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Abstract
Spanner constructions focus on the initial design of the network. However, networks tend to improve
over time. In this paper, we focus on the improvement step. Given a graph and a budget k, which k

edges do we add to the graph to minimise its dilation? Gudmundsson and Wong [TALG’22] provided
the first positive result for this problem, but their approximation factor is linear in k.

Our main result is a (2 r
√

2 k1/r, 2r)-bicriteria approximation that runs in O(n3 log n) time, for
all r ≥ 1. In other words, if t∗ is the minimum dilation after adding any k edges to a graph, then our
algorithm adds O(k1+1/r) edges to the graph to obtain a dilation of 2rt∗. Moreover, our analysis of
the algorithm is tight under the Erdős girth conjecture.
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1 Introduction

Let G be a graph embedded in a metric space M . Let V (G), E(G) be the vertices and edges
of G. For vertices u, v ∈ V (G), define dM (u, v) to be the metric distance between points
u, v ∈ M , and define dG(u, v) to be the shortest path distance between vertices u, v ∈ G.
The dilation or stretch of G is the minimum t ∈ R so that for all u, v ∈ V (G), we have
dG(u, v) ≤ t · dM (u, v).

Dilation measures the quality of a network in applications such as transportation, energy,
and communication. For now, we restrict our attention to the special case of low dilation
trees.

▶ Problem 1. Given a set of n points V embedded in a metric space M , compute a spanning
tree of V with minimum dilation.

Problem 1 is known across the theory community, as either the minimum dilation
spanning tree problem [4, 10, 12], the tree spanner problem [11, 21, 23] or the minimum
maximum-stretch spanning tree problem [16, 34, 38]. The problem is NP-hard even if M is
an unweighted graph metric [11] or the Euclidean plane [12]. Problem 1 is closely related to
tree embeddings of general metrics [5], and has applications to communication networks and
distributed systems [38].
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The approximability of Problem 1 is an open problem stated in several surveys and
papers [12, 17, 38], and is a major obstacle towards constructing low dilation graphs with
few edges [4, 29]. The minimum spanning tree is an O(n)-approximation [17] for Problem 1,
but no better result is known. Only in the special case where M is an unweighted graph is
there an O(log n)-approximation [16].

▶ Obstacle 2. Is there an O(n1−ε)-approximation algorithm for Problem 1, for any ε > 0?

If we no longer restrict ourselves to trees, we can shift our attention to spanners, which
are low dilation sparse graphs. An advantage of spanners over minimum dilation trees is
that spanners are not affected by Obstacle 2. Spanners obtain significantly better dilation
guarantees, at the cost of adding slightly more edges. The trade-off between sparsity and
dilation in spanners has been studied extensively [2, 14, 22, 32]. For an overview of the rich
history and multitude of applications of spanners, see the survey on graph spanners [1] and
the textbook on geometric spanners [37].

Spanner constructions focus on the initial design of the network. However, networks tend
to improve over time. In this paper, we focus on the improvement step. Given a graph and a
budget k, which k edges do we add to the graph to minimise its dilation?

▶ Problem 3. Given a positive integer k and a metric graph G, compute a set S of
k edges so that the dilation of the graph G′ = (V (G), E(G) ∪ S) is minimised. Note that
S ⊆ V (G) × V (G).

Narasimham and Smid [37] stated Problem 3 as one of twelve open problems in the final
chapter of their reference textbook. For over a decade, the only positive results for Problem 3
were for the special case where k = 1 [3, 20, 35, 43]. In 2021, Gudmundsson and Wong [29]
showed the first positive result for k ≥ 2, by providing an O(k)-approximation algorithm that
runs in O(n3 log n) time. A downside of [29] is that their approximation factor is linear in k.
However, since Problem 1 is a special case of Problem 3, Obstacle 2 applies to Problem 3 as
well.

▶ Obstacle 4. One cannot obtain an O(k1−ε)-approximation algorithm for Problem 3 for
any ε > 0, without first resolving Obstacle 2.

One way to circumvent Obstacle 4 is to consider a bicriteria approximation. An advantage
of a bicriteria approximation is that we can obtain significantly better dilation guarantees,
at the cost of adding slightly more edges.

The goal of our bicriteria problem is to investigate the trade-off between sparsity and
dilation. We define the sparsity parameter f to be the number of edges added by our algorithm
divided by k. We define the dilation parameter g to be the dilation of our algorithm (which
adds fk edges) divided by the dilation of the optimal solution (which adds k edges).

▶ Problem 5. Given a positive integer k, a metric graph G, sparsity f ∈ R and dilation
g ∈ R, construct a set S of fk edges so that the dilation of the graph G′ = (V (G), E(G) ∪ S)
is at most gt∗, where t∗ is the minimum dilation in Problem 3. Note that S ⊆ V (G) × V (G).

We define an (f, g)-bicriteria approximation to be an algorithm for Problem 5 that
achieves sparsity f and dilation g.
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1.1 Contributions

Our main result is a (2 r
√

2 k1/r, 2(1 + δ)r)-bicriteria approximation for Problem 5 that runs
in O(n3(log n + log 1

δ )) time, for all r ≥ 1 and δ > 0. In other words, if t∗ is the minimum
dilation after adding any k edges to a graph, then our algorithm adds O(k1+1/r) edges to
the graph to obtain a dilation of 2(1 + δ)rt∗. Our dilation guarantees are significantly better
than the previous best result [29], at the cost of adding slightly more edges. For example,
if r = log(2k) we obtain a (4, 2(1 + δ) log(2k))-bicriteria approximation algorithm, which
adds 4k edges to the graph to obtain a dilation of 2(1 + δ) log(2k)t∗. See Table 1.

Our approach uses the greedy spanner construction. The greedy spanner is among the
most extensively studied spanner constructions [2, 14, 22, 32]. Therefore, it is perhaps
unsurprising that greedy spanner can be used for Problem 5. Nonetheless, we believe that
our result shows the utility and versatility of the greedy spanner.

Our main technical contribution is our analysis of the greedy spanner. Our main insight
is to construct an auxilliary graph, which we call the girth graph, and to argue that the
approximation ratio is bounded by the length of the shortest cycle in the girth graph.
Moreover, our analysis of the greedy spanner is tight, up to constant factors. In particular,
assuming the Erdős girth conjecture, there is a graph class for which our algorithm is an
(Ω(k1/r), 2r + 1)-bicriteria approximation.

Assuming W[1] ̸= FPT, we prove that one cannot obtain a (h(k), 2 − ε)-bicriteria approx-
imation, for any computable function h and for any ε > 0. Since one cannot approximate
the dilation to within a factor of (2 − ε), The restriction r ≥ 1 is essentially necessary in our
main result.

Finally, we use ideas from our hardness proof to provide a (4k log n, 1)-bicriteria approx-
imation.

Our results are summarised in Table 1. For a technical overview of our results, see
Section 2.

Table 1 The table shows the trade-off between sparsity f and dilation g in our bicriteria
approximation algorithms for Problem 5. Note that EGC is the Erdős girth conjecture, h(·) is any
computable function, and Oε(·) hides dependence on ε.

Sparsity (f) Dilation (g) Complexity Reference

1 (1 + δ)(k + 1) O(n3(log n + log 1
δ
)) Gudmundsson and Wong [29]

2 + ε Oε((1 + δ) log(k)) O(n3(log n + log 1
δ
)) r = Oε(log(k)) in Theorem 6

4 2(1 + δ) log(2k) O(n3(log n + log 1
δ
)) r = log(2k) in Theorem 6

21+ε kε 2(1 + δ)ε−1 O(n3(log n + log 1
δ
)) r = 1/ε in Theorem 6

2
√

2
√

k 4(1 + δ) O(n3(log n + log 1
δ
)) r = 2 in Theorem 6

4k 2(1 + δ) O(n3(log n + log 1
δ
)) r = 1 in Theorem 6

Our analysis in Theorem 6 is tight under EGC Theorem 7

h(k) 2 − ε W[1]-hard Theorem 8

4k log n 1 O(n6 log n) Theorem 9

ESA 2024
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1.2 Related work

Due to the difficult nature of Problem 3, most of the literature focuses on the special case
where k = 1. Farshi, Giannopoulos and Gudmundsson [20] provide an O(n4) time algorithm,
and an O(n3) time 3-approximation when k = 1. Wulff-Nilsen [43] presents an O(n3 log n)
time algorithm. Luo and Wulff-Nilsen [35] improves the space requirement to linear. Aronov
et al. [3] provide a nearly-linear time algorithm in the special case where the graph is a
simple polygon and an interior point.

A variant of Problem 3 is to add k edges to a graph to minimise the diameter instead of
the dilation. Frati, Gaspers, Gudmundsson and Mathieson [24] provide a fixed parameter
tractable 4-approximation for the problem. Bilò, Gualà and Proietti [8] provide bicriteria
approximability and inapproximability results. Several special cases have been studied.
Demaine and Zadimoghaddam [15] consider adding k edges of length δ, where δ is small
relative to the diameter. Große et al. [26] present nearly-linear time algorithms for adding
one edge to either a path or a tree in order to minimise its diameter. Follow up papers
improve the running time of the algorithm for paths [40] and for trees [6, 42]. Bilò, Gualà,
Stefano Leucci and Sciarria [7] extend the linear time algorithm to approximate the minimum
diameter when k > 1 edges are added to a tree.

Another variant is to add k edges to a graph to minimise the radius. Gudmundsson, Sha
and Yao [28] provide a 3-approximation for adding k edges to a graph to minimise its radius.
The problem of adding one edge to minimise the radius of paths [30, 41] and trees [27] has
also been studied.

A problem closely related to Problem 1 is to compute minimum dilation graphs. In his
Master’s thesis, Mulzer [36] studies minimum dilation triangulations for the regular n-gon.
Eppstein and Wortman [18] provide a nearly-linear time algorithm to compute a minimum
dilation star of a set of points. Giannopoulos, Knauer and Marx [25] prove that, given a set
of points, it is NP-hard to compute a minimum dilation tour or a minimum dilation path.
Aronov et al. [4] show that, given n points, one can construct a graph with n − 1 + k edges
and dilation O(n/(k + 1)).

Our algorithm for Problem 5 uses the greedy spanner, which is among the most extensively
studied spanner constructions. In general metrics, the greedy (2k − 1)-spanner has O(n1+1/k)
edges [2]. In d-dimensional Euclidean space, the greedy (1 + ε)-spanner has O(nε−d+1)
edges [14, 37]. The sparsity-dilation trade-off is (existentially) optimal in both cases [22, 32].

2 Technical overview

We divide our technical overview into six subsections. In Section 2.1, we summarise the
previous algorithm of Gudmundsson and Wong [29]. In Section 2.2, we give an overview
of our main result, that is, our (2 r

√
2 k1/r, 2r)-bicriteria approximation for all r ≥ 1. In

Section 2.3, we present the main ideas for proving our analysis is tight, assuming the Erdős
girth conjecture. In Section 2.4, we summarise our proof that it is W[1]-hard to obtain
a (h(k), 2 − ε)-bicriteria approximation, for any computable function h and for any ε > 0. In
Section 2.5, we present a (4k log n, 1)-bicriteria approximation. In Section 2.6, we summarise
the structure of the remainder of the paper.
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2.1 Previous algorithm of [29]

Gudmundsson and Wong’s [29] algorithm constructs the greedy spanner with a simple
modification. The traditional greedy t-spanner takes as input a set of vertices, i.e. an empty
graph, however, the modified greedy t-spanner [29] takes as input a set of vertices and edges,
i.e. a non-empty graph.

The greedy t-spanner construction has two steps. First, all edges that are not in the
initial graph are sorted by their length. Second, the edges are processed from shortest to
longest. A processed edge uv is added if dG(u, v) > t · dM (u, v), otherwise the edge uv is not
added.

For Problem 3, Gudmundsson and Wong’s [29] show, in their main lemma, that if the
greedy t-spanner adds at least k + 1 edges, then t ≤ (k + 1) t∗. Here, t∗ is the minimum
dilation if k edges are added to our graph. Using this lemma, they then perform a binary
search over a multiplicative (1 + δ)-grid for a t ∈ R such that the greedy (1 + δ) t-spanner
adds at most k edges, but the greedy t-spanner adds at least k + 1 edges. Therefore, (1 + δ) t

is a (1 + δ)(k + 1)-approximation of t∗, since we can add k edges to obtain a (1 + δ) t-spanner
and (1 + δ) t ≤ (1 + δ)(k + 1) t∗.

Next, we briefly summarise the proof that if k+1 edges are added by the greedy algorithm,
then t ≤ (k + 1) t∗. In Lemma 2 of [29], the authors use the k + 1 greedy edges to construct a
set of k + 1 vectors in a k-dimensional vector space. They define I to be a linearly dependent
subset of the k + 1 vectors. In Theorem 5 of [29], the authors use the linear dependence
property of I to prove that t ≤ |I| · t∗. Since |I| ≤ k + 1, they obtain t ≤ (k + 1) t∗.
Unfortunately, the vector space approach of [29] fails extend to Problem 5, if the dilation
factors g is sublinear in k, even if the sparsity factor f is allowed to be polynomial in k.

2.2 Greedy bicriteria approximation

Our algorithm is the same as the one in [29]. Our difference lies in our analysis of the greedy
t-spanner, in particular, in our main lemma.

For Problem 5, we show, in our main lemma, that if the greedy t-spanner adds at
least fk + 1 edges, then t ≤ gt∗. We will specify f and g later. Then, we apply the
same binary search procedure to find a t ∈ R where the greedy (1 + δ) t-spanner adds at
most fk edges, but the greedy t-spanner adds at least fk + 1 edges. Then (1 + δ) t is
an (f, (1 + δ)g)-bicriteria approximation of t∗.

Next, we briefly summarise our new proof that if fk + 1 edges are added, then t ≤ gt∗.
In order to extend our analysis to sublinear dilation factors g, we abandon the vector space
approach of [29]. Our main idea is to construct an auxiliary graph, which we call the girth
graph. The girth graph is an unweighted graph with 2k vertices and fk + 1 edges. Instead
of defining I to be a linearly dependent subset, we define I to be the shortest cycle in the
girth graph. We use a classical result in graph theory to choose the values f = 2 r

√
2 k1/r

and g = 2r, so that |I| ≤ g. In our final step, we use the cycle property of I to carefully
prove t ≤ |I| · t∗, which implies t ≤ gt∗.

Putting this all together, we obtain Theorem 6. For a full proof, see Section 3.

▶ Theorem 6. For all r ≥ 1, there is an (f, (1 + δ)g)-bicriteria approximation for Problem 5
that runs in O(n3(log n + log 1

δ )) time, where

f = 2 r
√

2 k1/r and g = 2r.

ESA 2024
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2.3 Greedy analysis is tight

Our analysis in Theorem 6 is tight. This means one cannot obtain better bounds (up to
constant factors) using the greedy spanner. Our proof assumes the Erdős girth conjecture [19].

The girth of an unweighted graph is defined as the number of edges in its shortest cycle.
In the proof of Theorem 6, we cite a classical result stating that a graph with n vertices and
at least n1+1/r edges has girth at most 2r. The Erdős girth conjecture states that there are
graphs with n vertices, at least Ω(n1+1/r) edges and girth 2r + 2. Several conditional lower
bounds have been shown under the Erdős girth conjecture, namely, the sparsity-dilation
trade-off of the greedy spanner [2], and the space requirement of approximate distance
oracles [39].

We summarise our construction that proves that our analysis is tight. Assuming the
Erdős girth conjecture, there exists a graph H with n = k + 1 vertices, m = Ω(n1+1/r) edges,
and girth 2r + 2. We construct a graph G so that if we run the algorithm in Theorem 6, the
girth graph of G would be H. We use the properties of H to show that, if there are k edges
that can be added to G so that the resulting dilation is t∗, then if we add m − 1 edges to G

using the greedy t-spanner construction, the resulting dilation is at least (2r + 1) t∗.
Putting this all together, we obtain Theorem 7. For a full proof, see .

▶ Theorem 7. For all r ≥ 1, assuming the Erdős girth conjecture, there is a graph class for
which the algorithm in Theorem 6 returns an (f, g)-bicriteria approximation, where

f = Ω(k1/r) and g = 2r + 1.

2.4 Set cover reduction

Next, we show that the restriction r ≥ 1 is necessary in Theorem 6. Recall that Theorem 6
states that there is a (2 r

√
2 k1/r, (1 + δ) 2r)-bicriteria approximation algorithm for all r ≥ 1.

We prove that it is W[1]-hard to obtain a (h(k), 2 − ε)-bicriteria approximation for any
computable function h and for any ε > 0. Our proof is a reduction from set cover.

We summarise our construction of the Problem 5 instance. We show that every set cover
instance can be reduced to a Problem 5 instance. We represent each element with a pair of
points, and we represent each set with a triple of points. In our Problem 5 instance, we add
edges to connect either the pairs or the triples. We show via an exchange argument that we
only need to consider adding edges that connect triple. Connecting a triple corresponds to
choosing a set, which lowers the dilation of all elements in that set to below the threshold
value. Finally, we show that a (h(k), 2 − ε)-bicriteria approximation for our Problem 5 would
solve set cover within an approximation factor of h(k). However, it is W[1]-hard to obtain
an h(k)-approximation algorithm for any computatable function h [31].

Putting this all together, we obtain Theorem 8. For a full proof, see the full version of
this paper.

▶ Theorem 8. For all ε > 0, assuming FPT ̸= W[1], one cannot obtain an (f, g)-bicriteria
approximation for Problem 5, where

f = h(k) and g = 2 − ε,

and h(·) is any computable function.
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2.5 Set cover algorithm
Finally, we provide a (4k log n, 1)-bicriteria approximation that runs in O(n6 log n) time.
Our main idea is to formulate the problem into a set cover instance, and then to apply
an O(log n)-approximation algorithm for set cover [13].

We state our algorithm. For each t ∈ R, we define a set cover instance It. We construct
the set cover instance It so that its elements are defined by pairs of vertices in V (G),
and each set in It is associated with a pair of vertices in V (G). Formally, the elements
of It are {(u, v) : u, v ∈ V (G)}. The sets of It are {Se : e ∈ V (G) × V (G)}, where
each set Se contains all pairs (u, v) that have dilation at most t after the edge e is added
to G. To formally define Se, let Ge be the graph if an edge e is added to G, and define
Se = {(u, v) : dGe(u, v) ≤ t · dM (u, v)}. Now, we can apply the algorithm of [13] on It to
obtain a set cover S. If |S| < k, then we can add fewer than k edges to G to reduce its
dilation to t, so t > t∗. We claim that if |S| > 4k2 log n, then t ≤ t∗. Therefore, we perform
binary search on t in the same way as [29] to obtain a (4k log n, 1)-bicriteria approximation.

To prove correctness, it remains to show our claim that |S| > 4k2 log n =⇒ t ≤ t∗. We
show the contrapositive. If t > t∗, from the definition of t∗ there exists k edges that can be
added to G to make it a t-spanner. Consider a clique with vertices that are the endpoints
of the k edges. Adding these 2k2 edges to the graph would make it a t-spanner. Moreover,
each t-path, that is, a (u, v)-path with length at most t · dM (u, v), uses at most one edge
in the clique. Therefore, the union of the sets Se, where e is an edge in the clique, forms a
set cover over all pairs of vertices (u, v). The optimal solution of the set cover instance is at
most 2k2. The algorithm of [13] returns an O(log(n2))-approximation, since the number of
elements and sets in It is O(n2). Putting this together, our algorithm returns a set cover S
such that |S| ≤ 2k2 log(n2) = 4k2 log n, as required.

Next, we analyse the running time. Computing Se takes O(n3) time for each e ∈
V (G) × V (G). Therefore, constructing the set cover instance It takes O(n5) time. The
number of elements and the number of sets in It is O(n2). Therefore, the cubic time algorithm
of [13] takes O(n6) time in total. Finally, performing the log n) steps in the search brings
the total running time to O(n6 log n).

Putting this all together, we obtain Theorem 9.

▶ Theorem 9. There is an (f, g)-bicriteria approximation for Problem 5, where

f = 4k log n and g = 1.

This completes the overview of the main results of this paper.

2.6 Structure of paper
The structure of the remainder of our paper is summarised in Table 2.

Table 2 References for Theorems 6, 7, 8.

Reference Proof

(2 r
√

2 k1/r, (1 + δ) 2r)-bicriteria approximation Theorem 6 Section 3

Theorem 6 analysis is tight Theorem 7 Full version

(h(k), 2 − ε)-bicriteria approximation is W[1]-hard Theorem 8 Full version

ESA 2024
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3 Greedy bicriteria approximation

In this section, we will prove Theorem 6. We restate the theorem for convenience.

▶ Theorem 6. For all r ≥ 1, there is an (f, (1 + δ)g)-bicriteria approximation for Problem 5
that runs in O(n3(log n + log 1

δ )) time, where

f = 2 r
√

2 k1/r and g = 2r.

Recall from Section 1 that the vertices and edges of G are V (G) and E(G) respectively.
Let e ∈ V (G) × V (G) be an edge not necessarily in E(G). Let dM (e) denote the length of
the edge e in the metric space M and let dG(e) denote the shortest path distance between
the endpoints of e in the graph G. Consider a minimum dilation graph G∗ after adding an
optimal set S∗ of k edges to G. Let t∗ be the dilation of G∗.

Recall from Section 2 that our approach is to use the greedy t-spanner construction. We
formalise the construction in the definition below.

▶ Definition 10. Define G0 = G, and for i ≥ 1, define Gi = Gi−1 ∪ {ai}, where ai is the
shortest edge in V (G) × V (G) satisfying dGi−1(ai) > t · dM (ai). The process halts if no
edge ai exists.

We have two cases: either the process halts after adding more than fk edges, or after
adding at most fk edges. If more than fk edges are added, we show a dilation bound on t.
In particular, Lemma 12 states that if there is an edge ai satisfying dGi−1(ai) > t · dM (ai)
for all 1 ≤ i ≤ fk + 1, then we have the dilation bound t ≤ gt∗. We will specify the
parameters f, g ≥ 1 later in this section.

Our approach is to construct an auxilliary graph H, which we will also refer to as the
girth graph. Define the vertices of H to be V (H) = {v1, . . . , v2k}. Each vertex in V (H)
corresponds to an endpoint of an edge in the optimal set of k edges S∗. In particular, let
S∗ = {s1, . . . , sk}, and let v2i−1, v2i ∈ V (H) correspond to the endpoints of si. Define the
edges of H to be E(H) = {e1, . . . , efk+1}. We will describe the procedure for constructing
each edge ei.

Consider the greedy edge ai, see Figure 1. Define δG∗(ai) to be the shortest path
between the endpoints of ai in G∗, shown in grey in Figure 1. Note that δG∗(ai) denotes a
path, whereas dG∗(ai) denotes a length. Suppose that there are no edges in S∗ along the
path δG∗(ai), for some 1 ≤ i ≤ fk + 1. Then,

t∗ · dM (ai) ≥ dG∗(ai) = dG(ai) ≥ dGi−1(ai) > t · dM (ai),

so t < t∗ ≤ gt∗, which would already imply Lemma 12.
Therefore, we can assume that δG∗(ai) contains at least one edge in S∗, for every

i = 1, . . . , fk + 1. Consider the edges δG∗(ai) ∩ S∗, shown in red in Figure 1. Choose a
direction for the path δG∗(ai), sort the list of endpoints of δG∗(ai) ∩ S∗ with respect to this
direction, and let the first and last endpoints in the sorted list be vj and vℓ. Another way
to characterise vj (respectively vℓ) is that vj is an endpoint of an edge in δG∗(ai) ∩ S∗ so
that the shortest path between vj and one of the endpoints of ai contains no edges in S∗

(respectively the other endpoint of ai). Finally, we define ei to be the edge in H connecting vj

to vℓ. Note that ei is an undirected, unweighted edge, shown in orange in Figure 1. This
completes the construction of H.
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vj

v`
ei

H
ai

δG∗(ai)
vj v`

G

Figure 1 Left: The graph G (black), the greedy edge ai (blue), the path δG∗ (ai) (grey), and the
edges δG∗ (ai) ∩ S∗ (red). Right: The girth graph H and the edge ei (orange).

In Figure 2, we provide a more complete example of a graph G and its girth graph H.
The optimal set of k = 4 edges is S∗ = {s1, s2, s3, s4}, which is shown in red. The five greedy
edges {a1, a2, a3, a4, a5} are shown in blue. The first and last endpoints of δG∗(a1)∩S∗ are v1
and v3, so e1 = v1v3. Similarly, e2 = v3v5, e3 = v5v7, e4 = v1v7 and e5 = v5v6.

v4
v6

G

a2a4

a1

a3

s2s1

s4 s3

v3

v5v7

v1

v8
v2

a5

v1 v2

v3

v4

v5v6

v8

v7

e1

e2
e3

e4

e5

H

Figure 2 Left: The graph G (black), the optimal edges s1, . . . , s4 (red), and the greedy
edges a1, . . . , a5 (blue). Right: The girth graph H has edges e1, . . . , e5 (orange) and a girth
of 4.

Next, define J to be the shortest cycle in H, and define I = {j : ej ∈ J}. Therefore, the
girth of H is |J | = |I|. Note that H has 2k vertices and fk + 1 edges, so J is guaranteed to
exist if f ≥ 2.

We use a classical result in graph theory to set the parameters f and g.

▶ Lemma 11. A graph with n vertices and at least n1+1/r + 1 edges has girth at most 2r.

Proof. The lemma is a classical result [9]. Lemma 2 of [33] provides a self-contained proof. ◀

With Lemma 11 in mind, we set f = 2 r
√

2 k1/r and g = 2r, where r ≥ 1. Then, the
graph H has 2k vertices, (2k)1+1/r + 1 edges, and therefore H has girth |I| ≤ g = 2r. Having
defined the girth graph H, the indices I, and the parameters f and g, the next step is to
prove Lemma 12.

▶ Lemma 12. If aj exists for all j = 1, . . . , fk + 1, then t ≤ gt∗.

We divide the proof of Lemma 12 into three lemmas. In Lemma 13, we construct a path.
In Lemma 14, we lower bound the length of the path. In Lemma 15, we upper bound the
length of the path. We start defining the path.
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▶ Lemma 13. Let i = max I. There is a path in G between the endpoints of ai using only
edges in

{G ∩ δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}.

Proof. Recall that J = {ej : j ∈ I} is a cycle in H. After removing the edge ei, there is still
a path in J ⊆ H between the endpoints of ei. Let the vertices along this path be w1, . . . , wm,
where ei = w1wm, and wℓwℓ+1 ∈ J for all ℓ = 1, . . . , m − 1. In Figure 3, the path w1, . . . , wm

is shown in orange. Let the endpoints of ai be ai(0) and ai(1). Our approach is to use
the path w1, . . . , wm ⊂ H to construct a path between ai(0) and ai(1) that only uses edges
in {G ∩ δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}.

G H

Jei

wm

w1

w1

wm

ai(0)

ai(1)

ai δG∗(ai)

Figure 3 Left: The graph G (black), the greedy edge ai (blue), the path δG∗ (ai) (grey), and the
edges δG∗ (ai) ∩ S∗ (red). Right: The girth graph H, the cycle J (orange), and edge ei (dashed).

First, we consider the edge ei = w1wm. Recall from the definition of V (H) that w1
and wm are endpoints of edges in the optimal set S∗. Moreover, from the definition of
ei ∈ E(H), we know that w1 and wm are the first and last endpoints of S∗ along the
path δG∗(ai). The path δG∗(ai) is shown in grey in Figure 3. The endpoints of δG∗(ai)
are ai(0) and ai(1). Therefore, the subpath of δG∗(ai) between ai(0) and w1 only uses edges
in G and no edges in S∗ = G∗ \ G. Therefore, the subpath only uses edges in G ∩ δG∗(ai).
The subpath from ai(0) to w1 is shown in black in Figure 3. Similarly, there is a path
between wm and ai(1) using only edges in G ∩ δG∗(ai).

Next, we consider the edge ej = wℓwℓ+1, where 1 ≤ ℓ ≤ m − 1, j ∈ I and j < i. Let the
endpoints of aj be aj(0) and aj(1). From the definition of ej = wℓwℓ+1, there is a subpath
of δG∗(aj) between wℓ and aj(0) that only uses edges in G ∩ δG∗(aj). Similarly, there is
subpath of δG∗(aj) between aj(1) and wℓ+1 that only uses edges in G ∩ δG∗(aj). Therefore,
there is a path between wℓ and wℓ+1 that uses only edges in {G ∩ δG∗(aj)} ∪ aj .

See Figure 4 for an example. Consider the edge e1 = w1w2. There is a path between w1
and w2 that only uses edges in {G ∩ δG∗(aj)}, which are black edges, and the blue edge a1.
Similarly arguments apply for e2 = w2w3 and e3 = w3w4.

The final step is to put it all together. There is a path between ai(0) and w1 that only
uses edges in G ∩ δG∗(ai). For ℓ = 1, . . . , m − 1, there is a path between wℓ and wℓ+1 that
only uses edges in {G∩δG∗(aj)}∪aj , where j ∈ I \{i}. There is a path between wm and ai(1)
that only uses edges in G ∩ δG∗(ai). Therefore, there is a path between ai(0) and ai(1) that
only uses edges in {G ∩ δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}, as required. ◀

In Lemma 14, we show a lower bound on the length of the path in Lemma 13.
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G

a2

a1

a3

w1 w2

w4 w3

a4(0)

a4(1)

e1

e2
e3

H w1

w2

w3

w4

Figure 4 The path w1, w2, w3, w4 is shown on the right. There is a path between a4(0) and a4(1)
only using the blue edges a1, a2, a3 and black edges in δG∗ (a1), δG∗ (a2), δG∗ (a3) or δG∗ (a4).

▶ Lemma 14. The length of the path in Lemma 13 is at least t · dM (ai).

Proof. From Definition 10, we have dGi−1(ai) > t · dM (ai). Therefore, any path in Gi−1
between the endpoints of ai has length at least t · dM (ai). It suffices to show that the path
is in Gi−1. By Lemma 13, all of the edges in the path are in {G ∩ δG∗(aj) : j ∈ I} or
{aj : j ∈ I \ {i}}. But {G ∩ δG∗(aj) : j ∈ I} ⊆ G ⊆ Gi−1 and {aj : j ∈ I \ {i}} ⊆ Gi−1. So
the path is in Gi−1 and its length is at least t · dM (ai). ◀

In Lemma 15, we upper bound the length of the path in Lemma 13.

▶ Lemma 15. If t > gt∗, then the length of the path in Lemma 13 is at most |I| · t∗ · dM (ai).

Proof. Given a set of edges E, let total(E) denote the total sum of edge lengths in E. Recall
that the path in Lemma 13 only uses edges in {G ∩ δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}. A
naïve approach to prove the lemma is to bound total({δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}).
Note that G is removed from the first set of braces. We have

total({δG∗(aj) : j ∈ I}) ≤
∑

j∈I t∗ · dM (aj) ≤ |I| · t∗ · dM (ai),
total({aj : j ∈ I \ {i}}) =

∑
j∈I\{i} dM (aj) ≤ (|I| − 1) · dM (ai).

Therefore, the total length of the path is at most (|I|·t∗+|I|−1)·dM (ai) < |I|·(t∗+1)·dM (ai).
Since (t∗ + 1) ≤ 2t∗, we have proven Lemma 15 up to a factor of 2. This analysis would
already yield an (f, 2g)-bicriteria approximation. However, to shave off the factor of 2 and
obtain a tight analysis, we need a more sophisticated argument.

We strengthen our upper bound by re-introducing G back into the first set of braces, in
other words, by bounding total({G ∩ δG∗(aj)}). Since G = G∗ \ S∗, we write

total({G ∩ δG∗(aj)}) = total({δG∗(aj)}) − total({S∗ ∩ δG∗(aj)}).

We have two cases, depending on the size of total({S∗ ∩ δG∗(aj)}).

Case 1. total({S∗ ∩ δG∗(aj)}) < (1 − 1
|I| ) · dM (aj) for some j ∈ I. Then for every s ∈

{S∗ ∩ δG∗(aj)}, it holds that dM (s) < dM (ai). Therefore, dGj−1(s) ≤ t · dM (s), since aj is
the shortest edge in Gj−1 satisfying dGj−1(aj) > t · dM (aj). Let the endpoints of aj be aj(0)
and aj(1). Let the edges of δG∗(aj) ∩ S∗ be s1, . . . , sm, and let the endpoints of si be w2i−1
and w2i. Assume without loss of generality that the endpoints w1, . . . , w2m are in sorted
order along the path δG∗(aj). Then,
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dGj−1(aj) ≤ dGj−1(aj(0), w1) +
∑m

i=1 dGj−1(w2i−1, w2i) +
∑m−1

i=1 dGj−1(w2i, w2i+1)
+dGj−1(w2m, aj(1))

= dGj−1(aj(0), w1) +
∑m

i=1 dGj−1(si) +
∑m−1

i=1 dGj−1(w2i, w2i+1)
+dGj−1(w2m, aj(1))

≤ dGj−1(aj(0), w1) +
∑m−1

i=1 dGj−1(w2i, w2i+1) + dGj−1(w2m, aj(1))
+

∑m
i=1 t · dM (si)

≤ dG(aj(0), w1) +
∑m−1

i=1 dG(w2i, w2i+1) + dG(w2m, aj(1))
+

∑m
i=1 t · dM (si)

= dG∗(aj(0), w1) +
∑m−1

i=1 dG∗(w2i, w2i+1) + dG∗(w2m, aj(1))
+

∑m
i=1 t · dM (si)

< dG∗(aj) +
∑m

i=1 t · dM (si),

where the first line uses the triangle inequality, the second line uses si = w2i−1w2i, the third
line uses dGj−1(s) ≤ t · dM (s), the fourth line uses G ⊂ Gi−1, the fifth line uses that all the
subpaths no longer use edges in S∗, and the sixth line uses that all edges are a subset of the
edges in δ∗

G(aj). Therefore,

t · dM (aj) < dGj−1(aj) ≤ dG∗(aj) +
∑m

i=1 t · dM (si)
≤ t∗ · dM (aj) + t · total({S∗ ∩ δG∗(aj)})
= t∗ · dM (aj) + t · (1 − 1

|I| ) · dM (aj).

Simplifying, we get t < t∗ + t − t
|I| , which implies t < |I| · t∗ = gt∗. But this contradicts

t > gt∗ in the lemma statement. Therefore, only Case 2 remains.
Case 2. total({S∗ ∩ δG∗(aj)}) ≥ (1 − 1

|I| ) · dM (aj) for all j ∈ I. Let L be the length of the
path in Lemma 13. Then,

L ≤ total({G ∩ δG∗(aj) : j ∈ I}) + total({aj : j ∈ I \ {i}})
= total({δG∗(aj) : j ∈ I}) − total({S∗ ∩ δG∗(aj) : j ∈ I}) +

∑
j∈I\{i} dM (aj)

≤
∑

j∈I t∗ · dM (aj) −
∑

j∈I(1 − 1
|I| ) · dM (aj) +

∑
j∈I\{i} dM (aj)

=
∑

j∈I t∗ · dM (aj) − (1 − 1
|I| ) · dM (ai) +

∑
j∈I\{i}

1
|I| · dM (aj)

≤ |I| · t∗ · dM (ai) − (1 − 1
|I| ) · dM (ai) + ( |I|−1

|I| ) · dM (ai)
= |I| · t∗ · dM (ai),

where the first line uses Lemma 13, the second line uses G = G∗ \ S∗, the third line uses the
assumption from the case distinction, and fourth, fifth and sixth lines simplify the expression.
Therefore, L ≤ |I| · t∗ · dM (ai), as required. ◀

Combining Lemmas 13-15, we obtain Lemma 12, which we will restate for convenience.

▶ Lemma 12. If aj exists for all j = 1, . . . , fk + 1, then t ≤ gt∗.

Finally, we use Lemma 12 to prove Theorem 6. The idea is to combine the sparsity
bound in the case where the greedy construction halts after adding at most fk edges, with
the dilation bound t ≤ gt∗ in the case where the greedy construction halts after adding at
least fk + 1 edges.
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▶ Theorem 6. For all r ≥ 1, there is an (f, (1 + δ)g)-bicriteria approximation for Problem 5
that runs in O(n3(log n + log 1

δ )) time, where

f = 2 r
√

2 k1/r and g = 2r.

Proof. First, we describe the decision algorithm. Given any t ∈ R, the decision algorithm
is to construct the greedy t-spanner as described in Definition 10. If at most fk edges are
added, then we continue searching over dilation values that are less than t. If at least fk + 1
edges are added, then we continue searching over dilation values that are greater than t.

Second, we perform a binary search to obtain an (f, (1 + δ)g)-bicriteria approximation for
Problem 5. Given a set of vertices, Gudmundsson and Wong [29] show how to (implicitly)
binary search a set of O(n4) critical values, so that the dilation of any graph with those
vertices will be within a factor of O(n) of one of the critical values. We refine the search to a
multiplicative (1 + δ)-grid. As a result, we obtain a t ∈ R where a greedy t-spanner adds at
least fk + 1 edges, but a greedy (1 + δ)t-spanner adds at most fk edges. By Lemma 12, we
have t ≤ gt∗, so (1+δ)t ≤ (1+δ)gt∗. The greedy (1+δ)t-spanner adds at most fk edges to the
graph and its dilation is at most (1+δ)gt∗, so we have an (f, (1+δ)g)-bicriteria-approximation.

Third, we analyse the running time. The running time of the decision algorithm
is O(n3) [29]. We perform the binary search by first calling the decider O(log n) times
on the critical values, and an additional O(log 1

δ ) times on the multiplicative (1 + δ)-grid. ◀

4 Conclusion

We provide bicriteria approximation algorithms for the problem of adding k edges to a graph
to minimise its dilation. Our main result is a (2 r

√
2 k1/r, 2r)-bicriteria approximation for

all r ≥ 1, that runs in O(n3 log n) time. Our analysis is tight and it is W[1]-hard to obtain
a (h(k), 2 − ε)-bicriteria approximation for any computable function h and for any ε > 0.
We provide a simple (4k2 log n, 1)-bicriteria approximation.

We conclude with directions for future work. Problem 1 remains open. In particular,
Obstacle 2 asks: is there an ε > 0 for which there is an O(n1−ε)-approximation algorithm for
the minimum dilation spanning tree problem? The linear approximation factor of Problem 3
cannot be improved unless Obstacle 4 is resolved. An alternative way to circumvent Obstacle 4
is to consider Problem 3 in the special case of unweighted graph metrics. Finally, Problem 5
offers several directions for future work. Can one obtain a trade-off between sparsity and
dilation that is better than the greedy t-spanner construction? What is the sparsity-dilation
trade-off when 1 < f < 2? Can the approximation factor or the running time of Theorem 9
be improved?
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