
List Homomorphisms by Deleting Edges and
Vertices:
Tight Complexity Bounds for Bounded-Treewidth
Graphs
Barış Can Esmer #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Germany

Jacob Focke #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Paweł Rzążewski #

Warsaw University of Technology, Poland
University of Warsaw, Poland

Abstract
The goal of this paper is to investigate a family of optimization problems arising from list homo-
morphisms, and to understand what the best possible algorithms are if we restrict the problem
to bounded-treewidth graphs. Given graphs G, H, and lists L(v) ⊆ V (H) for every v ∈ V (G), a
list homomorphism from (G, L) to H is a function f : V (G) → V (H) that preserves the edges (i.e.,
uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). The graph H may
have loops. For a fixed H, the input of the optimization problem LHomVD(H) is a graph G with
lists L(v), and the task is to find a set X of vertices having minimum size such that (G − X, L) has
a list homomorphism to H. We define analogously the edge-deletion variant LHomED(H), where
we have to delete as few edges as possible from G to obtain a graph that has a list homomorphism.
This expressive family of problems includes members that are essentially equivalent to fundamental
problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex
Multiway Cut.

For both variants, we first characterize those graphs H that make the problem polynomial-time
solvable and show that the problem is NP-hard for every other fixed H. Second, as our main result,
we determine for every graph H for which the problem is NP-hard, the smallest possible constant
cH such that the problem can be solved in time ct

H · nO(1) if a tree decomposition of G having
width t is given in the input. Let i(H) be the maximum size of a set of vertices in H that have
pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD(H), we show that
the smallest possible constant is i(H) + 1 for every H:

Given a tree decomposition of width t of G, LHomVD(H) can be solved in time (i(H)+1)t ·nO(1).
For any ε > 0 and H, an (i(H) + 1 − ε)t · nO(1) algorithm would violate the Strong Exponential-
Time Hypothesis (SETH).

The situation is more complex for the edge-deletion version. For every H, one can solve
LHomED(H) in time i(H)t ·nO(1) if a tree decomposition of width t is given. However, the existence
of a specific type of decomposition of H shows that there are graphs H where LHomED(H) can be
solved significantly more efficiently and the best possible constant can be arbitrarily smaller than
i(H). Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight
bounds for every fixed H.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Graph Homomorphism, List Homomorphism, Vertex Deletion, Edge Deletion,
Multiway Cut, Parameterized Complexity, Tight Bounds, Treewidth, SETH

© Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 39; pp. 39:1–39:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baris-can.esmer@cispa.de
https://orcid.org/0000-0001-5694-1465
mailto:jacob.focke@cispa.de
https://orcid.org/0000-0002-6895-755X
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
mailto:pawel.rzazewski@pw.edu.pl
https://orcid.org/0000-0001-7696-3848
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 List Homomorphisms by Deleting Edges and Vertices

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.39

Related Version Full Version: https://arxiv.org/abs/2210.10677

Funding Paweł Rzążewski: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme grant agreement number 948057.

1 Introduction

Typical NP-hard graph problems are known to be solvable in polynomial time when the
input graph is restricted to be of bounded treewidth. In many cases, the problem is actually
fixed-parameter tractable (FPT) parameterized by treewidth: given a tree decomposition
of width t, the problem can be solved in time f(t) · nO(1) for some function f [6, 9, 8].
While early work focused on just establishing this form of running time, more recently there
is increased interest in obtaining algorithms where the function f is growing as slowly as
possible. New techniques such as representative sets, cut-and-count, subset convolution, and
generalized convolution were developed to optimize the function f(t).

On the complexity side, a line of work started by Lokshtanov, Marx, and Saurabh [35]
provides tight lower bounds for many problems where ct · nO(1)-time algorithms were known.
These type of complexity results typically show the optimality of the base c of the exponent
in the best known ct · nO(1)-time algorithm, by proving that the existence of a (c − ε)t · nO(1)-
algorithm for any ε > 0 would violate the Strong Exponential-Time Hypothesis (SETH)
[41, 40, 11, 4, 2, 31, 36, 5, 20, 37, 19]. The goal of this paper is to unify some of these lower
bounds under the umbrella of list homomorphism with deletion problems, obtaining tight
lower bounds for an expressive family of problems that include members that are essentially
equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle
Transversal, and Edge/Vertex Multiway Cut.

Graph homomorphisms. Given graphs G and H, a homorphism from G to H is a (not
necessarily injective) mapping f : V (G) → V (H) that preserves the edges of G, that is,
if uv ∈ E(G), then f(u)f(v) ∈ E(H). For example, if H is the complete graph Kc on c

vertices, then the homomorphisms from G to H correspond to the proper vertex c-colorings
of G: adjacent vertices have to be mapped to distinct vertices of H. For a fixed graph H,
the problem Hom(H) asks if the given graph G has a homomorphism to H. Motivated
by the connection to c-coloring when H = Kc, the problem is also called H-coloring
[24, 28, 27, 26, 38, 39, 21].

The list version of Hom(H) is the generalization of the problem where the possible image
of each v ∈ V (G) is restricted [13, 25, 16, 15, 29, 10, 7, 11, 1, 40, 20]. This generalization
allows us to express a wider range of problems and it makes complexity results more robust.
Formally, for a fixed undirected graph H (possibly with selfloops), the input of the LHom(H)
problem consists of a graph G and a list assignment L : V (G) → 2V (H), the task is to decide
if there is a list homomorphism f from (G, L) to H, that is, a homomorphism f from G to
H that satisfies f(v) ∈ L(v) for every v ∈ V (G). Note that Hom(H) is trivial if H has a
vertex with a loop, but loops may have a non-trivial role in the LHom(H) problem as not
every list may contain the same looped vertex. In fact, it is already non-trivial to consider
the special case where H is reflexive [13], that is, every vertex of H has a loop.

The main topic of the current paper is a further generalization of LHom(H) to an
optimization problem where we are allowed to delete some edges/vertices of G. The edge-
deletion variant LHomED(H) is defined the following way: given a graph G and a list

https://doi.org/10.4230/LIPIcs.ESA.2024.39
https://arxiv.org/abs/2210.10677

B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 39:3

assignment L : V (G) → 2V (H), the task is to find a minimum set X ⊆ E(G) of edges
such that (G \ X, L) has a list homomorphism to H. In other words, we want to find a
mapping f : V (G) → V (H) that satisfies f(v) ∈ L(v) for every v ∈ V (G) and satisfies
f(u)f(v) ∈ E(H) for the maximum number of edges uv of G. The vertex-deletion variant
LHomVD(H) is defined analogously: here the task is to find a minimum size set X of
vertices such that (G − X, L) has a list homomorphism to H. The LHomVD(H) problem
was considered from the viewpoint of FPT algorithms parameterized by the number of
removed vertices [3, 32].

While the Hom(H) and LHom(H) problems can be seen as generalizations of vertex
coloring, the framework of deletion problems we consider here can express a wide range of
fundamental optimization problems. We show below how certain problems can be reduced to
LHomED(H) or LHomVD(H) for some fixed H. The reductions mostly work in the other
direction as well (we elaborate on that in Section 2), showing that this framework contains
problems that are essentially equivalent to well-studied basic problems.

Vertex Cover: Let H = K1 be a single vertex x without a loop. Then Vertex Cover
can be expressed by LHomVD(K1) with single-element lists: as vertex x is not adjacent
to itself, it follows that for every edge uv of G, at least one of u and v has to be deleted.
Independent Set: As G has an independent set of size k if and only if it has a vertex
cover of size |V (G)| − k, the same reduction can be used.
Max Cut: Let H = K2 be two adjacent vertices without loops. Then Max Cut can
be expressed by LHomED(H) with the list V (H) at every vertex: the task is to delete
the minimum number of edges to obtain a bipartition (X, Y), that is, to maximize the
number of edges between X and Y .
Odd Cycle Transversal: Let H = K2 be two adjacent vertices without loops. Then
Odd Cycle Transversal can be expressed by LHomVD(H) with the list V (H) at
every vertex: the task is to delete the minimum number of vertices to obtain a bipartite
graph.
s-t Min Cut: Let H contain two independent vertices vs and vt with loops. Then s-t
Min Cut can be expressed as LHomED(H) where L(s) = {vs}, L(t) = {vt}, and the
list is {vs, vt} for all remaining vertices. It is clear that s and t cannot be in the same
component after removing the solution X from G.
Edge Multiway Cut with c terminals t1, . . . , tc: Let H be c independent vertices
v1, . . . , vc with selfloops. Then the problem can be expressed as LHomED(H) where
L(ti) = {vi} and non-terminals have list {v1, . . . , vc}. It is clear that if X is a solution of
LHomED(H), then each component of G \ X can contain at most one terminal.
Vertex Multiway Cut with c (undeletable) terminals t1, . . . , tc: Let H be c independ-
ent vertices v1, . . . , vc selfloops. First we modify the graph: if terminal ti is adjacent
to a vertex w, then we replace ti by n = |V (G)| degree-1 copies adjacent to w. Then
the problem can be expressed as LHomVD(H) where the list is {vi} for each copy of ti

and {v1, . . . , vc} for each non-terminal vertex. Observe that it does not make sense to
delete a copy of any terminal. Therefore, the optimal solution to LHomVD(H) is a set
of vertices, disjoint from the terminals, that separates the original terminals.

For every fixed H, our results give tight lower bounds for LHomVD(H) and LHomED(H),
parameterized by the width of the given tree decomposition problems. This comprehensive
set of results reprove earlier lower bounds on basic problems in a uniform way, extend
them to new problems that have not been considered before (e.g., Multiway Cut), and
in fact fully investigate a large, well-defined family of problems. Earlier results in this area
typically focused on specific problems or relatively minor variants of a specific problem.

ESA 2024

39:4 List Homomorphisms by Deleting Edges and Vertices

Compared to that, our results focus on a family of problems that include a diverse set
of optimization problems interesting on their own right. The tight characterization also
includes an algorithmic surprise: for some LHomED(H) problems, the obvious brute force
algorithm is not optimal on its own, one needs to consider a new form of decomposition into
subproblems to achieve the best possible algorithm.

Polynomial-time cases. The seminal work of Nešetřil and Hell [24] characterized the
polynomial-time solvable cases of Hom(H): it can be solved in polynomial time if H is
bipartite or has a loop, and it is NP-hard for every other fixed H. For the more general list
version, we need more restrictions: Feder, Hell, and Huang [16] showed that the problem
is polynomial-time solvable if H is a bi-arc graph. It is somewhat surprising that the
polynomial-time solvability of the deletion versions has not been systematically studied,
despite the amount of attention this type of problems received in the literature [24, 13, 15, 25,
16, 17, 29, 10, 7, 1, 14, 30, 23, 18]. This list also includes a lot of research on generalizations
of the deletion problems, namely, minimum cost homomorphism and valued constraint
satisfaction problems. Our first contribution is a polynomial-time versus NP-hard dichotomy
for LHomVD(H) and LHomED(H). As expected, these more general problems remain
polynomial-time solvable only for an even more restricted class of graphs. In particular,
the reduction above from Vertex Cover shows that LHomVD(H) becomes NP-hard
already when there is a single loopless vertex in H and hence we can expect polynomial-time
algorithms only for reflexive graphs H.

▶ Theorem 1. The LHomVD(H) problem is polynomial-time solvable if H is reflexive and
does not contain any of the following:
1. three pairwise non-adjacent vertices,
2. an induced four-cycle, or
3. an induced five-cycle.
Otherwise, LHomVD(H) is NP-hard.

Edge-deletion problems are typically easier than their vertex-deletion counterparts, but
the boundary line between the easier and hard cases is more difficult to characterize. This is
also true in our case: for LHomED(H), the graph H does not have to be reflexive to make
the problem polynomial-time solvable, hence the proof of the classification result becomes
significantly more complicated as graphs with both reflexive (i.e., looped) and irreflexive
(i.e., non-looped) vertices must be handled as well. We need the following definition to state
the dichotomy result. We say that the three vertices v1, v2, v3 have private neighbors if
there are vertices v′

1, v′
2, v′

3 (not necessarily disjoint from {v1, v2, v3}) such that vi and v′
j are

adjacent if and only if i = j. In particular, if {v1, v2, v3} are independent reflexive vertices
then they have private neighbors. Co-private neighbors are defined similarly, but i = j is
replaced by i ̸= j. In particular, if {v1, v2, v3} are pairwise adjacent irreflexive vertices, then
they have co-private neighbors. Finally, we say an edge is irreflexive if both of its endpoints
are irreflexive vertices.

▶ Theorem 2. The LHomED(H) problem is polynomial time solvable if H does not contain
any of the following:
1. an irreflexive edge,
2. a 3-vertex set with private neighbors, or
3. a 3-vertex set with co-private neighbors.
Otherwise, LHomED(H) is NP-hard.

B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 39:5

The proof of Theorem 2 exploits a delicate interplay between the geometric bi-arc
representation (in the algorithm) and the characterization by forbidden subgraphs (for
hardness). While the proofs of these dichotomy results are non-trivial, we do not consider
them to be the main results of the paper. Clearly, understanding the easy and hard cases
of the problem is a necessary prerequisite for the lower bounds we are aiming at, hence we
needed to prove these dichotomy results as they were not present in the literature in this
form. We remark that LHomED(H) can be formulated as a Valued Constraint Satisfaction
Problem (VCSP) with a single binary relation, hence the existence of a polynomial-time
versus NP-hard dichotomy should follow from known results on the complexity of VCSP
[33, 42, 34]. However, we obtain in a self-contained way a compact statement of an easily
checkable classification property with purely graph-theoretic proofs and algorithms.

Bounded-treewidth graphs, vertex deletion. Let us first consider the vertex-deletion
version LHomVD(H) and determine how exactly the complexity of the problem depends on
treewidth. We assume that the input contains a tree decomposition of G having width t,
we try to determine the smallest c such that the problem can be solved in time ct · nO(1).
This question has been investigated for Hom(H) [41], LHom(H) [11, 40], and the counting
version of LHom(H) [20].

Standard dynamic programming techniques show that LHomVD(H) can be solved in
time (|V (H)| + 1)t · nO(1) if a tree decomposition of width t is given: each vertex has |V (H)|
possible “states” corresponding to where it is mapped to, plus one more state corresponding
to deleting the vertex. For some H, this naive algorithm can be improved the following
way. First, if every vertex in G has a list of size at most ℓ, then (|V (H)| + 1) can be
improved to ℓ + 1: each vertex has only ℓ states corresponding to the possible images, plus
the state representing deletion. Second, we say that a set S ⊆ V (H) is incomparable if the
neighborhoods of any two vertices in S are incomparable, that is, for any u, v ∈ S, there is
u′ ∈ Γ(u) \ Γ(v) and v′ ∈ Γ(v) \ Γ(u) (we denote by Γ(v) the neighborhood of a vertex v,
which includes v itself if it has a loop). Let i(H) be the size of the largest incomparable set
in H. The main observation (already made in [11, 40]) is that we can assume that every
list L(v) is an incomparable set: if Γ(v) ⊆ Γ(v′) for v, v′ ∈ L(v), then we can always use v′

in place of v in a solution. Therefore, we can assume that every list has size at most i(H),
resulting in running time (i(H) + 1)t · nO(1). Our main result for the vertex-deletion version
shows the optimality of this running time.

▶ Theorem 3 (Main result for treewidth, vertex deletion). Let H be a fixed graph which
contains either an irreflexive vertex or three pairwise non-adjacent reflexive vertices or an
induced reflexive cycle on four or five vertices. Then LHomVD(H) on n-vertex instances
given with a tree decomposition of width t

(a) can be solved in time (i(H) + 1)t · nO(1) and
(b) cannot be solved in time (i(H) + 1 − ε)t · nO(1) for any ε > 0, unless the SETH fails.

Theorem 3 refines the NP-hardness of Theorem 1 by obtaining a lower bound that precisely
matches the algorithm described previously. This shows that for LHomVD(H), restricting
the lists to incomparable sets is the only algorithmic idea that can improve the running
time of the naive algorithm. In particular, we cannot consider the connected components
of H separately (as was possible in the earlier results [41, 40, 11, 20]). It is an essential
feature of the deletion problem that hardness can stem from disconnected structures. (Note,
for example, that Multiway Cut is expressed by a graph H with multiple connected
components, each of which individually does not entail hardness.) This difference makes

ESA 2024

39:6 List Homomorphisms by Deleting Edges and Vertices

it necessary to approach the problem in a novel way: while earlier hardness proofs mostly
relied on the idea of translating values by “moving them along a path in H,” in our proofs
we translate values by “jumping around,” potentially using nonedges as well. This makes it
much less clear how the graph-theoretic structure of H should be connected to the complexity
of the problem.

Bounded-treewidth graphs, edge deletion. For the edge-deletion version LHomED(H),
the natural expectation is that i(H)t · nO(1) is the best possible running time: as vertices
cannot be deleted, each vertex v has only |L(v)| ⩽ i(H) states in the dynamic programming.
While this running time can be achieved using the idea of incomparable sets, it turns out that,
somewhat surprisingly, this is not the optimal running time for every H. There are graphs
H for which LHomED(H) can be solved significantly faster, thanks to a new algorithmic
idea, the use of a specific form of decomposition. We need the following definition.

▶ Definition 4 (Decomposition). Given a graph H with vertex set V and a partition of V

into three possibly empty sets A, B, and C, we say that (A, B, C) is a decomposition of H if
the following hold:

B is a reflexive clique with a full set of edges between A and B,
C is an (irreflexive) independent set with no edge between A and C,
A ̸= ∅ and B ∪ C ̸= ∅.
The crucial property of this definition is that if S is an incomparable set, then it is

fully contained in one of A, B, or C. Indeed, for any a ∈ A, b ∈ B, c ∈ C, we have
Γ(c) ⊆ Γ(a) ⊆ Γ(b). Therefore, if we assume that each list L(v) is an incomparable set, then
each L(v) is a subset of one of these three sets. Let VA, VB , VC be the sets of vertices of G

whose lists are a subset of A, B, and C, respectively. Observe that if u ∈ VA and v ∈ VB

are adjacent in G, then whenever assignment f : V (G) → V (H) respects the lists of u and
v, then f(u)f(v) is always an edge of H (as A and B are fully connected). Therefore, the
edge uv of G does not play any role in the problem. Similarly, if u ∈ VA and v ∈ VC , then
f(u)f(v) is never an edge of H (as A and C are independent), hence uv always has to be
deleted in the solution. This means that the edges between VA and VB ∪ VC can be ignored
and the problem falls apart into two independent instances G[VA] of LHomED(H[A]) and
G[VB ∪ VC] of LHomED(H[VB ∪ VC]).

How does this observation help solving the problem more efficiently? As every incom-
parable set is a subset of one of the three sets, we have i(H) = max{i(H[A]), i(H[B ∪ C])}.
Thus it seems that one of the two instances will be at least as hard as the original instance.
The catch is that it could happen that one of the two instances is polynomial-time solvable
and contains a large incomparable set, while the other is NP-hard but contains only small
incomparable sets. For example, it is possible that i(H) = i(H[A]) = k, i(H[B ∪ C]) = 3,
but LHomED(H[A]) is polynomial-time solvable. Then we can decompose the problem into
an instance of LHomED(H[A]) and an instance of LHomED(H[B ∪ C]), solve the former
in polynomial time, and the latter in time i(H[B ∪ C])t · nO(1) = 3t · nO(1). Figure 1 shows
an example where this situation occurs.

Our main result for the edge-deletion version is showing that there are precisely two
algorithmic ideas that can improve the running time for LHomED(H): restricting the lists
to incomparable sets and exploiting decompositions. Formally, let i•(H) be the maximum of
i(H ′) taken over all induced undecomposable subgraphs H ′ of H that are not classified as
polynomial-time solvable by Theorem 2, i.e., these are the graphs H that contain at least on of
an irreflexive edge, 3 vertices with private neighbors, or 3 vertices with co-private neighbors.

B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 39:7

. . .

. . .

. . .

. . .

a1 a2 ai a2k

b1 b2 bi bi+k−1 b2k

BA C

u1
u2

u3

v1

v2

v3

. . .

. . .

ai+k−1

. .

Figure 1 An example of a graph H that has a decomposition (A, B, C), with i(H) = k and
i•(H) = 3. The ai’s form an irreflexive independent set and the bi’s form a reflexive clique. Every
vertex ai is adjacent to {bi, . . . , bi+k−1}, and {u1, u2, u3} is fully adjacent to every ai and bi. Observe
that i(H) ⩾ i(H[A]) ⩾ k, as vertices a1, . . . , ak have incomparable neighborhoods. There is no
irreflexive edge in H[A], and it can be checked that there is no 3-element set with private or co-private
neighbors, implying that LHomED(H[A]) is polynomial-time solvable. But {u1, u2, u3} has private
neighbors, making LHomED(H) NP-hard.

▶ Theorem 5 (Main result for treewidth, edge deletion). Let H be a fixed graph that
contains either an irreflexive edge, three vertices with private neighbors, or three vertices
with co-private neighbors. Then LHomED(H) on n-vertex instances given with a tree
decomposition of width t

(a) can be solved in time i•(H)t · nO(1) and
(b) cannot be solved in time (i•(H) − ε)t · nO(1) for any ε > 0, unless the SETH fails.

For the lower bound of Theorem 7, it is sufficient to prove that i•(H) is the correct base
of the exponent if H is undecomposable. The flavor of the proof is similar to the proof of
Theorem 6, but more involved. One reason for the extra complication is that vertex-deletion
problems typically give us more power when designing gadgets in a reduction than edge-
deletion problems. But beyond that, an inherent difficulty in the proof of Theorem 7 is that
the proof needs to exploit somehow the fact that H is undecomposable. Therefore, we need
to find an appropriate certificate that the graph is undecomposable and use this certificate
in the gadget construction throughout the proof.

Parameterization by hub size. Esmer et al. [12] presented a new perspective on lower
bounds parameterized by the width of the tree decomposition given in the input. It was
shown that many of these lower bonds hold even if we consider a larger parameter. These
results showed that for many problems hard instances do not have to use the full power of tree
decompositions (not even of path decompositions), the real source of hardness is instances
consisting of a large central “hub” connected to an unbounded number of constant-sized
components.

Formally, we say that a set Q of vertices is a (σ, δ)-hub of G if every component of G − Q

has at most σ vertices and each such component is adjacent to at most δ vertices of Q in G.
Observe that if a graph has a (σ, δ)-hub core of size p, then this can be turned into a tree
decomposition of width less than p + σ. This shows that if a problem can be solved in time
ct · nO(1) given a tree decomposition of width t is given in the input, then for every fixed σ

and δ, this problem can be solved in time cp · nO(1) given a (σ, δ)-hub of size p is given in the
input. Thus any lower bound ruling out the possibility of the latter type of algorithm for a
given c also rules out the possibility of the former type of algorithm. Esmer et al. [12] showed

ESA 2024

39:8 List Homomorphisms by Deleting Edges and Vertices

that for many fundamental problems, the previously known lower bounds parameterized by
the width of the tree decomposition can be strenghtened to parameterization by hub size.
Following their work, we also present our lower bound results in such a stronger form1.

▶ Theorem 6 (Main result for hub size, vertex deletion). Let H be a fixed graph which
contains either an irreflexive vertex or three pairwise non-adjacent reflexive vertices or an
induced reflexive cycle on four or five vertices. Then for every ε > 0, there are σ, δ > 0 such
that LHomVD(H) with a (σ, δ)-hub of size p given in the input cannot be solved in time
(i(H) + 1 − ε)p · nO(1), unless the SETH fails.

▶ Theorem 7 (Main result for hub size, edge deletion). Let H be a fixed graph that
contains either an irreflexive edge, three vertices with private neighbors, or three vertices
with co-private neighbors. Then for every ε > 0, there are σ, δ > 0 such that LHomED(H)
on n-vertex instances with a (σ, δ)-hub of size p given in the input cannot be solved in time
(i•(H) − ε)p · nO(1), unless the SETH fails.

Let us observe that the lower bounds in Theorems 6 and 7 imply the lower bounds in
Theorems 3 and 5, respectively. We present these strenghened results in this paper because
obtaining them did not require any extra effort: as we shall see, we simply need to use a
stronger known lower bound as a starting point.

We prove all our lower bounds by reduction from two problems. In the q-ColoringVD
problem, given a graph G, the task is to remove the minimum number of vertices such that
the resulting graph is q-colorable. The q-ColoringED problem is similar, but here we need
to remove the minimum number of edges instead. Tight lower bounds for these problems
parameterized by the width of the tree decomposition are known [35, 22]. Recently, Esmer
et al. [12] strenghtened these results to parameterization by hub size.

▶ Theorem 8 ([12]). For every q ⩾ 1 and ε > 0, there exist integers σ, δ ⩾ 1 such that if there
is an algorithm solving in time (q + 1 − ε)p · nO(1) every n-vertex instance of q-ColoringVD
given with a (σ, δ)-hub of size at most p, then SETH fails.

▶ Theorem 9 ([12]). For every q ⩾ 2 and ε > 0, there are integers σ and δ such that if an
algorithm solves in time (q − ε)p · nO(1) every n-vertex instance of q-ColoringED that is
given with a (σ, δ)-hub of size p, then the SETH fails.

Our reductions replace edges in a q-ColoringVD or q-ColoringED instance by constant-
sized gadgets. One can observe that such a transformation has a small effect on treewidth
and also on hub size (although might change σ and δ slightly). Thus we can use Theorems 8
and 9 in a tranparent way to obtain the lower bounds in Theorems 6 and 7.

2 Technical Overview

In this section, we overview the most important technical ideas in our results. For clarity,
we start with the discussion of the vertex-deletion version and then continue with the more
complicated edge-deletion variant.

1 An astute reader might wonder if the statements below cannot be strengthened by making σ and δ
universal constants. These issues are discussed by Esmer et al. [12]; we refer to their work for more
details.

B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 39:9

2.1 Vertex-deletion version
We start with the vertex-deletion version, where both the P vs. NP-hard dichotomy and the
complexity bounds for bounded-treewidth graphs are significantly easier to prove.

Equivalence of LHomVD(H) with classic problems. We have seen earlier how Vertex
Cover, Odd Cycle Transversal, and Vertex Multiway Cut can be reduced to
LHomVD(H) for various graphs H. Let us briefly discuss reductions in the reverse direction.
It is clear that LHomVD(K1) is actually equivalent to Vertex Cover: if we remove those
vertices that have empty lists, then the problem is precisely finding a vertex cover of minimum
size. However, LHomVD(K2) seems to be more general than Odd Cycle Transversal:
a list of size one can express that the vertex has to be on a certain side of the bipartition
of G − X (if the vertex is not removed). Therefore, LHomVD(K2) is slightly more general
than Odd Cycle Transversal, and equivalent to an annotated generalization, where
given G and two sets L, R ⊆ V (G), the task is to find a set X of vertices of minimum size
such that G − X has a bipartition with R and L on different sides.

For Vertex Multiway Cut with undeletable terminals, we can reduce LHomVD(H)
(where H consists of k independent reflexive vertices w1, . . . , wk) to a multiway cut instance
G′ the following way. Given an instance (G, L) of LHomVD(H), we obtain G′ by first
extending it with k terminals t1, . . . , tk. Then for every v ∈ V (G), we introduce a clique
of size |L(v)| that is completely connected to v. We introduce a perfect matching between
the vertices of this clique and the set of terminals that corresponds to the elements of L(v).
Therefore, in every solution of Vertex Multiway Cut, all but one vertex of each clique
has to be deleted for sure. We can also assume that no more than |L(v)| − 1 vertices of the
clique are deleted: if every vertex of the clique were deleted, then we can modify the solution
by removing v instead. This means that if v is not deleted, then it is in the component of a
terminal from L(v). Therefore, it can be shown that there is a tight correspondence between
the optimum cost of the LHomVD(H) instance and the optimum cost of the Vertex
Multiway Cut instance. We can also note that this transformation increases treewidth
at most by an additive constant and if the original graph has a (σ, δ)-hub of size p, then
the constructed graph has a (σ(k + 1), δ + k)-hub of size p + k. Therefore, we can state the
following lower bound:

▶ Theorem 10. For every k ⩾ 3 and ε > 0, there are σ, δ > 0 such that Vertex Multiway
Cut with k terminals with a (σ, δ)-hub of size p given in the input cannot be solved in time
(k + 1 − ε)p · nO(1), unless the SETH fails.

Dichotomy for vertex deletion. If H contains an irreflexive vertex, then we have seen that
Vertex Cover can be reduced to LHomVD(H). For reflexive H, the NP-hard cases of
LHomVD(H) can be easily established using the following alternative characterizations of
the tractability condition:

▶ Lemma 11. Let H be a reflexive graph. The following conditions are equivalent.
1. i(H) ⩽ 2,
2. H does not contain three pairwise nonadjacent vertices, an induced four-cycle, nor an

induced five-cycle,
3. H is an interval graph whose vertex set can be covered by two cliques.

So we need to prove that LHomVD(H) is polynomial-time solvable if H is reflexive and
i(H) ⩽ 2, and it is NP-hard for every other H. If H is reflexive and contains an induced
four-cycle or an induced five-cycle, then already LHom(H) is NP-hard [13]. If H contains
three pairwise non-adjacent reflexive vertices, then we have seen that Vertex Multiway
Cut with three (undeletable) terminals can be reduced to it.

ESA 2024

39:10 List Homomorphisms by Deleting Edges and Vertices

For the polynomial cases, by Lemma 11 we need to solve the problem only when H is an
interval graph that can be partitioned into two cliques L and R. We can observe that in this
case the neighborhoods of the vertices inside L and R form two chains. Thus if we assume
that every list L(v) is an incomparable set, then every list can contain at most two vertices:
one from L and one from R.

We reduce LHomVD(H) to a minimum s-t cut problem. Note that using some form of
minimum cut techniques cannot be avoided, as s-t Min Cut can be reduced to the case when
H consists of two independent reflexive vertices. Let VL and VR be the sets of vertices v

where L(v) ⊆ L and L(v) ⊆ R, respectively. If two vertices u ̸∈ VR and v ̸∈ VL are adjacent
such that the vertex in L(u) ∩ L is not adjacent to the vertex of L(v) ∩ R, then we add
a directed edge from u to v. After a solution to LHomVD(H) is deleted, the remaining
vertices can be partitioned into a “left” and “right” part according to whether they were
mapped to L or R. The directed edge −→uv represents the constraint that we cannot have u on
the left part and v on the right part simultaneously. Then our problem is essentially reduced
to deleting the minimum number of vertices such that there is no path from VL to VR.

Reduction using gadgets. To rule out algorithms with running time (i(H) + 1 − ε)t · nO(1),
we reduce from q-ColoringVD for q = i(H) to LHomVD(H). For this purpose, we take
an incomparable set S of size i(H) and construct gadgets that can express “not equal on S.”
A gadget in this context means an instance of LHomVD(H) with a pair of distinguished
vertices (x, y). If neither of these vertices is removed, then they need to have different colors
from S. Every solution has one of the (|L(x)| + 1)(|L(y)| + 1) possible behaviors on (x, y)
(mapping to V (H) or deleting the vertices). Each behavior on (x, y) has some cost: the
minimum number of vertex deletions we need to make inside the gadget to find a valid
extension (note that this cost does not include the deletion of x and/or y). Our goal is to
construct a gadget where L(x) = L(y) = S and every behavior on (x, y) has the same cost
α, except that mapping x and y to the same vertex of S extends only with cost strictly
larger than α. We call such gadgets S-prohibitors. Then we can reduce q-ColoringVD to
LHomVD(H) by giving the list S to every vertex of the original graph G, and by replacing
each of the m edges with a copy of the S-prohibitor gadget. Then it is easy to see that
the original graph can be made q-colorable with k deletions if and only if the constructed
LHomVD(H) instance has a solution with α · |E(G)| + k deletions.

Constructing the prohibitor gadgets. A (v, S)-prohibitor gadget has two portals (x, y)
with L(x) = L(y) = S, and every behavior has cost exactly α, except that it has cost strictly
more than α when both x and y are mapped to v. By joining together (v, S)-prohibitors for
every v ∈ S, we obtain the S-prohibitor defined in the previous paragraph.

The construction of the (v, S)-prohibitors is the core technical part of the proof of
Theorem 6. The proof uses the fact that we are considering an NP-hard case of LHomVD(H)
and hence one of the obstructions listed in Theorem 1 appears in the graph H (irreflexive
vertex, three non-adjacent vertices, induced four-cycle, induced five-cycle). Some case
analysis is needed based on, e.g., the type of the obstruction that appears, but in all cases
the construction is surprisingly compact. We need three additional types of gadgets, which
are put together in the way shown in Figure 2. We can interpret the two portals x and
y of a gadget as input and output, respectively. Then setting a value on the input may
“force” a single value on the output or “allow” some values on the output, meaning that these
combinations on the input and the output can be extended with minimum cost.

B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 39:11

v′

w′
a

b

a

b

v′

w′
v

S \ {v}
v′

w′
v

S \ {v}

translator matchersplitter splittertranslator
t1 t2 t3 t4 t5 t6

Figure 2 Construction of the (v, S)-prohibitor gadget. A dashed line means there is no edge
between the two endpoints.

splitter: if the input is assigned v, then the output is forced to v′; if the input is from
S \ {v}, then the output can be either v′ or w′.
translator: if the input is assigned v′, then the output is forced to a; if the input is w′,
then the output can be b.
matcher: minimum cost can be achieved if one of the portals is assigned a and the other
is b, but cannot be achieved if both portals are assigned a.

Suppose that vertices t1 and t6 are connected with these gadgets as in Figure 2. If both t1
and t6 are mapped to v, then the splitters force t2 and t5 to v′, the translators force t3 and
t4 to a, which is incompatible with minimum cost of the matcher. On the other hand, if at
least one of t1 and t6 is mapped to a vertex from S \ {v}, then the splitters allow us to map
one of t2 and t5 to w′ and the other to v′. In this case, the translators allow us to map one of
t3 to a and the other to b, which is now compatible with the minimum cost of the matcher.

The construction of the matcher is easy if we choose a and b to be non-adjacent vertices
that are part of an obstruction. For example, if a, q, b, r is an induced reflexive four-cycle,
then a path of 5 vertices with lists {a, b} − {q, b} − {q, r} − {b, r} − {b, a} is an appropriate
matcher. Indeed, the minimum cost 0 cannot be achieved if both endpoints are mapped to a.

The splitter can be constructed in the following way. Let us choose w ∈ S \ {v}. As v

and w are incomparable, we can choose v′ ∈ Γ(v) \ Γ(w) and w′ ∈ Γ(w) \ Γ(v). Then the
splitter is a four-vertex path with lists S − V (H) \ Γ(v) − {v} − {v′, w′}. The gadget has
cost at least 1, as at least one of the two inner vertices has to be deleted. If the first vertex
is assigned v and the last vertex is assigned w′, then both inner vertices have to be deleted,
making the cost 2.

Finally, a short case analysis gives a translator. Recall from the previous paragraph that
v′ ∈ Γ(v) \ Γ(w) and w′ ∈ Γ(w) \ Γ(v), and, as a case, suppose that v′ is not a neighbor of b.
Then a six-vertex path with lists {v′, w′} − {w} − {v′} − {b} − {a} − {a, b} is a translator. At
least two of the four inner vertices have to be deleted, meaning that the cost of this gadget
is always at least 2. However, if we choose v′ on the first vertex and b on the last vertex,
then at least three of the inner vertices have to be deleted, raising the cost to 3.

2.2 Edge-deletion version
Let us turn our attention now to edge-deletion problems. While the high-level goals are
similar to the vertex-deletion version, the proofs are necessarily more involved: there are
two concepts, bi-arc graphs and decompositions that are relevant only for the edge-deletion
version.

Equivalence of LHomED(H) with classic problems. Earlier we have seen that Max Cut
and Edge Multiway Cut can be reduced to LHomED(H) when H is an irreflexive edge or
k independent reflexive vertices, respectively. Let us discuss reductions in the other direction.

ESA 2024

39:12 List Homomorphisms by Deleting Edges and Vertices

Similarly to the case of Odd Cycle Transversal for vertex deletion, LHomED(H) is
actually equivalent to an annotated generalization of Max Cut, where the two given sets L

and R should be on the two sides of the bipartition. However, this annotated generalization
is easy to reduce to the original Max Cut problem. Introduce a new vertex w and for every
v ∈ L, we connect w and v with d(v) paths of length 2; for every v ∈ R, we connect w and v

with d(v) paths of length 3. We can verify that this extension forces every vertex of L to
be on the same side as w and every vertex of R to be on the other side. Furthermore, this
extension increases treewidth only by a constant and if the original graph has a (σ, δ)-hub of
size p, then the constructed graph has a (σ′, δ′)-hub of size p + 1.

If H consists of k independent reflexive vertices w1, . . . , wk, then we can reduce an
instance (G, L) of LHomED(H) to Edge Multiway Cut the following way. Let us extend
G to a graph G′ by introducing k terminal vertices t1, . . . , tk. For every vertex v ∈ V (G),
let us introduce d(v) paths of length 2 between v and ti if L(v) contains wi. Suppose now
that, in a solution of the multiway cut instance, vertex v is in the component of ti. If wi

is not in L(v), then the solution has to cut all the |L(v)| · d(v) paths. But then we could
obtain a solution of the same size by removing all the d(v) original edges incident to v and
separating v from all but one terminal by breaking (|L(v)| − 1) · d(v) of the paths of length 2.
Thus we can assume that vertex v is in the component of some terminal from L(v), showing
that we have a reduction from LHomED(H) to Edge Multiway Cut. We can observe
that this transformation increases treewidth at most by an additive constant. Therefore, we
can obtain the following lower bound:

▶ Theorem 12. For every k ⩾ 3 and ε > 0, there are σ, δ > 0 such that Edge Multiway
Cut with k terminals on n-vertex instances given with a tree decomposition of width at most
t cannot be solved in time (k − ε)t · nO(1), unless the SETH fails.

Dichotomy for edge deletion. Feder, Hell, and Huang [16] proved that LHom(H) is
polynomial-time solvable if H is a bi-arc graph and NP-hard otherwise. Bi-arc graphs are
defined by a geometric representation with two arcs on a circle; the precise definition appears
in the full version. We start with an alternative characterization of the tractability criterion,
which can be obtained using the forbidden subgraph characterization of bi-arc graphs [17, 16].

▶ Lemma 13. The following two are equivalent:
1. H does not contain an irreflexive edge, a 3-vertex set S with private neighbors, or a

3-vertex set S with co-private neighbors.
2. H is a bi-arc graph that does not contain an irreflexive edge or a 3-vertex set S with

private neighbors.
With Lemma 13 in hand, the NP-hardness part of Theorem 2 follows easily. If H is not a

bi-arc graph, then already LHom(H) is NP-hard; if H contains an irreflexive edge or three
vertices with private neighbors, then we can reduce from Max Cut or Edge Multiway
Cut with 3 terminals, respectively.

Similarly to the proof of Theorem 1, the polynomial-time part of Theorem 2 is based on
a reduction to a flow problem. The fundamental difference is that in the edge-deletion case,
there are graphs H such that i(H) > 2, but LHomED(H) is polynomial-time solvable (an
example of such a graph is H[A] from Figure 1). Thus, even if we assume that the list of a
vertex is an incomparable set, it can have size larger than 2. Therefore, a simple reduction
to s-t Min Cut where placing a vertex v on one of two sides of the cut corresponds to the
choice between the two elements of the list L(v) cannot work. Instead, we represent each
vertex v with multiple vertices. Let ℓ = |L(v)|. We represent vertex v with a directed path

B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 39:13

1

0 0

0

0

1

1

a1

a2

a3

a4

a5

b1 b2 b3 b4

a1

a2

a3

a4

a5

b1 b2 b3 b4

Figure 3 Representing the interaction of two vertices u and v with L(v) = {a1, . . . , a5} and
L(u) = {b1, . . . , b4}. Black areas denote ones in the interaction matrix.

on ℓ + 1 vertices, where we enforce (with edges of large cost) that the first and last vertices
are always on the right and left side of the cut. We imagine the edges of the path to be
undeletable, for example, each edge has large weight, implying that a minimum weight s-t
cut would not remove any of them. This means that the path has ℓ possible states in a
minimum s-t cut: the only possibility is that for some i ∈ [ℓ], the first i vertices of the path
are on the right side (the side corresponding to t), and the remaining ℓ + 1 − i vertices are on
the left side (corresponding to s). Based on the geometric representation on the bi-arc graph
H, we define an ordering L(v) = {a1, . . . , aℓ} of each list. The idea is that assigning ai to v

corresponds to the state where the first i vertices of the path are on the right side of the cut.
To enforce this interpretation, whenever u and v are adjacent vertices in G, we introduce

some edges between the paths representing u and v. These edges are introduced in a way
that faithfully represents the interaction matrix of u and v, which is defined as follows. Let
L(u) = {a1, . . . , aℓu

} and L(v) = {b1, . . . , bℓv
} in the ordering of the lists. The interaction

matrix of u and v is a |L(u)| × |L(v)| matrix where the element in row i and column j is 1 if
aibj ∈ E(H), and 0 otherwise.

Figure 3 (left) shows an example where L(u) = {a1, . . . , a5}, L(v) = {b1, . . . , b4}, and the
interaction matrix is as shown in the figure, i.e., the 0s form a rectangle in the top-right
corner. Then we introduce an edge from the fourth vertex of the path of u to the third vertex
of the path of v. In the minimum s-t cut problem, this edge has to be removed whenever
the tail of the edge is on the left side and the head of the edge is on the right side, which
corresponds to assigning one of {a1, a2, a3} to u and one of {b3, b4} to v. Therefore, we need
to remove this edge if and only if the states of the two paths correspond to a 0 entry in
the interaction matrix, that is, when the edge uv has to be removed since its image is not
an edge of H. This means that this single edge indeed faithfully represents this particular
interaction matrix.

Through a detailed analysis of bi-arc graphs without irreflexive edges and 3-vertex sets
with private neighbors, we determine how interaction matrices can look like. It turns out that
the 0s in the matrix can be partitioned into at most three “nice” rectangles: appearing in the
top-right corner, appearing in the lower-left corner, or having full width |L(v)| (see Figure 3,
right). Each such nice rectangle can be represented by an edge, thus every interaction matrix
can be represented by at most three edges such that in the solution we need to remove at
most one of them.

Algorithms on bounded-treewidth graphs. As discussed on Page 6, if H has a decomposition
as in Definition 4, then LHomED(H) can be reduced to an instance of LHomED(H1) and an
instance of LHomED(H2), where H1 = H[A] and H2 = H[B∪C]. It follows that if we use the
i(H)t ·nO(1)-time algorithm whenever H is undecomposable, then we obtain an i•(H)t ·nO(1)-

ESA 2024

39:14 List Homomorphisms by Deleting Edges and Vertices

time algorithm for every H. Furthermore, proving that there is no (i(H) − ε)t · nO(1)-time
algorithm for undecomposable H proves that there is no (i•(H) − ε)t · nO(1)-time algorithm
for arbitrary H.

Reductions using gadgets. For the lower bound of Theorem 7, it is sufficient to prove
the statement under the assumption that H is undecomposable, hence i•(H) = i(H). For
q ⩾ 3, we prove the lower bound by a reduction from q-ColoringED, whose hardness
was established in Theorem 9. As in the vertex-deletion case, we use gadgets that allow a
straightforward reduction and the construction of these gadgets is the core technical part of
the proof.

Here, a gadget is an instance with a set of distinguished vertices called portals. Defining
the intended behavior of gadgets is neater in the edge-deletion case as the possibility of
deleting portals does not complicate matters. For every assignment of the portals, the cost
of the assignment is the minimum number of edges that needs to be deleted if we want
to extend the assignment to the rest of the gadget. We can use the gadget to enforce
that the assignment of the portals is one of minimum cost. Therefore, in order to reduce
LHomED(Kq) to LHomED(H), we choose an incomparable set S of size q and design a
gadget that has two portals (p1, p2) with L(p1) = L(p2) = S, and every assignment f with
f(p1) ̸= f(p2) has cost exactly α, while every assignment with f(p1) = f(p2) has cost β

strictly more than α. We replace every edge of the original graph G with such a gadget. It
is clear that the constructed LHomED(H) instance has a solution of cost α|E(G)| if and
only if G is q-colorable.

Realizing relations. Let c, d ∈ V (H) be two vertices and let R ⊆ {c, d}r be an arbitrary
r-ary relation. We would like to prove a general statement saying that every such relation
can be realized by some gadget: there is a gadget with r portals such that

the list of each portal vertex is {c, d},
an assignment on the portal vertices has cost exactly α if it corresponds to a vector in R,
and
the cost of every other assignment is β > α.

We show that if c and d are two vertices chosen from one of the obstructions appearing
in Lemma 13 (1) (irreflexive edges, three vertices with private or co-private neighbors),
then such a gadget representing R ⊆ {c, d}r can indeed be constructed. Crucially, this
requires to construct some gadget that realizes the “Not Equals” relation on {c, d}, i.e.,
NEQ = {(c, d), (d, c)}. With NEQ in hand, we use an earlier result from [12] for the list
coloring problem, which shows that NEQ can be used to model arbitrary relations. Note that
this is the point where we use the assumption that we are in the NP-hard case of Theorem 2
(which we definitively have to use at some point): We exploit the structure of an obstruction
to model NEQ on two of its vertices.

Indicators. Our next goal is to construct indicator gadgets, defined as follows. The gadget
has λ + 1 portals for some constant λ. Portal p has list S, and the remaining λ portals
have list {c, d}. Let α be the minimum number of edge deletions that are needed in the
gadget. We can think of p as the input and the rest of the portals as the outputs. If we
are interested only in solutions where exactly α deletions are made inside the gadget, then
assigning a value a to the input is compatible with some set I(a) ⊆ {c, d}λ of assignments on
the outputs. The indicator gadget has two properties: (1) I(a) is non-empty for any a ∈ S

and (2) I(a) ∩ I(b) = ∅ for any two distinct a, b ∈ S.

B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 39:15

If we can construct indicator gadgets, then we can construct the gadget needed to reduce
from q-Coloring (that is, expressing f(p1) ̸= f(p2)) in the following way. Let us introduce
two copies of the indicator gadget on vertices (p1, u1, . . . , uλ) and on (p2, v1, . . . , vλ). We have
L(p1) = L(p2) = S and L(ui) = L(vi) = {c, d} for i ∈ [λ]. Then we define an appropriate
2λ-ary relation R ⊆ {c, d}2λ, realize it with a gadget as discussed above, and then put this
gadget on the vertices {u1, . . . , up, v1, . . . , vp}. We define the relation R such that it rules
out for any a ∈ S that the assignment on (u1, . . . , uλ) is from I(a) and the assignment on
(v1, . . . , vλ) is also from I(a); as we can realize any relation R, we can certainly realize such
a gadget. Then this gadgets enforces, for any a, that the value a cannot appear on both p1
and p2 simultaneously, but allows every other combination.

We construct indicator gadgets for λ = |S|(|S| − 1). For every pair (a, b) of distinct
vertices from S, we construct a subgadget with two portals (q1, q2) with L(q1) = S and
L(q2) = {a′, b′} for some a′, b′ ∈ V (H), and satisfying the following:
1. assigning a on q1 forces a′ on q2.
2. assigning b on q1 forces b′ on q2.
3. for any e ∈ S \ {a, b}, assigning e on q1 allows at least one of a′ or b′ on q2.
We construct |S|(|S| − 1) such subgadgets – one for every distinct (a, b). The construction of
these subgadgets is fairly simple, but in general the pair (a′, b′) can be different for every
pair (a, b). If we were so lucky that every pair (a′, b′) is actually (c, d), then we would be
done with the construction of the indicator. In this case, we can simply join these |S|(|S| − 1)
subgadgets at q1 to obtain a gadget with input q1 and |S|(|S| − 1) output vertices. Now it is
clear that if we assign values a and b to the input, then they cannot be compatible with the
same assignment on the output vertices: in the subgadget corresponding to pair (a, b), value
a on the input forces c on the output, while value b forces d on the output.

In general, however, we cannot expect (a′, b′) to be the same pair (c, d) for every choice
of (a, b). Therefore, the final component is a gadget that “moves” an arbitrary pair (a′, b′) to
(c, d).

Moving pairs. We say that there is an (a, b) → (c, d) move if there is a gadget with two
portals (x, y) with L(x) = {a, b}, L(y) = {c, d}, and the following property: assigning a

(resp., b) to x forces c (resp., d) on y. In most cases, it is not very important to us which of
a and b is mapped to c or d, only the uniqueness of the mapping is important. Therefore,
we introduce the notation {a, b}⇝ {c, d} move to mean either an (a, b) → (c, d) move or an
(a, b) → (d, c) move. The main result is that if the graph H is undecomposable, then we can
have such moves between any two pairs of incomparable vertices.

▶ Lemma 14. Let H be an undecomposable graph. Let {a, b} and {c, d} be (not necessarily
disjoint) 2-vertex incomparable sets in H. Then {a, b}⇝ {c, d}.

The assumption that H is undecomposable is essential here: one can observe that if there
is a decomposition (A, B, C) and a, b ∈ A and c, d ∈ B, then an {a, b} → {c, d} move cannot
exist: intuitively, we cannot transmit information through the complete connection between
A and B.

The first step of the proof is to show that such a move exists if the 2-vertex incomparable
sets intersect: that is, there is a {a, b} ⇝ {a, c} move whenever {a, b} and {a, c} are
incomparable sets. This suggests defining the following auxiliary graph Aux(H): the vertices
of Aux(H) correspond to 2-vertex incomparable sets, and two such vertices are connected if
they represent pairs that intersect. Our main goal is showing that (a large part of) Aux(H)
is connected. As discussed above, the proof has to use the fact that H is undecomposable.

ESA 2024

39:16 List Homomorphisms by Deleting Edges and Vertices

`0 = a `1 `2 `3 `4

r1 r4r2 r3

Figure 4 An alternating path certifying that a is moved to B. Vertex ℓ4 is maximal.

We consider two cases depending on whether H is a strong split graph or not, that is, whether
it can be partitioned into a reflexive clique and an irreflexive independent set. The way we
can exploit the non-existence of decompositions depends on whether H is in this class or not.

Case I: strong split graphs. In the case of a strong split graph, the following algorithm can
be used to detect if there is a non-trivial decomposition. Let us assume that H does not have
universal or independent vertices. We say that a vertex is maximal if its neighborhood is
inclusionwise maximal, that is, there is no vertex that is adjacent to a proper superset of the
neighborhood. The key observation is that every maximal vertex has to be in part B of the
decomposition. Therefore, we initially move every maximal vertex into B and move every
other vertex to A. Then we repeatedly apply the following two steps as long as possible:

If v ∈ A is irreflexive and not adjacent to some vertex in B, then we move v into C.
If v ∈ A is reflexive and adjacent to C, then we move v into B.

It can be checked that the algorithm is correct: if it stops with a non-empty set A, then
(A, B, C) is a valid decomposition. Thus the assumption that H has no decomposition implies
that the algorithm moves every vertex to B ∪ C.

Consider an incomparable pair {a, b} that we want to move to {c, d}. It is sufficient to
consider only the case where a and b are both reflexive. The algorithm eventually moves
a to B, and there is a sequence of moves that certify this. That is, there is a sequence
ℓ0, r1, ℓ1, r1, . . . , rk, ℓk such that ℓ0 = a, ℓk is a maximal reflexive vertex, ℓi is a reflexive vertex
adjacent to ri+1, and ri is an irreflexive vertex not adjacent to ℓi (see Figure 4). If we choose
this alternating path certificate to be of minimal length, then ℓi and ℓi+1 are incomparable:
ri+1 and ri+2 are adjacent to exactly one of them. Therefore, the pairs {ℓi, ℓi+1} and
{ℓi+1, ℓi+2} are adjacent in Aux(H), implying that {a, b} is in the same component of
Aux(H) as {ℓk−1, ℓk}. If q is some maximal vertex with a neighborhood distinct from ℓk,
then {ℓk, q} is also incomparable, and it is adjacent to {ℓk−1, ℓk}. The conclusion is that
every incomparable pair {a, b} is in the same component as some pair {a′, b′} of incomparable
maximal vertices. Therefore, it is sufficient to show that whenever {a′, b′} and {c′, d′} are
two pairs of incomparable vertices such that a′, b′, c′, d′ are all maximal, then {a′, b′} and
{c′, d′} are in the same component of Aux(H). Then at least one of {a′, d′} or {a′, c′} is
incomparable (depending on whether Γ(a′) = Γ(c′) or not). Either of these pairs is adjacent
to both {a′, b′} and {c′, d′}.

Case II: graphs that are not strong split graphs. If H is not a strong split graph, then
either it contains two adjacent irreflexive vertices, or two non-adjacent reflexive vertices. We
can find a decomposition the following way. Initially, we

put into A every reflexive vertex that is not adjacent to some other reflexive vertex, and
put into A every irreflexive vertex that is adjacent to some other irreflexive vertex.

B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 39:17

Then we repeat the following two steps as long as possible:
If v ̸∈ A is irreflexive and adjacent to A, then we move v into A.
If v ̸∈ A is reflexive and not adjacent to some vertex in A, then we move v into A.

Again, we can verify that if the algorithm stops without moving every vertex to A, then we
have a non-trivial decomposition. Therefore, for every vertex a, the algorithm provides a
sequence of moves that certifies that a has to be in part A of any decomposition. Similarly to
the previous case, we can use such a (minimal) certificate to show that every (a, b) is in the
same component of Aux(H) as some (a′, b′), where a′ and b′ are either adjacent irreflexive
vertices or non-adjacent reflexive vertices. Therefore, all that is left to show is that if both
(a′, b′) and (c′, d′) have this property, then they are in the same component of Aux(H). This
can be proved with a short case analysis.

References
1 Jan Bok, Richard C. Brewster, Tomás Feder, Pavol Hell, and Nikola Jedlicková. List ho-

momorphism problems for signed graphs. In Javier Esparza and Daniel Král’, editors, 45th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2020,
August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 20:1–20:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.20.

2 Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over
tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium
on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark,
volume 63 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.IPEC.2016.8.

3 Rajesh Chitnis, László Egri, and Dániel Marx. List H-coloring a graph by removing few
vertices. Algorithmica, 78(1):110–146, 2017. doi:10.1007/s00453-016-0139-6.

4 Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A tight lower bound for counting
Hamiltonian cycles via matrix rank. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 1080–1099. SIAM, 2018. doi:10.1137/1.9781611975031.70.

5 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669. SIAM,
2016. doi:10.1137/1.9781611974331.ch113.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Víctor Dalmau, László Egri, Pavol Hell, Benoît Larose, and Arash Rafiey. Descriptive
complexity of list H-coloring problems in logspace: A refined dichotomy. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10,
2015, pages 487–498. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.52.

8 Josep Díaz, Maria J. Serna, and Dimitrios M. Thilikos. Recent results on parameterized H-
colorings. In Jaroslav Nešetřil and Peter Winkler, editors, Graphs, Morphisms and Statistical
Physics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, March
19-21, 2001, volume 63 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 65–85. DIMACS/AMS, 2001. doi:10.1090/dimacs/063/05.

9 Josep Díaz, Maria J. Serna, and Dimitrios M. Thilikos. Counting h-colorings of partial k-trees.
Theor. Comput. Sci., 281(1-2):291–309, 2002. doi:10.1016/S0304-3975(02)00017-8.

10 László Egri, Pavol Hell, Benoît Larose, and Arash Rafiey. Space complexity of list H-colouring:
a dichotomy. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM

ESA 2024

https://doi.org/10.4230/LIPIcs.MFCS.2020.20
https://doi.org/10.4230/LIPIcs.IPEC.2016.8
https://doi.org/10.1007/s00453-016-0139-6
https://doi.org/10.1137/1.9781611975031.70
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/LICS.2015.52
https://doi.org/10.1090/dimacs/063/05
https://doi.org/10.1016/S0304-3975(02)00017-8

39:18 List Homomorphisms by Deleting Edges and Vertices

Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 349–365. SIAM, 2014. doi:10.1137/1.9781611973402.26.

11 László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from bounded-
treewidth graphs to reflexive graphs: a complete complexity characterization. In Rolf
Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Com-
puter Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96
of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.STACS.2018.27.

12 Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental problems
on bounded-treewidth graphs: The real source of hardness. CoRR, abs/2402.07331, 2024.
doi:10.48550/arXiv.2402.07331.

13 Tomas Feder and Pavol Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial
Theory, Series B, 72(2):236–250, 1998. doi:10.1006/jctb.1997.1812.

14 Tomás Feder and Pavol Hell. Complexity of correspondence H-colourings. Discret. Appl.
Math., 281:235–245, 2020. doi:10.1016/j.dam.2019.11.005.

15 Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc graphs.
Comb., 19(4):487–505, 1999. doi:10.1007/s004939970003.

16 Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homo-
morphisms. J. Graph Theory, 42(1):61–80, 2003. doi:10.1002/jgt.10073.

17 Tomás Feder, Pavol Hell, and Jing Huang. The structure of bi-arc trees. Discret. Math.,
307(3-5):393–401, 2007. doi:10.1016/j.disc.2005.09.031.

18 Tomás Feder, Pavol Hell, David G. Schell, and Juraj Stacho. Dichotomy for tree-structured
trigraph list homomorphism problems. Discret. Appl. Math., 159(12):1217–1224, 2011. doi:
10.1016/j.dam.2011.04.005.

19 Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp
Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating
sets in bounded-treewidth graphs. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 3664–3683. SIAM, 2023. doi:10.1137/1.9781611977554.
ch140.

20 Jacob Focke, Dániel Marx, and Paweł Rzążewski. Counting list homomorphisms from graphs
of bounded treewidth: tight complexity bounds. In Joseph (Seffi) Naor and Niv Buchbinder,
editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 431–458. SIAM, 2022.
doi:10.1137/1.9781611977073.22.

21 Geňa Hahn and Claude Tardif. Graph homomorphisms: structure and symmetry, pages
107–166. Springer Netherlands, Dordrecht, 1997. doi:10.1007/978-94-015-8937-6_4.

22 Falko Hegerfeld and Stefan Kratsch. Towards exact structural thresholds for parameterized
complexity. In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on
Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany,
volume 249 of LIPIcs, pages 17:1–17:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.IPEC.2022.17.

23 Pavol Hell, Monaldo Mastrolilli, Mayssam Mohammadi Nevisi, and Arash Rafiey. Approx-
imation of minimum cost homomorphisms. In Leah Epstein and Paolo Ferragina, editors,
Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September
10-12, 2012. Proceedings, volume 7501 of Lecture Notes in Computer Science, pages 587–598.
Springer, 2012. doi:10.1007/978-3-642-33090-2_51.

24 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B,
48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

25 Pavol Hell and Jaroslav Nešetřil. Counting list homomorphisms and graphs with bounded
degrees. In Jaroslav Nešetřil and Peter Winkler, editors, Graphs, Morphisms and Statistical
Physics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, March

https://doi.org/10.1137/1.9781611973402.26
https://doi.org/10.4230/LIPIcs.STACS.2018.27
https://doi.org/10.48550/arXiv.2402.07331
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1016/j.dam.2019.11.005
https://doi.org/10.1007/s004939970003
https://doi.org/10.1002/jgt.10073
https://doi.org/10.1016/j.disc.2005.09.031
https://doi.org/10.1016/j.dam.2011.04.005
https://doi.org/10.1016/j.dam.2011.04.005
https://doi.org/10.1137/1.9781611977554.ch140
https://doi.org/10.1137/1.9781611977554.ch140
https://doi.org/10.1137/1.9781611977073.22
https://doi.org/10.1007/978-94-015-8937-6_4
https://doi.org/10.4230/LIPIcs.IPEC.2022.17
https://doi.org/10.1007/978-3-642-33090-2_51
https://doi.org/10.1016/0095-8956(90)90132-J

B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 39:19

19-21, 2001, volume 63 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 105–112. DIMACS/AMS, 2001. doi:10.1090/dimacs/063/08.

26 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford lecture
series in mathematics and its applications. Oxford University Press, 2004.

27 Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity. Comput.
Sci. Rev., 2(3):143–163, 2008. doi:10.1016/j.cosrev.2008.10.003.

28 Pavol Hell and Jaroslav Nešetřil. In praise of homomorphisms. Comput. Sci. Rev., 40:100352,
2021. doi:10.1016/j.cosrev.2020.100352.

29 Pavol Hell and Arash Rafiey. The dichotomy of list homomorphisms for digraphs. In Dana
Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1703–
1713. SIAM, 2011. doi:10.1137/1.9781611973082.131.

30 Pavol Hell and Arash Rafiey. The dichotomy of minimum cost homomorphism problems for
digraphs. SIAM J. Discret. Math., 26(4):1597–1608, 2012. doi:10.1137/100783856.

31 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters,
tight bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90–117, 2019.
doi:10.1016/j.dam.2018.11.002.

32 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-
augmentation. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages
938–947. ACM, 2022. doi:10.1145/3519935.3520018.

33 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The complexity of general-
valued CSPs. SIAM J. Comput., 46(3):1087–1110, 2017. doi:10.1137/16M1091836.

34 Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued CSPs. J.
ACM, 60(2):10:1–10:38, 2013. doi:10.1145/2450142.2450146.

35 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

36 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity
results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 95:1–95:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.95.

37 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-factor is FPT parameterized by
treewidth and list size (but counting is hard). In Holger Dell and Jesper Nederlof, editors, 17th
International Symposium on Parameterized and Exact Computation, IPEC 2022, September
7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 22:1–22:23. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.22.

38 Hermann A. Maurer, Arto Salomaa, and Derick Wood. Colorings and interpretations: a
connection between graphs and grammar forms. Discret. Appl. Math., 3(2):119–135, 1981.
doi:10.1016/0166-218X(81)90037-8.

39 Hermann A. Maurer, Ivan Hal Sudborough, and Emo Welzl. On the complexity of the general
coloring problem. Inf. Control., 51(2):128–145, 1981. doi:10.1016/S0019-9958(81)90226-6.

40 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
74:1–74:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.74.

ESA 2024

https://doi.org/10.1090/dimacs/063/08
https://doi.org/10.1016/j.cosrev.2008.10.003
https://doi.org/10.1016/j.cosrev.2020.100352
https://doi.org/10.1137/1.9781611973082.131
https://doi.org/10.1137/100783856
https://doi.org/10.1016/j.dam.2018.11.002
https://doi.org/10.1145/3519935.3520018
https://doi.org/10.1137/16M1091836
https://doi.org/10.1145/2450142.2450146
https://doi.org/10.1145/3170442
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://doi.org/10.4230/LIPIcs.IPEC.2022.22
https://doi.org/10.1016/0166-218X(81)90037-8
https://doi.org/10.1016/S0019-9958(81)90226-6
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.4230/LIPIcs.ESA.2020.74

39:20 List Homomorphisms by Deleting Edges and Vertices

41 Karolina Okrasa and Paweł Rzążewski. Fine-grained complexity of the graph homomorphism
problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487–508, 2021. doi:10.1137/
20M1320146.

42 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. J. ACM, 63(4):37:1–
37:33, 2016. doi:10.1145/2974019.

https://doi.org/10.1137/20M1320146
https://doi.org/10.1137/20M1320146
https://doi.org/10.1145/2974019

	1 Introduction
	2 Technical Overview
	2.1 Vertex-deletion version
	2.2 Edge-deletion version

