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Abstract
Consider the NP-hard problem of, given a simple graph G, to find a planar subgraph of G with the
maximum number of edges. This is called the Maximum Planar Subgraph problem and the best
known approximation is 4/9 and is obtained by sophisticated Graphic Matroid Parity algorithms.
Here we show that applying a local optimization phase to the output of this known algorithm
improves this approximation ratio by a small ϵ = 1/747 > 0. This is the first improvement in
approximation ratio in more than a quarter century. The analysis relies on a more refined extremal
bound on the Lovász cactus number in planar graphs, compared to the earlier (tight) bound of [5, 8].

A second local optimization algorithm achieves a tight ratio of 5/12 for Maximum Planar Subgraph
without using Graphic Matroid Parity. We also show that applying a greedy algorithm before this
second optimization algorithm improves its ratio to at least 91/216 < 4/9. The motivation for not
using Graphic Matroid Parity is that it requires sophisticated algorithms that are not considered
practical by previous work. The best previously published [7] approximation ratio without Graphic
Matroid Parity is 13/33 < 5/12.
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1 Introduction

Maximum Planar Subgraph (MPS) is the following problem: given a graph G, find a planar
subgraph of G with the maximum number of edges. MPS is known to be NP-complete [24]
and APX-hard [5], meaning that there exists a small ϵ > 0 such that a polynomial-time
algorithm with approximation ratio of at least 1 − ϵ for MPS implies that P = NP . In this
paper all graphs are undirected, nonempty, finite, simple graphs unless otherwise noted.

Besides theoretical appeal, MPS has applications in circuit layout, facility layout, and
graph drawing (see [17, 31, 27, 23, 14, 12, 21] and the references contained there). Por-
anen [27] uses simulated annealing and interestingly reports that using the output of better
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38:2 Local Optimization Algorithms for Maximum Planar Subgraph

approximation algorithms as the start of simulated annealing obtains better practical res-
ults. Chimani, Klein, and Wiedera [13] also report benefits of using better approximation
algorithms for MPS.

We assume that the reader has basic knowledge of planar graphs and approximation
algorithms. For a quarter century, the best known approximation algorithm for MPS has a
tight approximation ratio1of 4/9 [5] and uses polynomial-time algorithms for Graphic Matroid
Parity2 to construct a maximum triangular cactus (a graph all of whose blocks3are triangles4),
followed by adding edges to connect the components of this cactus without creating any new
cycles. Graphic Matroid Parity has polynomial-time algorithms [26, 25, 9, 18, 19] and allows
us to find a triangular cactus with maximum number of triangles.

In this paper we show that applying a local optimization phase after finding a maximum
triangular cactus achieves an approximation ratio of (4/9) + ϵ, for a small ϵ > 0. A second
local optimization algorithm achieves a tight ratio of 5/12 for MPS without using Graphic
Matroid Parity. We also show that applying a “greedy” algorithm before this second local
optimization algorithm improves its ratio to at least 91/216. This variant has an upper limit
of 3/7 < 4/9 on its approximation ratio. The motivation for not using Graphic Matroid Parity
is that it requires sophisticated algorithms that are not considered practical by Chimani
and Wiedera [14]5. The best previously published [7] approximation ratio without Graphic
Matroid Parity is 13/33 < 5/12.

Besides these theoretical guarantees, both of our local optimizations “make sense” (since
each local improvement step increases the size of the output by one) and can be used in
heuristics, or as a starting point of simulated annealing. Other ideas that make sense are
further discussed in Conclusions (Section 5).

Previous Theoretical Work. A planar graph on n vertices has at most 3n − 6 edges. As we
can assume that the input graph is connected (or else we can run an algorithm separately on
the connected components of the input), simply outputting a spanning tree achieves a tight
approximation ratio of 1/3. Dyer, Foulds, and Frieze [16] proved that the Maximal Planar
Subgraph, which simply outputs an inclusion-maximal planar subgraph, has performance
ratio 1/3. Cimikowski [15] proved that the heuristics of Chiba, Nishioka, and Shirakawa [10]
and of Cai, Han, and Tarjan [2] have performance ratios not exceeding 1/3.

Călinescu, Fernandes, Finkler, and Karloff [5] were the first to improve this. Their first
algorithm (GT, from Greedy-Triangles) (greedily) adds triangles, as long as the graph stays a
triangular cactus. Then the algorithm greedily adds edges connecting the components of the
cactus, without creating any new cycles. This “connecting” phase appears at the end of all
the approximation algorithms and we will not mention it from now on. The GT algorithm has
a tight approximation ratio of 7/18. Their second algorithm (MT, from Maximum-Triangular
Cactus) employs exact algorithms for Graphic Matroid Parity (i.e., [25]) to construct a
triangular cactus with a maximum number of triangles. This algorithm achieves a tight
approximation of 4/9, and the analysis is long and complicated. Another claim of the 4/9
ratio was sent in a personal communication in 1996 or 1997 by Danny Raz, and is also proven
in Chalermsook, Schmid, and Uniyal [8]6; these proofs are also long and/or complicated.

1 tight in this paper means that there are matching examples for the approximation ratio of the algorithm
2 See Section 2 for the exact definition
3 We use the standars definition of block, explicitly stated in Section 2
4 A simple graph is a cactus if any two distinct simple cycles have at most one vertex in common. A

triangular cactus as defined by us is a cactus.
5 Also, we could not find any implementation.
6 [8] also has the sentence “Therefore, combining this with our bound implies that local search arguments

are sufficient to get us to a 4
9 + ϵ approximation for MPS”, but no proof for this sentence; their previous

arguments give a 4
9 − ϵ approximation.
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Poranen [28] proposes two new approximation algorithms but their ratio is below 4/9 [11].
Chalermsook and Schmid [7] obtain a 13/33 ratio without using Graphic Matroid Parity.
Note that 13/33 > 7/18. We have examples showing that this algorithm has ratio at most
11/27 < 5/12. See Figure 1 for a graphical representation of approximation ratios.

Spanning Tree (T):
Maximal Planar (T):

1
3 ≈ 0.3333

GDLDT(A)*:
91

216 ≈ 0.4213

GDLDT(B)*:
3
7 ≈ 0.4286

GT(T):
7

18 ≈ 0.3888

MkC (B):
1
2 = 0.5

MT(T):
4
9 ≈ 0.4444

LDT(T)*:
5

12 ≈ 0.4166
MTLK4(A)*:
4
9 + ϵ ≈ 0.4457

GDT(B)*:
11
27 ≈ 0.407

GDT(A):
13
33 ≈ 0.3939

Figure 1 Ratios for various approaches. (T) says that the result is tight with matching example.
(A) says that an algorithm is proven to achieve that ratio. (B) states an upper bound for the
approximation ratio of an algorithm. New results marked by *.

Techniques discussion. A graph A is a kt-structure if every block in every non-trivial
connected component of A is either a K4 or a triangle. A diamond is the graph resulting
from deleting any single edge from a K4. A graph A is a dt-structure if every block in every
non-trivial connected component of A is either a diamond or a triangle. A graph A is a
4-structure if every block in A has at most 4 vertices. All 4-structures are planar graphs.
See Figure 2 for illustrations.

4-Structures can have more edges than triangular cacti, but finding a 4-structure with
maximum number of edges is known to be NP-hard [4] (easy reduction from 3D-Matching [20]).
It is known [3] that even if we fix k and allow blocks of size up to k in our output, and could
find the k-structure with maximum number of edges and planar blocks (algorithm MkC), we
would still get an approximation ratio smaller than 1/2.

Figure 2 In the upper left, a triangular cactus. In the upper right, a kt-structure. In the lower
left, a dt-structure. In the lower right, a 4-structure.

ESA 2024
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Local optimization is a powerful technique for unweighted maximization problems. For
example, Lee, Sviridenko, and Vondrák [22] prove that a basic local optimization algorithm
achieves a (1 − ϵ)-approximation for Matroid Parity, a generalization of Graphic Matroid
Parity that is NP-hard [29]. Using local optimization for MPS was suggested by [8].

Our first algorithm, denoted by MTLK4 (Maximum-Triangular-Local-K4) from now on,
starts with a maximum triangular cactus and replaces, as long as we still have a kt-structure,
at most two triangles by a K4. Previous approximation algorithms for MPS have not been
able to exploit K4’s in getting a better approximation ratio, and in fact our analysis giving
that the approximation ratio of MTLK4 is at least (4/9) + ϵ is complicated and not tight7.
The analysis relies on Theorem 5, which gives a more refined extremal bound on the Lovász
cactus number in planar graphs, compared to the earlier (tight) bound of [5, 8].

The algorithm of Chalermsook and Schmid [7] (which we call GDT, from Greedy-
Diamonds-Triangles) consists of greedily adding diamonds followed by greedily adding
triangles (while staying a dt-structure), and has approximation ratio between 13/33 and
11/27. Our 5/12 approximation ratio of our second local optimization algorithm, denoted by
LDT (Local-Diamonds-Triangles) from now on, is based on the fact that LDT does “break”
diamonds to add more diamonds, assuming a triangle is left from our broken diamond. While
this 5/12-approximation is tight, it can be improved by greedily adding diamonds (while
staying a dt-structure)8, followed by LDT. We call this algorithm GDLDT. We prove that
GDLDT has an approximation ratio between 91/216 and 3/7.

While our algorithms are fairly simple, their analyses are long and complicated. The
reader may want to start with the (7/18)-approximation of [5] (also presented in [4]) for a
simple non-trivial algorithm with a somewhat simple analysis.

One can also use local optimization to approximate Graphic Matroid Parity, as described
in [22]. As pointed out in [8], this leads to a 4/9−ϵ approximation for MPS, as outlined below.
The local optimization algorithm used by [22], adapted to our terminology, replaces sets of k

triangles by sets of k + 1 triangles, as long as it keeps a triangular cactus. We have (so far
unpublished, and involving a different set of authors) evidence that swapping two triangles
for one gives a ratio of at least 11/27. Theorem 1.1 of [8] also mentions a 2-swap algorithm,
but it swaps only triangles of a plane graph and is not analyzed as an MPS algorithm. Let
n be the number of vertices in the input graph, and M be the number of triangles in the
input graph. The analysis of [22] requires k = 5⌈1/(2ϵ)⌉ to achieve a (1 − ϵ)-approximation for
Matroid Parity. To achieve a 5/12 approximation for MPS, one would need an ϵ = 1/4 above:
if the optimum is triangulated and the maximum triangular cactus has n/3 triangles (which
we know that it can happen, from [5]), then we need a triangular cactus with almost n/4
triangles in the algorithm’s cactus to get a ratio of 5/12, which means we must approximate
Graphic Matroid Parity with a factor of 3/4. Directly using the analysis of [22] gives an
O(M25)-time algorithm. We do not fully understand [1] and maybe it provides a better
analysis of the swapping heuristics and achieves a O(n4+3/ϵ) running time. This would be
O(n16) time to get a ratio of 5/12 for MPS. By comparison, our LDT algorithm has an
implementation that runs in O(n5) time.

2 Preliminaries

Generally we follow West [32] for terminology and notation. Given a graph G = (V, E) and
V ′ ⊆ V , we denote by G[V ′], the induced subgraph of G with vertex set given by V ′ (we
keep in this subgraph with vertex set V ′ all the edges of G with both endpoints in V ′).

7 We believe that another page of arguments will make our ϵ a very little bit bigger.
8 This is exactly the start of the GDT algorithm of [7].
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A triangle in a graph is a C3, a cycle of length three. A graph is planar if it can be drawn
in the 2-dimensional plane so that no two edges meet in a point other than a common end.
A triangle of a plane graph is a facial triangle if the triangle is the boundary of a face of the
plane graph. We call a face of a plane graph a triangular face if its boundary is a triangle.

A cut-vertex (resp., bridge) is a vertex (resp., edge) whose deletion increases the number
of components. A graph is said to be a biconnected graph, if it has at least three vertices and
it does not contain any cut-vertices. A block is a maximal connected subgraph without a
cut-vertex. Thus, every block is either a maximal biconnected subgraph, or a bridge.

Graphic Matroid Parity is the following problem: given a multigraph G′ = (V ′, E′) and a
partition of the edge set E′ into pairs of distinct edges {f, f ′}, find a (simple) forest F ⊆ E′

with the maximum number of edges, such that f ∈ F if and only if f ′ ∈ F , for all f ∈ E′.
Graphic Matroid Parity algorithms can be used to construct a maximum triangular cactus

in a given graph [25]. Indeed, given a graph G = (V, E), construct G′ by having V ′ = V and
for each triangle T of G, let e, e′ be any pair of distinct edges in T . Add two new edges f and
f ′ to E′, f with the same endpoints as e, and f ′ with the same endpoints as e′. Pair f with
f ′ in the partition of E′. The straightforward lemma 2.13 of [5] states that a forest F of G′

as above with 2p edges exists if and only if a triangular cactus with p triangles exists in G.

3 Local Optimization after Max Triangular Cactus

Here is our first approximation algorithm, Algorithm MTLK4: Start with a maximum
triangular cactus. As long as possible, if there exists a K4 in the input graph and at most
two edge-disjoint triangles in our kt-structure such that removing the (one or two) triangles
and adding the K4 results in a kt-structure, do this replacement. See figures 3 and 4 for
illustrations. Each such replacement increases the cyclomatic number9 of the kt-structure,
and thus this is a polynomial-time algorithm. Precisely, there are O(n4) K4’s to consider and
for each we can look at O(n2) ways to choose two existing triangles for replacement (these
two triangles come from a graph with O(n) edges). So we can achieve each replacement in
O(n7) time, for a total running time, excluding the Matroid Parity algorithm, of O(n8).

Figure 3 On the left side, the current kt-structure, with two connected components. There is
a K4 in the input graph, with its four vertices represented by small filled squares. Two triangles,
dashed, can be removed to disconnect these four vertices, after which the K4 (with edges represented
by dashed cycle arcs) can be be added resulting in another kt-structure (on the right side, with
three connected components) with a higher cyclomatic number.

9 The cyclomatic number (also called circuit rank) of an undirected graph is the minimum number of
edges that must be removed from the graph to break all its cycles, making it into a tree or forest.

ESA 2024
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(a) (b)

Figure 4 Both (a) and (b) show kt-structures where, for each of them, two triangles (dashed)
can be removed to allow a K4, whose vertices are represented by small filled squares, to be added
resulting in a kt-structure.

We believe that an O(n5)-running time version of the algorithm exists, based on the
following idea. One needs to read the proof of the approximation ratio first, as we modify
the algorithm. We only check for each K4 if there is no strong bond, and its four vertices
are not all in the same component of the current kt-structure. This check can be done in
O(1) after computing connected components by Depth First Search (and this has to be done
only once after each local improvement). A K4 that does not pass this check is not used for
the local improvement, even though in MTLK4 it could possibly lead to improvement (see
Figure 4 (a)). However, we cannot get a O(n4) running time by showing that a K4 that was
found not useful once will not become useful in the future. We have a counterexample. The
rest of the section will be spent on the approximation ratio analysis.

First, some intuition. Let β(Ḡ) be the number of triangles in a maximum triangular cactus
in graph Ḡ. It is known from [5] (see also Inequality (2) below) that, if H̃ is a planar graph
on n vertices with |E(H̃)| = 3n − 6 − t, then β(H̃) ≥ (1/3)(n − t − 2). With G the input
graph and H an optimum solution (a maximum planar subgraph of G), we obtain that the
output of the MT algorithm (which, recall, computes the triangular cactus with maximum
number of triangles, and then connects the components of this cactus) has n − 1 + β(G)
edges (since every triangle gains one edge over a spanning tree), and we obtain a ratio of
4/9 from β(G) ≥ β(H). With θ such that H has 3n − 6 − θ edges, from simple algebraic
manipulation, we would have an ϵ > 0 improvement over 4/9 if θ ≥ ϵ′n for some ϵ′ > 0. But
we cannot count on this happening.

So now we assume that θ is close to 0. As we use K4’s, the second question is what happens
if H (the optimum solution as above) does not have any K4’s. The bound β(H) ≥ (1/3)(n −
θ−2) is not tight anymore, and in fact with θ = 0 we are able to prove that β(H) ≥ (3/7)n−1
when H has no K4’s. This is good as (n + (3/7)n − 2)/(3n − 6) ≥ 10/21 > 4/9.

So we assume that θ is close to 0 and H has K4’s. To quantify the benefits of these K4’s,
we introduce some notation (see Figure 5 for an illustration):
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u

v

x

y

z

Figure 5 In this triangulated plane graph, x and v are the cubic (degree three) vertices.

▶ Definition 1. Call a vertex v of a triangulated plane graph H̃ cubic if it has degree three
(so we have a K4 formed by v and its neighbors). Let c(H̃) be the number of cubic vertices
in H̃.

Theorem 5 below obtains that β(H̃) ≥ (3/7)n − (1/7)c(H̃) − 1, with n = |V (H̃)|. With
H̃ a triangulated supergraph of H on the same vertex set, we have that H̃ contains exactly
θ edges not in H. Then we can obtain that β(H) ≥ (3/7)n − (1/7)c(H̃) − 1 − θ. Now, if
c(H̃) is also small in addition to θ being close to 0, we have again a ratio bigger than 4/9.
And when c(H̃) is “large” compared to n, and θ is close to 0, then there are enough K4’s in
H for the local optimization phase of MTLK4 to use, as shown after Theorem 5. We are
done with providing some intuition. As small graphs are easy to handle, we assume that
n = |V (G)| > 4 in this section. On our way to Theorem 5 we need a lot of notation.

Double-partitions. Let Ḡ = (V, E) be a graph on n vertices. Let P = {V1, . . . , Vk} be a
partition of the vertices of Ḡ into vertex classes, and Q = {E1, . . . , Em} be a partition of the
edges of Ḡ into edge colors. We say that an edge color and a vertex class are incident if at
least one of the edges of the edge color is incident to at least one of the vertices of the vertex
class. For 1 ≤ i ≤ m, let ui denote the number of vertex classes Vj of P incident to edge
color Ei of Q. We say that “double-partition” (P, Q) covers a triangle if the triangle has at
least two vertices in the same vertex class of P (when we also say that the triangle is covered
by this vertex class) or all three edges in the same edge color of Q (when we also say that
the triangle is covered by this edge color). We call the double-partition (P, Q) valid for Ḡ if
every triangle of Ḡ is covered. Set10:

Φ(P, Q) = n − k +
m∑

i=1
⌊ui − 1

2 ⌋. (1)

Since k ≤ n and ui ≥ 1 for all i, we have that Φ(P, Q) ≥ 0, and note that there is always a
valid double-partition (P, Q) for Ḡ (e.g., k = 1 and m = 1 and V1 = V (Ḡ) and E1 = E(Ḡ)).

10 The formula given here, which differs from that in [25] by having floors, is correct. See also [30] or
Theorem 11.3.2 of [25].

ESA 2024
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Call a vertex class a trivial vertex class if it has just one vertex, call this vertex a singleton,
and an edge color a trivial edge color if it has just one edge. The contribution of an edge
color Ei of Q to Φ(P, Q) is the quantity ⌊ ui−1

2 ⌋. The contribution of P to Φ is defined to be
n − k. According to Lovász and Plummer [25], we have:

▶ Proposition 2 (Theorem 11.3.6 in [25]). The number of triangles in a maximum triangular
cactus in a graph Ḡ is equal to the minimum of Φ(P, Q) taken over all valid double-partitions
(P, Q) for Ḡ.

Let H̃ be a planar graph with n ≥ 3 vertices. Embed H̃ in the plane without crossing
edges, obtaining a plane graph. Let t be the number of edges missing for this embedding to
be triangulated (meaning that adding t edges to H̃ would result in a triangulated planar
graph). A triangulated plane graph has 3n − 6 edges, if n ≥ 3. So t = (3n − 6) − |E(H̃)|; t

does not depend on the embedding. The 4/9-approximation of [5] is based on:

▶ Proposition 3 (Theorem 2.3 of [5], also equivalent to Corollary 1.2 of [8]). Let H̃ be a
connected planar graph with n ≥ 3 vertices. Let t be the number of missing edges, defined as
above. Then

Φ(P, Q) ≥ 1
3(n − 2 − t),

for all valid double-partitions (P, Q) for H̃.

This bound is known to be asymptotically tight when t = 0, see for example [5] where
their 4/9-approximation is proven tight. Recall that β(H̃) is the number of triangles in a
maximum triangular cactus in H̃. From Propositions 2 and 3 we obtain:

β(H̃) ≥ 1
3(n − 2 − t), (2)

If a double-partition (P, Q) is valid for plane graph H̃, then it must cover all the facial
triangles of H̃.

▶ Definition 4. Call a double-partition (P, Q) of a plane graph H̃ p-valid if it covers the
facial triangles of H̃.

Note that a valid double-partition (P, Q) of a graph Ḡ is p-valid for any plane embedding
of Ḡ. The main technical result of this section is Theorem 5 below, which gives a lower
bound for Φ(P, Q) for all p-valid double partitions (P, Q) of a triangulated plane graph H̃

in terms of n and c(H̃). The accounting part of the lower bound is proven assuming that
the double partition (P, Q) satisfies a number of conditions. Ideally, we would want that P
would have only one vertex class P1 with more than one vertex (we are not able to ensure
this condition); this condition would make the accounting much simpler.

We will enumerate the actual conditions later. To get that (P, Q) satisfy these actual
conditions, we modify (P, Q), which really means obtaining from a p-valid (P, Q) another
double partition (P ′, Q′) such that Φ(P, Q) ≥ Φ(P ′, Q′) and such that (P ′, Q′) is also p-valid
for H̃. It is fine to make such modifications since, once we prove a lower bound for (P ′, Q′),
then it holds for (P, Q) as well.

Assuming that H̃ is a triangulated plane graph, one can easily verify based on the
definition of Φ(P, Q) (Equation (1)) that we can do the following modifications:
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1. Any edge of H̃ such that both facial triangles that contain this edge are covered by vertex
classes is put into an edge color by itself (we can do this since this trivial edge color
contributes 0 to Φ, and the contribution of any other edge color does not increase). In
particular, any edge that is incident to two vertices in the same vertex class is put into
an edge color by itself.

2. If we have two distinct edge colors both incident to the same two (or more) distinct vertex
classes, these two edge colors can be merged into one edge color.

3. If an edge color Qi can be partitioned into two edge colors Q′ and Q′′ such that all the
facial triangles covered by Qi are covered by Q′ or Q′′, and Q′ and Q′′ are incident to at
most one common neighbor among the vertex classes, split Qi into Q′ and Q′′.

Recall Definition 1. One main technical result is:

▶ Theorem 5. Let H̃ be a triangulated plane graph with n ≥ 3 vertices, and let (P, Q) be a
double-partition p-valid for H̃. Then:

Φ(P, Q) ≥ 3
7n − 1

7c(H̃) − 1. (3)

Due to space limitations, we only give some intuition for the proof, which appears in
the full version of the paper. Equation (3) is tight (excluding a small additive term), as
shown by the following two constructions. Both of them provide useful examples for the
intuition behind the proof. Consider a triangulation W on r vertices containing no K4.
From Euler’s formula we get that W has 2r − 4 faces. In the first construction, insert
one cubic vertex in every face. We have n = r + (2r − 4) and c = 2r − 4. We take P to
have only one non-trivial vertex class, W , and Q to have only trivial edge colors. Thus
Φ(P, Q) = r − 1 = (3/7)n − (1/7)c − (1/7).

In the second construction, insert three new vertices into every face of W as in Figure 6.
We have n = r + 3(2r − 4) = 7r − 12 and c = 0. We take P to have only one non-trivial
vertex class, W , and Q to have 2r − 4 non-trivial edge colors, each with the edges embedded
strictly in each face of W . Each of these non-trivial edge colors is incident to exactly 4 vertex
classes: the three singletons (singletons are vertices) inside the face of W , and the non-trivial
class comprised of W . Thus Φ(P, Q) = r − 1 + 2r − 4 = (3/7)n + (1/7).

Figure 6 A face of W is shown in solid edges.

Intuition. To show some of the proof ideas, we make the simplifying assumption that P has
only one non-trivial part, which we call R (we could not find a way to enforce this assumption
and ended up with a much longer proof). We also make the simplifying assumptions that
r := |R| > 2 and that H̃[R] is a connected graph, even though the arguments below can be
adapted without these two assumptions. First, apply Modification 1 such that any edge of
H̃[R] is put into an edge color by itself.

ESA 2024
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For a face F of H̃[R], call SF the set of singletons embedded strictly inside F . We discuss
now the case |SF | > 1. Due to H̃ being triangulated, H̃[SF ] is connected. Walking around
s ∈ SF in clockwise manner, we get a circular list L of vertices that are not all in the same
vertex class. When we switch in L from one class to another, we have one facial triangle T1
of H̃ that is not covered by a vertex class. Later in the walk, when again we switch in L

from one vertex class to another, we have another facial triangle T2 of H̃ that is not covered
by a vertex class. If there are two distinct edge colors Q1 and Q2 of Q covering T1 and T2,
then there are two distinct vertex classes incident to both Q1 and Q2 and we can apply
Modification 2. Continue this traversal of L and get that all the facial triangles incident
to s that are not covered by R are covered by one single edge color. H̃[SF ] is connected,
and we can do a depth-first search traversal and as we meet the vertices of SF , we do the
walk-around described above for each of them to obtain that all the facial triangles of H̃

embedded in F that are not covered by R are covered by one single edge color which we call
QF . By construction, QF meets all the singletons of SF and the vertex class R.

If edge color QF as above also covers facial triangles outside F , then we can apply
Modification 3, where Q′ consist of the edges of QF embedded strictly inside F and Q′′

consists of the other edges of QF ; note that only R among the vertex classes can be incident
to both Q′ and Q′′. After doing this for all the faces of H̃[R], we get that any non-trivial
edge color is the QF for some face F with |SF | > 1 of H̃[R], and all the edges of QF are
embedded strictly inside F . Note that when |SF | = 0 or |SF | = 1, all the triangular faces
of H̃ embedded in F are covered by R. And all the triangular faces of H̃ are embedded in
some face F of H̃[R]. We now have:

Φ(P, Q) = (r − 1) +
∑

F face of H̃[R]

⌊|SF |/2⌋ = (r − 1) +
∑
i≥0

fi⌊
i

2⌋, (4)

where fi is the number of faces of H̃[R] each with i singletons embedded inside. Let c1 be
the number of triangular faces of H̃[R] with exactly one singleton embedded inside. As any
such singleton is a cubic vertex,

c1 ≤ c. (5)

Let d1 be the number of non-triangular faces of H̃[R] with one singleton inside, so that
f1 = c1 + d1. We would have 2r − 4 triangular faces of H̃[R] if it were triangulated. A
non-triangulated face can be replaced by two or more triangulated faces by adding “fake”
edges, and thus from which we deduce:

2r ≥ c1 + 2d1 + f3 + f5, (6)

and therefore

4r ≥ 2c1 + 4d1 + 2f3 + 2f5 ≥ 2c1 + 3d1 + 2f3 + f5. (7)

Using the equation above and Equation (5) we obtain:
4
7r ≥ 2

7c1 + 3
7d1 + 2

7f3 + 1
7f5 = 3

7f1 + 2
7f3 + 1

7f5 − 1
7c1 ≥ 3

7f1 + 2
7f3 + 1

7f5 − 1
7c.

For i ∈ {0, 2, 4, 6, 7, 8, 9, . . .}, we have ⌊i/2⌋ ≥ 3
7 i. Using this, the equation above,

Equation (4), and n = |V (H̃)| = r +
∑

i≥0 i · fi, we obtain:

Φ(P, Q) = (r − 1) +
∑
i≥0

fi⌊
i

2⌋ ≥ 3
7(r +

∑
i≥0

i · fi) − 1
7c − 1 = 3

7n − 1
7c − 1,

or Equation (3). We are done providing intuition for the proof of Theorem 5.
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We continue the analysis of the approximation ratio of Algorithm MTLK4. As before,
G denotes the input graph and H an optimum solution (a maximum planar subgraph of G).
Let H̃ be a triangulated plane supergraph of H, and θ be |E(H̃)| − |E(H)|. As above, the
value of the optimum solution is |E(H)| = 3n − 6 − θ. Below, c counts the number of cubic
vertices in H̃.

From Theorem 5 and Proposition 2 we immediately obtain

β(G) ≥ β(H) ≥ β(H̃) − θ ≥ 3
7n − 1

7c − θ − 1 (8)

as one edge of E(H̃) \ E(H) can be part of only one triangle of the maximum triangular
cactus of H̃.

Let A be the kt-structure produced by MTLK4. Say that there is a strong bond between
two vertices if there is a path between them in A with all edges in K4’s of A. Call a cubic
vertex v of H̃ blocked if K4(v), the K4 formed by v and its three neighbors in H̃, is not added
to the kt-structure. A cubic vertex v is blocked because of one of the following:

one of the edges of K4(v) is not in G (also not in H). We call v absent.
all the edges of K4(v) are in G (and in H - since H is a maximum planar subgraph of G)
and at least two of the four vertices of K4(v) are connected by a strong bond. We call v

neutralized.
all the edges of K4(v) are in G (and in H) and there are no strong bonds between any
of the vertices of K4(v), and all four of the vertices of K4(v) are in the same connected
component of A. We call v subdued.

Indeed, if all the edges of K4(v) are in G (and in H) and there is no strong bond between
any two vertices of K4(v) and only three of its vertices are in the same component of A,
then we could remove at most two triangles from A to disconnect these three vertices, and
add K4(v). And if two of the vertices of K4(v) are in one component of A and the other
two in another component of A, then we can remove one triangle from each of these two
components and add K4(v).

We use ca, cs, cn to denote the number of absent, subdued, and neutralized cubics
respectively. Let A′

1, . . . , A′
q′ be the non-trivial sub-kt-structures obtained from A by removing

all the triangles that are not part of K4’s. If we have j′
i K4’s in A′

i, then A′
i has 3j′

i + 1
vertices, each two of them connected by a strong bond. All the strong bonds are obtained
this way. Let γ be the number of K4’s in A. Then γ =

∑q′

i=1 j′
i.

Let B′
i be H̃[V (A′

i)]. Then B′
i has at most 3(1 + 3j′

i) − 6 = 9j′
i − 3 edges. For a cubic v to

be neutralized, one of the four edges of K4(v) must be an edge of some B′
i. Recall than n > 4

and that H̃ is a triangulated plane graph. Then cubic vertices cannot be adjacent in H̃ and
one can easily check that one edge e of H̃ can participate in at most two K4(u). Precisely, if
one of the endpoints of e is a cubic, then this endpoint is the only possible u above, and if
not the only possible u above are the two vertices that each forms a facial triangle with e.

Thus the total number of neutralized cubics is at most

cn ≤ 2
q′∑

i=1
(9j′

i − 3) ≤ 18γ. (9)

Also by the reasoning above,

ca ≤ 2θ. (10)

Let α be the number of triangles in A and recall that γ is the number of K4’s in A.
Let A have non-trivial components A1, . . . , Aq, each with αi triangles and γi K4’s. Let
Bi = H̃[V (Ai)]. Thus |V (Bi)| = |V (Ai)| = 1 + 2αi + 3γi. We count how many subdued
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cubics cs(i) are in V (Ai). Remove all these cubics from Bi and we get a planar graph Di

with 1 + 2αi + 3γi − cs(i) vertices and where each subdued cubic vertex of Ai is the only
vertex of H̃ embedded in a triangular face of Di (recall that n > 4 and cubic vertices cannot
be adjacent in H̃). Since Di can have at most 2(1 + 2αi + 3γi − cs(i)) − 4 triangular faces:

cs(i) ≤ 2(1 + 2αi + 3γi − cs(i)) − 4

from which we deduce:

cs ≤ 4
3α + 2γ − 2

3q.

As α ≤ β(G) (recall that β(G) is the number of triangles in a maximum triangular cactus
of the graph G), adding the equation above to Equations (9) and (10) we obtain: c ≤
20γ + 4

3 β(G) + 2θ, which we rewrite as

γ ≥ − 1
15β(G) − 1

10θ + 1
20c. (11)

Now we have all the ingredients to obtain our ((4/9) + ϵ)-approximation. As before, G

denotes the input graph and H an optimum solution (a maximum planar subgraph of G).
Let H̃ be a triangulated plane supergraph of H, and θ be |E(H̃)| − |E(H)|. As above, the
value of the optimum solution is |E(H)| = 3n − 6 − θ. From Inequality (3) for H, we obtain:

β(G) ≥ β(H) ≥ 1
3(n − 2 − θ).

Multiply the inequality above by 141/166, Inequality (8) by 21/166, and Inequality (11)
by 60/166 (we solved by hand a small linear program to obtain these numbers) and add
them up to obtain:

β(G) + γ ≥ β(G) + 60
166γ ≥ 28

83n − 37
83θ − 1.

As every K4 has at least one more edge compared to the two triangles it replaces, our
output has at least n − 1 + β(G) + γ edges. Based on the inequality above, one can check:

n − 1 + β(G) + γ ≥ 111
83 n − 37

83θ − 2 ≥ 37
83(3n − θ − 6).

In conclusion, we have:

▶ Theorem 6. Algorithm MTLK4 is a (37/83)-approximation for MPS.

The improvement in approximation ratio is ϵ = 1/747.

4 Local Optimization without Max Triangular Cactus

Recall that a diamond subgraph is a graph that is isomorphic to the graph resulting from
deleting any single edge from a K4. We call the two vertices of degree three in a diamond as
the bases of the diamond, and the two vertices of degree two as the tips of the diamond. We
call the edge between the two bases of a diamond the base-edge of the diamond. A diamond
of a plane graph is a facial diamond if the two triangles of the diamond are facial triangles.

In this section, we present LDT, a local optimization algorithm (inspired by the one of
[6]) using only diamonds and triangles that is a (5/12)-approximation algorithm for MPS
on general graphs. There is a tight example for this approximation ratio. The input is a
graph G, which we assume to be connected as one can run any approximation algorithm on
separate connected components if needed.
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Algorithm LDT. We maintain a spanning subgraph A (thus V (A) = V (G)) that is a
dt-structure in G, starting with E(A) = ∅. The algorithm has two phases.

Phase I. The goal of this phase is to increase the cyclomatic number of A. For each
connected component A′ of A, the algorithm keeps a weighted tree TA′ whose vertex set is
V (A′) and edge set is as follows (see Figure 7 for an illustration). For every diamond of A,
the edge connecting the bases is included in TA′ with weight 2. For each of the two tips of
every diamond, include in TA′ an edge between this tip and one of the bases, with weight 1.
For every triangle of A′, include in TA′ two of its edges, each with weight 1. One can easily
check that TA′ is a spanning tree of A′. Let F (A) be the spanning forest on V (G) obtained
by taking all the edges of E(TA′) for all the components A′ of A.

Figure 7 The tree TA′ obtained from a connected component A′ of A. Edges of weight 2 are
thick.

One local optimization step is obtained as follows: if there exist a triangle of G with
its three vertices in three different components of A, then add this triangle to A, and
resume. If no such triangle exists, go through all the diamonds D of G. Go through all
the edges e ∈ E(F (A)) of weight 1. Let Fe(A) be the spanning forest of G whose edge set
is E(F (A)) \ {e}. If the four vertices of D are in four components of Fe(A), and e was
in E(F (A)) as an edge of a triangle, then remove from A this triangle and add D. If the
four vertices of D are in four components of Fe(A), and e was in E(F (A)) as an edge that
connects a tip of a diamond D′ to one of the bases of D′, then remove from A the two edges
connecting this tip from the bases (leaving a triangle from the diamond D′) and add D.

Phase II. As long as possible, greedily add edges connecting various components in graph
(V (A), E(A)) to get the output L (L is connected since the input G is connected).

See Figure 8 for an example of a local optimization step. One can easily check that
applying the local optimization step of Phase I keeps A a dt-structure and its cyclomatic
number indeed increases.
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(b) (c)(a)

e

Figure 8 (a) shows in solid line segments the current dt-structure A. A diamond D, represented
by the dashed line segments, is considered. (b) A forest F (A) is represented by thick solid line
segments having weight 2 and thin solid line segments having weight 1. We can see that by removing
from F (A) the weight-1 edge e, the four vertices of the diamond D are in four different components.
(c) The resulting dt-structure after the local optimization step.

Running time. We discuss the running time of one local improvement, or finding out that
no such improvement exists. There are O(n) edges in the current dt-structure A. Using
Depth First Search, computing the connected components of the current dt-structure can be
done in O(n). There are O(n3) triangles in the input graph. Using the information given
by the connected components of the current dt-structure, it takes constant time to check
whether a triangle can be used for improving the dt-structure (this involves finding, for each
vertex v of the triangle, the representative of the connected component containing v, and
then checking if we have three distinct representatives). For the local optimization using
diamonds, we use a more elaborate method to save a factor of n in the running time.

Let F̂ (A) be the spanning forest on V (G) obtained by taking all the edges of E(TA′) that
have weight 2, for all the components A′ of A. We construct F̂ (A) and compute its connected
components in time O(n). Then we go through all the O(n4) diamonds and for each such
diamond D we check if its four vertices belong to at least three connected components of A.
If no, D cannot be used. If yes, we check if the two nodes that are in the same connected
component of A are also in the same connected component of F̂ (A); if yes, then D cannot be
used. If no, in time O(n) we can find one edge e ∈ F (A) \ F̂ (A) such that the four vertices
of D are in four different components of Fe(A). In time O(n4) we can easily update A to
include D. There are O(n) local improvement steps, for a total running time of O(n5).

Tight Example. We show that the approximation ratio does not exceed 5/12 by more than
an o(1) term. Consider a large triangular grid H as in Figure 9, which occupies a regular
hexagon, and such that H has an odd number of vertices, 2p + 1, with a large p. Let S be
some triangular cactus, with p triangles, and with V (S) = V (H). We make S edge-disjoint
from H, and also we avoid having the endpoints of an edge of S at distance less than 2 in H.
One can easily check that H has 4p − o(p) faces. In “every second” face of H add a “new”
point as in the figure, so that points are not added in two faces of H that share an edge in
H. Connect each of these new points to the three vertices of H lying on the border of the
face of H where the new point is added. The input graph G consists of the union of H and
S and these new points with their incident new edges. Thus G has 4p − o(p) vertices. The
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union of H and the new points induces an almost triangulated planar graph with 12p − o(p)
edges. The triangular cactus S can be the solution produced by the Phase I of the algorithm,
as we show in the next paragraph. Then our output has no diamonds and p triangles, for a
total of at most 5p edges (the output has cyclomatic number of p and less than 4p vertices).
By choosing p very large, we get a ratio as close to 5/12 as we want.

Figure 9 The planar graph H is given by filled circles representing the vertices and solid lines
representing the edges. The new vertices are represented by empty circles, and the edges adjacent to
these new vertices are represented by dashed lines.

It is easy to check that no triangle can be added to S. Now we check that no diamond can
be swapped for a triangle in S according to Phase I of the algorithm. From our construction,
any diamond of G has at least three vertices in V (S), and for any edge e from E(F (E(S))),
the graph Fe(E(S)) will have one component with at least two of these three vertices.

Due to space limitations, the proof that the approximation ratio of LDT is at least 5/12
and the proof of Theorem 8 are in the full version of the paper. We have:

▶ Theorem 7. Algorithm LDT is an approximation algorithm with ratio of 5/12, and can be
implemented to run in time O(n5).

▶ Theorem 8. Algorithm GDLDT (greedily adding diamonds followed by our LDT algorithm)
is an approximation algorithm with ratio of at least 91/216, and at most 3/7, and can be
implemented to run in time O(n5).

5 Conclusions and Discussion

We improved the approximation ratio for Maximum Planar Subgraph from 4/9 to 4/9 + ϵ,
for a small ϵ > 0, by analyzing the application of a natural local optimization step after
applying the previously known, Graphic-Matroid-Parity based (4/9)-approximation algorithm.
Our analysis, while involved, is not tight and there may be room for a more significant
improvement here. In particular, we do not believe that Equation (8) is tight. We conjecture
that the tight (excluding a small additive term) bound that generalizes Theorem 5 is:

Φ(P, Q) ≥ 3
7n − 1

7c − 10
21 t (12)

Here we are looking at double-partitions (P, Q) that cover all the facial triangles of a plane
graph H with n vertices and t is the number of edges missing from H to be a triangulation.
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As before, c is the number of cubic vertices in H, but without H being triangulated, we
provide next a new definition of cubic. Say vertex v is adjacent to u, x, y forming a K4 with v

embedded strictly inside the triangle uxy. We call v cubic if none of the three triangles vux,
vxy, vyu have a vertex z strictly inside that forms a K4 with its neighbors. See Figure 10
for an example. This bound would be tight for t = Θ(n) (see the full version of the paper).
Equation (12) would allow us to increase the ϵ to maybe 1/270 with the current techniques.

v

x y

w

u

Figure 10 Here v is a cubic while w is not.

As in the previous work [5], we use the approach of using a few basic graphs for blocks in
our output. This guarantees planarity and is at the basis of the analysis of all approximation
algorithms for MPS with ratio bigger than 1/3. As long as one uses this approach, this paper
suggests that the application of local optimization, even if it comes before or after other
algorithms, is beneficial, and more powerful than Greedy algorithms (albeit slower).

An alternative would be to devise an approximation algorithm for Weighted Matroid
3-Parity, when the weights are 3 (from K4’s), 2 (from diamonds), and 1 (from triangles and
C4’s). With such small integer weights, again local optimization seems the way to go.

If we are to use blocks of fixed size, it is not hard to see and known since [3] that one
cannot achieve an approximation better than 1/2. But maybe the “spruces” of [6] can give
us a ratio of 1/2 or better if used as the blocks of output.
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