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Abstract
In the Maximum Weight Independent Set of Rectangles problem (MWISR) we are given
a weighted set of n axis-parallel rectangles in the plane. The task is to find a subset of pairwise
non-overlapping rectangles with the maximum possible total weight. This problem is NP-hard
and the best-known polynomial-time approximation algorithm, due to Chalermsook and Walczak
[SODA 2021], achieves approximation factor O(log log n). While in the unweighted setting, constant
factor approximation algorithms are known, due to Mitchell [FOCS 2021] and to Gálvez et al.
[SODA 2022], it remains open to extend these techniques to the weighted setting.

In this paper, we consider MWISR through the lens of parameterized approximation. Grandoni,
Kratsch and Wiese [ESA 2019] gave a (1 − ε)-approximation algorithm running in kO(k/ε8)nO(1/ε8)

time, where k is the number of rectangles in an optimum solution. Unfortunately, their algorithm
works only in the unweighted setting and they left it as an open problem to give a parameterized
approximation scheme in the weighted setting.

We give a parameterized approximation algorithm for MWISR that given a parameter k ∈ N,
finds a set of non-overlapping rectangles of weight at least (1 − ε)optk in 2O(k log(k/ε))nO(1/ε) time,
where optk is the maximum weight of a solution of cardinality at most k. We also propose a
parameterized approximation scheme with running time 2O(k2 log(k/ε))nO(1) that finds a solution
with cardinality at most k and total weight at least (1 − ε)optk for the special case of axis-parallel
segments.
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1 Introduction

In the field of parameterized complexity the goal is to design an algorithm that is efficient
not only in terms of the input size, but also in terms of auxiliary parameters. On the
other end of the spectrum, in the field of approximation algorithms the goal is to design an
algorithm that returns a solution that is only slightly worse than the optimum one. These
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two notions are traditional frameworks to deal with NP-hard problems. Recently, researchers
started to combine the two concepts and try to design approximation algorithms that run in
parameterized time. Ideally, given ε > 0 and a parameter k ∈ N, for example the size of the
desired solution, one seeks an algorithm with running time of the form f(k, ε)ng(ε) for some
functions f(k, ε) and g(ε), which returns a (1 + ε)-approximate solution. Such an algorithm
is called parameterized approximation scheme (PAS).

In this paper, we continue this line of work and apply it to a fundamental geometric
packing problem. In the maximum weight independent set of rectangles (MWISR)
problem we are given a set D consisting of n axis-parallel rectangles in the plane alongside with
a weight function ω : D → R. Each rectangle R ∈ D is a closed set of points [x1, x2] × [y1, y2]
fully characterized by the positions of its four corners. A feasible solution S ⊆ D to the
MWISR problem consists of rectangles that are pairwise disjoint, i.e., for any two different
R, R′ ∈ S we have R ∩ R′ = ∅; we also call such a solution an independent set. The
objective is to find a feasible solution of maximum total weight. In this paper, we consider a
parameterized setting of the problem. We use parameter k ∈ N to denote the cardinality of
the solution. Then optk(D) denotes the maximum possible weight of an independent set in
D whose cardinality is at most k.

MWISR is a fundamental problem in geometric optimization. It naturally arises in various
applications, such as map labeling [2, 12], data mining [16], routing [21], or unsplittable flow
routing [5]. MWISR is well-known to be NP-hard [14], and it admits a QPTAS [1]. The
currently best approximation factor achievable in polynomial time is O(log log(n)) [8]. From
the parameterized perspective, it is known that the problem is W[1]-hard when parameterized
by k, the number of rectangles in the solution, even in the unweighted setting and when all
the rectangles are squares [22]. Therefore, it is unlikely that there is an exact algorithm with
a running time of the form f(k)nO(1), even in this restricted setting. In particular, this also
excludes any (1 − ε)-approximation algorithm running in f(ε)nO(1) time [4, 7]. We note that
in the case of weighted squares, there is a PTAS with running time of the form ng(ε) [13].

Approximating MWISR becomes much easier in the unweighted setting. With this
restriction, even constant-factor approximation algorithms for MWISR are known [24, 17],
and there is a QPTAS (with a better running time [9] than in unweighted setting). Very
recently, these algorithms have been generalized: an 8d/3-approximation in (nd)O(d4d)-time
for the maximum independent set of convex polygons with at most d-direction has been
considered [18] (see also [11] for OPTε-approximation for arbitrary polygons).

Grandoni, Kratsch and Wiese [19] were the first to consider parameterized approximation
for the MWISR problem. They gave a parameterized approximation scheme for unweighted
MWISR running in kO(k/ε8)nO(1/ε8) time. As an open problem, they asked if one can also
design a PAS in the weighted setting.

▶ Open Question 1 ([19]). Does Maximum Independent Set of Rectangles admit a
parameterized approximation scheme in the weighted setting?

Our contribution. In this paper we provide the following result:

▶ Theorem 1.1. Suppose D is a set of axis-parallel rectangles in the plane with positive
weights. Then given k and ε > 0, one can in 2O(k log(k/ε))|D|O(1/ε) time find an independent
set in D of weight at least (1 − ε)optk(D).

Note that there is a caveat in the formulation above: the returned solution may actually
have cardinality larger than k, but there is a guarantee that it will be an independent set.
Ideally, we would like the algorithm to return a solution of weight at least (1 − ε)optk(D)
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and of cardinality at most k. At this point, we are able to provide such an algorithm only in
the restricted case of axis-parallel segments (see Theorem 1.2 below), but let us postpone
this discussion till later and focus now on Theorem 1.1. Observe here that the issue with
solutions of cardinality larger than k becomes immaterial in the unweighted case, hence
Theorem 1.1 applied to the unweighted setting solves the problem considered by Grandoni et
al. [19] and actually improves the running time of their algorithm.

We now briefly describe the technical ideas behind Theorem 1.1. Similar to Grandoni
et al. [19], the starting point is a polynomial-time construction of a grid such that each
rectangle in D contains at least one gridpoint. However, in order to take care of the weights,
our grid is of dimensions (2k2/ε) × (2k2/ε). Moreover, already in this step, we may return
an independent set of weight at least (1 − ε)optk that consists of more than k rectangles.
This is the only step where the algorithm may return more than k rectangles.

After this step, the similarities to the algorithm of Grandoni et al. [19] end. We introduce
the notion of the combinatorial type of a solution. This is simply a mapping from each
rectangle in the solution to the set of all gridpoints contained in it (see Definition 3.3).
Observe that since the size of the grid is bounded by a function of k and ε, we can afford to
guess (by branching into all possibilities) the combinatorial type of an optimum solution in
f(k, ε) time, for some function f(·, ·). Notice that there may be many different rectangles
matching the type of a rectangle from the optimum solution. However, it is possible that
such a rectangle overlaps with neighboring rectangles (and violates independence). Therefore,
we need constraints that prevent rectangles from overlapping. For this, we construct an
instance of Arity-2 Valued Constraint Satisfaction Problem (2-VCSP) based on
the guessed combinatorial type.

Next, we observe that this instance induces a graph that is “almost” planar, hence we
may apply a variant of Baker’s shifting technique [3]. This technique (which we discuss
in detail in Section 3) allows us to divide the instance into many independent instances of
2-VCSP while removing only ε · optk weight from the optimum solution. Moreover, each of
these independent instances induces a graph of bounded treewidth, and hence can be solved
exactly in |D|O(1/ε) time. This concludes a short sketch of our approach.

Let us return to the apparent issue that our algorithm may return a solution of cardinality
larger than k. This may happen in the very first step of the procedure, during the construction
of the grid. By employing a completely different technique, we can circumvent this problem
in the restricted setting of axis-parallel segments and prove the following result.

▶ Theorem 1.2. Suppose D is a set of axis-parallel segments in the plane with positive
weights. Then given k and ε > 0, one can in 2O(k2 log(k/ε))|D|O(1) time find an independent
set in D of cardinality at most k and weight at least (1 − ε)optk(D).

Let us remark that we do not know whether in Theorem 1.2, it is necessary to rely
on approximation: to the best of our knowledge, it is open whether finding a maximum
weight set of k disjoint axis-parallel segments can be solved exactly in fixed-parameter
time, parameterized by k. Kára and Kratochvíl [20] and Marx [23] independently solved the
unweighted case: they proved that the problem of finding a maximum cardinality independent
set of axis-parallel segments admits an FPT algorithm. However, their approach heavily relies
on the assumption of unit weights, as in this setting finding any set of k disjoint segments
allows one to immediately conclude the search. Our approach is very different, and in fact
we show that finding a maximum weight set of k disjoint axis-parallel segments admits an
algorithm with running time WO(k2)|D|O(1), where W is the number of distinct weights
present among the segments.

ESA 2024



43:4 Parameterized Approximation for Independent Set of Rectangles and Segments

We proceed with an outline of the proof of Theorem 1.2 and highlight some technical
ideas. First, we modify the instance so that the number of different weights is bounded.
This is done through guessing the largest weight of a rectangle in an optimum solution and
rounding the weights down. This is the only place where we lose accuracy on the optimal
solution. In other words, the algorithm is fixed-parameter tractable in k and the number of
distinct weights W = (k/ε)O(1).

With this assumption, we then construct a grid with O(k2) lines hitting every segment
of the instance. We say that the grid is nice with respect to a segment I, if I contains a
grid point; equivalently, I is nice if it is hit by two orthogonal lines of the grid. Observe
that the constructed grid is not necessarily nice for every segment of the instance. We adapt
the previously introduced notion of the combinatorial type in order to also accommodate
segments which do not contain a grid point. This is done by mapping the segment to its
four neighboring grid lines instead of the grid points contained inside the segment. Further,
the weight of the segment is added to its combinatorial type. Similarly to before, the
combinatorial type of a segment only depends on the grid size and the number of distinct
weights. This allows to guess (by branching into all possibilities) the combinatorial type of
the optimum solution S in kO(1) · W time.

The goal is to construct a grid which is nice with respect to all segments of an optimal
solution S. For this, we start by guessing the combinatorial type of all nice segments of an
optimal solution S. Then, we incrementally guess the combinatorial type of the next heaviest
segment in S for which the grid is not yet nice. For each such combinatorial type, we find
all possible candidate segments and add at most k lines to the grid G. This ensures that a
correct candidate segments are hit in both directions. Repeating this procedure at most k

times we end up with a grid which is nice with respect to all the segments of S.
Given such a grid, it remains to guess the combinatorial type of all segments in S and

solve the resulting instance. This can be done either greedily or by observing that the
problem can be modeled as a 2-CSP instance whose constraint graph is a union of paths.
Both these cases work due to the fact that the segments only interact with each other when
they lie on the same grid line.

2 Preliminaries

Through the paper, we silently assume that every weight is positive (because we work on
maximization, we can simply disregard objects of non-positive weights). A tree decomposition
of a graph H is a tree T together with a function bag that maps nodes of T to subsets of
vertices of H, called bags. The following conditions must be satisfied:

for every vertex u of H, the nodes of T whose bags contain u must form a connected,
nonempty subtree of T ; and
for every edge uv of H, there must exist a node of T whose bag contains both u and v.

The width of a tree decomposition (T, bag) is maxx∈V (T ) |bag(x)| − 1. The treewidth of H

is the minimum possible width of a tree decomposition of H. By distH(u, v) we mean the
distance between vertices u and v in a graph H.

We use well-known results about Arity-2 Valued Constraint Satisfaction Prob-
lems (2-VCSPs). For an intuitive description of 2-VCSP, reader is invited to see [15]. An
instance of 2-VCSP is a finite set of variables X, a domain D(x) for each variable x ∈ X, and
a set C of constraints. Each constraint c ∈ C binds an ordered pair (x(c)

1 , x
(c)
2 ) ∈ X × X of

variables in X (not necessarily distinct) and is given by a mapping fc : D(x(c)
1 )×D(x(c)

2 ) → R.
We assume that fc is given as a set of pairs {(d, fc(d)) : d ∈ D(x(c)

1 ) × D(x(c)
2 )}. The goal
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is to compute the maximum value of the function f(u) :=
∑

c∈C fc(u|xc), over all possible
assignments u ∈

∏
x∈X D(x) of values in respective domains to variables in X. The value

f(u) will be called the revenue of the assignment u.
Observe that each instance of 2-VCSP induces an undirected graph, called the Gaifman

graph: the vertex set is the set of variables X, and for every pair of distinct variables x, y ∈ X,
there is an edge xy if and only if there is a constraint c ∈ C such that xc = (x, y). Given a
class H of graphs, we can define a restriction of 2-VCSP to H by focusing only on instances
whose Gaifman graph is in H. In this paper we focus only on instances of 2-VCSP where
the Gaifman graph has bounded treewidth. In this setting, it is well-known that a standard
dynamic programming solves 2-VCSP efficiently [15]1.

▶ Theorem 2.1 ([15]). 2-VCSP can be solved in time ∆O(t) · |X|O(1) when the Gaifman
graph has treewidth at most t and all domains are of size at most ∆.

In Section 4 we also use standard 2-CSPs. These can be modeled by 2-VCSPs where
all the constraints are hard: revenue functions fc assign only values 0 (the constraint is
satisfied) or −∞ (the constraint is not satisfied). The task is to find a variable assignment
that satisfies all constraints, that is, yields revenue 0.

Proofs of statements marked with (⋆) are deferred to the full-version of this paper [10].

3 Axis-parallel rectangles

In this section we prove Theorem 1.1. Therefore, we fix the given set D of weighted axis-
parallel rectangles. For a rectangle R ∈ D, the weight of R is ω(R) ∈ R. By optk(D) we
denote the maximum possible weight of a set consisting of at most k disjoint rectangles
in D. We also fix any optimum solution, that is, a set S ⊆ D of cardinality at most k

satisfying ω(S) = optk(D).
We start with a simple preprocessing on D. First, we guess a rectangle Rmax ∈ S with

maximum weight among all rectangles of S. This can be done with an extra overhead of
O(n) in the running time. Observe that ω(Rmax) ⩾ optk(D)/k. Further, we remove from D
every rectangle of weight larger than ω(Rmax) and every rectangle of weight not exceeding
εω(Rmax)/k; let the obtained instance be D′. Observe that this operation does not decrease
the optimum significantly, as none of the former rectangles and at most k of the latter
rectangles could be used in S. More precisely, we have

optk(D′) ⩾ optk(D) − k · ε · ω(Rmax)
k

⩾ (1 − ε)optk(D).

After this preprocessing, the optimum decreased by at most ε · optk(D). This concludes the
description of preprocessing. From now on, we silently assume that our instance is D := D′.

3.1 Constructing a grid

We first introduce relevant terminology.

1 Freuder [15] actually considered only the unweighted 2-CSP, however, as pointed out in, e.g., [6, 26], this
dynamic-programming approach can be adapted to the weighted setting. Also, Freuder assumes that a
suitable tree decomposition is given on input. Such a tree decomposition can be provided within the
stated time complexity by, for instance, the 4-approximation algorithm of Robertson and Seymour [25].

ESA 2024
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Figure 1 The grid constructed after applying the greedy procedure. Rectangles Rver
i are blue-filled,

and rectangles Rhor
i are orange-filled. Observe that every rectangle is hit by at least one grid point.

▶ Definition 3.1. A grid is a finite set of horizontal and vertical lines in the plane. The size
|G| of a grid G is the total number of lines it contains. A grid point of G is the intersection
of a horizontal and a vertical line of G. The set of grid points of G is denoted by points(G).
The lines of the grid divide the plane into grid cells. Thus, each grid cell is a rectangle,
possibly with one or two sides extending to infinity, and at most four corners: the grid points
lying on its boundary.

A grid G is good for a set of axis-parallel rectangles D, if for every rectangle R ∈ D there
is a grid point of G contained in R.

As mentioned in Section 1, our search for an optimal solution pivots around a bounded
size grid that is good for the optimum solution. The construction of this grid is encapsulated
in the following lemma.

▶ Lemma 3.2. Suppose we are given a set D of weighted axis-parallel rectangles and let
∆(D) be the ratio between lowest and highest weight in D. Then, supposing ∆(D) ⩾ ε/k for
some ε > 0, one can, in polynomial time, either

compute a grid G of size |G| ⩽ 2k2

ε that is good for D, or
return an independent set I ⊆ D with ω(I) ⩾ optk(D).

Proof. We construct the grid G by first constructing the vertical lines of G, and then with
basically the same procedure we add the horizontal lines of G. For the construction of the
vertical lines, we iteratively pick vertically disjoint rectangles in a greedy fashion. For every
rectangle R ∈ D, select a point pR ∈ R very close to the top-right corner of R. We start
with D1 := D. In iteration i ∈ N, we select a rectangle Rver

i ∈ Di for which pi := pRver
i

is the
leftmost among rectangles of Di. (In case of ties, select any of the tying rectangles.) Then,
add the vertical line ℓver

i which contains pi to the grid. Next, delete every rectangle from
Di intersecting ℓver

i , thus obtaining the next set Di+1. We repeat this procedure until no
more rectangles are left in Di. To finish the construction of G, repeat the above algorithm in
the orthogonal direction, thus selecting vertically disjoint rectangles Rhor

i and adding to G

horizontal lines ℓhor
i . This concludes the construction of G; see Figure 1 for an illustration.

Trivially, the above algorithm runs in polynomial time. Moreover, it returns a good grid
since every rectangle in D is intersected by some horizontal and some vertical line from G.
So if |G| ⩽ 2k2

ε , we can just return G as the output of the algorithm.
It remains to show that if |G| > 2k2

ε , then we can find an independent set of weight at
least optk(D). Assuming that |G| > 2k2

ε , either the vertical or the horizontal run of the
greedy algorithm returned more than k2

ε lines. Without loss of generality assume that the
vertical run gave rectangles Rver

1 , . . . , Rver
m for some m > k2

ε . Note that these rectangles form
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an independent set, because after iteration i ∈ [m] all rectangles with left side to the left
of ℓi are removed. As we assumed that the ratio between lowest and highest weight of a
rectangle in D is at least ε/k, we may estimate the weight of {Rver

1 , . . . , Rver
m } as follows:

m∑
i=1

ω(Rver
i ) ⩾ m · ε · ω(Rmax)

k
⩾ k · ω(Rmax) ⩾ optk(D),

where Rmax is the rectangle of highest weight in D. Therefore, the rectangles Rver
1 , . . . , Rver

m

form a feasible output for the second point of the lemma statement. ◀

The first step of the algorithm is to run the procedure of Lemma 3.2. If this procedure
returns an independent set of weight at least optk(D), we just return it as a valid output and
terminate the algorithm. Otherwise, from now on we may assume that we have constructed
a grid G of size at most 2k2/ε and this grid is good for S.

3.2 Combinatorial types
Next, we define the notion of the combinatorial type of a rectangle with respect to a grid.
This can be understood as a rough description of the position of the rectangle with respect
to the grid.

▶ Definition 3.3 (Combinatorial Type). Let G be a grid. For an axis-parallel rectangle R, we
define the combinatorial type T (R) of R with respect to G as

TG(R) := R ∩ points(G).

In other words, TG(R) is the set of grid points of G contained in R. For a set S of axis-parallel
rectangles, the combinatorial type of S is TG(S), that is, the image of S under TG. By ΛG

k

we denote the set of all possible combinatorial types with respect to G of sets S consisting of
at most k axis-parallel rectangles.

Observe that if a grid is small, there are only few combinatorial types on it.

▶ Lemma 3.4. For every grid G and positive integer k, we have |ΛG
k | ⩽ 2O(k log |G|). Moreover,

given G and k, ΛG
k can be constructed in time 2O(k log |G|).

Proof. The combinatorial type of any axis-parallel rectangle R can be completely charac-
terized by four lines (or lack thereof) in G: the left-most and the right-most vertical line of
G intersecting R, and the top-most and the bottom-most horizontal line of G intersecting
R. Hence, there are at most (|G| + 1)4 candidates for the combinatorial type of a single
rectangle. It follows that the number of combinatorial types of sets of at most k rectangles is
bounded by

1 + (|G| + 1)4 + (|G| + 1)8 + . . . + (|G| + 1)8k ∈ 2O(k log |G|).

To construct ΛG
k in time 2O(k log |G|), just enumerate all possibilities as above. ◀

The next step of the algorithm is as follows. Recall that we work with a grid G of size
at most 2k2/ε that is good for S. By Lemma 3.4, we can compute ΛG

k in time 2O(k log(k/ε))

and we have |ΛG
k | ⩽ 2O(k log(k/ε)). Hence, by paying a 2O(k log(k/ε)) overhead in the time

complexity, we can guess T := TG(optk(G)), that is, the combinatorial type of the optimum
solution. Hence, from now on we assume that the combinatorial type T is fixed. Since S is
an independent set and G is good for S, we may assume that sets in T are pairwise disjoint
and nonempty.

ESA 2024
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Figure 2 Left Figure: The instance after guessing the combinatorial type T . Rectangles that
match the same type A ∈ T are filled with the same color. Each variable corresponds to a different
rectangle of optk, equivalently to a different type A ∈ T , equivalently to a different color in the
figure. The domain of a variable consists of all rectangles in the corresponding color. Right Figure:
The Gaifman graph H of the constructed 2-VCSP instance IT . The vertices are depicted in blue
and the edges are depicted in thick red. The graph H• is constructed from H by introducing a
new vertex at the intersection of every crossing (hence in the Figure we need to add green stroked
vertices).

3.3 Reduction to 2-VCSP
We say that a rectangle R ∈ D matches a subset of grid points A ⊆ points(G) if TG(R) = A,
that is, R ∩ points(G) = A. By DA ⊆ D we denote the set of rectangles from D that match A.

Based on the combinatorial type T we define an instance IT of 2-VCSP as follows. The
set of variables is T . For every A ∈ T , the domain of A is DA ∪ {⊥}. That is, the set of
rectangles from D that match A plus a special symbol ⊥ denoting that no rectangle matching
A is taken in the solution. Also, for every A ∈ T we add a unary2 constraint cA on A with
associated revenue function fcA

: DA ∪ {⊥} → R defined as fcA
(R) = ω(R) for each R ∈ DA

and fcA
(⊥) = 0.

It remains to define binary constraints binding pairs of distinct variables in IT . Two
distinct grid points of G are adjacent if they lie on the same or on consecutive horizontal
lines of G, and on the same or on consecutive vertical lines of G. We put a binary constraint
cA,B binding variables A ∈ T and B ∈ T if there exist grid points p ∈ A and q ∈ B that
are adjacent. The revenue function for cA,B is defined as follows: for RA ∈ DA ∪ {⊥} and
RB ∈ DB ∪ {⊥}, we set

fcA,B
(RA, RB) =

{
−∞ if RA ∈ DA and RB ∈ DB intersect;
0 otherwise.

.

In other words, cA,B is a hard constraint: we require that the rectangles assigned to A and B

are disjoint (or one of them is nonexistent), as otherwise the revenue is −∞. This concludes
the construction of the instance of IT ; clearly, it can be done in polynomial time.

The instance IT is constructed so that it corresponds to the problem of selecting disjoint
rectangles from D that match the combinatorial type T . This is formalized in the following
statement.

2 Formally, in the definition of 2-VCSP we allowed only binary constraints, but unary constraints –
constraints involving only one variable – can be modelled by binary constraints binding a variable with
itself.
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▷ Claim 3.5. If S ⊆ D is an independent set of rectangles of combinatorial type T , then
there exists a solution to IT with revenue equal to ω(S). Conversely, if there exists a solution
to IT with revenue r ⩾ 0, then there exists an independent set S ⊆ D of weight r and
cardinality at most k.

Proof. For the first implication, we construct an assignment u : T → D by setting, for each
A ∈ T , u(A) to be the unique rectangle R ∈ S for which TG(R) = A. To see that the revenue
of u is equal to ω(S), note that for every A ∈ T the unary constraint cA yields revenue
ω(u(A)), while all binary constraints yield revenue 0, because the rectangles are pairwise
disjoint.

For the second implication, let S ⊆ D be the image of the assignment u (possibly with ⊥
removed). Clearly, |S| ⩽ |T | ⩽ k. Since u yields a nonnegative revenue, all binary constraints
must give revenue 0, hence ω(S) is equal to the revenue of u, that is, to r. It remains to
argue that S is an independent set. For this, take any distinct A, B ∈ T ; we need to argue
that in case when rectangles RA := u(A) and RB := u(B) are both not equal to ⊥, they are
disjoint. Suppose, for contradiction, that RA and RB have some common point x. Let Q be
the cell of the grid G that contains x. Since x ∈ RA and A is nonempty (recall that this is
the assumption about all the sets in T , following from G being good for optk(D)), A must
contain at least one corner of Q, say p. Similarly, B contains a corner of Q, say q. Note that
p and q are adjacent grid points, hence in IT there is a constraint cA,B that yields revenue
−∞ in the case when the rectangles assigned to A and B intersect. As this is the case in u,
we obtain a contradiction with the assumption r ⩾ 0. ◁

3.4 Almost planarity of the Gaifman graph

Let H be the Gaifman graph of IT ; see Figure 2 for an example. Recall that the vertex set
of H is T , and distinct A, B ∈ T are considered adjacent in H iff there is a grid cell Q of G

such that both A and B contain a corner of Q. Without loss of generality we assume that H

is connected, as otherwise we solve IT by treating each connected component separately and
joining the solutions.

Note that the graph H is not necessarily planar, as there might be crossings within cells;
this happens when all four corners belong to different elements of T . However, the intuition
is that the crossings within cells are the only problem, hence H is almost planar. We would
like to apply Baker’s technique on H. We do it in an essentially direct way, except that we
need to be careful about the aforementioned crossings. For this, the following construction
will be useful.

Call a grid cell Q a cross if Q has four corners and all those four corners belong to pairwise
different elements of T . Note that then all those four elements form a clique in H. Construct
a graph H• from H as follows: add every cross Q to the vertex set, make it adjacent to all
four elements of T containing the corners of Q, remove the edge connecting the elements of
T containing the top-left and the bottom-right corner of Q, and to the same for the top-right
and bottom-left corners.

The reader may imagine H• as obtained from H by introducing a new vertex at the
intersection of diagonals within every cross Q; this new vertex is identified with Q. See
Figure 2. So we have the following observation.

▷ Claim 3.6. The graph H• is planar.
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Proof. Let H•0 be the graph consisting of the grid points of G where two grid points are
adjacent if they are consecutive on the same line of G, plus we add a new vertex for every
cell of G and make it adjacent to all the corners of this cell. Clearly, H•0 is planar. Now, H•

can be obtained from H•0 as follows:
contract every A ∈ T to a single vertex;
remove every element of points(G) −

⋃
T ; and

for every grid cell Q of G that is not a cross, either contract the vertex corresponding to
Q onto any of its neighbors, or remove it if it has no neighbors.

So H• is a minor of a planar graph, hence it is planar as well. ◁

We also have the following simple claim, which follows easily from the construction.

▷ Claim 3.7. For all A, B ∈ T , distH•(A, B) ⩽ 2 · distH(A, B).

Proof. By repeated use of triangle inequality along a shortest path connecting A and B, it
suffices to argue the following: if A and B are adjacent in H, then they are at distance at
most 2 in H•. For this, observe that either A and B are still adjacent in H•, or they contain
two opposite corners of some cross Q, which becomes their common neighbor in H•. ◁

We now apply Baker’s technique. Select any A ∈ T and partition T into layers according
to the distance in H from A: for a nonnegative integer t, layer Lt consists of all those
vertices B ∈ T for which distH(A, B) = t. Note that layers Lt form a partition of T due
to the assumption that H is connected. The following observation is crucial. It follows
from applying standard treewidth-radius bounds for planar graphs in subgraphs of H•, and
translating the outcome to H.

▶ Lemma 3.8 (⋆). For all integers 0 ⩽ i < j, the treewidth of H[Li ∪ Li+1 ∪ . . . ∪ Lj ] is
bounded by O(j − i).

3.5 Proof of Theorem 1.1
We are ready to finish the proof of Theorem 1.1. The steps performed so far were as follows:

We guessed a rectangle Rmax ∈ S (optimum solution) and removed all rectangles of
weight larger than ω(Rmax) or not exceeding ε · ω(Rmax)/k. This induced a loss of at
most ε · optk(D) on the optimum.
We applied the algorithm of Lemma 3.2. This way, we either find an independent set
with a suitably large weight, or we construct a grid G of size |G| ⩽ 2k2/ε.
We used Lemma 3.4 to guess, by branching into 2O(k log(k/ε)) possibilities, the combinat-
orial type T of an optimum solution.
We constructed a 2-VCSP instance IT corresponding to the type T .

By Claim 3.5, it remains to find a solution to IT that yields revenue at least (1 − ε)opt(IT ),
where opt(IT ) is the maximum possible revenue in IT . (Note that by retracing previous
steps, this results in finding a solution to the original instance of MWISR of weight at least
(1 − 2ε)optk(D), so at the end we need to apply the reasoning to ε scaled by a factor of 1/2.)

As argued before, we may assume that H, the Gaifman graph of IT , is connected. We
partition T into layers {Lt : t = 0, 1, 2, . . .} as in Section 3.4. Let ℓ := ⌈1/ε⌉, and define

Mr :=
⋃

t≡r mod ℓ

Lt for all r ∈ {0, 1, . . . , ℓ − 1}.

Note that {Mr : r ∈ {0, 1, . . . , ℓ − 1}} is a partition of T .
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Let u be an optimum solution to IT . As it is always possible to assign ⊥ to every element
of T , we have f(u) ⩾ 0, in particular all (hard) binary constraints are satisfied under f .
Therefore, f(u) =

∑ℓ−1
r=0 f(u|Mr

). Since ℓ ⩾ 1/ε, there exists r0 ∈ {0, 1, . . . , ℓ − 1} such that
f(u|Mr0

) ⩽ ε · f(u). The algorithm guesses, by branching into ℓ possibilities, the value of r0.
Let I ′T be the 2-VCSP instance obtained from IT by deleting all variables contained in

Mr0 . Observe that we have opt(I ′T ) ⩾ (1 − ε) · opt(IT ), since u restricted to the variables of
I ′T yields revenue at least (1 − ε) · opt(IT ). Further, every solution to I ′T can be lifted to a
solution to IT of the same revenue by just mapping all variables of Mr0 to ⊥. Hence, to
find an optimum solution to the instance I ′T .

For this, observe that the Gaifman graph of I ′T is equal to H − Mr0 . This graph
is the disjoint union of several subgraphs, each contained in the union of at most ℓ − 1
consecutive layers Lt. By Lemma 3.8 we infer that the treewidth of H − Mr0 is bounded
by O(ℓ) = O(1/ε). We apply Theorem 2.1 to solve I ′T optimally in time |D|O(1/ε) · kO(1).
Together with the previous guessing steps, this gives time complexity 2O(k log(k/ε)) · |D|O(1/ε)

in total, as wanted. This concludes the proof of Theorem 1.1.

4 Axis-parallel segments

In this section we prove Theorem 1.2. We use the same notation as in Section 3: D is the
given set of axis-parallel segments, ω : D → R is the weight function on D, and optk(D, ω) is
the maximum possible ω-weight of a set of at most k disjoint segments in D; we may drop ω

in the notation if the weight function is clear from the context. Also, whenever D, ω, and k

are clear from the context, then by an optimum solution we mean a set of pairwise disjoint
segments S ⊆ D such that |S| ⩽ k and ω(S) = optk(D).

4.1 Reducing the number of distinct weights
We first apply the same preprocessing as in Section 3: we guess a segment Rmax ∈ S of
maximum weight and remove from D all segments of weight larger than ω(Rmax) or not
exceeding ε ·ω(Rmax)/k. Let D′ ⊆ D be the obtained set of segments. As argued in Section 3,
we have

optk(D′, ω) ⩾ (1 − ε) · optk(D, ω).

As the next preprocessing step, we round all weights down to the set

M := {ω(Rmax)(1 − ε)i : i ∈ {0, 1, . . . , ⌈log1−ε(ε/k)⌉}}.

That is, we define the new weight function ω′ : D′ → R by setting ω′(R) to be the largest
element of M not exceeding ω(R). Since the weight of every segment is scaled down by a
multiplicative factor of at most 1 − ε, we have

optk(D′, ω′) ⩾ (1 − ε) · optk(D′, ω) ⩾ (1 − ε)2 · optk(D, ω) ⩾ (1 − 2ε) · optk(D, ω).

Thus, the two preprocessing steps above reduce solving the instance (D, ω) to solving the
instance (D′, ω′), at the cost of losing 2ε · optk(D) on the optimum and a |D|O(1) overhead
in the time complexity. Observe that in (D′, ω′), the number of distinct weights of rectangles
is bounded by |M | ⩽ O(ε log(k/ε)). We show in the sequel, that the MWISR problem for
axis-parallel segments can be solved in fixed-parameter time when parameterized by both k

and the number of distinct weights.
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▶ Theorem 4.1. Suppose D is a set of axis-parallel segments in the plane and ω is a weight
function on D. Let W be the number of distinct weights assigned by ω. Then given k, in
time (kW )O(k2) · |D|O(1) one can find an optimum solution.

Note that Theorem 1.2 follows from combining Theorem 4.1 with the preprocessing
described above (applied to ε scaled by a factor of 1/2). Therefore, from now on we focus on
proving Theorem 4.1.

4.2 Constructing a grid
Let ⪯ be any total order on D that orders the segments by non-decreasing weights, that
is, ω(R) < ω(R′) entails R ≺ R′. Extend ⪯ to subsets of D in a lexicographic manner:
S ≺ S ′ if S is lexicographically smaller than S ′ where both sets are sorted according to
⪯ (lexicographic order compares first the smallest objects). Let Smax be the ⪯-maximum
optimum solution.

The next step is to guess (by branching into |D| options) the ⪯-minimum segment Rmin
of Smax. Having done this, we safely remove from D all segments R satisfying R ≺ Rmin.
Since Smax is the ⪯-maximum optimum solution, we achieve the following property: every
optimum solution contains the ⪯-smallest segment of D, i.e., Rmin. We proceed further with
this assumption.

We now show that under this assumption, there must exist a grid of size at most k that
hits every segment from D. (Here and later on, a segment is hit by a line if they intersect,
and a segment is hit by a grid if it is hit by a line in this grid.)

▷ Claim 4.2. Suppose every optimum solution contains the ⪯-minimum segment of D. Then
there exists a grid G of size at most k such that every segment in D is hit by G.

Proof. Let Rmin be the ⪯-minimum segment of D and let S be any optimum solution. Let
G be the grid comprising of, for every segment R ∈ S, the line containing R. Clearly, we
have |G| ⩽ |S| ⩽ k. Suppose for contradiction, that there is a segment R ∈ D which is
not hit by any line of G. Clearly R ̸= Rmin, because Rmin ∈ S by assumption. Consider
S ′ := S − {R0} ∪ {R} and note that S ′ is an independent set, because all segments of S
are contained in lines of G, while R is disjoint with all those lines. Since R0 ≺ R, we have
ω(R0) ⩽ ω(R), hence ω(S ′) ⩾ ω(S). So S ′ is an optimum solution that does not contain R0,
a contradiction. ◁

Note that the proof of Claim 4.2 is non-constructive, as the definition of the grid depends
on the (unknown) optimum solution S. However, we can give, following a greedy approach, a
polynomial-time O(k)-approximation algorithm for finding a grid that hits all segments in D.

▶ Lemma 4.3. There exists a polynomial time algorithm that given a set D of axis-parallel
segments in the plane and an integer k, either correctly concludes that there is no grid of size
at most k that hits all the segments of D, or finds such a grid of size O(k2).

Proof of Lemma 4.3. We construct a grid G as follows. Swipe a vertical line from left to
right across D until the first moment when the segments lying entirely to the left of the
line can not be hit by k horizontal lines anymore. Let x1 be the position of the line at this
moment; in other words, x1 is the least real such that the segments of D entirely contained in
(−∞, x1] ×R cannot be hit with k horizontal lines. (We set x1 = ∞ in case the whole D can
be covered with at most k horizontal lines.) By the minimality of x1, the segments entirely
contained in (−∞, x1] × R can be covered by k + 1 lines: the k horizontal lines required to
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Figure 3 Example of the grid construction in the proof of Lemma 4.3, for k = 3. Red, blue, and
green segments are removed in consecutive iterations. In each iteration we scan the segments from
left to right until k + 1 horizontal lines are needed to cover the already seen segments. In the last
iteration at most k horizontal lines are selected. Lines added to G are dotted.

cover segments in (−∞, x1), plus one vertical line at x1 (in case x1 ̸= ∞). We add all those
k + 1 lines to G, delete from D all segments hit by those lines, and repeat the procedure until
no more segments are left in D. This way we obtain numbers x1 ⩽ x2 ⩽ . . . ⩽ xℓ and a grid
G of size at most (k + 1)ℓ, where ℓ is the number of iterations of the procedure. See Figure 3.

Clearly, G hits all segments in D. So if ℓ ⩽ k + 1, then |G| ⩽ (k + 1)2 = O(k2) and
the algorithm can provide G as a valid output. We now argue that if ℓ > k + 1, then the
algorithm may safely conclude that there is no grid of size at most k that hits all segments
of D. For contradiction, suppose there is such a grid G′. For i ∈ {1, . . . , ℓ}, let Di be the set
of all segments entirely contained in (xi−1, xi] × R, where we set x0 = −∞. It is easy to see
that Di is precisely the set of segments for which the algorithm in iteration i decided that it
cannot be hit by at most k horizontal lines. Hence, for each i ∈ {1, . . . , ℓ}, G′ must contain
at least one vertical line hitting at least one segment in Di. The x-coordinate of this vertical
line must belong to the interval (xi−1, xi], so these vertical lines must be pairwise different.
We conclude that |G′| ⩾ ℓ > k, a contradiction.

It remains to argue how to implement the algorithm so that it runs in polynomial time.
Observe that for a set of segments D′ ⊆ D, the minimum number of horizontal lines needed
to hit all the segments of D′ can be computed as follows: Projecting all the segments D′
on the vertical axis, and find the minimum number of points that hit the obtained set of
intervals (some of which are single points; these are projected horizontal segments). This,
in turn, can be done in time O(|D′| log |D′|) using a standard greedy strategy. It is now
straightforward to use this sub-procedure to execute the construction of G described above
in polynomial time. ◀

We now combine Claim 4.2 and Lemma 4.3 as follows. Run the algorithm of Lemma 4.3
on D with parameter k. If the algorithm concludes that there is no grid of size at most k that
hits all segments of D, then by Claim 4.2 we can terminate the current branch, as clearly
one of the previous guesses was incorrect. Otherwise, we obtain a grid G of size O(k2) that
hits every segment of D. With this grid we proceed to the next steps.

For brevity of presentation, by adding four lines to G we may assume that all segments of
D are contained in the interior of the rectangle delimited by the left-most and the right-most
vertical line of G and the top-most and the bottom-most horizontal line of G. We will also
say that a grid with this property encloses D.
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4.3 Constructing a nice grid
We use the same notion of niceness as in Section 3. That is, a grid G is nice with respect to
a segment R, if R contains at least one grid point of G; in other words, R is intersected by
both a horizontal and a vertical line in G. We will also say that R respects the grid G. The
ugliness of a grid G with respect to some optimum solution S is the number of segments of
S that do not respect G. Then the ugliness of G is the minimum over all optimum solutions
S of the ugliness of G with respect to S. This way, a grid is nice if its ugliness is 0, or
equivalently, there exists an optimum solution S such that G is nice with respect to all the
segments in S.

In further considerations, it will be convenient to again rely on a suitable defined notion of
a combinatorial type of a segment with respect to a grid. Consider a grid G that encloses D.
For a segment R ∈ D, the combinatorial type of R with respect to G is the 6-tuple consisting of:

The boolean value indicating whether R is horizontal or vertical.
The weight ω(R).
The right-most line ℓ← of G such that R entirely lies strictly to the right of ℓ←.
The left-most line ℓ→ of G such that R entirely lies strictly to the left of ℓ→.
The bottom-most line ℓ↑ of G such that R entirely lies strictly below ℓ↑.
The top-most line ℓ↓ of G such that R entirely lies strictly above ℓ↓.

In other words, (ℓ←, ℓ→, ℓ↑, ℓ↓) contain the sides of the inclusion-wise minimal rectangle R′

delimited by the lines from G whose interior contains R. Note that the set of grid points of G

contained in R is equal to the set of grid points contained in the interior of R′. Assuming G

is clear from the context, for a type t we will denote this set of grid points by P (t). Observe
that the number of different combinatorial types with respect to G is bounded by 2W |G|4,
where W is the number of distinct weights assigned by ω.

We first observe that if we manage to construct a small grid of ugliness 0, then we can
find an optimum solution efficiently. The proof (in the appendix) boils down to guessing the
combinatorial types of all segments and solving a suitable constructed instance of 2-CSP.

▶ Lemma 4.4. Suppose we are given a finite set D of axis-parallel segments in the plane, a
positive weight function ω on D, a positive integer k, and a grid G that encloses D with a
guarantee that the ugliness of G is 0. Then an optimum solution for D, ω, k can be found in
time (W · |G|)O(k) · |D|O(1).

Proof. Fix any optimum solution S such that G is nice with respect to S. We guess,
by branching into all possibilities, the combinatorial types (with respect to G) of all the
segments of S. Since there are at most 2W |G|4 different combinatorial types, this results in
(W · |G|)O(k) branches. Let the guessed set of combinatorial types be T . Since G is supposed
to be nice with respect to S, we may assume that the sets {P (t) : t ∈ T } are nonempty and
pairwise disjoint; otherwise the branch can be discarded.

We construct an auxiliary 2-CSP instance I that models the choice of segments in S.
The set of variables is T . For every type t ∈ T , the domain Dt consists of all segments from
D whose combinatorial type is t. The constraints are as follows:

If t, t′ ∈ T are distinct types of horizontal segments, and P (t) and P (t′) are two adjacent
intervals of grid points on the same horizontal line of G, then we put a constraint between
t and t′ that among Dt × Dt′ , allows only pairs of disjoint segments.
Analogous constraints are put for distinct types t, t′ ∈ T of vertical segments for which
P (t) and P (t′) are adjacent intervals on the same vertical line.

It is straightforward to verify that solutions to I correspond in one-to-one fashion to those
independent sets in D for which the set of combinatorial types is T . Moreover, observe that
the Gaifman graph of I is a disjoint union of paths, where every path t1 − . . .− tp corresponds
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Figure 4 Illustration of Case 1 and Case 2 of the proof of Lemma 4.5. Red segments are the
segments from N (they already contain a grid point). The green segment is the candidate segment
Rmax (maximum weight segment in the optimum solution not containing grid point). The box B is
the blue-stroked rectangle. We greedily find a maximum-size region inside B containing candidate
segments with the same combinatorial type as Rmax. If there are more than k independent candidates,
we can return an optimum solution (since Rmax has maximum weight). Otherwise, we can add fewer
than k grid lines to the current grid (such that each candidate is hit by a newly added grid line).

to a sequence P (t1), . . . , P (tp) of intervals on the same grid line such that P (ti) is adjacent
to P (ti+1) for i ∈ {1, . . . , p − 1}. Therefore, it suffices to solve I optimally, which can be
done in time |D|O(1) using, for instance, Theorem 2.1. ◀

Lemma 4.4 suggests that we should aim to construct a grid with zero ugliness. So far, the
grid G constructed in the previous section may have positive ugliness: some segments of D
may be intersected by just one, and not two orthogonal lines, and there is no reason why an
optimum solution should not contain any such segments. Our goal is to reduce the ugliness
of the grid by further branching steps. This strategy is captured in the following lemma.

▶ Lemma 4.5 (⋆). Suppose we are given a finite set D of axis-parallel segments in the plane,
a positive weight function ω on D, a positive integer k, and a grid G that hits all segments
of D and encloses D. Let W be the number of different weights assigned by ω. Then one can
construct, in time (|G| · W )O(k) · |D|O(1), a family G of grids with the following properties:
1. |G| ⩽ (|G| · W )O(k);
2. for each G′ ∈ G, we have G′ ⊇ G and |G′ − G| ⩽ k; and
3. If the ugliness of G is positive, then there is G′ ∈ G whose ugliness is strictly smaller

than that of G.

While the complete proof of Lemma 4.5 can be found in the full version of this paper [10],
we include here a sketch of the argument, because this is a crucial step.

Proof sketch of Lemma 4.5. Fix an optimum solution S that minimizes the ugliness of G.
We assume that this ugliness is positive, otherwise we are done. The algorithm is a branching
procedure that guesses some information about the structure of S, and for each possible guess
augments G so that at least one more segment of S respects G. Thus, different elements of
G correspond to different guesses of the algorithm.

Let N consist of those segments in S that respect G. We guess the combinatorial types
of all segments from N and, additionally, the heaviest segment Rmax of S − N . As Rmax
does not respect G, it is easy to convince oneself that there are two possibilities of how Rmax
can be placed, depicted in Figure 4:

Rmax is not contained in any line of G, and thus is enclosed in the interior of a box B

consisting of several consecutive cells of G.
Rmax is contained in a single segment of a line of G between two consecutive grid points.

The two cases are resolved using similar ideas. From now on we focus on the first case, and
quickly comment on the second later.
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Let T be the set of combinatorial types of segments from N . Note that the algorithm
does not know N (it is part of the solution), but has guessed T . We first construct a set of
segments N ′ with combinatorial types T (so with the same types as N ) that leaves “as much
as possible” space within the box B for the placement of Rmax. Intuitively, this boils down
to solving a suitable 2-CSP instance greedily by “pushing” candidate segments as much as
possible away from B. Once N ′ is constructed, we look at all candidates for Rmax: segments
with the guessed combinatorial type of Rmax. If these candidates lie on at least k − |N |
different lines, then we actually found an optimal solution: we can output N ′ plus k − |N |
disjoint candidates, each with the same weight as Rmax. Otherwise, all candidates lie on
fewer than k − |N | lines, and we augment G by adding those lines. This ensures that, after
augmentation, Rmax respects G.

In the second case, we again greedily compute a set of segments N ′ with the same
combinatorial types as N in such a way to leave as much space as possible on the segment
between grid points where Rmax is placed. Then we investigate the candidates for Rmax and
try to pack them greedily within the allowed space. If we are able to pack k − |N | of them,
then we constructed an optimum solution consisting of N ′ plus this packing. Otherwise, we
can hit all the candidates with fewer than k − |N | orthogonal grid lines; these are added to
G ensuring that Rmax respects G after augmentation. ◀

Finally, Lemma 4.5 can be applied in a recursive manner to obtain a nice grid.

▶ Lemma 4.6. Suppose we are given a finite set D of axis-parallel segments in the plane, a
positive weight function ω on D, a positive integer k, and a grid G that hits all segments of
D and encloses D. Let W be the number of different weights assigned by ω. Then one can,
in time (k · W · |G|)O(k2) · |D|O(1), construct a family G of grids such that:
1. |G| ⩽ (k · W · |G|)O(k2);
2. for each G′ ∈ G, we have G′ ⊇ G and |G′ − G| ⩽ k2; and
3. G contains at least one grid of ugliness 0.

Proof. Starting with G0 := {G}, we iteratively construct G1, G2, . . . , Gk as follows: to con-
struct Gi from Gi−1, replace each G ∈ Gi−1 with the family G(G) obtained by applying
Lemma 4.5 to G. A straightforward induction using properties 1 and 2 of Lemma 4.5 shows
that: |Gi| ⩽ (k · W · |G|)O(ik), for each G′ ∈ Gi it holds that G′ ⊇ G and |G′ − G| ⩽ ik,
and the construction of Gi takes (k · W · |G|)O(ik) · |D|O(1) time. Moreover, by property 3
of Lemma 4.5, if the minimum ugliness among grids in Gi−1 is positive, then the minimum
ugliness among the grids in Gi is strictly smaller than that in Gi−1. Since the ugliness of G is
at most k, it follows that G := Gk satisfies all the required properties. ◀

Theorem 4.1 is now a simple consequence of combining Lemma 4.6 with Lemma 4.4.

Proof of Theorem 4.1. As discussed in Section 4.2, by preprocessing the instance and
branching into O(|D|) possibilities, we may assume that we constructed a grid G of size O(k2)
such that every segment in D is hit by G. Adding four lines to G ensures that G encloses D.
Then we apply Lemma 4.6 to G, and in this manner we construct a family of grids G that
features at least one grid with ugliness 0. It now remains to apply Lemma 4.4 to each grid in
G and output the heaviest of the obtained solutions. Following directly from the guarantees
provided by Lemmas 4.4 and 4.6, this algorithm runs in time (kW )O(k2) · |D|O(1). ◀
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