorithm

(Theorem 12), we compute a subarray of PIj
q

for every j ∈ [2q]. The arrays are then
combined in a tree-like fashion by taking their max-plus convolution. A key observation is
that, with high probability, it suffices to compute a subarray of PIj

q
for a small range of

indices and a small range of values. The same will hold for the intermediate arrays resulting
from the max-plus convolutions. Since the sequences are monotone non-decreasing, we can
use the rectangular bounded monotone max-plus convolution algorithm of Theorem 7 to
accelerate the computation. We explain the algorithm in more details below before proving
its correctness and analyzing its running time.
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Algorithm. The algorithm of Lemma 15 is presented in pseudocode in Algorithm 1. Let
ÕPT be the approximation of OPT from Lemma 13, i.e. ÕPT satisfies OPT ⩽ ÕPT ⩽
OPT + pmax and pmax ⩽ ÕPT ⩽ n · pmax. Note that since pmax ⩽ OPT, we have ÕPT =
Θ(OPT). Set the parameters η := 17 log n and q to be the largest integer such that
2q ⩽ min{t/wmax, ÕPT/pmax}. We also define ∆w := t ·wmax and ∆p := ÕPT · pmax, as well
as the weight and profit intervals for ℓ ∈ {0, . . . , q}

W ℓ :=
[

t

2ℓ
−

√
∆w

2ℓ
η,

t

2ℓ
+

√
∆w

2ℓ
η

]
and P ℓ :=

[
ÕPT

2ℓ
−

√
∆p

2ℓ
η,

ÕPT
2ℓ

+
√

∆p

2ℓ
η

]
.

Algorithm 1 The Õ(n + t
√

pmax)-time algorithm of Lemma 15. The input (I, t) is a
Knapsack instance such that t/wmax = Θ(OPT/pmax).

1.1 wmax ← maxi∈[n] wi

1.2 pmax ← maxi∈[n] pi

1.3 Compute an approximation ÕPT of OPT using Lemma 13.
1.4 q ← largest integer such that 2q ⩽ min{t/wmax, ÕPT/pmax}
1.5 η ← 17 log n

1.6 ∆w ← t · wmax

1.7 ∆p ← ÕPT · pmax
1.8 Iq

1 , . . . , Iq
2q ← random partitioning of I into 2q groups

1.9 W q ←
[

t
2q −

√
∆w

2q η, t
2q +

√
∆w

2q η

]
1.10 P q ←

[
ÕPT

2q −
√

∆p

2q η, ÕPT
2q +

√
∆p

2q η

]
1.11 W ∗ ←

[
0, t

2q +
√

∆w

2q η

]
1.12 P ∗ ←

[
0, ÕPT

2q +
√

∆p

2q η

]
1.13 for j = 1, . . . , 2q do
1.14 Compute Dq

j ← PIq
j

[W ∗; P ∗] using Theorem 12
1.15 Cq

j ← Dq
j [W q; P q]

1.16 for ℓ = q − 1, . . . , 0 do

1.17 W ℓ ←
[

t
2ℓ −

√
∆w

2ℓ η, t
2ℓ +

√
∆w

2ℓ η

]
1.18 P ℓ ←

[
ÕPT

2ℓ −
√

∆p

2ℓ η, ÕPT
2ℓ +

√
∆p

2ℓ η

]
1.19 for j = 1, . . . , 2ℓ do
1.20 Dℓ

j ←MaxConv(Cℓ+1
2j−1, Cℓ+1

2j ) using Theorem 7
1.21 Cℓ

j ← Dℓ
j [W ℓ; P ℓ]

1.22 T ← [t−
√

t · wmax, t +
√

t · wmax]

1.23 P ← [ÕPT−
√

ÕPT · pmax, ÕPT +
√

ÕPT · pmax]
1.24 return C0

1 [T ; P ]

Algorithm 1 starts by splitting the items of I into 2q groups Iq
1 , . . . , Iq

2q uniformly at
random. For each group Iq

j it computes the sequence Dq
j := PIq

j
[W ∗; P ∗] using Theorem 12,

where W ∗ :=
[
0, t

2q +
√

∆w

2q η

]
and P ∗ :=

[
0, ÕPT

2q +
√

∆p

2q η

]
. Then it extracts the entries
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corresponding to weights in W q and profits in P q, i.e., Cj
q := Dq

j [W q; P q]. Next, the algorithm
iterates over the levels ℓ = q − 1, . . . , 0. For every iteration j ∈ [2ℓ], the set of items in group
j on level ℓ is Iℓ

j = Iℓ+1
2j−1 ∪ I

ℓ+1
2j and the algorithm computes the max-plus convolution

Dℓ
j of the arrays Cℓ+1

2j−1 and Cℓ+1
2j . It extracts the relevant entries of weights in W ℓ and

profits in P ℓ, i.e., Cℓ
j := Dℓ

j [W ℓ; P ℓ]. Finally, observe that when ℓ = 0 then I0
1 = I. The

algorithm returns the sequence C0
1 [T ; P ], for the intervals T := [t−

√
t · wmax, t +

√
t · wmax]

and P := [ÕPT−
√

ÕPT · pmax, ÕPT +
√

ÕPT · pmax].

3.1 Correctness of Algorithm 1
Let us analyze the correctness of the algorithm. For the rest of this section, fix a Knapsack
instance (I, t) with n := |I| and such that t/wmax = Θ(OPT/pmax). First, recall that we
defined q to be the largest integer such that 2q ⩽ min{t/wmax, ÕPT/pmax}. In particular,
since t ⩽ nwmax, we have 2q ⩽ t/wmax ⩽ n. Moreover since wmax ⩽ t and pmax ⩽ ÕPT, we
have 2q ⩾ 1. So 2q is a valid choice for the number of groups in which we split the item set
I. Also note that 2q = Θ(t/wmax) = Θ(ÕPT/pmax). Next, we argue that the subarray Cℓ

j

constructed in Lines 1.15 and 1.21 is monotone non-decreasing.

▶ Lemma 16. For every level ℓ ∈ {0, . . . , q} and iteration j ∈ [2ℓ], the sequence Cℓ
j is

monotone non-decreasing.

Proof. For ℓ = q and j ∈ [2q], Dq
j is a subarray of PIq

j
, which is monotone non-decreasing

by definition. Hence Dq
j is monotone non-decreasing, and since W q and P q are intervals,

the array Cq
j = Dq

j [W q; P q] is also monotone non-decreasing. The statement follows from
induction by noting that the max-plus convolution of two monotone non-decreasing sequences
is a monotone non-decreasing sequence. ◀

The above lemma justifies the use of Theorem 7 to compute the max-plus convolutions
in Line 1.20. We now explain why it is enough to restrict the entries of Dℓ

j corresponding to
indices in W ℓ and values in P ℓ. The following lemma shows that, for any fixed subset of
items, the weight and profit of that subset restricted to Iℓ

j are concentrated around their
expectations.

▶ Lemma 17. Let x ∈ {0, 1}n. Fix ℓ ∈ {0, . . . , q} and j ∈ [2ℓ]. Then with probability at least
1− 1/n7 the following holds:∣∣∣wIℓ

j
(x)− wI(x)/2ℓ

∣∣∣ ⩽ √
∆w/2ℓ ·16 log n and

∣∣∣pIℓ
j
(x)− pI(x)/2ℓ

∣∣∣ ⩽ √
∆p/2ℓ ·16 log n.

Proof. By construction, Iℓ
j is a random subset of I where each item is included with

probability p := 1/2ℓ. For each item i ∈ [n], let Zi be a random variable taking value
wixi with probability p, and 0 with probability 1 − p. Then Z :=

∑n
i=1 Zi has the same

distribution as wIℓ
j
(x) and E(Z) = wI(x)p.

Using Bernstein’s inequality (see, e.g., [13, Theorem 1.2]) we get that for any λ > 0:

P(|Z − E(Z)| ⩾ λ) ⩽ 2 exp
(
− λ2

2 ·Var(Z) + 2
3 λ · wmax

)
⩽ 2 exp

(
−min

{
λ2

4 ·Var(Z) ,
λ

2wmax

})
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Set λ :=
√

p ·∆w · 16 log n. We can bound the variance of Z as follows:

Var(Z) =
n∑

i=1
p(1− p)w2

i x2
i ⩽ p · wmax

n∑
i=1

wixi

= p · wmax · wI(x) ⩽ p · wmax · t = p ·∆w.

Hence λ2/(4 ·Var(Z)) ⩾ 16 log n. To bound λ/(2wmax), note that 2q ⩽ t/wmax so p = 1
2ℓ ⩾

1
2q ⩾ wmax

t . Thus,

λ

2wmax
=

√
p ·∆w · 16 log n

2wmax
⩾ 8 log n.

Combining all the above we obtain that

|wIℓ
j
(x)− wI(x)/2ℓ| = |Z − E(Z)| ⩽ λ =

√
∆w/2ℓ · 16 log n

holds with probability at least 1− 2/n8.
We can apply a similar reasoning on pIℓ

j
(x) and get the analogous result that |pIℓ

j
(x)−

pI(x)/2ℓ| ⩽
√

∆p/2ℓ ·16 log n holds with probability at least 1−2/n8. To this end, we define a
random variable Y , analogous to Z, with respect to profits and set the constant in Bernstein’s
inequality to λ =

√
p ·∆p · 16 log n. Then to bound Var(Y ) we use pI(x) ⩽ OPT ⩽ ÕPT,

and to bound λ/(2pmax) we use the fact that 2q ⩽ ÕPT/pmax so that p ⩾ pmax/ÕPT. By a
union bound, both events hold with probability at least 1− 4/n8 ⩾ 1− 1/n7 (recall that we
can assume n ⩾ 10). ◀

In the next lemma, we show that, as a consequence of Lemma 17, at level ℓ the weights
and profits of solutions of interest restricted to Iq

j lie with sufficiently high probability in W ℓ

and P ℓ.

▶ Lemma 18. Let x ∈ {0, 1}n such that |wI(x)− t| ⩽ 2
√

∆w and |pI(x)− ÕPT| ⩽ 2
√

∆p.
Fix a level ℓ ∈ {0, . . . , q} and an iteration j ∈ [2ℓ]. Then with probability at least 1− 1/n7

we have wIℓ
j
(x) ∈W ℓ and pIℓ

j
(x) ∈ P ℓ.

Proof. By Lemma 17 we have with probability at least 1− 1/n7

∣∣∣wIℓ
j
(x)− wI(x)/2ℓ

∣∣∣ ⩽ √
∆w/2ℓ16 log n and

∣∣∣pIℓ
j
(x)− pI(x)/2ℓ

∣∣∣ ⩽ √
∆p/2ℓ ·16 log n.

We condition on that event. Since |wI(x)− t| ⩽ 2
√

∆w, we have:

|wIℓ
j
(x)− t/2ℓ| ⩽ |wIℓ

j
(x)− wI(x)/2ℓ|+ 1

2ℓ
|wI(x)− t|

⩽
√

∆w/2ℓ · 16 log n + 2
√

∆w/2ℓ ⩽
√

∆w/2ℓ · 17 log n.

Here the last step follows from 2ℓ ⩾ 1 and n ⩾ 10. Since we set η = 17 log n, the above
implies that wIℓ

j
(x) ∈ W ℓ. Similarly, we can deduce from |pI(x) − ÕPT| ⩽ 2

√
∆p that

pIℓ
j
(x) ∈ P ℓ. ◀

Using Lemma 18 we can argue that at level ℓ it suffices to compute the subarray of Dℓ
j

corresponding to indices in W ℓ and values in P ℓ. We make this idea precise in Lemma 19.
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▶ Lemma 19. Let x ∈ {0, 1}n be a Pareto optimum of PI satisfying |wI(x)− t| ⩽ 2
√

∆w and
|pI(x)− ÕPT| ⩽ 2

√
∆p. Then with probability at least 1−1/n5 we have for all ℓ ∈ {0, . . . , q}

and all j ∈ [2ℓ] that wIℓ
j
(x) ∈W ℓ, pIℓ

j
(x) ∈ P ℓ and Cℓ

j [wIℓ
j
(x)] = pIℓ

j
(x).

Proof. By Lemma 18, for fixed ℓ ∈ {0, . . . , q} and j ∈ [2ℓ] we have wIℓ
j
(x) ∈ W ℓ and

pIℓ
j
(x) ∈ P ℓ with probability at least 1−1/n7. Since 2q ⩽ n we can afford a union bound and

deduce that wIℓ
j
(x) ∈ W ℓ and pIℓ

j
(x) ∈ P ℓ holds for all ℓ ∈ {0, . . . , q} and for all j ∈ [2ℓ]

with probability at least 1− 1/n5. We condition on that event and prove by induction that
Cℓ

j [wIℓ
j
(x)] = pIℓ

j
(x) for all ℓ ∈ {0, . . . , q} and all j ∈ [2ℓ].

For the base case, fix ℓ = q and j ∈ [2ℓ]. Recall that PIq
j
[k] is the maximum profit of a

subset of items of Iq
j of weight at most k. So if y is such that PIq

j
[wIq

j
(x)] = pIq

j
(y) and

wIq
j
(y) ⩽ wIq

j
(x), then pIq

j
(y) ⩾ pIq

j
(x). By Lemma 14, since x is a Pareto optimum of PI ,

we deduce pIq
j
(y) = pIq

j
(x). We have wIq

j
(x) ∈ W q and PIq

j
[wIq

j
(x)] = pIq

j
(x) ∈ P q, so by

the construction in Line 1.15 Cq
j [wIq

j
(x)] = pIq

j
(x).

In the inductive step, fix ℓ < q and j ∈ [2ℓ]. We want to prove that Dℓ
j [wIℓ

j
] = pIℓ

j
(x).

Indeed, since wIℓ
j
(x) ∈W ℓ and pIℓ

j
(x) ∈ P ℓ, this shows that Cℓ

j [wIℓ
j
(x)] = Dℓ

j [wIℓ
j
] = pIℓ

j
(x).

By induction, Dℓ
j [wIℓ

j
(x)] is the profit of some subset of items of Iℓ

j of weight at most wIℓ
j
(x).

So there exists y ∈ {0, 1}n such that Dℓ
j [wIℓ

j
(x)] = pIℓ

j
(y) and wIℓ

j
(y) ⩽ wIℓ

j
(x). Then

pIℓ
j
(y) = Dℓ

j [wIq
j
(x)] = max

{
Cℓ+1

2j−1[k] + Cℓ+1
2j [k′] : k + k′ = wIℓ

j
(x)

}
⩾ Cℓ+1

2j−1[wIℓ+1
2j−1

(x)] + Cℓ+1
2j [wIℓ+1

2j
(x)]

= pIℓ+1
2j−1

(x) + pIℓ+1
2j

(x) = pIℓ
j
(x)

where we use the induction hypothesis and the fact that Iℓ
j = Iℓ+1

2j−1 ∪ I
ℓ+1
2j is a partitioning.

Recall that we interpret out-of-bound entries of arrays as −∞. Since x is a Pareto optimum
of PI , we obtain pIℓ

j
(y) = pIℓ

j
(x) by Lemma 14, and thus Dℓ

j [wIℓ
j
(x)] = pIℓ

j
(x). This implies

Cℓ
j [wIq

j
(x)] = pIq

j
(x) as argued above. ◀

Finally, we can prove that Algorithm 1 correctly computes PI [T ; P ] as defined in Lemma 15
with high probability. Note that we can boost the success probability to any polynomial by
repeating this algorithm and taking the entry-wise maximum of each computed sequence C0

1 .

▶ Lemma 20 (Correctness of Algorithm 1). Let T := [t−
√

∆w, t +
√

∆w] and P := [ÕPT−√
∆p, ÕPT +

√
∆p]. Then with probability at least 1− 1/n we have C0

1 [T ; P ] = PI [T ; P ].

Proof. First, observe that T ⊆ W 0 and P ⊆ P 0. Let K0 be the set of indices of C0
1 , i.e.,

K0 := {k | k ∈ W 0, D0
1[k] ∈ P 0}. Let K be the interval such that C0

1 [K] = C0
1 [T ; P ], i.e.,

K := {k | k ∈ T, C0
1 [k] ∈ P}. We want to show that C0

1 [k] = PI [k] for every k ∈ K with
high probability. Since C0

1 and PI are monotone non-decreasing (see Lemma 16), to compare
C0

1 and PI it is enough to focus on break points. Recall that k ∈ N is a break point of
PI if PI [k − 1] < PI [k], and that each break point k corresponds to a Pareto optimum
x ∈ {0, 1}n such that wI(x) = k and PI [wI(x)] = pI(x). We claim that for any k ∈ K and
k′ ⩽ k maximal such that k′ is a break point of PI we have C0

1 [k′] = PI [k′]. Together with
monotonicity this proves that C0

1 [k] = PI [k] for all k ∈ K as desired.
To prove the claim, we first need to establish that every k ∈ K has a break point k′ ⩽ k

that is not too far, specifically k′ ⩾ t−2
√

∆w. We prove that [t−2
√

∆w, t−
√

∆w] contains a
break point of PI . Let y ∈ {0, 1}n be such that wI(y) ⩽ t−2

√
∆w and PI [t−2

√
∆w] = pI(y).
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Let y′ be y with an additional item. This is always possible since we can assume without
loss of generality that the total weight of all items in I exceeds t, i.e., any subset of items
of weight at most t leaves at least one item out. The additional item has weight at most
wmax and profit at least 1. So wI(y′) ⩽ wI(y) + wmax ⩽ t− 2

√
∆w + wmax ⩽ t−

√
∆w and

pI(y) < pI(y′). In particular, we have pI(y′) ⩽ PI [t−
√

∆w]. We obtain PI [t− 2
√

∆w] =
pI(y) < pI(y′) ⩽ PI [t−

√
∆w]. Therefore, [t− 2

√
∆w, t−

√
∆w] contains a break point.

Recall that our goal is to show that for any k ∈ K and k′ ⩽ k maximal such that k′ is a
break point of PI it holds that C0

1 [k′] = PI [k′]. Since we showed that [t− 2
√

∆w, t−
√

∆w]
contains a break point, we define T ′ := T ∪ [t−2

√
∆w, t−

√
∆w] = [t−2

√
∆w, t+

√
∆w], and

K ′ such that C0
1 [K ′] = C0

1 [T ′; P ], i.e., K ′ := {k | k ∈ T ′, C0
1 [k] ∈ P}. Then all it remains

to show is that C0
1 [k] = PI [k] for every break point k ∈ K ′. Fix a break point k ∈ K ′ and

let x ∈ {0, 1}n be the Pareto optimum such that wI(x) = k and PI [k] = pI(x). Then in
particular wI(x) ∈ T ′ and pI(x) ∈ P , and thus |wI(x)− t| ⩽ 2

√
∆w and |pI(x)− ÕPT| ⩽

2
√

∆p. By Lemma 19, this implies C0
1 [k] = pI(x) = PI [k] with probability at least 1− 1/n5.

Since |K ′| ⩽ |P | ⩽ 2pmax
√

n, by a union bound over all break points k ∈ K ′, we obtain that
C0

1 [T ; P ] = PI [T ; P ] with probability at least 1− 2pmax
√

n/n5 ⩾ 1− 2pmax/n4. Note that if
n3 ⩽ 2pmax, then in particular n2 ⩽ 2pmax and we can use Bellman’s dynamic program to
compute the profit sequence in time O(n · t) = O(t√pmax) (see Theorem 11). Hence, we can
assume that n3 ⩾ 2pmax. Thus, with probability at least 1− 2pmax/n4 ⩾ 1− 1/n we have
C0

1 [T ; P ] = PI [T ; P ]. ◀

3.2 Running time of Algorithm 1

▶ Lemma 21. For a fixed level ℓ ∈ {0, . . . , q − 1} and iteration j ∈ [2ℓ], the computation of
Dℓ

j in Line 1.20 takes time Õ((t/2ℓ)3/4p
1/2
maxw

1/4
max).

Proof. By Lemma 16, the sequences Cℓ+1
2j−1 and Cℓ+1

2j are bounded monotone. Additionally,
they have length at most |W ℓ+1| = Õ(

√
∆w/2ℓ) and the values are in a range of length

at most |P ℓ| = Õ(
√

∆p/2ℓ). So their max-plus convolution can be computed using the
algorithm of Theorem 7 in time Õ((∆w/2ℓ)1/2(∆p/2ℓ)1/4). We apply the definitions of
∆w = twmax and ∆p = ÕPTpmax and the balancedness assumption t/wmax = Θ(ÕPT/pmax),
which yields ∆p = O(tp2

max/wmax), to bound the running time by Õ((t/2ℓ)3/4p
1/2
maxw

1/4
max). ◀

▶ Lemma 22. Algorithm 1 runs in time Õ(n + t
√

pmax).

Proof. We first bound the running time of the base case, i.e., the computations of Lines 1.13–
1.15. For each j ∈ [2q], the array Dq

j is obtained by computing the sequence PIq
j

[W ∗; P ∗],

where W ∗ :=
[
0, t

2q +
√

∆w

2q η

]
and P ∗ :=

[
0, ÕPT

2q +
√

∆p

2q η

]
. Since ∆w = twmax, η =

O(log n) and 2q = Θ(t/wmax), we can bound t
2q +

√
∆w

2q η = Õ(wmax), and analogously
ÕPT

2q +
√

∆p

2q η = Õ(pmax). Using Theorem 12, we can therefore compute Dq
j in time

Õ(|Iq
j |+ wmax

√
pmax). Hence, the total running time of the base case is:

2q∑
j=1

Õ
(
|Iq

j |+ wmax ·
√

pmax
)

= Õ (n + 2q · wmax ·
√

pmax) = Õ (n + t · √pmax)

where we again used 2q = Θ(t/wmax).
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Using Lemma 21, we bound the running time of the combination step, i.e., the computa-
tions of Lines 1.16–1.21, as follows:

q−1∑
ℓ=0

2ℓ∑
j=1

Õ
(

(t/2ℓ)3/4p1/2
maxw1/4

max

)
=

q−1∑
ℓ=0

Õ
(

t3/4p1/2
max(wmax · 2ℓ)1/4

)

This is a geometric series, so it is bounded by Õ(t3/4p
1/2
max(wmax · 2q)1/4). Since 2q ⩽

t/wmax we obtain a running time of Õ(t√pmax). Hence, in total Algorithm 1 takes time
Õ(n + t

√
pmax). ◀
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