
Faster Min-Cost Flow and Approximate Tree
Decomposition on Bounded Treewidth Graphs
Sally Dong #

University of Washington, Seattle, WA, USA

Guanghao Ye #

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We present an algorithm for min-cost flow in graphs with n vertices and m edges, given a tree
decomposition of width τ and size S, and polynomially bounded, integral edge capacities and costs,
running in Õ(m

√
τ + S) time. This improves upon the previous fastest algorithm in this setting

achieved by the bounded-treewidth linear program solver of [26, 16], which runs in Õ(mτ (ω+1)/2)
time, where ω ≈ 2.37 is the matrix multiplication exponent. Our approach leverages recent advances
in structured linear program solvers and robust interior point methods (IPM). In general graphs
where treewidth is trivially bounded by n, the algorithm runs in Õ(m

√
n) time, which is the

best-known result without using the Lee-Sidford barrier or ℓ1 IPM, demonstrating the surprising
power of robust interior point methods.

As a corollary, we obtain a Õ(tw3 · m) time algorithm to compute a tree decomposition of width
O(tw · log(n)), given a graph with m edges.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Parameterized complexity and exact algorithms; Theory of computation
→ Network optimization

Keywords and phrases Min-cost flow, tree decomposition, interior point method, bounded treewidth
graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.49

Related Version Full Version: https://arxiv.org/abs/2308.14727 [18]

Funding Guanghao Ye: Supported by NSF awards CCF-1955217 and DMS-2022448.

1 Introduction

An active area of research in recent years is the advancement of interior point methods (IPM)
for linear and convex programs, with its origins tracing back to the works of [30, 34]. This,
along with the design of problem-specific data structures supporting the IPM, had led to
breakthroughs in faster linear program solvers [13] and faster max flow algorithms [31, 10,
24, 4, 12], among others.

One line of research, inspired by nested dissection from [33] and methods in numerical
linear algebra [14], focuses on exploiting separable structures in the constraint matrix of the
linear program, which can be captured succinctly by associating the matrix with a graph.
Several classical graph-theoretic concepts are appropriate here: Given a graph G = (V, E)
on n vertices, we say S ⊆ V is a (b-)balanced vertex separator if there exists some constant
b ∈ (0, 1) such that every connected component of G \ S has size at most bn. For a function
f , we say G is f -separable if any subgraph H of G has a balanced separator of size f(|V (H)|).
The treewidth of a graph informally measures how close a graph is to a tree, and is closely
related to separability. If G has treewidth τ , then any subgraph of G has a 1/2-balanced
separator of size τ + 1; conversely, if G is τ -separable, then G has treewidth at most τ log n

(c.f. [7]). Treewidth has been a important focus in the study of parametrized complexity [19, 8].
© Sally Dong and Guanghao Ye;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 49; pp. 49:1–49:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sallyqd@uw.edu
mailto:ghye@mit.edu
https://orcid.org/0000-0002-1197-0649
https://doi.org/10.4230/LIPIcs.ESA.2024.49
https://arxiv.org/abs/2308.14727
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Faster Min-Cost Flow on Bounded Treewidth Graphs

Formally,

▶ Definition 1. A tree decomposition of a graph G is a pair (X, T) where T is a tree, and
X : V (T) 7→ 2V (G) is a family of subsets of V (G) labelling the nodes of T called bags, such
that
1. ∪t∈V (T)X(t) = V (G),
2. for each v ∈ V (G), the nodes t ∈ V (T) with v ∈ X(t) induces a connected subgraph of T ,

and
3. for each e = uv ∈ E(G), there is a node t ∈ V (T) such that u, v ∈ X(t).
Given a tree decomposition (X, T), its width is defined to be max{|X(t)| − 1 : t ∈ T}; and its
size is

∑
t∈V (T) |X(t)|. The treewidth of G is the minimum width over all tree decompositions

of G.

By leveraging various separable properties of graphs, the sequence of papers [17, 15, 16]
have iteratively refined the robust IPM framework and associated data structures for solving
structured linear programs. [17] gave the first general linear program solver parametrized by
treewidth: Given an LP of the form min{c⊤x : Ax = b, x ≥ 0} and a width τ decomposition
of the dual graph1 GA of the constraint matrix A, suppose the feasible region has inner
radius r and outer radius R, and the costs are polynomially bounded. Then the LP can
be solved to ε-accuracy in Õ(mτ2 log(R/(εr)) time2. The τ2 factor arises from carefully
analyzing the sparsity-pattern of the Cholesky factorization of AA⊤ and the associated
matrix computation times. This runtime dependence on τ was improved from quadratic to
(ω + 1)/2 ≈ 1.68 in [26], by means of a coordinate-grouping technique applied to the updates
during the IPM. [26] further combined [17] with [36] to give the current best algorithm for
semidefinite programs with bounded treewidth. The result of [17] is now subsumed by [16],
which shows that under the same setup, except where GA is known to be a κnα-separable
graph3 the LP can be solved in Õ

((
κ2(m + m2α+0.5) + mκ(ω−1)/(1−α) + κωnαω

)
· log(mR

εr)
)

time. Taking κ = τ and α = 0 for bounded treewidth graphs recovers the [17] result. For
nα-separable graphs, the runtime expression simplifies to Õ

(
(m + m1/2+2α) log(mR

εr)
)
.

In the special setting of flow problems, the constraint matrix A is the vertex-edge incidence
matrix of a graph and AA⊤ is corresponding graph Laplacian. Fast Laplacian solvers [35, 28]
and approximate Schur complements [20] can be combined with the separable structure of
the graph to further speed up computations at every IPM step. Using these ideas, [15] gave
a nearly-linear time min-cost flow algorithm for planar graphs, which are O(

√
n)-separable.

Notably, the combination of nested dissections with fast approximate Schur complements
was explored before in [25], where they demonstrated how to maintain dynamic effective
resistances in separable graphs.

In this work, we expand the landscape by giving the first specific result for min-cost flow
on bounded treewidth graphs. Previously, [23] showed how to compute a max vertex flow in
O(τ2 · n log n) time given a directed graph with unit capacities and its tree decomposition of
width τ ; their approach is combinatorial in nature.

▶ Theorem 2 (Main result). Let G = (V, E) be a directed graph with n vertices and m edges.
Assume that the demands d, edge capacities u and costs c are all integers and bounded by
M in absolute value. Given a tree decomposition of G with width τ and size S, there is an
algorithm that computes a minimum-cost flow in Õ(m

√
τ log M + S) expected time.

1 The dual graph of a matrix A ∈ Rn×m is a graph on n vertices, where each column of A gives rise to a
clique (or equivalently, a hyper-edge). Importantly, when the linear program is a flow problem on a
graph, GA is precisely the graph in the original problem.

2 Throughout the paper, we use Õ(·) to hide polylog m and polylog M factors.
3 Here, κ is a constant expression, but could be a function of the size of GA (which is considered fixed).

S. Dong and G. Ye 49:3

As a direct corollary of Theorem 2, we can solve min-cost flow on any graph with n vertices,
m edges and integral polynomially-bounded costs and constraints in Õ(m

√
n) expected time,

as the treewidth of any n-vertex graph is at most τ = n, and the tree decomposition is
trivially the graph itself. This result matches that of [31] obtained using the Lee-Sidford
barrier for the IPM, which requires Õ(

√
n) iterations. In contrast, we use the standard log

barrier which requires Õ(
√

m) iterations, and leverage the robustness of the IPM and custom
data structures to reduce the amortized cost per iteration. We find it noteworthy that all
other max flow results matching or beating our time require either the Lee-Sidford barrier
([10]) or significantly divergent IPM techniques ([12]).

Using our faster max-flow algorithm as a subroutine, we can efficiently compute a tree
decomposition of any given graph, where the width is within a O(log n)-factor of the optimal:

▶ Corollary 3 (Approximating treewidth). Let G = (V, E) be a graph with n vertices, m edges,
and treewidth tw(G). There is an algorithm to find a tree decomposition of G with width at
most O(tw(G) · log n) in Õ(tw(G)3 ·m) expected time.

It is well known that computing the treewidth of a graph is NP-hard [1], and there
is conditional hardness result for even constant-factor approximation algorithm [3]. For
polynomial time algorithms, the best known result is a O(

√
log tw)-approximation algorithm

by [22], which involves solving a semidefinite program with n2 variables.
There is a series of works focused on computing approximate treewidth for small treewidth

graph in nearly-linear time; we refer the readers to [6] for a more detailed survey. Notably,
[23] showed for any graph G, there is an algorithm to compute a tree decomposition of width
O(tw(G)2) in Õ(tw(G)7 · n) time. [11] improved the running time to Õ(tw(G)3 ·m) with
slightly compromised approximation ratio O(tw(G)2 · log1+o(1) n). More recently, [5] showed
how to compute a tree decomposition of width O(tw(G) · log3 n) in O(m1+o(1)) time.

1.1 Overview of techniques
The foundation of our algorithm is the planar min-cost flow algorithm from [15]. We begin
with the identical robust IPM algorithm in abstraction, as given in Algorithm 1. [15] first
defines a separator tree T for the input graph, and uses it as the basis for the data structures
in the IPM. We modify the separator tree construction, so that instead of recursively
decomposing the input planar graph which is O(

√
n)-separable, we recursively decompose

the bounded treewidth graph. The leaf nodes of T partition the edges of the input graph;
We guarantee that each leaf node contains O(τ)-many edges, compared to constantly-many
in the planar case.

There are two main components to the data structures from [15]:
1. A data structure DynamicSC (Theorem 10) is used to maintain approximate Schur

complement matrices at every node of of the separator tree T . It implicitly represents
the matrix (B⊤WB)−1, where W are edge weights changing at every step of the IPM.
We use DynamicSC in exactly the same way.

2. A data structure MaintainSoln (Theorem 11) using T to implicitly maintain the primal
and dual solutions f and s, and explicitly maintain approximate solutions f and s at the
current IPM iteration. The approximate solutions are used in the subsequent iteration to
compute the step direction v and edge weights w.

In [15], the approximate solutions f and s are updated coordinate-wise whenever a
coordinate is sufficiently far from f and s respectively. An update induces changes in the
data structures as follows: If fe or se is updated for an edge e (subsequently, we and ve

ESA 2024

49:4 Faster Min-Cost Flow on Bounded Treewidth Graphs

are updated), then we find the unique leaf node H in T containing the edge e, and update
DynamicSC and MaintainSoln at all nodes along the path from H to the root of T . [15]
shows this runtime depends on the sizes of the nodes visited.

[26] introduced a natural grouping technique for the coordinate updates, where coordinates
are grouped into blocks, and updates are performed block-wise. Since the leaves of our
separator tree T contain O(τ) edges, it is natural for us to also incorporate a blocking scheme,
where the blocks are given by the edge partition according to the leaves of T . In this case,
the runtime for data structure updates is the same whether we update a single coordinate or
a block containing said coordinate, since they affect the same path from the leaf node to the
root of T . We bound the overall runtime expression using properties of the new separator
tree.

Lastly, the RIPM guarantees that for each k iterations, Õ(k2)-many blocks of f and s

are updated, meaning that running our data structures for many IPM iterations leads to
superlinear runtime scaling. We can, however, restart our data structures at any point, by
explicitly computing the current exact solutions f , s and reinitializing the data structures
with these values in Õ(m) total time. On balance, we choose to restart the data structures
every

√
m/τ -many iterations, for a total restarting cost of Õ(m

√
τ). Between each restart,

we make O(m/τ)-many block updates using Õ(τ) time each, for a total update cost of
Õ(m

√
τ). Hence, the overall runtime is Õ(m

√
τ).

2 Robust interior point method

For the sake of completion, we give the robust interior point method from [17, 16], which is
a refinement of the methods in [13, 9], for solving linear programs of the form

min
f∈F

c⊤f where F = {B⊤f = b, l ≤ f ≤ u} (2.1)

for some matrix B ∈ Rm×n.

▶ Theorem 4 ([17]). Consider the linear program

min
B⊤f=b, l≤f≤u

c⊤f

with B ∈ Rm×n. Suppose there exists some interior point f◦ satisfying B⊤f◦ = b and
l + r ≤ f◦ ≤ u − r,4 for some scalar r > 0. Let L = ∥c∥2 and R = ∥u − l∥2. For any
0 < ϵ ≤ 1/2, the algorithm RIPM (Algorithm 1) finds f such that B⊤f = b, l ≤ f ≤ u, and

c⊤f ≤ min
B⊤f=b, l≤f≤u

c⊤f + ϵLR.

Furthermore, the algorithm has the following properties:
Each call of Solve involves O(

√
m log m log(mR

ϵr)) many steps, and t is updated for
O(log m log(mR

ϵr)) times total.
In each step of Solve, the coordinate i in W, v changes only if f i or si changes.
In each step of Solve, h∥v∥2 = O(1

log m).
Algorithm 1 to Algorithm 1 takes O(K) time in total, where K is the total number of
coordinate changes in f , s. ⌟

We note that this algorithm only requires access to (f , s), but not (f , s) during the main
while-loop in Solve. Hence, (f , s) can be implicitly maintained via any data structure.

4 For any vector v and scalar x, we define v + x to be the vector obtained by adding x to each coordinate
of v. We define v − x to be the vector obtained by subtracting x from each coordinate of v.

S. Dong and G. Ye 49:5

Algorithm 1 Robust Interior Point Method from [17].

1: procedure RIPM(B ∈ Rm×n, b, c, l, u, ϵ)
2: Let L = ∥c∥2 and R = ∥u− l∥2
3: Define ϕi(x) def= − log(ui − x)− log(x− li)
4: Define µt

i(fi, si)
def= si/t +∇ϕi(fi)

5: Define γt(f , s)i
def= ∥(∇2ϕi(fi))−1/2µt

i(fi, si)∥2

▷ Modify the linear program and obtain an initial (f , s) for modified linear program
6: Let t = 221m5 · LR

128 ·
R
r

7: Compute fc = arg minl≤f≤u c⊤f + tϕ(f) and f◦ = arg minB⊤f=b ∥f − fc∥2
8: Let f = (fc, 3R + f◦ − fc, 3R) and s = (−t∇ϕ(fc), t

3R+f◦−fc
, t

3R)
9: Let the new matrix Bnew def= [B; B;−B], the new barrier

ϕnew
i (x) =

{
ϕi(x) if i ∈ [m],
− log x else.

▷ Find an initial (f , s) for the original linear program
10: ((f (1), f (2), f (3)), (s(1), s(2), s(3)))← Solve(Bnew, ϕnew, f , s, t, LR)
11: (f , s)← (f (1) + f (2) − f (3), s(1))

▷ Optimize the original linear program
12: (f , s)← Solve(B, ϕ, f , s, LR, ϵ

4m)
13: return f

14: end procedure

15: procedure Solve(B, ϕ, f , s, tstart, tend)
16: Let α = 1

220λ and λ = 64 log(256m2) where m is the number of rows in B
17: Let t← tstart, f ← f , s← s, t← t

18: while t ≥ tend do
19: t← max

{
(1− α√

m
)t, tend

}
20: Update h = −α/∥ cosh(λγt(f , s))∥2
21: Update the diagonal weight matrix W = ∇2ϕ(f)−1

22: Update the direction v where vi = sinh(λγt(f , s)i)µt(f , s)i

23: Pick v∥ and v⊥ such that W−1/2v∥ ∈ Range(B), B⊤W1/2v⊥ = 0 and

∥v∥ −Pwv∥2 ≤ α∥v∥2,

∥v⊥ − (I−Pw)v∥2 ≤ α∥v∥2 (Pw
def= W1/2B(B⊤WB)−1B⊤W1/2)

24: Implicitly update f ← f + hW1/2v⊥, s← s + thW−1/2v∥

25: Explicitly maintain f , s such that ∥W−1/2(f −f)∥∞ ≤ α and ∥W1/2(s−s)∥∞ ≤
tα

26: Update t← t if |t− t| ≥ αt

27: end while
28: return (f , s)
29: end procedure

ESA 2024

49:6 Faster Min-Cost Flow on Bounded Treewidth Graphs

3 Nested dissection on bounded treewidth graphs

In this section, we show how to leverage the structural properties of bounded treewidth
graphs to find a sparse Cholesky factorization of L def= B⊤WB, and hence implicitly maintain
an approximation of L−1 as part of the projection matrix Pw

def= W1/2B(B⊤WB)−1B⊤W1/2

used in the RIPM.

3.1 Separator tree for bounded treewidth graph
The notion of using a separator tree to represent the recursive decomposition of a separable
graph is well-established in literature, c.f [21, 27]. In [15], the authors show that the separator
tree can be used to construct a sparse approximate projection matrix for RIPM. Here, we
extends their result to bounded treewidth graphs.

▶ Definition 5 (Separator tree). Let G be a graph with n vertices and m edges. A separator
tree T of G is a rooted constant-degree tree whose nodes represent a recursive decomposition
of G based on vertex separators.

Formally, each node H of T is a region (edge-induced subgraph) of G; we denote this
by H ∈ T . At a node H, we store subsets of vertices ∂H, S(H), FH , where ∂H is the set
of boundary vertices of H, i.e. vertices with neighbours outside H in G; S(H) is a vertex
separator of H; and FH is the set of eliminated vertices at H.

The nodes of T satisfy the following recursive definition:
1. The root of T is the node H = G, with ∂H = ∅ and FH = S(H).
2. A non-leaf node H ∈ T has exactly two children H1, H2 ∈ T that form a edge-disjoint

partition of H, and S(H) def= V (H1) ∩ V (H2) is a vertex separator of H. Define the set
of eliminated vertices at H to be FH

def= S(H) \ ∂H.
By definition of boundary vertices, we have ∂H1

def= (∂H ∪ S(H)) ∩ V (H1), and ∂H2
def=

(∂H ∪ S(H)) ∩ V (H2).
3. If H is a leaf node, define S(H) = ∅ and FH = V (H) \ ∂H.

By construction, the leaf nodes of T partition the edges of G. If H is a leaf node, let
E(H) denote the edges contained in H. If H is not a leaf node, let E(H) denote the union
of all the edges in the leaf nodes in the subtree TH . Let η denote the height of T .

Next, we show how to construct an appropriate separator tree for bounded treewidth
graphs.

▶ Theorem 6. Let G be a graph with n vertices and m edges. Given a tree decomposition of
G with width τ and size s, we can construct a separator tree T of G in Õ(s) time, such that
T has height η = O(log m), each node H ∈ T satisfies |FH ∪ ∂H| ≤ O(τ poly log(m)), and
each leaf node H ∈ T has |E(H)| ≤ Θ(τ).

To prove the theorem above, we need a lemma about balanced vertex separators. Let us
adopt the notation (A, S, B) to mean that S is a vertex separator such that its removal from
the graph leaves two disjoint subgraphs A and B.

▶ Lemma 7 (Slight modification of [17, Theorem 4.17]). Let (X, T) be a tree decomposition
of a graph G on n vertices with width τ and size s. Then in O(s) time, we can find a
2/3-balanced vertex separator (A, S, B) of G and compute tree decompositions (X1, T1) of
G[A ∪ S] with width τ and size s1, and (X2, T2) of G[B ∪ S] with width τ and size s2, such
that s1 + s2 ≤ s + τ .

S. Dong and G. Ye 49:7

Proof. By scanning through the bags of T in O(s) time, we can find a node t ∈ T such that
T \ t is two disjoint subtrees T ′

1 and T ′
2, with |

⋃
u∈T ′

1
X(s) \X(t)| ≤ 2/3n, and similarly for

T ′
2. Then S

def= X(t) ⊆ V (G) is a 2/3-balanced vertex separator of G, and A
def=

⋃
u∈T ′

1
X(u)

and B
def=

⋃
u∈T ′

2
X(u) partitions the remaining vertices of G.

Observe that (X, T) restricted to the nodes T1 ∪ t yields a tree decomposition of G[A∪S]
(with vertices of B deleted from the bags), and similarly when restricted to T2 ∪ t yields a
tree decomposition of G[B ∪ S]. Both trivially have width τ . Since only the node t is shared
between the two, and t has size at most τ , we see that s1 + s2 ≤ s + τ . ◀

Proof of Theorem 6. We construct the separator tree T by recursively decomposing the
graph starting with subgraph H = G:
1. Given a subgraph H of G, if |E(H)| ≤ Θ(τ), then set H as a leaf node.
2. Else if |V (H)| > 2τ , find a 2/3-balanced vertex separator (A, S, B) of H using the

tree decomposition of H by Lemma 7. Let (X1, T1) and (X2, T2) be the resulting tree
decompositions of G[A ∪ S] and G[B ∪ S].
Let H1 and H2 be subgraphs of H where V (H1) = A ∪ S and V (H2) = B ∪ S. Partition
E(H) so that edges incident to A are in H1 and edges incident to B are in H2, and edges
in S(H) can be arbitrarily assigned to H1 or H2. Observe that (X1, T1) and (X2, T2) are
indeed tree decompositions of H1 and H2 respectively. Set H1 and H2 as the children of
H.

3. Else if |V (H)| ≤ 2τ , then we partition the edges of H into two sets each of size at most
2
3 |E(H)|, and let H1 and H2 be graphs on V (H) with their respective edge sets.5

Consider a non-leaf node H with children H1 and H2, we note that

|V (Hi)| · |E(Hi)| ≤
2
3 |V (H)| · |E(H)| for i ∈ {1, 2}.

This directly shows the height of the separator tree T is η = O(log m). At any node H, the
cardinality of FH ∪ ∂H is bounded by the number of vertices contained in any ancestor node
of H in T , which is at most O(τ log m).

The runtime is bounded by the total size of the tree decompositions across node generated
by option 2 in the above construction. [16] shows that there are Õ(n/τ)-many interior
nodes in T generated this way. Each such node contributes a term of τ to the total size,
while each layer in the separator tree contributes a term of s. In total, this gives a size of
s log m + (n/τ) · τ = Õ(s + n), as desired. ◀

3.2 Nested dissection using a separator tree
▶ Definition 8 (Block Cholesky decomposition). The block Cholesky decomposition of a
symmetric matrix L with two blocks indexed by F and C is:

L =
[

I 0
LC,F (LF,F)−1 I

] [
LF,F 0

0 Sc(L, C)

] [
I (LF,F)−1LF,C

0 I

]
,

where the middle matrix in the decomposition is a block-diagonal matrix with blocks indexed
by F and C, with the lower-right block being the Schur complement Sc(L, C) of L onto C:

Sc(L, C) def= LC,C − LC,F L−1
F,F LF,C .

5 We use 2τ here to differentiate between the second and third case, instead of the more natural τ , in
order to avoid any infinite-loop edge cases in the recursive process arising from division and rounding.

ESA 2024

49:8 Faster Min-Cost Flow on Bounded Treewidth Graphs

We use the separator tree structure to factor the matrix L−1 def= (B⊤WB)−1:

▶ Theorem 9 (Approximate L−1 factorization, c.f. [15, Theorem 33]). Let T be the separator
tree of G with height η. For each node H ∈ T with edges E(H), let B[H] denote the matrix
B restricted to rows indexed by E(H), and define L[H] def= B[H]⊤WB[H].

Given approximation parameter ϵP, suppose for each node H at level i of T , we have a
matrix L(H) satisfying the eiϵP-spectral approximation

L(H) ≈iϵP Sc(L[H], ∂H ∪ FH). (3.1)

Then, we can approximate L−1 by

L−1 ≈ηϵP Π(0)⊤ · · ·Π(η−1)⊤ΓΠ(η−1) · · ·Π(0), (3.2)

where

Γ def=


∑

H∈T (0)

(
L(H)

FH ,FH

)−1
0 0

0
. . . 0

0 0
∑

H∈T (η)

(
L(H)

FH ,FH

)−1

 , (3.3)

and for i = 0, . . . , η − 1,

Π(i) def= I−
∑

H∈T (i)

X(H), (3.4)

where T (i) is the set of nodes at level i in T , the matrix Π(i) is supported on
⋃

H∈T (i) ∂H∪FH

and padded with zeros to full dimension, and for each H ∈ T ,

X(H) def= L(H)
∂H,FH

(
L(H)

FH ,FH

)−1
. (3.5)

[15] gives a data structure to maintain an implicit representation of L−1 as the weights
w undergoes changes in the IPM:

▶ Theorem 10 ([15, Theorem 6]). Given a graph G with m edges and its Õ(τ)-separator
tree T with height η = O(log m), there is a deterministic data structure DynamicSC which
maintains the edge weights w from the IPM, and at every node H ∈ T , maintains two
Laplacians L(H) and S̃c(L(H), ∂H) dependent on w. It supports the following procedures:

Initialize(G, w ∈ Rm
>0, ϵP > 0): Given a graph G, initial weights w, projection matrix

approximation accuracy ϵP, preprocess in Õ(ϵP
−2m) time.

Reweight(w ∈ Rm
>0, given implicitly as a set of changed coordinates): Update the weights

to w in Õ(ϵP
−2 ∑

H∈H |FH ∪ ∂H|) time, where H def= {H ∈ T : (w −w(prev))|E(H) ̸= 0}
is the set of nodes containing an edge with updated weight. (Note that H is a union of
paths from leaf nodes to the root.)
Access to Laplacian L(H) at any node H ∈ T in time Õ

(
ϵP

−2|∂H ∪ FH |
)
.

Access to Laplacian S̃c(L(H), ∂H) at any node H ∈ T in time Õ
(
ϵP

−2|∂H|
)
.

Furthermore, with high probability, for any node H in T , if H is at level i, then

L(H) ≈iϵP Sc(L[H], ∂H ∪ FH), and

S̃c(L(H), ∂H) ≈ϵP Sc(L(H), ∂H).

S. Dong and G. Ye 49:9

4 Solution maintenance

Assuming the correct maintenance of Laplacians and Schur complements along a recursive
separator tree, [15] gave detailed data structures for maintaining the exact and approximate
flow and slack solutions throughout the RIPM. Recall that the leaf nodes of the separator
tree T form a partition of the edges of G. In [15], each leaf node of the separator tree
contains O(1)-many edges, whereas in our case, each leaf node contains O(τ)-many edges,
and therefore we update the approximate solution in a block manner. The data structures in
[15] naturally generalized from coordinate-wise updates to the block-wise case, so we use
their implementation in a black-box manner. Here, we state a combined version of their
main theorems.

We use f[i] to denote the subvector of f indexed by edges in the i-th leaf node of T , and
similarly s[i]. We use f

(k)
[i] and s

(k)
[i] to denote the vector f[i] and s[i] at the k-th step of the

IPM. Each block contains O(τ)-many variables.

▶ Theorem 11 ([15, Theorems 9, 10]). Given a graph G with m edges and its separator tree
T with height η, there is a randomized data structure implicitly maintains the IPM solution
pair (f , s) undergoing IPM changes, and explicitly maintains its approximation (f , s), and
supports the following procedures with high probability against an adaptive adversary:

Initialize(G, f (init) ∈ Rm, s(init) ∈ Rm, v ∈ Rm, w ∈ Rm
>0, ϵP > 0, ϵ > 0): Given a graph

G, initial solutions f (init), s(init), initial direction v, initial weights w, target step accuracy
ϵP and target approximation accuracy ϵ, preprocess in Õ(mϵ−2

P) time, set the implicit
representations f ← f (init), s← s(init), and set the approximations f ← f , s← s.
Reweight(w ∈ Rm

>0, given implicitly as a set of changed weights): Set the current
weights to w in Õ(ϵ−2

P τK)6 time, where K is the number of blocks changed in w.
Move(α ∈ R, v ∈ Rm given implicitly as a set of changed coordinates): Implicitly update

s← s + αW−1/2P̃wv,

f ← f + αW1/2v − αW1/2P̃′
wv,

for some P̃w satisfying ∥(P̃w − Pw)v∥2 ≤ ηϵP ∥v∥2 and P̃wv ∈ Range(B), and some
other P̃′

w satisfying ∥P̃′
wv −Pwv∥2 ≤ O(ηϵP) ∥v∥2 and B⊤W1/2P̃′

wv = B⊤W1/2v.
The total runtime is Õ(ϵ−2

P τK), where K is the number of blocks changed in v.
Approximate() → R2m: Return the vector pair f , s implicitly as a set of changed
coordinates, satisfying ∥W−1/2(f − f)∥∞ ≤ ϵ and ∥W1/2(s− s)∥∞ ≤ ϵ, for the current
weight w and the current solutions f , s.
Exact()→ R2m: Output the current vector f , s in Õ(mϵP

−2) time.
Suppose α∥v∥2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight,
Move and Approximate are called in order. Let K denote the total number of blocks
changed in v and w between the (k − 1)-th and k-th Reweight and Move calls. Then at
the k-th Approximate call,

the data structure sets f [i] ← f
(k)
[i] , s[i] ← s

(k)
[i] for O(Nk

def= 22ℓk (β
ϵ)2 log2 m) blocks i,

where ℓk is the largest integer ℓ with k ≡ 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0, and
the amortized time for the k-th Approximate call is Õ(ϵ−2

P τ(K + Nk−2ℓk)).

6 The original bound here is Õ(ϵ−2
P

√
mK), where the

√
mK factor comes from the fact that they can

bound
∑

H∈H |FH ∪ ∂H| ≤
√

mK and H = {H ∈ T : (w − w(prev))|E(H) ̸= 0}. See [15, Section 9] for
more details. Here, we replace it by Õ(τK) by the guarantees of Theorem 6.

ESA 2024

49:10 Faster Min-Cost Flow on Bounded Treewidth Graphs

An alternative derivation of the running time for Approximate shows that 2ℓ steps take
Õ(22ℓτ) time. For 2ℓ = Ω(

√
m) steps of IPM, this would take Õ(mτ) total time, which is too

expensive for our use case. Since initialization only takes Õ(m) time, we reinitialize the data
structure every 2ℓ = Ω(

√
m/τ) steps, allowing us to avoid running the same data structure

for too many steps and accuring large superlinear costs.

5 Proof of main theorems

Proof of Theorem 2. We apply RIPM from Theorem 4 combined with the data structures
from Theorem 11.

First, we reduce the min-cost flow problem to min-cost circulation, for the sake of
simplicity in showing the existence of an interior point in the polytope. We begin by adding
extra vertices s and t to the input graph G, which increases the treewidth of G by at most 2.
For every vertex v with demand dv < 0, we add a directed edge from s to v with capacity
−dv and cost 0. For every vertex v with dv > 0, we add a directed edge from v to t with
capacity dv and cost 0. Then, we add a directed edge from t to s with capacity 4nM and
cost −4nM . The cost and capacity on the t→ s edge is chosen such that the min-cost flow
problem on the original graph is equivalent to the min-cost circulation on this new graph.

We apply Algorithm 1 in Theorem 4 to find a circulation f in the new graph such that
(cnew)⊤f ≤ OPT+ 1

2 by setting ϵ = 1
CM2m2 for some large constant C. The other parameters

L, R, r in the theorem can be bounded by L = ∥cnew∥2 = O(Mm), R = ∥unew − lnew∥2 =
O(Mm), and r ≥ 1

4m , as shown in [15]. Now, the solution f , when restricted to the original
graph, is almost a flow routing the required demand, with flow value off by at most 1

2nM

from the optimal. This is because sending extra k units of fractional flow from s to t gives
extra negative cost ≤ −knM . Now we can round f to an integral flow f int with same or
better flow value using no more than Õ(m) time [29]. Since f int is integral with flow value
at least the total demand minus 1

2 , f int routes the demand completely. Again, since f int is
integral with cost at most OPT + 1

2 , f int must have the minimum cost.
The RIPM given in Algorithm 1 runs the subroutine Solve twice. In the first run, the

constraint matrix is the incidence matrix of the input graph G copied three times. Copying
edges does not affect treewidth, and our data structures allow for duplicate edges, so we may
treat the two runs identically. We construct a separator tree T based on the input graph
in Õ(S) time using Theorem 6, and implement the IPM data structures on top of T using
Theorem 11.

Finally, we bound the IPM runtime. We initialize the data structures for flow and
slack by Initialize. Here, the data structures are given the first IPM step direction v for
preprocessing; the actual step is taken in the first iteration of the main while-loop. At each
step, we perform the implicit update of f and s using Move; we update W in the data
structures using Reweight; and we construct the explicit approximations f and s using
Approximate; each in the respective flow and slack data structures. We return the true
(f , s) by Exact. The total cost of is dominated by Move, Reweight, and Approximate.

Since we call Move, Reweight and Approximate in order in each step and the
runtime for Move, Reweight are both dominated by the runtime for Approximate, it
suffices to bound the runtime for Approximate only. Theorem 4 guarantees that there are
T = O(

√
m log n log(nM)) total Approximate calls. We implement reinitialize the data

structures every
√

m/τ steps.
At the k-th step after any initialization, the number of blocks changed in w and v is

bounded by K
def= O(22ℓk−1 log2 m), where ℓk is the largest integer ℓ with k ≡ 0 mod 2ℓ,

or equivalently, the number of trailing zeros in the binary representation of k. Theorem 4

S. Dong and G. Ye 49:11

guarantees we can apply Theorem 11 with parameter β = O(1/ log m), which in turn shows the
amortized time for the k-th call is Õ(ϵP

−2τ(K + Nk−2ℓk)), where Nk
def= 22ℓk (β/α)2 log2 m =

O(22ℓk log2 m), with α = O(1/ log m) and ϵP = O(1/ log m). Observe that K + Nk−2ℓk =
O(Nk−2ℓk). Now, summing over T =

√
m/τ steps, the total runtime between each restart is

O(
√

m/τ)
T∑

k=1
Õ(τNk−2ℓk) = O(

√
m/τ)

log T∑
ℓ=0

T

2ℓ
· Õ(22ℓτ) = Õ(m).

Theorem 4 guarantees O(
√

m log n log(nM))-many IPM steps in total. The data structure
restarts Õ(

√
τ)-many times, and each initialization time is Õ(m). Hence, the total runtime

for the RIPM is Õ(m
√

τ log M). ◀

▶ Corollary 3 (Approximating treewidth). Let G = (V, E) be a graph with n vertices, m edges,
and treewidth tw(G). There is an algorithm to find a tree decomposition of G with width at
most O(tw(G) · log n) in Õ(tw(G)3 ·m) expected time.

Our algorithm for Corollary 3 requires some tree decomposition of the graph as input.
We use the following lemma to construct the initial tree decomposition.

▶ Lemma 12 ([11]). For any 2
3 < α < 1 and 0 < ϵ < 1− α, given a graph G with n vertices

and m edges, if the graph G contains an α-balanced vertex separator of size K, then there is
a randomized algorithm that finds a balanced vertex separator of size Õ(K2/ϵ) in Õ(mK3/ϵ)
expected time. The algorithm does not require knowledge of K.

Next, the lemma below establishes the relationship between max flow and balanced edge
separators. We first give the relevant definitions. For a given constant c ≤ 1/2, a directed
edge-cut (S, S) is called a c-balanced edge separator if both |S| ≥ cn and |S| ≥ cn. The
capacity of the cut (S, S) is the total capacity of all edges crossing the cut. The minimum
c-balanced edge separator is the c-balanced edge separator with minimum capacity. A λ

pseudo-approximation to the minimum c-balanced edge separator is a c′-balanced cut (S, S)
for some other constant c′, whose capacity is within a factor of λ of that of the minimum
c-balanced edge separator.

▶ Lemma 13 ([2]). An O(log n) pseudo-approximation to the minimum c-balanced edge sepa-
rator in directed graphs can be computed using polylog n single-commodity flow computations
on the same graph.

Proof of Corollary 3. It is well known that given a O(log n) approximation algorithm for
finding a balanced vertex separator, one can construct a tree decomposition of width
O(tw(G) log n). Specifically, the algorithm of [7] finds such a tree decomposition by recursively
using a balanced vertex separator algorithm and requires only an additional log factor in the
runtime.

Now, it suffices to show we can find a log(n) pseudo-approximation balanced vertex
separator in Õ(m · tw(G)3) expected time. Using the reduction from [32], we reduce the
balanced vertex separator to directed edge separator on graph G∗ = (V ∗, E∗), where

V ∗ =
{

v | v ∈ V
}
∪

{
v′ | v ∈ V

}
,

and

E∗ =
{

(v, v′) | v ∈ V
}
∪

{
(u′, v) | (u, v) ∈ E

}
∪

{
(v′, u) | (u, v) ∈ E

}
.

ESA 2024

49:12 Faster Min-Cost Flow on Bounded Treewidth Graphs

We note that tw(G∗) = O(tw(G)). This shows G∗ has a 2/3-balanced vertex separator
of size O(tw(G)). We first use Lemma 12 to construct a Õ(tw(G)2)-separator tree for G∗.
Then, we use the algorithm in [2] combined with our flow algorithm to find a balanced edge
separator in Õ(m · tw(G)) expected time. Hence, we can find a balanced vertex separator in
Õ(m · tw(G)3) expected time. ◀

References
1 Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding embeddings

in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987. doi:10.1137/
0608024.

2 Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. Journal of the ACM (JACM), 63(2):1–35, 2016. doi:10.1145/2837020.

3 Per Austrin, Toniann Pitassi, and Yu Wu. Inapproximability of treewidth, one-shot peb-
bling, and related layout problems. In International Workshop on Approximation Algo-
rithms for Combinatorial Optimization (APPROX), pages 13–24. Springer, 2012. doi:
10.1007/978-3-642-32512-0_2.

4 Jan van den Band, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, Richard Peng,
and Aaron Sidford. Faster maxflow via improved dynamic spectral vertex sparsifiers. CoRR,
abs/2112.00722, 2021. doi:10.48550/arXiv.2112.00722.

5 Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic
decremental sssp and approximate min-cost flow in almost-linear time. In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), pages 1000–1008. IEEE,
2022. doi:10.1109/FOCS52979.2021.00100.

6 Hans L Bodlaender, Pål Grǿnås Drange, Markus S Dregi, Fedor V Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

7 Hans L Bodlaender, John R Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–
255, 1995. doi:10.1006/jagm.1995.1009.

8 Hans L Bodlaender and Arie MCA Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

9 Jan van den Brand. A deterministic linear program solver in current matrix multiplication
time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 259–278. SIAM, 2020. doi:10.1137/1.9781611975994.16.

10 Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, MDPs, and ℓ1-regression in nearly linear time for
dense instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 859–869, 2021. doi:10.1145/3406325.3451108.

11 Sebastian Brandt and Roger Wattenhofer. Approximating small balanced vertex separators in
almost linear time. Algorithmica, 81:4070–4097, 2019. doi:10.1007/s00453-018-0490-x.

12 Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623.
IEEE, 2022. doi:10.1109/FOCS54457.2022.00064.

13 Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021. doi:10.1145/3424305.

14 Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.
15 Sally Dong, Yu Gao, Gramoz Goranci, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and

Guanghao Ye. Nested dissection meets ipms: Planar min-cost flow in nearly-linear time. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 124–153. SIAM, 2022. doi:10.1137/1.9781611977073.7.

https://doi.org/10.1137/0608024
https://doi.org/10.1137/0608024
https://doi.org/10.1145/2837020
https://doi.org/10.1007/978-3-642-32512-0_2
https://doi.org/10.1007/978-3-642-32512-0_2
https://doi.org/10.48550/arXiv.2112.00722
https://doi.org/10.1109/FOCS52979.2021.00100
https://doi.org/10.1137/130947374
https://doi.org/10.1006/jagm.1995.1009
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1137/1.9781611975994.16
https://doi.org/10.1145/3406325.3451108
https://doi.org/10.1007/s00453-018-0490-x
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1145/3424305
https://doi.org/10.1137/1.9781611977073.7

S. Dong and G. Ye 49:13

16 Sally Dong, Gramoz Goranci, Lawrence Li, Sushant Sachdeva, and Guanghao Ye. Fast
algorithms for separable linear programs. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 3558–3604. SIAM, 2024. doi:10.1137/1.
9781611977912.127.

17 Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear programs
with small treewidth: A multiscale representation of robust central path. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pages
1784–1797. ACM, 2021. doi:10.1145/3406325.3451056.

18 Sally Dong and Guanghao Ye. Faster min-cost flow and approximate tree decomposition on
bounded treewidth graphs. CoRR, abs/2308.14727, 2023. doi:10.48550/arXiv.2308.14727.

19 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity,
volume 4 of Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

20 David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva. Sampling
random spanning trees faster than matrix multiplication. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 730–742, 2017.
doi:10.1145/3055399.3055499.

21 David Eppstein, Zvi Galil, Giuseppe F Italiano, and Thomas H Spencer. Separator based
sparsification: I. planarity testing and minimum spanning trees. journal of computer and
system sciences, 52(1):3–27, 1996. doi:10.1006/jcss.1996.0002.

22 Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. Improved approximation algo-
rithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629, 2008.
doi:10.1137/05064299X.

23 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, Michał Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Transactions on Algorithms (TALG), 14(3):1–45, 2018. doi:10.1145/3186898.

24 Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow faster
than Goldberg-Rao. In 62st IEEE Annual Symposium on Foundations of Computer Science,
FOCS2021. IEEE, 2021. doi:10.1109/FOCS52979.2021.00058.

25 Gramoz Goranci, Monika Henzinger, and Pan Peng. Dynamic effective resistances and
approximate Schur Complement on separable graphs. In 26th Annual European Symposium on
Algorithms, ESA 2018, volume 112 of LIPIcs, pages 40:1–40:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.40.

26 Yuzhou Gu and Zhao Song. A faster small treewidth SDP solver. arXiv preprint
arXiv:2211.06033, 2022. doi:10.48550/arXiv.2211.06033.

27 Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster shortest-path
algorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997.
doi:10.1006/jcss.1997.1493.

28 Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster laplacian system
solvers. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 540–559. SIAM,
2021. doi:10.1137/1.9781611976465.33.

29 Donggu Kang and James Payor. Flow rounding. CoRR, abs/1507.08139, 2015. doi:10.48550/
arXiv.1507.08139.

30 N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395, December 1984. doi:10.1007/BF02579150.

31 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In 2014 IEEE

55th Annual Symposium on Foundations of Computer Science, pages 424–433. IEEE, 2014.
doi:10.1109/FOCS.2014.52.

32 Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832, 1999.
doi:10.1145/331524.331526.

ESA 2024

https://doi.org/10.1137/1.9781611977912.127
https://doi.org/10.1137/1.9781611977912.127
https://doi.org/10.1145/3406325.3451056
https://doi.org/10.48550/arXiv.2308.14727
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/3055399.3055499
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1137/05064299X
https://doi.org/10.1145/3186898
https://doi.org/10.1109/FOCS52979.2021.00058
https://doi.org/10.4230/LIPIcs.ESA.2018.40
https://doi.org/10.48550/arXiv.2211.06033
https://doi.org/10.1006/jcss.1997.1493
https://doi.org/10.1137/1.9781611976465.33
https://doi.org/10.48550/arXiv.1507.08139
https://doi.org/10.48550/arXiv.1507.08139
https://doi.org/10.1007/BF02579150
https://doi.org/10.1109/FOCS.2014.52
https://doi.org/10.1145/331524.331526

49:14 Faster Min-Cost Flow on Bounded Treewidth Graphs

33 Richard J Lipton, Donald J Rose, and Robert Endre Tarjan. Generalized nested dissection.
SIAM journal on numerical analysis, 16(2):346–358, 1979. doi:10.1137/0716027.

34 James Renegar. A polynomial-time algorithm, based on Newton’s method, for linear program-
ming. Mathematical programming, 40(1-3):59–93, 1988. doi:10.1007/BF01580724.

35 Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 81–90, 2004. doi:10.1145/1007352.1007372.

36 Richard Y Zhang and Javad Lavaei. Sparse semidefinite programs with near-linear time
complexity. In 2018 IEEE Conference on Decision and Control (CDC), pages 1624–1631.
IEEE, 2018. doi:10.1109/CDC.2018.8619478.

https://doi.org/10.1137/0716027
https://doi.org/10.1007/BF01580724
https://doi.org/10.1145/1007352.1007372
https://doi.org/10.1109/CDC.2018.8619478

	1 Introduction
	1.1 Overview of techniques

	2 Robust interior point method
	3 Nested dissection on bounded treewidth graphs
	3.1 Separator tree for bounded treewidth graph
	3.2 Nested dissection using a separator tree

	4 Solution maintenance
	5 Proof of main theorems

