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Abstract
In the online sorting problem, n items are revealed one by one and have to be placed (immediately
and irrevocably) into empty cells of a size-n array. The goal is to minimize the sum of absolute
differences between items in consecutive cells. This natural problem was recently introduced by
Aamand, Abrahamsen, Beretta, and Kleist (SODA 2023) as a tool in their study of online geometric
packing problems. They showed that when the items are reals from the interval [0, 1] a competitive
ratio of O(

√
n) is achievable, and no deterministic algorithm can improve this ratio asymptotically.

In this paper, we extend and generalize the study of online sorting in three directions:

randomized: we settle the open question of Aamand et al. by showing that the O(
√

n) competitive
ratio for the online sorting of reals cannot be improved even with the use of randomness;

stochastic: we consider inputs consisting of n samples drawn uniformly at random from an
interval, and give an algorithm with an improved competitive ratio of Õ(n1/4). The result reveals
connections between online sorting and the design of efficient hash tables;

high-dimensional: we show that Õ(
√

n)-competitive online sorting is possible even for items from
Rd, for arbitrary fixed d, in an adversarial model. This can be viewed as an online variant of the
classical TSP problem where tasks (cities to visit) are revealed one by one and the salesperson
assigns each task (immediately and irrevocably) to its timeslot. Along the way, we also show a
tight O(log n)-competitiveness result for uniform metrics, i.e., where items are of different types
and the goal is to order them so as to minimize the number of switches between consecutive
items of different types.
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1 Introduction

The following natural problem called online sorting was recently introduced by Aamand,
Abrahamsen, Beretta, and Kleist [1]: Given a sequence x1, . . . , xn of real values, assign
them bijectively to array cells A[1], . . . , A[n]. Crucially, after receiving xj , for j = 1, 2, . . . , n,
we must immediately and irrevocably set A[i] = xj , for some previously unused array index
i ∈ [n]. The goal is to minimize

∑n−1
i=1 |A[i + 1] − A[i]|, the sum of absolute differences

between items in consecutive cells.
Aamand et al. [1] study the problem as modelling certain geometric online packing

problems. In particular, they use it to show lower bounds on the competitive ratio of such
problems1. It is easy to see that the optimal (offline) solution of online sorting is to place
the entries in sorted (increasing) order, and the question is how to approximate this solution
in an online setting where the items are revealed one by one.

The problem evokes familiar scenarios where we must commit step-by-step to an ordering
of items, such as when scheduling meetings in a calendar, writing recipes in a notebook,
planting trees in a garden, or writing data into memory cells. In such situations, some local
coherence or sortedness is often desirable, but once the location of an item has been assigned,
it is expensive to change it; for instance, it may be difficult to reschedule meetings or to
migrate data items once memory locations are referenced from elsewhere. One must then
carefully balance between placing similar items next to each other and leaving sufficiently
large gaps amid uncertainty about future arrivals2.

Moreover, online sorting can be firmly placed among familiar and well-studied online
problems; we briefly mention two. As they differ from online sorting in crucial aspects, a
direct transfer of techniques appears difficult.

list labeling or order maintenance [17, 12, 7, 27, 8]: in this problem, a sequence of values
are to be assigned labels consistent with their ordering (in effect placing the values into
an array). The main difference from online sorting is that the sequence must be fully
sorted and the goal is to minimize recourse, i.e., movement of previously placed items.
matching on the line [16, 25, 15, 5]: here, a sequence of clients (e.g., drawn from [n]) are
to be matched uniquely and irrevocably to servers (say, locations in [n]). The problem
differs from online sorting mainly in its cost function; the goal here is to minimize the
sum of distances between matched client-server pairs.

One of the main results of Aamand et al. [1] is an algorithm for online sorting with competitive
ratio O(

√
n). Aamand et al. require the input entries to come from the unit interval [0, 1]

and to contain the endpoints 0 and 1. Conveniently, this makes the offline cost equal to 1
and the competitive ratio equal to the online cost. We show that the same competitiveness
result can be obtained even if these assumptions are relaxed.

Aamand et al. [1] also show that the O(
√

n) bound cannot be improved by any determ-
inistic algorithm, and leave it as an open question whether it can be improved through
randomization (assuming that the adversary is oblivious, i.e., that it does not know the “coin

1 The competitive ratio of an online algorithm is the worst-case ratio of its cost to the optimum (offline)
cost over inputs of a certain size n. The competitive ratio of a problem is the best competitive ratio
achievable by an online algorithm for the problem.

2 The cost measure of online sorting is also natural as a measure of the unsortedness of a sequence. For
this, the number of inversions (i.e., the number of pairs a < b where b appears before a) is perhaps more
widely used. We argue, however, that with this latter cost, one cannot obtain a nontrivial competitive
ratio. Consider an adversary that outputs n/2 copies of 0.5, followed by either all 0s or all 1s until
the end. It is easy to see that one of these choices results in at least n2/8 inversions for any online
algorithm, whereas the optimal (sorted) sequence has zero inversions.
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flips” of our algorithm). Note that in several online problems such as paging or k-server,
randomization can lead to asymptotic improvements in competitiveness (against an obli-
vious adversary); e.g., see [11]. As our first main result, we show that for online sorting,
randomization (essentially) does not help.

▶ Theorem 1. The (deterministic and randomized) competitive ratio of online sorting is
Θ(

√
n). The lower bound Ω(

√
n) holds even when the input numbers are from [0, 1].

Online TSP. Ordering real values with the above cost (sum of differences between consecut-
ive items) can be naturally viewed as a one-dimensional variant of the Traveling Salesperson
Problem (TSP). Suppose that n cities are revealed one by one (with repetitions allowed),
and a salesperson must decide, for each occurrence c of a city, on a timeslot for visiting c, i.e.,
the position of c in the eventual tour. The cost is then the length of the fully constructed
tour3. Formally, given a sequence (x1, . . . , xn) of items xi ∈ S, for a metric space S with
distance function d(·, ·), the goal is to assign the items bijectively to array cells A[1], . . . , A[n]
in an online fashion such as to minimize

∑n−1
i=1 d (A[i], A[i + 1]). We refer to this problem4

as online TSP in S.
Online TSP in R is exactly online sorting. A natural d-dimensional generalization is

online TSP in Rd, with the Euclidean distance d(·, ·) between items.5 A difficulty arising in
dimensions two and above is that the optimal cost is no longer constant; in Rd, the (offline)
optimum may reach Θ(n1− 1

d ) even if the input points come from a unit box. Computing the
optimum exactly is NP-hard even if d = 2 [23]. Our second main result is an online algorithm
whose cost is O(n1− 1

d+1 ) and a competitiveness guarantee close to the one-dimensional case.

▶ Theorem 2. There is a deterministic algorithm for online TSP in Rd with competitive
ratio

√
d · 2d · O(

√
n log n).

As this setting includes online sorting as a special case, the lower bound of Ω(
√

n) applies.
A key step in obtaining Theorem 2 is the study of the uniform metric variant of the problem,
i.e., the case of distance function d with d(x, y) = 1 if and only if x ̸= y. This captures the
natural problem where items (or tasks) fall into a certain number of types, and we wish to
order them such as to minimize the number of switches, i.e., consecutive pairs of items of
different types. For this case we prove a tight (deterministic and randomized) competitive
ratio, independent of the number of different types, which may be of independent interest.
Our algorithm is a natural greedy strategy; we analyze it by modelling the evolution of
contiguous runs of empty cells as a coin-removal game between the algorithm and adversary.

▶ Theorem 3. The competitive ratio of online sorting of n items under the uniform metric
is Θ(log n). The upper bound O(log n) is achieved by a deterministic algorithm and the lower
bound Ω(log n) also holds for randomized algorithms.

3 A small technicality is whether the salesperson must return to the starting point or not. The effect of
this in our cost regime, however, is negligible.

4 This model is sometimes referred to as the online-list model; it has been considered mostly in the
context of scheduling problems [24, 14]. To our knowledge, TSP has not been studied in this setting
before. Note however, that a different online model, called the online-time model has been used to study
TSP [4, 21, 10]. In that model new cities can be revealed while the salesperson is already executing the
tour; this may require changing the tour on the fly. Results in the two models are not comparable.

5 One may also view this task as a form of dimensionality reduction: we seek to embed a d-dimensional
data set in a one-dimensional space (the array), while preserving some distance information.

ESA 2024
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Aamand et al. also consider the setting where the array is only partially filled (placing n

items into m > n cells). In this case, the cost is understood as the sum of distances d(x, y)
over pairs of items x, y with no other item placed between them. We thus extend our previous
result to arrays of a larger size, obtaining a tight characterization.

▶ Theorem 4. The competitive ratio (deterministic and randomized) of online sorting of n

items with an array of size ⌈γn⌉, with γ > 1, under the uniform metric is Θ(1 + log γ
γ−1 ).

Stochastic input. Given the (rather large) Ω(
√

n) lower bound on the competitive ratio
of online sorting, it is natural to ask whether we can overcome this barrier by relaxing the
worst-case assumption on the input. Such a viewpoint has become influential recently in
an attempt to obtain more refined and more realistic guarantees in online settings (e.g.,
see [26, 15]). A natural model is to view each item as drawn independently from some
distribution, e.g., uniformly at random from a fixed interval. Our next main result shows an
improved competitive ratio for such stochastic inputs:

▶ Theorem 5. There is an algorithm for online sorting of n items drawn independently
and uniformly at random from (0, 1] that achieves competitive ratio O((n log n)1/4) with
probability at least 1 − 2/n.

The algorithm illuminates a connection between online sorting and hash-based diction-
aries [20, § 6.4]. In the latter, the task is to place a sequence of n keys in an array of size
O(n), with the goal of minimizing search time. Fast searches are achieved by hashing keys to
locations in the array. Due to hash collisions, not all elements can be stored exactly at their
hashed location, and various paradigms have been employed to ensure that they are stored
“nearby” (for the search to be fast). We adapt two such paradigms to online sorting. The
first is to hash elements into buckets and solve the problem separately in each bucket. Each
bucket has a fixed capacity, and so an additional backyard is used to store keys that do not fit
in their hashed bucket [3, 9]. In Theorem 5, we use the values of the entries to assign them
to buckets and employ a similar backyard design. We note some critical technical differences:
in our design, all buckets must be full and we solve the problem recursively in each bucket;
we also operate in a much tighter balls-into-bins regime, as we are hashing n elements into
exactly n locations.

When the array size is allowed to be bigger than n, we employ yet another way for
resolving hash collisions: the linear probing approach of Knuth [19]. Here, the value ⌈αn⌉
serves as the hash location of an entry α ∈ (0, 1). Intuitively, this is a good approximation for
where the entry would appear in the sorted order. If we make sure that we place the entry
close enough to this intended location, we can hope for a small overall cost. That is, we use
the fact that linear probing places similar values close to each other. We get the following:

▶ Theorem 6. For any γ > 1, there is an algorithm for online sorting of n items drawn
independently and uniformly from (0, 1) into an array of size ⌈γn⌉ that achieves expected
competitive ratio O

(
1 + 1

γ−1

)
.

Paper structure. In § 2 we present our results for the standard (one-dimensional) online
sorting, in particular the lower bound for the randomized competitive ratio (Theorem 1).
Results for online TSP in Rd and results for the uniform metric (Theorems 2, 3, 4) are in § 3.
Our results for online sorting with stochastic input (Theorems 5, 6) are in § 4. We conclude
with a list of open questions in § 5. We defer some proofs and remarks to the full version of
the paper [2].
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2 Competitiveness for online sorting

Given a sequence X = (x1, . . . , xn) ∈ Rn and a bijection f : [n] → [n] assigning “array
cells” A[i] = xf(i), let Df (X) =

∑n−1
i=1 |A[i + 1] − A[i]|. Let OPT(X) denote the quantity

minf Df (X), i.e., the offline optimum.
An online algorithm is one that constructs the mapping f incrementally. Upon receiving

xj , for j = 1, . . . , n, the algorithm immediately and irrevocably assigns f(i) = j, for some
previously unassigned i ∈ [n]. For an online algorithm A, we denote by A(X) the cost Df (X)
for the function f constructed by algorithm A on input sequence X. We are interested in
the competitive ratio CA(n) of an algorithm A, i.e., the supremum of A(X)/OPT(X) over all
inputs X of a certain size n, and in the best possible competitive ratio C = C(n) = infA CA(n)
obtainable by any online algorithm A for a given problem.

Upper bound. Aamand et al. [1] show that C ∈ Θ(
√

n), under the additional restrictions
that xi ∈ [0, 1] for all i ∈ [n], and that {0, 1} ⊆ {x1, . . . , xn}. As our first result, we employ
a careful doubling strategy to show the same upper bound without the two restrictions, for
general sequences of n reals (the lower bound clearly continues to hold).

▷ Claim 7 (Proof in full version [2]). There is a deterministic online algorithm A for online
sorting of an arbitrary sequence of n reals, with CA ∈ O(

√
n).

Lower bound. The competitive ratio CA of a randomized algorithm A is the supremum
of E[A(X)]/OPT(X) over all inputs X, where the expectation is over the random choices
of A. Aamand et al. [1] leave open the question of whether a lower bound of Ω(

√
n) on

the competitive ratio also holds for randomized algorithms. We settle this question in the
affirmative. It is important to emphasize that the random choices of A are not known to the
adversary, i.e., we assume the oblivious model [11].

▷ Claim 8. CA ∈ Ω(
√

n) for every (possibly randomized) online algorithm A.

In the remainder of the section we prove Claim 8, which implies Theorem 1. As usual, to
lower bound the performance of a randomized algorithm (a distribution over deterministic
algorithms), we lower bound instead the performance of a deterministic algorithm on an
(adversarially chosen) distribution over input sequences.

Input distribution. Assume for simplicity that
√

n is an integer. Repeat the following until
a sequence of length n is obtained. With probability 1

2
√

n
set the remainder of the sequence

to 0s. With probability 1
2

√
n

set the remainder of the sequence to 1s. With probability 1− 1√
n

offer k√
n

for k = 0, . . . ,
√

n − 1 as the next
√

n elements of the sequence, and flip a new coin.
We refer to the

√
n elements produced by the third option as an epoch. Notice that OPT ≤ 1,

thus it is enough to lower bound the expected cost of the algorithm.

Notation. Let T be a partially filled array, |T | be the number of stored elements and G(T )
be the number of “gaps”, i.e., maximally contiguous groups of empty cells.

Let f(T ) be the minimum cost of filling T by an online algorithm, when the input
sequence is chosen according to the distribution described above, where the cost of two
neighboring elements T [i], T [i + 1] are accounted for when T [i] or T [i + 1] is filled, whichever
happens the latest.

ESA 2024
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More formally, define the cost of a partially filled array T to be

c(T ) =
n−1∑
i=0

T [i],T [i+1] are nonempty

|T [i] − T [i + 1]| ,

and let A(T ) be the final array produced by an online algorithm A when the remaining n−|T |
elements of the input sequence are generated as described above. Then f(T ) = c(A(T ))−c(T )
is the difference between the final cost and the cost of the partially filled array T . Thus
f(T ) = 0 if |T | = n, and E[f(∅)] is the value we wish to bound, using ∅ for the empty array.

For mappings T1, T2 where T2[i] = T1[i] for all indices where T1[i] is nonempty we say
that T2 can be obtained from T1. For such a pair of mappings let c(T1, T2) = c(T2) − c(T1)
be the cost of transforming T1 into T2 according to the way of accounting given above.

Let T (T ) be the set of mappings that can be obtained by inserting an epoch into T .
That is, T (T ) contains all mappings T ′ which can be obtained from T where the difference
between T ′ and T corresponds to the elements of an epoch. Note that |T ′| = |T | +

√
n for

T ′ ∈ T (T ).
Let L = {T : G(T ) ≤

√
n

8 } and H = {T : G(T ) >
√

n
8 } be the sets of all partially filled

arrays with a low/high number of gaps.

▶ Lemma 9. Let T1, T2 ∈ L with T2 ∈ T (T1). Then c(T1, T2) ≥ 3
16 .

Proof. If an element is placed between two empty cells, the number of gaps will increase by
one. If it is placed next to one or two occupied cells, the number of gaps stays constant or is
reduced by one – call such an insertion an attachment. As G(T2) ≤ G(T1) +

√
n

8 at least 7
√

n
16

of the
√

n insertions of the epoch must be attachments.
An attachment incurs cost at least 1√

n
unless the value(s) in the neighboring cell(s)

and the newly inserted value are identical. As all values within an epoch are distinct, an
attachment can only be without cost if the neighboring cell was occupied in T1 (that is,
before the epoch). As G(T1) ≤

√
n

8 at most
√

n
4 occupied cells border an empty cell. The

remaining
√

n( 7
16 − 1

4 ) = 3
√

n
16 attachments will incur non-zero cost. ◀

As a shorthand, let (T + 0) and (T + 1) be the mappings obtained by filling all gaps in T

with 0s/1s, respectively.

▶ Lemma 10. c(T, (T + 0)) + c(T, (T + 1)) ≥ G(T ).

Proof. Each gap in T is bordered by at least one non-empty cell A[i]. We have |A[i] − 0| +
|A[i] − 1| = 1. ◀

For a mapping T the expected remaining cost can be bounded from below by

E[f(T )] ≥ 1
2
√

n
· c(T, (T + 0)) + 1

2
√

n
· c(T, (T + 1))

+
(

1 − 1√
n

)
· min

T ′∈T (T )
{c(T, T ′) + E[f(T ′)]}

and by Lemma 10 we thus have

E[f(T )] ≥ G(T )
2
√

n
+

(
1 − 1√

n

)
· min

T ′∈T (T )
{c(T, T ′) + E[f(T ′)]} . (1)
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Let L(i) = min
T ∈L

|T |=n−i·
√

n

E[f(T )], and H(i) = min
T ∈H

|T |=n−i·
√

n

E[f(T )]

be the minimum expected cost of filling any array with i ·
√

n empty cells, and which contains
a low/high number of gaps, for i ∈ {0, 1, . . . ,

√
n}, respectively i ∈ {0, 1, . . . ,

√
n − 1}. (Note

that H(
√

n) is undefined as an empty array cannot have a high number of gaps.)
Combining Equation (1) with Lemma 9 we obtain

L(i) ≥
(

1 − 1√
n

)
· min{3/16 + L(i − 1), H(i − 1)},

H(i) ≥ 1/16 +
(

1 − 1√
n

)
· min {L(i − 1), H(i − 1)} ,

with L(0) = H(0) = 0. Our next lemma, proved in [2], leads to the lower bound.

▶ Lemma 11. L(
√

n) ∈ Ω(
√

n).

As the empty mapping ∅ is contained in L we have E[f(∅)] ≥ L(
√

n) ∈ Ω(
√

n). Yao’s
minmax principle [22, Prop. 2.6] implies the lower bound on the expected cost of randomized
algorithms for a worst-case input.

3 Competitiveness for online TSP

We now consider the generalization of online sorting that we call online TSP. Given a
sequence X = (x1, . . . , xn) ∈ Sn for some metric space S, and a bijection f : [n] → [n], and
A[i] = xf(i), let Df (X) =

∑n−1
i=1 d(A[i + 1], A[i]). Here, d(·, ·) is a metric over S. As before,

OPT(X) = minf Df (X), i.e., the offline optimum, and A(X) is the cost Df (X) for a function
f constructed by an online algorithm A on input sequence X. We define CA and C as before.

Our main interest is in the case S = Rd, and particularly d = 2, with d(·, ·) the Euclidean
distance. As a tool in the study of the Euclidean case, we first look at a simpler, uniform
metric problem in § 3.1, showing a tight Θ(log n) bound on the competitive ratio. Then, in
§ 3.2 we study the Euclidean R2 and Rd cases. As the uniform metric case is natural in itself,
we revisit it in § 3.3 in the setting where the array size is larger than n.

3.1 Uniform metric
Let S be an arbitrary discrete set and consider the distance function d(x, y) = 0 if x = y

and d(x, y) = 1 otherwise. Let K = K(X) denote the number of distinct entries in the input
sequence X, i.e., K = |{x1, . . . , xn}|. We give instance-specific bounds on the cost in terms
of K and n. The following claim is obvious.

▷ Claim 12. OPT(X) = K − 1.

Next, we give a bound on the online cost and show that it is asymptotically optimal.

▷ Claim 13. There is an online algorithm A with cost A(X) ≤ K log2 n.

▷ Claim 14. For every (possibly randomized) algorithm A and all K ≥ 3, there is an input
distribution X with K = K(X) such that E[A(X)] ∈ Ω(K log n).

Note that the condition K ≥ 3 is essential; if K = 1, then A(X) = OPT(X) = 0
for every algorithm A, and if K = 2, then there is an online algorithm A that achieves
A(X) = OPT(X) = 1. (Place the two types of elements at the opposite ends of the array.)

Claims 12, 13, 14 together yield the main result of this subsection.

ESA 2024
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▶ Theorem 3. The competitive ratio of online sorting of n items under the uniform metric
is Θ(log n). The upper bound O(log n) is achieved by a deterministic algorithm and the lower
bound Ω(log n) also holds for randomized algorithms.

Proof of Claim 13. We describe algorithm A (an alternative is presented in [2]), noting
that it is not required to know K in advance. Assume without loss of generality that
{x1, . . . , xn} = {1, 2, . . . , K}. For each j, with 1 ≤ j ≤ K, maintain a cursor cj ∈ [n]
indicating the array cell where the next item xi is placed if it equals j. More precisely, if
xi = j, then let f(cj) = i, and move the cursor to the right: cj = min{cj + 1, n}.

If f(cj) is already assigned (i.e., the cell A[cj ] is already written), set cj to the mid-point
of the largest empty contiguous interval. Similarly, when j is encountered the first time,
then initialize cj at the mid-point of the largest empty contiguous interval. Thus, initially,
cx1 = ⌊n/2⌋, i.e., place the first element at the middle of the array.

Clearly, A can always place xi somewhere, so A correctly terminates. It remains to prove
the upper bound on the number of unequal neighbors at the end of the process.

We model the execution of A as a coin-game. Consider a number of up to K piles of
coins. The game starts with a single pile of n coins. An adversary repeatedly performs one of
two possible operations: (1) remove one coin from an arbitrary pile, (2) split the largest pile
into two equal parts. Operation (2) is only allowed when the number of piles is less than K,
and only for a pile of at least two coins. The game ends when all coins have been removed.

It is easy to see that this game models the execution of A in the sense that for any
execution of A on X there is an execution of the coin-game in which the sizes of the
piles correspond at each step to the lengths of the contiguous empty intervals in the array.
Moreover, the number of consecutive unequal pairs at the end of algorithm A (i.e., the cost
A(X)) is at most the number of splits (i.e., operations (2)) of the coin-game execution. It is
thus sufficient to upper bound the number of splits in any execution of the coin game.

Let ni denote the size of a pile before its split, for the i-th split operation. As ni is
the size of the largest pile and piles can only get smaller, the sequence ni is non-increasing.
Suppose the i-th split replaces a pile of size t with two piles of size t/2. Then, after the split
there are at most K − 2 piles with sizes in [t/2, t] and no pile greater than t. Thus, after at
most K − 2 further splits, we split a pile of size at most t/2. (Possible operations (1) can
only strengthen this claim, as they make some piles smaller.) It follows that ni+K ≤ ni/2
for all i. As n1 ≤ n, and ni ≥ 1 for all i, the number of splits is at most K log2 n. ◁

Proof of Claim 14. Let A be an algorithm filling the items into an array A of size n. We
present a distribution over inputs X incurring cost E[X] ≥ Ω(K log n). By Yao’s minmax
principle [22, Prop. 2.6] we thus get that every randomized algorithm has a worst-case input
of cost Ω(K log n).

For each free cell A[i] we say that A[i] is friendly for the two (possibly identical) elements
yk and yl that are placed closest to the left and right of A[i] in A. When asked to place an
element y into A, A will increase the cost of the partial solution unless y is placed in a cell
that is friendly for y. When placing y in a cell that is friendly for y, the number of friendly
cells for y will decrease by one. The number of friendly cells for other elements may or may
not decrease, but no element will have more friendly cells than before the insertion of y.

Let z1 ≤ z2 ≤ · · · ≤ zK be the number of friendly cells for each of the K values, sorted
nondecreasingly. With n′ free cells in A,

∑K
i=1 zi ≤ 2n′, and hence z1 ≤ 2n′/K. Consider

the median z⌊K/2⌋. As
∑K

i=⌊K/2⌋ zi ≤ 2n′, we have z1 ≤ · · · ≤ z⌊K/2⌋ ≤ 2n′
1
2 K

= 4n′/K.
We now describe our input distribution, proceeding in epochs: At the start of each epoch

a value y is chosen uniformly at random from {1, . . . , K}, and this element is presented all
through the epoch. If K ∈ {3, 4}, the epoch will consist of 2n′/K copies of y, where n′ is
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the number of unoccupied cells at the start of the epoch. By the first observation above,
Pr[zy ≤ 2n′/K] ≥ 1/K ≥ 1/4, in which case the input forces A to increase the cost of the
partial solution.

If K > 4, we instead let the epoch be of length 4n′/K, and by the second observation
above we obtain that Pr[zy ≤ 4n′/K] ≥ 1/2, again increasing the cost of the partial solution
with constant probability.

To establish a lower bound for the expected cost produced by this input, it remains to
lower bound the number of epochs processed. For small K, the epoch leaves n′ · K−2

K free
cells for the coming epochs. For K > 4 the epoch leaves n′ · K−4

K free cells. Thus, in both
cases, the number of epochs is at least

log K
K−4

(n) = log2(n)
log2

(
1 + 4

K−4

) ≥ K − 4
4 log2(n) .

Hence, the input will force A to produce a solution of expected cost Ω(K log n). ◁

3.2 Online TSP in Rd

We now proceed to the case where S = Rd and d(·, ·) is the Euclidean distance. We start
with the first new case, d = 2. For ease of presentation, we omit floors and ceilings in the
analysis. We assume that the input points are from the unit box [0, 1]2 and that the optimum
length is at least 1. These assumptions can be relaxed by a similar doubling-approach as in
the proof of Claim 7.

The following result is well known [6, 18, 13] (consider, e.g., a
√

n ×
√

n uniform grid).

▷ Claim 15. For all sequences X of n points in [0, 1]2, we have OPT(X) ∈ O(
√

n). Moreover,
there exists a sequence X of n poins in [0, 1]2 such that OPT(X) ∈ Ω(

√
n).

As a warm-up before our competitiveness result, we give an upper bound on the cost of
an online algorithm and we show the tightness of this bound. The arguments extend the
one-dimensional ones in a straightforward way. The proofs of the following can be found in
the full version of the paper [2].

▷ Claim 16. There is an online algorithm A such that A(X) ∈ O(n2/3) for all X ∈ [0, 1]2.

▷ Claim 17. For every deterministic A there is an input X such that A(X) ∈ Ω(n2/3).

Now we move to the study of the competitive ratio. Note that the lower bound of
Claim 8 immediately applies to our setting. Combined with Claim 16, it follows that
C ∈ O(n2/3) ∩ Ω(n1/2). In the following we (almost) close this gap, proving the following.

▷ Claim 18. The competitive ratio of online TSP in R2 is O(
√

n log n).

Partition the box [0, 1]2 into t × t boxes of sizes 1/t × 1/t, for t to be set later. Let K be
the number of boxes that are touched, i.e., that contain some input point xi. We first need
to lower bound the optimum.

▶ Lemma 19. OPT(X) ≥ K/4t.

Proof. If K/4t < 1, we are done, as OPT(X) ≥ 1 by assumption. Assume therefore K ≥ 4t.
Choose an arbitrary representative point of X from each touched box. Observe that
the optimum cannot be shorter than the optimal tour of the representatives (by triangle
inequality). Among any five consecutive vertices of the representatives-tour, two must be
from non-neighboring boxes, thus the total length of the four edges connecting these points
is at least 1/t. It follows that at least K/4 edges have this length, yielding the claim. ◀

ESA 2024
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Now we need an algorithm that does well in terms of K. For any two neighboring entries
in the array we consider only whether they come from the same box. This allows us to reduce
our problem to the uniform metric case (Claim 13).
▷ Claim 20. There is an online algorithm A such that A(X) ∈ O(K log n + n/t).
Proof. We treat points from the same box as having the same value. We run the algorithm
for the uniform metric given in Claim 13, incurring a total number of O(K log n) differing
pairs of neighbors. For these pairs we account for a maximum possible cost of

√
2. All other

neighboring pairs have the same value (= come from the same box), incurring a cost of at
most O(1/t) each, for a total of O(n/t). This completes the proof. ◁

Together with Lemma 19, this yields Claim 18. Indeed, set t =
√

n
log n . If K ≤ t, then

using OPT ≥ 1, we have A/OPT ≤ K log n+n/t
1 ∈ O(

√
n log n). If K > t, then using Lemma 19,

A/OPT ≤ K log n+n/t
K/4t = 4t log n + 4n/K ∈ O(

√
n log n).

Online TSP in Rd. We now extend the bound on the competitive ratio (Claim 18) to the
higher dimensional case, also considering the dependence on d, leading to the claimed result.
▶ Theorem 2. There is a deterministic algorithm for online TSP in Rd with competitive
ratio

√
d · 2d · O(

√
n log n).

Analogously to Claim 15, we first state an absolute bound on the optimal TSP cost in d

dimensions, treating d as a constant [6, 18, 13].
▷ Claim 21. For all sets X of n points in [0, 1]d, we have OPT(X) ∈ O(n1−1/d). Moreover,
there exists a set X of n poins in [0, 1]d such that OPT(X) ∈ Ω(n1−1/d).

A straightforward generalization of Claims 16 and 17 yields (for all constant d):
▷ Claim 22. There is an online algorithm A for online TSP in Rd such that A(X) ∈
O(n1− 1

d+1 ) for all X. For every deterministic algorithm A there is an input X such that
A(X) ∈ Ω(n1− 1

d+1 ).
Proof of Theorem 2. We follow the proof of Claim 18, with minor changes. We assume the
input to come from the d-dimensional unit box [0, 1]d. We partition this box into td boxes of
sizes (1/t)d. When adapting Lemma 19, we have to consider 2d (instead of 4) consecutive tour
edges, thus obtaining OPT(X) ≥ K

2dt
. When adapting Claim 20, our upper bound increases

by a factor of
√

d, the distance between antipodal vertices of a unit d-cube, replacing the
implicit

√
2 in the earlier bound. Thus, when bounding the competitive ratio, we incur an

overall factor of
√

d · 2d, yielding the result. ◀

3.3 Uniform metric with a larger array
We study the problem of placing n elements {1, . . . , K} into an array of size ⌈γn⌉ for a fixed
γ > 1. The algorithm and distribution from Claims 13 and 14 can be reused in this setting,
stopping either process after the insertion of the first n elements.
▷ Claim 23. For every algorithm A and any number K ≥ 3 of input values, there is an
input distribution X such that E[A(X)] ∈ Ω(K · (1 + log(γ/(γ − 1)))).

▷ Claim 24. There is an online algorithm A with cost A(X) ∈ O(K · (1 + log(γ/(γ − 1)))).
The two claims together imply Theorem 4. We defer their proofs to the full version of

the paper [2]. They rely on similar arguments as the proofs of the claims mentioned above,
with a refined argument for counting the number of epochs/moves performed.
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4 Competitiveness for stochastic online sorting

In this section, we prove Theorem 5 and Theorem 6 (§ 4.1).

▶ Theorem 5. There is an algorithm for online sorting of n items drawn independently
and uniformly at random from (0, 1] that achieves competitive ratio O((n log n)1/4) with
probability at least 1 − 2/n.

We start by describing the general design of the algorithm from Theorem 5 and show-
ing some fundamental properties. We then describe a recursive algorithm and give the
parameterizations that achieve the desired competitive cost.

The general design. We let α and β denote two parameters in (0, 1) which we will set later.
We decompose the array A of n cells as such: the first N = n − nβ cells are divided into
M = nα consecutive sub-arrays A1, . . . , Anα , and the remaining nβ cells (at the end of the
array) form one single subarray denoted by B. We refer to each of the sub-arrays Ai as a
bucket and to B as the backyard. We note that each bucket Ai can hold C = N/M elements,
which we refer to as the capacity of the bucket.

We use the values of the elements to hash them into the array. Namely, for an element
x ∈ (0, 1), we define h : (0, 1] → {1, . . . , M} by setting h(x) = ⌈x · M⌉. In other words, the
elements in the interval (0, 1/M ] will all hash to bucket 1, elements in the interval (1/M, 2/M ]
will hash to bucket 2, etc. Since the elements are chosen independently and uniformly at
random from (0, 1], we get that h assigns the elements independently and uniformly at
random into the M buckets.6

SortUnif1(A, n): the first algorithm. Let SortDet(A, n) denote the deterministic algorithm
from [1]. We now define the algorithm SortUnif1(A, n) as such: upon receiving x, it checks if
the bucket Ah(x) has any empty cells. If so, it forwards x to SortDet(Ah(x), C). Otherwise, it
forwards x to SortDet(B, nβ) (and we say that the corresponding bucket is full).

We first prove that SortUnif1(A, n) successfully places all items with high probability.
Note that this is not always guaranteed: it could happen that both the bucket and the
backyard are full (before we have managed to place all the n elements). If this happens, then
among all n elements, strictly less than C hash into some bucket. We call this event a failure
and show the following by employing a Chernoff bound (proof is given in [2]):

▷ Claim 25. Given any c > 0, if β ≥ 1
2 ·

(
1 + α + ln ln n+ln(2(c+1))

ln n

)
, then SortUnif1(A, n)

fails with probability at most 1/nc.

We now bound the cost of SortUnif1(A, n):

▷ Claim 26. If SortUnif(A, n) does not fail, then its cost is at most O(
√

C + nβ/2).

Proof. Since each bucket receives at least C elements, the cost of placing elements inside
bucket A1 is given by the cost of SortDet(A1, C) on elements from (0, 1/M). We bound this
by O(

√
C · 1/M ]. For the remaining buckets, the elements are drawn from (i/M, (i + 1)/M)].

This is equivalent to sorting elements from (0, 1/M ], and so their cost is the same as that
of A1. Therefore, in total, the cost from each individual bucket is O(

√
C). In addition, we

also have the cost from crossing from one bucket to the next. This is at most 2/M , since

6 We assume that there is no element of value 0. The probability of this happening is 0.
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the maximum difference between elements from consecutive buckets is at most 2/M . Since
there are M buckets, this amounts to a cost of at most 2. The cost of crossing from bucket
AM to the backyard is 1. Finally, the cost in the backyard is O(nβ/2), since it employs
SortDet(B, nβ) on elements from (0, 1). ◁

We instantiate α and β such that we get the following (proof in [2]):

▶ Lemma 27. Given any c > 0, SortUnif1(A, n) has cost at most O(n1/3 ·ln1/6 n·(2(c+1))1/6)
with probability at least 1 − 1/nc.

SortUnifk: recursing on the buckets. We take advantage of the fact that within each
bucket, the elements are chosen uniformly at random. That is, we can apply the same
strategy recursively inside the bucket. We get a series of algorithms SortUnifk for k ≥ 2.
In SortUnifk, we let α and β be defined as in SortUnif1. When we see an element x with
h(x) = i, if its bucket Ai is not full, we place (xM − i + 1) using SortUnifk−1(Ah(x), C). Note
that we have already conditioned on the fact that ⌈x · M⌉ = i. In this case, (xM − i + 1)
becomes uniformly distributed in (0, 1). If Ai is full, we place x in the backyard according to
SortDet(B, nβ).

Note that there are now several causes for failure: either some bucket Ai is not full, or
one of the algorithms inside the bucket fails. We bound the probability of either of these
happening as follows, proving the claim by induction over k (proof in [2]):

▶ Lemma 28. Given any c > 0, SortUnifk(A, n) has cost at most

O
(

n1/fk · ln1/4 n · (2(c + 1))Bk

)
with probability at least 1 − 2/nc, where fk = 4 − 1/2k−1 and Bk = k/4.

Setting c = 1 and k = log2

(
2/(4 + ln n −

√
ln2 n + 8 ln n)

)
yields the bounds claimed in

Theorem 5; the details are given in the full paper [2].

4.1 Stochastic online sorting in larger arrays

▶ Theorem 6. For any γ > 1, there is an algorithm for online sorting of n items drawn
independently and uniformly from (0, 1) into an array of size ⌈γn⌉ that achieves expected
competitive ratio O

(
1 + 1

γ−1

)
.

The algorithm. Define α = (γ − 1)/10 and β = γ − α such that array A has size (β + α)n.
We will refer to the final αn cells of A as the buffer. The first βn cells we consider to
correspond to the interval [0, 1). More specifically, cell A[i] represents the interval

[
i

βn , i+1
βn

)
.

Let h : [0, 1) → {0, βn − 1} be the function which maps values x ∈ [0, 1) to the index of
the corresponding cell: h(x) =

⌊
x

βn

⌋
. Our algorithm A inserts each value x into A[h(x)]

if the cell is available, and otherwise into the first available cell following h(x), possibly
wrapping around from A[γn − 1] to A[0] (although, as we argue in the full version [2], this
is unlikely). In other words, x is inserted into the cell A[h(x) + i mod γn] where i is the
smallest non-negative integer such that the specified cell is available.
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Counting steps. As the values are drawn independently and uniformly from [0, 1), the
indices h(x) are also independently and uniformly distributed in {0, . . . , βn − 1}. The
algorithm thus mirrors the scheme of linear probing commonly used for implementing hash
tables. In linear probing each key x that is to be added to the table (and which is generally
not assumed to come from a known distribution) is hashed to an index of the array, and x is
inserted into the first following free cell.

When implementing a hash table, one is interested in analyzing the speed of insertions,
which for linear probing corresponds to the number of cells that are probed before a free
cell is found. Although speed is not a concern for our online algorithm, we will nonetheless
show that the number of steps performed is an important measure for bounding the cost of
our solution. Formally, let s(k) be the number of steps performed when inserting the k-th
value xk of the input. If A[h(xk)] is free, then s(k) = 1; otherwise s(k) = i + 1, when xk is
inserted into cell A[h(xk) + i mod γn].

Now consider the linear probing process ALP inserting n elements into a table T of size
βn (that is, without the buffer space). Analogously to s(i) we let sLP (i) be the number
of steps performed by ALP when inserting the i-th element. We couple the processes A
and ALP so that they encounter the same stream of indices h(x1), h(x2), . . . , h(xn) during
execution. We then have s(i) ≤ sLP (i). Indeed, the only difference between the processes is
that A has an extra αn cells of buffer space to prevent wraparound at the end of A. More
generally, we thus have E[s(i)] ≤ E[sLP (i)]. Combining the pieces we get that:

▷ Claim 29. E[A(X)] ≤ O
(

1 + 1
βn

∑n
i=1 E[s(i)]

)
.

The proof can be found in the full version [2]. We then invoke the following classic result
by Knuth [19] to bound

∑
i E[sLP (i)]:

▶ Theorem 30 ([19]). Consider the process of inserting (1 − ε)m elements into an array of
size m by linear probing. When hash values are assigned uniformly and independently,

(1−ε)m∑
i=1

E[sLP (i)] ∈ O

(
(1 − ε)m · 1

ε

)
.

To apply Theorem 30, set m = βn and ε = (β − 1)/β such that (1 − ε)m = n, and
thus

∑n
i=1 E[s(i)] ≤

∑n
i=1 E[sLP (i)] ∈ O

(
n ·

(
β

β−1

))
. As β − 1 = 9

10 · (γ − 1), we have

E[A(X)] ∈ O
(

1 + 1
β · β

β−1

)
⊆ O

(
1 + 1

γ−1

)
, proving Theorem 6. ◀

5 Conclusion and open questions

In this paper, we studied the online sorting problem in some of its variants. Several questions
and directions to further study remain, we mention those that we find most interesting.

Online sorting of reals. For large arrays (m = ⌈γn⌉, for γ > 1) significant gaps remain
between the upper and lower bounds on the competitive ratio of online sorting (see [1]).

In a different direction, consider online sorting and online list labeling, mentioned in § 1.
These can be seen as two extremes of an “error vs. recourse” trade-off: online sorting allows
no recourse, while list labeling allows no error. Achieving a smooth trade-off between the
two optimization problems by some hybrid approach is an intriguing possibility.

ESA 2024
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Stochastic and other models. In the stochastic setting of online sorting, we could improve
upon the worst-case bound, but the obtained ratio (Theorem 5) is likely not optimal; we
are not aware of nontrivial lower bounds. For stochastic online sorting with large arrays
(Theorem 6), a matching lower bound is likewise missing. We restricted our study to uniform
distribution over an interval; extending the results to other distributions remains open.

Other models that go beyond the worst-case assumption could yield further insight; we
mention two possible models: (1) online sorting with advice (e.g., from a machine learning
model): suppose that each input item comes with a possibly unreliable estimate of its rank
in the optimal (sorted) sequence; what is the best way to make use of this advice? (2) online
sorting with partially sorted input: for instance, suppose that the input cost

∑n−1
i=1 |xi+1 − xi|

is small. What is the best guarantee for the online sorting cost in this case?

Online TSP in various metrics. For online TSP in Rd, for fixed d, a small gap remains
between the lower bound Ω(

√
n) and upper bound O(

√
n log n) on the competitive ratio

(Theorem 2). The dependence on d (when d ∈ ω(1)) is not known to be optimal. Online
TSP in Rd with large array, and/or with stochastic input are also interesting directions.

Some non-Euclidean metrics pose natural questions, e.g., L0 or L∞ in Rd, or tree- or
doubling metrics. More broadly, is the optimal competitive ratio O(

√
n) for arbitrary metrics?
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