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Abstract
We develop a framework for algorithms finding the diameter in graphs of bounded distance Vapnik-
Chervonenkis dimension, in (parameterized) subquadratic time complexity. The class of bounded
distance VC-dimension graphs is wide, including, e.g. all minor-free graphs.

We build on the work of Ducoffe et al. [SODA’20, SIGCOMP’22], improving their technique. With
our approach the algorithms become simpler and faster, working in O

(
k · n1−1/d · m · polylog(n)

)
time complexity for the graph on n vertices and m edges, where k is the diameter and d is the
distance VC-dimension of the graph. Furthermore, it allows us to use the improved technique in
more general setting. In particular, we use this framework for geometric intersection graphs, i.e.
graphs where vertices are identical geometric objects on a plane and the adjacency is defined by
intersection. Applying our approach for these graphs, we partially answer a question posed by
Bringmann et al. [SoCG’22], finding an O

(
n7/4 · polylog(n)

)
parameterized diameter algorithm for

unit square intersection graph of size n, as well as a more general algorithm for convex polygon
intersection graphs.
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1 Introduction

The diameter of a graph is the maximum possible distance between a pair of vertices.
It is believed to be an important graph parameter and as such, it has been extensively
studied. Formally, the Diameter and k-Diameter problems are defined as follows1:

1 In this work, we assume graphs to be unweighted and undirected.
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51:2 Better Diameter Algorithms for Bounded VC-Dimension and Intersection Graphs

Diameter: Given a graph G = (V, E), calculate diam(G) := maxu,v∈V dist(u, v), where
dist(u, v) is the shortest possible length of any path between u and v;
k-Diameter: Given a graph G = (V, E) and k ∈ Z, determine whether diam(G) ≤ k.

Both Diameter and k-Diameter are easy to solve in O(nm) time complexity, where
n = |V |, m = |E|, by simply invoking BFS from every vertex. This straightforward algorithm,
however, turns out to be notoriously hard to improve in terms of time complexity. In 2013,
Roditty and Vassilevska-Williams showed [28] that any algorithm solving 2-Diameter in
O

(
m2−ε

)
time complexity would imply the existence of a (2− δ)n time algorithm for SAT,

thus refuting Strong Exponential Time Hypothesis (SETH, [24]). Although conditional,
it is an argument for the existence of a quadratic complexity barrier. Furthermore, the
hardness of 2-Diameter implies that approximating the diameter with ratio better than
3/2 in subquadratic time would refute SETH as well. But even if we assume SETH to be
true, there is still a lot of open questions about diameter. One long line of research deals
with subquadratic approximation in general graphs, and trade-offs between complexity and
approximation ratio [28, 12, 7, 25, 26, 15, 16, 3, 1].

Another family of questions arises from considering the diameter problem for some
restricted graph classes ([2, 14, 27, 21]. A notable example is the case of planar graphs:
the first subquadratic algorithm was found by Cabello [6], and the fastest currently known
works in Õ

(
n5/3)

time2 and is due to Gawrychowski et al. [22]. Similar problems arise from
considering geometric intersection graphs: we take a family of objects in Rk, name them the
vertices of our graph, and define an edge between a pair of objects to exist if and only if they
intersect. There is a natural interpretation of a diameter problem for these graphs, especially
if the objects are unit balls or axis-aligned unit squares on the plane: the middle point of
each object is a communication node, and the object itself represents its maximal range of
communication. The diameter of the graph is the maximal number of hops needed for any
two nodes to successfully communicate. Observe that the resulting graph on n objects can
easily have Θ(n2) edges, as well as very large cliques. This makes a subquadratic algorithm
somewhat more tricky, as we cannot ever list the edges of this graph explicitly, but instead
we have to rely on its geometric representation. Geometric intersection graphs have also been
studied in terms of fine-grained complexity [8, 9], but there were relatively few subquadratic
breakthroughs for the diameter problem. A recent paper by Bringmann et al. [5], proved
(among other results) that:

neither the intersection graph of axis-parallel unit cubes nor unit balls in R3 admits a
subquadratic diameter algorithm under SETH;
the intersection graph of axis-parallel unit cubes in R12 does not admit, under the
Hyperclique Hypothesis, a subquadratic algorithm for 2-Diameter;
for the intersection graph of axis-parallel unit squares in R2 there is an algorithm with
O(n log n) time complexity for 2-Diameter.

Which other graph classes are non-trivial to consider in this setting? Some good choices
are, for example, Kt-minor-free graphs, as they forbid using the counterexample from [28].
Ducoffe, Habib and Viennot [18, 19] proposed a more general class of graphs to consider:
the ones with bounded distance Vapnik-Chervonenkis dimension, or distance VC-dimension
for short. We formally define it in section 2, but roughly speaking, graph has distance VC-
dimension bounded by d, if for every subset A ⊆ V with |A| > d there exists A′ ⊆ A which
cannot be expressed as a projection of a ball, i.e. in the form A′ = {x ∈ A : dist(x, v) ≤ k}

2 The Õ() notation ignores logarithmic factors, i.e. Õ(f(n)) means O(f(n) · polylog(f(n))).
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for some v ∈ V and k ∈ Z. The class of bounded distance VC-dimension graphs includes
in particular minor-free graphs (with planar graphs), interval graphs, and also geometric
intersection graphs. In their work, the authors of [19] showed a number of important results
tying diameter finding to distance VC-dimension, in particular:

a subquadratic algorithm for k-Diameter, working in Õ
(
kn1−εdm

)
time complexity,

where εd ∼ 1
2dpoly(d) is some (small) constant3;

a subquadratic algorithm for Diameter, for graphs with bounded VC-dimension which
additionally admit sublinear separators (e.g. minor-closed graphs).

While preparing this version of our paper, we discovered an independent work by Hsien-
Chih Chang, Jie Gao and Hung Le [10]. Their main result is a subquadratic algorithm which
computes an additive-constant approximate (+2) diameter of a geometric intersection graph
for any family of pseudo-disks (the pseudo-disks are shapes bounded by a Jordan curve with
a property that two such boundaries can have at most two intersection points; in particular,
the graphs considered in this paper fit into that category). In Section 6 we discuss how our
contributions are related.

1.1 Our contribution and paper structure
An inspiration for this paper was to answer the open questions posed in [5]; especially, to
find a (parameterized) subquadratic algorithm for some geometric intersection graphs. In the
most appealing cases of planar unit disk and unit square intersection graphs, it is not hard
to prove that both these classes have their distance VC-dimension bounded by 4. Therefore,
algorithms from [19] could in theory be applied to them, but it is impossible to do it directly,
as those algorithms work only for explicitly-given sparse graphs. Therefore, we need to refine
this algorithm to work in our setting.

The core idea of [19] is to find a spanning path of a graph G = (V, E) with a low stabbing
number, i.e. an order v1, . . . , vn on the vertices of the graph such that for every v ∈ V ,
k ∈ Z, every ball Nk[v] can be expressed as a sum of O

(
n1−ε

)
intervals (vx, vx+1, . . . , vy).

The existence of such a path is in turn based on the results of Chazelle and Welzl [11], who
provide a Monte Carlo polynomial algorithm for finding such a path. The authors of [19]
use this algorithm as a subroutine (“black-box”), employing a neat trick to bring down its
polynomial complexity to a subquadratic one.

Interestingly, the Chazelle-Welzl subroutine uses a technique similar to the main con-
struction of [19] – in particular, the notion of ε-nets, first introduced in [23]. In this paper we
show that these two constructions can be, in a natural way, replaced by only one argument.
This requires going back on the basic definitions, in particular relaxing the conditions on
the stabbing number, as well as different complexity analysis. We are, however, rewarded
with a simpler and more straightforward algorithm, naturally working in subquadratic time.
Furthermore, this also brings down the time complexity of the algorithm, and opens new
possibilities of its generalization.

The high-level concept is as follows: for any j and for a vertex v let us denote by N j [v]
the j-neighbourhood of v, i.e. all vertices reachable from v via at most j edges. We find
a particular order v1, . . . , vn on all the vertices such that for every i the neighbourhoods
N j [vi] and N j [vi+1] differ relatively little – to be precise, the total size of the difference sets
N j [vi]△N j [vi+1] is subquadratic. This order can be found for every j with a randomized

3 In fact, the 2d factor in [19] is due to considering directed graphs and other technicalities; we believe
that the authors could instead claim O

(
d2

)
, albeit with a large multiplicative constant.
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algorithm, using the concept of ε-nets, and it allows us to encode all the j-neighbourhoods
in subquadratic space. It is now enough to devise a way to compute this encoding also in
subquadratic time; similarly to [19], we do it incrementally, going from all Nj−1[v] sets to
all Nj [v] sets. We need, however, different constructions for general sparse graphs (when
trying to improve [19]) and for implicitly given graphs (like geometric intersections). For the
latter, we show that the key ingredient is a data structure, working on vertex subsets of our
graph, allowing two particular operations: expanding a subset and computing the symmetric
difference of two stored subsets. We devise such a data structure for axis-aligned unit-square
graphs, and then generalize it to any convex polygons. Our structure is based on persistent
segment trees, but to our knowledge, it has not been considered before in this form.

To sum up, we claim the following results:
There is a randomized Las Vegas algorithm which, for any graph G = (V, E) of distance VC-
dimension at most d, solves k-Diameter in Õ

(
k · n1−1/d ·m

)
time complexity (Section

3, Theorem 16);
The algorithm above can be adapted to any class of implicitly given graphs, if provided an
appropriate data structure, working on the graph’s neighbour lists (Section 4, Theorem
18);
In particular, for the axis-aligned unit square intersection graphs, there is a Monte Carlo
algorithm solving k-Diameter in Õ

(
k · n7/4)

time complexity (Section 5, Theorem 20a);
This algorithm can be generalized to any convex polygon intersection graphs, with an
additional multiplicative constant depending on the polygon’s number of sides (Section 5,
Theorem 20b).

For the general graph algorithm, the new time complexity Õ
(
k · n1−1/d ·m

)
is brought

down from Õ
(

k · n1− 1
2dpoly(d) ·m

)
previously achieved in [19]. This is a more practical

complexity, and we (tentatively) conjecture that this bound might be a tight one for the
class of Kd-minor free graphs, or at least for the class of graphs of distance VC-dimension
bounded by d.

As for the paper structure, Section 2 of this paper introduces the most important concepts,
such as (distance) VC-dimension, ε-nets and related theorems. In Section 3 we introduce
the main tools for constructing all the fast algorithms: the low-difference orders on graph
vertices, and use them to improve the results for general sparse graphs. In Section 4 we show
how to use these tools in the case of implicitly given graphs. Finally, in Section 5 we apply
all these concepts to achieve the original goal – a parameterized subquadratic algorithm for
unit-square graphs and then for general convex polygon intersection graphs.

2 Preliminaries

2.1 Graphs, neighbourhoods and diameters
We assume that the reader is familiar with the notion of graphs, paths and distances.
Throughout the paper, all graphs are undirected and unweighted, as well as connected. We
also use the same notation for most graphs: if G = (V, E) is a graph, then let n = |V | and
m = |E|.

Given a graph G = (V, E) and S ⊆ V let N [S] denote vertices in the (closed) neigh-
bourhood of S, i.e. vertices belonging to S or having a neighbour in S. If v ∈ V we let
N [v] = N({v}). We also introduce the notion of k-neighbourhood for k ≥ 0, denoted recurs-
ively by N0[S] = S, Nk[S] = N [Nk−1[S]], which is the set of vertices with distance at most
k to any vertex in S. As stated before, the diameter of G is diam(G) = maxu,v∈V dist(u, v).
It is easy to see that the graph has diameter at most k if and only if for every v ∈ V we have
Nk[v] = V .
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2.2 Hypergraphs and VC-dimension
A hypergraph is a pair (X,R), where X is the set of vertices and R ⊆ P(X) is a family
of subsets of X, the hyperedges. Some natural examples of hypergraphs, which are most
important for this paper, come from graph neighbourhoods. If G = (V, E) is a graph, then:

For k ∈ Z, we define N k(G) = {Nk[v] : v ∈ V } as the family of all possible k-
neighbourhoods. The hypergraph (V,N k(G)) is the k-distance hypergraph of G;
For the family of all balls B(G) =

⋃
k≥0N k(G), we will call the hypergraph (V,B(G))

the ball hypergraph of G.

As mentioned in the introduction, the key concept needed for our results is the Vapnik–
Chervonenkis dimension [31] of a hypergraph (X,R). It is defined as follows:

▶ Definition 1. A hypergraph (X,R) shatters a subset Y ⊆ X if for every Z ⊆ Y there
exists R ∈ R such that Z = R ∩ Y . In other words |{R ∩ Y | R ∈ R}| = 2|Y |. The
Vapnik-Chervonenkis dimension (or VC-dimension) of a hypergraph is the maximum size of
a shattered subset.

The following theorems recall some well-established properties of hypergraphs with
bounded VC-dimension. The first one deals with VC-dimension of sub-hypergraphs and
projection hypergraphs, the other one (Sauer-Shelah-Perles Lemma) bounds the number
of hyperedges in terms of vertices and the VC-dimension. Most of our complexity bounds
throughout the paper stem from this lemma.

▶ Theorem 2. Let (X,R) be a hypergraph where |X| = n, and let its VC-dimension be
bounded by d. Then:
1. If R′ ⊆ R, then hypergraph (X,R′) also has VC-dimension bounded by d,
2. If Y ⊆ X, then hypergraph (Y, {Y ∩R | R ∈ R}) also has VC-dimension bounded by d.

▶ Theorem 3 (Sauer-Shelah-Perles Lemma, [29, 30]). For every integer d, there exists a
constant β = β(d) such that every hypergraph (X,R) of VC-dimension at most d satisfies
|R| ≤ β · |X|d.

▶ Corollary 4. For every integer d, there exists a constant β = β(d) such that for every
hypergraph (X,R) of VC-dimension at most d and for every S ⊂ X, the cardinality of
{S ∩R | R ∈ R} is at most β|S|d.

Let (X,R), (X,R′) be two hypergraphs on the same underlying set X. Suppose that
both of them have VC-dimension d. By △ we denote the symmetric difference operator on
sets, i.e. A△B := (A\B)∪ (B \A). An important issue for us is bounding the VC-dimension
of the hypergraph (X, {R△R′ | R ∈ R, R′ ∈ R′}). The following lemma provides a bound
of O(d log d). It works for any operator ◦ on set such that intersection distributes over ◦ (i.e.
A∩ (B ◦B′) = (A∩B) ◦ (A∩B′) for any sets A, B, B′; the union, intersection, set difference
and symmetric difference operators all have this property. It is partially based on a similar
lemma in [20], see the full version of the paper for more details and the proof.

▶ Lemma 5. Let (X,R), (X,R′) be hypergraphs with VC-dimension not greater than d, and
let ◦ : P(X)× P(X)→ P(X) be a binary set operator such that intersection distributes over
◦. Then the VC-dimension of (X,R∗), where R∗ = {R ◦R′ | R ∈ R, R′ ∈ R′} is O(d log d).

Let us now define another one of this paper’s central concepts, linking the notion of
VC-dimension with graph diameters: the distance VC-dimension of a graph G = (V, E).

ESA 2024
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▶ Definition 6. Distance VC-dimension of a graph G = (V, E) is the VC-dimension of its
ball hypergraph, i.e. the hypergraph (V,B(G)).

We assume throughout the paper that we only consider graphs with distance VC-dimension
at least 2, as there are no non-trivial connected graphs with distance VC-dimension 1. Finally,
observe that by Theorem 2, if distance VC-dimension of a graph is bounded by some integer
d, then for every k ∈ N, the VC-dimension of (V,N k(G)) is also bounded by d.

Among others, the following classes of graphs have bounded distance VC-dimension:
interval graphs, Kt-minor free graphs, and in general any minor-closed class of graphs [4, 13].
The next section is devoted to establishing similar bounds for geometric intersection graphs.

2.3 Geometric intersection graphs
In this section we introduce the notion of intersection graphs and discuss their distance
VC-dimension. Throughout the paper, the symbol ⊕ denotes the Minkowski sum of subsets
of R2: for any A, B ⊆ R2, A ⊕ B := {(a1 + b1, a2 + b2) | (a1, a2) ∈ A, (b1, b2) ∈ B}. If
a ∈ R2, B ⊆ R2 then by a⊕B we mean {a} ⊕B. We also use natural scalar multiplication:
for any λ ∈ R and A ⊆ R2, λ ·A = {(λa1, λa2) | (a1, a2) ∈ A}.

▶ Definition 7. For a shape F ⊆ R2, an intersection graph I(V,F) is a simple undirected
graph with vertices V ⊆ R2 being points on a plane, where an edge {v1, v2} for v1 ̸= v2 ∈ V

exists if and only if shapes F centered at v1 and v2 have a nonempty intersection, i.e.
(v1 ⊕ F ) ∩ (v2 ⊕ F ) ̸= ∅.

Throughout this paper we assume that F is closed, bounded and convex. It turns out,
we can additionally assume that F has a center of symmetry at (0, 0).

▶ Lemma 8. The graph I(V,F) is isomorphic to I(V,H), where H = 1
2 · [F ⊕ (−F)].

Proof. See the full version of the paper. ◀

Our main focus will be on the case where F is an s-sided polygon, however, even without
this assumption, the geometric intersection graphs have bounded distance VC-dimension.
The following lemma formally states that, and will be another crucial tool for our results.

▶ Lemma 9. For any intersection graph I(V,F), its distance VC-dimension is at most 4.

Proof. A more general version of this lemma was elegantly proven in [10] using different
approach, making our proof redundant. We include our proof in the full version of the paper
for the sake of completeness. ◀

Please note that the definition of I(V,F) allows the copies of the shape F to be translated,
but not rotated. If rotation is allowed, the lemma above does not work. Moreover, even in
the case of rotated triangles, there is a construction proving a conditional quadratic lower
bound for the 3-Diameter problem as well as unbounded distance VC-dimension [5, 10].

2.4 ε-nets
The concept of ε-nets was introduced in [23] and applied to bounded VC-dimension hyper-
graphs in [11]. In this section, we recall the definitions and basic facts from these works, that
we will need later.

▶ Definition 10. Let (X,R) be a hypergraph. For any ε > 0, a set S ⊂ X is an ε-net if for
every edge R ∈ R, |R| ≥ ε · |X| =⇒ R ∩ S ̸= ∅.
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It turns out that this concept synergizes well with VC-dimension, as bounded VC-
dimension implies any sufficiently large random subset to be an ε-net with high probability:

▶ Lemma 11 ([11]). There exists a constant α such that for any hypergraph (X,R) of
VC-dimension at most d and for any δ, ε > 0, a random set S ⊆ X with |S| ≥ α · d

ε log 1
δε is

an ε-net with probability at least 1− δ.

We will use this lemma with some modifications. First, we will employ a traditional
notion of high probability, i.e. for a given c we take δ = |X|−c, so the probability of failure
is 1

poly(|X|) . Also, as in [19] we employ this lemma not for the given hypergraph (X,R),
but for (X,R∗), where R∗ = {(R′ △ R′′) : R′, R′′ ∈ R}. From Lemma 5 we know that
the VC-dimension of R∗ is O(d log d). Taking the definition of ε-net into account, we can
reformulate Lemma 11 in the following way:

▶ Corollary 12. For any positive integers c and d there exists a constant α = α(c, d) such
that for any hypergraph (X,R) of VC-dimension at most d and for any ε > 0, any random
set S ⊆ X with |S| ≥ α · 1

ε log |X|
ε has (with probability at least 1 − |X|−c) the following

property: if R′, R′′ ∈ R and R′ ∩ S = R′′ ∩ S, then |R′ △R′′| ≤ ε · |X|.

3 General algorithm framework

3.1 Orders on hypergraphs
The following lemma is our main tool. It provides an order of the hyperedges of any bounded
distance VC-dimension hypergraph such that the difference between consecutive hyperedges is
“sufficiently small”. It corresponds to Theorem 1.2 in [19], but with one important difference:
in our setting “sufficiently small” means that the sum of all differences is bounded, whereas
in the previous work the bounds applied to every one of the differences.

▶ Lemma 13. Let (X,R) be a hypergraph with VC-dimension at most d. There exists an
order R1, R2, . . . , R|R| on its hyperedges such that

∑|R|−1
i=1 |Ri △Ri+1| = O

(
|R|1−1/d · |X|

)
.

If there is an algorithm working in time complexity P (|X|, |R|) which can list, for any given
x ∈ X, all R ∈ R containing x, then the desired order R1, R2, . . . , Rn can be computed, with
high probability, in time complexity Õ

(
|R|1+1/d + |R|1/dP (|X|, |R|

)
).

Proof. Consider a weighted, undirected graph G with R as its vertex set. For any R′, R′′ ∈ R
we define the weight of the edge (R′, R′′) of G as |R′△R′′|. Our immediate goal is to find a
spanning tree T of G having total cost of edges bounded by O

(
|R|1−1/d · |X|

)
. If we succeed,

then it is easy to obtain the desired order on R: take an Euler tour (Rk1 , Rk2 , . . . , Rk2|R|−2)
of T . We know that

∑
|Rki

△ Rki+1 | is also O
(
|R|1−1/d · |X|

)
, as each edge of T appears

twice in an Euler tour. But if we delete some elements from the Rki
sequence, this value

can only decrease, as |A△ C| ≤ |A△ B| + |B △ C| for any finite sets A, B, C. Therefore
we prune the sequence, keeping only the first instance of every element of R, obtaining a
path (R1, . . . , R|R|) with

∑
|Rj△Rj+1| = O

(
|R|1−1/d · |X|

)
. Moreover, all these operations

converting T to the order need time complexity O(|R|). So we can now focus on finding T .
We will use a randomized algorithm with probability of failure at most |X|−c, for a given

integer c. Pick a random set S ⊆ X with |S| = s = |R|1/d and arrange its elements in
random order (x1, . . . , xs). Let α = α(c + 1, d) be the constant from Corollary 12 and fix
ε = 2α log |X|

s . Now

α · 1
ε

log |X|
ε
≤ s

2 log |X| · (log |X|+ log s) ≤ s,

ESA 2024
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so S and ε satisfy the assumptions of Corollary 12. Also, let q = ⌊log2 s⌋ and for every
k = 0, 1, . . . , q we define sk = s

2k and Sk = {x1, . . . , xsk
}. It is easy to see that Sq ⊂ Sq−1 ⊂

. . . ⊂ S1 ⊂ S0 = S. Observe that every prefix Sk of S is also a random subset of X, so we can
also apply Corollary 12 to it if we take εk = 2k ·ε – indeed, α· 1

εk
log |X|

εk
≤ α· 1

2k · 1ε log |X|
ε ≤

s
2k .

The probability of failure for each of Sk is at most |X|−(c+1), so by union bound, with
probability greater than 1− |X|−c no failure will happen.

Throughout the algorithm, we maintain the partition R = R1∪R2∪ . . .∪Rt into disjoint
subsets – groups. At each step, we add some edges to T , split some of the groups into smaller
parts, and maintain the invariant that T is a spanning tree on the set of all groups. Initially
T = ∅ and the partition consists of a single group R. Now for every j = 1, 2, . . . , s we repeat
the following subroutine: every group Ri is split into parts R0

i = {R ∈ Ri : xj /∈ R} and
R1

i = {R ∈ Ri : xj ∈ R}. If both R0
i and R1

i are nonempty, we pick any R0 ∈ R0
i and

R1 ∈ R1
i , add (R0, R1) to T , and add both parts as new groups instead of Ri. If one of the

parts is empty, the other is Ri, and we leave it as it is. After completing s steps, T may still
not span all vertices in R. Let us call all the edges added so far the primary edges, and then
proceed to add new arbitrary edges to T until it becomes a tree. Those later edges we will
call secondary.

Now consider the edges added to T between step sk and sk−1 (strictly after sk, but
including sk−1). For any such edge (R′, R′′) there must be R′ ∩ Sk = R′′ ∩ Sk, as (R′, R′′)
belonged to the same group after step sk. But as Sk is an εk-net, this means that R′△R′′ ≤
2k · ε · |X|. On the other hand, let us count the number of groups before step sk−1. For any
R′ and R′′ belonging to different groups there must be R′ ∩ Sk−1 ̸= R′′ ∩ Sk−1, so R′ and
R′′ induce two different subsets of Sk−1. But as VC-dimension of R does not exceed d, by
Corollary 4 there can be no more than β|Sk−1|d = β( s

2k−1 )d different subsets of Sk−1 induced
by R, for come constant β. This proves that before step sk−1 there are at most β( s

2k−1 )d

edges added to T . The cost of edges added between steps sk and sk−1 can be bounded by
β( s

2k−1 )d · 2kε|X|, and the cost of all primary edges is at most
q∑

k=1
β

( s

2k−1

)d

·2kε|X| = O
(
q · sd · ε|X|

)
= O

(
q · sd−1 · |X| · log |X|

)
= Õ

(
|R|1−1/d · |X|

)
.

For the secondary edges, the bound is even simpler: for every such edge (R′, R′′) we already
know that R′ and R′′ ended up in the same group, so R′ ∩ S = R′′ ∩ S, which means
|R′ △R′′| ≤ ε|X|. As there are at most |R| such edges, we bound their cost by

|R| · ε|X| = O
(
|R| · log |X|

|R|1/d
· |X|

)
= Õ

(
|R|1−1/d · |X|

)
,

which completes the proof. As for the complexity, a single step in the first phase (for primary
edges) takes O(|R|+ P (|X|, |R|)) time, as it has to go, for a fixed xj , through all R ∈ R
and determine if xj ∈ R. Adding secondary edges is O(|R|). Therefore, the total complexity
is Õ

(
|R|1+1/d + |R|1/dP (|X|, |R|

)
). ◀

We will apply Lemma 13 to distance hypergraphs, using its two variants:
The first one (Corollary 14) uses k-neighbourhoods as the edges of the hypergraph, so in
the resulting order the adjacent vertices have similar k-neighbourhoods. We can directly
compute the next neighbourhood from the previous one. This will mainly be useful for
geometric intersection graphs and other implicitly given graphs.
The second one (Corollary 15) uses duality (reverses the role of vertices and their k-
neighbourhoods), which allows us to express every k-neighbourhood as a sum of sublinear
number of intervals. This will be useful for the general sparse graph case.
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▶ Corollary 14. Let G = (V, E) be a graph with distance VC-dimension at most d and let
k ∈ {1, 2, . . . , n} There is an order v1, . . . , vn on the vertices of G such that

∑n−1
i=1 |Nk[vi]△

Nk[vi+1]| = O
(
n2−1/d

)
. This order can be computed, with high probability, in time complexity

Õ
(
n1/d · T (G)

)
, where T (G) is the complexity of a single-source distance finding algorithm

(e.g. BFS).

Proof. See the full version of the paper. ◀

Let G = (V, E) be a graph, and let σ = (x1, . . . , xn) be some order on vertex set V .
For any a, b ∈ {1, 2, . . . , n}, a ≤ b let x[a, b] be some interval of vertices in this order,
i.e. x[a, b] = {xa, xa+1, . . . , xb}. Every subset D ⊂ V can be expressed as the sum of such
intervals: D =

⋃s
i=1 x[ai, bi] for some positive integer s, and some a1, . . . , as, b1, . . . , bs. There

exists exactly one such representation with minimal possible s – let us call it Iσ(D), the
canonical interval representation of D with respect to the order σ. We will omit σ and write
I(D) whenever it is clear from the context.

▶ Corollary 15. Let G = (V, E) be a graph with distance VC-dimension at most d, let
k ∈ {1, 2, . . . , n}, and let α : V → Z+ be any assignment of positive integer weights to
vertices. There exists an order v1, . . . , vn on the vertices of G such that, with respect to
that order,

∑
x∈V α(x) · |I(Nk[x])| = Õ

(
n1−1/d ·

∑n
j=1 α(j)

)
. This order can be computed,

with high probability, in Õ
(
n1/d · T (G)

)
time complexity, where T (G) is the complexity of a

single-source distance finding algorithm (e.g. BFS).

Proof. See the full version of the paper. ◀

3.2 Algorithm for general sparse graphs
We now prove our main result for general graphs of bounded distance VC-dimension.

▶ Theorem 16. Let G be a graph class with distance VC-dimension bounded by d ≥ 2. There
exists an algorithm that decides if a graph G ∈ G has diameter at most k in Õ

(
kmn1−1/d

)
time with high probability.

Our algorithm builds on the work of Ducoffe et al. [18, 19], whose algorithm iteratively
computes r-neighbourhoods Nr[v] for all v ∈ V and r ∈ {0, . . . , k}. Note that each set Nr[v]
can have O(n) elements, so their total size can be O

(
kn2)

. This means that we cannot break
the quadratic barrier if we store the vertex sets explicitly.

To alleviate this, [19] uses spanning paths with low stabbing number, i.e. arranges vertices
in a particular order such that maxx∈V |I(Nr[x])| = Õ

(
n1−εd

)
for a fixed r. The authors

provide a subquadratic algorithm that finds such an order with εd dependent only on distance
VC-dimension d. Then they use interval representations to encode and operate on the
r-neighbourhoods. This yields an algorithm with running time Õ

(
kmn1−εd

)
.

One of our goals is to improve the constant εd. It is known that there always exists
a vertex order with εd = 1/d ([11]), but there is no known algorithm that computes it in
subquadratic time. Instead, we observe that we can relax requirements for the vertex orders.
Namely, it is sufficient to obtain low weighted average instead of maximum over interval
representations. This enables us to use the algorithm given by Corollary 15.

Ball encoding. As we assumed G to be connected and non-trivial, we know that deg(v) ≥ 1
for each v ∈ V . Let vr

1, . . . , vr
n be a vertex order such that with respect to that order the

following holds:∑
x∈V

deg(x) · |I(Nr[x])| = Õ
(

mn1−1/d
)

.

ESA 2024



51:10 Better Diameter Algorithms for Bounded VC-Dimension and Intersection Graphs

From Corollary 15, using vertex weights α(v) = deg(v) ≥ 1, we know that such an order exists
and can be computed (with high probability) in Õ

(
n1/dm

)
time complexity. Our algorithm

encodes r-neighbourhoods using their canonical interval representations with respect to
vr

1, . . . , vr
n. More precisely, we compute sets of intervals Ir

v = I(Nr[v]) for all vertices v ∈ V .

▶ Lemma 17. Suppose we are given the encoding for (r − 1)-neighbourhoods, i.e. the vertex
order vr−1

1 , . . . , vr−1
n and the representations Ir−1

v for all vertices v ∈ V . Then we can
compute the encoding for r-neighbourhoods in Õ

(
mn1−1/d

)
time with high probability.

Proof. The algorithm proceeds as follows.
1. For each vertex v ∈ V , compute the interval representation I ′

v of Nr[v] with respect to the
old vertex order vr−1

1 , . . . , vr−1
n . Note that Nr[v] =

⋃
x∈N [v] Nr−1[x]. This means that

we can compute I ′
v by summing the representations Ir−1

x over neighbours x ∈ N [v]. This
can be done using a standard line sweep procedure in Õ

(∑
x∈N [v] |Ir−1

x |
)

. Overall this

step takes time Õ
(∑

v∈V

∑
x∈N [v] |Ir−1

x |
)

= Õ
(∑

x∈V deg(x) · |Ir−1
x |

)
= Õ

(
mn1−1/d

)
.

The total size of all representations I ′
v is Õ

(
mn1−1/d

)
as well.

2. Compute the new vertex order vr
1, . . . , vr

n via Corollary 15. To achieve this, we only need
to provide an algorithm that lists vertices of Nr[v] efficiently for a given vertex v ∈ V .
This can be implemented easily in O(m) time using breadth-first search. It follows that
the vertex order can be computed in Õ

(
mn1/d

)
time.

3. Compute the canonical interval representations Ir
v with respect to the new vertex order

vr
1, . . . , vr

n. We do this by transforming the representations I ′
v as follows.

a. Let Ai be the set of vertices x ∈ V such that vr
i is the left endpoint of an interval in Ir

x.
Consider a vertex x ∈ Ai for i ≥ 2. We have that vr

i ∈ Nr[x] and vr
i−1 /∈ Nr[x]. This

is equivalent to x ∈ Nr[vr
i ] and x /∈ Nr[vr

i−1]. It follows that Ai = Nr[vr
i ] \Nr[vr

i−1]
for i ≥ 2. We can thus compute Ai from interval representations I ′

vr
i−1

and I ′
vr

i
in

Õ
(
|I ′

vr
i−1
|+ |I ′

vr
i
|+ |Ai|

)
time using line sweep procedure. It remains to handle the

case when i = 1. By similar argument, we obtain that A1 = Nr[vr
1], so it is enough

to list vertices in I ′
vr

1
. Overall, this step takes time Õ

(∑
v∈V |I ′

v|+
∑n

i=1 |Ai|
)

=
Õ

(
mn1−1/d

)
.

b. Let Bi be the set of vertices x ∈ V such that vr
i is the right endpoint of an interval in

Ir
x. We can compute all these sets in time Õ

(
mn1−1/d

)
, similarly as above.

c. Recover the interval representations Ir
v for all v ∈ V from the sets A1, . . . An and

B1, . . . , Bn. This step takes time
∑n

i=1 |Ai|+ |Bi| = Õ
(
mn1−1/d

)
.

The total running time is Õ
(
mn1/d + mn1−1/d

)
, which becomes Õ

(
mn1−1/d

)
for d ≥ 2. ◀

Proof of Theorem 16. We start with an arbitrary permutation of vertices v0
1 , . . . , v0

n, and
trivial interval representation I0

v = I({v}) for each vertex v ∈ V . Then we compute the
encodings of all k-neighbourhoods inductively using Lemma 17. Finally, we check if there
a vertex v ∈ V such that Ik

v ̸= I(V ). If that is the case, the diameter is larger than k.
Otherwise it is at most k. ◀

4 Diameter testing for implicit graphs

In this section, we consider the diameter problem for graphs of bounded distance VC-
dimension that admit implicit representations. We propose a diameter testing algorithm that
relies on the existence of a certain data structure, but is independent of the number of edges.
In particular, this framework can be applied for geometric intersection graphs. In Section 5
we show an implementation for unit squares. Please refer to the full version of the paper for
a generalization for arbitrary convex polygons.
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We begin by introducing a necessary data structure template. The Neighbour Set Data
Structure (NSDS for short) maintains a family T of vertex subsets of a graph G under the
following operations:

S̃′ ← AddNeighbours(S̃, v): Given a vertex subset S̃ ∈ T and a vertex v ∈ V (G), add
a new set S̃′ = S̃ ∪NG[v] to the family T .
D ← ListDifferences(S̃1, S̃2): Given vertex subsets S̃1, S̃2 ∈ T , output their symmet-
ric difference D = S̃1 △ S̃2.

Initially, the family T contains only the empty vertex set ∅. Throughout the whole section,
we will use a tilde to mark vertex sets registered within NSDS (e.g. S̃). Such vertex sets are
represented implicitly by references to the data structure, so the time complexity of some
operations on them may be a lot smaller than their size.

We say that a graph class G admits an efficient implementation of Neighbour Set Data
Structure if the operations can be implemented in the following time complexities:

initialization in Õ(n) time (given an implicit O(n)-size representation of a graph G ∈ G);
AddNeighbours in Õ(1) time;
ListDifferences in Õ(|D|) time.

The remainder of this section is devoted to proving the following theorem.

▶ Theorem 18. Let G be a graph class with distance VC-dimension bounded by d ≥ 2. If
G admits an efficient implementation of Neighbour Set Data Structure, then there exists an
algorithm that decides if a graph G ∈ G has diameter at most k in time Õ

(
kn2−1/d

)
with

high probability.

4.1 Algorithm outline
In this section we describe the high-level idea of the algorithm from Theorem 18, leaving
some subprocedures and other technical details to following subsections. The algorithm
iteratively computes r-neighbourhoods Nr[v] for all vertices v ∈ V , but in a different way
than in Section 3. In particular, a different encoding of neighbourhoods is used.

Balls encoding. Let vr
1, . . . , vr

n be the vertex order for the r-neighbourhoods produced by
Corollary 14. Observe that to apply this corollary, we only need a single-source shortest path
finding algorithm, and we show that the classical BFS algorithm can be simulated using
NSDS in Õ(n) time (see the full version of the paper for details). Using this vertex order,
the r-balls are now delta-encoded using vertex sets Dr

1, . . . , Dr
n such that:

Nr[vr
i ] = Dr

1 △ . . .△Dr
i Dr

i =
{

Nr[v1] for i = 1
Nr[vi−1]△Nr[vi] for i ∈ {2, . . . , n}

It immediately follows from Corollary 14 that total size of all sets Dr
1, . . . , Dr

n for a fixed r is
bounded by Õ

(
n2−1/d

)
. Note that this is essentially a transposition of the encoding used in

Section 3, where each ball was represented by a set of intervals. Here, each set Di is in fact
the set of these balls which have one of their intervals ending between i− 1 and i.

Algorithm step. Suppose we have already computed the encoding for (r − 1)-balls, i.e.
the vertex order vr−1

1 , . . . , vr−1
n and the sets Dr−1

1 , . . . , Dr−1
n . To compute the encoding for

r-balls, we proceed as follows.
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1. Build representations B̃r
1 , . . . , B̃r

n of r-balls in the NSDS. Specifically, we want B̃r
i =

Nr[vr−1
i ], i.e. we still use the vertex order for (r − 1)-balls. Observe that Nr[v] =

N [Nr−1[v]]. To naively compute the set B̃r
i , one could invoke AddNeighbours for each

vertex v ∈ Nr−1[vr−1
i ]. Clearly, such approach would be too slow. In Subsection 4.2, we

provide a divide-and-conquer algorithm that builds all the representations efficiently in
Õ

(
n +

∑
i |D

r−1
i |

)
= Õ

(
n2−1/d

)
time.

2. Compute new vertex order vr
1, . . . , vr

n using Corollary 14 in Õ
(
n1+1/d

)
time.

3. Let πr be a permutation mapping vertex indices for r-balls into vertex indices for (r− 1)-
balls, i.e. πr(i) = j if and only if vr

i = vr−1
j .

4. Compute new delta-encoding Dr
1, . . . , Dr

n. By definition, Di
r = Nr[vr

i−1] △ Nr[vr
i ] =

B̃r
πr(i−1) △ B̃r

πr(i) for i ≥ 2. This means that we can compute each set Di
r by invoking

ListDifferences(B̃r
πr(i−1), B̃r

πr(i)) on computed representations. To compute Dr
1 we can

use ListDifferences(∅, B̃r
πr(1)). Since ListDifferences operation is output-sensitive,

the overall complexity of this step is Õ(n +
∑

i |Dr
i |) = Õ

(
n2−1/d

)
.

The total runtime of a single step is Õ
(
n1+1/d + n2−1/d

)
, which for d ≥ 2 becomes Õ

(
n2−1/d

)
.

Full algorithm. We start with an arbitrary permutation of vertices v0
1 , . . . , v0

n. Moreover,
we have D0

1 = N0[v0
1 ] = {v0

1} and D0
i = N0[v0

i−1]△N0[v0
i ] = {v0

i−1, v0
i } for i ≥ 2. Then we

compute the encodings of all k-neighbourhoods by repeatedly applying the algorithm step.
Finally, we check if Dk

1 = V and Dk
i = ∅ for all i ≥ 2. If that is the case, the diameter is at

most k. Otherwise, it is larger than k. We obtain the final time complexity Õ
(
kn2−1/d

)
.

4.2 Ball expansion
We now describe an algorithm that builds representations of r-balls in NSDS given a delta-
encoding of (r − 1)-balls. Specifically, we are given vertex sets Dr−1

1 , . . . , Dr−1
n ⊆ V and we

need to compute representations B̃r
1 , . . . , B̃r

n such that B̃r
i = N [Dr−1

1 △ . . .△Dr−1
i ]. A naive

approach would be to build all representations separately. Instead we use a divide-and-conquer
scheme that enables us to share common parts between the computed representations.

The recursive procedure takes as input vertex sets D1, . . . , Dt ⊆ V and a data structure
representation S̃. The output of the procedure are representations B̃1, . . . , B̃t such that
B̃i = S̃ ∪N [D1 △ . . .△Di]. We set S̃ = ∅ for the initial call; it is used later for recursion.

We begin with reduction of common vertices. Let C =
⋃t

i=2 Di and consider a vertex
v ∈ D1 \ C. The vertex v appears in all vertex sets of form D1 △ . . .△ Di. This means
that N [v] ⊆ B̃i for all i ∈ {1, . . . , n}. We can thus update S̃ with N [v] by invoking
AddNeighbours(S̃, v) and remove v from D1 without changing the output. We do this for
all vertices v ∈ D1 \ C. Let S̃′ be the updated representation S̃ and D′

1 = D1 ∩ C be the
reduced set D1.

If t = 1 then we are done: we just return the updated S̃′ = B̃1. Otherwise, we use
recursion. Let m = ⌊t/2⌋+1. We split the sequence into halves D1, . . . , Dm−1 and Dm, . . . , Dt.
Computing the representations B̃1, . . . , B̃m−1 is straightforward: we recurse with S̃′ and
D′

1, D2, . . . , Dm−1. Then B̃i = S̃′ ∪N [D′
1 △D2 △ . . .△Di] = S̃ ∪N [D1 △ . . .△Di].

To compute B̃m, . . . , B̃t, we need to take into account the sets D1, . . . , Dm−1. We do this
by replacing Dm with D′

m = D′
1△D2△ . . .△Dm. We recurse with S̃′ and D′

m, Dm+1, . . . , Dt.
Then B̃i = S̃′∪N [D′

m△Dm+1△. . .△Di] = S̃′∪N [D′
1△D2△. . .△Di] = S̃∪N [D1△. . .△Di].

This completes the description of the procedure.
We provide the pseudocode as Algorithm 1.
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Algorithm 1 Balls expansion procedure.

1: function ExpandBalls(D1, . . . , Dt)
2: return ExpandBallsRecursively(∅, D1, . . . , Dt)
3:
4: function ExpandBallsRecursively(S̃, D1, . . . , Dt)
5: S̃′ ← S̃, C ←

⋃t
i=2 Di

6: for all v ∈ D1 \ C do
7: S̃′ ← AddNeighbours(S̃′, v)
8: if t = 1 then
9: return S̃′

10: m← ⌊t/2⌋+ 1
11: D′

1 ← D1 ∩ C

12: D′
m ← D′

1 △D2 △ . . .△Dm

13: B̃1, . . . , B̃m−1 ← ExpandBallsRecursively(S̃′, D′
1, D2, . . . , Dm−1)

14: B̃m, . . . , B̃t ← ExpandBallsRecursively(S̃′, D′
m, Dm+1, . . . , Dt)

15: return B̃1, . . . , B̃t

▶ Lemma 19. The ExpandBalls procedure works in time Õ
(

t +
∑t

i=1 |Di|
)

.

Proof. See the full version of the paper. ◀

5 Polygon intersection graphs

Here we give a concrete application of our framework to geometric intersection graphs. We
start with stating our main theorem:

▶ Theorem 20. There is a Monte Carlo algorithm solving the k-Diameter problem for the
class of intersection graphs I(V,F), where F is
a) a unit square, in Õ

(
k · n 7

4

)
time.

b) a convex s-sided polygon, in Õ
(

k · n 7
4

)
time, with a constant factor dependent on s.

By Lemma 8 we can assume that polygon F is centrally symmetric with center of
symmetry at (0, 0). Recall that all intersection graphs of convex shapes have their distance
VC-dimension bounded by 4 (Lemma 9). Hence, to apply Theorem 18 and complete the
proof, we just need to supply a proper Neighbour Set Data Structure. This would result
in an Õ

(
k · n2−1/d

)
= Õ

(
k · n7/4)

time algorithm for the k-Diameter problem. The rest
of this section gives a (very) rough sketch of such a data structure, focusing mainly on the
unit-square case. For a more detailed description as well as the generalization to convex
polygons, see the full version of the paper.

First, observe that the neighbourhood of a vertex (point) v in a unit-square intersection
graph I(V,□) consists simply of all points inside a square of side 2 centered at v. This stays
true for any graph I(V,F):

▶ Observation 21. Vertex u is a neighbour of vertex v in I(V,F) if and only if u ∈ v + 2F .

Proof. See the full version of the paper. ◀

Therefore, if we scale all points in V by a factor of 2, any neighbourhood is a simple
F-shape centered at a point. For the intersection graphs, we now assume that the desired
NSDS stores some family T of subsets of V (i.e. sets of points). We can now reformulate its
operations in the following way:
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Mark(S̃, (x, y)): Given a set S̃ ∈ T and a point (x, y) ∈ R2, add a new set S̃′ = S̃ ∪P to
the family T , where P ⊆ V contains the points covered by F centered at the point (x, y).
ListDifferences(S̃1, S̃2): Given sets S̃1, S̃2 ∈ T , output their symmetric difference
D = S̃1 △ S̃2.

To fulfill the assumptions of Theorem 18, the Mark operation should work in Õ(1) time
complexity, and ListDifferences in Õ(|D|) time complexity. We also allow initialization
in Õ(n) time, where n = |V | is the number of points.

▶ Lemma 22. The following holds true:
a) There exists an efficient implementation of Neighbouring Set Data Structure for the

unit-square intersection graphs.
b) Let s ∈ N+ be a constant and F be a convex s-sided polygon with a center of symmetry.

There exists an efficient implementation of Neighbouring Set Data Structure for the
intersection graphs I(V,F).
To complete this section, we provide a high-level overview of the proof of Lemma 22a.

For more details and the general version of NSDS, see the full version of the paper.
We start by dividing the plane into horizontal strips of height 1 and focusing only on

one such strip – let V be the set of points in the strip. To store subsets of V , we use a data
structure called persistent segment tree.

Segment trees. Let V = {v1, v2, . . . , vk}, and we can make sure during initialization that
the points are sorted by their x coordinate. We can also assume that k is a power of 2, adding
dummy points if needed. Let V [i, j] denote the set {vi, vi+1, . . . , vj} for any 1 ≤ i ≤ j ≤ k. A
segment tree is a complete binary tree in which every node stores information associated with
some interval of points V [i, j]. The root corresponds to V [1, k] = V and any node associated
with interval V [i, j] with i < j has two children corresponding to V [i, s] and [s + 1, j], where
s = ⌊ (i+j)

2 ⌋. The leaves of the tree correspond to single-element intervals. The height of this
tree is clearly O(log k).

A single instance of a tree stores a particular subset S̃ ⊆ V in the following way: in every
node z associated with an interval [i, j] we keep the subset S̃ ∩ V [i, j]. We want, however,
to minimize the stored information, and instead of the whole subset S̃ ∩ V [i, j] we will only
remember one integer – the hash of this subset. Formally, with every element v ∈ V we
associate a random integer (hash) h(v). For every node z the subset Az stored in this node
is replaced by

⊕
v∈Ax

h(v), i.e. the bitwise-XOR of its elements’ hashes.
Now, we must find a way to store multiple distinct sets S̃, and we will achieve that by

employing persistency.

Persistency and the ListDifferences operation. Suppose that our tree currently stores
a set S̃, and we want to create and store a new set S̃′ = S̃ ∪ {vi} by adding a single element.
This change requires modifying the subset (i.e. its hash) in the node responsible for V [i, i]
and then going up along the path to the root, correcting the subsets in log2 k nodes. Instead
of modifying these nodes in-place, we employ a standard path copying technique. The
nodes are immutable and copied whenever they are updated, with children links adjusted
accordingly. In particular, a new copy of the root node will be created, and this copy will
correspond to the new set S̃′. Observe that this allows us, for every set S̃ ever created, to
reconstruct its subset stored in every node. This enables a relatively simple implementation
of ListDifferences(S̃, S̃′): we start in the root and compare the hashes of S̃ and S̃′ in all
nodes we visit. For a node z associated with interval [i, j] we compare hashes of S̃ ∩ V [i, j]
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Figure 1 The top and bottom areas in a node.

and S̃′ ∩ V [i, j]. If equal, then these subsets are equal with high probability. If not, there is
at least one difference between S̃ and S̃′ on the interval [i, j], and we recurse on both children
of z. If z is a leaf, than the difference S̃ △ S̃′ is the single element of z. An easy analysis
shows that the ListDifferences works in O(|D| · log k) time, where D is the output set –
as required. However, we have only considered simple modifications of subsets (adding one
element) and our desired Mark operation needs way more.

More node data and the Mark operation. Recall that we work on a single strip of height
1. Now we want to be able to modify some subset S̃ by adding to it a whole unit square
centered at some point [x, y] (which does not have to belong to S̃, and can even lay outside
of our strip, having only some part of the square inside). To achieve that, we need more
information stored in every node of the tree. Recall that the points are sorted according to
their x coordinate, so every node corresponds to some connected part of our strip.

A node starts with an empty set and then more and more points become marked, all
points coming from some unit squares. Each square crosses either top or bottom end of the
stripe, so let us call the union of the top/bottom squares the top/bottom area, respectively
(see Figure 1, note that the top and bottom areas do not have to be disjoint). Now we
keep the hashes of top and bottom areas separately, and the Mark operation hinges on the
following observations:

If the top and bottom areas are disjoint, then the hash of node’s subset can be computed
from the hashes of top and bottom areas;
If a top square is added and this square covers the node’s whole top area, it is easy to
update the hash of the top area; the identical fact holds for bottom squares;
If the top and bottom area together cover all the node’s points, then the hash is trivial;
Any situation not falling into above categories happens relatively rarely and adds little to
the time complexity of Mark.

Due to space limitations, we defer the detailed analysis of the Mark operation to the
full version of the paper.

Joining the stripes. Finally, we need to gather the information from all the stripes. Observe
that any Mark only affects at most 2 stripes, so it will have the same complexity. But
ListDifferences is harder – we are given sets S̃ and S̃′ and need to process only the stripes
on which marked points are different in these two sets. To do this, we use another persistent
segment tree, but with whole stripes as elements of its underlying set. For every stripe we
keep the hash of its marked points, which allows us to identify the differing stripes in time
complexity proportional to the number of such stripes. Then we invoke ListDifferences
on them.

ESA 2024
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6 Conclusion and open problems

General Diameter problem. The algorithms presented above solve k-Diameter in sub-
quadratic time, but not general Diameter problem. Therefore, the first important open
question is:

▶ Open Problem 1. What is the complexity of Diameter for geometric intersection graphs?

The paper [19], on which we based our main algorithm, also provides an algorithm solving
Diameter for Kt-minor free graphs, in Õ

(
n2−εt

)
time complexity. But unlike k-Diameter

case, this algorithm does not seem to be easily translated to geometric intersection setting
using our technique. We would like to briefly discuss here the obstacles we encountered, as
well as some related results.

The algorithm from [19] relies on the notion of separators, which it uses to construct
r-divisions. For a graph G = (V, E) with |V | = n, a separator is a subset of V which has a
sublinear size, and removing it would split G into connected components no larger than 2

3 n.
An r-division is (very roughly speaking) a subset of vertices which also has sublinear size,
and splits the graph into clusters of size no larger than r.

The core idea of the algorithm is to use a single-source path-finding algorithm (e.g. BFS),
on vertices from the r-division of G, computing all the neighbourhoods of these vertices.
This proves sufficient to determine all the other neighbourhoods.

Why does this algorithm not work in our case? It is even more surprising considering
the existence of strong results involving separators in geometric intersection graphs (see
[17]). However, these separators have an important difference: they are not of sublinear
size by themselves, but rather can be expressed as a union of a small number of cliques.
Thus we cannot run a BFS from every vertex in such a separator. It is, however, possible
to use a multi-source path-finding algorithm, starting from every clique. The computed
distances will differ from the exact ones only by an additive constant factor – this leads to
the approximation algorithm described in [10]. To devise an exact algorithm it would be
sufficient to solve the following problem: given a geometric intersection graph on the set
of points V , and given some subset A ⊆ V of points lying very close to each other (e.g. A

fitting inside a square of small constant size δ), compute and encode the neighbourhoods of
all these vertices, in subquadratic time.

Unit-disk graphs. Our data structure works with unit squares and general convex polygons,
but leaves open a case of unit-disk intersection graphs:

▶ Open Problem 2. Is there a subquadratic algorithm for Diameter or k-Diameter for
unit-disk intersection graphs?

This time, the main obstacle is the Neighbouring Set Data Structure: our techniques
does not seem to generalize to unit disks. We would need a new way of constructing such
data structures.

Lower bounds. Finally, we conjectured in Introduction that Õ
(
n1−1/d ·m

)
is a candidate

for a tight complexity bound. Let us generalize this question to any lower bounds for
Diameter.

▶ Open Problem 3. Are there any (conditional) lower bounds for Diameter and k-
Diameter for either:

Kt-minor-free graphs;
bounded distance VC-dimension graphs;
. . . or geometric intersection graphs?
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