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Abstract
We consider an incremental variant of the rooted prize-collecting Steiner-tree problem with a growing
budget constraint. While no incremental solution exists that simultaneously approximates the
optimum for all budgets, we show that a bicriterial (α, µ)-approximation is possible, i.e., a solution
that with budget B + α for all B ∈ R≥0 is a multiplicative µ-approximation compared to the
optimum solution with budget B. For the case that the underlying graph is a tree, we present a
polynomial-time density-greedy algorithm that computes a (χ, 1)-approximation, where χ denotes
the eccentricity of the root vertex in the underlying graph, and show that this is best possible. An
adaptation of the density-greedy algorithm for general graphs is (γ, 2)-competitive where γ is the
maximal length of a vertex-disjoint path starting in the root. While this algorithm does not run in
polynomial time, it can be adapted to a (γ, 3)-competitive algorithm that runs in polynomial time.
We further devise a capacity-scaling algorithm that guarantees a (3χ, 8)-approximation and, more
generally, a

(
(4ℓ − 1)χ, 2ℓ+2

2ℓ−1

)
-approximation for every fixed ℓ ∈ N.
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1 Introduction

Prize-collecting Steiner-tree problems serve as a model to study the fundamental trade-off
between the cost of installing a network and harnessing its benefits in terms of covering vital
vertices. They have been used to study, e.g., expanding telecommunication networks (Johnson
et al. [32]) or pipeline networks (Salman et al. [41]). Formally, we are given an undirected
graph G = (V, E), a positive edge cost c(e) ∈ R>0 for each edge e ∈ E, a non-negative vertex
prize p(v) ∈ R≥0 for each vertex v ∈ V , and a specified root vertex r ∈ V . In the applications
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above, vertices correspond to geographical locations such as intersections of a road network,
the premises of telecommunication customers, or the locations of oil wells. The prize of a
vertex represents the estimated revenue associated with connecting the vertex to the core
network, represented by the root. The cost of an edge corresponds to, e.g., the monetary
cost of laying a fiber-optic cable or a pipeline between the respective end vertices.

Let T denote the set of all subtrees of G containing r. Then, the budget version of the
prize-collecting Steiner-tree problem for a given budget B ∈ R≥0 is the optimization

max
{

p(T ) : T ∈ T with c(T ) ≤ B
}

, (1)

where for a subgraph G′ = (V ′, E′) ⊆ G, we write p(G′) :=
∑

v∈V ′ p(v) and c(G′) :=∑
e∈E′ c(e). This objective is faced, e.g., by any company interested in building the most

profitable telecommunication or pipeline network given limited financial funds. In the
following, we arbitrarily fix a rooted subtree Opt(B) attaining the maximum in (1).

In the scenarios mentioned above, it is realistic to assume that the network is expanded
over time as the company’s budget increases. This motivates us to study an incremental
version of the prize-collecting Steiner-tree problem where approximately optimal Steiner-
trees have to be maintained under a growing budget constraint. Formally, an incremental
solution to an instance of the prize-collecting Steiner-tree problem is given by an ordering
π = (eπ(1), . . . , eπ(l)) of a subset of the edges E such that every prefix (eπ(1), . . . , eπ(j)) of π

with j ≤ l induces a rooted subtree Tj ⊆ G and the rooted subtree Tl spans all vertices in
V ∗ := {v ∈ V : p(v) > 0}. In the applications above, an incremental solution corresponds to
an order in which to build the fiber-optic or pipeline connections.

We evaluate the performance of an incremental solution π in terms of the worst-case
approximation guarantee it provides compared to the optimal budgeted Steiner-tree for
all budgets B ∈ R≥0. Specifically, for a given budget B > 0 and an incremental solution
π = (eπ(1), . . . , eπ(l)) computed by some algorithm Alg, let Alg(B) denote the rooted
subtree induced by the set of edges

{
eπ(i) : i ∈ {1, . . . , l},

∑i
j=1 c(eπ(j)) ≤ B

}
. We aim to

maximize the profit p(Alg(B)) across all budgets B ∈ R≥0.
Observe that, in general, no incremental solution can stay close to the prizes collected

by Opt(B) across all budgets simultaneously (see Figure 1). However, it turns out that
it suffices to allow an additive slack in the budget constraint to obtain an incremental
solution with multiplicative approximation guarantee. Formally, we call an algorithm (α, µ)-
competitive for α ≥ 0 and µ ≥ 1 if the incremental solution it produces (for any instance of
the problem) guarantees that µ p(Alg(B + α)) ≥ p(Opt(B)) for all B ∈ R≥0.

1.1 Our Results
We first consider the incremental prize-collecting Steiner-tree problem on trees and analyze
the density-greedy algorithm introduced by Alpern and Lidbetter [4] in a different context.
Roughly, the algorithm repeatedly considers subtrees of maximum density, adds them to

r
δ 1

χ/2 χ

Figure 1 Instance of the prize-collecting Steiner-tree problem with δ ≪ 1 and no (0, µ)-competitive
incremental solution: Staying competitive for budget B = χ/2 requires to build the left edge first,
but then we are not competitive for the budget B = χ.
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the incremental solution and contracts the corresponding subgraphs. We show that this
algorithm constructs an incremental solution that lags behind the optimum solution by some
additive slack in the budget, but otherwise collects the same prize. Figure 1 shows that we
need to allow a slack depending on the eccentricity of the root vertex χ := max{ℓ(v) : v ∈ V }
of G, where ℓ(v) denotes the minimum cost among all r-v-paths in G. We show that the
density-greedy algorithm requires slack exactly χ.

▶ Theorem 1. On trees, the density-greedy algorithm can be implemented in polynomial time
and is (α, µ)-competitive for any finite µ ≥ 1 if and only if α ≥ χ.

In particular, the density-greedy algorithm is (χ, 1)-competitive on trees. We show that
this is best possible.

▶ Theorem 2. There exists no (α, µ)-competitive algorithm for α < χ and µ < χ/α or
for α < χ/2 and µ ≥ 1, even on trees.

We proceed to generalize the density-greedy algorithm in order to apply it to non-tree
networks. Here, an additive slack in budget equal to the eccentricity of the root no longer
suffices for it to stay close to the optimum solution. We obtain, however, an approximation
guarantee when granting an additive slack equal to the maximum cost γ of any vertex-disjoint
r-v-path in G.

▶ Theorem 3. The density-greedy algorithm is (γ, 2)-competitive, but not (χ, µ)-competitive
for any µ ≥ 1.

While the density-greedy algorithm cannot be implemented in polynomial time, unless
P = NP, we give an approximate variant of the algorithm that runs in polynomial time at
the expense of increasing the approximation factor from 2 to 3.

▶ Corollary 4. An approximate variant of the density-greedy algorithm runs in polynomial
time and is (γ, 3)-competitive.

We further prove that no algorithm can reach the optimum on general graphs if the
additional slack in budget only depends on the length of the longest vertex-disjoint paths
from the root.

▶ Theorem 5. For every (α, µ)-competitive algorithm with α only depending on γ, it holds
that µ ≥ 17/16.

Note that since χ ≤ γ, this result also precludes the existence of an (α, µ)-competitive
algorithm with α depending only on χ and γ and µ < 17/16.

Finally, we design and analyze a capacity-scaling algorithm that is inspired by the
incremental maximization algorithm of Bernstein et al. [8] and combines this approach
with the density-greedy algorithm. Instead of relying on subtrees of maximum density, the
algorithm uses optimum solutions for the budget-constrained prize-collecting Steiner-tree
problem for exponentially growing budgets. These solutions are concatenated to give a
solution for the incremental prize-collecting Steiner-tree problem. We obtain the following
result.

▶ Theorem 6. The capacity-scaling algorithm is
(
(4ℓ−1)χ, 2ℓ+2

2ℓ−1
)
-competitive for every ℓ ∈ N.

In particular, our algorithm guarantees an 8-approximation when allowed an additional 3χ

in budget and its approximation guarantee approaches 4 for increasing additive slack.
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1.2 Related Work

Our work is based on the cardinality-constrained incremental maximization framework of
Bernstein et al. [8]. They considered monotone augmentable objective functions (a class
of functions containing monotone submodular functions) subject to a growing cardinality
constraint and devise a cardinality-scaling algorithm that is 2.618-competitive. Disser et
al. [17] expanded on this result by giving an improved lower bound of 2.246 and considering
a randomized scaling approach for the problem that achieves a randomized competitive ratio
of 1.772. The framework was extended to a budget-constrained variant by Disser et al. [16].
A detailed treatment of incremental maximization was given by Weckbecker [43].

The Steiner-tree problem is known to be NP-complete since Karp [33]. In fact, it is
NP-hard to approximate the problem within a factor of 96/95, as shown by Chlebík and
Chlebíková [14]. The current best approximation algorithm with an approximation guarantee
of ln(4)+ϵ is due to Byrka et al. [13] improving upon previous approximation algorithms (e.g.,
Hougardy and Prömel [29]; Robins and Zelikovsky [40]). Based on earlier work of Balas [7],
the prize-collecting variant of the problem was first studied by Bienstock et al. [9] who gave
a 3-approximation for the objective to minimize the sum of the edge costs and the weights of
the non-collected vertices. This was later improved to a (2− 1

n )-approximation by Goemans
and Williamson [23], where n is the number of vertices of the graph, and to 1.9672 by Archer
et al. [5]. In a recent paper by Ahmadi et al. [3] the approximation ratio was further reduced
to 1.7994. Johnson et al. [32] discussed further natural variants of the problem: net-worth,
budget, and quota. The net-worth problem where the task is to maximize the total collected
prize minus the total cost is NP-hard to approximate by any constant factor (Feigenbaum et
al. [18]). In the budget problem, the task is to find a tree that maximizes the total collected
prize collected subject to a budget constraint on the total cost of the tree. Constant-factor
approximations are only known for the unrooted variant of the problem [32, 35, 39]; see also
the discussion by Paul et al. [38]. For a problem more general than the rooted version, Ghuge
and Nagarajan [21] gave a quasi-polynomial poly-logarithmic approximation. In the quota
problem, the task is to find a minimum cost tree that collects at least a given total prize.
The quota version where all vertices have a prize of 1 is known as the k-MST problem. The
best known approximation for the k-MST problem is a 2-approximation due to Garg [20]
improving upon previous approximation algorithms (e.g., Arya and Ramesh [6]; Blum et
al. [11]; Garg [19]). As discussed by Johnson et al. [32], algorithms for the k-MST problem
that rely on the primal-dual algorithm of Goemans and Williamson [23] (such as the one
by Garg [20]) extend to the general quota problem so that the best known approximation
factor for the quota problem is 2 as well; see also the discussion by Griesbach et al. [24].
An incremental version of the k-MST problem has been studied by Lin et al. [36]. Here, an
incremental solution is a sequence of edges such that the cost of the smallest prefix of edges
that connects at least k vertices approximates the value of the optimal k-MST solution for
all k ∈ N. They noted that a deterministic 8-competitive and a randomized 2e-competitive
incremental solution are implicit in the works on the minimum latency problem [10, 22] and
gave improved incremental solutions with competitive ratios 4 and e for the deterministic
and randomized case, respectively.

The more general Steiner forest problem asks for given pairs of vertices to be connected
at minimal cost. This problem admits a (2− 1

n )-approximation (Agrawal et al. [1]; Goemans
and Williamson [23]). For a prize-collecting version of the problem, Ahmadi et al. [2] recently
gave a 2-approximation improving the 2.54-approximation by Hajiaghayi and Jain [27] whose
approach has been generalized by Sharma et al. [42] towards more general submodular
penalty functions.
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Further related are dynamic and universal variants of the Steiner-tree problem. In the
dynamic Steiner-tree problem, vertices are added or deleted in an online fashion and a
network spanning the active vertices has to be maintained with approximately optimal costs
at all times. If only vertex additions are allowed, the natural greedy algorithm yields a
O(log n)-approximation under n additions as shown by Imase and Waxman [30]. Gu et al. [25]
gave an algorithm that adds an edge and swaps an edge per addition and maintains a constant
approximation. Naor et al. [37] studied a further variant of the problem where also vertices
have costs. Xu and Moseley [44] gave a learning-augmented algorithm that uses a prediction
about which terminals will be added eventually. When only deletions are allowed, Gupta and
Kumar [26] showed how to maintain a constant approximation while changing a constant
number of edges per deletion. Jia et al. [31] introduced the notion of universal Steiner-trees
which are rooted spanning trees containing an approximately minimal Steiner-tree for any
subset of vertices. Universal Steiner-trees with poly-logarithmic approximation factor have
been devised by Busch et al. [12].

2 Incremental Prize-Collecting Steiner-Tree on Trees

In this section we introduce the density-greedy algorithm and prove that it constructs
a (χ, 1)-competitive algorithm for the incremental prize-collecting Steiner-tree problem on
trees. We further prove that this is the best possible approximation guarantee, i.e., there is
no (α, 1)-competitive algorithm for trees where α < χ. Throughout this section, we assume
that G = (V, E) is a tree with root vertex r and p(r) = 0.

The density-greedy algorithm uses the concept of a min-max subtree introduced by Alpern
and Lidbetter [4] in the context of the expanding search problem. For a non-empty rooted
subtree T ∈ T of G, its density d(T ) is defined as the ratio of the prizes that are collected
by T and the cost of T , i.e., dG(T ) := p(T )/c(T ). When the graph G is clear from context,
we may drop the index G. For the empty rooted subtree T∅ := ({r}, ∅), we set d(T∅) := 0.
We further say that T ∈ T has maximum density if d(T ) ≥ d(T ′) for all T ′ ∈ T . Let
M := {T ∈ T : d(T ) ≥ d(T ′) for all T ′ ∈ T } be the set of all trees with maximum density
d∗. The inclusion-wise minimal elements of M are called the min-max-subtrees of the graph.
The following properties of the set M are due to Alpern and Lidbetter [4].

▶ Lemma 7 (cf. [4], Lemma 2). The set M∪ ({r}, ∅) is closed under union and intersection.
Furthermore, the following holds:

(i) Distinct min-max subtrees are (edge-)disjoint.
(ii) Every branch at r of T ∈M has density d∗.
(iii) Every min-max subtree T of G has only one branch at r.

We are now in position to explain the basic idea of the density-greedy algorithm (cf. Al-
gorithm 1). At the beginning, we start with the empty solution π = (). As long as the
tree spanned by the edges in π does not collect the total prize of G, all edges contained in
the current solution are contracted and we compute a min-max subtree in the contracted
subgraph. By Lemma 7, this min-max subtree has a unique edge that is adjacent to the
root. This edge is added to π and the whole procedure is repeated until π collects the total
prize of G. The density of the root vertex is defined to be zero. Hence, Algorithm 1 always
terminates and returns a solution π that spans all vertices in V ∗. In the remaining part
of this section, we denote by π the incremental solution returned by Algorithm 1. Recall
that, for some cost budget B ∈ R≥0, we denote by Alg(B) the tree that is induced by the
maximum prefix of π that still obeys the cost budget B.

ESA 2024
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Algorithm 1 The density-greedy algorithm for trees.

1: π ← ()
2: T ← ({r}, ∅)
3: while pG/T (G/T ) ̸= 0 do
4: fix arbitrary min-max subtree T ∗ of G/T

5: denote by e∗ the unique edge in T ∗ incident to r

6: denote by e ∈ E the edge in G that corresponds to e∗ in G/T

7: append e to π

8: T ← T ∪ {e}
9: return π

r
T

C+

S

r C

S/T

Figure 2 The left figure shows graph G with tree T ∈ T and the right figure shows the contracted
graph G/T . The contracted subgraph S/T contains parallel edges and loops. The extension C+ of
the connected subgraph C ⊂ G/T is not connected.

The algorithm maintains a graph where the edges of a rooted tree are contracted. For a
formal analysis of the algorithm, we introduce the following notion regarding contractions.
For some T ∈ T , we obtain the contracted graph G/T = (VG/T , EG/T ) by contracting all
edges of T into the root. The graph G/T then consists of |V | − |ET | vertices including the
root vertex and |E| − |ET | edges, possibly including parallel edges and self-loops. The vertex
prizes in G/T remain the same as the ones in the original graph G where the prize of the root
is set to 0, i.e., pG/T (v) := p(v) for all v ∈ VG/T \ {r} and pG/T (r) := 0. Also any edge that
is not contracted keeps its original cost, i.e., cG/T (e) := c(e) for all e ∈ EG/T . By keeping
parallel edges and self-loops, we obtain the property that each edge in G is in a one-to-one
correspondence to either an edge in T or to an edge in the contracted graph G/T . This
property will be of particular use for the following definition. Let S = (VS , ES) be a subgraph
of G. For a rooted subtree T ∈ T of G, we denote by ES/T the edges of S that have a one-to-
one correspondence to an edge in the contracted graph G/T , i.e., ES/T = ES \ET . Then the
contracted subgraph S/T is the subgraph of G/T that is induced by the edge set ES/T ⊆ EG/T .
In particular, we obtain pG/T (S/T ) = p(S)−p(VS ∩VT ) and cG/T (S/T ) = c(S)−c(ES ∩ET ).

To reverse the contraction, we introduce the notion of an extended subgraph. To this
end, let T ∈ T and let C = (VC , EC) be a subgraph of the contracted graph G/T . We
denote by EC+ the edges of E, that are in one-to-one correspondence to an edge in EC .
Note that |EC | = |EC+ |. Then, the extended subgraph C+ = (VC+ , EC+) (or extension
of C) is the subgraph of G that is induced by the edge set EC+ . Observe, that C+ is not
necessarily connected in G, even if C is connected in G/T . See Figure 2 for an illustration.
However, if C is connected and has at most one vertex adjacent to the root vertex, then C+

is also connected. We emphasise that in general, extending a contracted subgraph does not
necessarily yield the original subgraph, i.e., for a subgraph S of G and some T ∈ T we have
(S/T )+ ⊆ S and equality only holds when ES ∩ ET = ∅. However, repeating the contraction
of T , then yields the same subgraph of G/T , i.e., (S/T )+/T = S/T .
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rT

v
e

. . . . . .

. . .
. . . . . .

Tv Te

Figure 3 For the tree T with root rT , the branch Te rooted in edge e is shown in red and the
branch Tv rooted in vertex v is shown in blue.

For the analysis of the density-greedy algorithm, we need to generalize the notion of
density to subtrees that are not necessarily rooted. To this end, let T = (VT , ET ) be a subtree
of G and let rT ∈ VT be the unique vertex of T that has the shortest distance to r in G. Then,
the density of T over G is defined as dG(T ) :=

(
p(T )−p(rT )

)/
c(T ). Similarly, for a collection

of disjoint subtrees F = {T1, . . . , Tk}, we set dG(F ) :=
(∑k

i=1 p(Ti)− p(rTi
)
)/(∑k

i=1 c(Ti)
)

where again, for i ∈ {1, . . . , k}, the vertex rTi is the unique vertex in Ti with the smallest
distance to r in G. In order to avoid division by 0, we set the density of a tree or forest to 0
whenever the edge set is empty.

Let T = (VT , ET ) be a subtree of G with root vertex rT . For an edge e ∈ ET we define
the branch Te rooted in edge e as the subtree of T that is induced by the endpoints of e

and all vertices u ∈ VT such that e lies on the unique rT -u-path in T , see Figure 3 for an
illustration. Analogously, for a vertex v ∈ VT we define the branch Tv rooted at v as the
subtree of T that is induced by vertex v and all vertices u ∈ VT such that v lies on the
unique rT -u-path in T , see Figure 3 for an illustration.

We proceed to show that for a min-max subtree, every branch Te rooted at some edge e

has at least the same density as T . The proof of the following lemma and further proofs are
deferred to the full version of the paper [15].

▶ Lemma 8. Let T be a min-max subtree of G. Then, for every edge e in T we have for the
branch Te of T rooted at e that dG(Te) ≥ d(T ). Strict inequality holds, whenever T ̸= Te.

The next lemma shows an important property about the order in which the density-
greedy algorithm adds edges to the solution. In particular, it implies that all edges of the
extension T + of a min-max tree computed by the density-greedy algorithm are added to the
solution π consecutively.

▶ Lemma 9. Let T ∗ be a min-max subtree of G/T for some T ∈ T as computed in an
iteration of the density-greedy algorithm for trees. Then, until all edges of the extension T +

of T ∗ are added to π, the extended subgraphs of computed min-max subtrees are subtrees of
T + and have a larger density than T +.

Next, we give the first lower bound for the total prize that is collected by the density-
greedy algorithm for trees for some specific cost budgets. To do so, we denote by T1 the
min-max subtree of G that is computed and fixed in the first iteration of Algorithm 1. Recall
that Alg(B) denotes the tree induced by the maximum prefix of the solution computed by
the density-greedy algorithm obeying the cost budget B.

▶ Lemma 10. For every cost budget B ≤ c(T1), we have p
(
Alg(B + χ)

)
≥ d(T1)B.

Furthermore, if B = c(T1), we have p
(
Alg(B)

)
= d(T1)B.

ESA 2024
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Lemma 9 states that the first |T1| edges of π are the edges of T1. Let T ∗
2 be the (|T1|+1)-st

min-max subtree that is computed by the density-greedy algorithm. In particular, T ∗
2 is

the first min-max subtree whose extension T2 contains no edge of T1. This inductively
defines all pairwise disjoint min-max subtrees T ∗

1 , . . . , T ∗
k and their extensions T1, . . . , Tk

such that V ∗ ⊆
⋃k

i=1 VTi
. We define T i :=

⋃i
j=1 Tj for 1 ≤ i ≤ k and set T 0 := ({r}, ∅).

Note that, since T ∗
i is a min-max subtree of G/T i−1, we have for the densities over G

that dG(Ti ∪ Ti+1) = dG/T i−1

(
(T ∗

i ∪ T ∗
i+1)

)
≤ dG/T i−1

(T ∗
i ) = dG(Ti). In particular, this

yields dG(Ti+1) ≤ dG(Ti) for all 0 < i < k. By applying Lemma 10 iteratively on G/T i for
all i ∈ {0, . . . , k − 2}, we obtain the following Corollary.

▶ Corollary 11. Let B ∈ R≥0 be a cost budget such that
∑j−1

i=1 c(Ti) ≤ B ≤
∑j

i=1 c(Ti) for
some 1 ≤ j ≤ k. Then, we have

p
(
Alg(B + χ)

)
≥

j−1∑
i=1

d(Ti)c(Ti) + d(Tj)
(

B −
j−1∑
i=1

c(Ti)
)

.

To give an upper bound on the prize collected by the optimum solution, we show the
following lemma.

▶ Lemma 12. Let T ∈ T and j ∈ {1, . . . , k}. Then, we have

p(T ) ≤
j−1∑
i=1

d(Ti)c(Ti) + d(Tj)
(

c(T )−
j−1∑
i=1

c(Ti)
)

.

From Corollary 11 and Lemma 12 we obtain that the density-greedy algorithm is (χ, 1)-
competitive. Together with a suitable lower bound, we obtain the following result.

▶ Theorem 1. On trees, the density-greedy algorithm can be implemented in polynomial time
and is (α, µ)-competitive for any finite µ ≥ 1 if and only if α ≥ χ.

We further prove that that there is no (α, 1)-competitive algorithm for trees for any α < χ,
which implies that the density-greedy algorithm gives the best possible approximation
guarantee. In fact, we show the following stronger result.

▶ Theorem 2. There exists no (α, µ)-competitive algorithm for α < χ and µ < χ/α or
for α < χ/2 and µ ≥ 1, even on trees.

3 Incremental Prize-Collecting Steiner-Tree on General Graphs

In this section we study the incremental prize-collecting Steiner-tree problem on general
graphs. As a first step, we extend the density-greedy algorithm from the previous section such
that we can apply it on general graphs, as well. Afterwards we introduce a new algorithm
based on capacity scaling and, finally, we give general lower bounds for the approximation
factors of the incremental prize-collecting Steiner-tree problem. Throughout this section, we
assume that G = (V, E) is a graph with root vertex r and p(r) = 0.

3.1 Adapting the Density-Greedy Algorithm
We start by generalizing statement (ii) and (iii) of Lemma 7 to general graphs.

▶ Lemma 13. Let T ∈ M be a rooted subtree of G with maximum density d∗. Then the
following holds:

(i) Every branch of T at r has density d∗.
(ii) If T is a min-max subtree of G, T has only one branch at r.
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r 3

2

e e1

e2

Figure 4 Assume all edges have unit cost. Then, G has two min-max subtrees: T1 consists of the
blue and red edges, T2 consists of the green and red edges. Both have maximum density d∗ = 1.
Note that neither the union nor the intersection of T1 and T2 is a min-max subtree.
If we slightly reduce the cost of edge e2 to 3/4, tree T2 is the only min-max subtree. Hence, in the
first iteration of Algorithm 1, we contract edge e. However, in the second iteration, the tree spanned
by the blue and red edges is the only min-max subtree and thus, Lemma 9 does not hold for general
graphs.

A significant difference to the setting on trees, however, is that on general graphs the
min-max subtrees are not closed under intersection and union, i.e., statement (i) of Lemma 7
does not hold anymore, as illustrated in Figure 4. As a consequence we do not obtain
Lemma 9, that is, the edges of a fixed min-max subtree are not necessarily added to the
solution consecutively. Since the analysis of the density-greedy algorithm crucially depends
on this property, we need to make some adjustments to the algorithm when generalizing it
in order to recover this property. The density-greedy algorithm for general graphs is then
defined as follows.

Algorithm 2 The density-greedy algorithm for general graphs.

1: π ← ()
2: T ← ({r}, ∅)
3: while pG/T (G/T ) ̸= 0 do
4: fix arbitrary min-max subtree T ∗ of G/T

5: denote by T + the extension of T ∗ in G

6: run Algorithm 1 on T +/T and obtain π+

7: append π+ to π and add edges of T + to T

8: return π

First, we show that we do not obtain the same competitive ratios for the density-greedy
algorithm for general graphs as we did for trees.

▶ Proposition 14. The density-greedy algorithm is not (χ, µ)-competitive for any µ ≥ 1.

We work towards showing that the density-greedy algorithm for general graphs is (γ, 2)-
competitive, where γ denotes the maximum cost of a (vertex-disjoint) path in G starting in
the root r. To do so, we again denote by T1 the first min-max subtree that is computed in
Step 4 of Algorithm 2. The following lemma is the counterpart to Lemma 10.

▶ Lemma 15. For any cost budget B ≤ c(T1), we have p
(
Alg(B + γ)

)
≥ d(T1)B. Further-

more, if B = c(T1), we have p
(
Alg(B)

)
= d(T1)B.

We continue by generalizing the notion of the density to subtrees of general graphs. To
this end, let T be a (not necessarily rooted) subtree of G. Since the choice of the vertex rT

in T that has the shortest distance to r is not necessarily unique when G is a graph, we define
the density of T over an underlying rooted subtree T ′ ⊃ T . Then, the choice of the vertex rT

of T that has the shortest distance to r in T ′ is again unique and we define the density of T

over T ′ as dT ′(T ) :=
(
p(T )− p(rT )

)/
c(T ). Thereby, this notion is consistent with the density

used in Section 2. We are now ready to prove the upper bound of Theorem 3.
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▶ Theorem 3. The density-greedy algorithm is (γ, 2)-competitive, but not (χ, µ)-competitive
for any µ ≥ 1.

Proof. The fact that the density-greedy algorithm is not (χ, µ)-competitive for any µ ≥ 1
follows from Proposition 14.

We proceed to show that 2p
(
Alg(B + γ)

)
≥ p
(
Opt(B)

)
for every cost budget B ∈ R≥0.

We denote by c(π) the total cost of all edges in the solution π. If c(π) ≤ B, we obtain
that p(Alg(B + γ)) = p(G) ≥ p

(
Opt(B)

)
and thus, the claim holds.

It remains to consider the case where c(π) > B. We denote by T1, . . . , Tn the extensions
of the min-max subtrees computed in Step 5 of Algorithm 2 and let k ∈ {1, . . . , n} be such
that

∑k−1
i=1 c(Ti) ≤ B <

∑k
i=1 c(Ti). Note that by construction, Ti and Tj are edge disjoint

for all i ̸= j. Also, every Ti is a tree since the min-max subtrees all have only one branch at
the root. We denote by T i =

⋃i
j=1 Tj the union of all trees T1, . . . , Ti and set T 0 = ({r}, ∅).

We claim that

dT k
(T1) ≥ dT k

(T2) ≥ · · · ≥ dT k
(Tk). (2)

To prove this, we assume for contradiction that there is some 1 ≤ i < k such that dT k
(Ti) <

dT k
(Ti+1). However, since (Ti ∪ Ti+1)/T i−1 is a rooted tree in G/T i−1, this assumption

yields

dG/T i−1
((Ti ∪ Ti+1)/T i−1) = dT k

(Ti ∪ Ti+1) > dT k
(Ti) = dG/T i−1

(Ti/T i−1),

contradicting the choice of Ti/T i−1 as a min-max subtree in G/T i−1. Thus, the claim holds.
If we assume that Opt(B) ⊆ T k−1, using T k−1 ⊆ Alg(B) gives p(Opt(B)) ≤ p(Alg(B))
and the theorem follows immediately. Hence, we assume for the remaining part of this proof
that Opt(B) ⊈ T k−1. Using the facts that Tk/T k−1 is a min-max subtree of G/T k−1 and
that T k−1 ⊆ Alg(B), we obtain

dT k
(Tk) = dG/T k−1

(Tk/T k−1) ≥
pG/T k−1

(Opt(B)/T k−1)
cG/T k−1

(Opt(B)/T k−1)
(3)

≥
pG/Alg(B)(Opt(B)/Alg(B))

B
. (4)

Applying Lemma 15 iteratively on G/T i−1 with cost budget c(Ti) for all 1 ≤ i ≤ k − 1
and for G/T k−1 with cost budget B − c(T k−1) < c(Tk), we obtain

p
(
Alg(B + γ)

)
≥

k−1∑
i=1

dT k
(Ti)c(Ti) + dT k

(Tk)
(
B − c(T k−1)

)
≥ dT k

(Tk)B,

where we used dT k
(Ti) ≥ dT k

(Tk) for all i ≤ k. Finally, we conclude that

p
(
Opt(B)

)
≤ p
(
Alg(B)

)
+ pG/Alg(B)

(
Opt(B)/Alg(B)

)
≤ p
(
Alg(B)

)
+ dT k

(Tk)B

≤ p
(
Alg(B)

)
+ p
(
Alg(B + γ)

)
(5)

≤ 2p
(
Alg(B + γ)

)
. ◀

The computational bottleneck of the density-greedy algorithm is the computation of a
min-max subtree in Step 4 of Algorithm 2. As the computation of a subtree of maximum
density is NP-hard (Lau et al. [34]), there is no polynomial implementation of this step,
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unless P = NP. However, Hermans et al. [28] give a polynomial 2-approximation for the
computation of a subtree with maximal density. In order to obtain a polynomial algorithm
for the incremental prize-collecting Steiner-tree problem on general graphs, we need to do
the following adaptations to Algorithm 2:
1. In Step 4, we use the approximation algorithm of Hermans et al. [28] to obtain a tree

T ∗ of G/T with density dG/T (T ∗) ≥ d∗/2 where d∗ is the maximum density of a rooted
subtree in G/T .

2. Let T ∗
i and T ∗

i+1 be two such trees computed in two consecutive iterations of the while
loop such that the density of T ∗

i+1 is larger than the density of T ∗
i . If both trees are

rooted in the same vertex, we switch their order. Otherwise, we merge both trees.

The second point of these adjustments makes sure that the densities of the subtrees
computed by the algorithm are decreasing, i.e., that inequality (2) in the proof of Theorem 3
still holds. We observe that when running Algorithm 2 with these adjustments, the proof
of Theorem 3 goes through except for the fact that the right hand sides of inequalities (3)
and (4) are multiplied with 1/2. This ultimately leads to an additional loss of p

(
Alg(B +γ)

)
in (5). We obtain the following result.

▶ Corollary 4. An approximate variant of the density-greedy algorithm runs in polynomial
time and is (γ, 3)-competitive.

3.2 A Capacity-Scaling Algorithm
The density-greedy algorithm turns out to be a (γ, 2)-competitive algorithm for the prize-
collecting Steiner-tree problem on general graphs. This result is particularly strong when the
given instance G is sparse and hence, the maximum cost of a (vertex-disjoint) path starting
in the root is small compared to the cost of a rooted spanning subtree of G. However, in
general, the value γ can be large. This applies for example, when G is Hamiltonian. In such
cases, it is more desirable to obtain an (α, µ)-competitive algorithm where α depends on
χ rather than on γ. To this end, we introduce the capacity-scaling algorithm inspired by
the incremental maximization algorithm of Bernstein et al. [8]. The basic idea is as follows.
At the beginning the solution π is set to the empty sequence (). Then, in each iteration
i = 0, 1, . . . the algorithm computes a maximum total prize rooted subtree Ti of G that
obeys the cost budget 2iχ. Afterwards, we run Algorithm 1 on Ti and append the returned
solution to π. This is done in such a way, that the solution π contains neither double or
parallel edges nor cycles.

The capacity-scaling algorithm is given in more detail in Algorithm 3.

Algorithm 3 The capacity-scaling algorithm.

1: i← 0
2: π ← ()
3: while π does not span all vertices in V ∗ do
4: Ti ∈ arg max{p(T ) : T ∈ T , c(T ) ≤ 2iχ}
5: run Algorithm 1 on Ti with root r and obtain πi

6: append πi to π (skip double edges, parallel edges, and edges that close cycles)
7: i← i + 1
8: return π

In order to analyse the capacity-scaling algorithm properly, we give the following lemmata
for general trees (not necessary subtrees of G). Similar to the concept of min-max subtrees, we
introduce the definition of min-max trees. In particular, we call a tree T with root vertex rT
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a min-max tree with root rT if p(rT ) = 0 and for all rooted subtrees T ′ = (VT ′ , ET ′) ⊂ T

with rT ∈ VT ′ and c(T ′) > 0, we have d(T ) > d(T ′). First, we generalize Lemma 8 to
min-max trees. The only adaption in the proof is that we use that T is a min-max tree
instead of a min-max subtree. Specifically, we obtain the following result.

▶ Lemma 16. Let T be a min-max tree with root rT . Then, for every edge e in T we have
dT (Te) ≥ d(T ), where Te is the branch of T rooted at e. Strict inequality holds, whenever
T ̸= Te.

The following lemma is crucial for the proof of Lemma 18, where Lemma 17 is used for
δ =

(
1− 2−k+1).

▶ Lemma 17. Let T be a tree with root rT and let δ ∈ [0, 1] and k ∈ N. Assume that
for every λ′ ∈ [0, 1] and for every min-max tree T ′ with root rT ′ , there exists a forest
F ′ = (VF ′ , EF ′) ⊆ T ′ with rT ′ ∈ VF ′ and at most k components such that c(F ′) ≤ λ′c(T ′)
and p(F ′) ≥ δλ′p(T ′). Then, for all λ ∈ [0, 1], there exists a forest F = (VF , EF ) ⊆ T with
rT ∈ VF and at most k components such that c(F ) ≤ λc(T ) and p(F ) ≥ δλp(T ).

Using the results of Lemma 17, we can show the following.

▶ Lemma 18. Let T be a tree with root rT and let λ ∈ [0, 1] and k ∈ N. Then there exists a
forest F = (VF , EF ) ⊆ T with rT ∈ VF and at most k components such that

c(F ) ≤ λc(T ) and p(F ) ≥
(
1− 2−k+1)λp(T ).

The following corollary will be useful for the analysis of the capacity-scaling algorithm.

▶ Corollary 19. For every δ ≥ 1, h ∈ N, and every cost budget B ∈ R≥0, we have
that p(Opt(B + hχ)) ≥ (1− 2−h)δ−1p(Opt(δB)).

We are now ready to prove the main theorem of this subsection.

▶ Theorem 6. The capacity-scaling algorithm is
(
(4ℓ−1)χ, 2ℓ+2

2ℓ−1
)
-competitive for every ℓ ∈ N.

Proof. For cost budget B ∈ R≥0, let k ∈ N be such that B ∈
[(

2k+1 − 4ℓ
)

χ,
(
2k+2 − 4ℓ

)
χ
)
.

We denote by Alg(B) the solution of the capacity-scaling algorithm for cost budget B. Since
Alg grows monotonously, it holds that

p(Alg(B + (4ℓ− 1)χ)) ≥ p(Alg((2k+1 − 1)χ)). (6)

Let T0, T1, . . . be the subtrees of G computed by the capacity-scaling algorithm (Algorithm 3).
Note that

k∑
i=0

c(Ti) ≤
k∑

i=0
2iχ = (2k+1 − 1)χ.

Thus, Alg((2k+1 − 1)χ) contains the tree Tk, i.e.,

p(Alg((2k+1 − 1)χ)) ≥ p(Tk). (7)

Let Opt(2kχ) be the optimal solution in G for cost budget 2kχ. Then, a spanning tree
of Opt(2kχ) is a potential candidate for the capacity-scaling algorithm when computing
tree Tk, which yields p(Opt(2kχ)) = p(Tk). Finally, we use Corollary 19 with δ = 4, h = ℓ
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and cost budget Bk := (2k − ℓ)χ ≥ B
4 and together with inequalities (6) and (7) we obtain

the claim as follows

p(Alg(B + (4ℓ− 1)χ)) ≥ p(Alg((2k+1 − 1)χ))
≥ p(Tk)
= p(Opt(2kχ)) (8)
= p(Opt(Bk + ℓχ))

≥ 1− 2−ℓ

4 p
(
Opt(4Bk)

)
≥ 2ℓ − 1

2ℓ+2 p
(
Opt(B)

)
. ◀

The computational bottleneck of the capacity-scaling algorithm is the solution of the prize-
collecting Steiner tree problem with budget 2iχ in Step 4 of Algorithm 3. The NP-hardness
of the Steiner tree problem implies the hardness of the budget variant of the prize-collecting
Steiner tree problem, so there is no polynomial implementation of Step 4, unless P = NP.
In terms of approximations, only a quasi-polynomial algorithm with a poly-logarithmic
approximation guarantee is known (Ghuge and Nagarajan [21]); see also the discussion by
Paul et al. [38]. We leave it as an open problem to devise a polynomial algorithm that is
(O(1)χ, O(1))-competitive.

3.3 Lower Bound for General Graphs
We complement our algorithmic results with a lower bound for general graphs. For the proof,
we first construct a small graph for which there is a trade-off between the maximal prize that
can be collected at budgets 3 and 5, respectively. A careful analysis of the graph that has an
arbitrary large number of copies of this graph joined at the root then yields the following
result.

▶ Theorem 5. For every (α, µ)-competitive algorithm with α only depending on γ, it holds
that µ ≥ 17/16.
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