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Abstract
We present a dual fault-tolerant distance oracle for undirected and unweighted graphs. Given a set
F of two edges, as well as a source node s and a destination node t, our oracle returns the length
of the shortest path from s to t that avoids F in O(1) time with a high probability. The space
complexity of our oracle is Õ(n2) 1, making it nearly optimal in terms of both space and query time.

Prior to our work, Pettie and Duan [SODA 2009] designed a dual fault-tolerant distance oracle
that required Õ(n2) space and O(log n) query time. In addition to improving the query time, our
oracle is much simpler than the previous approach.
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1 Introduction

Graph theory is a valuable tool for modelling and solving many real-world problems. As
real-world networks are susceptible to failures, such as faulty edges or vertices within the
network, we must design a system that continues to operate in the presence of failures. In
this paper, we focus on developing algorithms that effectively operate in the presence of
faults. Consider the scenario where we aim to determine the shortest path from a source
vertex to a destination vertex. However, we become aware that one of the edges in the
graph is unavailable or faulty due to some reasons. Under these circumstances, our objective
becomes finding an alternative shortest path that avoids the faulty edge.

Let us describe an abstract model in which we want to solve the above problem. We
consider an undirected and unweighted graph, denoted as G. To facilitate efficient query
processing, we preprocess this graph to construct a suitable data structure. This data
structure is used to answer queries about shortest paths in G in the presence of faults. We
assume that we will receive queries of the following form:

Query(s, t, F ): Find length of the shortest path between vertices s and t in graph G,
avoiding set of edges F .

The objective of our algorithm is to efficiently answer the above query by utilising the prepared
data structures. After creating a data structure, while queried about Query(s, t, F ), we
run an algorithm (named query algorithm) to answer the query. This combination of data
structure and query algorithm is commonly referred to as an oracle. Our paper focuses on
calculating distances in the presence of faults. Consequently, we refer to our oracle as a
fault-tolerant distance oracle.

1 Õ hides polylog n factor
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45:2 Near Optimal Dual Fault Tolerant Distance Oracle

We evaluate the fault-tolerant distance oracle based on two key parameters: (1) the space
required by the data structure and (2) the query time, which refers to the time taken to
respond to a query. To facilitate the description of our results in this context, we introduce
a simple notation. We define a distance oracle that avoids a fault set of size at most f as
Do(f). When the source vertex s is fixed in the Query, the oracle is referred to as a Single
Source Distance Oracle or Sdo(f) for brevity.

In this paper, our focus is designing Do(2) – i.e., designing fault-tolerant distance oracle
that can handle fault set of size at most 2. We discuss the previous results obtained in this
area in Figure 1.

Oracle Space Query time Remarks Ref
Do(1) Õ(n2) O(1) - [7]
Do(2) Õ(n2) O(log n) - [9]
Do(f) Õ(n3−α) Õ(n2−(1−α)/f ) α ∈ [0, 1] when the preprocessing time is

O(Mn3.376−α) and edge weights are integ-
ral in the range [−M, . . . , M ].

[18]

Do(f) Õ(n2+α) O(n2−αf2 + nfω) α ∈ [0, 1] and ω is the matrix multiplication
exponent [6, 16, 19, 11, 2]

[17]

Do(f) O(fn4) O(fO(f)) - [10]
f O(n2) Õ(nfω−1) Edge weights are in the range [1 . . . W ] [14]
f O(f4n2 log(nW )) O(c(f+1)2

f8(f+1)2
log2(f+1)2

(nW )) Edge weights are in the range [1 . . . W ] [8]

Figure 1 Relevant results for fault-tolerant distance oracles.

For Do(2), the oracle of Pettie and Duan [9] is nearly optimal. It takes Õ(n2) space
and O(log n) query time. However, as the authors of [9] also mentioned, their approach
is overly complicated and requires extensive case analysis. Duan and Ren [10] proposed a
fundamentally different approach. They designed an algorithm for Do(f) that takes O(n4)
space and O(fO(f)) query time. For Do(2), their query time is O(1). Unlike [9], the main
feature of their algorithm is that it involves a limited amount of case analysis. However, the
space taken by their algorithm is O(n4). Recently, Dey and Gupta [8] designed an f -fault
tolerant distance oracle with Õ(n2) space and Õ(1) query time for fixed f . In this paper,
using an approach similar to [8] and [10], we design a dual-fault tolerant oracle with Õ(n2)
size and O(1) query time. We use some randomisation techniques which helps us to reduce
the query time. The main result of this paper is:

▶ Theorem 1. For an undirected and unweighted graph, there is a dual fault-tolerant oracle
that takes Õ(n2) space and answers each query in O(1) time with high probability.

Unfortunately, some tools we use in this paper do not works for weighted graphs.

2 Overview

In this section, we will at first give an overview of the method used by Duan and Ren in
[10] to create an f -fault tolerant distance oracle with O(n4) size. After that, we will give an
overview of our modifications to that approach to have an oracle for dual faults with Õ(n2)
size and constant query time. For that, let us define some notations at first. The notation st

represents the shortest path from vertex s to vertex t. The notation |st| denotes the length of
this path (same as the number of edges in the st path for unweighted graphs). The notation
st ⋄ F denotes the shortest path from s to t while avoiding a set of edges F = {e1, e2}, and
|st ⋄ F | corresponds to the length of that path.
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2.1 Overview of the approach in [10]
Suppose we want to find the path P = st ⋄ F . In [10], the authors introduced the concept of
“maximiser”, which will be discussed further in later sections. For now, we want to emphasize
on the fact that the “maximisers” output either the length of the path P or a set of vertices
serving as a “hitting set” of P . We will formally prove this later. Together with these
“maximisers”, they also used a structural theorem of shortest paths under edge failures to
use the hitting set effectively. A path is said to be f -decomposable if it is the concatenation
of at most (f + 1) shortest paths in G. In [1], the authors show the following:

▶ Theorem 2 (Theorem 1 in [1]). For any set of failures F of size f , every shortest path
from s to t avoiding F is f -decomposable.

Let us now discuss an important aspect of this theorem. Let P = st ⋄ {e1, e2} be
2-decomposable and x be a vertex of the hitting set which lies on the path P . Since P

is 2-decomposable, it contains at most three shortest paths, say A, B, and C, where P

starts with the path A and ends with the path C. If x lies on B, then P [s, x] and P [x, t]
are 1-decomposable. Thus, we have hit path P and reduced the problem into two smaller
subproblems (in terms of decomposability). However, if x lies on A or C, then we have not
reduced the problem. The whole game now is to design an algorithm that can find an x ∈ B.
In [10], Ren and Duan design such an algorithm. Since our strategy is similar, let us define
some notations that formalise our discussion.

▶ Definition 3 (First and the last segment in a path and an intermediate vertex). Let us assume
that F is a set of size f and P = st ⋄ F is f-decomposable. Thus, P can be decomposed
into at most f + 1 shortest paths. Let A and B be the first and the last shortest path from
these f + 1 shortest paths. Thus, A is the shortest path that starts from s, and B is the
shortest path that ends at t. A is called the first segment of the path P and B is called the
last segment of the path P . If a vertex x ∈ P does not lie in the first and last segments, then
it is called an intermediate vertex.

Before we describe further, let us at first define some notations.

▶ Definition 4. A path sx is said to be intact from failures {e1, e2} if the endpoints of e1
and e2 do not lie strictly between2 s and x on the path sx. Similarly, if the subtree under
a node x in Ts, that is Ts(x), do not contain any endpoints of e1 and e2, it is intact from
failures {e1, e2}.

The above definition may appear natural. However, it is not. Usually, when we say that
a path or tree is intact from failures {e1, e2}, we mean that it does not contain e1 and e2.
In contrast, the above definition does not allow the endpoints of e1 and e2. Though never
emphasised, this fact is used crucially in the algorithm of Ren and Duan [10]. We now define
the notion of a clean vertex introduced in [10].

▶ Definition 5. A vertex x is called s-clean from {e1, e2} if sx and Ts(x) are intact from
failures {e1, e2}.

Duan and Ren used the above “clean” vertices crucially in [10]. Let P = st ⋄ F be
f -decomposable. As mentioned above, we want to find an intermediate vertex x on P ,
after which we can recurse on P [s, x] and P [x, t]. To this end, [10] designed an algorithm

2 [10] did not require the endpoints to be strictly inside. However, we require it to avoid some corner
cases.

ESA 2024
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Query, which is initially called using the parameters (s, t, F, f). The main component of
this algorithm is the function HitSet, a function that uses maximisers. HitSet outputs
O(poly(f)) edges H and an upper bound on |P |, which is stored in L. The function HitSet
has the following properties: (1) Either L = |P | or (2) One of the endpoints of the edges
in H hits P and is an intermediate vertex. Thus, we either find our answer or recurse on
two parts in Line 6 of Algorithm 1. One can check that if the running time of HitSet is
polynomial in f , then the running time of the query algorithm is O(fO(f)). In our case, this
is O(1) since f = 2.

Algorithm 1 Query Algorithm for the Exact Distance Oracle: Query(s, t, F, f).

1 if st ∩ {e1, e2} = ∅ return |st|
2 if f = 0 return ∞
3 (L, H)← HitSet(s, t, F );
4 Ans← L;
5 for each x in H do
6 Ans← min{ans, Query(s, x, F, f − 1) + Query(x, t, F, f − 1)};
7 return Ans;

Found a
s-clean vertex

Found a
t-clean vertex

Found an
intermediate vertex

After the first call
to the maximizer

After the second call
to the maximizer

After the third call
to the maximizer

Figure 2 After at most three calls to the maximizer, we are sure to find an intermediate vertex.

We now give an overview of how to find an intermediate vertex. Let us assume the
worst case when the output of our maximisers always hit the path P . The key to finding
an intermediate vertex is first finding a clean vertex from the source and the destination,
i.e., an s-clean and t-clean vertex. The authors first show how to design an appropriate
maximiser that ensures we obtain a clean vertex. Once a s-clean and t-clean vertex are
found, authors design an appropriate maximiser that gives us an intermediate vertex. This
approach is succinctly described in the Figure 2. This figure illustrates behaviour of the
HitSet algorithm in the worst case. In the best case, the first call to the maximiser may
give us an intermediate vertex.

Though we have hidden many technical details, we want the reader to note the steps
required to find an intermediate vertex in the worst case. Also, to use their maximisers, they
needed O(n4) space which we reduced in this paper for 2 faults.

2.2 Overview of our approach
We define some new notations which will help us in describing our approach. Suppose we
want to find st ⋄ F where F = {e1, e2}.

▶ Definition 6 (Primary and Secondary path). The shortest st path is referred to as the
primary path, which includes the edge e1. The secondary path is st ⋄ e1.

Following the above definition, we assume that the primary path contains e1 (without
loss of any generality). If the primary path contains none of the edges e1 and e2, then finding
st ⋄ {e1, e2} is trivial. If the primary and the secondary path do not contain e2, then we can
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Figure 3 The primary path contains e1 and the secondary path contains e2.
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(a) Detour starts at x on primary path.
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(b) Detour starts at x on secondary path.

Figure 4 Start of the detour.

use the single edge fault-tolerant data structure of Demestrescu et al. [7] to find |st ⋄ e1|.
This is also an easy case. For the rest of the paper, we will assume that we are in one of the
two cases:
1. e1 and e2 both lie on the primary path
2. e1 lies on the primary path and e2 lies on the secondary path.
To apply our algorithm, we should quickly identify in which case we are operating. For this,
we will introduce small weights to our originally unweighted graph similar to [4, 13, 15, 12].
This will ensure unique shortest paths between any two vertices in the graph, even after the
occurrence of two faults. Let us abuse notation and use |st| as the weight of the shortest path
in this weighted graph. Also, let us define w(e) as the weight of edge e in this new graph. To
find if e1 lies on the st path, we just need to check if |st| = |se1|+ w(e1) + |e1t|. Note that we
can fetch these quantities in O(1) time if we have stored the shortest path tree from each vertex
in the graph. So, we can check if both e1 and e2 lie on the st path in O(1) time. Similarly,
we can find if e2 is in secondary path by checking is |st ⋄ e1| = |se2 ⋄ e1|+ w(e2) + |e2t ⋄ e1|.
Again, all the quantities can be found in O(1) time using the one fault data structure of [7].
Henceforth, we will assume that we know the case in which we are operating.

We will show later that case (1) (both faults lie on the primary path) is similar to one of
the subcases of the case (2) (e1 on the primary path and e2 on the secondary path). The bulk
of our paper will be devoted to case (2). Henceforth, we will always assume the following
setting: we want to find the shortest path from s to t avoiding e1 = (a, b) and e2 = (c, d).
We will assume that e1 ∈ st and e2 ∈ st ⋄ e1 where a and c are near to s on st and st ⋄ e1
paths respectively (See Figure 3). Let P = st ⋄ {e1, e2} be a 2-decomposable path. We now
define the notion of the detour of the path P .

▶ Definition 7 (Detour of a path P , start and end of a detour). The detour of the path P

is P \ (st ∪ st ⋄ e1). The start of the detour is the first vertex on P , after which P deviates
from st ∪ st ⋄ e1. If this vertex is on st, then we say that the detour starts on the primary
path. If it is on st ⋄ e1 \ st, then we say that it starts on the secondary path. Similarly, we
can define the end of the detour.

ESA 2024
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Note that the above definition of detour differs slightly from what is usually used in
literature. Specifically, the start of the detour is generally defined as the vertex on the path
P , after which P deviates from st. In our definition, the detour can start on the primary
path or the secondary path. Similarly, the detour may end on the primary or the secondary
path.

In this paper, we use an approach similar to that used in [7]. Essentially, our objective is
to identify vertices along the path P = st ⋄ {e1, e2} that are “close to the detour” from the
vertices s and t. Before describing what we exactly mean by “close to the detour”, let us
define a suitable set of vertices called landmark vertices. These landmark vertices play a
crucial role in the forthcoming definitions.

▶ Definition 8 (Landmark vertices). Let Li be the set of vertices sampled from V with a
probability of c log n

2i , where 0 ≤ i ≤ log n and c > 1 is a constant. The size of Li is Õ
(

n
2i

)
with a probability ≥ (1− 1

nc ).

We are now ready to describe our main contribution in this paper via the following two
definitions:

▶ Definition 9 (Close vertex to a faulty edge from s). Let P = st ⋄ {e1, e2}. A vertex x ∈ P

is called close vertex to edge e1 from s if x ∈ Lℓ (for some ℓ ∈ [0, log n]), sx avoids {e1, e2}
and |xe1 ⋄ {e1, e2}| = O(2ℓ). The definition is similar for close vertex to e2. Similarly, we
can define close vertex to a faulty edge from t.

In most parts of the paper, we will find a close vertex from s. So, for brevity, we will
drop the term “from s” where it is clear from the context that we are finding a close vertex
from s. We aim to find a close vertex with one more special property. Next, we define the
detour close vertex or D-close vertex. This will be close to faulty edge e1 or e2 depending on
where the detour starts.

▶ Definition 10 (A detour close or D-close vertex to a faulty edge from s). Let P = st⋄{e1, e2}.
Let us assume that the detour of P starts on the primary path. A vertex x ∈ P is called
D-close to e1 if x is close to e1 and the detour of P starts in xe1 ⋄{e1, e2} path (xe1 ⋄{e1, e2}
represents the path from x to e1 on the primary path). If the detour of P starts on the
secondary path, the definition of D-close to e2 is similar (with xe1 ⋄ {e1, e2} replace by
xe2 ⋄ {e1, e2}, which represents the path from x to e2 on the secondary path). Similarly, we
can define a D-close vertex from t.

Our central intuition is that once we have found a D-close vertex from s and t, we can use
Ren and Duan’s approach to find an s-clean or t-clean vertex. Note that finding a D-close
vertex is not the main aim. The aim is to find an intermediate vertex. If we find a clean
or intermediate vertex at any point in our algorithm, we abandon our search for a D-close
vertex as our job is already done. We now design our version of HitSet algorithm in the
Algorithm 1. In Figure 5, we show behaviour of our HitSet algorithm in the worst case: the
first call may give us a D-close vertex from s. The second call gives us a D-close vertex from
t. After that, we will find either an s-clean vertex or a t-clean vertex, and the remaining
figure is same as Figure 5.

In essence, our result implies we should first find a vertex on P that is D-close to the fault.
Similar kind of strategy can be found in [7]. This strategy not only decreases the query time
but also improves the space taken by the algorithm. Finding a D-close vertex is easy when
there is one fault. In our paper, we show how to find a D-close vertex (using maximisers)
when there are two faults. Unfortunately, we will not be able to use the maximisers of Ren
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Found a
D-close vertex

from s

Found a
D-close vertex

from t

Found an
s-clean vertex

Found an
t-clean vertex

Found an
intermediate vertex

After the first call
to the maximiser

After the second call
to the maximiser

After the third call
to the maximiser

After the fourth call
to the maximiser

After the fifth call
to the maximiser

Figure 5 After at most five consecutive calls to the maximiser, we are sure to find an intermediate
vertex.

and Duan[10] as its size is O(n4). We will design new maximisers different from [10], taking
just Õ(n2) space. In fact, all the maximisers used in our HitSet algorithm take Õ(n2) space.
This completes the description of our overview.

3 Preliminaries

Till now, we have discussed about the shortest path and shortest distance between any
two vertices. In our paper, we also use notion of the shortest distance between a vertex
and an edge. For an edge e = (u, v) and a vertex s, |se| is defined as the minimum of |su|
and |sv|. Also, |se ⋄ F | = min{|su ⋄ F |, |sv ⋄ F |}. When considering an arbitrary path P ,
in which vertex u appears before vertex v, P [u, v] refers to the subpath from u to v, and
|P [u, v]| represents the length of this subpath. Also, V (e) denotes the set containing both
the endpoints of e, i.e., V (e) = {u, v}. Ts denotes the shortest path tree rooted at s. For
any vertex x in Ts, Ts(x) represents the subtree rooted at node x in Ts. In our algorithm,
we may need to quickly find the least common ancestor (Lca) of any pair of vertices u and v

in Ts. We will utilise the following result to find the LCA efficiently:

▶ Lemma 11 (See [3] and its references). Given a tree T with n vertices, we can construct a
data structure of size O(n) in O(n) time, allowing us to answer LCA queries in O(1) time.

We will use the following lemma to show the existence of landmark vertex (defined in
Definition 8) with high probability on sufficiently long paths. We state this lemma without
proof.

▶ Lemma 12. Let Ui be the set of paths such that length of each path is Ω(2i). If size of Ui

is poly(n), then with a probability ≥ 1− 1/n, for all 0 ≤ i ≤ log n and for each path P ∈ Ui,
there exists a vertex in Li that hits P .

We use another concept from the works of [5] which is named as trapezoid of a path or
the near vertices of a path. Before that, let us describe another notion below:

▶ Definition 13 (Ball from a vertex of length ℓ, BallG(u, ℓ)). A ball from a vertex u of
length ℓ is a set containing all the vertices at distance ≤ ℓ from u. We denote this ball by
BallG(u, ℓ). Formally, BallG(u, ℓ) = {v | |uv| ≤ ℓ}.

Let P = st ⋄ F . Let us now define trapezoid of that path.

▶ Definition 14 (Trapezoid of P in G \ F , TrapezoidG\F (P )). Let P be an arbitrary path
from s to t in G \ F . Define the trapezoid of P in G \ F as:

TrapezoidG\F (P ) =
( ⋃

u∈P \{s,t}

BallG/F (u, ϵ min{|P [s, u]|, |P [u, t]|})
)
\ {s, t}

where ϵ ≥ 0 is a parameter. In words, for each vertex u ∈ P , we include all vertices that are
in the ball of length ϵℓu in G \F where ℓu is the minimum of the length of u from s and t on
path P . All these vertices lie in the trapezoid of P . A vertex is far away from P if it does
not lie in the trapezoid of P .

ESA 2024
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Chechik et al.[5] introduced the notion of the trapezoid and designed a data structure Ft.
Though we will not use the Ft data structure in our paper, we will crucially use the notion
of a trapezoid. In [10], the authors introduced a technique called the maximiser for a pair of
vertices s and t.

D(s, t, x, y, b1, b2) = argmaxF ∈E2 {conditions depending on s, t, x, y, b1 and b2 } (1)

In the above maximiser, s is the source, and t is the destination. Variables x and y can
be any two arbitrary vertices. The boolean variables b1, b2 gave some extra conditions on
the pair of faults they are considering. Let e∗

1 and e∗
2 be the edges returned (or stored) by

the above maximiser. Note that we can also store the path length |st ⋄ {e∗
1, e∗

2}| without
increasing the size.

We first describe the power of these maximisers. Let us assume that we want to find the
shortest path from s to t avoiding {e1, e2}. If {e1, e2} satisfy the conditions of the maximiser
D, then we can show that edges returned by the maximiser D hit the path st ⋄ {e1, e2} or we
have got the length of the path st ⋄ {e1, e2}.

▶ Lemma 15. Let P = st⋄{e1, e2} and D(s, t, x, y) = {e∗
1, e∗

2}. If {e1, e2} satisfies conditions
of D, then either e∗

1 or e∗
2 lie on P or |P | = |st ⋄ {e∗

1, e∗
2}|.

Proof. Let us assume that neither e∗
1 nor e∗

2 lies on P . Since {e1, e2} also satisfies the
condition given in D, |P | ≤ |st ⋄ {e∗

1, e∗
2}|. Since P also avoids e∗

1 and e∗
2, |st ⋄ {e∗

1, e∗
2}| ≤ |P |.

This implies |P | = |st ⋄ {e∗
1, e∗

2}|. ◀

Using the above lemma, either we find the length of the path st ⋄ {e1, e2} or we get a
very small set that hits P . We now formally describe the maximisers created in [10] and
how they use the notions of s-clean and t-clean vertices. Let bits be an array of size
2 (we replace b1, b2 used by them by bits for our presentation). Each cell in bits can
either be 0 or 1. We will now define four maximisers Dbits(s, t, x, y) depending on the
value in bits. The conditions of the maximisers are as follows:(1) sx and ty are intact
from faults and (2) If bits[0] = 1, then x is s-clean. Similarly, if bits[1] = 1, then y

is t-clean. We give the complete definition of one of the maximisers, D01(s, t, x, y) =
argmax{e∗

1 ,e∗
2}∈E2 {sx is intact from faults {e∗

1, e∗
2} and y is t-clean from {e∗

1, e∗
2} }.

In the above definition, s, t, x, y ∈ V . Thus, the total size of D01 is O(n4). It is easy
to observe that all the other three maximisers will also be of size O(n4). We have already
discussed in Section 2 about how these maximisers are used. In this paper, we have modified
these maximisers to have an oracle with size Õ(n2).

4 Oracle for two faults

Let us reiterate our setting: we want to find the shortest path from s to t avoiding e1 = (a, b)
and e2 = (c, d). We will assume that e1 ∈ st and e2 ∈ st ⋄ e1 where a and c are near s on st

and st ⋄ e1 paths, respectively. Let P = st ⋄ {e1, e2} be a 2-decomposable path.
First, we describe some basic data structures used in our algorithm. As mentioned in

Section 3, we will add small weights to each edge to ensure all the shortest paths are unique.
Let G′ be the graph obtained after adding weights. In G′, we will find the shortest path tree
from each vertex. The space taken by all shortest-path trees is O(n2). Similarly, whenever
we need to find st ⋄ e1, we will apply the algorithm of [7] on G′. Again the algorithm in [7]
takes O(n2) space. Apart from this data structure, we will never use G′ in any of our other
data structures. For the rest of the paper, our graph is unweighted.
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Our new data structure is the maximiser Dbits(s, t, dist, clean). It stores the pair of edges
(e∗

1, e∗
2) that maximises the distance from s to t subject to conditions determined by various

parameters. We will also store the length of st ⋄ {e∗
1, e∗

2}. Formally,

Dbits(s, t, dist, clean) = arg max
F ∈E2

{conditions that depend on bits, s, t, dist, and clean} (2)

One of the common conditions in all our maximisers in this section is as follows:

Common Condition:
A pair of edge (e, e′) will be considered in maximiser only if e ∈ st, e′ ∈ st ⋄ e. (3)

Note that this condition is satisfied by the pair (e1, e2). We now describe other parameters
of the maximiser. bits, dist, and clean are sets of size two implemented using arrays. Each
element of bits can either be 0,1, or 2. If bits[0] = 0, then we have not found a D-close or
s-clean vertex from s. If bits[0] = 1, then we have found a D-close vertex from s. Moreover,
if bits[0] = 2, then we have found an s-clean vertex. We store the corresponding s-clean
vertex in clean[0]. The same conditions hold for bits[1] and clean[1], which tells us whether
we have found a D-close vertex from t or a t-clean vertex and stores the t-clean vertex if
found. dist[0] and dist[1] normally store the distances from s and t respectively. There are
nine versions of our maximiser D, which depend on the value of bits. We will define them on
the fly, as and when our algorithm needs them. We will discuss the space taken by these
maximisers and our oracle in Appendix A. Before we describe our algorithm, let us take care
of some corner cases.

We will always use maximiser so that {e1, e2} satisfies its conditions. Let {e∗
1, e∗

2} be the
edges returned by the maximiser. If both e∗

1 and e∗
2 do not lie on P , then using Lemma 15,

|P | = |st ⋄ {e∗
1, e∗

2}|. Thus, we can easily find |P | in this case. In the worst case, e∗
1 and/or

e∗
2 may hit P . We will describe our algorithm for the worst case henceforth.

In our algorithm, let us assume that we have found a vertex x which is one of the endpoints
of e∗

1 or e∗
2 and also lies on the path P . First, we check if x lies in the first or last segment of

P or x is an intermediate vertex. For this, we need to check if sx (and tx) is intact from
faults {e1, e2}. Using Lemma 11, this can be done in O(1) time using appropriate Lca query
in Ts (and Tt). Similarly, we can check if Ts(x) contain faults {e1, e2} in O(1) time. Thus,
processing x takes O(1) time.

If x happens to be s-clean, we will set clean[0] = x in the subsequent calls to the maximiser.
If x is D-close from s, then we can recurse our algorithm on the path P [x, t] on which x is acting
as the source. Formally, if x is D-close from s, our answer is |sx|+ Query(x, t, {e1, e2}, 2).
It may be that the primary path xt contains both the faults e1 and e2. In that case, we will
use our algorithm in Appendix C to find |P [x, t]|. Similarly, if the secondary path from x

to t does not contain any faulty edge, then we can find |xt ⋄ {e1, e2}| using the single fault
algorithm of [7]. Again, these are easy cases for us. Henceforth, we assume that for any
D-close vertex x, the primary and the secondary path from x to t contain faulty edges.

Finally, we will describe our approach to finding a D-close vertex from s, an s-clean
vertex, and the intermediate vertex. Approach to finding these vertices from the destination
side t is symmetrical.

5 Finding a D-close vertex from s

By definition, a D-close vertex can be on the primary path or the secondary path depending
on where the detour of P starts. We deal these cases seperately.
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5.1 The detour starts on the primary path
We first describe the maximiser. Since we have still not found a D-close vertex from
s, bits[0] = 0. Our maximiser is D0α(s, t, dist, clean), where α can be {0, 1, 2}. We set
dist[0] = O(2⌊log |se1|⌋).

The conditions of the maximiser are as follows:

D0α(s, t, dist, clean)=arg max
F ∈E2

{
dist[0] distance from s on the primary path is intact

from F and other conditions based on α from t side.
}
(4)

x

c′
d

s

a

b

c

t

Figure 6 If d ∈ Ts(x), the paths sd ⋄ e1 is not a prefix of st ⋄ e1.

Let x be an endpoint of an edge returned by the maximiser. If x is an intermediate
vertex, we abandon our search for D-close vertex. So, let us assume that x lies on the first
segment of P . We will show that x lies on the st path or x is s-clean.

▶ Lemma 16. Let x be an endpoint of an edge returned by the maximiser (4) such that sx

is intact from failures {e1, e2}. If x does not lie on the st path, then x is an s-clean vertex.

Proof. Let us assume that x /∈ st. We will now show that x is s-clean. Since sx is intact
from failures {e1, e2}, we only need to show that endpoints of e1 and e2, i.e., a, b, c, d do not
lie in Ts(x).

Since x is not in the st path and hence not in the sa path, the two subtrees Ts(x) and
Ts(a) are disjoint. Hence, a, b /∈ Ts(x).

Now, if c ∈ Ts(x), then the path sc is intact from failures and is a subpath of the secondary
path (as we assumed that the secondary path passes through e2 and hence c). Also, x is in
the path P . So, in this case, the detour will start in the subpath xe2 on the secondary path.
This is a contradiction.

If d ∈ Ts(x), then since c /∈ Ts(x), there exists some c′ such that c′d is an edge of Ts(x).
Consider the path from s to x concatenated with the path from x to d in Ts(x) (See Figure 6).
This concatenated path represents the shortest path from s to d and avoids e1. Additionally,
it should be noted that Ts was constructed by adding small weights to each edge. Therefore,
|sd⋄e1| = |sd| is unique and does not pass through e2. Furthermore, it should be remembered
that we found st ⋄ e1 in the same weighted graph, and thus st ⋄ e1 is also unique and passes
through e2 (we assumed at the start of Section 4 that e2 ∈ st ⋄ e1). However, according
to the property of shortest paths, sd ⋄ e1 should be a subpath of st ⋄ e1. This leads to a
contradiction, implying that d /∈ Ts(x). ◀
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Figure 7 Finding a D-close vertex.

If x is not an s-clean vertex, then using Lemma 16, x lies on st path. We will now show
how to find a D-close vertex from s using x. Let us assume that ℓ = ⌊log |se1|⌋. By the first
condition of the maximiser (4), |sx| ≥ 2ℓ. Also, since |se1| = O(2ℓ), |xe1| = O(2ℓ). We now
find the first vertex, say y, from x on the xs path that lies in Lℓ. Using Lemma 12, such
a vertex exists with a high probability within a distance 2ℓ from x. By construction, the
distance |ye1| on the primary path is also O(2ℓ). This implies that y is close to e1. We now
show that y is D-close to e1 from s.

To this end, remember that sx is intact from failures and x lies on P as well as st path.
Thus, by construction, even sy is intact from failures and y lies in P as well as st path.
This implies that the detour of P starts on the primary path st after the vertex y or on the
subpath ye1 of st. Thus, y is D-close to e1 from s.

5.2 The detour starts on the secondary path

We aim to find a D-close vertex to the edge e2. The reader will see that this is a challenging
case. In this case, we will use a different maximiser. We set dist[0] = O(2⌊log min{|se1|,|se2⋄e1|}⌋).
Note that se2 ⋄ e1 will not pass through e2. Thus, the single fault data structure of [7] can
find it in O(1) time. The conditions in the maximiser are as follows:

D0α(s, t, dist, clean) = arg max
F ∈E2

{
dist[0] distance from s on the primary path and

secondary path is intact from F , other conditions
based on α from t side.

}
(5)

Some remarks are in order. Specifically, we want the reader to note the use of primary and
secondary paths in the maximiser. Let (e, e′) be the pair of edges that satisfy the common
condition of Equation (3). For this pair, the primary path is st (it always remains the same),
and the secondary path is st ⋄ e (the secondary path changes for each pair). We demand
that dist[0] from both the primary and the secondary paths are intact from failures. The
reader can check that the pair e1, e2 satisfies the conditions of the maximiser.

Let x be the endpoint of an edge returned by the maximiser such that it lies in the first
segment of P . Let us assume that x is not s-clean. We will now show how to find a D-close
vertex using x. There are two cases here. Let us look at both of them, starting with the
easier case.
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(1) |se2 ⋄ e1| ≤ |se1| : This case is similar to the one we discussed in the previous section.
Let ℓ = ⌊log |se2 ⋄ e1|⌋. By the conditions of the maximiser, |sx| ≥ 2ℓ. As in the previous
section, we will find a vertex y in xs path that lies in Lℓ. Again, the reader can verify that y

is a D-close vertex to e2 from s.
(2) |se1| < |se2 ⋄ e1| :This is the most complex case for us. Unlike the previous case, we

cannot find a D-close vertex using one invocation of the maximiser. The reader will see that
we will use different maximisers two more times. We will show that vertices returned by
these maximisers will slowly lead us to the desired D-close vertex.

1. The first maximiser (stated above) will give us a vertex y, which is close to e1. Note
that we want to find a D-close vertex to e2.

2. The second maximiser will give us a vertex p ∈ P that has one important property: a

does not lie in the trapezoid of P [p, t]. This is the only place in our paper where we use
the concept of the trapezoid.

3. Once we have p, we can find the D-close vertex to e2 in one call to an appropriate
maximiser. This D-close vertex, say y, also satisfies the above property. That is, a does
not lie in the trapezoid of P [y, t].

Before we move further, we describe another issue. As stated above, in this case, we will find
two vertices, y and p. After we found, say, y, it may be the case that the primary path yt

passes through e2 and the secondary path passes through e1. This is actually a good case for
us as we recurse our operations in the Section 5.1 to find a D-close vertex to e2 from y. In
the rest of the section, we will assume the following:

▶ Assumption 17. All primary paths contain e1, and the secondary paths contain e2.

Together with this assumption, we also show that, while recursing on P having any vertex
as the source, if e1 = (a, b) lies on the primary path, then a is closer to the source. Similarly,
if e2 = (c, d) lies on secondary path, then c is closer to the source. Remember that we had
assumed this for the source s at the start of this section. This section will show that this
assumption remains valid for all primary and secondary paths.

▶ Lemma 18. Let e1 = (a, b) be the edge on the primary path st where a is closer to s.
Similarly, let e2 = (c, d) lies on st ⋄ e1 and c is close to s in st ⋄ e1. Also, let p be a vertex
on path P [s, t]. If e1 lies on the primary path pt, then a is closer to p. Similarly, if e2 lies
on pt ⋄ e1, then c is closer to p on st ⋄ e1.

Proof. Since a is closer to s in st path, b is closer to t than a. If b is closer to p on the pt

path, then we can directly use the bt subpath of the st path and get the shortest pt primary
path without using the edge e1. This violates the condition of the claim. Hence, a is closer
to p.

The proof for the second part of the claim is similar. ◀

With this, we have addressed all the small issues. Let us now look at our three maximisers.

First maximiser. Let us first see how to find a close vertex to e1 (See Figure 8). Let x be a
vertex returned by the maximiser such that x lies on the first segment of P .

Let ℓ = ⌊log |se1|⌋. By the first condition of the maximiser, |sx| ≥ 2ℓ. We now find the
first vertex of Lℓ in sx path from s whose distance is at most 2ℓ. Using Lemma 12, such
a vertex, say y ∈ Lℓ, exists with a high probability. By Assumption 17, the primary path
yt passes through e1. We will now show that |ye1| = O(2ℓ). To this end, we will find a
path from y to e1 that avoids {e1, e2} and has length O(2ℓ). Consider the subpath ys of sx
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concatenated with se1. Since sx is intact from failures {e1, e2}, so is sy. And by construction,
|sy| = O(2ℓ). Similarly, se1 avoids {e1, e2} and is also of length O(2ℓ). Thus, |ye1| = O(2ℓ).
By definition, y is close to e1.

Second maximiser. We will now show how to use y to find the vertex p. To this end, we
define another maximiser. Let dist[0] = |ye1|. The conditions of the maximiser are as follows:

D0α(y, t, dist, clean) = arg max
F ∈E2

{
dist[0] distance from s on the primary path and

secondary path is intact from failures F and other
conditions based on α from the t side.

}
(6)

s

e1

e2

xb

a

d
c

y ∈ Ll

Figure 8 y is close to e1.

Let p be the endpoint of an edge returned by the maximiser such that p lies on the first
segment of P [y, t]. Before we move further, let us take a slight detour in our discussion.
Till now, we have seen that if a vertex returned by the maximiser does not lie on the first
segment, then it may be used as a clean vertex (for example, maximiser 4 and 5). However,
we will not use p as a clean vertex, even if it satisfies the definition of the s-clean vertex.
This is done to conserve space. Since this is an important technical point, we add this as a
remark which will be used crucially when we calculate the space taken by the maximiser.

▶ Remark 19. Any vertex p returned as the output of the maximiser (6) will not be used as
a clean vertex in the subsequent call to another maximiser.

y t

a

zp

≤ P [y, p]
< ϵP [p, z]

Figure 9 a does not lie in the trapezoid of P [p, t].

The above remark implies that once we have found p on the first segment of path P , we
will return |sp|+ Query(p, t, {e1, e2}, 2). Thus, we will recurse our algorithm with p as the
source. But p has one special property that s did not have: the trapezoid of the path P [p, t]
( that is pt ⋄ {e1, e2}), does not contain a – we now prove this claim.

▶ Lemma 20. Let p be a vertex returned by maximiser (6) such that p lies on the first
segment of P [y, t]. Then, a does not lie in the trapezoid of the path P [p, t]. Or by definition
of trapezoid, for all z ∈ P [p, t], |za ⋄ {e1, e2}| > ϵ min{|P [p, z]|, |P [z, t]|}.
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Proof. For contradiction, let a lie in the trapezoid of the subpath P [p, t]. Then, there exists
a vertex z on P [p, t] such that |za ⋄ {e1, e2}| ≤ ϵ min{|P [p, z]|, |P [z, t]|} ≤ ϵ|P [p, z]|. Now
we will find a path from y to z that avoids all the faults and is less than P [y, z]. Consider
the path ya concatenated with az ⋄ {e1, e2} (See Figure 9). By Assumption 17, ya does not
contain any faults. Thus, the above path avoids both e1 and e2.

Let us now calculate the length of this path.

|ya|+ |az ⋄ {e1, e2}| = |ya|+ |za ⋄ {e1, e2}| ≤ |yp|+ |za⋄{e1, e2}|
(By definition of the maximiser, |yp| ≥ |ya|)

≤ |P [y, p]|+ |za⋄{e1, e2}| (as P [y, p] ≥ |yp|)
≤ |P [y, p]|+ ϵ|P [p, z]| < |P [y, p]|+ |P [p, z]| = |P [y, z]|

This is a contradiction as P [y, z] is the shortest path from y to z avoiding both faults.
So, our assumption was wrong. So, for any z ∈ P [p, t], |za ⋄ {e1, e2}| > ϵ|P [p, z]|. In other
words, a lies outside trapezoid of P [p, z]. ◀

We will now use the vertex p to find a D-close vertex to e2. To this end, we need another
useful claim to design the maximiser.

▶ Lemma 21. Let z be the least common ancestor of e1 and e2 in the path pe1 and pe2 ⋄ e1.
Let i be the greatest integer such that (1 + ϵ)i is less than |pa| on the primary path pt. Then
the length of the path |pz| on the primary path is ≤ (1 + ϵ)i. See Figure 10 for an illustration
of the lemma.

Proof. Assume for contradiction that |pz| > (1 + ϵ)i. Then,

|za ⋄ {e1, e2}| = |za| = |pa| − |pz| ≤ (1 + ϵ)(i+1) − (1 + ϵ)i = ϵ(1 + ϵ)i ≤ ϵ|pz| = ϵ|P [p, z]|

This violates Lemma 20. Hence, our assumption was wrong. ◀

Last maximiser. We are now ready to define our last maximiser. First we will find the
largest i such that (1 + ϵ)i ≤ |pe1|. Also, we set dist[0] = 2⌊log |pe2⋄e1|⌋. We will use the
following conditions in the maximiser:

D0α(p, t, dist, clean) = arg max
F ∈E2

{ (1 + ϵ)i distance from p on the primary path is intact

from F ; dist[0] distance from p on the secondary path is intact from F ; Other
conditions based on α from t side. } (7)

pe
1

pe2 ⋄ e1

d

c

p

a

b

z

(1 + ϵ)i

Figure 10 Illustration for Lemma 21.

Let x be an endpoint of an edge returned by the maximiser such that it lies in the first
segment of P [p, t]. We first show that x cannot lie on the primary path pt and should
necessarily lie on the secondary path.
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▶ Lemma 22. Let x be an endpoint of an edge returned by the maximiser (7) such that x

lies in the first segment of P [p, t]. Let z be the least common ancestor of e1 and e2 in the
path pe1 and pe2 ⋄ e1. Then, x cannot lie in pz, but it lies on ze2 ⋄ e1.

Proof. Let i be the greatest integer such that (1 + ϵ)i is less than |pa| on the primary path
pt. Using Lemma 21, we know that |pz| ≤ (1 + ϵ)i. One of the conditions of the maximiser
is that (1 + ϵ)i distance from p on the primary path remains intact. Thus, x cannot lie on sz.
Since x ∈ P and the detour starts on the secondary path, x lies on ze2 ⋄ e1. ◀

Let {e∗
1, e∗

2} be the edges the maximiser returns. Without loss of generality, let us assume
that e∗

1 lies on the primary path. Using the above lemma, x cannot be an endpoint of e∗
1.

This implies that x lies on pt ⋄ e∗
1 or the secondary path. However, we have a condition for

the secondary path in our maximiser.

pe
1

pe2 ⋄ e1

c
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z

(1 + ϵ)i

c

x

y ∈ Ll

Figure 11 The vertex y is D-close.

Let ℓ = ⌊log |pe2 ⋄ e1|⌋. One of the conditions of the maximiser is that 2ℓ distance from s

on the secondary path is intact from failures. Thus, |px ⋄ e∗
1| ≥ 2ℓ. But x lies on the first

segment of P [p, t]. So |px ⋄ e∗
1| = |px| ≥ 2ℓ. Now, using x, we will find a vertex that is close

to e2. Using Lemma 12, with a high probability, we will find a vertex, say y, in path px from
x that lies in Lℓ (See Figure 11). Since |pe2 ⋄ e1| = O(2ℓ), even |ye2 ⋄ e1| = O(2ℓ). Thus, y is
close to e2. We will now show that it is D-close to e2. To this end, we note that the detour
of P [p, t] starts on the secondary path after the vertex x (as x is intact from failures). Thus,
the detour also starts after the vertex y on the path P [p, t]. Thus, y is a D-close vertex to e2.

Remember that p satisfied Lemma 20. We claim that once a is outside the trapezoid of
path P [p, z], it is outside the trapezoid of any of its suffix paths. Specifically, for P [y, t], a

lies outside its trapezoid. The reader can verify that Lemma 20 holds even if we replace p

with y. Thus, Lemma 20 and 21 hold even for p[y, t] path.

6 From D-close vertex to a clean vertex

Let us describe the setting first. In the previous section, we have found a D-close vertex
from the source s. We will abuse notation and assume that the vertex s itself is a D-close
vertex and s ∈ Lℓ. We now show how to find a clean vertex using s. There are two cases, as
in the previous section.
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6.1 The detour starts on the primary path
In this case, we will use another maximiser similar to maximiser (4). First, we set dist[0] =
|se1|. The conditions of the maximiser are as follows:

D1α(s, t, dist, clean) = arg max
F ∈E2

{dist[0] distance from s on primary path is intact from

F ;Other conditions based on α from the t side.} (8)

Let x be an endpoint of an edge returned by the maximiser such that x lies on the first
segment of P . We will now show that x is an s-clean vertex. We claim that Lemma 16 also
applies for maximiser (8). Indeed, in this lemma, we are only using the fact that the detour
starts on the primary path – which is valid for this case too. Now, since x lies on the first
segment and x cannot lie on the se1 path (by the condition of the maximiser), x cannot lie
on the st path. Hence, using Lemma 16, x is an s-clean vertex.

6.2 The detour starts on the secondary path
Let us again reiterate the setting that leads us to a D-close vertex at the end of Section 5.2.
Again, we will abuse notation and assume that s is a D-close vertex to e2. Also, Lemma 20
holds for s. So, a is outside the trapezoid of P [s, t] path. Using this property, we can say
that Lemma 21 also holds for s. Let i be the largest integer such that (1 + ϵ)i ≤ |se1|.
Let dist[0] = |se2 ⋄ e1|. The conditions of our maximiser are as follows (it is the same as
maximiser (7)):

D1α(s, t, dist, clean) = arg max
F ∈E2

{ (1 + ϵ)i distance from s on primary path and dist[0]

distance from s on secondary path is intact from F ; other
conditions based on α from t side. (9)

Let x be an endpoint of an edge returned by the maximiser such that x lies on the first
segment of P . We will now show that x is an s-clean vertex. To prove our claim, we will
show that neither V (e1) nor V (e2) intersects with Ts(x) as we have already assumed that sx

is intact from failures {e1, e2}.
The proof that V (e1) ∩ Ts(x) = ∅ follows from arguments similar to Lemma 22. Let us

first show that V (e1) ∩ Ts(x) = ∅. Let z be the least common ancestor of e1 and e2 in the
paths se1 and se2 ⋄ e1. Since s satisfies Lemma 21, |sz| ≤ (1 + ϵ)i. The first condition of
the maximiser is that (1 + ϵ)i distance from s on the primary path is intact from failures.
Hence, x cannot lie on the sz path. It must lie on ze2 ⋄ e1. Thus, Ts(a) ∩ Ts(x) = ∅. So,
V (e1) ∩ Ts(x) = ∅. Let {e∗

1, e∗
2} be the edges returned by the maximiser. Without loss of

generality, let us assume that e∗
1 lies on the primary path. Using similar arguments like

Lemma 22, x is not an endpoint of e∗
1 as x does not lie on the primary path. This implies

that x lies on st ⋄ e∗
1 or the secondary path. However, we have a condition for the secondary

path in our maximiser.
Our second condition is that |se2 ⋄ e1| distance from s on the secondary path is intact

from failures. Thus, |sx| ≥ |se2 ⋄ e1|. Or, |sx| ≥ |se2| = |sc|. Thus, Ts(x) cannot contain the
vertex c.

We will now show that d /∈ Ts(x). Our argument here is the same as in the proof of
Lemma 16. We repeat the arguments here for the sake of completeness. If d ∈ Ts(x), then
since c /∈ Ts(x), there exists some c′ such that c′d is an edge of Ts(x). Consider the path from
s to x concatenated with the path from x to d in Ts(x). This concatenated path represents
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the shortest path from s to d, and it also avoids e1. Additionally, it should be noted that Ts

was constructed by adding small weights to each edge. Therefore, |sd ⋄ e1| = |sd| is unique
and does not pass through e2. Furthermore, it should be remembered that we found st ⋄ e1
in the same weighted graph, and thus st ⋄ e1 is also unique and passes through e2. However,
according to the property of shortest paths, sd ⋄ e1 should be a subpath of st ⋄ e1. This leads
to a contradiction, implying that d /∈ Ts(x). Thus, once we find a D-close vertex, the next
vertex we can find on the first segment of P has to be an s-clean vertex.

7 From a clean vertex to an intermediate vertex

We will assume that we have found an s-clean vertex, say p, such that the path P passes
through p using the process discussed in the previous section. In this section, we will show
how to use a maximiser to find an intermediate vertex. First set clean[0] = p. The conditions
of the maximiser are as follows:

D2α(s, t, dist, clean) = arg max
F ∈E2

{clean[0] is s-clean from F , other conditions based

on α from t side.} (10)

We claim that none of the endpoints of the edges returned by the maximiser is in the
first segment of P . For contradiction, let x be the vertex returned by the maximiser, which
is in the first segment of P . Then, the path sx remains intact from faults {e1, e2}. Since
p is s-clean, the path sp is intact from faults {e1, e2}. Also, both p and x lie on the path
P . Therefore, either sp contains x or sx contains p. However, if x ∈ sp, it contradicts
our condition in the maximiser that sp is intact from faults. Thus, this possibility cannot
arise. Similarly, if sx contains p, then x ∈ Ts(p). However, this violates the condition in the
maximiser that Ts(p) is intact from faults. As both possibilities lead to a contradiction, our
assumption is false. Hence, x cannot lie in the first segment of P . Now, if x also avoids the
last segment, x becomes an intermediate vertex, and we are done.

We discuss the space of our oracle, time taken by the query algorithm and the case when
both the faults lie on the primary path in Appendix C.
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A Space required by our data-structures

Consider one of the maximisers of [10].

D01(s, t, x, y) =
argmax{e1,e2}∈E2 {sx is intact from faults {e1, e2} and y is t-clean from {e1, e2} }

To calculate the size of the data structure, we can consider two terms: the first term
represents combinations of the source vertex s and the vertex x (referred to as a helper vertex
in [10]). The number of combinations of sources and helper vertices can be O(n2). Similarly,
the number of combinations of the destinations (such as t) and the helper vertices (such as
y) can also be O(n2). Multiplying these two terms gives us a total space of O(n4). We now
formally define this notion which will help us to calculate the space taken by our algorithm.
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▶ Definition 23 (Space requirement from the source side). Let us assume that the maximiser
function has k parameters completely dependent on the source. The space required from the
source side is the number of possible combinations of these k parameters and the source.
Similarly, we can define the space requirement from the destination side.

We will primarily determine the required space from the source side. In most cases, this
space will be Õ(n). The calculation is symmetrical from the destination side, resulting in a
total space bound of Õ(n2). However, this approach is only possible for a few maximisers.
Consequently, we divide our maximisers into two groups. The space taken by the first
group can be calculated using the approach mentioned above, while calculating the space
requirement of the second group requires more complex techniques. Here is the partition:
1. Dαβ where both α, β ∈ [0, 1] and
2. Dαβ where α and/or β is equal to 2.
For the maximisers in group (1), the values of clean[0] and clean[1] are not set. These
maximisers are used when neither an s-clean nor a t-clean vertex has been found. On the
other hand, for the maximisers in the group (2), the value of clean[0] and/or clean[1] is set.
Let us first bound the size of the group (1) maximisers.

A.1 Group 1 maximisers

There are two kinds of maximisers in this group: the first one in which we have not found a
D-close vertex from s and the second in which we have found the D-close vertex. We will
bound the size of these maximisers separately.

1. D0α where α ∈ {0, 1}
There are four maximisers of type D0α, namely maximiser (4), (5), (6), and (7). Among
these maximisers, three of them have at most log n values set for dist[0], where dist[0] is:

2⌊log |se1|⌋ in maximiser (4)
2⌊log(min |se1|,|se2⋄e1|)⌋ in maximiser (5)
2⌊log |pe2|⌋ in maximiser (7)

For maximisers (4) and (5), dist[0] has log n possibilities and the number of sources can
be at most n. Thus, the space these maximisers take from the source side is Õ(n). In the
case of maximiser (7), there is an additional condition that the (1 + ϵ)i distance on the
primary path remains intact from failures. Again, i can take log n values (assuming ϵ is a
constant). Hence, the space taken by maximiser (7) from the source side is also Õ(n).
Now, let us consider maximiser (6). In this maximiser, y is a close vertex to e1. Let us
assume that y ∈ Lℓ. We set dist[0] = |ye1|. Since y is close to e1, the number of possible
values for dist[0] is O(2ℓ). Thus, the total space taken by this maximiser from the source
side is

∑log n
ℓ=0 Õ

(
n
2ℓ × 2ℓ

)
= Õ(n).

2. D1α where α ∈ {0, 1}.
There are four maximisers of type D1α, namely maximiser (8) and (9). We use these
maximisers after we find a D-close vertex from the source side. For simplicity, let us
assume that the source vertex s itself is D-close. We further assume that s ∈ Lℓ. Since
s is D-close to the fault, we can set O(2ℓ) different values for dist[0] in maximiser (8)
and (9). Additionally, similar to maximiser (6), we can set at most log n values for i in
maximiser (9). Thus, the space these two maximisers take from the source side is Õ(n).

Thus, the number of maximisers of type D00,D01,D10 and D11 is Õ(n2).
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A.2 Group 2 maximisers
In a Group 2 maximiser, we set the values of clean[0] and/or clean[1]. One might assume
that there could be O(n) possibilities for clean[0] and clean[1], implying that the size of
Group 2 maximisers should be strictly greater than Õ(n2). However, this is not the case.
Firstly, we claim that the number of possible vertices in clean[0] is limited. For instance,
let us consider the maximiser D20(s, t, dist, clean). In this maximiser, we set the value of
an s-clean vertex as clean[0]. However, where does this s-clean vertex come from? A keen
reader can observe that we must have found this s-clean vertex in a previous call to either
the maximiser D00(s, t, ·, ·) or D10(s, t, ·, ·).

We have already bounded the size of D00 and D10 maximisers, and each maximiser returns
at most four vertices. Thus, we conclude that there are at most four possible values for
clean[0] in D20(s, t, dist, clean) for each maximiser of form D00(s, t, ·, ·) or D10(s, t, ·, ·). Thus,
the number of possible vertices in clean[0] is Õ(n2).

Using the same strategy, we can bound the space taken by Group 2 maximisers. There is
only one Group 2 maximiser, that is, maximiser (10). This maximiser can be of three types:
D20,D21 and D22. We will individually bound the space for each type.

1. D20
In this case, we have already found an s-clean vertex from the source side. As mentioned
earlier, this s-clean vertex must be the output of a maximiser, specifically of type D00
or D10. Let’s assume that we have found an s-clean vertex x from the maximiser
D00(s, t, dist′, clean′). Two changes are made in the subsequent call to the maximiser
D20(s, t, dist, clean). First, we set bits[0] = 2, which renders dist[0] irrelevant (as in
maximiser (10), dist[0] is not used in any condition). The main change is setting clean[0]
to x. Since each maximiser outputs two edges or four vertices, for each maximiser of type
D00 or D10, at most four maximisers of type D20 are created. Hence, the total size of D20
is Õ(n2). Similarly, the size of D02 is also Õ(n2).

2. D21
Once again, let us consider the scenario that occurred in our algorithm just before utilising
this data structure. At that point, we either discovered an s-clean vertex or identified a
D-close vertex from t. Let us focus on the more straightforward case we have already
addressed earlier.
a. We have found an s-clean vertex.

The s-clean vertex obtained must have been the output of either the maximiser D01
or D11. Similar to the previous case, we assert that the overall size of such a data
structure is Õ(n2).

b. We have found a D-close vertex from t.
This D-close vertex must be the output of the maximiser D20. Let t be a D-close vertex
found using the maximiser D20(s, t′, dist′, clean′). After finding t, our algorithm uses
the maximiser D21(s, t, dist, clean). The pair s, clean[0] remains unchanged between
D20 and D21. The values of dist[0] and dist′[0] are not used in the conditions of
maximisers D21 and D20, respectively, so they remain unchanged.
The only change is that t′ in D20 is replaced by the D-close vertex t, and dist[1]
is set to a suitable value. Let t ∈ Lℓ. The number of possible values for dist[1] is
O(2ℓ). Thus, the total space taken from the destination side in the maximiser D21 is∑log n

ℓ=0
n
2ℓ 2ℓ = Õ(n).

We will now examine the total space from the source side and show it as Õ(n). As
stated above, there is no change in s and clean[0] between the maximisers D20 and
D21. Thus, the space taken by the maximiser D21 from the source side is the same as
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the space taken by the maximiser D20 from the source side. We now bound the space
taken by D20 from the source side.
We use the maximiser D20 after we obtain an s-clean vertex either from D00 or D10.
We look at these two transitions to bound the space of D20 from the source side. Let
us go over these two transitions separately:

The s-clean vertex in the maximiser D20 is obtained from the maximiser D00.
Consider the maximiser D00(s, t, dist, clean). We assume that we have found an
s-clean vertex from this maximiser, which is then used in the subsequent call to
maximiser D20. By applying Remark 19, this s-clean vertex cannot be the output
of maximiser (6).
Therefore, the maximiser D00 can fall into types (4), (5), and (7). In these maximisers,
there can be at most log n different values for dist[0] and dist[1]. Consequently, at
most O(log2 n) clean vertices can serve as the output of the maximiser D00. As
a result, the total number of possible combinations of source and clean[0] in the
maximiser D20 is bounded by O(n log2 n). Hence, the space required from the source
side in the maximiser D20 is Õ(n).
The s-clean vertex in the maximiser D20 is obtained form the maximiser D10.
Consider the maximiser D10(s, t, dist, clean). We assume that we have found an
s-clean vertex from this maximiser, which is then used in the subsequent call to
the maximiser D20. Again, by using Remark 19, this s-clean vertex cannot be the
output of the maximiser 6.
If the maximiser D10 falls into types (4), (5), or (7), then there can be at most log n

different values of dist[1]. By the definition of D10, s is a D-close vertex from the
source. Let us assume that s ∈ Lℓ. Consequently, the number of possible different
values of dist[0] is at most O(2ℓ).
As a result, at most O(2ℓ log n) clean vertices can serve as the output of the
maximiser D10. Thus, the total number of possible combinations of source and
clean[0] in D20 is

∑log n
ℓ=0 O

(
n
2ℓ 2ℓ log n

)
. Therefore, the space required from the

source side in D20 is Õ(n).
Thus, the total space taken by D21 is Õ(n2). The same argument also applies to D12.

3. D22
This data structure is invoked when we obtain either an s-clean or a t-clean vertex
from D20, D21, D02, or D21. All of these data structures have a size of Õ(n2). As each
maximiser outputs two edges or four vertices, the size of D22 is also Õ(n2).

B Time taken by the Query algorithm

First, we note that it takes O(1) time to determine all the parameters of the maximiser.
From the source side, to set dist[0], we need to find |se1| and |se2 ⋄ e1|. Since we do not
know whether the detour starts or ends on the primary or secondary path, we exhaustively
check all possibilities. There are only four possible cases:
1. The detour starts and ends on the primary path.
2. The detour starts on the secondary path but ends on the primary path.
3. The detour starts on the primary path but ends on the secondary path.
4. The detour starts and ends on the secondary path.

Let us first consider the most straightforward case: when the detour starts and ends on
the primary path. Discussing the running time in the context of the flowchart presented
in Figure 5 is easier. After the invocation of the first maximiser, namely maximiser (4), in
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the worst case, we can obtain a D-close vertex from s. The second invocation may give a
D-close vertex from t, and so on. We claim that we must have found the intermediate vertex
after four invocations of maximisers. Since each maximiser returns two edges or four vertices,
there are at most 16 vertices to be processed. This can be done in O(1) time. Thus, we
obtain the intermediate vertex in O(1) time.

The analysis is similar for the second case: when the detour starts on the secondary path
but ends on the primary path. In this case, finding a D-close vertex from the source vertex
itself may require three invocations of maximisers (see Section 5.2). Thus, the total number
of calls to the maximiser increases to six. Even in this case, the running time is O(1).

The last two cases are similar to the previous two cases. Since we do not know which case
we are in, we run our algorithm for all four cases. Each case takes O(1) time, after which we
obtain O(1) candidates for the intermediate vertices. Simultaneously, we always maintain an
upper bound on the length of P = |st ⋄ {e1, e2}|. Using Lemma 15, if the edges returned by
any of our maximisers do not intersect with P , we can update our upper bound on the size of
P (represented by the value L returned by the HitSet algorithm). Therefore, our HitSet
algorithm returns an upper bound on P and a set H of O(1) candidates for the intermediate
vertices. Following the analysis in Section 2, the running time of our algorithm is O(1).

C Both the faults are on the primary path

Let us first define the setting in this easy case when both the faulty edges lie on the primary
path. We want to find the length of P = st ⋄ {e1, e2} where e1 = (a, b) and e2 = (c, d) lie on
the primary path. We further assume that a is closer to s and d is closer to t.

In Section 4, we designed an algorithm for the case when the faults were on the primary
as well as the secondary path. One of the corner cases in that section was as follows: We find
a D-close vertex, say y, such that the primary path yt contains both faults. Thus, we jump
from one case to the other. We will now show that we cannot jump in the reverse direction.
To this end, we state the following lemma without proof. The proof of this lemma is trivial.

▶ Lemma 24. If the path st has both the faults, then for any y ∈ se1, both the faults are in
the primary path yt. Similarly, for y ∈ te2 path, both the faults are in the primary path sy.

In the case we are dealing with in this section, the reader will see that if we find a D-close
vertex, say p, from s, then it will lie on se1 path. Thus, using the above lemma, we will
remain in the case where both the faults lie on the primary path pt. Thus, we will not jump
from this case to any other case. Let us now discuss how we handle this case.

The reader will see that this case is nearly similar to the case described in Section 5.1.
Indeed, it is necessarily the case here that the detour starts and ends on the primary path.
Our first maximiser is the same as the maximiser (4). We set dist[0] = 2log⌊|se1|⌋. The
conditions of the maximiser are as follows:

D0α(s, t, dist, clean) = arg max
F ∈E2

{
dist[0] distance from s on the primary path is intact

from F and Other conditions based on α from the

t side.
}

(11)
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The only difference between maximiser (11) and maximiser (4) is the common condition
of (3). For our case, the common condition is as follows:

Common Condition:
A pair of edges (e, e′) will be considered in the maximiser only if e, e′ ∈ st (12)

Let x be an endpoint of an edge returned by the maximiser such that it lies on the first
segment of P . Now, like Lemma 16, we claim that either x lies on the st path or is s-clean.
The proof of this is easier than the proof of Lemma 16 but follows similar arguments.

▶ Lemma 25 (Same as Lemma 16). Let x be an endpoint of an edge returned by the maximiser
D0α such that sx lies on the first segment of P . If x does not lie on the st path, then x is an
s-clean vertex.

Proof. Let us assume that x /∈ st. By the condition in the lemma, sx is intact from failures.
Thus, to show that x is an s-clean vertex, we only need to show that the vertices in V (e1)
and V (e2) do not lie in Ts(x).

Since x is not in the st path and hence not in the sa path, the two subtrees Ts(x) and
Ts(a) are disjoint. Here, e1, e2 ∈ Ts(a) (as both the edges are on the primary path itself).
So, (V (e1) ∪ V (e2)) ∩ Ts(x) = ∅. ◀

If x lies on the st path then, similar to Section 5.1, we find a D-close vertex to e1 using
x, say y. Here, note that, by construction, y lies on se1 path. Using Lemma 24, the primary
path yt also contains faults {e1, e2}. Then, using a maximiser similar to the one used in
Section 6.1, we can find an s-clean vertex. Similarly, we get an intermediate vertex using
a maximiser similar to the one used in Section 7. Since our arguments are similar to the
arguments in Section 6.1 and Section 7, we do not repeat them here. The space and the
time taken in this case also can be bounded using the arguments presented in Appendix A
and Appendix B, respectively. Thus, we have proven the main result of the paper, that is
Theorem 1.
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