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—— Abstract

A recent paper by Abboud and Wallheimer [ITCS 2023] presents self-reductions for various funda-
mental graph problems, which transform worst-case instances to expanders, thus proving that the

complexity remains unchanged if the input is assumed to be an expander. An interesting corollary
of their self-reductions is that if some problem admits such reduction, then the popular algorithmic
paradigm based on expander-decompositions is useless against it. In this paper, we improve their
core gadget, which augments a graph to make it an expander while retaining its important structure.
Our new core construction has the benefit of being simple to analyze and generalize while obtaining
the following results:
A derandomization of the self-reductions, showing that the equivalence between worst-case
and expander-case holds even for deterministic algorithms, and ruling out the use of expander-
decompositions as a derandomization tool.
An extension of the results to other models of computation, such as the Fully Dynamic model
and the Congested Clique model. In the former, we either improve or provide an alternative
approach to some recent hardness results for dynamic expander graphs by Henzinger, Paz, and
Sricharan [ESA 2022].
In addition, we continue this line of research by designing new self-reductions for more problems,
such as Max-Cut and dynamic Densest Subgraph, and demonstrating that the core gadget can be
utilized to lift lower bounds based on the OMv Conjecture to expanders.
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1 Introduction

When studying the complexity of any graph problem, it is natural to ask whether the problem
can be solved faster on expanders, i.e., random-like, well-connected graphs that satisfy a
certain definition of expansion.

» Question 1. Are expanders worst-case instances of my problem?

The motivation for such a question comes from multiple sources. First, it is inherently
interesting to understand how the rich mathematical structure of expanders affects the
complexity of fundamental problems such as shortest paths, cuts, matchings, subgraph
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detection, and so on. After all, expanders are among the most important graph families
in computer science. Second, expanders exhibit some of the most algorithmically useful
properties of uniformly random graphs, and so this question may help understand the
average-case complexity. Third, graphs that arise in applications may be expanders (e.g., in
network architecture). Moreover last but not least is the hope that if we solve a problem
faster on expanders, we will also be able to solve it in the worst case by utilizing the popular
expander decomposition method, which we discuss soon. Unless explicitly stated otherwise,
we use the conductance-based notion of ¢-expanders, whose precise definition can be found
in Section 3, and we say that a graph is an expander if it is an £(1)-expander.

It is possible to cook up problems for which the answer to Question 1 is negative. For
instance, we can solve connectivity in constant time if the input is promised to be an expander,
but it requires linear time in the worst case. A less obvious example with such gaps is
counting spanning trees [23]. However, for many (perhaps most) interesting graph problems,
the answer seems to be positive: expanders do not make the problem any easier. In other
words, the expander-case is also worst-case. But how do we prove that? Let us discuss three
methods and their drawbacks.

1. The first and most obvious method is to prove a lower bound for the problem on expander
instances that matches the worst-case upper bound. Technically, this may follow directly
from the existing lower bounds for the problem since they are often proved on random-like
graphs (e.g., for distance oracles [29]), or it may require some modifications to the lower
bound proofs (e.g., for dynamic graph problems [17]).

The main drawback with this approach is that we are interested in answering Question 1
even when (or rather, especially when) we have not already resolved the worst-case time
complexity of our problem, in which case we do not even have a matching lower bound
(e.g., the Maximum Matching problem). Another drawback is that when asking for the
fine-grained complexity of problems, the existing lower bounds are usually conditioned on
strong assumptions, and one may hope to get an unconditional answer to Question 1.
The next two approaches resolve these drawbacks since they are based on worst-case to
expander-case self-reductions (WTERs). Such techniques show equivalence between the
expander-case complexity and the worst-case complexity.

2. The second approach uses the expander decomposition method. This is a popular paradigm

in recent years that suggests we can solve graph problems by (1) decomposing the graph
into vertex-disjoint expanders with a small number of edges between them, (2) solving
the problem on each expander separately, and (3) combining all the answers efficiently.
Step (3) requires problem-specific techniques. If we can solve steps (1) and (3) for a
problem, then we have effectively shown that any improvement on expanders will yield
an improvement on worst-case graphs, giving a positive answer to Question 1. Efficient
algorithms for computing such expander decompositions (for step (1)) are known both
in the Word-RAM [3, 28, 19, 30, 25] and in other models of computation including
dynamic [28], distributed [7], and recently even in streaming [11]. Applications of this
paradigm have led to many breakthroughs in recent years to problems such as Maximum
Flow [8], Dynamic Connectivity [14], Gomory-Hu Trees [1], Minimum Spanning Trees [24],
and Triangle Enumeration [7].
Self-reductions of this form are called ED-WTERs. A recent paper by Abboud and
Wallheimer [2] proposed an alternative, simpler method of self-reductions that do not use
expander decompositions. They call this method Direct-WTERs, which we discuss next,
and it is not only simpler but also yields stronger qualitative and quantitative results.
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3. The third and most direct method is to show that any graph can be turned into an

expander without affecting the solution to the problem or increasing the size of the graph
by too much. In their paper, Abboud and Wallheimer [2] gave the following definition,
which we slightly reframe to fit our discussion more accurately:
» Definition 1 (Direct-WTER [2, Definition 2]). A direct worst-case to expander-case
self-reduction to a graph problem A, is an algorithm that given any instance G with n
vertices and m edges, computes in O(n +m) time a graph Gegp := (Vewp, Eexp) with the
following guarantees:

Geap ts an Q(1)-expander with high probability.

The blowup in the number of vertices and edges in Gegp 5 |Vegp| < K and |Eegp| < M

for some K := K(n,m) and M := M(n,m).

The solution A(G) can be computed from the solution A(Geyp) in O(m +n) time.
Direct-WTERs can be used to show equivalence between the complexity of polynomial-
time problems and their complexity on Q(1)-expanders. Namely, if problem A4 is a
polynomial-time problem that admits a Direct-WTER, then (1)-expanders are worst-
case instances of A (ignoring poly-logarithmic factors).

The main contribution of Abboud and Wallheimer was to show that some fundamental
problems, such as k-Clique Detection and Maximum Matching, admit simple Direct-
WTERSs. In particular, their Direct-WTERs make a graph an expander by employing a
core gadget that augments it with O(n) vertices and O(m + nlogn) random edges and
then applies additional gadgets that control the solution. In particular, they obtain a near-
linear blowup. Their results are surprising because such Direct-WTERs do not employ
any of the heavy machinery that usually comes with expander decompositions, yet they
output quantitatively better expanders: the outputs of Direct-WTERs are Q(1)-expanders
(by definition), whereas expander decompositions can only produce O(1/logn)-expanders
(that are not as expanding) [28, 4].

Furthermore, the simplicity of such Direct-WTERs leads to interesting and important
messages to algorithm designers, as observed in [2]: The expander decomposition method is
useless in the presence of Direct-WTERs because decomposing a graph into o(1)-expanders
is meaningless when we can assume that the input graph is already an (1)-expander
after a simple modification. This addressed (with a negative answer) a question that
many researchers have wondered about as they looked for the next breakthrough to be
obtained via the expander decomposition method:

» Question 2. Are expander decompositions the key to solving my problem?

This work

Motivated by the appeal of the method of Direct-WTERs towards answering Question 1
and Question 2, our goal is to develop this theory further. Toward that, we address the two
main limitations that were highlighted in [2]: (1) the Direct-WTERs are randomized whereas
ED-WTERSs are deterministic [10], and (2) the results are restricted to the Word-RAM model,
whereas expander decompositions are popular tools in other models as well. In addition,
we continue their line of work by providing Direct-WTERs to additional problems. Let us
motivate these two topics before stating our results formally.

1.1 Deterministic Direct-WTERs

The randomized Direct-WTERs of Abboud and Wallheimer [2] prove that £2(1)-expanders
are worst-case instances of many problems if we allow algorithms to be randomized. They
leave us wondering if perhaps Q(1)-expanders are truly easier for deterministic algorithms.
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We remark that while it is believed that all algorithms can be derandomized by incurring
a small polynomial blowup (as in P = BPP), it is far from clear that this blowup can
be made n°™) (see [9] for the state-of-the-art on such results). Can we provide a positive
answer to Question 1 with respect to deterministic algorithms by designing deterministic
Direct-WTERs?

Additional motivation comes from the hope of using the expander decomposition method in
order to get breakthrough derandomization results, along the lines of Question 2, for problems
where the current randomized algorithms are much faster than the current deterministic
algorithms. Indeed, deterministic expander decompositions [10] have already played a major
role in some of the most remarkable derandomization results of recent years, e.g. for Global
Min-Cut [20, 27, 22, 21, 16].

» Question 3. Are expander decompositions the key to derandomizing my algorithm?

Similarly to the observation in [2], deterministic Direct-WTER also convey a message to
algorithm designers: that the answer to the above question is negative, i.e., expander
decompositions are useless for derandomizing the problem.

Motivated by this, our first result is a derandomization of the core gadget in [2], resulting
in deterministic Direct-WTERs for various problems. In particular, we show that all problems
admitting randomized Direct-WTERs in [2], and some additional problems, such as the
Max-Cut problem, admit deterministic direct-WTERs.

» Theorem 2. The following problems admit deterministic Direct-WTERs: Maximum
Matching, Minimum Vertex Cover, k-Clique Detection, k-Cliqgue Counting, Max-Clique,
Maz-Cut, Minimum Dominating Set, and H-Subgraph Detection (m = O(n) and H does not
contain pendant vertices).

We provide formal definitions and an overview of all problems mentioned above in the full
version of this paper.

An important feature of our deterministic core gadget is that it remains simple and
efficient. Interestingly, this stands in contrast with other derandomization results in fine-
grained complexity, which often tends to involve sophisticated methods and some slowdown
(see, e.g., [6,12]). As discussed earlier, simplicity is an important aspect of Direct-WTERs,
not just because it makes them more accessible to the community, but also because it
strengthens the message that expander decompositions become useless in the presence of
Direct-WTERs. In Section 2, we provide an intuitive overview of how our derandomization is
obtained by a modification to the core gadget of Abboud and Wallheimer [2] and in Section 4
we provide the construction itself.

Interestingly, our Direct-WTERs also improve upon the blowup in the number of added
edges over the Direct-WTERs in [2], resulting in Q(1)-expanders with O(n) vertices and
O(m + n) edges, whereas in [2], the expanders have O(m + nlogn) edges. Note that this
blowup is optimal since any expander is connected and, therefore, must contain (n) edges.
We also demonstrate that our core gadget preserves the following graph properties: (1)
Bipartiteness-preserving; we can modify the core gadget so that if G is bipartite, then so
is the expander, and (2) Degree-preserving; if the maximum degree in G is A, then the
maximum-degree in Gegp is 2A + O(1).

Remarks

1. For the exponential-time problems in Theorem 2: Minimum Vertex Cover, Minimum
Dominating Set, Max-Clique, and Max-Cut, the blowup in the number of vertices in the
output graph must be subject to stronger restrictions than for polynomial-time problems.
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In particular, the blowup should be n + o(n), to show that expanders are worst-case
instances.! For such problems, we employ a generalized core gadget, which gives a tradeoff
between the conductance and the blowup, resulting in Direct-WTERs providing, for every
0 < e <1, conductance Q(e) and blowup en.

2. For k-Clique Detection, we slightly improve the parameters over the Direct-WTERs given
in [2] for this problem. In [2], the output is an Q(1/k?)-expander Gy, with a blowup of
O(nk) vertices and ©(k?m) edges, where each k-clique in G corresponds to k! k-cliques in
Gegp. Our improved Direct-WTER produces an §(1)-expander G, with O(n) vertices
and O(m +n) edges (even if k = w(1)), such that every k-clique in G corresponds to k + 1
k-cliques in G¢gzp. This enhancement makes our reduction more suitable for parameterized
algorithms and larger (non-constant) values of k.

3. For the Max-Cut problem, there is an interesting related work on the approximation variant
of the problem on expanders. A famous algorithm by Goemans and Williamson [13] obtains
a > 0.878-approximation for the maximum cut in general graphs, based on a Semidefinite
Programming relaxation. In search of other, perhaps simpler methods for approximating
the max-cut beyond the trivially obtained 1/2-approximation?, Trevisan [31] posed
the following question: Is there a combinatorial algorithm that achieves better than
1/2-approximation?

A positive answer to this question was given by Kale and Seshadhri [18], which remains
the current-best combinatorial algorithm for this problem. A recent paper by Peng and
Yoshida [26] addresses this question on expanders, providing a combinatorial algorithm
for approximating the maximum cut on ¢-expanders. Namely, the authors provide an
algorithm that given ¢, computes a (1/2 + ¢)-approximation, subject to e = O(¢?). In
more detail, it computes a value x such that (1/2 + e)MC(G) < x < MC(G), where
MC(-) denotes the cardinality of the maximum cut in G. Moreover, its running time
is sublinear when ¢ is a constant. Our Direct-WTER for Max-Cut in Theorem 2, on
the other hand, is a reduction that given G and 0 < ¢ < 1, outputs an Q(¢)-expander
Gezp, and the maximum cut in Gegp is MC(Gegp) < (1+4¢)MC(G), assuming the input
graph is not too sparse, say, m = w(n).

Can we apply the Direct-WTER and then use the algorithm of Peng and Yoshida to get a
combinatorial algorithm that (1/2 4 ¢)-approximates the maximum cut in general graphs?
Perhaps we may even improve upon the algorithm by Kale and Seshadhri, as both the
Direct-WTER and the algorithm of Peng and Yoshida are very efficient. However, the
approximate value we get from this approach is (1/24+e)MC(G) < z < (1+4¢)MC(G),
or equivalently (1/2+¢)/(1 4+ 4¢)MC(G) < z < MC(G). For this approximation ratio
to be larger than 1/2, we need to pick ¢ > 2¢, but recall the constraint ¢ < O(¢?).
Hence, this approach fails. This is not so surprising, since our Direct-WTER is quite
elementary so we do not expect to make use of it as a subroutine inside another algorithm.
Instead, this result should be interpreted as a limitation to algorithms for Max-Cut on
¢-expanders; that one cannot obtain a (1/2 + ¢)-approximation for some 2¢ < e < 1/2
unless this (unlikely) approach works.

1 Otherwise, an exponential speed-up on expanders does not necessarily translate to an exponential
speed-up on general graphs.
2 Which follows from the fact that the maximum cut is at least m/2 in any graph with m edges.

ESA 2024
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1.2 Direct-WTERs in the Fully Dynamic setting

Before this work, Direct-WTERs were limited to the (randomized) Word-RAM model,
whereas ED-WTERs could address many other models. One particular area in which
expanders, expander decomposition, and derandomization are important subjects is the area
of dynamic graph algorithms. Let us focus on the Fully Dynamic model of computation,
where the goal is to maintain the solution of a problem in a graph undergoing edge updates,
i.e., edge insertions and deletions. Dedicated tools have been developed for maintaining
an expander decomposition in this model and subsequently achieved major breakthroughs
(e.g., [24]). Notably, derandomization is a central concern in the dynamic setting because
deterministic algorithms are essentially the only ones that work against adaptive adversaries
(see, e.g., [5]). For these reasons, the three main questions outlined above are particularly
interesting in this model. Our first question, in this context, is whether Direct-WTERs can
be adapted to the Fully Dynamic setting.

An important related work is a recent paper by Henzinger, Paz, and Sricharan [17]
(abbreviated as HPS), who initiated the study of Question 1 in the dynamic model, regarding
the complexity of fundamental problems on dynamic expanders. A dynamic expander is a
dynamic graph that undergoes edge updates but remains an 2(1)-expander at any point
in time. They adapt lower bound proofs from fine-grained complexity, so that they hold
even on dynamic expanders. Their techniques differ from the self-reduction approach of
Direct-WTERs and correspond to the first of the three methods outlined above to answer
Question 1. In particular, they base their results on the Online Matriz Vector (OMv)
conjecture, which was introduced by Henzinger et al. [15] to prove lower bounds for various
dynamic problems. HPS obtained their results by adapting these lower bound proofs to the
case of constant-degree expanders, proving that dynamic expanders whose maximum degree
remains bounded by a constant are OMv-hard. The problems they consider in this context
are Maximum Matching, Densest Subgraph, and st-Shortest Path (abbreviated as st-SP).
This leaves us wondering with the following questions:

1. Are expanders in higher density regimes, whose maximum degree is not bounded by a
constant, also OMv-hard instances?

2. Can the techniques that are used in the static setting to prove Theorem 2 contribute
to this study by, e.g., providing a simpler, or alternative method to prove that certain
problems remain OMv-hard on expanders?

Our second main result is an adaptation of the deterministic core gadget to the dynamic
setting, resulting in a deterministic, dynamic algorithm for maintaining a dynamic Q(1)-
expander, whose running time is amortized O(l) per edge update. Subsequently, we show
Dynamic Direct-WTERs (abbreviated as DD-WTERs) to various problems,® thus proving
that Q(1)-expanders are worst-case instances and that the expander decomposition method
is useless against them. We present and discuss the formal definition of DD-WTERs in the
full version of this paper.

» Theorem 3. The following problems admit a DD-WTER: Mazimum Matching, Bipartite
Perfect Matching, Densest Subgraph (in graphs with m > 42n edges), k-Clique Detection,
k-Cligue Counting, and H-Subgraph Detection (where m = O(n) and H does not contain
pendant vertices).

3 Namely, to all problems in the previous theorem, except that we do not discuss the exponential-time
problems in the dynamic model in this work.
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In addition, our results also have some interesting implications related to the work of
HPS and the questions above.
1. For the Densest Subgraph problem, Henzinger et al. [15] prove a lower bound of pt/3=o(1)
per update under OMv for general graphs. By modifying their reduction, HPS were able
to show a weaker n'/4=°(1) Jower bound for ezpanders.*

1/3—=0(1) Jower bound for

As a consequence of our DD-WTER, we conclude that the n
general graphs also holds for expanders. One subtlety towards this result is that the
reduction of Henzinger et al. produces very sparse graphs with m < 2n edges while our
DD-WTER assumes that m > 42n. In the full version of this paper, we discuss how to
modify the original reduction so that denser graphs are produced. Another strength of
the DD-WTER compared to HPS is that it is a self-reduction, hence it does not depend
on the OMv Conjecture to get a lower bound (at least when the m > 42n assumption is
made)®.

2. For the Maximum Matching problem on graphs of maximum degree O(n?), for any

0 <t <1, we show that this problem is OMv-hard on Q(1)-expanders as well. This
improves upon HPS, who only prove it for the constant-degree case (i.e. t = 0) [17,
Theorem 12], while implicitly leaving an open question regarding ¢ > 0. While intuitively,
the constant-degree case should be the most difficult to prove a lower bound for, it is not
immediate, as techniques that artificially increase the degrees in the graph (e.g. attaching
a star to every vertex) tend to also increase the number of vertices, thus resulting in
weaker lower bounds. Instead, our result is obtained by combining a lower bound by
HPS for graphs (not expanders) of maximum degree O(n') [17, Theorem 12], with our
degree-preserving DD-WTER for Maximum Matching. Hence, we get the following
corollary:
» Corollary 4. For any 0 < e,t < 1 and any constant € > 0, there is no dynamic
algorithm for maintaining a mazimum matching on Q(1)-expanders with mazimum degree
O(n?), with amortized O(n+9/2=2) ypdate time and O(n*+*=%) query time, unless the
OMuv Conjecture is false.

3. We demonstrate that our core gadget is useful even outside the context of self-reductions
by showing a DD-WTER for Graphical OMv, an equivalent graph formulation of the
OMv problem. This implies that we can lift OMv-based lower bounds to (1)-expanders
for many problems, in particular, for problems such as Maximum Matching and st-SP,
which HPS considered. We demonstrate the power of this technique by proving that
st-SP is OMv-hard on Q(1)-expanders.®
» Proposition 5 (st-SP is OMv-hard on Q(1)-expanders). For any ¢ > 0, there is no
dynamic algorithm for the dynamic st-SP problem on Q(1)-expanders, with polynomial
preprocessing time, O(m/?~%) update time, and O(m'~%) query time, assuming the OMu
Conjecture.

Finally, let us emphasize another aspect of how our work and HPS differ. One of the main
motivations for our work is to address Question 2 and Question 3 about the applicability of
expander decompositions in algorithms, whereas HPS main motivation is to gain a better

We remark that the proof in Henzinger et al. [15, Corollary 3.26] gives an n'/37°() lower bound under
OMy, while the introductions of both [15] and HPS [17] mention, erroneously, an n'/27°() lower bound.
We remark that the limitation of m > 42n in this approach is due to the fact that to augment a graph
to become an expander requires at least adding some amount of edges, which unavoidably affects the
densest subgraph.

Note that in comparison with HPS, we do not prove hardness for graphs of constant degree, which is
outside the scope of our paper.
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understanding of the complexity of dynamic problems on various graph families, including
expanders, along the lines of Question 1. As we have seen, DD-WTERs imply that expander
decompositions are useless because they show equivalence between the worst-case and the
expander-case complexities. We remark that the results of HPS imply the same, assuming
their obtained lower bounds are tight. Hence, it implies a conditional answer to these
questions, whereas self-reductions imply an unconditional one.

1.3 Expanders in distributed models

The above results demonstrate that the impact of Direct-WTERs goes beyond the classic
Word-RAM model of computation. A natural continuation of this is to apply these tech-
niques to more models of computation, where expanders, expander decompositions, and
derandomization are important subjects. In the full version of this paper, we discuss the
applicability of Direct-WTERs in distributed models of computation. We show that while
there are limitations in adapting Direct-WTERs to CONGEST, it is possible to do so in
CONGESTED-CLIQUE and MPC (Massively Parallel Computation).

Roadmap

A technical overview is given in Section 2, where we also explain the differences compared
to [2]. Then, after some preliminaries in Section 3, we provide in Section 4 the complete
details of our derandomized core gadget and its dynamic adaptation. Section 5 presents
Direct-WTERs for Max-Cut, Densest Subgraph, and Graphical OMv. In the full version
of this paper, we show adaptations of the new core gadget to obtain deterministic (and
dynamic) Direct-WTERs to problems that appeared in [2] and other related problems.

2  Technical Overview

In this section, we summarize the core gadget of Abboud and Wallheimer [2] (henceforth,
AW) that is used in all their Direct-WTERs, and then present our modification. Roughly,
their construction boils down to the following procedure.

AW'’s core gadget

Given a graph G = (V| E), add a set U of n vertices called expansion layer. Then, for every
vertex v € V, take a sample of deg(v) + O(logn) vertices in U and make them neighbors of
v. Clearly, the size of this graph and the running time are both O(m + nlogn). In addition,
they prove that it is an Q(1)-expander with high probability by showing that the probability
that a cut in Geyp ends up being sparse is very low. However, there is no guarantee that the
problem’s solution to G can be computed easily from the solutions to G¢gp. To this end, AW
provide additional, mostly simple gadgets to control the solution in Ge¢sp in a predictable
manner while preserving the conductance of G, up to a constant factor.

Derandomizing the core gadget

The first limitation of AW’s approach that we aim to resolve in this paper is their use
of randomness. To do so, one could attempt to introduce an ezplicit, d-regular bipartite
(1)-expander X between V and U. However, which degree d should we choose? For starters,
we consider picking some constant d > 3. However, this approach might fail if G contains
cuts with many internal edges and few out-going edges. For instance, if G includes a cut
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S of /n vertices that induce an isolated \/n-clique, then in G.,, we have vol(S) = O(n),
while the number of out-going edges added by the expander is O(|S|d) = O(y/n), thus
#(S) = O(1/y/n). On the opposite end, we could select a complete bipartite graph with
©(n?) edges. While this will address the problem and indeed result in an (1)-expander,
this approach is undesirable due to the excessive number of added edges. Hence, the most
natural strategy to consider is incorporating a d-regular expander for d = [2*]. To be more
precise, since explicit constructions exist only for d > 3, the approach is to pick d = [ +3
(as it could be the case that, for example, m = 0). While the number of added edges is now
O(m + n), this approach is slightly naive, as it does not even address the above problem of
isolated y/n-clique in a graph with O(n) edges. The crux of the issue lies in the fact that G
is not regular. If G were d-regular, then the inclusion of a d-regular expander would resolve
our problem. One can look for expanders with a certain degree sequence, matching the one
of G, but constructing those seems challenging.

The starting point for our modification is the observation that the randomness in AW’s
constructions is coming to accomplish two things at once: first and foremost, choosing
random edges breaks structure and creates a “random like” graph. However, second, and less
obviously, it is a way to achieve a certain “balanced allocation” of neighbors in U, resulting
in nearly uniform degrees in U, which is crucial for their analysis to work. This leads to our
modification, in which we substitute their single expansion layer U with two layers: one for
balanced allocation denoted L, connected to V using a load-balancing algorithm, ensuring
that the degrees in this layer are about QTm, and another layer for expansion denoted R,
connected to L using the edges of a bipartite, (22 + 3)-regular €2(1)-expander. A random
graph can accomplish the construction of the first layer, as AW did, but it could also be
accomplished in any other way, such as the standard Round-Robin algorithm without any
randomness. Then, all we have to do is use an explicit construction (described in the full
version of this paper) of a regular (1)-expander. This is the whole deterministic core gadget
in Section 4. Using it, we follow the steps of AW and add various gadgets to Ge¢zp, such that
the solution for G can be retrieved from the solution for Gezp.

Dynamizing the core gadget

The above core gadget is not suitable for the fully dynamic setting, where G undergoes
edge insertions and deletions. The main issue arising is that when the degree of a vertex
v € V increases due to edge insertions, we need to allocate to v additional neighbors from L
while preserving approximately balanced degrees in L. One attempt to solve this issue is
to add an edge from v to a minimum-degree vertex in L, which can be computed quickly
using a priority queue. While this ensures balanced degrees in L, there is a subtle issue
that the minimum-degree vertex in L might already be a neighbor of v; hence we can not

add another edge to it because that would create a parallel edge (which we aim to avoid).

Therefore, we slightly modify this heuristic, and instead, our suggested approach is compute
the successor of the minimum-degree vertex in L repeatedly, until a minimum-degree vertex
in L\ N(v) is reached, and then make it a neighbor of v. The required computation here is
proportional to the degree of v, which might not be constant, but using lazy updates this
approach results in amortized cost O(1). However, a possible issue arising in this algorithm
is that the minimum-degree vertex in L\ N (v) is not necessarily a minimum-degree vertex in
L, so it needs to be clarified that the degrees in L remain balanced, as otherwise the graph
might not be an (1)-expander. Nonetheless, we prove that the degrees in L become overly
imbalanced only after Q(m + n) edge insertions. At this stage, there is enough credit to

reconstruct Ge,p from scratch, resulting in a total amortized cost of O(1) per edge insertion.
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In general, edge deletions do not require further computation. However, too many edge
deletions or insertions will make X too dense or too sparse compared to G, resulting either
in a large blowup or small conductance. This may happen only after Q(m + n) updates, thus
it can also be handled in amortized cost O(1) by periodic reconstruction.

3 Preliminaries

Let G = (V, E) be an undirected simple graph. Throughout the paper, we use n and m to
denote the number of edges in vertices in GG, respectively. Denote the neighborhood of v
by N(v) := {u € V | uv € E} and the degree of v by deg(v). We say that G is d-regular
if deg(v) = d for all v € V. A vertex v is called a pendant vertex if deg(v) = 1. The set
of all edges with one endpoint in S C V and another endpoint in T" C V is denoted by
E(S,T) :={uv € E|u € S,v e T}, and its cardinality is denoted by e(S,T) := |E(S,T)].
We call E(S,V \ S) the out-going edges of S. We employ subscripts to indicate which graphs
we refer to when it is not clear from the context. For instance, degy (v) denotes the degree
of vertex v in a graph H.

Conductance and edge-expansion

Let S €V be a cut. The volume of S is defined as vol(S) := ) g deg(v). The conductance
of S is defined as ¢(S) := e(S, V'\ S)/ min(vol(S),vol(V'\ S)). If min(vol(S),vol(V\S)) =0,
we define ¢(S) = 0. The conductance of the entire graph G is defined as ¢g := mingcy ¢(S5).
Throughout this paper, unless explicitly indicated otherwise, we adhere to the following
definition of expander graphs, in which 0 < ¢ < 1.

» Definition 6. G is a ¢-expander if pg > ¢.
Another related notion of expansion that we use in our proofs is edge expansion.

» Definition 7. The edge expansion of G is:

o qsv)
G T g asCV|S|<n/2 S|

We will say that G is an h-edge expander if hg > h.

A known fact states that conductance and edge expansion are interchangeable in regular
graphs.

» Fact 8. If G is a d-regular h-edge expander, then it is also a %-ewpander. In particular, if
G is an Q(d)-edge expander, then it is also an Q(1)-expander.

4 The Core Gadget

In this section, we present a derandomized core gadget on which we base our results. The
core gadget is a deterministic algorithm that takes a graph G and augments it with new
vertices and edges to output an Q(1)-expander G.., in O(m + n) time. We will utilize
an explicit construction of d-regular, bipartite, ¢d-edge expanders on 2N vertices for some
constant ¢ > 0. Assume that given any d > 3, and sufficiently large N, we can construct
such graph in O(Nd) time. See the full version of this paper for more details about the
construction.
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4.1 The core gadget

Given a graph G, augment G with an initially empty bipartite graph featuring N vertices
on each side, denoted L := {x1,29,...,2n} and R := {y1,¥2,...,yn}. N is a parameter
that can vary depending on the application, but for the most basic construction, we set it to
N = (14 o(1))n. The gadget consists of the following two-step construction:

1. (Degree balancing) For every v € V' add, using a Round-Robin algorithm, deg.(v) + 3

neighbors in L. Namely, follow a circular order over L to pick neighbors one at a time.

Assuming N > n + 2, every vertex is connected to degq(v) + 3 distinct neighbors in
L without wrapping around. The Round-Robin algorithm guarantees that the degrees
within L are almost balanced. In more detail, since the total number of edges that we
add in this step is >, oy (degg(v) + 3) = 2m + 3n, the degree of every vertex in L is
either [2713% | op [2m430]

2. (Expander construction) Set d := [22432]. Let X be a bipartite, d-regular, ¢d-edge
expander on L U R.

Denote the resulting graph by Geyp := (Veap, Eexp), illustrated in Figure 1. Note that the

running time of this gadget is O(m 4+ n + dN) = O(m + n).

Figure 1 The core gadget augments G with O(m + n) edges connected to a bipartite, d-regular,
¢d-edge expander, resulting in an Q(1)-expander Gegp.

» Lemma 9. The graph Gy is an Q(1)-expander.

The proof of this lemma is deferred to the full version of this paper. We remark that the
blowup of the core gadget, i.e., the number of added vertices and edges, is 2N = O(n) vertices
and O(Nd) = O(m + n) edges. Furthermore, if G is a graph of maximum degree A, then
Gezp s a graph of maximum degree 2A + 3.

Before continuing further, let us state two variants of the core gadgets which are useful
throughout the paper.

4.2 Variants of the core gadget

The first variant we consider is a generalization of the core gadget, which allows greater
variations in the degrees of the vertices in Gezp.

» Lemma 10. For every 0 <e <1, a > 1, and an integer dx > 3, consider the following
generalization of the core gadget: (1) Every v € V has at least e deg(v) + 1 neighbors in
L, (2) X is a dx-reqular, ¢pdx-edge expander, for some some constant ¢ > 0. and (3) The
degrees of all the vertices in L are within [dx,adx]. Then Geyp is an ¢e/(5a)-expander.

The proof of this lemma is deferred to the full version of this paper.

Using this generalization, one can also obtain a tradeoff between the blowup in the number
of vertices and the conductance of Gz, as follows. Given 0 < € < § < 1, modify the core
gadget by setting N = [on(1 4 o(1))], and for every v € V, instead of adding degq(v) + 3
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edges from v to L, add [edegq(v)] + 3 such edges. By Lemma 10, the resulting graph is an
Q(g)-expander. Moreover, the blowup in the number of vertices is 2N < 26n + O(1), and the
blowup in the number of edges is 2em + 3n. Rescaling appropriately, we obtain that given
any 0 < e < § < 1, we can construct an (g)-expander with a blowup of dn in the number of
vertices and em + 3n in the number of edges.

Finally, one can modify the core gadget to preserve bipartiteness as follows. Given a
bipartite graph G = (AU B, E), where |A| = |B| = n, instead of adding edges from A U B to
L, add edges from A to L and from B to R. Namely, for every v € A, add deg(v) + 3 edges
to L, and for every v € B, add deg(v) + 3 edges to R. The rest of the construction stays
the same, i.e., we construct a d-regular expander X between L and R for the same value d as
before. Clearly, the blowup in the number of edges and vertices is still linear, and the graph
is bipartite, with sides AU R and B U L. The proof that the graph is an Q(1)-expander
appears in the full version of this paper.

4.3 Fully-dynamic core gadget

Our algorithm makes use of three procedures: (1) UPDATE, which computes and adds a batch
of edges from a vertex in G to L, (2) BALANCE, which rebalances the degrees in L using
Round-Robin, and (3) RECOMPUTE, which recomputes the graph using the static core gadget.
In this section, we use G¢*? to denote a dynamic Q(1)-expander output by the dynamic core
gadget. We use subscripts to indicate the state of a dynamic graph at a certain time, e.g.,
G} is the dynamic graph G at time ¢. Let us describe the algorithm.

Preprocessing

In the preprocessing step, given Gy, apply the static core gadget to construct an (1)-
expander G;"". Store the vertices of L sorted according to their degrees, in a data structure

supporting updates and successor queries in O(1) time.”

Edge insertions and deletions

For every insertion of an edge uv to G, begin by inserting uv to G¢*P. Denote by m; the

number of edges in G at the last time we applied the RECOMPUTE procedure (or myg if we did

not apply it yet). If m > 2m; + n, apply the RECOMPUTE procedure to recompute the graph

using the static core gadget and finish.
Otherwise, let us describe the process we apply to v and similarly do to u. Denote by
deg; (v) the number of neighbors that v has in L, i.e., degy (v) = |N(v) N L|.

1. If degn(v) < 2degy (v), finish. Otherwise, apply the UPDATE procedure to v to add a new
batch of neighbors of v in L, after which we have deg; (v) = degq(v) + 3.

2. Check if the degrees in L became unbalanced, namely, if Ay, > 2, where Ay, and 0y, are
the maximum and minimum-degree vertices in L, respectively. If so, apply the BALANCE
procedure, after which Ay, € {dr,dr + 1}.

For every deletion of an edge uv from G, delete uv from G*P. Then, if n < m < 0.5my,

apply the RECOMPUTE procedure to recompute X.

Let us now describe the three procedures used above.

7 Naively this would take O(1) time using standard data structures, but it can be optimized to O(1) since
the degrees are integers in the range [1,2N], and our updates only increase or decrease the degree of a
vertex by 1.
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UPDATE Let k := deg;, (v). Compute k 4+ 3 minimum-degree vertices in L \ N(v), denoted
T1,%9,...,TLts, by repeatedly making successor queries to the minimum degree vertex
in L and skipping vertices which belong to N(v). For every z;, insert an edge va; to
G**P. Note that now we have deg; (v) = degq(v) + 3.
BALANCE Compute, using Round-Robin, a new set of V-to-L edges, denoted A, and then
replace E(V, L) with A. This is done by inserting the edges of A in the order given by
the Round-Robin algorithm before removing E(V, L) \ A, to ensure that the degrees do
not vary too much in the intermediate graphs.
RECOMPUTE. Apply the static core gadget to compute a set of edges A, and X', where A
is the set of V-to-L edges define above, and X' is the expander on L U R. In particular,
X' is a dx-regular, Q(dx/)-edge expander for dy, = [22327 Replace X with X’ by
first inserting the edges of X', and then removing the leftover edges of X which do not
belong to X’. Then insert the edges of A and remove E(V, L), as we did above.

For the analysis of the dynamic core gadget, see the full version of this paper.

5 Direct-WTERs for Max-Cut, Densest Subgraph, and Graphical OMv

In this section, we develop further this line of research by providing a Direct-WTER for Max-
Cut, a DD-WTER for Densest Subgraph, and a DD-WTER for Graphical OMv instances.

5.1 Direct-WTER for Max-Cut

In the Max-Cut problem, the goal is to compute the maximum cut in a graph G, which we
denote by MC(G) := maxgcy e(S,V \ S). To make the graph an Q(1)-expander, simply
applying the core gadget does not work because it might affect the maximum cut in Geyp
unpredictably. To this end, we add a gadget that ensures that any maximum cut in Gezp
will separate L from R. Additionally, we modify the core gadget so that every vertex in G
will have the same number of neighbors in L and R. These two gadgets together ensure
that the vertices in G do not get a preference to be in the part of L or R, due to symmetry.
Consequently, the maximum cut in Gegp induces a maximum cut in G.

Let us now describe the reduction in more detail. Given 0 < € < 1, apply the core gadget
with a tradeoff between the conductance and the blowup, as described in Section 4.2, to get
an Q(e?)-expander with a blowup of 2N = en in the number of vertices. This is achieved
by picking N = ¢/2n (roughly), and adding for every v € V, €2 deg (v) + 3 neighbors in L.
Add a symmetric copy of the V-to-L edges between V and R as well.

Observe that for every vertex in L U R, the number of neighbors it has in V is at most
d < MTH" = 4em/n + O(1) < 4en + O(1), where d is also the degree of the expander
between L and R. Now, add two bi-cliques of size N x 3d as follows: add two sets of Ff,
and Fr containing 3d vertices each, and all L-to-F}, and R-to-Fr edges. The purpose of this
gadget is to ensure that L and R are separated in a maximum cut. Denote the resulting
graph by Gegp. See Figure Figure 2.

Observe that the blowup in the number of vertices is 2N 4 6d < 25en + O(1). Moreover,
we claim that the additional gadgets: the V-to-R edges and the bi-cliques, do not ruin the
graph’s expansion, and that G, is an (e?)-expander. To see why, observe that the induced
graph on LU Fr U Fr, U R is a bipartite, {(d)-edge expander, hence the proof of Lemma 10
holds for it as well (by letting L U R play the role of L).

Finallly, the next claim shows that the maximum cut in G, encodes the maximum cut
in G.
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Figure 2 A Direct-WTER for the Max-Cut problem.

> Claim 11. The maximum cut in Gegyp is MC(Geyp) = MC(G) + 7dN.

Proof of Claim 11. Let (S, Vegp \ S) be a maximum cut in Gegp. We call the vertices of S
red and the vertices of V., \ S blue. Consider the following observations:

1. F;, must be monochromatic because otherwise, we could improve the cut by giving Fp,
the opposite color of the majority color in L. A similar observation applies to Fr as well.

2. L is monochromatic and has the opposite color to Fy,. To see why, assume w.l.0.g. that
Fy, is red, and for contradiction, assume that some z € L is also red. By changing the
color of x to blue, we gain |Ff| = 3d edges and lose at most degy (z) + degp(z) < 2d
edges, a contradiction to .S being a maximum cut. A similar observation applies to Fg as
well.

3. L and R have different colors. To see why, assume w.l.o.g. that L is red, and assume
for contradiction that R is also red. Based on the previous observation, Fy, is blue. By
flipping the colors of L and Fy,, we gain the L-to-R edges; there are N - d such edges, and
lose the L-to-V edges; there are at most N - d such edges. Hence, we can assume without
loss of generality that this observation holds.

Now, we claim that SNV is a maximum cut in G. To see why, observe that since L and R

have different colors, and for every v € V', we have deg; (v) = degp(v), then replacing SNV

with any other cut in V' will only change the number of edges cut inside G. Therefore, we
get MC(Geyp) = MC(G) + N(|FL| + |Fr| +d) = MC(G) + 7dN. <

5.2 DD-WTER for Densest Subgraph

In the Densest Subgraph problem, we define the density of non-empty set S C V to be
p(S) :=mg/|S|, where mg is the number of edges in the subgraph induced by S. The goal
is to compute p(G) := maxgcy p(S). In our DD-WTER, we will make use of the following
claim whose proof can be found in the full version of this paper.

> Claim 12. Any set S* that maximizes p in a graph with m edges and n vertices does not
contain any vertex of degree less than m/n.
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In addition, we assume that the density in G is sufficiently large, namely, m > 42n.8 To
make the graph an §2(1)-expander, we apply the core gadget in a way that only introduces
vertices of degree smaller than meyp/Neyp, Where mey, and ney, are the number of edges
and vertices in Gegp, respectively. To this end, consider the graph obtained by applying
the core gadget with a tradeoff between the conductance and the blowup, as described in
Section 4.2. Specifically, we pick the parameters such that in G.,p, every v € V' is connected
to [edegqs(v)] + 3 vertices in L, and N = |L| = |R| = n(1 + o(1)). The conductance of this
graph is Q(¢). The parameter ¢ is chosen to be a sufficiently small constant which will be
determined later.

> Claim 13. The maximum density in Gegp is p(Gexp) = p(G).

Proof of Claim 13. We will show that megp/Nesp > p, where g is the maximum degree in L
(and therefore also in L U R). Hence, by Claim 12, it will follow that any maximum density
subgraph in Gz, does not contain vertices from LU R, so it must induce a maximum density
subgraph in G.

Note that the number of V-to-L edges is bounded by 2em + 3n < e(V, L) < 2em + 4n,
and that the degree of the expander between L and R is d = [e(V, L)/N]. Hence, we have
Mezp = m~+e(V,L) + Nd > m + (2em + 3n) + (2em + 3n) = (1 + 4e)m + 6n. In addition,
note that the maximum degree in L is:

M<2d<2<e(V]\}L)+1) §45m+9n+0(n)

n
Now, observe that the inequality:

< dem + 9n + o(n) - (14 4e)m + 6n < memp,
n 3n + o(n) Nep

holds when n is sufficiently large, 1 — 8¢ > 0, and 21n/(1 — 8¢) < m. For example, by picking
€ < 1/16, we get that p < Megp/Nezp When m > 42n. <

To adapt the Direct-WTER to a DD-WTER, we replace the core gadget with the dynamic
core gadget. However, note that in the dynamic core gadget there are some variations in the
degrees due to lazy updates and rebalances. Nonetheless, these variations can be compensated
for by picking a smaller ¢, specifically e = 1/44 will suffice.

5.3 DD-WTER for Graphical OMv instances

In this subsection, we demonstrate how our core gadget from Section 4 can be used to prove
OMyv-hardness to various OMv-hard problems by making the typical “OMv-hard” instances
of a problem (1)-expanders. The definitions of the OMv and OuMv problems and the OMv
Conjecture appear in the full version of this paper.

A Graphical OMv instance is constructed from an OuMyv instance as follows. Given a
k x k binary matrix M, construct bipartite graph G := (AU B, E), where A and B are
equally-sized parts, denoted by A = {a1,...,ar} and B = {by,...,br}. The edges of Gy,
are defined according to the 1’s of the matrix, i.e., E := {a;b;|M[i, j] = 1}. Next, add some
problem-specific gadgets to Gjs: for many OMv-hard problems, such as st-SubConn, st-SP,
and more, the gadgets consist of O(k) vertices and O(k) edges that are connected to L U B
in a certain (dynamic) way.

8 For clarity, we do not attempt to optimize this constant, although it can be reduced.
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Making Graphical OMv instances 2(1)-expanders

To make such instances Q(1)-expanders, we apply the bipartiteness-preserving (see Section 4.2)
core-gadget on G before adding the problem-specific gadgets. In some cases, as we will
soon demonstrate for the st-SP problem, such gadgets preserve expansion, or they can be
easily adapted to preserve expansion. Therefore, this adaptation proves that their OMv-hard
instances are §2(1)-expanders. Let us now demonstrate this technique for the problem of
st-SP and prove Proposition 5 which states that st-SP is OMv-hard on Q(1)-expanders.

Proof of Proposition 5. We will prove the proposition for an easier variant of the problem
called st-SP (3 vs. 5), where the goal is only to distinguish between dist(s,t) = 3 and
dist(s,t) > 5. Henzinger et al. [15] proved a lower bound to this problem via a reduction
from OuMv: construct G, add vertices s and ¢ to Gy, and then update the edges between
s-to-A and t-to-B according to the input vectors. It then followed that whenever u” Mv = 1,

then dist(s,t) = 3, and whenever u” Mv = 0, dist(s,t) > 5. By picking k = \/m, the graph

1/2—e l1—e

has O(m) edges, and the lower bound the follows was m per update and m per
query. We now modify their construction as follows.

Given M, apply the bipartiteness-preserving core gadget to G; before adding vertices s
and t. Then, pick a non-edge in the expander X, i.e., zy ¢ E(X) for some z € L and y € R
arbitrarily. The purpose of this modification is to ensure that s and ¢ are connected to the
graph without introducing a path of length < 5 between them. Now, we procceed as in [15];
namely, given vectors u = (u1,uz,...,ux) and v = (v1,va,...,vx), we update the graph by
adding the edges sa; iff u; = 1, and tb; iff v; = 1. Note that v Mv = 1 iff dist(s,t) = 3,
and otherwise dist(s,t) > 5. In addition, we claim that the graph is an Q(1)-expander. This
follows from the next claim.

> Claim 14. If G is a ¢-expander for some ¢ > 0, then adding a vertex to G and connecting
it arbitrarily to ¢ > 1 vertices, results in an ¢/4-expander.

The proof of this claim is deferred to the full version of this paper.

In our setting, we add two vertices to G, and at all times, each of them is connected
to at least one vertex in Gj;. Therefore, since G is a ¢-expander for some constant ¢,
then the resulting graph is a ¢/16-expander at all times according to this claim. Hence,
assuming the OMv Conjecture, there is no algorithm for st-SP (3 vs. 5) on Q(1)-expanders,
whose preprocessing time is polynomial, update time m'/2=¢, and query time m'~¢, for any
e > 0. <
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