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Abstract
Motivated by settings such as medical treatments or aircraft maintenance, we consider a scheduling
problem with jobs that consist of two operations, a test and a processing part. The time required
to execute the test is known in advance while the time required to execute the processing part
becomes known only upon completion of the test. We use competitive analysis to study algorithms
for minimizing the sum of completion times for n given jobs on a single machine. As our main result,
we prove using a novel analysis technique that the natural 1-SORT algorithm has competitive ratio
at most 1.861. For the special case of uniform test times, we show that a simple threshold-based
algorithm has competitive ratio at most 1.585. We also prove a lower bound that shows that no
deterministic algorithm can be better than

√
2-competitive even in the case of uniform test times.
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1 Introduction

Settings where the processing time of a job is initially uncertain but can be determined by
executing a test have received increasing attention in recent years. Levi et al. [9] considered
a model where the weight and processing time of a job follow a known joint probability
distribution, a job can be tested to reveal its weight and processing time, and the goal is to
find a scheduling policy that minimizes the expectation of the weighted sum of completion
times. Dürr et al. [5] introduced an adversarial setting of scheduling with testing where each
job j is given with an upper bound uj on its processing time. The scheduler can either execute
the job untested (with processing time uj), or test it first to reveal its actual processing time
pj ≤ uj and then execute it with processing time pj . They studied the setting of uniform
test times and gave competitive algorithms for minimizing the sum of completion times and
for makespan minimization on a single machine. Later work considered this model with
arbitrary test times for minimizing the sum of completion times on a single machine [1, 10]
or multiple machines [6], for makespan minimization on parallel machines [2, 8, 7], and for
minimizing energy or maximum speed in scheduling with speed scaling [3].

In all these studies, it is optional for the scheduler whether to test a job or not. In many
application settings, however, it is natural to assume that a test must be executed for each
job before the job can be executed. For example, for a repair job, it is necessary to first
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48:2 Scheduling with Obligatory Tests

diagnose the fault (this corresponds to a test) before the repair can be carried out, and the
result of the fault diagnosis yields information about how long the repair job will take. For
a maintenance job (for example, aircraft maintenance [9]), it is necessary to determine the
maintenance needs (this corresponds to a test) before the maintenance can be carried out.
In a medical emergency department, patients need to be diagnosed (i.e., “tested”) before
they can be treated. Therefore, we propose to study scheduling with testing in a setting with
obligatory tests. Initially, each job j is given with a test time tj , and nothing is known about
its processing time. Testing the job takes time tj and reveals the processing time pj of the
job. The processing part of the job can then be scheduled any time after the completion of
the test and takes time pj to be completed. We study algorithms for minimizing the sum of
the completion times on a single machine and evaluate the performance of our algorithms
using competitive analysis.

For minimizing the sum of completion times on a single machine in our setting with
obligatory tests, obtaining a 2-competitive algorithm is straightforward: Treating each job
(test plus processing part) as a single entity with unknown processing time and applying the
Round Robin (RR) algorithm (which executes all unfinished jobs simultaneously at the same
rate) gives a 2-competitive preemptive schedule [11], and in our setting this algorithm can
be made non-preemptive without any increase in job completion times: At any time, among
all tests or processing parts currently available for execution, it is known which of them will
complete first in the preemptive schedule, and hence that test or processing part can be
chosen to be executed non-preemptively first (the same observation has been made previously
for the setting with optional tests [5, 10, 6]). Our aim is therefore to design algorithms that
are better than 2-competitive.

Our contributions. For the setting with arbitrary test times, we consider the algorithm
1-SORT, which is a natural adaptation of the (α, β)-SORT algorithm proposed by Albers and
Eckl [1] to the setting with obligatory tests. Using a novel analysis technique that we consider
our main contribution, we show that the competitive ratio of 1-SORT is at most 1.861. In
our analysis, we consider a complete graph on the jobs, where each edge is associated with
the delay that the two jobs connected by the edge create for each other. The sum of the
delays associated with the edges and the job processing times is then equal to the sum of
completion times of the schedule. The graph can contain edges where the associated delay in
the schedule computed by the algorithm is arbitrarily close to twice the delay in the optimal
schedule, and therefore a straightforward analysis would only yield a competitive ratio of 2.
We show that for edges with delay ratio close to 2 there are always sufficiently many other
edges whose delay ratio is much smaller than 2, so that overall the ratio of the objective
values of the algorithm and the offline optimum is bounded by a value smaller than 2.

For the setting with unit test times, we consider an adaptation of the Threshold
algorithm by Dürr et al. [5] to the setting with obligatory tests: When the test of a job
reveals a processing time smaller than a threshold y, the algorithm executes the processing
part of the job immediately; otherwise, the execution of the processing part is deferred to
the end of the schedule, where all the processing parts that have been deferred are executed
in SPT (shortest processing time) order. We show that the algorithm is 1.585-competitive
(and this analysis is tight for the algorithm). We also give a lower bound showing that no
deterministic algorithm can be better than

√
2-competitive.

The remainder of the paper is structured as follows. After discussing related work in the
remainder of this section, we give a formal problem definition and discuss preliminaries in
Section 2. Our algorithm for arbitrary test times and its analysis are presented in Section 3.
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The threshold-based algorithm and its analysis as well as the lower bound for uniform test
times are given in Section 4. Conclusions are presented in Section 5. Statements where the
proofs have been omitted due to space restrictions are marked by (⋆); the proofs of these
statements can be found in the full version of the paper [4].

Related work. For the classical offline scheduling problem (without tests) of minimizing the
sum of completion times on a single machine, denoted by 1 | |

∑
Cj , it is known that always

executing first the job with the shortest processing time (SPT) among all unscheduled jobs
gives the optimal schedule (a generalisation to the weighted sum of completion times was
proven by Smith [12]). For the setting with unknown processing times (i.e., the scheduler
does not know the processing time of a job until the job completes), Motwani et al. [11]
showed that the Round Robin (RR) algorithm, a preemptive algorithm that schedules all
unfinished jobs simultaneously, is

(
2 − 2

n+1

)
-competitive, where n is the number of jobs,

and that this is best possible.
As mentioned earlier, Dürr et al. [5] introduced the adversarial model for scheduling with

testing in a setting with optional tests: For each job j its test time tj and an upper bound
uj on its processing time are given. The algorithm can either execute the job untested with
processing time uj or test it first. The test takes time tj and reveals the actual processing
time pj , which satisfies 0 ≤ pj ≤ uj . The job can then be executed at any time after the
test and takes time pj . They considered only the case of uniform test times (tj = 1 for
all jobs j) and provided a 2-competitive deterministic algorithm and a 1.7453-competitive
randomized algorithm for minimizing the sum of completion times on a single machine.
Their deterministic 2-competitive algorithm is the algorithm Threshold that tests all jobs
with uj ≥ 2 and executes the processing part of a job j immediately after its test if pj ≤ 2
and otherwise defers the job to the end of the schedule (where the processing parts of all
unfinished jobs are executed in SPT order). They also gave lower bounds of 1.8546 and 1.6257
for deterministic and randomized algorithms, respectively. Albers and Eckl [1] considered
the problem with arbitrary test times and gave a deterministic 4-competitive algorithm, a
3.3794-competitive randomized algorithm, and a preemptive deterministic algorithm with
competitive ratio 2ϕ ≈ 3.2361, where ϕ = (1 +

√
5)/2 is the golden ratio. Their preemptive

deterministic algorithm can be made non-deterministic as outlined above, thus giving a
2ϕ-competitive deterministic algorithm. The algorithm for which they showed competitive
ratio 4 is called (α, β)-SORT: It tests a job j if uj ≥ αtj and, at any time, executes the
test or processing part of smallest priority, where the priority of the test of a job j is taken
to be βtj and the priority of the processing part of a tested job j is taken to be pj . In
their analysis, choosing α = β = 1 optimizes the resulting ratio, giving the bound of 4. Liu
et al. [10] showed that a more careful analysis of (α, β)-SORT yields that the algorithm
achieves ratio 1 +

√
2 ≈ 2.414 for α = β =

√
2. They also gave improved algorithms

with deterministic competitive ratio 2.316513 and randomized competitive ratio 2.152271.
Gong et al. [6] considered the problem of minimizing the sum of completion times in the
setting with optional tests on multiple machines. Among other results, they presented a
3.2361-competitive algorithm for arbitrary test times and an algorithm with competitive
ratio approaching 2.9271 for large m for uniform test times.

2 Problem definition and preliminaries

Problem definition. We are given a job set J = {1, 2, . . . , n} to be scheduled on a single
machine. Each job j ∈ J has an unknown processing time pj ≥ 0 and a known test time
tj ≥ 0, where pj and tj are non-negative real numbers. We denote the total size (or just
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48:4 Scheduling with Obligatory Tests

size) of job j by σj = tj + pj . Furthermore, we denote the maximum of the test time and
the processing time of job j by mj = max{tj , pj}. Testing job j takes time tj and reveals
its processing time pj . Once job j has been tested, its processing part can be executed and
takes time pj . The completion time Cj of a job is the point in time when its processing
part finishes. We consider the setting with obligatory tests where every job must be tested
before the processing part of the job can be executed. Note that the test of every job must
be executed both by the algorithm and by the optimal solution. The machine can execute
at any time only one test or one processing part of a job. The tests and processing parts
must be scheduled non-preemptively, but the processing part of a job does not have to
be started immediately after its test. As is common in the literature on scheduling with
testing for minimizing the sum of completion times [5, 1, 6], we refer to this setting as
non-preemptive but note that it has been called test-preemptive in the context of makespan
minimization [2, 8, 7]. The objective is to minimize the sum of completion times

∑
j∈J Cj .

In the setting of uniform test times, we assume that tj = 1 for all j ∈ J . In the setting
of arbitrary test times, the test time of each job j is an arbitrary real number tj ≥ 0. Using
Graham’s notation for describing scheduling problems, these two variations can be denoted
by 1 | tj = 1 |

∑
j Cj and 1 | tj |

∑
j Cj , respectively.

The objective function. For the purpose of analyzing the competitive ratio of algorithms,
it will be useful to consider different ways of expressing the objective function. For two
different jobs k and j in the schedule produced by the algorithm under consideration, we
use dk,j to denote the amount of time that the test and/or processing part of job k get
executed before the completion of job j. The completion time of job j can then be written as
Cj = σj +

∑
k∈J ,k ̸=j dk,j . For any pair of different jobs j and k, we use D(j, k) = dj,k + dk,j

to denote the delay that job j causes for job k plus the delay that job k causes for job j.
Thus:∑

j∈J
Cj =

∑
j∈J

(σj +
∑
k∈J
k ̸=j

dk,j) =
∑
j∈J

σj +
∑

j,k∈J
j<k

D(j, k) (1)

The optimal schedule. An optimal offline schedule views each job as a single operation
that takes total time σj to be executed and schedules the jobs in SPT order with respect to
those times. We use d∗

j,k and D∗(j, k) to denote the values corresponding to dj,k and D(j, k)
in the optimal schedule. For jobs k and j with σk < σj , we have d∗

k,j = σk, d∗
j,k = 0 and

D∗(j, k) = σk. In general, D∗(j, j′) = min{σj , σj′} for any pair of jobs j and j′. For the sum
of completion times OPT in the optimal schedule, we have:

OPT =
∑
j∈J

σj +
∑

j,k∈J
j<k

D∗(j, k) =
∑
j∈J

σj +
∑

j,k∈J
j<k

min{σj , σk} (2)

Competitive ratio. For an algorithm under consideration, we use ALG to denote the sum
of completion times in the schedule produced by the algorithm for a given instance. By OPT
we denote the sum of completion times in the optimal offline schedule for that instance. We
say that the algorithm is ρ-competitive (or has competitive ratio at most ρ) if ALG/OPT ≤ ρ

holds for all instances of the problem.
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3 Arbitrary test times

In this section, we consider the problem 1 | tj |
∑

Cj where the test times can be arbitrary
non-negative real numbers. We refer to the test and the processing part of a job j as
operations and denote the test operation by τj and the processing operation by πj . First, we
present the algorithm β-SORT. Then, we prove an upper bound of 1.861 on the competitive
ratio of 1-SORT. Finally, we present input examples showing that the competitive ratio of
β-SORT is at least 1.618 for β = 1 and at least some larger value for all other values of β.

Algorithm 1 β-SORT.

1 R = ∅; // empty priority queue
2 for j ∈ J do
3 insert the test operation τj with priority β × tj into R
4 while R ≠ ∅ do
5 o = R.deleteMin();
6 execute o;
7 if o was the test operation τj of a job j then
8 insert the processing operation πj with priority pj into R

Algorithm β-SORT. For the problem variant with optional tests, Albers and Eckl [1]
proposed the algorithm (α, β)-SORT that tests a job j if uj ≥ αtj and always schedules the
shortest available operation, but uses β × tj instead of tj when comparing the test time of
job j with the processing time of another job that has already been tested. They showed that
the algorithm is 4-competitive with α = β = 1. We adapt their algorithm to our setting with
obligatory tests. The parameter α is not relevant in our setting as every job must be tested,
so we refer to the resulting algorithm as β-SORT (see Algorithm 1). The algorithm maintains
a priority queue R of available test and processing operations (i.e., the test operations of
jobs that have not yet been tested and the processing parts of jobs that have already been
tested). The priority of a test operation τj is β × tj and the priority of a processing operation
πj is pj . The algorithm always schedules next the operation with minimum priority in R
(returned and removed from R by the call to R.deleteMin()) and, if that operation was a
test, inserts the corresponding processing operation into R.

Upper bound on the competitive ratio of 1-SORT. By adapting the analysis by Albers
and Eckl [1] in a straightforward way, one gets that β-SORT is

(
1 + max

{
1 + 1

β , 1 + β
})

-
competitive. This bound is minimized for β = 1, showing that the competitive ratio of
1-SORT is at most 3. We fix β = 1 and prove the substantially better bound of 1.861
on the competitive ratio of 1-SORT. We do not believe that β-SORT with a value of β

different from 1 has a better competitive ratio than that obtained with β = 1 in our setting;
adapting our analysis to values of β different from 1, we found that the resulting bound on
the competitive ratio became larger.

First, we give an intuitive overview of our analysis. We consider an oriented complete
graph G = (V, A) where V = J and each edge is directed towards the job with larger size. We
write jk for the arc (directed edge) from j to k. By (1), we can view the sum of completion
times of a schedule as if it was produced by a contribution σj of each vertex j ∈ V and a
contribution D(j, k) of each arc jk ∈ A. The contributions of the vertices are the same in
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(0, M)
D∗(1, 2) = M

(M − ϵ, M + ϵ)
D(1, 2) = 2M − ϵ

21

Job set: {(0, M), (M − ϵ, M + ϵ)}
1-SORT schedule: τ1, τ2, π1, π2

optimal schedule: τ1, π1, τ2, π2

ALG = 5M − ϵ, OPT = 4M

... ...

(0, M) (M − ϵ, M + ϵ)

(0, M)

(0, M)

(M − ϵ, M + ϵ)

(M − ϵ, M + ϵ)

2

2k

1

k

k + 1

Job set: k jobs (0, M) and k jobs (M − ϵ, M + ϵ)
1-SORT schedule: τ1, . . . , τ2k, π1, . . . , π2k

optimal schedule: τ1, π1, τ2, π2, . . . , τ2k, π2k

ALG ≈ 4k2M + kM , OPT ≈ 2.5k2M + 1.5kM

Figure 1 Left: Instance with two jobs where the delay ratio on the arc (1, 2) is arbitrarily close
to 2. Right: Instance with 2k jobs to illustrate red (drawn solid), blue (drawn dashed) and green
(drawn dotted) arcs. A job with test time tj and processing time pj is written as a pair (tj , pj).

the algorithm’s schedule and in the optimal schedule. If the delay ratio D(j, k)/D∗(j, k) is
bounded by ρ for every arc jk, it follows that ALG/OPT ≤ ρ. Unfortunately, the delay
ratio of an individual arc can be arbitrarily close to 2. Consider for example an instance
with two jobs with t1 = 0, p1 = M and t2 = M − ϵ, p2 = M + ϵ for a large constant M and
an infinitesimally small ϵ > 0 (see Fig. 1 (left)). Algorithm 1-SORT schedules the operations
in the order τ1, τ2, π1, π2 giving D(1, 2) = t1 + p1 + t2 = 2M − ϵ, while the optimal schedule
is τ1, π1, τ2, π2 with D∗(1, 2) = t1 + p1 = M . Hence, the delay ratio on the arc (1, 2) is
arbitrarily close to 2. Nevertheless, the ratio ALG/OPT on this example does not exceed 5/4,
as the term σ1 + σ2 = 3M that makes the same contribution to ALG and OPT is relatively
large compared to the delays on the arc (1, 2). We refer to arcs with large delay ratios (to
be defined precisely later on) as red arcs. The example suggests the idea of analyzing red
arcs together with other terms contributing to the objective function in order to show a
competitive ratio smaller than 2.

In the example of Fig. 1 (left) it was enough to consider the red arc (1, 2) together with
the contributions to the objective value made by vertices 1 and 2, but this kind of argument
cannot suffice in general because the number of arcs is quadratic in the number of vertices.
Consider the example of a job set with n = 2k jobs that contains k copies of each of the
jobs from the previous example (see Fig. 1 (right)). We call the k jobs with tj = 0, pj = M

left jobs and the k jobs with tj = M − ϵ, pj = M + ϵ right jobs in the following. There are
now k2 arcs between left and right jobs, each with a delay ratio arbitrarily close to 2. The
contribution k · M + k · 2M that the 2k vertices make to the objective function is no longer
sufficient to show a bound smaller than 2 for the competitive ratio, as it is negligible (for
large k) compared to the total delay on all the k2 arcs between left and right jobs, which is
k2(2M − ϵ) for 1-SORT and k2M in the optimal schedule. What we can exploit here instead
is that the k(k − 1)/2 arcs between left jobs have the same delay M in the schedule produced
by 1-SORT and in the optimal schedule (delay ratio 1), and that the k(k − 1)/2 arcs between
right jobs have delay 2M in the optimal schedule and delay 3M − ϵ in the schedule produced
by 1-SORT (delay ratio ≈ 1.5). We refer to the arcs between left jobs as blue arcs and to
the arcs between right jobs as green arcs. The total delay on all the blue, red and green
arcs in this example is approximately k2

2 M + k2 · 2M + k2

2 · 3M = 4k2M for 1-SORT and



K. Dogeas, T. Erlebach, and Y.-C. Liang 48:7

j

j′

j

Figure 2 Illustration of the idea underlying the analysis of a red vertex j: If the blue arcs
(drawn dashed) have not yet been used in the analysis of a previous red vertex, they can be used in
combination with the incoming red arcs (drawn solid) of j (left). If blue arcs have already been
used in the analysis of a previous red vertex j′, there must be a green arc (drawn dotted) between
j′ and j that is also available to be used in the analysis of the incoming red arcs of j.

approximately k2

2 M + k2M + k2

2 · 2M = 2.5k2M for the optimal schedule, where we have set
ϵ = 0 and omitted terms linear in k. Thus, analyzing the red arcs together with the green
and blue arcs is sufficient to show that ALG/OPT ≤ 4/2.5 = 1.6 in this example.

To turn these observations into a rigorous analysis, we will proceed as follows: We give a
formal definition of red arcs and refer to the vertices with incoming red arcs as red vertices.
We then consider the red vertices in order of increasing tj . For a red vertex j, we would like
to analyze the delay of its incoming red arcs together with the blue arcs between their tail
vertices. If those blue arcs have not been used in the analysis of previously considered red
vertices, that suffices. If some of those blue arcs have already been used in the analysis of
previously considered red vertices, however, then we can additionally use the green arcs that
those previously considered red vertices have to j in order to make up for the unavailability
of blue arcs. The crux of the analysis is a carefully specified invariant that ensures that there
are always sufficiently many green arcs available for the analysis of a red vertex to make up
for blue arcs that have been used in the analysis of previously considered red vertices. See
Fig. 2 for an illustration of this idea. Overall, the outcome is that the incoming red arcs of
each red vertex can be analyzed together with a sufficient number of blue and green arcs
(which are not used for the analysis of any other red vertex) to get a ratio smaller than 2.
One slight complication is that an arc may play the role of a green arc for one red vertex
and the role of a blue arc for another red vertex, but we can handle this by treating that arc
as a combination of a distinct special blue arc and a distinct special green arc.

Having given an intuitive overview of the ideas underlying our analysis of 1-SORT, we
now proceed to present the technical details. We use two parameters µ > 1 and ν with
0 < ν < 1, satisfying µ > 1/ν and 1 + 1

µ ≤ ν + ν2. Intuitively, the parameter µ determines
which jobs we view as imbalanced (having a large factor between test time and processing
time), and the parameter ν determines when we view a test time or processing time to be
“not much smaller” than another value (namely, when it is at least ν times the other value).

▶ Theorem 1. The β-SORT algorithm with β = 1 has competitive ratio at most ρ with

ρ = max
{

ν + ν2 + 2 + 2
µ

ν + ν2 + 1 + 1
µ

, 1 + 1
2 + ν

,

4
ν + 4

µν + ν + ν2 + 1
2
ν + 2

µν + ν + ν2 ,

4
ν + 4

νµ + ν + 1
µ+1

2
ν + 2

µν + ν
,

4 + 5
µ + ν

2 + 2
µ + ν

, 1 + 1
ν + ν2 , 1 + 1

ν(µ + 1) ,
2µ + 1
µ + 1 , 1 + ν

}

We will prove Theorem 1 in the remainder of this section. Choosing µ and ν so as to
minimize the ratio of Theorem 1 (done using Mathematica) yields the following:
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48:8 Scheduling with Obligatory Tests

▶ Corollary 2. The ratio ρ of Theorem 1 is minimized for µ = µ0 ≈ 6.16277 and ν = ν0 ≈
0.860389, yielding that β-SORT with β = 1 has competitive ratio at most 1.86039. Here µ0 is
the only real root of the polynomial −2 − 8µ − 13µ2 − 11µ3 − 4µ4 + µ5 and ν0 = µ0

µ0+1 . The
ratio is ρ = 1+2µ0

1+µ0
.

As discussed in Section 2, the optimal schedule executes the jobs in SPT order (with
respect to their size), giving the objective value stated in Equation (2).

Using infinitesimal perturbations of the test times and processing times of the jobs that
do not affect the schedule produced by 1-SORT nor the optimal schedule, we can assume
without loss of generality that no two values in the set of the test times, processing times,
and sizes of all jobs are equal. Therefore, when we compare any two such values, we can
always assume that strict inequality holds.

For the purpose of the analysis, we create an auxiliary graph G = (V, A), with |V | = n

and |A| =
(

n
2
)

= n(n−1)
2 . Each vertex represents a job (both the testing and processing

operation), and there is a single arc between any two vertices. The arc between vertices j

and k is directed towards k if σj < σk and towards j otherwise. Recall that we write jk for
an arc directed from j to k. In addition, we associate with each arc jk the values D(j, k) and
D∗(j, k) that represent the pairwise delay between jobs j and k in the schedule produced by
1-SORT and in the optimal schedule, respectively, and the delay ratio ρjk = D(j, k)/D∗(j, k).

By (1) and (2), we have ALG =
∑

j∈V σj +
∑

jk∈A D(j, k) and OPT =
∑

j∈V σj +∑
jk∈A D∗(j, k). Note that the first sum is the same in both expressions and therefore

contributes to ALG and OPT in the same way, while the second sum, which represents the
pairwise delays among all jobs, differs. As discussed earlier, the difficulty when aiming to
show competitive ratio smaller than 2 is that there may exist arcs jk for which D(j, k) can
be arbitrarily close to 2 · D∗(j, k). Hence, we cannot hope to prove a bound better than
ρjk ≤ 2 for all arcs jk, and such a bound would only yield ALG/OPT ≤ 2. As each job j

contributes σj to both ALG and OPT , we say that the delay ratio of job j, denoted by ρj ,
is equal to 1. In order to prove a competitive ratio better than 2, we need to show that arcs
jk with delay ratio close to 2 can be analysed together with arcs for which the delay ratio is
much smaller than 2 and/or together with vertices, for which we know that the delay ratio
is 1. This then yields that the ratios ρjk and ρj are bounded by a constant smaller than 2
on average.

It turns out that the ratio of an arc jk can be close to 2 only if job j is imbalanced and
the test time of job k is smaller but not much smaller than mj = max{tj , pj}, and pk is not
much smaller than tk.

▶ Definition 3. A job j is called imbalanced if mj = max{tj , pj} ≥ µ · min{tj , pj}, for a
fixed constant µ > 1.

▶ Definition 4. An arc jk is called a red arc if j is imbalanced, mj ≥ tk ≥ ν · mj, and
pk ≥ ν · tk. Here, ν is a constant with 0 < ν < 1 that satisfies µ > 1

ν and 1 + 1
µ ≤ ν + ν2.

▶ Lemma 5 (⋆). If jk is a red arc, then σj ≤ σk.

The following lemma can be proved by considering each leaf of a decision tree for
determining the order in which 1-SORT executes the four operations of the two jobs j and k,
and showing that D(j, k)/D∗(j, k) is bounded by the claimed upper bound if the arc jk does
not satisfy at least one of the three conditions of Definition 4.

▶ Lemma 6 (⋆). If an arc jk is not red, then ρjk ≤ max {(2µ + 1)/(µ + 1), 1 + ν}.
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By considering the same decision tree, it is also easy to see that D(j, k) ≤ 2D∗(j, k)
holds for all arcs (including red arcs). In the following, we will show that, for each job with
incoming red arcs, those arcs can be grouped together with a set of non-red arcs and the size
of the job in such a way that the total ratio of the algorithm’s delay over the optimal delay
for the group is bounded by a constant ρ that is smaller than 2.

Let VI be the set of all imbalanced jobs, ordered by non-decreasing mj . Let VR be the
set of jobs with at least one incoming red arc. (If VR is empty, the competitive ratio of the
algorithm is bounded by the ratio of Lemma 6.) Consider the jobs in VR to be sorted in
order of non-decreasing test times and write i ≺ j if the test time of i comes before the test
time of j in that order. Consider a particular job k ∈ VR with test time tk. Every incoming
red arc jk of k must come from a job j that is imbalanced and satisfies mj ≥ tk ≥ ν · mj

and, as j is imbalanced, min{tj , pj} ≤ mj/µ. Let N−(k) be the set of vertices that have
an outgoing red arc to k, i.e., N−(k) = {j | jk is a red arc}. For a vertex j ∈ N−(k), let
N−

≥j(k) be the subset of N−(k) that consists of j and all vertices of N−(k) that come after
j (in the order of VI). Furthermore, let P (k) denote the set of jobs coming before k in VR

(in the order ≺) that also have an incoming red arc from at least one job in N−(k).
We process the jobs in VR in ≺-order. To handle a job k ∈ VR, we consider the subgraph

Gk of G induced by Vk = {k} ∪ N−(k) ∪ P (k). We call arcs between two jobs in N−(k) blue
and arcs between k and any job in P (k) green. The directions of blue and green arcs are
irrelevant and can be ignored. We denote by Ck the set of elements (vertices and arcs) of G

that are grouped with the red incoming arcs of k for the analysis. We will always have that k

and its incoming red arcs are in Ck, and we will add a suitable number of blue and/or green
arcs to Ck. Each blue and/or green arc will be added to at most one such set Ck, except in
a special case where an arc e plays the role of a blue arc for one k and the role of a green arc
for another k; in that case, we will split e into a green arc and a blue arc, and each part will
be added to at most one set Ck. We let ρCk

denote the ratio of the sum of the delays on all
the arcs and vertices in Ck in the solution by the algorithm divided by the sum of the delays
on the same arcs and vertices in the optimal schedule.

▶ Lemma 7 (⋆). For any k ∈ VR, the set N−(k) is a contiguous subset of VI .

▶ Lemma 8 (⋆). Let job k be a job with incoming red arcs, and let r ∈ P (k). Then the
intersection of N−(k) and N−(r) is a (not necessarily proper) prefix of N−(k). Furthermore,
N−(r) cannot contain any vertex in VI that comes after N−(k).

We say that a blue arc is used or used up in the analysis of a vertex k ∈ VR if the arc is
added to the set Ck. We maintain the following invariant when processing the vertices in VR.

▶ Invariant 1. Consider a vertex k ∈ VR, and any vertex j in N−(k). Let P≥j(k) be the
set of vertices in VR that have been processed before k and that have a red arc from j. For
each r ∈ {k} ∪ P≥j(k), let o≥j(r) = |N−

≥j(r)|. Then the total number of blue arcs between
vertices in N−

≥j(k) that have been used up in the analysis of vertices in {k} ∪ P≥j(k) at the
time when k has just been processed is at most

∑
r∈{k}∪P≥j(k)(o≥j(r) − 1).

Intuitively, if we imagine the vertices of VI arranged from top to bottom in order of
increasing mj , the invariant says that for any vertex j in VI the following condition holds:
The number of blue arcs between vertices below j (including j) that have been used up in
the analysis of vertices in VR that have already been processed is bounded by the sum, over
all those vertices, of their number of incoming red arcs from vertices below j minus one.
See Fig. 3 for an illustration. In that figure, vertex r has o≥j(r) = 1 incoming red arc from
N−

≥j(k), s has o≥j(s) = 2, and k has o≥j(k) = 3. Therefore, the invariant says that, after k
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k

P≥j(k)

N−
≥j(k)

N−(k)
r

s

P (k)
j

Figure 3 Illustration of Invariant 1. Only blue (dashed) arcs between vertices in N−
≥j(k) are

shown.

has been processed, the number of blue arcs between vertices in N−
≥j(k) that have been used

up is at most (1 − 1) + (2 − 1) + (3 − 1) = 3. Note that Invariant 1 trivially holds before any
vertices in VR are processed because no blue arcs have been used at that point.

Next, we establish some properties of blue and green arcs.

▶ Lemma 9 (⋆). For each blue arc ij in Gk, we have D∗(i, j) ≥ tk and ρij ≤ ρB = 1 + 1
µν .

▶ Lemma 10 (⋆). For each green arc jk (with j ∈ P (k)) in Gk, we have D∗(j, k) ≥ (ν +ν2)tk

and ρjk ≤ ρG = 1 + 1
ν+ν2 .

Unfortunately, it is possible that an arc ij is used as a blue arc in the analysis of one
vertex r in VR and as a green arc in the analysis of another vertex k in VR. We handle this
case by splitting such an arc ij into two arcs for the purpose of the analysis, a special blue
arc used in the analysis of r and a special green arc used in the analysis of k. In this way, we
can ensure that every arc is used in the analysis of at most one vertex. We refer to the full
version for details and state here only the properties of the resulting special arcs.

▶ Lemma 11 (⋆). For each special blue arc ibjb in Gk, we have D∗(ib, jb) ≥ tk and
ρibjb

≤ ρS = 1 + 1
ν(µ+1) .

▶ Lemma 12 (⋆). For each special green arc rgkg (with r ∈ P (k)) in Gk, we have D∗(rg, kg) ≥
νtk and ρrgkg

≤ ρS = 1 + 1
ν(µ+1) .

The following lemma deals with vertices in VR that have a single incoming red arc. It
shows that no blue arcs need to be used for such vertices, so they do not play any role in the
process of maintaining Invariant 1.

▶ Lemma 13 (⋆). If |N−(k)| = 1 and we take Ck = {k, jk}, where jk is the single incoming
red arc of k, then the ratio ρCk

of the algorithms’s delay over the optimal delay in Ck is
bounded by ν+ν2+2+ 2

µ

ν+ν2+1+ 1
µ

.

The following is the key lemma that shows for each vertex k in VR that, assuming
Invariant 1 holds before vertex k is processed, we can construct a set Ck that allow us to
charge the red incoming arcs while maintaining Invariant 1.

▶ Lemma 14 (⋆). Let k be a vertex in VR and assume that Invariant 1 holds just before k

is processed. We can define a set Ck consisting of blue arcs connecting vertices in N−(k),
green arcs connecting k with vertices in P (k), all incoming red arcs of k, and k itself in such
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a way that ρCk
≤ ρC with

ρC = max{
ν + ν2 + 2 + 2

µ

ν + ν2 + 1 + 1
µ

, 1 + 1
2 + ν

,

4
ν + 4

µν + ν + ν2 + 1
2
ν + 2

µν + ν + ν2 ,

4
ν + 4

νµ + ν + 1
µ+1

2
ν + 2

µν + ν
,

4 + 5
µ + ν

2 + 2
µ + ν

, ρG, ρS} .

Furthermore, Invariant 1 still holds after k is processed.

By Lemma 14, we know that for every k ∈ VR there is a set Ck of vertices and arcs such
that ρCk

≤ ρC . Furthermore, the sets Ck are pairwise disjoint; if an arc is used as a blue arc
in one set and as a green arc in another set, it is split into a special blue arc and a special
green arc, and each set uses one of the two special arcs. Let V ′ denote the vertices that are
not in any Ck and note that any vertex j ∈ V ′ delays itself by σj in both the optimal schedule
and the algorithm’s schedule. Let A′ denote the arcs that are not in any Ck and note that
any arc ij ∈ A′ has D(i, j) ≤ ρN D∗(i, j) with ρN = max

{
2µ+1
µ+1 , 1 + ν

}
by Lemma 6. We

use D(Ck) and D∗(Ck) to denote the sum of the delays in Ck in the algorithm’s schedule
and in the optimal schedule, respectively. As the competitive ratio is

ALG
OPT =

∑
j∈V ′ σj +

∑
ij∈A′ D(i, j) +

∑
k∈VR

D(Ck)∑
j∈V ′ σj +

∑
ij∈A′ D∗(i, j) +

∑
k∈VR

D∗(Ck)

≤
∑

j∈V ′ σj +
∑

ij∈A′ ρN D∗(i, j) +
∑

k∈VR
ρCD∗(Ck)∑

j∈V ′ σj +
∑

ij∈A′ D∗(i, j) +
∑

k∈VR
D∗(Ck) ,

we get that the ratio is bounded by max{1, ρC , ρN } = max{ρC , ρN }. This completes the
proof of Theorem 1.

Lower bounds on the competitive ratio of β-SORT. For β ≤ 1, consider the following
instance of the problem (where M is a fixed positive number and ϵ > 0 is infinitesimally
small): γn short jobs with tj = 0, pj = M and (1−γ)n long jobs with tj = M

β −2ϵ, pj = M −ϵ.
The algorithm schedules the γn tests of short jobs, then the (1 − γ)n tests of long jobs, then
the processing operations of the long jobs, and finally the processing operations of the short
jobs. The optimal schedule schedules first all short jobs and then all long jobs. One can
show that, when choosing γ (as a function of β) to maximize the ratio ALG/OPT , then that
ratio approaches 1

2 (
√

β+4
β + 1) for large n.

For β ≥ 1, consider the following instance of the problem (where ϵ > 0 is again in-
finitesimally small): γn short jobs with tj = 1 + 2ϵ, pj = 0 and (1 − γ)n long jobs with
tj = 1, pj = β + ϵ. The algorithm schedules the tests of the long jobs, then the processing
parts of the long jobs, then the short jobs (with each test followed immediately by the
execution of the tested job). The optimum schedule schedules first all short jobs and then all
long jobs. One can show that, when choosing γ (as a function of β) to maximize the ratio
ALG/OPT , then that ratio approaches (

√
4β(β2 + β − 1) + 1 + 1)/2β for large n.

This shows that β-SORT with β = 1 is not better than 1.618-competitive, and for every
β ̸= 1 we get a larger lower bound on the competitive ratio of β-SORT.

4 Uniform test times

In this section we assume that tj = 1 for all jobs j. First, we show the following lower bound.

▶ Theorem 15. No deterministic algorithm can have competitive ratio strictly smaller than√
2 for the setting with obligatory tests and uniform test times.
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Proof. Let an arbitrary deterministic algorithm for the problem be given. Consider the
following adversarial construction, with a parameter γ, 0 ≤ γ ≤ 1, whose value will be
determined later: The adversary presents n jobs. For the first γn jobs that are tested by the
algorithm, the adversary sets pj = 1. For the remaining (1 − γ)n jobs, the adversary sets
pj = 0. We call the jobs with pj = 0 short jobs and those with pj = 1 long jobs.

The optimal schedule will schedule the jobs in SPT order, i.e., it will first execute the
(1 − γ)n short jobs and after that the γn long jobs, always executing the processing part of a
job right after its test. The objective value of the optimal schedule can be written as the
sum of three parts:

P1 =
∑(1−γ)n

j=1 j = (1−γ)n((1−γ)n+1)
2 P2 = (1 − γ)n · γn = γ(1 − γ)n2

P3 =
∑γn

j=1(2j) = γn(γn + 1)

Here, P1 is the sum of the completion times of the short jobs, P2 is the total delay added by
the short jobs to the completion times of the long jobs, and P3 is the sum of the completion
times of the long jobs calculated as if their schedule started at time 0. As OPT = P1 +P2 +P3,
we get OPT = γ2+1

2 n2 + 1+γ
2 n. For the algorithm, we claim that it is best to schedule the

processing part of each job right after its test. For short jobs, this is obvious, because a
short job that was scheduled at a later time could be moved forward to right after its test
without affecting the completion times of other jobs. This implies in particular that no two
jobs complete at the same time, and that the completion times of any two jobs are at least
one time unit apart. Furthermore, as it is clear that introducing idle time into the schedule
cannot help, we can assume that all tests start and end at integral times and that all job
completion times are integers. Now assume for a contradiction that some long job j is the
first job for which the test completes at some time τ but the processing part completes at
some time τ + k for k > 1. This implies that no job completes at time τ , and r ≤ k − 1
jobs have completion times in the interval [τ, τ + k − 1]. Moving job j forward to right after
its test (and shifting all tests and job executions from time τ to τ + k − 1 one time unit
later) produces a schedule in which the completion time of job j decreases by k − 1 while the
completion times of only r ≤ k − 1 jobs increase by 1. Therefore, the modified schedule has
an objective value that is the same or better. By repeating this transformation, we obtain
a schedule where the processing part of each job is executed right after its test, without
increasing the objective value. Therefore, executing the processing part of each job right
after its test is the best the algorithm can do.

The objective value of the schedule produced by the agorithm is then ALG = P3 +P ′
2 +P1,

where P ′
2 = 2γn(1 − γ)n = 2γ(1 − γ)n2 is the total delay that the long jobs with total length

2γn add to the completion times of the (1 − γ)n short jobs. Thus, the objective value ALG
of the schedule produed by the algorithm is ALG = 1+2γ−γ2

2 n2 + 1+γ
2 n. The competitive

ratio, as a function of γ, is then:

ρ(γ) = ALG
OPT =

1+2γ−γ2

2 n2 + 1+γ
2 n

γ2+1
2 n2 + 1+γ

2 n
=

1 + 2γ − γ2 + 1+γ
n

γ2 + 1 + 1+γ
n

For fixed γ, ρ(γ) increases with n, and the ratio converges to 1+2γ−γ2

γ2+1 for n → ∞. The
function f(γ) = 1+2γ−γ2

γ2+1 has a global maximum at γ0 =
√

2 − 1 with f(γ0) =
√

2, as can
be shown using standard methods from calculus. Thus, if the adversary presents instances
with arbitrarily large n and sets γ to the multiple of 1

n closest to
√

2 − 1, it can force the
algorithm to have competitive ratio arbitrarily close to

√
2. ◀
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For solving the problem with uniform test times, we propose the algorithm SIDLE (Short
Immediate, Delay Long Executions) that has a parameter y > 0. It tests all jobs, and
executes a job j immediately after its test if pj ≤ y (short job). The jobs j with pj > y (long
jobs) are executed in SPT order at the end of the schedule, after all jobs have been tested
and all short jobs executed. The algorithm is inspired by algorithm THRESHOLD from [5].
By adapting the analysis techniques from [5], we can show:

▶ Theorem 16 (⋆). Algorithm SIDLE with y = y0 ≈ 1.35542 has competitive ratio at most
1
2 (1 − y0 + y2

0 +
√

9 − 2y0 − y2
0 − 2y3

0 + y4
0) ≈ 1.58451 ≤ 1.585. Here, y0 is the second root

of the polynomial 2y3 − 9y2 + 10y − 2.

We remark that the analysis of Theorem 16 is tight: For α ≈ 0.644584 and γ ≈ 0.737781,
we can consider instances with αγn jobs with processing time 0, α(1 − γ)n jobs with
processing time y0, and (1 − α)n jobs with processing time y0 + ϵ for infinitesimally small ϵ.
For large enough n, the competitive ratio of algorithm SIDLE on these instances is then
approximately 1.58451.

5 Conclusion

In this paper, we have introduced a variant of scheduling with testing where every job must
be tested and the objective is minimizing the sum of completion times. Our main result is
an analysis showing that the competitive analysis of the 1-SORT algorithm is at most 1.861.
For the special case of uniform test times, we have presented a 1.585-competitive algorithm
as well as a lower bound of

√
2 on the competitive ratio of any deterministic algorithm.

There are several interesting directions for future research. First, there are gaps between
our lower bound of

√
2 and our upper bounds of 1.585 and 1.861 on the competitive ratio

for uniform and arbitrary test times, respectively. One immediate question is whether our
analysis of 1-SORT can be improved, as we only know that the competitive ratio of 1-SORT
is not better than 1.618. Our lower bound of

√
2 on the competitive ratio of deterministic

algorithms holds for uniform test times; it would be interesting to find out whether the case
of arbitrary test times admits a stronger lower bound. Furthermore, it would be worthwhile
to study randomized algorithms for the problem. Finally, it would be interesting to explore
whether our new technique for analyzing β-SORT can also be applied to other variants of
scheduling with testing.
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