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Abstract
The maximum coverage problem is to select k sets, from a collection of m sets, such that the cardinality
of their union, in a universe of size n, is maximized. We consider (1 − 1/e − ε)-approximation
algorithms for this NP-hard problem in three standard data stream models.
1. Dynamic Model. The stream consists of a sequence of sets being inserted and deleted. Our multi-

pass algorithm uses ε−2k · polylog(n, m) space. The best previous result (Assadi and Khanna,
SODA 2018) used (n + ε−4k) polylog(n, m) space. While both algorithms use O(ε−1 log m)
passes, our analysis shows that, when ε ≤ 1/ log log m, it is possible to reduce the number of
passes by a 1/ log log m factor without incurring additional space.

2. Random Order Model. In this model, there are no deletions, and the sets forming the instance
are uniformly randomly permuted to form the input stream. We show that a single pass and
k polylog(n, m) space suffices for arbitrary small constant ε. The best previous result, by Warneke
et al. (ESA 2023), used k2 polylog(n, m) space.

3. Insert-Only Model. Lastly, our results, along with numerous previous results, use a sub-sampling
technique introduced by McGregor and Vu (ICDT 2017) to sparsify the input instance. We
explain how this technique and others used in the paper can be implemented such that the
amortized update time of our algorithm is polylogarithmic. This also implies an improvement of
the state-of-the-art insert only algorithms in terms of the update time: polylog(m, n) update
time suffices, whereas the best previous result by Jaud et al. (SEA 2023) required update time
that was linear in k.
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40:2 Maximum Coverage in Dynamic and Random Order Streams

1 Introduction

The input to the maximum coverage problem is an integer k and a collection of m sets
S1, . . . , Sm, each a subset of the universe [n] := {1, . . . , n}. The goal is to find k sets
whose union has maximum cardinality. This longstanding problem has several applications,
including facility and sensor allocation [23], circuit layout and job scheduling [14], inform-
ation retrieval [2], influence maximization in marketing strategy design [20], and content
recommendation [29]. In terms of theoretical importance, it is perhaps the simplest example
of a submodular maximization problem, a rich family of problems in machine learning [22].
A natural variant of the problem is the set cover problem and was one of Karp’s original 21
NP-complete problems [19]. A greedy approach that iteratively chooses the set with the
greatest contribution yields asymptotically optimal approximation algorithms for set cover
and maximum coverage [11]. Indeed, the greedy algorithm in practice typically outperforms
its proven approximation factor for many problem instances [24]. Unfortunately, in many
real-world applications, even the conceptually simple greedy approach is not practical. This
can occur if the underlying data is too large to be stored in a single location and is therefore
distributed across multiple machines; or if the data changes over time, e.g., sets are added or
removed from the input collection.

Over the last decade, there has been a growing body of work that addresses the challenges
of solving the maximum coverage problem (henceforth, MaxCov), the related set cover
problem (SetCov), and the general problem of submodular optimization, in computational
models such as the data stream model, that are relevant when the underlying data sets
are massive [1, 3–5, 7–10, 13, 15, 16, 25, 27–29, 31, 33]. Assadi, Khanna and Li [4] have a
comprehensive summary of results and discussion. The majority of work has focused on three
specific models. In the insert-only set streaming model the data stream comprises m sets, in
arbitrary order, each described once, contiguously. In the random-order set streaming model,
we assume that these sets, each described once and contiguously, are ordered uniformly at
random. This model captures a natural form of average-case analysis: the sets are chosen
adversarially, but we can choose a random ordering to process them [3,31]. In the dynamic
set streaming model, each set may be added and deleted several times: the resulting MaxCov
instance involves only those sets that remain added at the end of the stream. In each case,
the goal is to solve MaxCov in space that is sublinear in the size of the input. We note that
there has also been interest in an alternative “edge streaming” model [7, 15, 21], but this line
of work is less relevant to our paper.

Selected Prior Results. To provide context for our results, we recap some state-of-the-art
results from prior work. For the MaxCov problem, in the insert-only setting, McGregor
and Vu [27] gave a (1 − 1/e − ε)-approximation algorithm that uses O(ε−1) passes and
Õ(ε−2k) space; the algorithm can be implemented to achieve Õ(k) update time [16]. In the
dynamic setting, Assadi and Khanna [3] achieved the same approximation using O(ε−1 log m)
passes and Õ(n + ε−4k) space. The threshold of 1− 1/e is a barrier, thanks to known lower
bounds [27].

Submodular maximization – specifically, maximizing a monotone submodular function
under a cardinality constraint – generalizes MaxCov; in the (insert-only) streaming setting [6,
12], we are given a stream of elements from a universe U (these elements correspond to sets
Si in MaxCov) and have oracle access to the function f : 2U → R that is to be maximized.
For this problem, [6] gave a (1/2− ε)-approximation that uses one pass and Õ(ε−1k) space,
while [25] considered the random-order setting and gave a (1− 1/e− ε)-approximation using
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one pass and Õ(ε−1k) space. Importantly, these space bounds assume that remembering
an element of U takes Õ(1) space. Specializing these results to MaxCov and properly
accounting for the super-constant space required to store an element of U (i.e., a set Si)
blows up these space bounds. In particular, [31] achieves a space usage of Õ(ε−2k2) for
MaxCov in random-order streams.

Our Results, Approach, and Closely Related Work. Our two primary results address the
space usage of MaxCov algorithms in two different streaming settings. We state these below,
along with an outline of our approach, which refines and extends approaches from specific
previous works. In the process, we also establish secondary results on speeding up existing
algorithms and, in one case, developing a slightly more pass-efficient algorithm.

In the dynamic stream model, our main result is the following.

▶ Result 1 (Algorithm for Dynamic Model). There is an O((1 + ε−1/ log log m) log m)-pass
algorithm for MaxCov in the dynamic set streaming model that uses ε−2 · k · polylog(n, m)
space and returns a (1− 1/e− ε)-approximation.

This result reappears as Theorem 5. It improves over the aforementioned Assadi–Khanna
algorithm [3], which used (n + ε−4k) polylog(n, m) space. The high-level approach is similar
and is based on the existing ℓ0-sampling primitive that allows uniform sampling amongst the
sets that are inserted but not deleted. In each pass, we pick additional sets and maintain the
union, C, of the selected sets. We pick the additional sets by sampling only among the sets
that include a “meaningful” number of elements that are not currently in C. Unfortunately,
when we simultaneously sample multiple sets in this way, once we start adding sampled
sets to our solution, some of the sampled sets may no longer make a meaningful increment
to |C|. However, by repeating the process over multiple passes, with a slowly decreasing
threshold for what constitutes a meaningful improvement, we ensure that either we exhaust
the collection of sets that could potentially be worth adding or we add enough sets and
together these yield a good approximate solution. The main point of departure from [3] is
in the way we handle the decreasing threshold. The largest threshold considered in [3] is
about OPT /k; this is sufficient for achieving a 1− 1/e− ε approximation factor, but has the
downside that there can be many overlapping sets that would contribute more than OPT /k

new elements to C; storing these sets during the sampling process is expensive. Instead, we
consider thresholds decreasing from OPT but handling the sets that make a contribution
between OPT /2i and OPT /2i+1 for i = 0, . . . , log k separately but in parallel. We analyze
a stochastic process – we call it the cascading urns process – to show how our new algorithm
uses a similar number of passes as the algorithm of [3] but uses significantly less space. We
present the details in Section 3. In fact, a more careful analysis of the process shows that it
is possible to reduce the number of passes to O(log m + ε−1 log m/ log log m) in contrast to
the O(ε−1 log m) passes used by previous algorithm. We believe that a similar pass saving
can be achieved in Assadi and Khanna [3] but it requires an extra log factor in the space.

In the random order model, our main result is the following.

▶ Result 2 (Algorithm for Random Order Model). There is a single pass algorithm in
the random order data stream model that uses Oε(k · polylog(n, m)) space and returns
a (1− 1/e− ε)-approximation of MaxCov in expectation.

The above result is established in Section 4. Note that the dependence on ε in the result
is exponential, hence the algorithm is less practical. The main significance of the result
is removing a factor k in the space required by the best previous result [31], which used
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40:4 Maximum Coverage in Dynamic and Random Order Streams

ε−2k2 polylog(n, m) space. Both their and our approach are based on modifying existing
algorithms for the cardinality-constrained monotone submodular optimization problem. This
is a more general problem than maximum coverage, but it is assumed in the general problem
that the algorithm has oracle access to the function being optimized. For maximum coverage,
we need to store enough information to be able to simulate this oracle. An Oε(k2 log m)-space
algorithm for maximum coverage follows immediately for any Oε(k) space algorithm for
monotone submodular optimization because the universe subsampling technique discussed
in Section 2 allows us to focus on the case where the optimal solution covers O(ε−2k log m)
elements. To reduce the dependence on k to linear, rather than quadratic, we need a more
careful adaption of an algorithm by Agrawal, Shadravan, and Stein [1]. We maintain a set of
size O(ε−2k log m) corresponding to the items covered by a collection of sets chosen for the
solution so far, along with Oε(1) sets of size Oε(log m). We present the details in Section 4.

Lastly, our results, along with numerous previous results, use the aforementioned universe
sub-sampling technique introduced by McGregor and Vu [27] to sparsify the input instance.
We explain how this technique and others used in the paper can be implemented such that the
amortized update time of our algorithm is polylogarithmic. This also implies an improvement
of the state-of-the-art insert only algorithms in terms of the update time: polylog(m, n)
update time suffices whereas the best previous result by Jaud et al. [16] required update
time k · polylog(m, n). We present the details in Section 5.

2 Preliminaries

Without loss of generality, we assume each set is tagged with a unique ID in the range [m3n],
for if not, we could generate suitable IDs via random hashing of the contents of the sets
themselves.1 In the dynamic setting, we will want to sample uniformly from the sets that
are inserted but not deleted (sometimes we will put additional requirements on the relevant
sets). To do this, we will use the standard technique of ℓ0 sampling.

▶ Theorem 1 (ℓ0 sampling [17]). There is a one-pass algorithm that processes a stream
of tokens ⟨x1, ∆1⟩, ⟨x2, ∆2⟩, . . . , where each xi ∈ {1, . . . , M} and ∆i ∈ {−1, 1}, using
O(log2(M) log(1/δ)) bits of space, that, with probability 1 − δ, returns an element chosen
uniformly at random from the set {x ∈ [M ] :

∑
i:xi=x ∆i ̸= 0}.

Specifically, we will use the above technique when M = m3n, with each xi being the ID of a
set and the corresponding ∆i specifying whether the set is being inserted or deleted.

As mentioned in the introduction, the natural (offline) greedy approach achieves a
(1− 1/e)-approximation for maximum coverage. In streaming settings, a “quantized” version
of the algorithm achieves similar results, as summarized below.

▶ Theorem 2 (Quantized Greedy Algorithm, e.g., [27]). Consider the algorithm that processes
a stream ⟨S1, S2, . . .⟩ of sets as follows. Starting with an empty collection, Y , it makes p

passes: in the ith pass, it adds to Y each encountered set that covers ≥ τi uncovered elements.
If, at some point, |Y | = k, then the algorithm stops and returns Y . If these threshold
parameters, τ1 > · · · > τp, satisfy

τ1 ≥ OPT /k , τp < OPT /(4ek) , and τi/τi+1 ≤ 1 + ε for all i ∈ [p− 1] ,

then the algorithm achieves a (1− 1/e− ε)-approximation for the maximum coverage problem.

1 E.g., hash each set S ∈ [n], to fS(r), where fS(X) =
∏

u∈S
(X − u) is a polynomial over a prime field

Fp of cardinality Θ(m3n) and r is uniformly random in Fp. By elementary analysis, the map S 7→ fS(r)
is non-injective with probability at most

(
m
2

)
n/p ≤ 1/m.
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Both of our main algorithmic results appeal to the following technique that, given a
guess2, v, of the value OPT, transforms the MaxCov instance into one in which the optimum
solution covers O(ε−2k log m) elements. Note that this immediately implies that every set
in the input has cardinality O(ε−2k log m). In what follows, we will tacitly assume that
the given instance is filtered through this technique before being fed into the algorithms we
design. In particular, we will appeal to the following theorem [16,27].

▶ Theorem 3 (Universe Subsampling). Let the function h : [n]→ {0, 1} be drawn uniformly
at random from a family of O(k log m)-wise independent hash functions, where

p := Pr [h(e) = 1] = λ/v, for λ = 10ε−2k ,

and v satisfies OPT /2 ≤ v ≤ OPT. An h-sparsification of an instance I of MaxCov is
formed by replacing every set S in I by {e ∈ S : h(e) = 1}. With high probability, a) any
α-approximation for the h-sparsification of I yields an (α− ε)-approximation for I and b)
the optimum solution for the h-sparsification of I covers O(ε−2k log m) elements.

In Section 5, we discuss how to implement the universe subsampling such that the update
time of the resulting algorithm is logarithmic for each element of a set in the stream.

3 Dynamic Streams

Our main algorithm for dynamic streams is based on the following variant (Algorithm 1) of
the quantized greedy algorithm. It requires an estimate v satisfying OPT /2 ≤ v < OPT. To
describe it compactly, we set up some notation. Let S denote the collection of sets yielded
by the input stream. For a given C ⊂ [n], define the subcollections

FC
i = {S ∈ S : θi ≤ |S \ C| < θi−1} , for i ∈ [ℓ] ,

GC
i = {S ∈ S : τi ≤ |S \ C| < τi−1} , for i ∈ [1 + ⌈log1+ε(16e)⌉] ,

where,

ℓ = ⌊log k⌋ , θi := 2v

2i
, and τi := 2v/2ℓ

(1 + ε)i−1 .

In the pseudocode below, the computed solution, Y , is a set of IDs and the set C is
maintained to be the subset of the universe covered by the sets represented in Y . The macro3

grow-solution(Y, S, C, θ) implements the following logic: if |S \ C| ≥ θ, then update
Y ← Y ∪ {id(S)} (i.e., add the set S to the solution) and C ← C ∪ S; if this makes |Y | = k,
then stop and return Y .

The most involved part of the analysis of Algorithm 1 is the proof of the following lemma,
which we shall defer slightly.

▶ Lemma 4. With high probability, the while loop at Line 2 makes O(log m) iterations and
each invocation of the while loop at Line 7 makes O(log m/ log log m) iterations.

▶ Theorem 5. There is a (1− 1/e− ε)-approximation algorithm for max coverage in the
dynamic stream model that uses Õ(k/ε2) space and O((1 + ε−1/ log log m) log m) passes.

2 We run the final algorithms with guesses v = 1, 2, 4, 8, . . . 2log n and use the fact that one of these guesses
is within a factor 2 of OPT.

3 Being a macro, grow-solution can cause the invoking algorithm to return.

ESA 2024
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Algorithm 1 Quantized greedy adapted for dynamic set streams.

1: start with an empty solution (Y ← ∅) and let C ← ∅
2: while FC

1 ∪ · · · ∪ FC
ℓ ̸= ∅ do

3: for i ∈ [ℓ] do sample 2i sets from FC
i with replacement

4: for i ∈ [ℓ] and each set S sampled from FC
i do

5: grow-solution(Y, S, C, θi)
6: for i← 1 to 1 +

⌈
log1+ε(16e)

⌉
do

7: while GC
i ̸= ∅ do

8: sample k sets from GC
i with replacement

9: for each sampled set S do grow-solution(Y, S, C, τi)

Proof. The idea is to implement Algorithm 1 in a small number of space-efficient streaming
passes. To sample from FC

i and check the non-emptiness condition of the while loop at
Line 2, we use an ℓ0-sampling pass on the IDs of the sets where |S \ C| is in the relevant
range. Using an additional pass, we store {S \ C} for all the sampled sets, so that we can
implement the logic of grow-solution. These sets contain at most

ℓ∑
i=1

2i · 2v/2i−1 = 4vℓ = O(ε−2k log m log k)

elements. Similarly we can sample sets from each GC
i in O(ε−2k log k) space.

Since each iteration of each while loop corresponds to two streaming passes, Lemma 4
shows that w.h.p. the algorithm uses at most the claimed number of passes.

The approximation guarantee follows from Theorem 2, since τ1 = 2v/2ℓ > OPT /k and

τ1+⌈log1+ε(16e)⌉ = 2v/2ℓ

(1 + ε)⌈log1+ε(16e)⌉ <
4 OPT
16ek

= OPT
4ek

. ◀

It remains to prove Lemma 4. We need to understand how the collections FC
i and GC

i

evolve as we grow our solution Y , thus changing C. To this end, we introduce two stochastic
urn processes: the first (and simpler) process models the evolution of the collection GC

i , for a
particular i; the second process models the evolution of the ensemble {FC

i }. How exactly
the urn processes model these evolutions is explained in Section 3.3.

3.1 The Single Urn Process and its Analysis
An urn contains m balls, each initially gold. Balls are drawn from the urn in phases, where
a phase consists of drawing d balls uniformly at random, with replacement. When a ball
is drawn, if it is gold, then we earn one point and some arbitrary subset of the balls in the
urn turn into lead, including the ball that was just drawn (and put back). At the end of the
phase, all lead balls are removed from the urn and the next phase begins. The process ends
when either d points have been earned or the urn is empty.

We will prove the following result about this process.

▶ Theorem 6. With probability ≥ 9
10 , the urn process ends within O(log m/ log log m) phases.

The intuition behind the result is as follows. The observation is that if the fraction of balls in
the urn remains above d′/d then each draw is gold with probability at least d′/d and it would
be reasonable to expect at least d′/d× d = d′ of the draws in a phase to be gold. Define m(i)
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to be number of gold balls left in the urn after i phases and let d(i) be the number of gold
balls observed in the ith phase. For the sake of intuition (the formal proof follows shortly)
suppose the observation holds for all rounds, i.e., m(i)/m(i− 1) ≤ d(i)/d for all i; then

m(i)
m

=
i∏

j=1

m(j)
m(j − 1) ≤

i∏
j=1

d(j)
d
≤

(∑i
j=1 d(j)/d

i

)i

≤ 1/ii ,

by the AM-GM inequality and the fact that every drawn gold ball is turned into lead, so
only contributes to at most one term d(j), hence

∑
j d(j)/d ≤ 1. Consequently, i can be at

most O(log m/ log log m) before m(i) becomes zero.
Our result is stronger than analogous results in previous work in two specific ways.

Previous analyses essentially need (i) a factor O(log m) in the number of draws taken in each
phase and (ii) only establish that O(log m) phases suffice, rather than O(log m/ log log m)
phases. The improvements in our approach stem from avoiding the need to guarantee that
each phase makes progress with high probability and considering both the progress made
towards observing d gold balls and the progress made in terms of turning balls into lead.

Proof of Theorem 6. Let m(j) be the number of balls in the urn after the jth phase ends
and all lead balls are removed. Also, let m(0) = m. Put γ = log log m/ log m and assume
d ≥ 12/γ, otherwise the result follows trivially, since each phase earns at least one point. The
jth phase is deemed successful if, during it, either γd/2 points are earned or the fraction of
gold balls drops below γ (causing m(j)/m(j − 1) < γ). In Lemmas 7 and 8, we will establish
that each phase is successful with probability at least 1/2, even when conditioned on the
outcomes of previous phases. Thus, by a Chernoff bound, after 10/γ phases the probability
that there were at least 4/γ successful phases is at least 1− exp(−O(1/γ)). If 4/γ phases
are successful, either we have earned (2/γ)(γd/2) points or the number of balls in the urn
has reduced from m(0) = m to at most (γ)2/γm. By definition, this number is less than 1,
implying that the urn is empty. ◀

We turn to lower bounding the success probability of a phase as claimed in the above
proof. Fix a particular phase and a particular realization of all previous phases of the
stochastic process. Let Gi be the event that the ith draw of this phase reveals a gold ball
(and thus earns a point); let Li be the event that after i− 1 draws, the fraction of gold balls
in the urn is less than γ. Define indicator variables Xi = 1Gi∪Li and set X =

∑d
i=1 Xi.

E[Xi] = Pr[Li] + Pr[Gi ∩ Li] = Pr[Li] + Pr[Li] Pr[Gi | Li] ≥ Pr[Gi | Li] ≥ γ . (1)

▶ Lemma 7. If X ≥ γd/2, then the phase is successful.

Proof. If X ≥ γd/2, either some event Li occurs or we collect γd/2 gold balls (and points).
In the latter case, the phase is successful by definition. In the former case, the fraction of
gold balls drops below γ during the phase. Since lead never turns into gold, this fraction
remains below γ. Upon removing lead balls at the end of the phase, the number of balls in
the urn drops to at most γ times the number at the start of the phase, i.e., the phase is
successful. ◀

Finally, we show that X stochastically dominates a binomial random variable, which
lower-bounds Pr[X ≥ γd/2].

▶ Lemma 8. Pr[X ≥ γd/2] ≥ 1− exp(−γd/12) ≥ 1/2, where the latter inequality uses our
assumption that d ≥ 12/γ.

ESA 2024
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Proof. Let Y1, . . . , Yd be independent draws from the Bernoulli distribution Bern(γ). Put
X≤j =

∑j
i=1 Xi and Y ≤j =

∑j
i=1 Yi. We first show by induction on j that X≤j stochastically

dominates Y ≤j for all j. Inequality (1) with i = 1 establishes the base case of j = 1. Assuming
the result for j, for an arbitrary integer, z, we have

Pr[X≤j+1 ≥ z] = Pr[X≤j ≥ z] + Pr[X≤j = z − 1] Pr[Xj+1 = 1 | X≤j = z − 1]
≥ Pr[X≤j ≥ z] + Pr[X≤j = z − 1]γ
= Pr[X≤j ≥ z](1− γ) + Pr[X≤j ≥ z − 1]γ
≥ Pr[Y ≤j ≥ z](1− γ) + Pr[Y ≤j ≥ z − 1]γ = Pr[Y ≤j+1 ≥ z] .

Thus, Pr[X ≥ γd/2] ≥ Pr[Y ≥ γd/2]. The lemma now follows by applying a Chernoff bound
to the binomial random variable Y ∼ Bin(d, γ). ◀

3.2 Cascading Urns
To prove the first part of Lemma 4, we will also need to analyze a more complex version of
the above process; we call it the cascading urn process. Now we have t urns, numbered 1
through t, with the rth urn starting out with mr balls; let m =

∑
r∈[t] mr. Drawing a gold

ball from urn r is worth d/2r points. Initially, all balls are gold. The process works as follows.
Balls are drawn in phases: a phase consists of drawing 2r balls from urn r, in order of
increasing r.
When a ball is drawn from urn r, if it is gold, the following things happen: (i) the ball
turns into lead and is returned to urn r; (ii) some arbitrary subset of the balls in the urns
(all urns, not just urn r) turn into lead; and (iii) we earn d/2r points.
At the end of each phase, each lead ball in an urn is removed from its current urn and
either destroyed or transformed back into gold and placed in a higher-numbered urn. We
then start the next phase with all balls being gold again.

The process ends when either d points have been earned or all urns have become empty.

▶ Theorem 9. With probability ≥ 9
10 , the cascading urn process ends in O(t + log m) phases.

Proof. Fix a particular phase, p. For each r ∈ [t], the analysis of one phase of the single-urn
process, applied to urn j, establishes that, during this phase, with probability at least

Pr
[
Bin

(
2r,

1
2

)
≥ 2r

4

]
≥ 1− exp

(
−2r−1

12

)
≥ 1− e− 1

12 >
1
13 =: 8ξ ,

either at least d/4 points are earned from this urn (call this event Gr,p) or the fraction of gold
balls in this urn drops below 1/2 (call this event Lr,p). Let Zr,p = 1Gr,p∪Lr,p

and observe
that E[Zr,p] > 8ξ.

Let mr,p be the number of balls in urn r at the start of the phase p (recall that these are
all gold balls) and consider the quantity Qp :=

∑
r∈[t] 2t−rmr,p. Note that if at least half of

the mr,p balls in urn r turn into lead, then Qp decreases by at least 2t−rmr,p/4 because the
contribution of these ball decreases by at least a factor 2. If

⋃
r Gr,p does not occur, then

Qp+1 ≤
∑
r∈[t]

2t−r(Zr,p · 3mr,p/4 + (1− Zr,p)mr,p) =
∑
r∈[t]

2t−r(1− Zr,p/4)mr,p .

Using the lower bound on E[Zr,p], we get

E[Qp+1] ≤
∑
r∈[t]

2t−r(1− 2ξ)mr,p = (1− 2ξ)Qp .



A. Chakrabarti, A. McGregor, and A. Wirth 40:9

Applying a Markov bound gives

Pr[Qp+1 ≤ (1− ξ)Qp] ≥ 1− E[Qp+1]/((1− ξ)Qp) ≥ ξ/(1− ξ) .

Hence, with probability at least ξ/(1− ξ), either
⋃

r Gr,p occurs (in which case we collect
d/4 points) or the fraction of balls that remain gold until the end of the phase is at most
1− ξ. Note that Q0 ≤ 2t−1m and if Qp < 1 for some p, then every urn must be empty after
phase p.

With probability at least ξ/(1− ξ), in each phase, we either earn d/4 points or Qp reduces
by a factor 1− ξ. By an application of the Chernoff bound, in at least

2 log1/(1−ξ) Q0 ≥ 4 + log1/(1−ξ) Q0

of the first O(log Q0) = O(t + log m) phases, either d/4 points have been collected or Qp has
decreased by a factor 1− ξ. This would imply either 4 · d/4 = d points have been collected
or all the urns are empty. ◀

3.3 Applications to Our Algorithm
We now circle back to Algorithm 1. To finish its analysis, we need to prove Lemma 4, which
we can now do, as an application of what we have established about these urn processes. To
analyze the while loop at Line 2, apply Theorem 9 with t = ⌊log k⌋ as follows. The balls in
the ith urn correspond to the sets in FC

i . A ball is gold if the corresponding set S satisfies
|S \ C| ≥ θi; otherwise, it is lead. Adding a set S to the candidate solution Y grows the set
C of covered elements, thereby turning gold balls to lead in some complicated way that the
algorithm cannot easily track. The bound on the number of phases until the urn process
terminates translates to a bound of O(log k + log m) on the number of iterations of that while
loop. Noting that k ≤ m gives Lemma 4. Similarly, Theorem 6 implies that the number of
iterations of the while loop at Line 7 is O(log m/ log log m).

4 Random Order Model

In this section, we consider the stream to be a random permutation of the collection of
sets. We will show that it is possible to approximate the maximum coverage problem
up to a factor 1 − 1/e − ε using Oε(k log m) space in a single pass. As mentioned in the
introduction, our approach is based on modifying an algorithm by Agrawal et al. [1] for
cardinality constrained monotone submodular maximization. This is a more general problem
than maximum coverage, but their algorithm assumes oracle access to the function being
optimized. For maximum coverage we need to store enough information to be able to simulate
this oracle. A Oε(k2 log m)-space algorithm for maximum coverage follows immediately via
the universe subsampling technique discussed in Section 2 since we may assume that every
set has size Oε(k log m). To reduce the dependence on k to linear rather than quadratic,
we need a more careful adaption of the algorithm of Agrawal et al. [1], to ensure that the
algorithm can be implemented via maintaining a set of size Oε(k log m) corresponding to the
items covered by a collection of sets chosen for the solution so far, along with Oε(1) sets of
size Oε(log m).

Warm-Up. To motivate the approach, consider a variant of the problem in which an
algorithm is presented with a random permutation of the input sets, but we make the
following two changes:
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1. Fix an optimal collection of sets O1, . . . , Ok. For each i ∈ [k], replace the occurrence of Oi

in the stream by a set drawn uniformly at random from {O1, . . . , Ok}. These replacements
are performed independently and so it is now possible that some sets amongst O1, . . . , Ok

never appears in the stream or appears multiple times.
2. We give the algorithm foreknowledge of a way to segment the stream into k contiguous

sub-streams C1, . . . , Ck such that each contains exactly one element from {O1, . . . , Ok}.
Then consider the greedy algorithm that outputs the sequence ⟨S1, . . . , Sk⟩ where

Sj = argmaxS∈Cj
|S \ (S1 ∪ · · · ∪ Sj−1)| .

To analyze this algorithm, define uj = OPT−|S1 ∪ · · · ∪ Sj | and Fj = |Sj\(S1∪···∪Sj−1)|
uj−1

and
note that

|S1 ∪ · · · ∪ Sk| = OPT−uk = OPT−OPT ·
k∏

j=1
(1− Fj) ,

since for all j ∈ [k],

uj = OPT−|S1 ∪ · · · ∪ Sj−1| − |Sj \ (S1 ∪ · · · ∪ Sj−1)| = (1− Fj)uj−1 .

Note also that

E [Fj | S1, . . . , Sj−1] ≥
k∑

i=1

|Oi \ (S1 ∪ · · · ∪ Sj−1)|
uj−1

· Pr[Oi ∈ Cj ]

= 1
k
·

k∑
i=1

|Oi \ (S1 ∪ . . . ∪ Sj−1)|
uj−1

≥ 1/k .

Hence,

E[|S1 ∪ . . . ∪ Sk|] = OPT(1− E[
k∏

j=1
(1− Fj)]) ≥ 1− (1− 1/k)k → 1− 1/e .

The space required to implement this algorithm is O(kε−2 log m) since it suffices to maintain
the union of the sets chosen thus far rather than the sets themselves.

To handle the original random order setting, we obviously need to deal with the fact that
the algorithm does not have foreknowledge of a segmentation of the stream such that each
segment contains exactly one set from the optimum solution. A naive approach would be
to segment the stream into βk contiguous segments for some large constant β > 0 with the
hope that few pairs of optimum sets appear in the same segment. We could then consider all(

βk
k

)
= eO(k) subsequences of these segments but this is clearly inefficient. A better approach

is to use limited number of guesses in parallel using an approach by Agrawal et al. [1]. More
complicated to analyze, especially when combined with the goal of using limited space, is the
fact that because the O-sets appear randomly permuted, rather than independently sampled,
there are now various dependencies to contend with.

General Setting. We will randomly partition the input collection C of sets into kβ groups
C1, . . . , Ckβ . These groups will ultimately correspond to segments of the stream, i.e., the first
|C1| ∼ Bin(m, 1/(kβ)) sets define C1 etc. For any I = {i1, i2, . . .} ∈ {1, . . . , kβ} we define a
sequence of groups

ΣI = ⟨Ci1 , Ci2 , · · · , Ci|I|⟩ where i1 < i2 < . . . < i|I| .
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At the heart of the algorithm is a greedy process run on such sequences. For I =
{i1, i2, . . .} ⊂ {1, . . . , kβ}, C ⊂ [n], and a “reserve” collection of sets, R – the name will
become clear later – define the greedy sequence:

σI(C,R) = ⟨S1, S2, . . . , S|I|⟩ (2)

where Sj = argmaxS∈R∪Cij
|S \ (C ∪ S1 ∪ · · · ∪ Sj−1)|.

Algorithm 2 Max Coverage for Random Order Streams.

1: initialize R ← ∅, C ← ∅, k′ ← 0.
2: for i← 1 to k/α do
3: Compute σI(C,R) for all I ∈ Pi, where Pi consists of all size k+ ≡ min{α, k − k′}

subsets of

Wi = {αβ(i− 1) + 1, . . . , αβi} .

We will subsequently refer to Wi as the ith window.
4: Let

I∗ = argmaxI∈Pi

∣∣∣∣∣∣ C ∪

 ⋃
S∈σI(C,R)

S

 ∣∣∣∣∣∣
and update

C ← C ∪

 ⋃
S∈σI∗(C,R)

S

 and k′ ← k′ + k+ .

5: For all I ∈ Pi, add all sets in σI(C,R) to R. If there exists at least one set S in R
such that |S \ C| ≥ OPT /k, select such a set uniformly at random and update

C ← C ∪ S and k′ ← k′ + 1 .

Repeat until either k′ = k or no more such sets exist in R.

Algorithm 2 contains most details, but to fully specify the algorithm, we need to define
the original groups C1, C2, . . . , Ckβ . To do this, for each set S define a random variable YS

that is uniform over {1, 2, . . . , kβ}. Then, we define Ci = {S : YS = i}. Equivalently, for a
random permutation of the stream, C1 is the first |{S : YS = 1}| sets in the stream, C2 is the
next |{S : YS = 2}| sets in the stream, etc. Given this definition of the stream, Algorithm 2
maintains sets whose total size is

|OPT |+ α

(
αβ

α

)
|OPT |+ α(k/α)

(
αβ

α

)
OPT /k = Oα,β(OPT) , (3)

where the first term corresponds to maintaining C, the next term consists of all sets appearing
in greedy subsequences during the processing of each window (defined in line 3 of Algorithm 2),
and the last term corresponds to storing sets in R. For sets S in R it suffices to store S \ C

rather than S itself. Hence, the total number of elements in sets in R is at most |R|OPT /k.
The motivation for how to set α and β is as follows. Let O = {O1, . . . , Ok} be an optimum

collection of k sets. We say a group Ci is active if it contains a set from O and note that if β

is large enough the number of active groups κ is close to k. Furthermore, in each window the
number of active groups is expected to be κ · (αβ)/(kβ) = ακ/k ≈ α. We will later set α to
be large enough such that the number of active groups in each window is typically close to α,
i.e., there is an α-length subsequence of the window that mainly consists of active groups.
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Analysis. The analysis in Agrawal et al. [1] establishes that, during the ith window, the
algorithm finds a collection of α sets S1, . . . , Sα – via one of the greedy subsequences
considered – that, as explained below, covers a significant number of new elements when
added to the solution. For any subset A ⊂ [n], define u(A) = (1−α/k) OPT−|A|. Lemma 15
of Agrawal et al. [1] establishes that if Ci−1 is the set of elements covered by the sets
chosen during the processing of the first i− 1 windows, and Ti−1 is the entire set of greedy
subsequences constructed during the first i− 1 windows, then4

E[u(S1 ∪ · · · ∪ Sα ∪ Ci−1) | Ti−1] ≤ e−α(1−δ)/ku(Ci−1) , (4)

where δ =
√

8/β, assuming k ≥ αβ and α ≥ 4β2 log(β/8). The crucial observation is that
their proofof Equation (4) holds true regardless of how Ci−1 is constructed from the greedy
subsequences in Ti−1. In particular, Equation (4) holds true given our modification of the
Agrawal et al. algorithm, i.e., the possibility of adding additional sets from R at the end
of previous windows. At the end of the ith window, we potentially add additional sets
Sα+1, . . . , Sα′

i
where

u(S1 ∪ · · · ∪ Sα′
i
∪ Ci−1) ≤ u(S1 ∪ · · · ∪ Sα ∪ Ci−1)− (α′

i − α) OPT /k

≤ (1− (α′
i − α)/k) · u(S1 ∪ · · · ∪ Sα ∪ Ci−1)

≤ e−(α′
i−α)/k · u(S1 ∪ · · · ∪ Sα ∪ Ci−1)

Hence, in the ith window (except potentially in the window where we add the kth set to our
solution) we add α′

i ≥ α sets S1, . . . , Sα′
i

such that if Ci = S1 ∪ · · · ∪ Sα′

E[u(Ci) | Ti−1] ≤ e−α′
i(1−δ)/k · u(Ci−1) . (5)

Since there are k/α windows, and we find a sequence of length α′
i > α until we have a

sequence of length k, such that Eq. (5) holds in each window, for some j ≤ k/α, with
δ < ε/2 < 1,

E[(1− α/k) OPT−|Cj |] ≤ (1− α/k) ·OPT ·
∏
i≥1

e−α′
i(1−δ)/k

= (1− α/k)e−1+δ OPT < (1− α/k)(1/e + ε/2) OPT ,

where we used the fact
∑

i α′
i = k and exp(−1 + x) ≤ 1/e + x for 0 < x < 1. Hence,

E[|Cj |] ≤ 1 − 1/e − ε assuming α/k ≤ ε/2. Setting the constants to α = 4096ε−4 log(2/ε)
and β = 32ε−2 ensures all the necessary conditions are met assuming k = ω(1). With these
values of α and β, we have

(
αβ
α

)
≤ exp(O(ε−4 ln2 ε−1)). Hence, the space dependence on ε in

Eq. (3) becomes O(k log m · exp(O(ε−4 ln ε−1))), since we may assume OPT = O(kε−2 log m)
and the exponential dependencies on ε dominate the polynomial dependencies.

5 Fast Algorithms

Fast Universe Sub-Sampling. The universe sub-sampling approach described in Section 2,
requires the use of a γ-wise independent hash function where γ = O(k log m). This bound
on the independence was actually an improvement by Jaud et al. [16] over the bound of
O(ε−2k log m) originally given by McGregor and Vu [27]. Jaud et al. were motivated to

4 Note the statement of [1, Lemma 15] has the RHS of Eq. (4) as (1 − δ)e−α/ku(Ci−1), rather than the
expression in Eq. (4), where the (1 − δ) appears in the exponent. Their proof actually only implies the
weaker statement, in Eq. (4); fortunately, this is still sufficient for their and our purposes.
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improve the bound not for the sake of reducing the space of any streaming algorithms, but
rather to reduce the update time from O(ε−2k log m) to O(k log m). However, we note that
the update time, at least in an amortized sense, can actually be reduced to polylogarithmic.
Specifically, we can use the hash family given by degree-γ polynomials over a suitably large
finite field [32]. Although evaluating such a polynomial at a single point (which corresponds
to hashing a single element) requires Ω(γ) time, evaluating the polynomial on γ points
can actually be done in O(γ log2 γ log log γ) time [30, Chapter 10]. Hence, by buffering sets
of O(k log m) elements, we may ensure that the hash function can be applied with only
poly(log k, log log m) amortized update time. We note that a similar approach was used by
Kane et al. [18] in the context of frequency moment estimation.

Fast ℓ0 Sampling. In the dynamic algorithm we needed to sample r sets with replacement
from a stream in the presence of insertions and deletions. This can be done via ℓ0 sampling
as discussed in the preliminaries. However, a naive implementation of this process requires
Ω(r) update time if r different ℓ0 samplers need to be updated with every set insertion or
deletion. To avoid this, a technique by McGregor et al. [26] can be used. Specifically, we
use a O(log r)-wise independent hash function to partition [M ] into t := r/ log r groups
P1, P2, . . . Pt. During the stream we compute ρi = |{x ∈ Pi :

∑
j:xj=x ∆j ̸= 0}|, i.e., the

number of values in Pi that are inserted a different number of times from the number of
times they are deleted. Note that it is simple to compute ρ1, . . . , ρt on the assumption that∑

j:xj=x ∆j ∈ {0, 1}, i.e., every set is inserted either the same number of times it is deleted
or exactly one extra time. We also compute 2 log r independent ℓ0 samplers for each Pi;
note that each set insert or delete requires updating at most 2 log r independent ℓ0 samplers.
Then at the end of the stream, to generate a sequence of samples with replacement we first
sample i with probability ρi/

∑
j ρj and then use the next unused ℓ0 sampler from group Pi.

Assuming r ≪ |{x ∈ [M ] :
∑

j:xj=x ∆j ̸= 0}| (if this is not the case, we can just use sparse
recovery), then with high probability each ρi/

∑
j ρj ≤ 2(log r)/r and the process will use at

most 2 log r independent ℓ0 samplers from each group in expectation and less than 4 log r

with probability at least 1− 1/ poly(r).

6 Conclusion

We presented new algorithms for 1 − 1/e − ε approximation of the maximum coverage
problem in the data stream model. These algorithms improve upon the state-of-the-art
results by a) reducing the space required in the dynamic model from (n + ε−4) polylog(m, n)
to ε−2k polylog(m, n) when given O(ε−1 log m) passes, b) reducing the space required in the
single-pass random order model from ε−2k2 polylog(m, n) to Oε(k polylog(m, n)) although we
emphasize that the Oε hides an exponential dependence on ε, and c) reducing the amortized
update time to polylogarithmic in m and n. We conjecture that ε−2k polylog(m, n) space is
sufficient in the random order model. In fact there is a monotone submodular optimization
algorithm in the random order model that, when applied to the maximum coverage problem
would maintain only O(ε−1k) sets [25]. Given that, via universe sub-sampling, we may
assume that the sets have size O(ε−2k log m); this yielded the Warneke et al. [31] result.
However, it seems unlikely that the algorithm of Liu et al. [25] can be modified to ensure that
the total number of elements across all sets maintained is O(ε−2k log m) so a new approach
is likely to be necessary.
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