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Abstract
In this work we study Invertible Bloom Lookup Tables (IBLTs) with small failure probabilities.
IBLTs are highly versatile data structures that have found applications in set reconciliation protocols,
error-correcting codes, and even the design of advanced cryptographic primitives. For storing n

elements and ensuring correctness with probability at least 1 − δ, existing IBLT constructions require
Ω(n( log(1/δ)

log(n) + 1)) space and they crucially rely on fully random hash functions.
We present new constructions of IBLTs that are simultaneously more space efficient and require

less randomness. For storing n elements with a failure probability of at most δ, our data structure only
requires O(n + log(1/δ) log log(1/δ)) space and O(log(log(n)/δ))-wise independent hash functions.

As a key technical ingredient we show that hashing n keys with any k-wise independent hash
function h : U → [Cn] for some sufficiently large constant C guarantees with probability 1 − 2−Ω(k)

that at least n/2 keys will have a unique hash value. Proving this is non-trivial as k approaches n.
We believe that the techniques used to prove this statement may be of independent interest.

We apply our new IBLTs to the encrypted compression problem, recently studied by Fleischhacker,
Larsen, Simkin (Eurocrypt 2023). We extend their approach to work for a more general class of
encryption schemes and using our new IBLT we achieve an asymptotically better compression rate.
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1 Introduction

The Invertible Bloom Lookup Table (IBLT) is a very elegant data structure by Goodrich and
Mitzenmacher [11]. It functions much like a dictionary data structure, supporting insertions,
deletions and the retrieval of key-value pairs. What is special about the IBLT, is that upon
initialization, one decides on a threshold n. Now, regardless of how many key-value pairs
are present in the IBLT, the space usage will always remain proportional to n. Of course
this comes at a cost, namely that the retrieval operations will temporarily stop functioning,
when the number of pairs stored in the IBLT exceeds n. When the number of stored pairs
falls below n again, the IBLT will resume supporting retrieval queries.
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The above functionality is extremely useful in many applications. Consider for instance
the set reconciliation problem [15, 6]. Here two parties Alice and Bob hold sets SA and
SB of key-value pairs. Think of these sets as two replicas of a database storing key-value
pairs. In applications where insertions and deletions into the database must be supported
quickly, we may allow the two sets SA and SB to be slightly inconsistent, such that a client
performing an operation on the database will not have to wait for synchronization among
the two replicas. Instead, Alice and Bob will every now and then synchronize their two
sets SA and SB. For this purpose, Alice maintains an IBLT for her set SA, which she may
send to Bob. Upon receiving the IBLT, Bob then deletes every element from his set SB

from Alice’s IBLT. If |(SA \ SB) ∪ (SB \ SA)| is less than the threshold n, Bob can retrieve
the key-value pairs in SA \ SB. Since the space usage of IBLTs is only proportional to the
threshold n, this allows for the communication between Alice and Bob to be proportional to
|(SA \ SB) ∪ (SB \ SA)| and not |SA| or |SB |. This may result in significant savings, when
the sets SA and SB are large, but very similar. IBLTs have also seen uses in numerous other
applications, ranging from distributed systems applications [18, 16] over fast error-correcting
codes [17] to cryptography [1, 9, 10].

The surprising functionality of IBLTs is supported via hashing. In more detail, the original
IBLT construction by Goodrich and Mitzenmacher consists of an array A of m cells along
with a hash function h mapping keys to k distinct entries in A for a tuneable parameter
k. Each cell of A has three fields, a count, a keySum and a valueSum. When inserting a
key-value pair (x, y), we compute the k positions h(x) = (i1, . . . , ik), increment the count
field in A[ij ], add x to the keySum of A[ij ] and add y to the valueSum of A[ij ] for each
j = 1, . . . , k. A deletion of a key-value pair is simply supported by reversing these operations,
i.e. decrementing count and subtracting x from keySum and y from valueSum. To support
the retrieval of the value associated with a query key x, we again compute h(x) = (i1, . . . , ik)
and examine the entries A[ij ]. If we find such an entry where the count field is one, then we
know that only one key-value pair hashed there. We can thus compare the keySum to x, and
if they are equal, we can return the valueSum. If the keySum is different from x, or we find a
cell with a count of zero, we may return that x is not in the IBLT. Finally, if all k count
fields are at least two, we return “Don’t know”. If the number of cells m is 2nk, then the
chance that a key-value pair hashes to at least one unique entry (no collisions) is around
1− 2−Ω(k) whenever the number of key-value pairs stored in the IBLT does not exceed the
threshold n.

Peeling

The simple functionality above supports Insertions, Deletions and Get operations, where a
Get operation retrieves the value associated with a query key x. Using space O(nk), the Get
operation succeeds with probability 1− 2−Ω(k). However, in several applications, such as set
reconciliation, one is more interested in outputting the list of all key-value pairs present in
the IBLT. For this purpose, a ListEntries operation is also supported. To list all key-value
pairs in the IBLT, we repeatedly look for a cell in A with a count of one. When we find
such a cell A[i], we output (x, y) =(A[i].keySum, A[i].valueSum) and then delete (x, y) from
the IBLT. This process of peeling the key-value pairs reduces the count of other fields and
thus increases the chance that we can continue peeling key-value pairs. Concretely, the
ListEntries operation can be shown to succeed with probability 1 − Ω(n−k+2) when the
number of key-value pairs present in the IBLT does not exceed the threshold n. The peeling
success probability thus far exceeds that of the simple Get operation when hashing to at
least k = 3 entries.
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Supporting False Deletions

The attentive reader may have observed that the simple version of the IBLT described above
critically assumes that no deletions are performed on key-value pairs that are not already
present in the IBLT. In the set reconciliation example, this is insufficient as there may be
key-value pairs in SB that are not in SA, which will cause false deletions. A simple extension
to the IBLT ensures that it also functions if the total number of present key-value pairs plus
the number of false deletions does not exceed the threshold n. For set reconciliation, this is
equivalent to |SA \ SB |+ |SB \ SA| ≤ n. To support such false deletions, we add a hashSum
field to every cell and include another hash function g mapping keys to a sufficiently large
output domain [R]. When inserting key-value pairs, g(x) is added to the hashSum field of
A[ij ] and subtracted during deletions. To retrieve the value associated with a key x, we
proceed as before, but whenever the count is either −1 or 1, we also perform a check that the
hashSum is equal to g applied to the keySum. If not, we treat the cell as if the count was at
least 2. For ListEntries, a peeling operation also includes such checks and furthermore, when
a count is −1, we may instead insert (x, y) =(-keySum,-valueSum) if g applied to -keySum
equals -hashSum. A second source of error is when the same key has been inserted with
multiple different values. We ignore this issue here, and remark that the ListEntries in the
original IBLT also fails in recovering keys with multiple associated values.

Memory Usage and Randomness

In this paper, we focus on the more interesting ListEntries operation and ignore the Get
operation. Requiring that ListEntries succeeds with probability 1− δ, the classic IBLT uses
space O(n(lg(1/δ)/ lg n + 1)), since we must set k = O(1 + lgn(1/δ)) to make n−k+1 ≤ δ,
and the space usage is m = O(nk) cells. Notice here, and throughout the paper, that space
is measured in number of cells of the IBLT. In terms of bit complexity, the count field needs
O(lg n) bits, the keySum and valueSum fields need O(lg |U |+ lg n) bits when keys and values
come from a universe U . Finally, in both previous IBLTs and our new construction, the
hashSum field needs O(lg(1/δ) + lg n) bits. Thus each cell of the table costs O(lg(|U |n/δ))
bits.

The analysis of the classic IBLT critically assumes that the hash function h is truly fully
random. This is of course unrealistic in practice. But where many typical data structures
can make due with O(lg(1/δ)) or O(lg n)-wise independent hash functions, this is not known
to be the case for the IBLT. Concretely, the standard analysis of the peeling process of the
IBLT requires a union bound over exponentially many events (for every set of 2 ≤ j ≤ n

keys S, for every set T of jk/2 entries of A, we have a failure event saying that h(x) ∈ T

for all x ∈ S). With exponentially many events in the union bound, each of them must
occur with probability at most exp(−Ω(n)) for the union bound to be useful. This requires
a seed length of Ω(n) bits for a hash function and thus cannot be implemented with k-wise
independence for k significantly less than n. It could be the case that a more refined analysis
could show that less randomness suffices, but this has not yet been demonstrated.

We remark that it is possible to show that tabulation hashing [4, 19] may be used to
support peeling, but this also requires a random seed of length proportional to n, since it
requires a character size of at least (1 + Ω(1))n, and the space usage is at least the number
of characters. Finally, we mention that it may also be possible to use the splitting trick of
Dietzfelbinger and Rink [5], but as far as we are aware of, it would be not more efficient than
tabulation hashing in this context.

ESA 2024
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1.1 Our Contributions
Our main contribution is a new version of the IBLT that is both more space efficient and
that can be implemented with much less randomness. We call our new data structure a
Stacked IBLT and show the following:

▶ Theorem 1. Let δ be less than a sufficiently small constant. Given a threshold n, the Stacked
IBLT supports Insertions, Deletions and ListEntries operations, where ListEntries succeeds
with probability 1− δ when the number of key-value pairs is no more than n. Furthermore, it
uses space O(n + lg(1/δ) lglg(1/δ)) cells and requires only O(lg(lg(n)/δ))-wise independent
hashing.

Comparing this to the classic IBLT, our construction outperforms it for any δ = n−ω(1) and
more importantly, it can be implemented with a small random seed. Our Stacked IBLT
also supports false deletions like the classic IBLT and ListEntries succeeds with the claimed
probability if the number of key-value pairs plus the number of false deletions does not
exceed n.

We note that such small failure probabilities are important in cryptographic applications,
like the ones that rely on encrypted compression [3, 14]. A data-dependent failure of a data
structure leaks information about its contents, even if one can not see the contents of the
data structure itself. In cryptographic applications, where security should commonly break
with at most a negligible probability, using a (encrypted) data structure, which fails with an
inverse polynomial probability is insufficient. An adversary could deduce information about
encrypted data by just observing, whether a cryptographic protocol successfully terminates
or not.

The overall idea in the Stacked IBLT is to construct arrays A1, . . . , Alg n where Ai has
Cn/2i entries. Each of the arrays has its own hash function hi mapping keys to a single
entry in Ai. To support the ListEntries operation, we start by peeling all elements in A1
that hash uniquely. We then proceed to A2 and so forth. The critical property we require is
that each time we peel, we successfully peel at least half of all remaining key-value pairs. In
this way, the number of entries in the next Ai to peel from, is always a constant factor larger
than the number of remaining key-value pairs. When we reach Alg n, we finally peel the last
key-value pair. In this way, all we need from the hash functions hi, is that at least half the
key-value pairs hash uniquely with probability 1− δ/ lg n. We prove that this is the case if
the hi’s are just O(lg(lg(n)/δ))-wise independent:

▶ Theorem 2. Let x1, . . . , xn ∈ U be a set of n distinct keys from a universe U and let
h : U → [Cn] be a hash function drawn from a 2k-wise independent family of hash functions.
If C ≥ 8e, then with probability at least 1 − 4 · (8e/C)min{k,n/C} it holds that there are no
more than n/2 indices i such that there exists a j ̸= i with h(xi) = h(xj).

In addition to allowing implementations with limited independence, the geometrically de-
creasing sizes of the arrays Ai also result in the improved space usage compared to classic
IBLTs.

While Theorem 2 might at first sight appear to follow from standard approaches for
analyzing hash functions with limited independence, there are in fact several difficult obstacles
that we need to overcome to prove it. In particular, as k approaches n, the obvious approaches
fail miserably. Furthermore, our Stacked IBLTs critically needs Theorem 2 to hold for k all
the way up to n. We believe the ideas we use to overcome this barrier are interesting in their
own right and may prove useful in future work. We thus discuss these ideas and the barriers
we overcome in Section 1.2.
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Let us also comment on the constant 8e. It is not as small as one could hope, but it is
small enough that we have chosen to state it explicitly rather than hide it in O-notation.
Presumably our analysis could be tightened further to reduce it by a constant factor, but we
have focused on a clean exposition of the proof.

Finally, let us also comment that when the number of remaining key-value pairs drop
below lg(1/δ), Theorem 2 is insufficient to guarantee a success probability of 1− δ/ lg n due
to the min{k, n/c} in the exponent. For this reason, we change strategy and replace some
of the arrays Ai by matrices with multiple rows. We leave the details to later sections and
mention here that this is what causes the O(lg(1/δ) lglg(1/δ)) term in the space usage of the
Stacked IBLT.

In terms of computational efficiency our construction is slightly worse than that of
Goodrich and Mitzenmacher. Retrieving all key-value pairs from their IBLT has a computa-
tional cost of O(n · (1 + lg(1/δ)/ lg(n)), while our construction requires O(n · lg(n/δ)). In
our opinion, however, this is a small price to pay for achieving smaller IBLTs that require
less randomness.

Encrypted Compression

We apply our new data structure to the encrypted compression problem, studied by Fleis-
chhacker, Larsen, and Simkin [10]. Here one is given an array of ciphertexts of a homomorphic
encryption scheme, where at most t are encryptions of non-zero values. The goal of an
encrypted compression scheme is to compress this vector as much as possible, without
knowing what is inside the ciphertexts, i.e. without knowing which entries in the vector
are encryptions of zero and which are not. Apart from being theoretically interesting, this
problem also naturally appears as part of larger cryptographic protocols [3, 14]. We show
that following the approach of Fleischhacker, Larsen, and Simkin one can use our stacked
IBLT data structure to obtain better encrypted compression schemes. Additionally, we
show how their approach can be generalized to work for arbitrary homomorphic encryption
schemes. Note that their work, required the encryption schemes to have plaintext spaces that
grow at least linearly with the desired upper bound on the error rate of their data structure.
Due to the page limit, we defer the formal description of this application, along with the full
construction and proof to the full version of this paper [8].

Rateless IBLTs

In a work subsequent to ours, Yang, Gilad, Alizadeh [20] consider the setting of rateless
IBLTs. Here an encoder has a fixed set of source symbols and would like to encode them into
an infinite sequence of coded symbols. Without going into detail, these coded symbols should
have several high-level properties: The computation of the coded symbols should not depend
on a fixed a-priori threshold of how many source symbols will be in the data structure. The
sequence of generated coded symbols should be linear in the sense that two sequences of
coded symbols can be subtracted to obtain a sequence of coded symbols that represents the
set difference of the corresponding sets. For any number of source symbols, one should be
able to decode them back from a sufficiently long prefix of the sequence of coded symbols.

As noted by Yang, Gilad, Alizadeh, the IBLT of Goodrich and Mitzenmacher [11] does
not satisfy these properties as the size of the data structure needs to be fixed at the start and
there is no clear way of viewing it as a infinite sequence of coded symbols. We will not prove
this formally in our work, but note that our stacked IBLTs naturally have these properties,
as they can be constructed starting from the smallest array and repeatedly building the
larger arrays on top of it, viewing the array cells as coded symbols.

ESA 2024
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Some More Related Works

A variant of IBLTs that may appear similar to ours are irregular IBLTs, as originally
already suggested by Goodrich and Mitzenmacher [11] and also studied by Lázaro and
Balázs Matuz [13], where different set elements are encoded using a different amount of hash
functions. We note that our construction is regular, since it is oblivious to the specific value
of any one set element and all elements get treated equally. We believe this to be helpful
for applications, like encrypted compression, where the set elements are not visible to the
encoder generating the data structure.

In a recent work, that appeared subsequent to ours, by Belazzougui, Kucherov, Walzer [2],
the authors consider IBLTs with very small failure probabilities as we do here. The idea
behind their construction is to augment the original IBLT of Goodrich and Mitzenmacher
with a smaller backup stash data structure. When decoding of the main IBLT fails, their
peeling resorts to recovering the missing elements from the stash. In comparison, our stacked
IBLTs can conceptually be seen as an iterative version of this idea, as we have a sequence
of smaller and smaller “stashes”, moving on to peeling the smaller ones, when peeling the
bigger ones fails repeatedly. Furthermore, their work considers fully random hash functions,
whereas our work gets away with using hash functions with limited independence. Their
construction results in a sketch that is asymptotically comparable in size and has a better
expected, but worse worst-case decoding time.

1.2 Technical Contributions
When analysing events involving hash functions of limited independence, one typically
considers higher moments of a sum of random variables that each depends only on a
constant number of hash values. For our Theorem 2, the natural random variables to
consider would be the random variables Xi,j taking the value 1 if h(xi) = h(xj). Clearly
there are no more than n/2 indices i such that there exists j ̸= i with h(xi) = h(xj) if∑

i̸=j Xi,j ≤ n/2. To upper bound Pr[
∑

i ̸=j Xi,j > n/2], we raise both sides of the inequality
to the k’th power and use that Pr[

∑
i̸=j Xi,j > n/2] = Pr[(

∑
i̸=j Xi,j)k > (n/2)k]. Using

Markov’s inequality, this probability is at most E[(
∑

i̸=j Xi,j)k]/(n/2)k. Expanding the k’th
power of the sum into a sum of monomials and using linearity of expectation, we have
E[(

∑
i ̸=j Xi,j)k] =

∑
T ∈{(i,j):i ̸=j}k E[

∏
(i,j)∈T Xi,j ]. Since each product depends on at most

2k hash values, and h is 2k-wise independent, we can analyse each monomial as if h was
truly random.

For the purpose of proving our theorem, this approach actually suffices to establish
the theorem for k <

√
n. However, for our application in IBLTs we need the theorem to

hold for k up to Ω(n). The problem is that as k approaches n, using that
∑

i̸=j Xi,j is
small as a proxy for having many elements hash to a unique position is lossy. In essence,
this is because ℓ elements hashing to the same value contributes around ℓ2 to

∑
i ̸=j Xi,j

whereas it actually only corresponds to ℓ elements not hashing to a unique value. For
this reason, E[(

∑
i ̸=j Xi,j)k] is simply too large to give a meaningful bound from Markov’s

inequality when k = Ω(
√

n). In fact, it is not only the higher-moments method that
is doomed, but any approach based on arguing that Pr[

∑
i ̸=j Xi,j > n/2] is small will

fail. Consider for instance the case where k is Θ(n). Our Theorem 2 shows that the
probability that less than n/2 keys hash uniquely is exp(−Ω(n)). If we consider

∑
i ̸=j Xi,j

and even assume that h is truly random, then the probability that the first n/ lg n keys all
hash to the first n/ lg3 n entries is (C lg3 n)−n/ lg n ≥ exp(−O(n lglg n/ lg n)) for constant
C > 0. But when this happens, we have

∑
i̸=j Xi,j ≥ (n/ lg3 n)2

(lg2 n
2

)
≈ n lg n. That is,

Pr[
∑

i ̸=j Xi,j > n/2] ≥ exp(−O(n lglg n/ lg n)).
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In light of this, it is not a priori clear which random variables are sensible to analyse,
keeping in mind that they should depend on only few hash values (for the sake of limited
independence) and yet accurately capture the event that at least n/2 elements hash to a
unique value. We present two alternative proofs circumventing this barrier.

In the first, and completely self-contained proof, we carefully define random variables
Yi,j that actually depend on all hash values. We then consider the k’th moment of a sum
involving these Yi,j ’s and argue that most monomials are 0 due to the special definition of
the Yi,j ’s. Now that there are only very few non-zero monomials left, we upper bound our
Yi,j ’s by the Xi,j ’s above, bringing us back into a setup with monomials depending on at
most 2k hash values. Compared to going directly from the Xi,j ’s, what we win is that there
are much fewer monomials left in the sum. The initial pruning of monomials using the more
involved Yi,j ’s is a key technical innovation that we have not seen before and believe may be
an inspiration in future work analysing random variables of limited independence.

In the second proof, we invoke a previous theorem on k-wise independence fooling
combinatorial rectangles [7, 12]. This proof is shorter than the first, but relies on the heavy
lifting done in previous works and does not yield the explicit small constant in our theorem.

2 Preliminaries

Let X, Y be sets, we denote by |X| the size of X and by X △ Y the symmetric set difference
of X and Y , i.e., X △ Y = (X ∪ Y ) \ (X ∩ Y ) = (X \ Y ) ∪ (Y \X). We write x ← X to
denote the process of sampling a uniformly random element x ∈ X. Let v ∈ Xn be a vector.
We write vi to denote its i-th component. Let M ∈ Xn×m be a matrix. We write M [i, j] to
denote the cell in the i-th row and j-th column. We write [n] to denote the set {1, . . . , n}.
We write lg without a specified base to denote the logarithm to base two.

3 Hashing Uniquely with Limited Independence

In this section, we prove our main technical result, Theorem 2, which we restate here for
convenience.

▶ Theorem 2 (restated). Let x1, . . . , xn ∈ U be a set of n distinct keys from a universe U

and let h : U → [Cn] be a hash function drawn from a 2k-wise independent family of hash
functions. If C ≥ 8e, then with probability at least 1− 4 · (8e/C)min{k,n/C} it holds that there
are no more than n/2 indices i such that there exists a j ̸= i with h(xi) = h(xj).

As discussed in Section 1.2, the straight forward approach of analysing moments of a sum∑
i<j Xi,j with Xi,j being an indicator for h(xi) = h(xj), does not give the desired result.

In essence, this is because a collision of ℓ elements contributes roughly ℓ2 to the sum.
In this section, we present two alternative proofs circumventing this barrier. We start

by giving the self-contained proof that introduces an elegant new trick to analysing k-wise
independent random variables. We then give a proof invoking results on k-wise independence
fooling combinatorial rectangles. The remark that the second proof does not yield the explicit
constants in Theorem 2.

3.1 Proof via Moments
Our first step in the proof of Theorem 2 is thus to make a far less obvious definition of
random variables.

ESA 2024
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Proof. Define random variables Yi,j with i ̸= j taking the value 1 if h(xi) = h(xj) and
furthermore, for all a with min{i, j} < a < max{i, j} we have h(xi) ̸= h(xa). Otherwise, Yi,j

takes the value 0. Observe that if elements xi1 , . . . , xiℓ
are all those that hash to a concrete

value v, and i1 < i2 < · · · < iℓ, then Yi1,i2 = Yi2,i1 = Yi2,i3 = · · · = Yiℓ,iℓ−1 = 1 and all other
Yi,j ’s with i or j in {i1, . . . , iℓ} are zero. The random variable Yi,j is thus 1 if xi and xj hash
to the same v, and furthermore, i and j are consecutive in the sorted order of all elements
hashing to v. Critically, a collision of ℓ elements contribute only 2ℓ − 2 to

∑
i̸=j Yi,j . On

the negative side, these random variables Yi,j clearly depend on more than two hash values
unlike the Xi,j ’s.

Letting S = {x1, . . . , xn}, observe that if there more than n/2 keys x ∈ S such that
there is a y ∈ S \ {x} with h(x) = h(y), then

∑
i̸=j Yi,j > n/2. Let r = min{k, n/C}. Using

Markov’s, we get

Pr

∑
i ̸=j

Yi,j > n/2

 = Pr

∑
i ̸=j

Yi,j

r

> (n/2)r

 <
E

[(∑
i ̸=j Yi,j

)r]
(n/2)r

. (1)

We thus focus on bounding E[(
∑

i̸=j Yi,j)r]. Expand it into its monomials

E

∑
i ̸=j

Yi,j

r =
∑

(i1,j1),...,(ir,jr)

E

[
r∏

h=1
Yih,jh

]
.

Here the sum ranges over all lists of r pairs (ih, jh) with ih ̸= jh. Notice that the product
is 1 if and only if all the indicators involved are 1. For a monomial

∏r
h=1 Yih,jh

, think of
the pairs (ih, jh) as edges of a graph with the elements x1, . . . , xn as nodes. The critical
observation is that if any node in this graph has at least three distinct neighbors, then∏r

h=1 Yih,jh
= 0. To see this, assume the node xi has at least three distinct neighbors. If xi

has two neighbors xj1 , xj2 with j1 < j2 < i, then we cannot have both Yj1,i = Yi,j1 = 1 and
Yj2,i = Yi,j2 = 1. This is because, by definition, Yj1,i can only be 1 if there are no elements
xa with h(xa) = h(xj1) and j1 < a < i. But a = j2 is an example of such an element when
we also require Yj2,i = Yi,j2 = 1. A similar argument applies to the case that xi has two
neighbors xj1 , xj2 with i < j1 < j2. Notice that this also implies that the monomial is 0 if
the corresponding graph has a cycle since the node of largest index on the cycle has an edge
to two distinct neighbors of lower index. In combination, the monomial can only be non-zero
if the corresponding edges form connected components corresponding to paths (possibly with
duplicate edges).

Let Gr denote the set of all ordered lists L of r pairs L := (i1, j1), . . . , (ir, jr) (with
ih ̸= jh for all h) such that every connected component in the corresponding graph G(L)
forms a path. Then

E

∑
i ̸=j

Yi,j

r =
∑

L∈Gr

E

 ∏
(i,j)∈L

Yi,j

 .

Now consider a monomial
∏

(i,j)∈L Yi,j for an L ∈ Gr. Define Xi,j as the random variable
taking the value 1 if h(xi) = h(xj) and 0 otherwise. Here we use that Yi,j ≤ Xi,j and thus∏

(i,j)∈L Yi,j ≤
∏

(i,j)∈L Xi,j . Therefore

E

∑
i ̸=j

Yi,j

r ≤ ∑
L∈Gr

E

 ∏
(i,j)∈L

Xi,j

 .
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What we have achieved is to upper bound E[(
∑

i<j Yi,j)r] by the contribution from monomials
corresponding to graphs consisting of paths. Furthermore, for these monomials, we have
replaced the Yi,j variables by the simpler Xi,j variables that each only depend on two hash
values. This allows us to handle the limited independence of h.

Next, we bound E[
∏

(i,j)∈L Xi,j ] for an L ∈ Gr. With the graph interpretation G(L) of
L in mind, we observe that the product is 1 if and only if, for every connected component
in G(L), all nodes in the component hash to the same value. Furthermore, the monomial
depends on at most 2r ≤ 2k hash values and thus the random variables behave as if h was
truly random. For a connected component with qi nodes, the probability all nodes hash to
the same is precisely (Cn)−(qi−1). If the total number of nodes in G(L) having at least one
neighbor is q and the total number of connected components in G(L) formed by these nodes
and their edges is c, then

E

 ∏
(i,j)∈L

Xi,j

 = (Cn)−q+c.

For every q ≤ 2r and every c ≤ q/2, let Gr
q,c ⊆ Gr be the subset of lists L for which the

corresponding graph G(L) has c non-singleton connected components and those connected
components together have q nodes. Then

E

∑
i ̸=j

Yi,j

r ≤ 2r∑
q=2

q/2∑
c=1

∑
L∈Gr

q,c

E

 ∏
(i,j)∈L

Xi,j

 =
2r∑

q=2

q/2∑
c=1
|Gr

q,c|(Cn)−q+c.

We thus need to bound |Gr
q,c|. Here we show the following

▶ Lemma 3. For all q ≤ 2r, c ≤ q/2 it holds that

|Gr
q,c| ≤

(
4er

q

)q−c

2rqrnqq−c.

Before we prove the lemma, let us use to finish our proof of Theorem 2. Continuing our
calculations above using Lemma 3, we have that

|Gr
q,c|(Cn)−q+c ≤

(
4er

qCn

)q−c

2rqrnqq−c

=
(

4er

qC

)q (
4er

Cn

)−c

2rqr.

Since we set r = min{k, n/C} and require C ≥ 8e, we have (4er/(Cn)) ≤ 1/4 and thus
exploiting that the sum over c is a geometric series we get

q/2∑
c=1
|Gr

q,c|(Cn)−q+c ≤ 2
(

4er

qC

)q (
4er

Cn

)−q/2
2rqr = 2

(
4ern

Cq2

)q/2
2rqr

Using again that n/C ≥ r and r ≥ q/2, we have 4ern/(Cq2) ≥ 4er2/q2 ≥ e and thus we may
again use a geometric series to conclude

E

∑
i ̸=j

Yi,j

r ≤ 2r∑
q=2

q/2∑
c=1
|Gr

q,c|(Cn)−q+c ≤ 4
(

4ern

C(2r)2

)r

(4r)r = 4
(

4en

C

)r

.
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Plugging this back into the bound (1) we got from Markov’s inequality, we finally conclude

Pr

∑
i ̸=j

Yi,j > n/2

 ≤ 4 ·
(

8e

C

)r

.

Recalling that r = min{k, n/C} completes the proof. ◀

Counting Graphs (Proof of Lemma 3)

To bound |Gr
q,c|, we first recall that every L ∈ Gr

q,c corresponds to a graph consisting of c

non-singleton connected components, each forming a path of qi nodes with q =
∑

i qi. The
set of (undirected) edges in G(L) thus has cardinality q − c ≤ r. We now argue that any
L ∈ Gr

q,c can be uniquely described by an element in

U :=
(

r

q − c

)
× ({0, 1} × [q − c])r−(q−c) ×

(
2(q − c)

q

)
× [n]q × [q]2(q−c)−q.

Here
(

r
q−c

)
is the set of all (q − c)-sized subsets of a universe of cardinality r. Notice that

this indirectly specifies a surjective function from U to Gr
q,c and thus

|Gr
q,c| ≤

(
r

q − c

)
(2(q − c))r−(q−c)

(
2(q − c)

q

)
nqqq−2c.

To describe an L ∈ Gr
q,c with an element from U , use an element in

(
r

q−c

)
to specify the first

occurence of each edge in L (where an edge (i, j) is first if neither (i, j) or (j, i) occurs earlier
in L). For each of the r − (q − c) remaining edges in order, use an element in {0, 1} × [q − c]
to specify it as a copy of one of the q− c first edges, where {0, 1} indicates whether to reverse
the order of the end points. Next observe that the q − c first edges have 2(q − c) end points
of which precisely q are unique. Specify the first occurence of each unique node on these
edges using an element in

(2(q−c)
q

)
. Next use an element in [n] for each such node in order to

specify it among the nodes x1, . . . , xn. Finally, for the remaining 2(q − c) − q end points,
specify them as an index into the q first occurrences of unique nodes. This information
uniquely describes L.

Using that
(2(q−c)

q

)
≤ 22(q−c) and the general inequality

(
r

q−c

)
≤ (er/(q − c))q−c, we

conclude

|Gr
q,c| ≤

(
er

q − c

)q−c

(2(q − c))r−(q−c)22(q−c)nqqq−2c

≤
(

2er

q

)q−c

(2q)r−(q−c)22(q−c)nqqq−2c

=
(

4er

q

)q−c

2rqrnqq−c. ◀

Let us finish by commenting on our choice of bounding
∑

i ̸=j Yi,j rather than
∑

i<j Yi,j .
This choice was made for simplicity, but one may wonder whether focusing on the latter
might result in tighter constants. This does not seem to be the case, as then the assumption
that there are more than n/2 keys x ∈ S such that there is a y ∈ S \ {x} with h(x) = h(y),
does not imply

∑
i<j Yi,j > n/2 (we use

∑
i̸=j Yi,j > n/2), but only

∑
i<j Yi,j > n/4. We

would thus lose a constant factor in Markov’s.
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4 Proof via k-Wise Independence Fools Combinatorial Rectangles

We now give a second proof based on k-wise independence fooling combinatorial rectangles.
This proof was communicated to us by an anonymous reviewer.

We first introduce the notion of a combinatorial rectangle. A combinatorial rectangle is
a function f : [m]n → {0, 1} which is specified by n coordinate functions fi : [m]→ {0, 1}
as f(x1, . . . , xn) =

∏
i∈m fi(xi). We now use the following result, typically attributed to [7],

although we cannot directly find this statement in the version available online. A clean
introduction to combinatorial rectangles and bounded independence can, for instance, be
found in [12].

▶ Theorem 4. Let X1, . . . , Xn be k-wise independent random variables with uniform marginal
distributions over [m]. Let f be a combinatorial rectangle. Then there is a constant a > 0
such that∣∣EX1,...,Xn

[f(X1, . . . , Xn)]− Ex∈[m]n [f(x)]
∣∣ ≤ e−ak,

where Ex∈[m]n denotes a uniform random x ∈ [m]n.

With this tool in place, we now prove Theorem 2.

Proof. Recall that we are hashing into Cn bins. Let x1, . . . , xn ∈ U denote the n keys and
let h : U → [Cn] denote a hash function drawn randomly from a 2k-wise independent family
of hash functions. Let Xi be the random variable taking the value h(xi).

Let J ⊆ [Cn] be the indices of a subset of the bins, with |J | = t for a parameter t to be
determined. Define random variables Zj taking the value 1 if no element hashes to the value
j and 0 otherwise. The probability that all bins indexed by J are empty is E[

∏
j∈J Zj ]. If

we now define functions fi : [Cn]→ {0, 1} taking the value 1 on h(xi) /∈ J and the value 0
for h(xi) ∈ J , we have that

∏
j∈J Zj =

∏n
i=1 fi(Xi), i.e.

∏
j∈J Zj is in effect a combinatorial

rectangle. By Theorem 4, we have

E

∏
j∈J

Zj

 ≤ Ex∈[Cn]n [f(x)] + e−ak.

But Ex∈[Cn]n [f(x)] = (1 − t/Cn)n ≤ e−t/C . We now require t < aCk and conclude
E[

∏
j∈J Zj ] ≤ 2e−t/C .

Next, observe that if there are less than n/2 elements that hash to a unique value, then
the number of occupied bins is at most 3n/4. Vice versa, the number of unoccupied bins is
at least Cn− 3n/4. If we also have t < Cn− 3n/4, then we may bound the expected number
of t-sized subsets of bins that are empty. That is, if we let YJ =

∏
j∈J Zj , then we have just

shown

E

 ∑
J∈(Cn

t )
YJ

 ≤ (
Cn

t

)
2e−t/C .

On the other hand, we may also lower bound the expectation by

E

 ∑
J∈(Cn

n )
YJ

 ≥ Pr

∑
j

Zj > Cn− 3n/4

 (
Cn− 3n/4

t

)
.
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Init(h)
for 0 ≤ i < lg(n) − lg(τ)

Ti := BasicInit(1, ⌈Cn2−i⌉, hi)
for 0 ≤ i < lg(τ)

i′ := ⌊lg(n) − lg(τ)⌋ + i

Ti′ := BasicInit(2i, ⌈Cτ2−i⌉, hi′ )
return (T0, . . . , T⌈lg n⌉−1)

Insert((T0, . . . , T⌈lg n⌉−1), S, h)
for 0 ≤ i < ⌈lg n⌉

Ti := BasicInsert(S, hi)
return (T0, . . . , T⌈lg n⌉−1)

ListEntries((T0, . . . , T⌈lg n⌉−1), h)
S′ := ∅
for 0 ≤ i < ⌈lg n⌉

Ti := BasicDelete(Ti, S′)
S′ := S′ ∪ BasicListEntries(Ti)

return S′

Delete((T0, . . . , T⌈lg n⌉−1), S̃, h)
for 0 ≤ i < ⌈lg n⌉

Ti := BasicDelete(S̃, hi)
return (T0, . . . , T⌈lg n⌉−1)

Figure 1 Our stacked IBLT construction using basic IBLTs as specified in Figure 2 as a building
block. We have that τ = C0 lg(1/δ) for a sufficiently large constant C0 > 0.

Combining the two yields

Pr

∑
j

Zj > Cn− 3n/4

 ≤ 2e−t/C ·
(

Cn
t

)(
Cn−3n/4

t

)
≤ 2 ·

(
e−1/C(Cn− t)
Cn− 3n/4− t

)t

= 2 ·
(

e−1/C

(
1 + 3

4(C − 3/4− t/n)

))t

≤ 2 ·
(

e−1/C+(3/4)·1/(C−3/4−t/n)
)t

If we require t < n and C at least a sufficiently large constant, then this is exp(−Ω(t/C)).
Setting t = min{aCk, n} completes the proof. ◀

5 Smaller IBLTs with Limited Independence

In this section, we present a new construction of IBLTs, which we call stacked IBLTs, that is
both asymptotically smaller and requires less randomness (in Subsection 5.3 we also argue
that the analysis of the original IBLT cannot be strengthened to give bounds comparable to
our stacked IBLT).

5.1 Stacked IBLTs
In this section we introduce our new Stacked IBLTs that are more space efficient and allow
for a lower randomness complexity. Essentially the construction consists of lg n stacked
smaller IBLTs. These IBLTs will be decoded in order and each is sized, such that we will be
able to prove that it allows decoding at least half the remaining entries. This means that
after decoding all lg n IBLTs, at most a single element is left to decode which can then be
trivially decoded.
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BasicInit(ρ, γ, h)
K := 0ρ×γ

V := 0ρ×γ

C := 0ρ×γ

return (K, V , C)

BasicInsert((K, V , C), S, h)
foreach (k, v) ∈ S

foreach i ∈ [ρ]
j := hi(k)
K[i, j] := K[i, j] + k

V [i, j] := V [i, j] + v

C[i, j] := C[i, j] + 1
return (K, V , C)

BasicListEntries((K, V , C), h)
S′ := ∅
for (i, j) ∈ [ρ] × [γ]

if C[i, j] = 1
(k, v) := (K[i, j], V [i, j])
S′ := S′ ∪ {(k, v)}

return S′

BasicDelete((K, V , C), S̃, h)
foreach (k, v) ∈ S̃

foreach i ∈ [ρ]
j := hi(k)
K[i, j] := K[i, j] − k

V [i, j] := V [i, j] − v

C[i, j] := C[i, j] − 1
return (K, V , C, h)

Figure 2 A simplified version of a basic IBLT for key space K and universe U . Both ⟨K, +⟩ and
⟨U , +⟩ need to form groups. The basic IBLT requires a number of rows ρ, a number of columns γ

and a vector of hash functions h ∈ {h : K → [γ]}ρ to initialize.

Let n be the threshold for an IBLT and δ > 0 a desired failure probability. We can think
of our Stacked IBLT as consisting of multiple rows, with a k-wise independent hash function
associated with each row for k = Θ(lg(lg(n)/δ)). An element is hashed into one position in
each row and stored there, like in the classic IBLT. The key novelty of our solution is that
the number of entries per row varies. Moreover, while a classic IBLT focuses on peeling all
elements, our analysis is based on peeling a constant fraction of the elements from each row.

More formally, let τ = C0 lg(1/δ) for a sufficiently large constant C0 > 0 and assume first
that n ≥ τ . For i = 0, . . . , lg(n/τ), our IBLT has one row Ri with Cn2−i entries. Here C > 0
is a sufficiently large constant, where C = 8e is provably sufficient. Finally, for i = 0, . . . , lg(τ),
it has a group Gi consisting of 2i rows all with Cτ2−i entries. In case n < C0 lg(1/δ), our
structure has a group Gi of 2i rows for every i = lg(τ/n), . . . , lg(τ). In the group Gi, every
row has Cτ2−i entries. The IBLT uses

∑lg(n/τ)
i=0 Cn2−i +

∑lg(τ)
i=0 Cτ = O(n+lg(1/δ) lglg(1/δ))

space. In the formal description of our Stacked IBLT construction, shown in Figure 1, we
do not explicitly distinguish between the rows Ri and groups Gi, but rather view them as
smaller IBLTs that we call T1, . . . , Tlg n. For the analysis, however, distinguishing the smaller
IBLTs with one row and those with multiple rows is helpful.

▶ Theorem 1 (restated). Given a threshold n, the Stacked IBLT supports Insert, Delete,
and ListEntries operations, where ListEntries succeeds with probability 1− δ if the number of
key-value pairs is no more than n. Furthermore, it uses space O(n + lg(1/δ) lglg(1/δ)) and
requires only O(lg(lg(n)/δ))-wise independent hashing.

▶ Remark 5. We note that a k-wise independent hash function from a universe U to a
universe of size γ requires O(k lg(U)) bits. Since we require O(lg(n/δ) such functions, we
observe that the total number of random bits we need is O(lg(n/δ)(lg(1/δ) + lg lg(n)) lg(U))
bits. Regarding running times, the Insert and Delete operations both require O(lg(n/δ))
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evaluations of a O(lg(lg(n)/δ))-wise independent hash function, plus insertions in the table
entries. The running time is dominated by the evaluations of the hash functions, for a total
time of O(k lg(n/δ)) per element.

Proof of Theorem 1. To analyse the probability that peeling succeeds, we focus on the case
of n ≥ τ . The other case is just a special case.

To argue that peeling succeeds with high probability, we consider a very restrictive form
of peeling and argue that even this process succeeds. Concretely, for i = 0, . . . , lg(n/τ),
consider peeling all elements that land alone in Ri (after having peeled elements landing
alone in Rj with j < i). Then, for i = 0, . . . , lg(τ) in turn, select the row of Gi where most
elements hash alone and peel those elements. To prove that this process succeeds in peeling
all elements with probability at least 1 − δ, we define the events Ei occuring if there are
more than n2−(i+1) elements left after peeling from R0, . . . , Ri. Similarly, define Fi as the
event that more than τ2−(i+1) elements remain after peeling from R0, . . . , Rlg(τ), G0, . . . , Gi.
We observe that if Flg(τ) does not occur, then there are no more than 1/2 elements left, i.e.
peeling succeeded.

The key step in our proof is to argue that the following two inequalities hold:

Pr[Ei | ∩i−1
j=0Ej ] ≤ δ

4(lg(n/τ)− i + 1)2 . (2)

and

Pr[Fi | ∩lg(n/τ)
j=0 Ej ∩i−1

j=0 Fj ] ≤ δ2/2. (3)

Observe that these two are sufficient as

Pr[Flg(τ)] ≥ Pr[∩lg(n/τ)
j=0 Ej ∩lg(τ)

j=0 Fj ]

=
lg(n/τ)∏

i=0
(1− Pr[Ei | ∩i−1

j=0Ej ])
lg(τ)∏
i=0

(1− Pr[Fi | ∩lg(n/τ)
j=0 Ej ∩i−1

j=0 Fj ])

≥
lg(n/τ)∏

i=0

(
1− δ

4(lg(n/τ)− i + 1)2

) (
1− δ2/2

)lg(τ)+1

≥ 1−
lg(n/τ)∑

i=0

δ

4(i + 1)2 −
(lg(τ) + 1)δ2

2

≥ 1− δπ2

24 −
δ

2
≥ 1− δ.

We start by showing (2). Observe that conditioned on ∩i−1
j=0Ej , we know that no more than

n2−i elements remain after peeling from R0, . . . , Ri−1. We may condition on an arbitrary
such set as the hash functions across the rows are independent. So let S be a set of at most
n2−i elements. The probability that there are more than n2−(i+1) elements that do no hash
alone in Ri is clearly maximized when |S| is n2−i. Theorem 2 gives us that this probability is
at most 4(8e/C)min{k/2,n2−i/C}. For C ≥ 16e, this is at most 4 ·2− min{k/2,n2−i/C}. Since k =
Θ(lg(lg(n)/δ)), we have 2−k/2 < δ/(4 lg2

2 n) ≤ δ/(4(lg(n/τ)−i+1)2) for a big enough constant
in the Θ-notation. We also have n2−i/C = τ2lg(n/τ)−i/C. For big enough constant C0 (in the
definition of τ), this is at least 2 lg(1/δ)(lg(n/τ)−i+1)+2 ≥ lg(1/δ)+2 lg(lg(n/τ)−i+1))+2
(and this is by a large margin) and we conclude 2−n2−i/C ≤ (δ/4)/(lg(n/τ)− i + 1))2.

To show (3), note again that conditioned on ∩lg(n/τ)
j=0 Ej ∩i−1

j=0 Fj , there are at most
τ2−i elements left after peeling from R0, . . . , Rlg(n/τ), G0, . . . , Gi−1. Again, condition on
an arbitrary set S of remaining elements. The probability of Fi is clearly maximized if
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|S| = τ2−i. We split the proof in two cases. First, assume τ2−i ≥ 4C. Since each of the 2i

rows of Gi have Cτ2−i entries, and the rows have independent hash functions, it follows by
Theorem 2 and C ≥ 16e, that

Pr[Fi | ∩lg(n/τ)
j=0 Ej ∩i−1

j=0 Fj ] ≤
(

4 · 2− min{k,τ2−i/C}
)2i

≤
(

2− min{k/2,τ2−i/(2C)}
)2i

.

Here the last inequality assumes k = Θ(lg(lg(n)/δ)) is at least a sufficiently large constant.
We also use τ2−i/C − 2 ≥ τ2−i/C − τ2−i/(2C). We clearly have 2−k/2 ≤ δ2/2 for a big
enough constant in the Θ-notation. We also have (2−τ2−i/(2C))2i = 2−τ/(2C). This is again
smaller than δ2/2 for big enough constant C0 in the definition of τ = C0 lg(1/δ). Finally, for
the case where |S| = τ2−i < 4C, we note that one row of Gi has C|S| entries and thus the
expected number of elements that collide with another is no more than |S|2/(C|S|) = |S|/C.
By Markov’s inequality, the probability that more than |S|/2 collide is no more than
2/C < 1/2. By independence of the rows, the chance that peeling fails is at most 2−2i . Since
τ2−i < 4C, we have 2i ≥ τ/(4C) = C0 lg(1/δ)/(4C). For C0 a big enough constant, this
implies 2−2i

< δ2/2. ◀

5.2 Supporting Subtraction
Most applications of IBLTs require that decoding is possible after computing the difference
between two different IBLTs. That is, given two IBLTs A, B, encoding sets SA and SB

respectively, decoding A−B should result in SA△ SB as long as |SA△ SB | ≤ n, even if the
sets encoded in IBLTs A and B are much larger than n individually. The IBLT A − B is
obtained by subtracting the two data structures cell by cell.

Our stacked IBLTs can be made to support such an operation in a manner similar to
the original IBLT construction. We modify the basic IBLT from Section 5.1 to have an
additional hash sum matrix H where the values g(k) for keys k for some appropriate hash
function g are added up. During peeling both cells with a count of one or minus one can
be peeled, whenever the hash of the key sum cell matches the hash stored in the hash sum
cell. The stacked IBLTs supporting subtraction are explained in detail the full version of this
paper [8].

5.3 Lower Bound on the Size of IBLTs
The original IBLT analysis by Goodrich and Mitzenmacher [11] shows that using truly
random hash functions and space O(nk) one can achieve a failure probability of O

(
n−k+2)

.
Stated in terms of δ and n, the space usage of their solution is thus Ω(n lgn(1/δ)). One may
wonder, whether their analysis is tight or whether one could prove that IBLTs actually only
require o(nk) space for a similar failure probability.

It turns out their space bound is essentially tight and can not be improved by much.
Assume we have an IBLT of size m storing keys k1, . . . , kn. Furthermore assume h1, . . . , hk

are perfectly random hash functions, which map each key to exactly k distinct locations. For
an IBLT to be decodable, we must be able to find a cell with a count of one at each step of
the peeling process. If kn ≥ cm lg m for some sufficiently large constant c, then each cell will
have at least c lg m elements in expectation and thus by Chernoff bound with high probability
all cells have a count strictly larger than one. Thus it must hold that kn < cm lg m. Consider
two distinct keys that are inserted into the IBLT. The probability that both keys are hashed
into exactly the same cells is(

m

k

)−1
≥

(em

k

)−k

≥
(

en

c lg m

)−cm lg m/n

≥ n−cm lg m/n.
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If we want the IBLT to be correct with probability at least 1− δ, then it has to holds that

n−cm lg m/n ≤ δ

and thus

cm lg m lg n

n
> lg(1/δ) ⇐⇒ m lg m >

n lg(1/δ)
c lg n

.

For this to hold, it must also hold that

m lg(n lg(1/δ)) >
n lg(1/δ)

c lg n
⇐⇒ m >

n lg(1/δ)
c lg(n) lg(n lg(1/δ))

and thus it must be true that

m >
n lg(1/δ)

c lg2(n lg(1/δ))
≥ n lgn(1/δ)

c lg2(n lg(1/δ))

for any choice of n ≥ 2.
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