
Online Flexible Busy Time Scheduling on
Heterogeneous Machines
Gruia Călinescu #

Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA

Sami Davies #

Department of EECS and the Simons Institute for the Theory of Computing, UC Berkeley, CA,
USA

Samir Khuller #

Computer Science Department, Northwestern University, Evanston, IL, USA

Shirley Zhang #

Computer Science Department, Harvard University, Cambridge, MA, USA

Abstract
We study the online busy time scheduling model on heterogeneous machines. In our setting, jobs
with uniform length arrive online with a deadline that becomes known to the algorithm at the job’s
arrival time. An algorithm has access to machines, each with different associated capacities and costs.
The goal is to schedule jobs on machines by their deadline, so that the total cost incurred by the
scheduling algorithm is minimized. While busy time scheduling has been well-studied, relatively little
is known when machines are heterogeneous (i.e., have different costs and capacities), despite this
natural theoretical generalization being the most practical model for clients using cloud computing
services. We make significant progress in understanding this model by designing an 8-competitive
algorithm for the problem on unit-length jobs and provide a lower bound of 2 on the competitive
ratio. The lower bound is tight in the setting when jobs form non-nested intervals. Our 8-competitive
algorithm generalizes to one with competitive ratio 8(2p − 1)/p < 16 when all jobs have uniform
length p.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Scheduling algorithms

Keywords and phrases Online algorithms, Scheduling, Competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.37

Related Version Full Version: http://arxiv.org/abs/2402.11109

Funding Gruia Călinescu’s work was done in part while visiting Northwestern University. Samir
Khuller was supported by NSF 2216970 (IDEAL Institute) as well as a gift from Adobe Research.
Sami Davies’s work was done in part while at Northwestern University supported in part by an NSF
CI Innovation Fellowship. Shirley Zhang was supported by an NSF Graduate Research Fellowship.

Acknowledgements We would like to thank an anonymous referee for suggesting that our Algorithm
2 can be adapted to jobs of uniform processing time instead of just unit; indeed this was true.

1 Introduction

Busy time scheduling is an energy minimization model that is well-studied due to its
applicability to cloud computing and its relationship to energy usage [28, 17]. In this model,
there are an unlimited number of heterogeneous machines available and n jobs arrive online,
each with a deadline. A machine of type k, for k ∈ Z≥0, has cost ck ≥ 1 and capacity
Bk ∈ Z≥1, where the cost indicates how much the algorithm must pay for each time step
that the machine is executing at least one job, and the capacity dictates how many jobs the
machine can execute during each time step. For each job j, we assume its release time rj

© Gruia Călinescu, Sami Davies, Samir Khuller, and Shirley Zhang;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 37; pp. 37:1–37:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:calinescu@iit.edu
mailto:davies@berkeley.edu
mailto:samir.khuller@northwestern.edu
mailto:szhang2@g.harvard.edu
https://doi.org/10.4230/LIPIcs.ESA.2024.37
http://arxiv.org/abs/2402.11109
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Online Flexible Busy Time Scheduling on Heterogeneous Machines

and deadline dj become known to the algorithm when the job is released. The release time
is the same time that the job “arrives” online, in the sense that the algorithm learns about
the existence of the job.

We consider the setting where jobs have uniform length p (so for all jobs j, dj−rj ≥ p−1),
and all release times and deadlines are integral. Note that in our model, a unit-length job
with rj = dj may be feasibly executed at time slot rj . Jobs can be assigned to a machine
that is already processing jobs, provided there is spare capacity, and this may result in the
machine running for a longer time. The goal is to find a non-preemptive schedule completing
all jobs by their deadlines with minimum total cost.

Busy time scheduling is in part motivated by applications in cloud computing. Providers
such as Amazon Web Services (AWS), Google Cloud, and Microsoft Azure rent virtual
machines, each of which has some fixed cost and processing power. Customers are charged
by how many working server hours they use, and therefore they can minimize their costs
by making smart choices about which virtual machines they rent. Busy time scheduling
captures the difficulty that customers face in deciding whether they should greedily use cheap
servers that only complete the jobs imminently due, or whether they should fork up for a
more expensive server to complete additional jobs that are waiting to be processed.

One interpretation of the problem with unit-length jobs is as a model of a shuttle
scheduling problem. Suppose passengers arrive in airport parking, not in walking distance to
the terminal, and tell a dispatcher when their flight is. The shuttle company has shuttles of
varying sizes that incur different costs. The company needs to carry all passengers to the
terminal, but would like to minimize its cost in doing so.

There has been a surge of theoretical interest in busy time scheduling over the past
decade or so, with many variations on the model having been studied. Almost all of the
work is for the case of homogeneous machines, i.e., when machines are identical with the
same costs and capacities. We discuss the different variations of busy time scheduling on
homogeneous machines in Section 1.2. Much less is known about the setting when machines
are heterogeneous, despite this being (arguably) the most practical setting. Most data centers
consist of machines of different types, built over time, and these in general have different
costs and capacities.

In the special case of interval jobs1, there is no flexibility as to when a job is executed;
each job has to instantly be scheduled upon arrival. This lack of flexibility can make the
resulting cost of any schedule extremely high – for example, if single jobs arrive one after
the other and we schedule them all separately, we might pay a huge cost compared to a
schedule that has the flexibility to wait and bundle a group of jobs together. Ren and Tang
[37] studied the problem of inflexible jobs with heights, where each job may take up non-unit
space on each machine, on heterogeneous machines when the normalized cost-per-capacity
rate is either monotonically increasing or decreasing as the machine capacity increases. They
developed a O(1)-approximation algorithm (with constants 9 and 14, respectively) in the
offline setting and a θ(µ)-competitive algorithm in the online setting, for µ the max/min ratio
of a job’s arrival time and deadline window length. Later, Liu and Tang [34] proved that one
can obtain the same guarantees (up to a constant factor), but without the restrictions on
the cost-per-capacity rate. They also provide matching lower bounds for both settings.

We are the first to study the online setting when jobs are flexible, i.e., not interval, and
machines are heterogeneous. However, there is already a lower bound on the competitive
ratio of Ω(

√
log µ) [4]2. In order to study the problem without being totally restricted by this

1 This is also called the inflexible setting.
2 This result holds in the much simpler setting where jobs are inflexible and machines are homogeneous.

G. Călinescu, S. Davies, S. Khuller, and S. Zhang 37:3

lower bound, we must be willing to make some kind of trade-off; we choose to give up the
generality of arbitrary job processing lengths and heights. By focusing on uniform-length jobs,
we make the problem more tractable, while still maintaining the core theoretical difficulty
of the setting. When jobs are flexible, an algorithm must make the additional decision
of when in a job’s active interval it should be scheduled, and on heterogeneous machines,
the algorithm must make the additional decision on whether to pay more to process large
batches, or pay less and defer other jobs’ completions. At a high-level, the “online” and
“flexible” aspects of the setting incentivize the algorithm to make decisions lazily, while the
“heterogeneous” aspect punishes the algorithm for making decisions too late by forcing the
algorithm to use some very expensive resource.

1.1 Our results
Our main result is the following theorem.

▶ Theorem 1. There is an 8(2p− 1)/p-competitive algorithm for online uniform-length busy
time scheduling on heterogeneous machines with running time O(n log n), for n the total
number of jobs and p the processing length of any job.

Observe that the competitive ratio is at most 16 for any p. Due to space restrictions, we
present the proof of Theorem 1 for the case where p = 1 in the main body of the paper,
and the complete extension to uniform length jobs can be found in the full text (see link on
cover page). Overall, the setting of unit jobs captures the essence of the algorithm and proof
strategy for general uniform-length jobs, but with a cleaner presentation.

Several straight-forward procedures give O(1)-competitive algorithms when jobs have
agreeable deadlines, which is when if job j arrives before job j′, then the deadline of job j′

cannot be before that of j. For unit-length jobs with agreeable deadlines, we can improve
our competitive ratio from 8 to 2 by using a much simpler algorithm. Note that this result
does not extend to the uniform-length setting

▶ Theorem 2. If jobs have agreeable deadlines, then there is a 2-competitive algorithm
for online unit-length busy time scheduling on heterogeneous machines with running time
O(nK + n log n), for n the total number of jobs and K the number of distinct machine types.

The above result is complemented by a matching lower bound on the competitive ratio.

▶ Theorem 3. The competitive ratio of any deterministic online algorithm for online unit-
length busy time scheduling on heterogeneous machines is at least 2.

Moreover, Theorem 3 shows that the algorithm proving Theorem 2 is tight in its competitive
ratio, as our construction proving the lower bound is an agreeable instance.

1.2 Related work
There is significant related work on busy time scheduling for arbitrary length jobs on
homogeneous machines.3 Even scheduling interval jobs (which is easier than scheduling
flexible jobs) on homogeneous machines is NP-hard [42]. Khandekar et al. [28] showed a
5-approximation for busy time scheduling of flexible jobs with arbitrary heights. When jobs
have uniform heights, Chang et al. [17] showed that algorithms developed by Alicherry and
Bhatia [1] and Kumar and Rudra [31] are 4-approximations, and gave an improved algorithm
that obtains a 3-approximation.

3 Results are for machines with finite capacities, unless explicitly stated otherwise.

ESA 2024

37:4 Online Flexible Busy Time Scheduling on Heterogeneous Machines

In the online setting when jobs are flexible, Koehler and Khuller [29] give a 5-approximation
for the busy time problem when machines have infinite capacities and obtain a O(log P)
competitive ratio (where P is the ratio of maximum to minimum processing time) when
machines have finite capacities. Also in the infinite capacity setting, Ren and Tang [36] give
an algorithm with a competitive ratio of 4 + 2

√
2, and complement this result with a lower

bound on the competitive ratio of
√

5+1
2 , which holds for any deterministic online scheduler.

One variant of the online busy time problem considers the setting when job lengths are
unknown at arrival time [32, 38]. Notably, the θ(µ)-competitive algorithm and matching
lower bound of Ren and Tang [37] hold for this setting as well. In our work, job lengths are
uniform, and therefore known at arrival.

On homogeneous machines with interval jobs, Azar et al. [4] developed an online algorithm
with tight approximation factor θ(

√
log µ), where again µ is the ratio of the maximum

interval window length over the minimum. Improvements are known, but these involve
certain assumptions about the knowledge of the profile of jobs that have not yet arrived [10].
It is worth noting that on homogeneous machines, one can find the optimal schedule in the
online or offline setting if jobs have unit length by using the algorithm by Finke et al. [22]4.

Much work in scheduling theory has focused on energy minimization or power management,
and busy time scheduling is one such model [43, 26, 27, 15, 11, 33, 2]. The models that are
most relevant to ours study energy minimization when the machine(s) have some cost to
turn on or off [17, 19, 12, 3]. In batch scheduling problems, machines can run groups of jobs
simultaneously (also called active time scheduling). A series of papers develop approximation
algorithms in the pre-emptive model [16, 30, 13]. Classic objectives include throughput
maximization [7] and functions of flow time and makespan [25], [41].

For d > 1, d-dimensional capacitated rectangle stabbing is NP-hard, although there do
exist approximation algorithms [24, 23, 21]. When d = 1, algorithms for capacitated rectangle
stabbing solve the offline version of unit-length busy time scheduling on heterogeneous
machines; rectangles are 1-dimensional x−axis aligned lines that correspond to jobs’ arrival
time, deadline intervals, and stabbers can be equipped with costs and capacities to correspond
to a batch of jobs to be scheduled on a machine in a single time slot. This 1-dimensional
version can be solved exactly via a dynamic programming algorithm [21], which is based on
the influential work of Baptiste [6].

Capacitated versions of covering problems related to vertex cover, facility location, and
other scheduling problems have also been studied [18, 39, 5, 14]. Several online problems
also have a similar flavor to ours, as an algorithm has to make a choice between different
options, such as the ski-rental problem with multiple discount options [44], the parking
permit problem with multiple durations [35], and capacitated interval coloring [20].

1.3 Preliminaries
For the rest of the main body of the paper, we discuss this problem specifically for p = 1.

As a warm-up, in Section 2 we discuss our algorithm for unit jobs with agreeable deadlines.
Then in Section 3, we consider jobs with general active interval structures. We prove a
lower bound on the optimal solution’s cost in Subsection 3.2, and we prove an 8-competitive
ratio for the case when jobs have unit length (i.e., Theorem 1 in the case where p = 1), in
Subsection 3.3. A lower bound of 2 on the competitive ratio of any deterministic algorithm
is provided to complement these algorithmic results in Section 4. The proof of Theorem 1
for general p can be found in Appendix A in the full version of this paper.

4 The algorithm with a different proof of optimality appeared previously in work by Bodlaender and
Jansen [8].

G. Călinescu, S. Davies, S. Khuller, and S. Zhang 37:5

The formal set-up and notation throughout the main body of the paper is as follows.
A set of unit-length jobs arrive online, and it is denoted by J with |J | = n. Job j ∈ J is
equipped with integral arrival rj and deadline dj . A machine of type k ∈ Z≥0 can execute at
most Bk ∈ Z≥1 many jobs at once and costs ck ≥ 1 per time unit.

The labeling on the machine types is such that the capacity of the machines is increasing,
i.e., B0 < B1 < Note we assume the ordering is strictly increasing, as if there were
ever machines with the same capacity but different costs, one would always use the cheaper
machine of the same capacity. Without loss of generality machines with larger capacity
should cost more; e.g., if c1 ≤ c0, then an optimal schedule could always use type 1 machines
instead of type 0 machines. After these considerations, let K denote the number of remaining
machine types.

A batch of jobs X is defined by three features: (1) J(X), the set of jobs the batch contains,
(2) t(X), the batch’s type, which corresponds to the machine type that the jobs in J(X)
should be executed on, and (3) τ(X), the time at which the jobs in J(X) are executed on a
machine of type t(X). We denote a family of batches as X . A feasible schedule is a partition
of jobs into batches if for all X, |J(X)| ≤ Bt(X) and every j ∈ J(X) has rj ≤ τ(X) ≤ dj .

An optimal offline solution is denoted by OPT, with cost denoted by cost(OPT). The
time horizon is denoted [0, T], with time steps τ ∈ [0, T], where sometimes time steps have
subscripts or take an argument. Continuous intervals with interval endpoints in [0, T] are
denoted by I, also sometimes with subscripts or taking an argument.

2 Warm-up: Agreeable Deadlines

In Subsection 2.1, we present a 2-competitive algorithm for the setting when jobs have
agreeable deadlines. Then in Subsection 2.2, we discuss extending to general job deadlines.

2.1 Proof of Theorem 2
We will show that Algorithm 1 is 2-competitive when jobs have agreeable deadlines. Algorithm
1 is a straightforward greedy algorithm – it collects jobs until a deadline is reached, and
then it creates optimal batches for scheduling the set of all the waiting jobs. We use W to
represent the set of waiting jobs.

Algorithm 1 Greedy.

Let W ← ∅,X ← ∅.
for τ ← 1 to T do

▷ Let J ′ be the set of jobs with arrival time τ .
▷ Update W ←W ∪ J ′.
if ∃ j∗ ∈W with dj∗ = τ then

▷ Xτ ← GetOptimalBatches(W).
▷ Execute all batches in Xτ . // Thus completing all jobs in W

▷ Update X ← X ∪ Xτ .
▷ W ← ∅.

end if
end for
return A schedule X . // With cost at most 2 ·cost(OPT)

The subroutine GetOptimalBatches(A) takes as input a set of jobs A. It first finds the
lowest cost set of machines with total capacity |A|, then fills these machines with the jobs
in A, outputting a set of new batches. It can be implemented in time O(n · K) using a

ESA 2024

37:6 Online Flexible Busy Time Scheduling on Heterogeneous Machines

classic dynamic program, where recall that K is the number of distinct machine types. We
can initialize the optimal cost of scheduling 0 jobs to 0. After initialization, we can then
optimally compute the cost of scheduling |A| jobs by solving the following recurrence:

cost(|A|) = min
k∈[K]

cost(|A| −min(Bk, |A|)) + ck.

This computation can be made once before Algorithm 1 starts, then the optimal values
stored in arrays can be used whenever Algorithm 1 needs them. We sort J by release times
so that J ′ can be found in time O(|J ′|). This involves simply maintaining an ordered set of
jobs. To store W , we use a min-heap with keys dj , for elements j ∈W . We do not have to
go time slot by time slot, but instead use the sorted J to find the next time where J ′ ̸= ∅
and compare this with the smallest key in W . The overall running time is O(nK + n log n).

The following lemma crucially (though perhaps subtly) uses the agreeable deadlines
structure. As in Algorithm 1, let Xτ be the set of batches executed at time τ . For each set of
batches Xτ executed by Algorithm 1, construct an interval Iτ starting at the earliest release
time of any job carried in a batch in Xτ and ending at the latest deadline of any job in a
batch in Xτ .

▶ Lemma 4. At most two of the intervals Iτ as defined above overlap at any point in time.

Proof. It suffices to prove that each such interval contains at most one left endpoint of
another interval. From the way the algorithm schedules all the jobs in W , we obtain that for
any τ there exists at most one Xτ . Assume we have Xτ and Xτ ′ with τ < τ ′. Then the left
endpoint of Iτ ′ is strictly to the right of τ , as any job released at or before τ that has not
been scheduled before τ is scheduled in Xτ . This also implies that the left endpoint of Iτ ′

is strictly to the right of the left endpoint of Iτ . Call two such intervals Iτ , Iτ ′ consecutive
if τ < τ ′ and there is no τ ′′ with τ < τ ′′ < τ ′ such that the algorithm produces an Xτ ′′ . If
Iτ , Iτ ′ are consecutive, then there is no Iτ ′′ whose left endpoint is between the left endpoints
of Iτ and Iτ ′ .

Consider three consecutive intervals Iτ1 , Iτ2 , Iτ3 . For interval Iτ1 , let job j1 be a job
scheduled in Xτ1 with the earliest release time, breaking ties in favor of the job with the
earliest deadline. Also for Iτ1 , let job j′

1 be a job scheduled in Xτ1 with the latest deadline,
breaking ties arbitrarily. Let j2, j′

2, j3, and j′
3 be defined analogously for Iτ2 and Iτ3 .

In order to show that I1 and I3 do not overlap, we will show that

dj′
1
≤ dj2 = τ2 < rj3 . (1)

We first argue that τ2 = dj2 . Indeed, we must have τ2 ≤ dj2 since j2 is scheduled in Xτ2 .
On the other hand, if it were the case that τ2 < dj2 , then there is some job j scheduled in
Xτ2 with deadline dj = τ2, and jobs j and j2 break the agreeable relation because dj < dj2

and rj > rj2 (by the way j2 is selected). See Figure 1.
The last inequality of 1 follows from the discussion in the first paragraph of the proof,

with τ2 instead of τ and τ3 instead of τ ′. The same reasoning gives that τ1 < rj2 . We have
that rj′

1
≤ τ1 since j′

1 is scheduled in Xτ1 . Thus rj′
1

< rj2 . If dj′
1

> dj2 , then j′
1 and j2 are

not agreeable. Thus the first inequality of Equation (1) also holds. ◀

If deadlines are not agreeable, many such intervals can overlap at any time point. In the
next section, we use a more complicated interval construction to lower bound cost(OPT).

Proof of Theorem 2. As in the statement of Lemma 4, construct an interval Iτ for each set
of batches Xτ dispatched by the Greedy algorithm, where the left endpoint of the interval
corresponding to Xτ is the earliest release time of any job in ∪X∈Xτ J(X) and the right

G. Călinescu, S. Davies, S. Khuller, and S. Zhang 37:7

𝝉2

j2

j

Figure 1 An illustration of an argument from the proof of Lemma 4, precisely why dj2 = τ2:
If τ2 < dj2 , then one of the dashed jobs/intervals must end at τ2. However, the upper dashed job
cannot exist since j2 is chosen as having the earliest deadline among the jobs scheduled in Xτ2 , while
the lower dashed job cannot exist since it is not agreeable with j2.

endpoint is the latest deadline of any job in ∪X∈Xτ J(X). Lemma 4 implies that we can
partition the intervals into two sets S1 and S2 of disjoint intervals. Specifically for any two
consecutive, overlapping intervals, it suffices to have one such interval in S1 and the other in
S2. Let J1 be the set of jobs executed by batches in Xτ with Iτ ∈ S1, and J2 likewise for S2.
Let OPT(Ji) denote an optimal offline schedule for Ji, for i = 1, 2. Note that for any sets of
jobs J and J ′, if J ′ ⊆ J , then cost(OPT(J ′)) ≤ cost(OPT(J)). Then:

cost(Greedy) = cost(OPT(J1)) + cost(OPT(J2)) ≤ 2 · cost(OPT)

The equality is because the intervals in S1 are disjoint and the intervals in S2 are disjoint, and
we have sent all jobs in each interval using the lowest cost possible with GetOptimalBatches.

◀

2.2 Difficulty in non-agreeable deadlines
Any algorithm for this problem can execute batches only when it is forced to, i.e., when the
current time slot τ is the deadline of some uncompleted job j∗, as there is nothing to be
gained from executing a batch before a deadline. Additionally, jobs can always be assigned to
an open batch by an earliest deadline first (EDF) rule – that is, as long as a batch has space,
repeatedly select from the set of jobs released and not yet assigned to a batch the job with
the earliest deadline, and assign it to the batch. It follows that the only remaining decision
for an algorithm is what type of batch (and hence machine) should be used to execute job j∗

at time τ ; note that another way to phrase this question is how many waiting jobs should be
processed with j∗. An adversary can punish an algorithm for processing too many waiting
jobs at a time slot by dispatching a huge batch of jobs soon after (as it would have been
more cost efficient to execute every job together on a machine with large capacity). On the
flip side, the adversary can punish an algorithm for processing small batches by not sending
any new jobs (as a large batch would have been more cost efficient here). We discuss why
some simple heuristics to choose the machine type fail in Appendix B in the full version.

Agreeable deadlines were easy to handle because we can charge the cost of the Greedy
algorithm to simple lower bounds on cost(OPT), and recall that the lower bounds were due to
the nice structure of the intervals corresponding to the batches created by Greedy. For general
deadlines, we are able to track a more complicated set of intervals corresponding to batches in
order to decide which machine type to use at the deadline of an uncompleted job. Moreover,
this complicated interval structure implies we need a more careful lower bound on cost(OPT).
Specifically, our algorithm tracks a set of nested intervals [rj∗ , τ] = I0 ⊆ I1 ⊆ · · · ⊆ Ik, all
with right endpoint τ , where for every ℓ ∈ {0, ..., k}, a batch of type ℓ was already executed
in interval Iℓ. Eventually, our method of constructing this sequence of nested intervals
produces an interval Iℓ∗ that contains no time slot where a batch of type ℓ∗ was executed.
This indicates that our algorithm should create a batch of type ℓ∗ at time τ .

ESA 2024

37:8 Online Flexible Busy Time Scheduling on Heterogeneous Machines

3 Proof of Theorem 1 when p = 1

In the case where p = 1, we prove a lower bound on cost(OPT) in Subsection 3.2, and then
use it to analyze our algorithm that proves Theorem 1 when p = 1 in Subsection 3.3. We
begin with some additional preliminaries. The straightforward proofs of the propositions in
the next subsection can be found in Appendix A in the full version.

3.1 Additional preliminaries for Section 3
We show in the following proposition that by a standard bucketing argument, we can assume
that all machine costs are powers of 2, with a loss of only 2 in the competitive ratio.

▶ Proposition 5. With only losing a factor of 2 in the competitive ratio, we can assume
in online unit-length busy time scheduling on heterogeneous machines that for all k ∈ Z≥0,
ck = 2p for some p ∈ Z≥0, and c0 = 1.

▶ Assumption 1. For k ∈ Z≥0, a machine of type k has cost ck = 2k.

This assumption follows with only a factor 2 loss in the competitive ratio because Proposition
5 allows us to assume that all machine costs are powers of 2, and if a machine of cost 2k is
not present for some k ∈ Z, one could just use 2k−k′ machines of cost 2k′ , for k′ the largest
type less than k that is present. Assumption 1 is useful in discussing the cost-per-job of the
different machine types, as well as in upper bounding the number of distinct machine types.

▶ Proposition 6. Given Assumption 1, one can show that without loss of generality the
cost-per-job is non-increasing in the machine types, i.e., c0/B0 ≥ c1/B1 ≥

▶ Proposition 7. Given Assumption 1, the number of distinct machine types is bounded,
with K ≤ log n.

It will be helpful to track intervals I ⊆ [0, T], and often we associate a type and a set of
jobs with interval I. We let tI denote the associated type and JI ⊆ J the associated set of
jobs.

3.2 A lower bound on cost(OPT)
We consider the following definition, for which Figure 2 is an accompaniment.

▶ Definition 8. For a set of jobs J equipped with arrival times and deadlines in [0, T], let an
interval assignment A be a family of tuples {(I, tI , JI)} of a continuous interval I ⊆ [0, T],
a type tI , and a set of jobs JI ⊆ J . Let L denote the multi-set of all intervals I with
(I, tI , JI) ∈ A and let I(j) be the interval that job j is assigned to. We define a valid interval
assignment as one such that the following holds:
1. When tI ≥ 1, then |JI | = BtI −1, and when tI = 0, then |JI | = 1.
2. If job j is in JI , then [rj , dj] ⊆ I.
3. For any two intervals I, I ′ ∈ L, if tI = tI′ , then I and I ′ are disjoint.
4. Every job is assigned to at most one JI . If a job j is not assigned to any JI , then we

write I(j) = ∅.

A valid interval assignment represents a partition of jobs such that each job is assigned to
at most one interval which fully contains the job’s feasible region. Each interval is assigned a
type such that no two intervals of the same type overlap. Furthermore, an interval cannot be
assigned fewer jobs than its type allows. Valid interval assignments help us track how many
jobs are available to be processed at any given time point. We use valid interval assignments
to lower bound the cost of an optimal offline solution, as in the following lemma.

G. Călinescu, S. Davies, S. Khuller, and S. Zhang 37:9

Figure 2 There are 11 jobs, each of which is depicted by a solid black line based on its release
time and deadline. The three different frames depict possible valid interval assignments for the jobs.
The dashed lines of different colors represent intervals of different types in each frame. There are
four types of machines, with costs 2k for k ∈ {0, 1, 2, 3} and with capacities {2, 5, 11, 22}. Each
interval assignment implies a different lower bound for cost(OPT), as in Lemma 9. We obtain better
lower bounds moving from left-to-right in the frames, with bounds 2, 9/4, and 5/2, respectively.
Note that an optimal assignment here has cost 5, with 3 batches with type 0 and 1 batch of type 1.

▶ Lemma 9. For a set of unit jobs J equipped with arrival times and deadlines in [0, T]
satisfying Assumption 1 and Proposition 6, let A = {(I, tI , JI)} be a valid interval assignment
with L the multi-set of all intervals I with (I, tI , JI) ∈ A. Then,

cost(OPT) ≥ 1
4 ·

∑
I∈L

2tI .

Proof. At a high level, we will prove this by introducing at most 4·cost(OPT) credits and
then distributing them to all jobs j for which I(j) ̸= ∅. We will do this in such a way that the
sum of the credits distributed can be shown to be at least

∑
I∈L 2tI , proving the inequality

in the lemma statement.
Suppose that for each batch X of type k that OPT uses, we distribute credits to jobs in

J(X) in the following way:
To each job j in J(X) with tI(j) ≤ k we give 2tI(j)/|JI(j)| credits.
To each job j in J(X) with tI(j) > k, we give 2k+1/Bk credits.

Figure 3 depicts the distribution of credits.
We will first prove the following helpful claims regarding credits.

▷ Claim 10. When tI(j) > k, we have that 2tI(j)

|JI(j)| ≤
2k+1

Bk
.

Proof. We observe that:

2tI(j)

|JI(j)|
= 2 · 2tI(j)−1

BtI(j)−1

≤ 2 · 2k

Bk
= 2k+1

Bk

where the inequality is because tI(j) > k and we assumed (based on Proposition 6) that
larger machines are more cost efficient. ◁

▷ Claim 11. The credits distributed by X of type k to jobs with tI(j) ≤ k is at most 2k+1.

Proof. We have required that all intervals with the same type must be disjoint, and therefore
batch X can intersect at most one interval I of each type k′ with k′ ≤ k. Moreover, since
any job assigned to an interval has its arrival time and deadline inside that interval, all the

ESA 2024

37:10 Online Flexible Busy Time Scheduling on Heterogeneous Machines

Figure 3 Distribution of credits from batch X with k = 2. The dashed lines of different colors
represent intervals of different types in a valid interval assignment. For interval types 0, 1, and 2, X

distributes 2tIj /|JI(j)| credits per job, and there are at most |JI(j)| jobs in each interval type. For
each job in interval types 3 and 4, X distributes 2k+1/Bk credits, and there are at most Bk such
jobs in interval types 3 and 4 combined.

jobs in J(X) that are assigned to an interval of type k′ are assigned to I above. From each
such interval I, J(X) contains at most |JI | jobs, and so the total amount of credits awarded
by X to jobs associated with I is at most 2k′ . The total amount of credits awarded by X to
jobs with tI(j) ≤ k is therefore upper bounded by 1 + 2 + . . . + 2k ≤ 2k+1. ◁

▷ Claim 12. The credits distributed by X of type k to jobs with tI(j) > k is at most 2k+1.

Proof. There are at most Bk jobs in batch X, and batch X distributes 2k+1/Bk to each
job with tI(j) > k, so the total amount of credits awarded to jobs with tI(j) > k is upper
bounded by 2k+1. ◁

We use these claims to prove the lemma statement. Let credit(j) denote the amount of
credit awarded to job j. Then∑

I∈L
2tI =

∑
I∈L

∑
j∈JI

2tI

|JI |
=

∑
j:I(j) ̸=∅

2tI(j)

|JI(j)|
≤

∑
j:I(j) ̸=∅

credit(j) ≤ 4 · cost(OPT).

Note that the first sum is over L, which is a multi-set, so in particular an interval might
contribute to the sum multiple times. For the first inequality, we note that every interval I

must intersect some batch used by OPT, otherwise OPT would not have picked up the jobs
associated with I (recall that |JI | > 0). Therefore, every job j associated with an interval
must receive at least 2tI(j)/|JI(j)| credits (by construction and by Claim 10).

For the second inequality, we combine Claims 11 and 12 to observe that the total credits
distributed by each batch X of type k sent by OPT is at most 2k+2, while the cost incurred
by OPT for using batch X is 2k. Therefore, the total amount of credit awarded for all batches
used by OPT will not exceed 4·cost(OPT). This finished the proof of Lemma 9. ◀

The constant of 1/4 in Lemma 9 is tight, as we show in the full version in Appendix C.

3.3 Main algorithm and analysis
We use Algorithm 2 to prove Theorem 1 for when p = 1. The algorithm scans the time
horizon until we reach a time slot τ where some job j is uncompleted and has its deadline.
Algorithm 2 must decide which machine type to use, and this decision is made by the
subroutine in Algorithm 3. A batch X ∈ X of type t(X) executed at time τ(X) completes
jobs J(X), which are the (at most) Bt(X) jobs with earliest deadline that are available at
τ(X) and not yet completed by that time. W is the set of jobs waiting to be scheduled.

G. Călinescu, S. Davies, S. Khuller, and S. Zhang 37:11

Algorithm 2 The main algorithm for unit jobs.

Let W ← ∅, τ ← 0, and X ← ∅.
while τ ̸= NULL do

▷ Let J ′ be the set of jobs with arrival time τ .
▷ Update W ←W ∪ J ′.
while ∃ j∗ ∈W with dj∗ = τ do // If many such j∗, choose arbitrarily from them

▷ Run Algorithm 3 with inputs τ , W , j∗, and X , which outputs new batch X∗,
equipped with t(X∗), J(X∗), τ(X∗), S̃(X∗), Ĩ(X∗).
▷ Update X ← X ∪X∗ and W ←W \ J(X∗).
▷ Add {(Ĩ(X∗), t(X∗), S̃(X∗)} to {(Ĩ(X), t(X), S̃(X))}X∈X .

end while
Increment τ ← τ + 1, or let τ = NULL if time has ended.

end while
Return X .

Recall that in the proof of the lower bound, it was helpful to associate a type tI and a set
of jobs JI to interval I. In the algorithm analysis, it will be helpful to associate a type t(X),
two sets of jobs S̃(X) and J(X), and an interval Ĩ(X) to batch X. It is not surprising to see
t(X) as the associated type, but what might be surprising is to see two sets of associated
jobs. While J(X) are the jobs in batch X, S̃(X) are the jobs we charge to X for our analysis,
where jobs may be paying for a batch other than the one they are a part of.

Intuitively speaking, we employ a type of “pay-it-forward” philosophy. We charge the
cost of one of the batches that the algorithm produces to the cost that OPT expends to
execute one job in that batch (which we will refer to as the critical job) and the non-critical
jobs in another batch. The critical job in batch X is the job j∗ ∈ J(X) with deadline at X’s
execution time, i.e. dj∗ = τ(X); if there are many such jobs, we arbitrarily choose one to
be the critical job of the batch. To determine S̃(X), throughout the algorithm we will keep
track of an interval associated with batch X, which we denote by Ĩ(X). Note this is a slight
abuse of notation from the lower bound subsection, where we let I(j) denote the interval
containing job j. Additionally, tracking S̃(X) and Ĩ(X) is not necessary for the algorithm
(hence they are given the additional tilde in the notation), but for clarity in the analysis, we
construct them in Algorithm 3 and keep them in Algorithm 2.

In order to use our lower bound from the previous subsection, we will use the batches to
construct a valid interval assignment (as in Definition 8). A visualization of the intervals
we construct is provided in Figure 4. Note that Algorithm 2 sets t

Ĩ(X) = t(X) when it
defines {(Ĩ(X), t(X), S̃(X))}X∈X as an interval assignment. We prove that the conditions
for Definition 8 hold in Lemmas 13 and 15 and Proposition 14.

▶ Lemma 13. Algorithm 2 produces {(Ĩ(X), t(X), S̃(X))}X∈X that satisfy Conditions (1)
and (2) of being a valid interval assignment (Definition 8).

Proof. Let X ∈ X and let τ = τ(X). If t(X) = 0, then indeed there is only the critical job
in S̃(X), so |S̃(X)| = 1. Further, the critical job j∗ completely determines the interval, with
Ĩ(X) = [rj∗ , dj∗]. Thus, Conditions (1) and (2) are satisfied when t(X) = 0.

Fix t(X) = k > 0. Batch X is created at the right endpoint of Ĩ(X), recall that this
endpoint is time τ . Consider the sequence of nested intervals that the algorithm built up to
construct Ĩ(X), i.e., I0, I1, . . . , Ik, where now Ĩ(X) = Ik. These are indeed nested intervals,
since for all j = 0, . . . , k − 1, Ij contains τj and Ij+1 is defined by Ij+1 ← Ij ∪ [τ ′

j , τj].

ESA 2024

37:12 Online Flexible Busy Time Scheduling on Heterogeneous Machines

Algorithm 3 Deciding the next batch for unit jobs.

Input: time τ , waiting jobs W , critical job j∗ with dj∗ = τ , and batches X , where every
X ∈ X is equipped with t(X), J(X), τ(X), S̃(X), Ĩ(X).
▷ Let k ← 0.
▷ Let I0 ← [rj∗ , τ].
while Ik contains a time slot τk := τ(Xk) with t(Xk) = k for some Xk ∈ X do
// Only the latest such τk is stored

▷ Let jk be a job in J(Xk) with the earliest arrival time. // Tie-break arbitrarily
▷ Let τ ′

k be the arrival time of jk.
▷ Set Ik+1 ← Ik ∪ [τ ′

k, τk].
▷ Increment k ← k + 1.

end while
Set I∗ ← Ik and S∗ ← {j∗}.
if k > 0 then

Add all the non-critical jobs of Xk−1 to S∗.
end if
▷ Let J∗ be the Bk (or |W | if |W | < Bk) jobs in W with earliest deadline. // Tie-break
arbitrarily after putting in j∗

▷ Create batch X∗ with type t(X∗)← k, execution time τ(X∗)← τ , and jobs J(X∗)← J∗.
▷ Define Ĩ(X∗)← I∗ and S̃(X∗)← S∗.
Return X∗.

Also note that the right endpoint of Ĩ(X) is τ . Associated with these intervals are batches
X0, X1, . . . , Xk−1 ∈ X that forced interval Ĩ(X) to be created (see Algorithm 3). Recall that
τ ′

ℓ is the arrival time of the earliest arriving job in J(Xℓ). Since τ ∈ Ĩ(X), we have that for
all τ̂ ∈ Ĩ(X), either τ̂ ∈ I0 or there exists some 0 < ℓ < k such that τ̂ ∈ [τ ′

ℓ, τℓ].

We prove by induction on ℓ < k that Xℓ is a full batch (that is, |J(Xℓ)| = Bt(Xℓ)), and
all jobs in J(Xℓ) have deadline no later than τ .
Base case. Here, ℓ = 0. Let j∗ be the critical job of X. Note that τ(X0) = τ0 ∈ I0 , the
left endpoint of I0 is rj∗ and the right endpoint of I0 is τ = dj∗ . By construction, j∗ ∈W

and J(X0) ∩W = ∅ (recall that τ0 ≤ τ and therefore the jobs in J(X0) where removed from
W during the construction of X0). Hence job j∗ is not in batch X0. Since τ0 ∈ [rj∗ , dj∗], the
job j∗ already belonged to W when X0 was constructed. Since j∗ ̸∈ J(X0), we can deduce
that batch X0 is full and each job in J(X0) has deadline at latest τ = dj∗ due to the EDF
rule.
Induction step. Fix some integer 1 ≤ ℓ < k. Assume that for all 0 ≤ ℓ′ < ℓ, Xℓ′ is filled
to its capacity, and all the jobs in batch Xℓ′ have deadline no later than τ . We will show
that Xℓ is filled to its capacity, and all the jobs in batch Xℓ have deadline no later than τ .
Since Xℓ exists, either τℓ ∈ I0 (in which case the reasoning from the base case applies), or
there exists some µ < ℓ with τℓ ∈ [τ ′

µ, τµ]. The latter case is the interesting one, so we fix a
smallest such µ. This means that τℓ < τµ, so batch Xℓ was created before batch Xµ.

Let job jµ be any job arriving at time τ ′
µ that is scheduled in batch Xµ at time τµ. Since

jµ is not in batch Xℓ, it must be that batch Xℓ is full, as jµ was available to be sent with
τℓ ∈ [τ ′

µ, τµ]. Again since batch Xℓ was scheduled without job jµ, the EDF rule implies that
the jobs in J(Xℓ) have deadlines no later than the deadline of jµ. Thus, all jobs in J(Xℓ)
have deadline no later than τ , since jµ ∈ J(Xµ) has deadline ≤ τ by the inductive hypothesis.

This completes the inductive step.

G. Călinescu, S. Davies, S. Khuller, and S. Zhang 37:13

𝝉 = dj*𝝉1 𝝉0rj*𝝉0’𝝉1’ 𝝉2𝝉2’
Time horizon

J(X0)
J(X1)

J(X2)

Figure 4 Constructing intervals. At time τ = dj∗ , job j∗ (highest bold interval) must be executed.
Algorithm 3 decides which machine type to use for the next batch at τ by constructing intervals
I0, I1, I2, I3, which are indicated on the time horizon, where I0 is the blue interval, I1 is the union
of the blue and orange intervals, I2 is the union of the blue, orange, and pink intervals, and I3 is
the union of all colored intervals. These intervals are defined by taking the previous interval and
extending it to the earliest arrival time of a job in the corresponding batch. Here Algorithm 3
decides to use a batch of type 3. Capacities of batches in this instance are B0 = 1, B1 = 3, B2 = 8,
B3 = 20. Jobs with bold (arrival time, deadline) intervals are executed in the new batch, which can
have less than B3 jobs if these are all the jobs in the waiting list W .

Finally, we look at the moment that the algorithm has found an interval Ik that does
not contain a time executing a batch of type k; we can assume that k > 0 as we already
considered k = 0. Recall that this will be the interval associated with the new batch, i.e., the
algorithm sets Ĩ(X) = Ik. Note that [τ ′

k−1, τ] ⊆ Ik and recall that S̃(X) is the critical job of
batch X plus all the non-critical jobs of batch Xk−1. Since batch Xk−1 is full, |S̃(X)| = Bk−1
and so Condition (1) is satisfied. Moreover, every job in J(Xk−1) has arrival time at or after
τ ′

k−1 and deadline at most τ , as proven above. The critical job of batch X also has arrival
time and deadline inside Ik (since Ik contains I0), and we conclude that Condition (2) is
satisfied since Ĩ(X) = Ik. ◀

▶ Proposition 14. Algorithm 2 produces batches X equipped with {(Ĩ(X), t(X), S̃(X))}X∈X
which satisfy Condition (3) of being a valid interval assignment (Definition 8).

Proof. Intervals of the same type cannot intersect; see the while loop in Algorithm 3. ◀

▶ Lemma 15. Algorithm 2 produces batches X equipped with {(Ĩ(X), t(X), S̃(X))}X∈X
which satisfy Condition (4) of being a valid interval assignment (Definition 8).

Proof. Fix a non-critical job jk that is in J(Xk). If jk were in more than one batch, it
must have ended up in batches S̃(X) and S̃(X ′), where both X and X ′ are of type k + 1.
But then, by Condition (3), these corresponding intervals Ĩ(X) and Ĩ(X ′) must be disjoint.
These intervals cannot be disjoint, since by Condition (2) they both contain [rjk

, djk
]. ◀

Proof of Theorem 1 for unit jobs. Combining Lemmas 13 and 15 with Proposition 14,
we see that Algorithm 2 schedules batches X equipped with a valid interval assignment
{(Ĩ(X), t(X), S̃(X))}X∈X . By Assumption 1, the costs of machines are all powers of 2, and
recall we make this assumption with only a factor 2 loss in the competitive ratio. Therefore,

ESA 2024

37:14 Online Flexible Busy Time Scheduling on Heterogeneous Machines

the cost of the batches in X is
∑

X∈X 2t(X). Applying Lemma 9 to {(Ĩ(X), t(X), S̃(X))}X∈X ,
we see that for L = {Ĩ(X)}X∈X :

cost(OPT) ≥ 1
2 ·

1
4 ·

∑
I∈L

2tI = 1
8 ·

∑
X∈X

2t(X).

Note the factor of 2 in the first inequality follows from Proposition 5. Therefore, the cost
of X is at most 8 · cost(OPT).

The running time of this algorithm is O(n log n). As in Algorithm 1, we sort J so that J ′

can be found in time |J ′|. We use a min-heap with keys dj , for elements j ∈ W , to store
W . We use the sorted J to find the next time slot where J ′ ̸= ∅ and compare it with the
smallest key in W . Recall that K ≤ log n is an upper-bound on the number of types of
machines by Proposition 7. We also keep for each type ℓ ∈ {0, . . . , K} the time τ(X) and
the earliest arrival time of a job in J(X), where X is the latest batch of type ℓ. Using these,
each critical job requires at most K + 1 iterations through the while loop of Algorithm 3 to
choose the type of the batch which will contain this critical job. In time O(log n) per job, we
can update the data structures. ◀

4 Proof of Theorem 3

Here, we prove a lower bound of 2 for the competitive ratio of any deterministic online
algorithm, assuming an all-powerful (also called adaptive-offline [9]) adversary. Our con-
struction will also result in an agreeable instance of unit jobs, which implies that Algorithm
1 is an optimal deterministic algorithm for agreeable instances.

Proof of Theorem 3. Suppose that there are two machine types, which we call “small” and
“large”. The small machines have cost 1 and capacity 1, whereas the large machines have cost
M and capacity M3, where M is a large even integer. We call large and small batches the
corresponding batches of jobs. Here, jobs are unit length. In this instance, the release time
of every job will be odd and the deadline of every job will be even. Many jobs will have the
same release time, but no two jobs will have the same deadline. The adversary’s only action
will be to release groups of M3/2 jobs, where those M3/2 jobs arrive at some time τ and
each released job has as deadline the earliest even time slot that does not already contain a
job deadline (thereby adding M3/2 unique deadlines to the instance). Note that this release
structure will result in an agreeable instance.

At time 1, the adversary releases one group of M3/2 jobs. If no large machine is used
to execute any of the jobs from the current group, then no more jobs are released by the
adversary. Otherwise, the adversary will release another group of M3/2 jobs at the first
odd time step after the algorithm uses a large machine. The adversary repeats this at most
M − 1 more times, so that we have at most M such groups. We index the groups of jobs
released by the adversary as β1, . . . , βM .

We now show why this instance implies a lower bound of 2 on the competitive ratio. First,
consider the case where the algorithm uses at least 2M2 small machines in a row in some
group. These batches would incur a cost of at least 2M2. One feasible schedule across all
groups of jobs would be to have instead executed all of the jobs from each group in a large
batch at the first deadline of a job from each group, which would have incurred a cost of at
most M2 total. This implies a competitive ratio of at least 2.

See Figure 5 for an illustration of the rest of the proof. If an algorithm does not send
2M2 small batches in a row in any group, then it executes at least one large batch for every
group. Note that in this case all M groups are released by the adversary. Let qi represent the

G. Călinescu, S. Davies, S. Khuller, and S. Zhang 37:15

Figure 5 An illustration for the proof of Theorem 3. Each red thick arrow represents the arrival
of M3/2 jobs. The short thin arrows represent the scheduling of a batch on a small machine, and
the long thin arrows represent the scheduling of a batch on a large machine.

number of small batches scheduled by the algorithm between the releases of groups βi and
βi+1 for i ∈ [M − 1], and let qM be the number of small batches scheduled by the algorithm
after βM was released. Then the cost incurred by the algorithm is M2 +

∑M
i=1 qi.

We consider two other possible solutions to this instance (see Solution 1 and Solution 2
in Figure 5). One possible solution is to schedule a large batch at the first deadline, then
small batches at the next q2 + 1 deadlines, then a large batch at the next deadline, then
small batches at the next q4 + 1 deadlines, and so on, ending with a large batch to clear
away any remaining jobs. This solution is feasible as we can map any job executed by the
algorithm to a batch in the solution, as follows. Any job executed in a small batch in an
even group in the algorithm is also executed by a small batch in this solution. The job with
the earliest deadline that is in a large batch in every even batch is also in a small batch.
Every other job executed by the algorithm is in a large batch. Since the algorithm scheduled
all jobs, we know this solution scheduled all jobs as well. The cost of this solution is at most
(M/2 + 1)M +

∑M/2
i=1 (1 + q2i) = (M + 3)(M/2) +

∑M/2
i=1 q2i.

Another possible solution is to use small batches at the first q1 + 1 deadlines, then a
large batch at the next deadline, then small batches at the next q3 + 1 deadlines, and so
on, ending with a large batch to clear away any remaining jobs. We can again show this
solution is feasible by mapping jobs carried by the algorithm to jobs carried by this solution
in a similar fashion. The cost of this solution is at most (M/2 + 1)M +

∑M/2
i=1 (1 + q2i−1) =

(M + 3)(M/2) +
∑M/2

i=1 q2i−1. The sum of the costs for these two possible solutions is at
most (1 + 3/M) times the cost of the online algorithm. This then implies that the solution
with the lower cost of the two is at most (1 + 3/M)/2 times the cost of the online algorithm.
Letting M go to infinity completes the proof of a lower bound of 2 for the competitive ratio
of any deterministic online algorithm in the all-powerful adversary model. ◀

ESA 2024

37:16 Online Flexible Busy Time Scheduling on Heterogeneous Machines

5 Conclusion and Future Directions

We study online busy time scheduling with flexible, uniform-length jobs on heterogeneous
machines. For the general case, we design an 8(2p− 1)/p-competitive algorithm. When jobs
have unit length and agreeable deadlines, a simpler algorithm is 2-competitive, which is tight.
We focused on jobs that have uniform processing time and resource requirement5, which
could be relaxed in future work. Indeed, Ren and Tang [37] consider inflexible jobs with
different heights. Sarpatwar et al. [40] consider preemptively scheduling flexible jobs with
arbitrary processing times and heights on homogeneous machines; in the online setting, there
is a 3/2 lower bound on the competitive ratio of any online algorithm that knows a job’s
characteristics at arrival time, even assuming agreeable deadlines.

Generalizing our setting to allow non-uniform processing lengths or non-uniform heights
introduces significant complexity into the problem. If jobs have different processing times,
then we are no longer able to only schedule jobs p− 1 time steps before deadlines, and would
need to reexamine our earliest deadline first heuristic. For heterogeneous machines, if jobs
have unit length and agreeable deadlines but are allowed to have a resource requirement,
then we can still apply our Greedy algorithm (Algorithm 1) and get a competitive ratio of 2,
but this may not be a polynomial-time algorithm – for example, if jobs have heights and a
machine can only process a set of jobs of total height at most 1 (homogeneous machines),
then GetOptimalBatches() must solve a bin-packing problem. If GetOptimalBatches() is an
α-approximation algorithm, we get a competitive ratio of 2α.

When deadlines are not agreeable and jobs have heights, we do not know how to extend
our 8-competitive algorithm (Algorithm 2), even when jobs are unit-length. We can no longer
assume that the machine with the largest capacity is the most cost-efficient, as jobs may not
fit on smaller machines.

References
1 Mansoor Alicherry and Randeep Bhatia. Line system design and a generalized coloring problem.

In European Symposium on Algorithms, pages 19–30. Springer, 2003.
2 Antonios Antoniadis, Naveen Garg, Gunjan Kumar, and Nikhil Kumar. Parallel machine

scheduling to minimize energy consumption. In Proceedings of the fourteenth annual ACM-
SIAM symposium on discrete algorithms, pages 2758–2769. SIAM, 2020.

3 John Augustine, Sandy Irani, and Chaitanya Swamy. Optimal power-down strategies. SIAM
Journal on Computing, 37(5):1499–1516, 2008.

4 Yossi Azar and Danny Vainstein. Tight bounds for clairvoyant dynamic bin packing. ACM
Transactions on Parallel Computing (TOPC), 6(3):1–21, 2019.

5 Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. SIAM Journal on Computing,
43(5):1684–1698, 2014.

6 Philippe Baptiste. Scheduling unit tasks to minimize the number of idle periods: a polynomial
time algorithm for offline dynamic power management. In SODA, volume 6, pages 364–367,
2006.

7 Amotz Bar-Noy, Sudipto Guha, Yoav Katz, Joseph Naor, Baruch Schieber, and Hadas
Shachnai. Throughput maximization of real-time scheduling with batching. ACM Transactions
on Algorithms (TALG), 5(2):1–17, 2009.

8 Hans L. Bodlaender and Klaus Jansen. Restrictions of graph partition problems. part i.
Theoretical Computer Science, 148(1):93–109, 1995. doi:10.1016/0304-3975(95)00057-4.

5 Recall that in the literature, the resource requirement is also known as the height of a job.

https://doi.org/10.1016/0304-3975(95)00057-4

G. Călinescu, S. Davies, S. Khuller, and S. Zhang 37:17

9 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

10 Niv Buchbinder, Yaron Fairstein, Konstantina Mellou, Ishai Menache, and Joseph Naor.
Online virtual machine allocation with lifetime and load predictions. ACM SIGMETRICS
Performance Evaluation Review, 49(1):9–10, 2021.

11 Niv Buchbinder, Tracy Kimbrelt, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: primal dual competitive algorithms. In
Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages
952–961, 2008.

12 Gruia Călinescu and Kai Wang. A new LP rounding algorithm for the active time problem. J.
Sched., 24(5):543–552, 2021. doi:10.1007/S10951-020-00676-1.

13 Nairen Cao, Jeremy T. Fineman, Shi Li, Julián Mestre, Katina Russell, and Seeun William
Umboh. Brief announcement: Nested active-time scheduling. In Kunal Agrawal and I-
Ting Angelina Lee, editors, SPAA ’22: 34th ACM Symposium on Parallelism in Algorithms
and Architectures, Philadelphia, PA, USA, July 11 - 14, 2022, pages 381–383. ACM, 2022.
doi:10.1145/3490148.3538554.

14 Tim Carnes and David B Shmoys. Primal-dual schema for capacitated covering problems.
Mathematical Programming, 153:289–308, 2015.

15 Ho-Leung Chan, Wun-Tat Chan, Tak Wah Lam, Lap-Kei Lee, Kin-Sum Mak, and Prudence WH
Wong. Energy efficient online deadline scheduling. In SODA, volume 7, pages 795–804. Citeseer,
2007.

16 Jessica Chang, Harold N. Gabow, and Samir Khuller. A model for minimizing active processor
time. Algorithmica, 70(3):368–405, 2014. doi:10.1007/S00453-013-9807-Y.

17 Jessica Chang, Samir Khuller, and Koyel Mukherjee. LP rounding and combinatorial algorithms
for minimizing active and busy time. In Proceedings of the 26th ACM symposium on Parallelism
in algorithms and architectures, pages 118–127, 2014.

18 Julia Chuzhoy and Joseph Naor. Covering problems with hard capacities. SIAM Journal on
Computing, 36(2):498–515, 2006.

19 Sami Davies, Samir Khuller, and Shirley Zhang. Balancing flow time and energy consumption.
In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures,
pages 369–380, 2022.

20 Leah Epstein, Thomas Erlebach, and Asaf Levin. Online capacitated interval coloring. SIAM
Journal on Discrete Mathematics, 23(2):822–841, 2009.

21 Guy Even, Retsef Levi, Dror Rawitz, Baruch Schieber, Shimon Shahar, and Maxim Sviridenko.
Algorithms for capacitated rectangle stabbing and lot sizing with joint set-up costs. ACM
Transactions on Algorithms (TALG), 4(3):1–17, 2008.

22 Gerd Finke, Vincent Jost, Maurice Queyranne, and András Sebő. Batch processing with
interval graph compatibilities between tasks. Discrete Applied Mathematics, 156(5):556–568,
2008. doi:10.1016/j.dam.2006.03.039.

23 Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti. Constant ratio approximation
algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. Journal
of Algorithms, 43(1):138–152, 2002.

24 Refael Hassin and Nimrod Megiddo. Approximation algorithms for hitting objects with straight
lines. Discrete Applied Mathematics, 30(1):29–42, 1991.

25 Sungjin Im and Benjamin Moseley. Online batch scheduling for flow objectives. In Proceedings
of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures,
pages 102–104, 2013.

26 Sandy Irani and Kirk R Pruhs. Algorithmic problems in power management. ACM Sigact
News, 36(2):63–76, 2005.

27 Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power savings. ACM
Transactions on Algorithms (TALG), 3(4):41–es, 2007.

ESA 2024

https://doi.org/10.1007/S10951-020-00676-1
https://doi.org/10.1145/3490148.3538554
https://doi.org/10.1007/S00453-013-9807-Y
https://doi.org/10.1016/j.dam.2006.03.039

37:18 Online Flexible Busy Time Scheduling on Heterogeneous Machines

28 Rohit Khandekar, Baruch Schieber, Hadas Shachnai, and Tami Tamir. Minimizing busy time
in multiple machine real-time scheduling. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2010). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2010.

29 Frederic Koehler and Samir Khuller. Busy time scheduling on a bounded number of machines.
In Workshop on Algorithms and Data Structures, pages 521–532. Springer, 2017.

30 Saurabh Kumar and Samir Khuller. Brief announcement: A greedy 2 approximation for the
active time problem. In Christian Scheideler and Jeremy T. Fineman, editors, Proceedings of
the 30th on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, Vienna,
Austria, July 16-18, 2018, pages 347–349. ACM, 2018. doi:10.1145/3210377.3210659.

31 Vijay Kumar and Atri Rudra. Approximation algorithms for wavelength assignment. In
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science: 25th
International Conference, Hyderabad, India, December 15-18, 2005. Proceedings 25, pages
152–163. Springer, 2005.

32 Yusen Li, Xueyan Tang, and Wentong Cai. On dynamic bin packing for resource allocation
in the cloud. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 2–11, 2014.

33 Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. Dynamic right-sizing
for power-proportional data centers. IEEE/ACM Transactions on Networking, 21(5):1378–1391,
2012.

34 Mozhengfu Liu and Xueyan Tang. Analysis of busy-time scheduling on heterogeneous machines.
In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures,
pages 340–350, 2021.

35 Adam Meyerson. The parking permit problem. In 46th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’05), pages 274–282. IEEE, 2005.

36 Runtian Ren and Xueyan Tang. Online flexible job scheduling for minimum span. In Proceedings
of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, pages 55–66,
2017.

37 Runtian Ren and Xueyan Tang. Busy-time scheduling on heterogeneous machines. In 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 306–315,
2020. doi:10.1109/IPDPS47924.2020.00040.

38 Runtian Ren, Xueyan Tang, Yusen Li, and Wentong Cai. Competitiveness of dynamic
bin packing for online cloud server allocation. IEEE/ACM Transactions on Networking,
25(3):1324–1331, 2016.

39 Barna Saha and Samir Khuller. Set cover revisited: Hypergraph cover with hard capacities. In
International Colloquium on Automata, Languages, and Programming, pages 762–773. Springer,
2012.

40 Kanthi Sarpatwar, Baruch Schieber, and Hadas Shachnai. The preemptive resource allocation
problem. Journal of Scheduling, pages 1–16, 2023.

41 Qian Wang, Ji Tian, Ruyan Fu, and Xiangjuan Yao. Online algorithms for scheduling on batch
processing machines with interval graph compatibilities between jobs. Theoretical Computer
Science, 700:37–44, 2017. doi:10.1016/j.tcs.2017.07.022.

42 Peter Winkler and Lisa Zhang. Wavelength assignment and generalized interval graph coloring.
In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages
830–831, 2003.

43 Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced CPU energy.
In Proceedings of IEEE 36th annual foundations of computer science, pages 374–382. IEEE,
1995.

44 Guiqing Zhang, Chung Keung Poon, and Yinfeng Xu. The ski-rental problem with multiple
discount options. Information Processing Letters, 111(18):903–906, 2011.

https://doi.org/10.1145/3210377.3210659
https://doi.org/10.1109/IPDPS47924.2020.00040
https://doi.org/10.1016/j.tcs.2017.07.022

	1 Introduction
	1.1 Our results
	1.2 Related work
	1.3 Preliminaries

	2 Warm-up: Agreeable Deadlines
	2.1 Proof of Theorem 2
	2.2 Difficulty in non-agreeable deadlines

	3 Proof of Theorem 1 when p = 1
	3.1 Additional preliminaries for Section 3
	3.2 A lower bound on cost(OPT)
	3.3 Main algorithm and analysis

	4 Proof of Theorem 3
	5 Conclusion and Future Directions

