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Abstract
A saddlepoint of an n × n matrix is an entry that is the maximum of its row and the minimum
of its column. Saddlepoints give the value of a two-player zero-sum game, corresponding to its
pure-strategy Nash equilibria; efficiently finding a saddlepoint is thus a natural and fundamental
algorithmic task.

For finding a strict saddlepoint (an entry that is the strict maximum of its row and the strict
minimum of its column) an O(n log∗ n)-time algorithm was recently obtained by Dallant, Haagensen,
Jacob, Kozma, and Wild, improving the O(n log n) bounds from 1991 of Bienstock, Chung, Fredman,
Schäffer, Shor, Suri and of Byrne and Vaserstein.

In this paper we present an optimal O(n)-time algorithm for finding a strict saddlepoint based on
random sampling. Our algorithm, like earlier approaches, accesses matrix entries only via unit-cost
binary comparisons. For finding a (non-strict) saddlepoint, we extend an existing lower bound to
randomized algorithms, showing that the trivial O(n2) runtime cannot be improved even with the
use of randomness.
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1 Introduction

Given a matrix A with entries from a set of comparable elements (e.g., R or N), a saddlepoint
of A is an entry that is the maximum of its row and the minimum of its column. A strict
saddlepoint is an entry that is the strict maximum of its row and the strict minimum of its
column. It is easy to see that a strict saddlepoint, if it exists, must be unique.
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44:2 An Optimal Randomized Algorithm for Finding the Saddlepoint

If A is the payoff matrix of a two-player zero-sum game and the payoffs are pairwise
distinct, then a saddlepoint of A (if it exists) is necessarily strict and corresponds to the
pure-strategy Nash equilibrium, giving the value of the game, e.g., see [16, § 4]. Finding a
strict saddlepoint efficiently is thus a fundamental algorithmic task.

Saddlepoint computation also arises in continuous optimization (e.g., for image processing
or machine learning), where a (global or local, exact or approximate) saddlepoint of a
function f(x, y) is sought, typically under additional structural assumptions on f , e.g.,
see [5, 6, 12, 18, 19]. By contrast, our problem setting is discrete, and we make no assumptions
on the input matrix A; the iterative methods developed in the above settings are thus, not
applicable.

Finding a saddlepoint (strict or not) of an n-by-n matrix A can easily be done in O(n2)
time (Knuth [10, § 1.3.2]), and a simple adversary argument (Llewellyn, Tovey, and Trick [13])
shows that in the presence of duplicates, every deterministic algorithm that finds a saddlepoint
must make Ω(n2) comparisons in the worst case.

Strict saddlepoints turn out to be algorithmically more interesting, and perhaps surpris-
ingly, we can find a strict saddlepoint (or report non-existence) examining only a vanishingly
small part of A. The first subquadratic algorithm for finding a strict saddlepoint was obtained
in 1988 by Llewellyn, Tovey, and Trick [13] with a runtime of O(nlog2 3) ⊂ O(n1.59). In
1991, Bienstock, Chung, Fredman, Schäffer, Shor, Suri [2], and independently, Byrne and
Vaserstein [4] found algorithms with runtime O(n log n). Due to the implicit sorting step of
these algorithms and the lack of improvements in three decades, it was natural to expect
this bound to be best possible.

Very recently, however, an algorithm with runtime O(n log∗ n) was obtained by Dallant,
Haagensen, Jacob, Kozma, and Wild [7], where log∗(·) is the slowly growing iterated logarithm
function. The algorithm of [7] as well as all earlier algorithms are deterministic. Bypassing
the sorting barrier has raised the possibility of a linear-time algorithm that would match the
natural lower bound: 2n − 2 comparisons are required to verify that a given entry is indeed
a saddlepoint. In this paper we give a randomized algorithm attaining this bound (up to
constant factors).

▶ Theorem 1. Given an n × n matrix A, we can identify the strict saddlepoint of A, or
report its non-existence, in O(n) time with high probability.

Our algorithm is Las Vegas, i.e., it always gives the correct answer, with the runtime
guarantee holding with high probability. The existence of a deterministic O(n)-time algorithm
remains open. In §§ 2, 3, 4 we describe the algorithm and its analysis, proving Theorem 1
and further extensions.

In § 5 we prove a lower bound on the efficiency of randomized algorithms for the general
saddlepoint problem, showing that the trivial quadratic runtime cannot be improved even
with randomization.

▶ Theorem 2. Every randomized comparison-based algorithm that finds a (non-strict)
saddlepoint with probability at least 5/6 must take Ω(n2) expected time on some n × n matrix.

Further related work. A large body of work focuses on the computation or approximation
of mixed-strategy Nash equilibria, which are guaranteed to exist, e.g., see [16]. Recently,
Maiti, Boczar, Jamieson, and Ratliff [14, 15] also studied the computation of pure-strategy
Nash equilibria (our setting) via randomized algorithms. As their focus is on query/sample
complexity, and their model admits stochastic error, the results are not directly comparable
to ours.
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2 The overall algorithm

Let A be an n × n input matrix with pairwise distinct, comparable entries, where Aij is the
entry in the i-th row and j-th column. Note that the assumption of distinctness is only for
convenience of presentation, we comment later on how to remove this assumption and also
extend our results to non-square matrices.

Our approach is based on the following reduction step: if every row of A contains an
entry at least as large as Aij (and thus, Aij is a lower bound on the value of the saddlepoint),
then we can delete each column j′ of A with an entry Ai′j′ < Aij (because such a column
could not contain the saddlepoint); the strict saddlepoint of the matrix, if it exists, is
preserved. Indeed, if the deleted column j′ were to contain a strict saddlepoint Akj′ , then
Aij > Ai′j′ ≥ Akj′ ≥ Akx ≥ Aij would yield a contradiction; here Akx is the entry in row k

that is at least as large as Aij , and the second and third inequalities hold due to Akj′ being a
saddlepoint. We call such an entry Aij a horizontal pivot, if at least a quarter of the entries
in row i are smaller than Aij (allowing to remove the corresponding columns), see Figure 1.

Figure 1 Horizontal pivot p = Aij (framed). Entries denoted p− are strictly smaller than p,
entries denoted p+ are larger than (or equal to) p. For p to be a horizontal pivot, every row must
contain a p+ and at least a quarter of the columns must have a p− in p’s row. Columns marked
gray cannot contain a strict saddlepoint.

Similarly, we call Aij a vertical pivot, if every column has at least one entry at most as
large as Aij , and at least a quarter of the entries in column j are larger than Aij . By a
symmetric argument, we can safely delete the rows of these entries. Note that these deletions
may create a new, spurious strict saddlepoint in a matrix that otherwise did not have one;
we can however, easily detect this case later.

Alternating in finding a horizontal and a vertical pivot and deleting a quarter of the
columns and a quarter of the rows forms the core of our algorithm (Algorithm 1). Notice that
such pivots always exist (for n > 1), e.g., the minimum of all row-maxima is a horizontal pivot
(it would allow the removal of all but one column), and the maximum of all column-minima
is a vertical pivot; how to efficiently find such entries, however, is far from obvious.

Note that we could delete all columns j′ with Aij′ < Aij (and all rows i′ with Ai′j > Aij),
but we restrict ourselves to deleting exactly a quarter of rows/columns to simplify the
analysis.

Assume for now that FindHorizontalPivot (resp. FindVerticalPivot), when called
on an m × m (or m × ⌈3m/4⌉) matrix, runs in O(m) time, and returns a horizontal (resp.
vertical) pivot with probability at least 1 − f(m), for some decreasing function f : N → [0, 1]
which will be made explicit later. Failure to find a suitable pivot will be reported as Failed
pivot selection.

ESA 2024



44:4 An Optimal Randomized Algorithm for Finding the Saddlepoint

Algorithm 1 Reducing the input matrix to size s × s.

ReduceMatrix(A, s):
1 while height(A) > s

2 try
3 (i, j) := FindHorizontalPivot(A)
4 Delete ⌊width(A)/4⌋ columns j′ of A with Aij′ < Aij

5 (i, j) := FindVerticalPivot(A)
6 Delete ⌊height(A)/4⌋ rows i′ of A with Ai′j > Aij

7 catch Failed pivot selection
8 return Failed
9 return A

▶ Theorem 3. Let A be an n × n matrix and n ≥ s ≥ 4. Then ReduceMatrix(A, s) runs
in O(n) time and with probability at least 1 − O(f(s) log n

s ) returns an s′ × s′ submatrix A′

of A, with s′ ≤ s. If A has a strict saddlepoint, then A′ has the same strict saddlepoint.

Proof. The fact that the reduction steps preserve a strict saddlepoint is immediate from our
preceding discussion. For an m × m matrix with s ≤ m ≤ n, the two pivot-finding calls take
O(m) time. Similarly, finding the columns and rows to be removed takes O(m) time; this
requires inspecting the row, resp. column of the pivots.

The step succeeds with probability at least 1 − 2f(m) ≥ 1 − 2f(s) (by the union bound),
reducing the matrix to size ⌈3m/4⌉ × ⌈3m/4⌉. To delete rows and columns efficiently, only
simple bookkeeping is needed: we maintain an array of the remaining row- and column-indices
of the original matrix, compacting the array after each iteration, at amortized constant time
per deletion.

Thus, starting with an n × n matrix, we obtain a matrix of size at most s × s in O(log n
s )

iterations, with failure probability (again, by the union bound) of at most O(f(s) log n
s ).

The total running time is O(n + n(3/4) + n(3/4)2 + · · · ) = O(n). ◀

In § 3 we show that the pivot-finding can be achieved with failure-probability f(m) =
e−Ω(m1/20). This yields the following.

▶ Theorem 4. Let A be an n × n matrix with distinct values. Then we can find the
strict saddlepoint of A (or report non-existence) by a Las Vegas randomized algorithm that
terminates after O(n) time with probability at least 1 − e−Ω(n1/21).

Proof. We run the reduction process of Theorem 3, setting s = n/ log2 n. The overall
probability of success is at least 1 − O(f(n/ log2 n) log log n) ≥ 1 − e−Ω(n1/21). To obtain a
Las Vegas algorithm, we repeat the procedure until it succeeds. With the given probability,
no repetition is necessary and the running time is O(n).

Then, we run the deterministic O(N log N)-time strict saddlepoint algorithm of Bienstock
et al. [2] on the resulting N ×N matrix with N ≤ n/ log2 n, in O(n) total time. (Alternatively,
the O(N log∗ N)-time algorithm of [7] can also be used.) Recall that a strict saddlepoint
of A is preserved by the reduction. Thus, if the algorithm reports none, then A has none.
If the algorithm finds a strict saddlepoint of the reduced matrix, then it is either a strict
saddlepoint of A or a spurious one created by the reduction. This can be verified in O(n)
time, examining the row and column of the reported entry in A. ◀

In § 4 we show that we can have f(m) = O
(
m−1), using only a total of O(log n) random

bits. Again, setting s = n/ log2 n, a similar argument yields the following.
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▶ Theorem 5. Let A be an n × n matrix with distinct values. Then we can find the
strict saddlepoint of A (or report non-existence) by a Las Vegas randomized algorithm that
uses only O(log n) random bits and terminates after O(n) time with probability at least
1 − O(log n log log n/n).

Note that an algorithm which runs in O(n) time with probability at least 1 − g(n) can be
turned into one that runs in O(n) time with probability at least 1−g(n)c for any integer c (by
restarting at most c times if the algorithm does not terminate within a given time budget).

We also remark that our algorithm is easily parallelizable, and can be adapted in, say,
the CREW PRAM model, to run with high probability in O(polylog n) time and O(n) total
work; we give more details in § 4. By contrast, the earlier deterministic O(n log n)-time
algorithms [2, 4, 7] are inherently sequential: they rely on adaptively querying n entries of
the matrix, where the choice of each query depends on comparisons involving previously
queried items.

3 Finding a pivot

In this section we describe and analyse the procedure for finding a pivot. We discuss only
horizontal pivots as the case of vertical pivots is entirely symmetric. See Algorithm 2 for the
description of the procedure. We rely on linear-time selection: Select(X, i) returns the i-th
smallest entry in X in time O(|X|), and on sampling with replacement: each call to Rand(k)
returns an element drawn independently, uniformly at random from {1, . . . , k} in O(1) time.
In § 4 we clarify this assumption: all the necessary samples can be generated upfront in time
O(n) with a success probability of at least 1 − e−Ω(n).

The intuition of our procedure is as follows. To find a likely candidate for a horizontal
pivot p, we want to find a value qr in a row r where (at least) a quarter of the elements in
r are smaller than qr. By choosing p as the minimal qr across all rows, we guarantee the
second requirement (that every row contains an element larger than p). For a single row
r, we can obtain a likely value qr from a random sample in sublinear time, but we cannot
afford to repeat this for all rows. Therefore, we first reduce the number of rows by guessing
an upper bound t for p and removing all rows that contain some element larger than t; if
the ultimate candidate for the pivot p is indeed less than t, those discarded rows already
satisfy the requirement to contain an entry larger than p and were (with hindsight) justifiably
removed.

Before turning to correctness, let us argue that FindHorizontalPivot(A) runs in
O(m + k) time, where m and k are the number of rows and columns of A respectively. Each
round of the while loop in Phase 1 runs in O(|R|) time, where R is the current set of rows,
and |R| decreases by at least a constant fraction each time, leading to a geometric series
bounded by O(m) overall. In Phase 2, we spend O(m1/20) time per row, and there are
O(m19/20) remaining rows, requiring O(m) time overall. Finally, checking that p is indeed a
valid pivot requires looking at its row in A, in time O(k). The statement “return pivot p” in
Line 20 should be understood as returning the position (i, j) in A of the found pivot p. This
can be done by simple bookkeeping, keeping track of the original indices of matrix entries.

Note that in FindHorizontalPivot we implicitly assume that the number m of rows
is larger than some fixed constant, so that, e.g.,

⌊ 2
5
⌊
m1/20⌋⌋ in Line 15 is nonzero. If this is

not the case, we could find the required pivot directly in O(1) time. We ignore this issue, as
our calls of FindHorizontalPivot are always for matrices with at least n/ log2 n rows.

ESA 2024
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Algorithm 2 Finding a horizontal pivot of the input matrix.

FindHorizontalPivot(A):
1 Let R be the set of rows of A, each of length k

2 m := |R|

▷ (Phase 1)
3 t := ∞
4 while |R| >

⌊
m19/20⌋

5 for i in 1, . . . , |R|
6 qi := the Rand(k)-th element in the i-th row of R

7 R := {qi | 1 ≤ i ≤ |R|}
8 q := Select

(
R,
⌈ 3

4 |R|
⌉)

9 t := min{t, q}
10 Delete from R all rows i where qi > t

▷ (Phase 2)
11 for each remaining row r in R

12 for i in 1, . . . ,
⌊
m1/20⌋

13 xi := the Rand(k)-th element of row r

14 Rr :=
{

xi | 1 ≤ i ≤
⌊
m1/20⌋}

15 q′
r := Select

(
Rr,

⌊ 2
5 |Rr|

⌋)
16 p := minr{q′

r}
17 if (p > t) or ¬(p is larger than ⌊k/4⌋ entries in its row in A)
18 return Failed
19 else
20 return pivot p

3.1 Correctness
Note that the minimum of all row medians is a horizontal pivot. We cannot make use of this
fact algorithmically since we have no efficient way to obtain all the medians. However, we
will show that in each iteration of Phase 1 in FindHorizontalPivot, the set of rows we
keep based on a single random sample from the row “sufficiently resembles” the set of rows
that we would have kept if we had used the median of the row to make progress.

We will make use of the following tail bounds multiple times.

▶ Lemma 6 (Multiplicative Chernoff [8, Thm. 1.1]). Let X1, . . . , Xm be a sequence of independ-
ent Bernoulli random variables (with possibly distinct success probabilities). Let X =

∑m
i=1 Xi

and µ = E(X). Then, for any constant ε > 0, as m → ∞,

Pr[X ≥ (1 + ε)µ] ≤ e−Ω(µ),

and

Pr[X ≤ (1 − ε)µ] ≤ e−Ω(µ).

We proceed with two lemmas that correspond to the two cases of Line 9, Algorithm 2.
To formulate the statements, we introduce some notation. Let R be a set of rows. For each
row r of R, let Xr be a random variable distributed uniformly at random over the entries of
r. Let t > 0 be some threshold value and let Q = X(⌈3|R|/4⌉) be the sample third quartile of
the set {Xr}r∈R.
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▶ Lemma 7. Let S ⊆ R be the set of rows in R whose median is at most t. Suppose
|S| ≥ Ω

(
m2/3). Let S′ = {s ∈ S | Xs ≤ t}. Then |S′| ≥ |S|/5, with probability at least

1 − e−Ω(m2/3).

Proof. For s ∈ S, let Ys = 1 if Xs ≤ t and Ys = 0 otherwise. Let Y =
∑

s∈S Ys. We have
|S′| = Y , and E(Y ) =

∑
s∈S E(Ys) ≥ |S|/2.

The variable Y is a sum of independent Bernoulli variables. We can thus apply the
Chernoff bound of Lemma 6:

Pr[Y ≤ |S|/5] ≤ Pr[Y ≤ (1 − 3/5)E(Y )]

≤ e−Ω(E(Y ))

≤ e−Ω(m2/3).

The claim thus holds. ◀

▶ Lemma 8. Suppose |R| ≥ Ω
(
m2/3). Let S ⊆ R be the set of rows in R whose median

is at most Q. Let S′ = {s ∈ S | Xs ≤ Q}. Then |S′| ≥ |R|/5, with probability at least
1 − e−Ω(m2/3).

Proof. For r ∈ R, let Yr = 1 if Xr ≥ mr and Yr = 0 otherwise, where mr denotes the
median value of r. Let Y =

∑
r∈R Yr. We have E(Y ) =

∑
r∈R E(Yr) ≥ |R|/2.

The variable Y is a sum of independent Bernoulli variables. We can thus again apply the
Chernoff bound of Lemma 6:

Pr
[
Y ≤ 9

20 |R|
]

≤ Pr
[
Y ≤

(
1 − 1

10

)
E(Y )

]
≤ e−Ω(E(Y ))

≤ e−Ω(m2/3).

Thus, with probability at least 1−e−Ω(m2/3) there are at least 9
20 |R| rows in R whose median

is at most the sampled value. Among those, at most 1
4 |R| have a sampled value greater than

Q (by definition of Q). We conclude that at least 9
20 |R| − 1

4 |R| = 1
5 |R| rows have a sampled

value above their median and at most Q. These rows are all in S′, therefore |S′| ≥ 1
5 |R|. ◀

▶ Lemma 9. Let S be the set of rows in R whose median is at most t. Suppose |S| ≥ Ω
(
m2/3).

Let S′ = {s ∈ S | Xs ≤ min{t, Q}}. Then |S′| ≥ |S|/5, with probability at least 1−e−Ω(m2/3).

Proof. If t ≤ Q, apply Lemma 7 to get |S′| ≥ |S|/5. If Q < t, apply Lemma 8 to get
|S′| ≥ |R|/5 ≥ |S|/5. ◀

Because in each round of the while loop in Phase 1, a quarter of all rows are deleted, the
loop runs at most N = 1

20 log4/3(m) + O(1) times. By the previous lemma (together with a
union bound), we get the following.

▶ Proposition 10. At the end of the i-th iteration of the while loop in Phase 1, with probability
at least 1 − i · e−Ω(m2/3), at least m · ( 1

5 )i of the rows in R have median at most t.
In particular, after the last iteration of the loop, with probability at least 1−N ·e−Ω(m2/3) =

1 − e−Ω(m2/3), at least m · ( 1
5 )N ≥ Ω

(
m · 5− 1

20 log4/3(m)
)

≥ Ω
(
m2/3) of the rows in R have

median at most t.

ESA 2024
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In Phase 2 we aim to pick an element from each remaining row that is simultaneously
below the median of the row (and thus, with some probability, below the threshold t), and
above a quarter of the elements of the row (and thus, a good candidate for being a horizontal
pivot). The following lemma ensures this.

▶ Lemma 11. Let k be an integer, and let r be a row of k distinct values. Sample c =
⌊
m1/20⌋

entries of row r uniformly at random, with replacement: Y1, . . . , Yc. Let Y be the
⌊ 2

5 c
⌋
-th

order statistic of {Y1, . . . , Yc}. With probability at least 1 − e−Ω(m1/20), Y is between the
⌊k/4⌋-th smallest element and the median of row r.

Proof. Let ℓr be the ⌊k/4⌋-th smallest element of row r and let mr be the median of row
r. Let Zℓ be the number of variables among Y1, . . . , Yc which are at most ℓr, and let Zm

be the number of variables among Y1, . . . , Yc which are at least mr. Both Zℓ and Zm can
be represented as sums of independent Bernoulli variables and have respective expectation
E(Zℓ) ≤ 1

4 m1/20 and E(Zm) ≤ 1
2 m1/20. By the Chernoff bound of Lemma 6:

Pr
[
Zℓ ≥ 2

5m1/20
]

≤ Pr
[
Zℓ ≥

(
1 + 3

5

)
E(Zℓ)

]
≤ e−Ω(E(Zℓ))

≤ e−Ω(m1/20).

Similarly, we have:

Pr
[
Zm ≥ 3

5m1/20
]

≤ Pr
[
Zm ≥

(
1 + 1

5

)
E(Zm)

]
≤ e−Ω(m1/20).

By the union bound, the probability that Zℓ ≥ 2
5 m1/20 or Zm ≥ 3

5 m1/20 is at most
e−Ω(m1/20). This implies that with probability at least 1 − e−Ω(m1/20), Y is between ℓr and
mr, which proves the claim. ◀

Using the previous lemma together with a union bound across the m19/20 remaining rows,
we get the following.

▶ Proposition 12. In Phase 2, with probability at least 1 − e−Ω(m1/20), the selected value for
every row is between its ⌊k/4⌋-th smallest value and its median, where k is the width of A.

The correctness of the algorithm (with high probability) is now easy to establish.

▶ Theorem 13. Let A be a matrix with m rows. Then FindHorizontalPivot(A) finds a
horizontal pivot of A with probability at least 1 − e−Ω(m1/20).

Proof. Both phases of the algorithm succeed (i.e., the events described in Propositions
10 and 12 happen) with probability at least 1 − e−Ω(m1/20), by union bound. Assuming
they indeed have, let p be the value of the entry returned by FindHorizontalPivot(A).
Because by Proposition 10 there is a row with median at most t, we know by Proposition
12 that p < t. By our choice of t, every row deleted in Phase 1 has a value larger than t.
Moreover, by the definition of p, every row remaining in R by the end of the algorithm has a
value at least p. Thus, every row of A has at least one value at least p, and at least a quarter
of the values in the row of p are smaller than p (again, by Proposition 12). In short, p is a
horizontal pivot of A. ◀
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4 Sampling, derandomization and further remarks

As mentioned before, we assume Rand(k) to return, on each call, a uniform random
integer from {1, . . . , k} in O(1) amortized time. This can be justified as follows. For
each call of FindHorizontalPivot with m rows, Rand is called in Phase 1 at most
m + m(3/4) + m(3/4)2 + · · · ≤ 4m times, and in Phase 2 at most m1/20 times for each of
the m19/20 rows, for a total of 5m times. A similar analysis applies to FindVerticalPivot.
As the number of rows and columns is initially n and decreases geometrically for subsequent
FindPivot calls, the overall number of calls to Rand is O(n), with its input k always at
most n. We assume therefore that a sequence S of O(n) uniform random integers on ⌈log2 n⌉
bits are available upfront. We implement Rand(k) by standard rejection sampling, e.g.,
see [17, § 1]: take the ⌈log2 k⌉ least significant bits of the next integer from S, rejecting the
value if it is out of bounds (this happens with probability at most 1/2). To ensure that we
do not run out of random numbers with probability at least 1 − e−Ω(n) (which leaves the
overall analysis of our algorithm unaffected), we just need, by Lemma 6, a small constant
times as many samples in S than foreseen.

Derandomization. To reduce the amount of randomness used, we replace the O(n) uniform
random integers in {1, . . . , 2⌈log2 n⌉} needed for sampling by a set of O(n) random integers
that are d-wise independent for some sufficiently large d ∈ O(1). These can be generated from
O(log n) uniform random bits in O(n) time (assuming the word RAM model of computation),
using known techniques based on polynomials with random coefficients [20, § 3].

Note however that if the procedure ReduceMatrix fails and needs to be repeated, then
we do need fresh randomness for our analysis to go through.

In the analysis of the algorithm with d-wise independent random integers, we make use
of the following lemma, replacing the Chernoff bounds of the previous section and of the
rejection sampling.

▶ Lemma 14 ([1]). Let d > 0 be an even constant and let {X1, . . . , Xm} be a set of d-wise
independent Bernoulli random variables (with possibly distinct success probabilities). Let
X =

∑m
i=1 Xi and µ = E(X). Then, for any constant ε > 0, assuming µ → ∞,

Pr[X ≥ (1 + ε)µ] ≤ O

((
dµ + d2

µ2

)d/2)
≤ O

(
µ−d/2

)
,

and

Pr[X ≤ (1 − ε)µ] ≤ O

((
dµ + d2

µ2

)d/2)
≤ O

(
µ−d/2

)
.

Following a similar reasoning as in § 4, we obtain Theorem 5, i.e., the running time remains
unchanged, albeit with a decreased probability of success that converges to 1 polynomially
rather than exponentially. In this extended abstract we omit the detailed calculations.

Avoiding the use of constant-time multiplication. The standard technique mentioned
above to generate d-wise independent random integers (for some constant d) relies on
evaluating a polynomial of degree d at inputs x = 0, 1, . . . , N , for some N ∈ O(n). Doing
this naïvely makes use of O(n) multiplications and additions. If we assume, as is often
done, that the cost of multiplying word-sized integers is constant, then this is within the
stated time bounds. We note however that it is possible to get around this assumption,
using a technique by Knuth [11, § 4.6.4] for evaluating a polynomial at the points along an
arithmetic progression. By doing so, we trade the O(n) multiplications and additions for
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O(1) multiplications and O(n) additions. Thus, even if multiplication is not a constant-time
primitive and is instead implemented as, say, binary long multiplication, the stated time
bounds are still achievable.

Equal elements. The assumption that all elements of the matrix A are distinct is made
without loss of generality. If there are equal elements, we can instead consider the matrix
B, whose elements Bij = (Aij , i, j) are to be compared lexicographically. This can be done
implicitly, without the need of storing B. Notice that if Aij is a strict saddlepoint of A, then
Bij is the (necessarily unique) strict saddlepoint of B. Thus, we can solve the problem on
A by finding a strict saddlepoint of B (if there is one) and testing if it is indeed a strict
saddlepoint of A.

The strictness of the saddlepoint of A is crucial. Observe that if A has a saddlepoint
Aij that is not strict, then it is not guaranteed that the corresponding entry Bij of B is a
saddlepoint.

Rectangular matrices. We briefly discuss how the algorithm can be adapted to non-square
matrices. Suppose m > n and let A be an m × n matrix (the case of an n × m matrix can
be handled similarly). We divide A into ⌈m/n⌉ possibly overlapping n × n submatrices that
fully cover A and compute the strict saddlepoint of each submatrix (whenever it exists), in
O(m) total time; let Q be the set of these local saddlepoints. Either Q is empty and then A

has no strict saddlepoint, or each row of A must contain an entry larger or equal to each
element of Q. In the latter case only the maximum of Q can be a strict saddlepoint of A,
and this can be verified in O(m) time.

Parallelization. Finally, we remark on the changes necessary for an efficient parallel im-
plementation as mentioned in § 1. First, we set the size parameter of ReduceMatrix to
s = (log2 n)c, for a sufficiently large constant c. After reduction, we are then left with
an O(polylog n)-size matrix, which we can solve in O(polylog n) time and work (e.g., by
a deterministic algorithm). Note that by running more reduction steps than before, we
have increased the probability of failure, which is now e−Ω((log n)c/20) ≤ 1/nΩ(polylog n) by
Theorem 3, so the algorithm still succeeds with high probability.

The O(log n) iterations of the main loop in ReduceMatrix and the O(log n) iterations of
the Phase 1 loop in the FindPivot calls can be invoked in sequence. Sampling independently
from each row (in both Phase 1 and Phase 2), selection from each row (in Phase 2), and
comparisons of an element with other elements of its row or column can be invoked fully in
parallel, without increasing the total work.

Two crucial components remain: (1) Selection from n items can be implemented in
parallel in O(log n) time and O(n) work [9], and (2) Array manipulation (compacting an
O(n)-size array after deleting a constant fraction of row- or column-indices in O(log n) time
and O(n) work) can be achieved by standard techniques based on prefix sums [3].

Overall, to find the strict saddlepoint of an n × n matrix with high probability, we need
O(polylog n) parallel time, and the O(n) bound on the total work from the sequential analysis
continues to hold.

5 Lower bound against randomized algorithms

Finally, we argue that in case of non-strict saddlepoints, randomization does not help.

▶ Theorem 15. Every randomized algorithm that decides if a given matrix M has a (non-
strict) saddlepoint and returns its value correctly with probability at least 5/6 must query in
expectation Ω(n2) entries, for some n × n matrix M .
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Proof. Consider a random n × n matrix M generated by the following process:
Start with all entries set to 0.
In every row, choose an entry uniformly at random and set it to 2.
Choose, uniformly at random, an entry with value 2. Change it to 1 or −1 with probability
1
2 each.

Call t the unique entry with value 1 or −1. Notice that if t = 1, then either there is no
saddlepoint or the value of the saddlepoint is 1 (the latter happens exactly if all 2s are in
the column of t). If t = −1, then the value of the saddlepoint is 0 (pick any 0 in t’s row).
Consider some arbitrary fixed (deterministic) algorithm that finds the saddlepoint. Observe
that, unless the algorithm queries t, the probability of it succeeding is at most 1

2 .
Let us give the algorithm a budget of n2/1000 queries, and argue that the probability

that it succeeds within this budget is less than 2
3 . Call the unique nonzero entry of each row

a special element, call rows with at least n/10 entries queried heavy, and other rows light;
a row can change status at most once, from light to heavy. Notice that the algorithm can
reveal at most n2

1000 / n
10 = n

100 special elements in heavy rows.
All queries in light rows reveal a special element with probability at most 1/(9n/10) = 10

9n .
(This is because the special element, unless already revealed, is equally likely to be in any of
the unqueried places; otherwise, if the special element of the row has already been revealed,
then the probability is zero.) The expected number of special elements revealed in light rows
is thus at most n2

1000 · 10
9n = n

900 . By Markov’s inequality, the probability of revealing k times
as many special elements is at most 1

k , e.g., the probability of revealing more than n
100 is at

most 1
9 .

Thus, with probability at least 1 − 1
9 , the number of special elements revealed (in all rows)

is at most n
100 + n

100 = n
50 . Assume that, indeed, at most n

50 special elements are revealed.
Then, the probability of t being among these is at most 1

50 .
Overall, the probability that the algorithm succeeds is at most 1

50 + 1
9 + 1

2 < 2
3 . The first

term is for the case when the algorithm reveals at most n/50 special elements and finds t,
the second term is for the case when the algorithm reveals more than n/50 special elements,
and the third term is for the case when the algorithm succeeds without finding t.

Let T (n) denote the minimum expected number of queries of a deterministic algorithm
for the saddlepoint problem which errs with probability at most 1

3 on this distribution of
inputs. The previous discussion shows that T (n) ≥ Ω(n2).

Let T ′(n) denote the expected number of queries of any randomized algorithm for the
saddlepoint problem which errs with probability at most 1

6 on the worst-case input. By Yao’s
minimax principle, e.g., [17, Proposition 2.6], we have T ′(n) ≥ 1

2 T (n). Thus, the claimed
result holds. ◀
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