
Deterministic Minimum Steiner Cut in Maximum
Flow Time
Matthew Ding #Ñ

University of California, Berkeley, CA, USA

Jason Li #Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We devise a deterministic algorithm for minimum Steiner cut, which uses (logn)O(1) maximum flow
calls and additional near-linear time. This algorithm improves on Li and Panigrahi’s (FOCS 2020)
algorithm, which uses (logn)O(1/ϵ4) maximum flow calls and additional O(m1+ϵ) time, for ϵ > 0.
Our algorithm thus shows that deterministic minimum Steiner cut can be solved in maximum flow
time up to polylogarithmic factors, given any black-box deterministic maximum flow algorithm.
Our main technical contribution is a novel deterministic graph decomposition method for terminal
vertices that generalizes all existing s-strong partitioning methods, which we believe may have future
applications.
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1 Introduction

The minimum cut (or “min-cut”) of a weighted graph is the smallest weighted subset of
edges whose deletion disconnects the graph. The problem of finding the minimum cut is one
of the most fundamental problems in combinatorial optimization and theoretical computer
science as a whole. It also has important applications such as network optimization [1]
and image segmentation [3]. Thus, finding faster algorithms for this problem will have
far-reaching applications for a wide variety of fields. Recently, there has been a large amount
of groundbreaking work in the field, including deterministic almost-linear time1 algorithms
for both minimum cut [10] and maximum flow [2].

1.1 Minimum Steiner Cut Background
A classic extension of the min-cut problem is the minimum Steiner cut (or “Steiner min-cut”)
problem. In this problem, we are given an undirected, weighted graph G = (V,E) and a
subset T ⊆ V of terminals. A Steiner cut is a subset of edges whose removal disconnects at
least one pair of terminals in the graph. The minimum Steiner cut is the Steiner cut with
the minimum total weight of cut edges. This problem generalizes both s− t minimum cut
(T = {s, t}) and global minimum cut (T = V ) and is therefore a fundamental problem in
graph algorithms.

1 Near-linear algorithms have runtime Õ(m) and almost-linear algorithms have runtime m1+o(1). We use
Õ(·) to hide polylogarithmic factors.
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46:2 Deterministic Minimum Steiner Cut in Maximum Flow Time

The classical algorithm to solve minimum Steiner cut uses |T | − 1 max-flow computations.
Li and Panigrahi [11] give a randomized algorithm which reduces minimum Steiner cut in
near-linear time to just polylogarithmic number of max-flow computations. They additionally
provide a deterministic algorithm which takes, for any parameter ϵ > 0, (logn)O(1/ϵ4)

max-flow calls with O(m1+ϵ) additional running time. Given the currently known fastest
deterministic maximum flow algorithm in almost-linear time [2], the two results combined
give an almost-linear time algorithm for global minimum cut, which matches the algorithm of
Li [10]. We remark that a very recent work [5] has improved the running time of deterministic
global minimum cut to near-linear, i.e., Õ(m). However, since minimum Steiner cut is at least
as hard as s− t minimum cut, traditionally solved through s− t max-flow, a near-linear time
minimum Steiner cut algorithm remains elusive without an equally fast max-flow algorithm.

1.2 Our Contributions
We show that a deterministic, near-linear time max-flow algorithm is the only obstacle
towards obtaining a deterministic, near-linear time minimum Steiner cut algorithm. More
precisely, we introduce a new deterministic algorithm that finds the minimum Steiner cut in
polylogarithmic s− t max flow calls and near-linear additional processing time.

▶ Theorem 1. Given an undirected, weighted graph G = (V,E) with n vertices and m

edges, polynomially bounded edge weights, and a set of terminal vertices T ⊆ V , there is
a deterministic minimum Steiner cut algorithm that makes polylog(n) maximum flow calls
on undirected, weighted graphs with O(n) vertices and O(m) edges, and runs in Õ(m) time
outside of these maximum flow calls.

Specifically, a hypothetical deterministic near-linear time algorithm for s− t max-
flow also implies a deterministic near-linear time algorithm for minimum Steiner
cut. This result was not known from the work of [11], given the additional m1+ϵ running
time in their deterministic algorithm. In fact, for the case of polylogarithmic maximum flow
calls (ϵ = Ω(1)), their algorithm has runtime m1+Ω(1), even slower than almost-linear. Our
algorithm also matches the running time of the randomized minimum Steiner cut algorithm
from [11] up to polylogarithmic factors.

Terminal-Based Partitioning Methods

Expander decompositions have been a powerful tool for solving minimum cut problems
in recent years [10, 11]. However, the current state-of-the-art deterministic expander de-
composition takes almost-linear time [12], and it is an open problem whether this can be
improved.

A key tool for deterministic near-linear time algorithms is the decomposition into s-strong
clusters used by recent minimum cut algorithms on simple graphs [6, 7]. However, recent work
[5] has applied the concept of s-strong clusters to weighted graphs to obtain a deterministic
near-linear global minimum cut algorithm. Our main technical contribution is to extend this
decomposition framework on general weighted graphs and apply it towards a decomposition
that specifically partitions clusters of terminals with a boundary proportional to the size of
the terminal set. We state this result informally below.

▶ Theorem 2 (Informal). Given an undirected, weighted graph G = (V,E) with n vertices
and m edges, polynomially bounded edge weights, a set of terminal vertices T ⊆ V , sparsity
parameter 0 < ψ < 1, and cut size parameter δ > 0, there is a deterministic algorithm which
returns a vertex partitioning of clusters V1, V2, ..., Vℓ such that the following hold:
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1. For every cluster, any cut with weight less than δ splits the cluster with at most polylog(n)
terminals on at least one side.

2. For every cluster, any cut with weight less than δ either does not split the cluster or has
at least ≥ δ/polylog(n) weight of cut edges inside the cluster.

3. The total weight of edges between clusters is at most Õ(δ · |T |).

The algorithm makes O(log2 n) maximum flow calls on undirected, weighted graphs with
O(n) vertices and O(m) edges and runs in Õ(m) time outside of these maximum flow calls.

Properties 1 and 3 together directly generalize the notion of s-strong partitions to the terminal
regime. Property 2 provides an additional guarantee useful for the Steiner algorithm of [11]
and can be achieved with only polylogarithmic loss elsewhere in the decomposition.

2 Preliminaries

In this paper, all graphs are undirected and weighted. For simplicity, all weights are assumed
to be polynomially bounded (however, this can be relaxed by adding logarithmic dependence
on the maximum edge weight).

We begin by introducing standard definitions and tools from previous works that we
will utilize for our algorithm. We also define our new modification of s-strong clusters to
terminals.

We use a standard definition of induced subgraphs using self-loops for boundary edges,
which preserves degrees of vertices in subgraphs. We denote the induced subgraph of the
vertex set S ⊂ V on graph G(V,E) as G[S].

2.1 Sparsity and Strength
Sparsity is a specific measure of how connected a graph is. For a cut (U,U), where U = V \U ,
we define ∂U = ∂U as the boundary of the cut, which is the set of edges between U and U .

▶ Definition 3 (Sparsity). The sparsity of a cut (U,U) is defined as

Ψ(U) = w(∂U)
min{|U |, |U |}

= Ψ(U) (1)

We also introduce the new definition of terminal-sparsity for Steiner cuts with the terminal
set T .

▶ Definition 4 (Terminal-sparsity). The terminal-sparsity of a cut (U,U) is defined as

ΨT (U) = w(∂U)
min{|U ∩ T |, |U ∩ T |}

= ΨT (U) (2)

We use the terms ψ-sparse and ψ-terminal-sparse to refer to cuts with sparsity and terminal-
sparsity < ψ, respectively.

The concept of strength, introduced by Kawarabayashi and Thorup [7], is a relaxed notion
of edge expanders. At a high level, a vertex subset U ⊆ V is s-strong if every cut (C,C) of
weight at most δ satisfies min{vol(C ∩ U),vol(C ∩ U)} ≤ s, where the volume vol(S) is the
sum of degrees of vertices in S. In [7], the parameter δ is chosen as the minimum degree of
all vertices, which serves as an upper bound on the min-cut.

One of our main conceptual contributions is translating s-strength to the terminal setting
and providing necessary generalizations to handle the Steiner min-cut problem. First, we
work from a sparsity viewpoint, which bounds the minimum cardinality of intersection
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46:4 Deterministic Minimum Steiner Cut in Maximum Flow Time

min {|C ∩ U |, |C ∩ U |} instead of volume, which is more handy when we start introducing
terminals. Second, we can no longer choose δ as the minimum degree since it no longer upper
bounds the Steiner min-cut. One natural choice is the minimum (weighted) degree of all
vertices in set S, but instead, for technical reasons, we set δ closer to the minimum Steiner
cut λ itself. For now, we keep δ as a free parameter and provide our s-strong guarantees in
terms of δ. Finally, we need an additional requirement that if the cut (C,C) cuts any edges
inside a cluster, then it must cut sufficiently many such edges, and we introduce another
parameter γ to capture this condition.

▶ Definition 5 ((s, δ, γ)-strength). A vertex subset U ⊆ V (called a cluster) is (s, δ, γ)-strong
in G if every cut (C,C) of graph G with at most weight δ satisfies min {|C ∩ U |, |C ∩ U |} ≤ s,
and moreover, if min {|C ∩ U |, |C ∩ U |} > 0 then w(∂G[U ]C) ≥ γ · δ.

Next, we introduce the notion of (s, δ, γ)-terminal-strength, where the “size” of a set of
vertices is only determined by its number of terminals. This property is necessary to deal
with cuts separating terminal vertices instead of just regular ones.

▶ Definition 6 ((s, δ, γ, T )-terminal-strength). A vertex subset U ⊆ V (called a cluster)
is (s, δ, γ, T )-terminal-strong in G if every Steiner cut (C,C) of graph G with at most
weight δ satisfies min {|C ∩ U ∩ T |, |C ∩ U ∩ T |} ≤ s, and moreover, if |C ∩ U ∩ T | > 0 and
|C ∩ U ∩ T |} > 0, then w(∂G[U ]C) ≥ γ · δ.

For the rest of the paper, we sometimes omit the “in G” and the terminal set T from the
definition whenever they are apparent from the context.

An important property of both (s, δ, 0)-strength and terminal strength is that the property
is inherited by subgraphs, i.e., if G(V,E) is (s, δ, 0)-strong or terminal-strong, then G[A] is
as well for all A ⊆ V . This property holds for s-strength [7], and is straightforward to verify
that the same is true for our (s, δ, 0)-strength definitions.

Lastly, we also define terminal-strong decompositions, which are analogous to s-strong
and expander decompositions, except that we split our graph into (s, δ, γ)-terminal-strong
components as opposed to s-strong sets and expanders, respectively.

▶ Definition 7 ((s, δ, γ, T )-terminal-strong decomposition). A set of disjoint vertex clusters
V1, V2, ..., Vℓ is an (s, δ, γ, T )-terminal-strong decomposition if each cluster Vi is (s, δ, γ, T )-
terminal-strong, and if the total weight of edges between clusters is at most Õ(δ · |T |).

Our primary new technical tool is a fast algorithm for computing an (s, δ, γ, T )-terminal-
strong decomposition with a small bounded weight of intercluster edges (Theorem 2), which
is presented in detail in Section 4. At a high level, we use a (non-terminal) (s, δ, γ)-strong
decomposition to devise an algorithm that finds an (s, δ, γ, T )-terminal-strong decomposition
through the cut-matching game framework of Khandekar, Rao, and Vazirani [9], which we
outline in the following subsection.

Finally, given such a decomposition, we use the framework of [11], replacing their expander
decomposition step with our (s, δ, γ)-strong decomposition. We leave the details to Section 5.

2.2 Cut-Matching Game
We start with an overview of the cut-matching game.
1. The cut player chooses a bisection (S, S) of the graph Ht−1 based on a given strategy.
2. The matching player chooses a perfect matching of the bisection based on a given strategy.
3. The cut player adds the edges of the perfect matching to graph Ht−1, forming graph Ht.
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The game continues until graph Ht is an edge-expander. The key insight of the cut-
matching game is that there is always a strategy for the cut player that finishes the game in
few rounds.

We use the cut-matching game to reduce our problem from one with terminals ((s, δ, γ)-
terminal-strong decomposition) to one without terminals ((s, δ, γ)-strong decomposition).
We then adapt the (s, δ, 0)-strong decomposition algorithm of [5] to obtain an (s, δ, γ)-strong
decomposition for large enough γ.

3 Minimum Steiner Cut Algorithm Overview

The following is an overview of our algorithm (Algorithm 1) to solve minimum Steiner cut
on an undirected, weighted graph G deterministically in near-linear time (i.e., Õ(m)) plus
polylogarithmic maximum flow calls. Throughout, we assume that we have guessed the value
of the Steiner mincut up to factor 2 (which we denote λ̃) by, for example, guessing all powers
of 2 (incorrect guesses may return an overestimate of the minimum Steiner cut, but we can
take the minimum cut ever found at the end).
1. We use the “unbalanced case” of [11] to find the Steiner minimum cut (C,C) if min{|C ∩

T |, |C ∩ T |} ≤ polylog(n). This algorithm is described in the full version of the paper [4].
2. In the “balanced case”, we find an (s, δ, γ)-terminal-strong decomposition on the graph.

To do this, we use the cut-matching game on a graph H containing only the terminals of
the original graph, with s = polylog(n), δ = λ̃, and γ = 1/polylog(n). This algorithm is
described in Algorithm 2 (Section 4). At a high level, we use a (non-terminal) (s′, δ′, γ′)-
strong decomposition to find an (s, δ, γ)-terminal-strong decomposition for appropriate
parameters s′, δ′, γ′, s, δ, γ.

3. Using our (s, δ, γ)-terminal-strong decomposition, we find a set T ′ ⊆ T and |T ′| ≤ |T |/2
such that the minimum Steiner cut of G with terminal set T ′ is the same as with terminal
set T . In this case, we recursively apply our minimum Steiner cut algorithm on graph G
with terminal set T ′ (Section 5).

Algorithm 1 Minimum-Steiner-Cut(G,T ).

Input : Undirected weighted graph G, terminal set T ⊆ V , γ = 1/polylog(n),
k = polylog(n)

1 for i← 1 to O(logn) do
2 U ← T

3 λ̃← 2i

4 do
5 Run algorithm from Unbalanced Case algorithm with terminal set U

// Unbalanced Case
6 Run Terminal-Decomp(V,U, λ̃, γ)
7 Find sparsified set U ′ ⊂ U // Theorem 22, Balanced Case
8 U ← U ′

9 while |U | > k;
10 return minimum weight Steiner cut over all iterations of Line 5

We give a high-level analysis of the runtime, which we formally prove in the following
sections. Each call of terminal decomposition takes polylogarithmic max-flow computations
and at most near-linear time with respect to the graph outside of the max-flows. Since the
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sparsification procedure halves the terminal set each iteration, it adds at most a logn extra
factor in runtime. Along with the additional logn factor for guessing λ̃, this gives us our
claimed runtime.

4 Terminal Decomposition Using Cut-Matching Game

The goal of the cut-matching game is to try to certify that the entire vertex set V is (s, δ, γ, T )-
terminal-strong in G by iteratively constructing our cut-graph H to be (s, Õ(δ), γ)-strong.
This may not always be possible, but throughout the cut-matching game, the algorithm
may also verify that V is (s, δ, γ, C)-terminal-strong for a subset C ⊆ T with |C| ≥ 2|T |/3.
In that case, we apply a trimming procedure similar to [13]. Otherwise, if this is also not
possible, we will be able to find a balanced sparse cut in the cut-graph H. We then run
a max-flow between the two terminal sets in G, which outputs either a large flow or (by
duality) a small cut. In the former case, we add a corresponding large (fractional) matching
to the cut graph H. In the latter case, we immediately find a balanced terminal-sparse cut
in G, at which point we recursively decompose the two sides.

Before going through the formal procedure, we give high-level overviews of the cut and
matching player strategies.

Cut Player Description

The cut player attempts to find a sparse, balanced cut (U, T \ U) in the cut graph, which
ensures that we make sufficient progress when the matching player creates a matching. If
the cut player fails to find a cut, we terminate the cut-matching game and prove that the
original graph G satisfies desirable properties.

Cut Player Strategy on current cut-graph H

Find an (s, δ, γ)-strong decomposition on cut graph H

If a cluster with size greater than 2|T |/3 exists, we terminate the cut-matching
game. We trim the cluster according to Algorithm 3 and certify the cluster U as
(s, δ, γ)-terminal-strong. We then recursively apply Algorithm 4 on the smaller
side.
Otherwise, we merge the clusters into two groups that each contains between
1/3 and 2/3 fraction of all vertices of H (this is always possible, see Claim 12).
Denote the bipartition as (C,C).

Matching Player Description

The matching player’s goal is to add edges in the cut graph corresponding to the maximum
possible flow in G from one side of the bipartition to the other. They do this by running a
maximum flow algorithm across the bipartition. The matching player adds edges to the cut
graph if a large flow is successfully routed. Otherwise, a terminal-balanced cut is found, and
we terminate the cut-matching game and recursively apply our terminal-strong-decomposition
algorithm on both sides of the cut.

We formally define strategies for the cut and matching players in this game in Algorithm 2.
Our guarantee given by our cut-matching game method is stated as the following:
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Matching Player Strategy on bipartition C of cut-graph H

We calculate a max-flow on graph G between the terminals in C and T \ C
using Algorithm 3. If the flow has value at least |T |/6 · δ · ψ, we call the flow a
“large flow”. Otherwise, the flow has value less than |T |/6 · δ · ψ, so we call the
corresponding cut a “small cut”.
If we find a large flow, we add a large matching into cut graph H: we break
down the flow into paths and add edges between vertices in graph H with the
same corresponding weights as the flow paths.
If we find a small cut, we certify the minimum cut found as a terminal-balanced,
terminal-sparse cut. We stop the cut-matching game and recursively apply our
terminal-decomposition algorithm on both sides.

▶ Lemma 8. Given an undirected weighted graph G and parameters δ > 0, ψ = 1/polylog(n),
Algorithm 2 runs in time Õ(m) plus polylog(n) calls to maximum flow, and outputs one of
the following:
1. An (O(log9 n/ψ5), δ,Ω(ψ5/ log9 n), T )-terminal-strong cluster U with |U ∩T | ≥ |T |/3 such

that U is either empty or ψ · δ-terminal-sparse, or
2. A ψ · δ-terminal-sparse cut (U,U) with |U ∩ T |, |U ∩ T | ≥ |T |/6

The correctness of the Cut Player strategy is shown in Section 4.1, matching player
strategy in Section 4.2, and the termination within Lmax rounds is proved in Section 4.3.

4.1 Cut Player
The lemma below for α = Lmax/ψ shows that Line 5 of Algorithm 2 can be computed
efficiently. We apply the lemma on graph H and vertex set T .

▶ Lemma 9. Given any parameters δ > 0 and α ≤ polylog(n) and a graph G = (V,E) with
total edge weight at most αδn, there exists s ≤ O(α2 log2 n) and γ = Ω(1/s) and an algorithm
in Õ(m) time that outputs a decomposition of V into (s, αδ, γ)-strong clusters such that the
total weight of inter-cluster edges is at most nδ/50.

The first step is to apply the following lemma to a slightly modified graph.

▶ Lemma 10 ([5]). Given a weighted graph G = (V,E,w) and a parameter δ0 such that
δ0 ≤ minv∈V deg(v) and a parameter s0 ≤ δ0polylog(n), there is an algorithm that runs in
Õ(m) time and partitions the vertex set V into components V1, . . . , Vk such that
1. For any cluster Vi and any cut (S, S) in G of weight at most δ0, we have min{vol(S ∩

Vi),vol(S ∩ Vi)} ≤ s0. Here, vol(U) is the sum of weighted degrees of vertices in U .
2. The total weight of inter-cluster edges is at most an O(

√
δ0 log n√

s0
) fraction of the total

weight of edges.

Construct the graph G0 from G as follows. For each vertex v ∈ V , add a new vertex v′

with an edge to v of weight αδ. This new graph has minimum weighted degree αδ. Apply the
lemma above to G0 with parameters δ0 = αδ and s0 = sαδ. The total weight of inter-cluster
edges is at most O( log n√

s
) · αδn ≤ nδ/100 for large enough s = O(α2 log2 n). Since G0 has

minimum degree δ0, the guarantee min{vol(S∩Vi),vol(S∩Vi)} ≤ s0 from property 1 implies
that min{|S ∩ Vi|, |S ∩ Vi|} ≤ s0/δ0 = s. In other words, each Vi is (s, αδ, 0)-strong in G0.
Consider the partition in G obtained by removing all new vertices v′. It is straightforward
to see that this partition is also (s, αδ, 0)-strong in G, and the total weight of inter-cluster
edges is still at most nδ/100.

ESA 2024
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Algorithm 2 Cut-Game(G,T, δ, ψ).

Input : Undirected weighted graph G, terminal set T ⊆ V , decomposition
parameters δ > 0 and ψ < 1.

Output : Either (1) a (ψ · δ)-terminal-sparse cut (U,U) with
|U ∩ T |, |U ∩ T | ≥ |T |/6, or
(2) an (Õ(ψ−5), δ, Ω̃(ψ5), T )-terminal-strong cluster U with
|U ∩ T | ≥ |T |/3 such that U is either empty or (ψ · δ)-terminal-sparse

1 Initialize cut graph: H = (T, ∅)
2 Initialize unmatched terminal set: S ← ∅
3 Set parameters Lmax = O(log |T |), α = Lmax/ψ, s = O((Lmax/ψ)2 log2 n), γ = 1

200αs

4 for t← 1 to Lmax do
// Cut Player Strategy

5 Partition T into clusters that are (s, αδ, γ)-strong in H. (Lemma 9)
6 if there exists cluster C of size ≥ 2|T |/3 then

// Trim Cluster
7 (f, (U,U))← CutOrFlow(G,C,min{γ/2s, γ/6})
8 return larger side U with cut (U,U) if U is non-empty
9 Combine clusters to create a bipartition (C,C) with |C| ≥ |C| ≥ |T |/3.

(Claim 12)
// Matching Player Strategy

10 (f, (U,U))← CutOrFlow(G,C, ψ)
11 if flow f has value ≥ |T |/6 · δ · ψ then

// Large Flow
12 Decompose flow into (implicit) paths f1, f2, ..., fk where k ≤ m and each path

connects exactly two terminals (t1, t2), one from each bipartition
13 For each i ∈ [k], add an edge (t1, t2) in H whose weight is 1/ψ times the

capacity of path fi in G
14 else

// Terminal-Balanced Cut
15 return terminal-balanced cut (U,U)

// Game must terminate within Lmax rounds

We now modify the partition so that each cluster is (s, αδ, γ)-strong by applying the
lemma below to each Vi. The total weight of additional inter-cluster edges guaranteed by
the lemma is at most

∑
i |Vi|δ/100 ≤ nδ/100. Together with the inter-cluster edges from the

first step, the total weight is at most nδ/12. It remains to prove the lemma below:

▶ Lemma 11. Let C be an (s, αδ, 0)-strong cluster in G and let γ = 1
200αs . There is an

algorithm in Õ(|E(G[C])|) time that partitions C into (s, αδ, γ)-strong clusters such that the
total weight of inter-cluster edges is at most |C|δ/100.

This proof uses a similar technique found in [5], and we leave the proof for the full version of
the paper [4].

Let the size of a cluster be the number of vertices in the cluster. The following lemma
shows that Line 9 of Algorithm 2 can be executed efficiently.

▷ Claim 12. Suppose no single cluster has size greater than 2|T |/3. Then, there exists
a bipartition of clusters such that each group of clusters has a total size in the range
[|T |/3, 2|T |/3], and this bipartition can be computed in nearly linear time.
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Proof. We can split our proof into two cases:
1. There exists a cluster with size ∈ [|T |/3, 2|T |/3]:

We make that cluster its own group and all remaining clusters the second group.
2. All clusters have size less than |T |/3:

Enumerate the clusters in an arbitrary order, and consider the shortest prefix of clusters
whose total size exceeds |T |/3. The prefix without its last cluster has total size less than
|T |/3, and this last cluster of the prefix has size less than |T |/3, so this prefix has size in
[|T |/3, 2|T |/3]. ◁

4.2 Matching Player

We introduce a key subroutine of the matching player, called CutOrFlow, which is used to
find matchings over partitions and for trimming.

Algorithm 3 CutOrFlow(G,S, κ).

Input : Undirected weighted graph G = (V,E) and a set of terminals S ⊆ T
1 G′ ← G

2 Add sink node t to G′ with edges from all terminals in T \ S with capacity δ · κ. Add
source node s to G′ with edges to all terminals in S with capacity δ · κ.

3 Compute s− t max-flow f ′ and s− t min-cut (U ′, U ′) in G′

4 Let f be the flow f ′ with vertices s, t removed from every path
5 Let cut (U,U) in G be (U ′ \ s, U ′ \ t)
6 return flow f and cut (U,U)

▶ Lemma 13. If Algorithm 3 returns a valid cut (U,U), then it is δ · κ-terminal sparse in G.

Proof. Without loss of generality, assume that U contains at most as many terminals as
V \ U . Consider the difference between the edges of ∂U ′ and the edges of the cut ∂({s}),
which cuts all edges adjacent to s. The edges in ∂U ′ \ ∂({s, t}) are precisely the edges of
∂U ′ originally within G, and the edges in ∂({s}) \ ∂U ′ are precisely the edges between s and
U ∩ T . Since ∂U ′ is an s− t min-cut, we have w(∂U ′ \ ∂({s, t})) ≤ w(∂({s}) \ ∂U ′), which is
equivalent to wG(∂U) ≤ |U ∩T | · δ ·κ. A symmetric argument yields wG(∂U) ≤ |U ∩T | · δ ·κ,
and combining the two proves the lemma. ◀

Lemma 13 proves the sparsity guarantees of Lemma 8, as the algorithm sets either sets
κ← ψ or κ← min{γ/2s, γ/6})≪ ψ in every CutOrFlow call. Thus, every cut returned
is always ψ · δ-terminal sparse in G.

▶ Lemma 14. If |S|, |T \ S| ≥ |T |/3 and flow f has value less than |T |/6 · δ · κ, then the cut
(U,U) satisfies |U |, |U | ≥ |T |/6.

Proof. In graph G′, the value of flow f ′ and cut (U ′, U ′) are equal by flow-cut duality.
In particular, cut (U ′, U ′) has weight less than |T |/6 · δ · κ. Since s has edges to S ∩ U ′

that cross the cut, and since t has edges from (T \ S) ∩ U ′ that cross the cut, we have
|S ∩ U ′|, |(T \ S) ∩ U ′| ≤ |T |/6. Since |S|, |T \ S| ≥ |T |/3, it follows that |S ∩ U ′| =
|S| − |S ∩ U ′| ≥ |T |/6 and |(T \ S) ∩ U ′| = |T \ S| − |(T \ S) ∩ U ′| ≥ |T |/6. In particular,
|U |, |U | ≥ |T |/6. ◀
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Figure 1 Construction of Algorithm 3. Blue vertices and edges are added to the original graph
G and red vertices mark terminals.

4.2.1 Trimming
In Line 7 of Algorithm 2, we begin with a subset C ⊆ T of size at least 2|T |/3 such
that V is (s, δ, γ, C)-terminal-strong in G. Our next goal is to find a cluster U that is a
(O(s/γ), δ,Ω(γ/s))-terminal strong with |U ∩ T | ≥ |T |/3. This allows us to only recurse on
U , which satisfies |U ∩ T | ≤ 2|T |/3, allowing for an efficient algorithm.

We used a modified form of the trimming method found in [13]. In their paper, the
authors describe a simple “Slow Trimming” and an improved “Efficient Trimming” scheme,
which is much more involved by circumventing the use of exact max-flow. However, the slow
trimming scheme suffices for our purposes since we are fine with maximum flow time.

We begin with the following lemma, which we use to prove the correctness of trimming:

▶ Lemma 15. If a cluster S is (s, (Lmax/ψ)δ, γ)-strong in the cut graph H, then V is
(s, δ, γ, S)-terminal-strong in G.

Proof. By construction, each edge (u, v) of weight w in the cut graph H certifies the existence
of a flow of capacity 1/ψ · w in the original graph G. Since we run the cut-game for at
most Lmax rounds, we can simultaneously route flows between terminals u and v of weight
1/ψ · w(u, v) for all edges (u, v) ∈ EH with capacities scaled by at most Lmax in graph
G. Equivalently, scaling everything by 1/ψ, we can simultaneously route flows between
terminals u and v of weight w(u, v) for all edges (u, v) ∈ EH with capacities scaled by at
most Lmax · 1/ψ in graph G.

We proceed with two cases. First, assume for contradiction that there exists a Steiner cut
(C,C) of graph G with at most weight δ which satisfies min{|C ∩ S|, |C ∩ S|} > s. Consider
cut (C ∩ T,C ∩ T ) in cut graph H. Since C ∩ S ⊆ C ∩ T and C ∩ S ⊆ C ∩ T , we have

min{|(C ∩ T ) ∩ S|, |(C ∩ T ) ∩ S|} ≥ min{|C ∩ S|, |C ∩ S|} > s. (3)

The weight of cut (C∩T,C∩T ) in H is at most a Lmax ·1/ψ factor greater than the amount of
(scaled) flow able to be routed over cut (C,C) in graph G. In other words, wH(C∩T,C∩T ) ≤
(Lmax · 1/ψ)δ. This contradicts the assumption that S is an (s, (Lmax/ψ)δ, γ)-strong cluster
in the cut graph.

For the second case, assume for contradiction that there exists a cut (C,C) of graph
G with at most weight δ which satisfies w(∂GC) < γ · δ and min{|C ∩ S|, |C ∩ S|} > 0.
Similar to above, the weight of cut (C ∩ T,C ∩ T ) in H is at most a Lmax · 1/ψ factor
larger than cut (C,C) in graph G. Since min{|C ∩ S|, |C ∩ S|} > 0, ∂H[S]C is an actual
cut of H[S], and ∂H[S]C ≤ ∂HC < γ · (Lmax/ψ)δ, contradicting the assumption that S is
(s, (Lmax/ψ)δ, γ)-strong in H. ◀
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Now, we introduce the section’s main theorem, which shows that the cluster U is terminal-
strong and contains a large fraction of terminals.

▶ Theorem 16. If V is (s, δ, γ, S)-terminal-strong in G and |S| ≥ 2|T |/3, the cut (U,U)
returned by Algorithm 3 with parameter κ = min{γ/(2s), γ/6} satisfies the property that U
is (max{2/κ+ s, 3s}, δ, κ, U ∩ T )-terminal strong in G and |U ∩ T | ≥ |T |/3.

We prove this theorem in the full version of the paper [4].

4.2.2 Final Parameters
Finally, we plug in our parameters Lmax = O(log |T |), α = Lmax/ψ, s = O((Lmax/ψ)2 log2 n)
= O(log4 n/ψ2), and γ = 1

200αs = Ω(ψ3/ log5 n) in Algorithm 2. We have κ = Ω(γ/s) =
Ω(ψ5/ log9 n), so the (max{2/κ + s, 3s}, δ, κ, U ∩ T )-terminal strong cluster U output by
Algorithm 2 is (O(log9 n/ψ5), δ,Ω(ψ5/ log9 n))-terminal-strong, fulfilling the output guarantee
of Algorithm 2.

4.3 Termination
To show that the cut-matching game terminates within Lmax rounds, we introduce the
following guarantee of the cut-matching game analysis.

▶ Lemma 17. For large enough Lmax = O(log |T |), Algorithm 2 proceeds for at most Lmax
iterations.

The proof is a direct adaptation of the cut-matching game analysis of [8, 9], and thus we
leave the details to the full version [4].

4.4 Terminal Decomposition
Finally, we introduce the complete algorithm for terminal decomposition, which uses the
cut-matching game algorithm as a key subroutine.

Algorithm 4 Terminal-Decomp(C, T, δ, ψ).

Input : Cluster C ⊆ V , terminal set T ⊆ V , decomposition parameters δ, ψ
1 Run Cut-Game(G[C], T, δ, ψ)
2 if G[C] is certified as a terminal-strong cluster then
3 return G[C]
4 else if Cut-Game returns balanced cut (U,U) with terminal-sparsity ψ · δ then
5 return

Terminal-Decomp(U,U ∩ T, δ, ψ) ∪Terminal-Decomp(U,U ∩ T, δ, ψ)
6 else

// Larger side G[U ] is certified as an (s, δ, γ)-terminal-strong
cluster

7 return G[U ] ∪Terminal-Decomp(U,U ∩ T, δ, ψ)

The algorithm uses Cut-Game as a subroutine and Lemma 8 as its guarantee. First, we
note that since we recurse on both sides of a cut in Line 5 only if they both have at least
Ω(1) terminals (from Lemma 8), we have at most O(logn) recursive levels. We now prove
the formal theorems for our terminal decomposition.
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▶ Theorem 18. Algorithm 4 runs with O(log2 n) max-flows and Õ(m) additional time.

Proof. First, in each recursive level, each Terminal-Decomp call is on a mutually disjoint
portion of the graph. Therefore, all maximum flows on a single recursive level can be done
in parallel with a single maximum flow call on a graph of size O(m) edges. Additionally,
each round of the cut-matching game uses at most a single max-flow call (in CutOrFlow).
With a total of Lmax = O(logn) cut-matching game rounds and O(logn) recursive levels,
the entire terminal decomposition runs in O(log2 n) max-flows.

All other cut-matching game procedures (specifically the (s, δ, γ)-strong decomposition of
Lemma 9) run in near-linear time. With O(logn) recursive levels, the entire algorithm runs
in near-linear time, excluding max-flows. ◀

▶ Theorem 19. Algorithm 4 returns a (Õ(1/ψ5), δ, Ω̃(ψ5), T )-terminal-strong decomposition
of G.

Proof. We begin by proving the upper-bound on intercluster edges:

▶ Lemma 20. The total weight of intercluster edges from the decomposition outputted by
Algorithm 4 is at most O(ψ · δ · |T | log |T |).

Proof. Every cut made by Algorithm 4 is ψ · δ terminal-sparse due to Lemma 13. We can
charge ψ · δ weight to each terminal on the smaller side of the cut. Since there are at most
log |T | recursive levels and each cluster gets only one cut per recursive level, each terminal
gets charged at most log |T | times. Summing up the weights charged to each terminal gives
us a total edge weight of O(ψ · δ · |T | log |T |). ◀

From Lemma 8, every cluster returned is certified to be (O(log9 n/ψ5), δ,Ω(ψ5/ log9 n), T )-
terminal strong, completing the proof. ◀

5 Minimum Steiner Cut Using Sparsification

We complete our algorithm by showing a polylogarithmic maximum flow algorithm for
minimum Steiner cut on a graph by using its terminal-strong decomposition. We use the
minimum isolating cuts method and terminology described by [11]. The critical difference is
that we use a terminal-strong decomposition instead of an expander decomposition. However,
we prove that the same guarantees apply.

We begin by introducing some definitions from [11].

▶ Definition 21 (k-unbalanced, k-balanced). A subset of vertices U ⊆ V is considered k-
unbalanced if there exists a minimum Steiner cut S such that min{|S ∩ U |, |S̄ ∩ U |} ≤ k. U
is considered k-balanced with witness (S, S̄) if there exists a minimum Steiner cut S such
that min{|S ∩ U |, |S̄ ∩ U |} > k.

Our main result of the section is as follows:

▶ Theorem 22. There exists a deterministic algorithm which given an undirected weighted
graph G = (V,E), an (s, δ, γ, T )-terminal-strong decomposition G′ = {V1, V2, ..., Vℓ}, a
parameter k ← C logC n for some large enough constant C > 0, and a subset of terminals
U ⊆ T , does the following:
1. If U is k-unbalanced, we return the minimum Steiner cut of G with polylogarithmic

maximum flow calls and near-linear additional runtime.
2. If U is k-balanced with witness (S1, S2), we return a subset U ′ ⊂ U such that |U ′| ≤ |U |/2

and Si ∩ U ′ ̸= ∅ for both i = 1, 2.
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We leave the full proof details to the full paper [4].
After computing the sparsified set U ← U ′ in the balanced case, we can recursively run

our minimum Steiner cut algorithm on graph G and terminal set T ← U . Since the size of U
at least halves each time we sparsify, this only needs to be done at most logn times.

Also, since we never know which case we are specifically in (balanced or unbalanced) in
Theorem 22, we run both cases until U must be guaranteed to be k-unbalanced. At this
point we take the minimum over all Steiner cuts found, and we are guaranteed to have found
a minimum one (see Algorithm 1).

6 Conclusion

Our algorithm solves deterministic minimum Steiner cut with polylogarithmic max flow calls
and near-linear additional processing time. We thus show minimum Steiner cut reduces
to maximum flow up to polylogarithmic factors in runtime. Specifically, the existence of a
deterministic near-linear time s−t max-flow algorithm would imply a deterministic near-linear
time algorithm for minimum Steiner cut.

Our main contribution is the (s, δ, γ)-terminal-strong decomposition. We are able to
do this deterministically in polylogarithmic max flows and near-linear additional time for
small δ, which is not yet known for standard expander decompositions. We also believe that
(s, δ, γ)-strong and terminal-strong decompositions may have additional future applications
in faster algorithms for graph problems.
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