
Hitting Meets Packing: How Hard Can It Be?
Jacob Focke #

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

Fabian Frei #

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

Shaohua Li
CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

Dániel Marx #

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

Philipp Schepper #

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

Roohani Sharma #

University of Bergen, Norway

Karol Węgrzycki #

Saarland University, Saarbrücken, Germany
Max Planck Institute for Informatics, SIC, Saar-
brücken, Germany

Abstract
We study a general family of problems that form a common generalization of classic hitting (also
referred to as covering or transversal) and packing problems. An instance of X -HitPack asks: Can
removing k (deletable) vertices of a graph G prevent us from packing ℓ vertex-disjoint objects of type
X ? This problem captures a spectrum of problems with standard hitting and packing on opposite
ends. Our main motivating question is whether the combination X -HitPack can be significantly
harder than these two base problems. Already for one particular choice of X , this question can be
posed for many different complexity notions, leading to a large, so-far unexplored domain at the
intersection of the areas of hitting and packing problems.

At a high level, we present two case studies: (1) X being all cycles, and (2) X being all copies of
a fixed graph H. In each, we explore the classical complexity as well as the parameterized complexity
with the natural parameters k + ℓ and treewidth. We observe that the combined problem can be
drastically harder than the base problems: for cycles or for H being a connected graph on at least 3
vertices, the problem is ΣP

2-complete and requires double-exponential dependence on the treewidth
of the graph (assuming the Exponential-Time Hypothesis). In contrast, the combined problem
admits qualitatively similar running times as the base problems in some cases, although significant
novel ideas are required. For X being all cycles, we establish a 2poly(k+ℓ) · nO(1) algorithm using an
involved branching method, for example. Also, for X being all edges (i.e., H = K2; this combines
Vertex Cover and Maximum Matching) the problem can be solved in time 2poly(tw) · nO(1) on
graphs of treewidth tw. The key step enabling this running time relies on a combinatorial bound
obtained from an algebraic (linear delta-matroid) representation of possible matchings.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Algorithm design techniques

Keywords and phrases Hitting, Packing, Covering, Parameterized Algorithms, Lower Bounds,
Treewidth

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.55

Related Version Full Version: https://arxiv.org/abs/2402.14927 [22]

Funding Philipp Schepper : Part of Saarbrücken Graduate School of Computer Science, Germany.
Karol Węgrzycki: This work is part of the project TIPEA that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 850979).

© Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol
Węgrzycki;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 55; pp. 55:1–55:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacob.focke@cispa.de
https://orcid.org/0000-0002-6895-755X
mailto:fabian.frei@cispa.de
https://orcid.org/0000-0002-1368-3205
https://orcid.org/0000-0001-8079-6405
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
mailto:philipp.schepper@cispa.de
https://orcid.org/0000-0002-5810-7949
mailto:r.sharma@uib.no
https://orcid.org/0000-0003-2212-1359
mailto:wegrzycki@cs.uni-saarland.de
https://orcid.org/0000-0001-9746-5733
https://doi.org/10.4230/LIPIcs.ESA.2024.55
https://arxiv.org/abs/2402.14927
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Hitting Meets Packing: How Hard Can It Be?

1 Introduction

In the combinatorial optimization literature, many algorithmic problems can be classified
into one of two dual classes: either as a packing problem or as a hitting problem. In packing
problems, the goal is to find a large pairwise independent collection of objects of certain type.
For example, one of the most-studied problems, Maximum Matching, can be described as
finding a pairwise vertex-disjoint collection of at least ℓ edges. Network flow problems require
finding a large collection of edge-disjoint paths from s to t. More generally, one can define
the X -Packing problem for any type X of objects. In hitting problems (sometimes referred
to as transversal or covering problems), the task is to find a small set of elements that hits
(i.e., intersects) every object of a certain type X . For example, the Vertex Cover problem
can be described as finding a set of at most k vertices that intersect every edge (i.e., contains
at least one endpoint of each edge). The minimum s-t cut problem can be interpreted as
finding a set of edges that intersects every s-t path. A quick note on terminology is in order
here. The name of a covering problem typically refers to the type of objects used to cover,
rather than the type of objects being covered. For example, Cycle Cover usually refers to
the problem of covering the vertices of the graph with few (not necessarily disjoint) cycles,
and not the problem of hitting every cycle with a small set of vertices (which is usually called
Feedback Vertex Set). For this reason, we prefer to use X -Hitting for the problem
where the task is to find a set of elements or vertices that intersect every object of type X .

There is a well-known duality phenomenon connecting hitting and packing problems. If
there are ℓ disjoint objects of type X , then clearly we need at least ℓ elements to hit every such
object. In other words, the optimum of X -Hitting is at least the optimum of X -Packing.
For some types of objects (such as edges in bipartite graphs and s-t paths), celebrated duality
theorems demonstrate that there is always equality between the two optimum values. These
duality results and their variants underlie many of the polynomial-time exact algorithms in
combinatorial optimization. For problems where the two optimum values do not coincide, it is
natural to ask how large the gap can be. Erdős and Pósa [20] showed that if ℓ is the maximum
number of vertex-disjoint cycles, then all the cycles can be hit by a set of k = O(ℓ log ℓ)
vertices. More generally, we say that a type X of objects has the Erdős–Pósa property if the
hitting optimum can be bounded by a function of the packing optimum. For example, it is
known that the Erdős–Pósa property holds for undirected cycles passing through a set S

[33, 58] or directed cycles [62], but it does not hold for cycles of odd length [61].
In this paper, we study a different, algorithmic question that connects hitting and packing

problems. Let X be a type of graph objects, and consider the following problem. Given a
graph G and integers k and ℓ, the task is to find a set S of at most k vertices such that G − S

does not contain ℓ disjoint copies of objects of type X . This unified formulation captures
both X -Hitting and X -Packing problems: for ℓ = 1, it asks if every object can be hit with
k vertices; for k = 0, it asks whether it is impossible to find ℓ disjoint objects. Therefore,
X -HitPack is at least as hard as X -Hitting and the complement of X -Packing. Note that
deterministic algorithms, on which we focus in this paper, always work for the complement of
a problem as well. The main meta-question that we explore is how hard such a combination
of two problems may become:

If some type of algorithm exists for both X -Hitting and
X -Packing, then is there such an algorithm for X -HitPack
as well?

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:3

The main message of this paper is that the formulation of this question leads to a whole
new unexplored continent of interesting and challenging questions. As we shall see, in some
settings the combined problem is indeed strictly harder, while in other settings a qualitatively
similar algorithm can be obtained for the combined problem, albeit only after developing
significantly more involved techniques.

To make the problem statement more robust, we extend the problem by assuming that
the input graph contains a set U of undeletable vertices and the solution S has to be disjoint
from U . Such undeletable vertices may be needed to express problems where the objects
X are, say, s-t paths or paths between terminals, and we do not want to allow the deletion
of terminals. Note that this generalization makes our algorithmic results slightly stronger,
while it makes the lower bound results slightly weaker. Formally, for a type X of objects, the
problem is defined as follows.

X -HitPack
Input: Graph G, set U ⊆ V (G), integers k and ℓ.

Question: Is there a set S ⊆ V (G) \ U of size ≤ k such that
G − S does not contain ℓ vertex-disjoint objects of
type X ?

There are two ways of looking at the X -HitPack problem. It can be considered as a
weaker version of hitting: the solution does not have to destroy all sets in X , but up to
ℓ disjoint sets are allowed to survive in G − S. An alternative view is to interpret it as a
more stable version of packing. We have to decide not only whether ℓ disjoint objects exist
but whether the graph may lose this property if up to k arbitrary vertices are removed.
Such a robust version of packability is clearly desirable in many situations, and the problem
of detecting this property is precisely the complement of X -HitPack. Frei et al. [29]
recently initiated a systematic complexity study of a related stability notion, where a graph
is vertex-stable if some parameter cannot change upon deletion of a single vertex. Specifically,
an instance is in X -HitPack if and only if it is not stable with respect to the deletion of up
to k vertices and the property of containing ℓ vertex-disjoint objects of type X .

Returning to the overarching question of how hard X -HitPack may become compared to
X -Hitting, and X -Packing, let us start with examples where all of them are polynomial-
time solvable. If X is simply the set of edges, then the hitting problem is Vertex Cover
and the packing problem is Maximum Matching. On bipartite graphs they are known to
be polynomial-time solvable, and the size of a minimum vertex cover is equal to size of a
maximum matching. Let d be this size. Deleting a set of k vertices can decrease the size of
the maximum matching only by at most k, thus the answer is no if d − k ≥ ℓ. Otherwise, if
d − k < ℓ, then deleting any k vertices of a minimum vertex cover decreases the size of a
maximum matching by k (as deleting d − k further vertices of the vertex cover decreases
this size to 0), showing that the answer is yes. This argument works for other objects where
exact duality theorems are known, for example for internally vertex-disjoint s-t paths (since
the maximum number of disjoint paths is equal to the minimum s-t separator).

In general, however, no such exact duality theorem is available. In such a case, X -Hitting
and X -Packing are two very different problems that may require different techniques. Then,
solving X -HitPack would require combining the two solution techniques in a nontrivial way,
and it very well may be the case that X -HitPack is a qualitatively harder problem that
both X -Hitting and X -Packing. Let us point out that one can explore different aspects of
hardness (NP-hardness, exact running times, parameterized complexity, approximation, etc.),
thus already for one particular choice of X , one can ask many different questions. This means

ESA 2024

55:4 Hitting Meets Packing: How Hard Can It Be?

duality
results

Erdős-Pósa
property

X -HitPack
problem

Hitting
Problems

Packing
Problems

Figure 1 The areas of hitting and packing problems intersect in combinatorial duality and
Erdős–Pósa property results, and in the algorithmic study of combined hitting and packing problems.

that understanding the X -HitPack problem is a two-dimensional question: one dimension
is the choice of X and the other dimension is the notion of complexity. We present two
case studies (the objects X being cycles of arbitrary size or subgraphs isomorphic to a fixed
graph H) and explore different aspects of the complexity of X -HitPack. See Table 1 for an
overview of our results.

Case Study 1: Cycles

Let us first consider the case when the type X of objects are the cycles in the given graph
G. Thus, X -Hitting is exactly Feedback Vertex Set (the problem of deciding whether
there is a set S of up to k vertices such that G − S has no cycle), X -Packing is Cycle
Packing (asking whether are there ℓ vertex-disjoint cycles), and X -HitPack is the problem
of asking if it is possible to remove a set S of k (deletable) vertices such that the remaining
graph does not contain ℓ vertex-disjoint cycles.

Feedback Vertex Set and Cycle Packing are both known to be NP-complete. As we
have seen, Cycle-HitPack generalizes both Feedback Vertex Set and the complement
of Cycle Packing, thus it is unlikely to be in NP. Indeed, a solution S of size k is not a
good certificate, as it is hard to verify due to the NP-hardness of Cycle Packing. We show
that Cycle-HitPack is in fact located further up in the polynomial hierarchy.

▶ Theorem 1.1. Cycle-HitPack is ΣP
2 -complete.

Another jump in complexity can be observed if we consider how the problems behave on
graphs of bounded treewidth. The study of parameterized algorithms and complexity on such
graphs has been a fruitful area of research, as many NP-hard problems become tractable when
restricted to graphs of small treewidth. In many cases, the problems are fixed-parameter
tractable (FPT) parameterized by treewidth: there is an algorithm solving the problem in
time f(tw) · nO(1) for some function f . By now, there is a strong understanding on how
the complexity of different problems depends on the treewidth of the graph, with a number
of nontrivial algorithmic techniques and tight conditional lower bounds appearing in the
literature [7, 8, 13, 14, 15, 19, 23, 24, 34, 41, 42, 45, 51, 52, 53, 55, 56]. The function f is
typically of the form 2poly(tw), and we know of only a handful of problems where a double-

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:5

or even triple-exponential dependence on treewidth is necessary assuming the Exponential-
Time Hypothesis (ETH) [28, 40, 42, 51, 57]. One may see a pattern that problems at
higher level of the polynomial hierarchy may need more than exponential dependence on
treewidth, but note that there are problems in NP that need double-exponential dependence
(metric dimension [28]) and there are #P-hard counting problems1 that can be solved with
single-exponential dependence [14, 23, 24, 52]. Both Feedback Vertex Set and Cycle
Packing can be solved in time 2poly(tw) · nO(1) (it is known that, assuming ETH, the optimal
dependence on treewidth is 2O(tw) and 2O(tw log tw) for the two problems, respectively). Does
the common generalization Cycle-HitPack also admit an algorithm of this running time?
We answer this question in the negative: the dependence becomes double-exponential on
treewidth. We first present a new double-exponential algorithm.

▶ Theorem 1.2. Cycle-HitPack can be solved in time 22O(tw log tw) · nO(1), where tw is the
treewidth of the input graph.

We show a matching lower bound that not only proves the double-exponential dependence
for the larger parameter pathwidth but also shows that the additional logarithmic factor
cannot be avoided.

▶ Theorem 1.3. Assuming ETH, Cycle-HitPack has no 22o(pw log pw) · nO(1)-time algorithm,
where pw is the pathwidth of the input graph.

Feedback Vertex Set is known to be fixed-parameter tractable (FPT) parameterized
by k, in fact, it can be solved in time 2O(k) · nO(1) [9, 16, 31, 38]. Cycle Packing is FPT
parameterized by ℓ, but it is an open question whether there is a 2O(ℓ) · nO(1)-time algorithm:
the current best algorithm has running time 2O(ℓ log2 ℓ/ log log ℓ) [47]. As Cycle-HitPack is
NP-hard for k = 0 and also for ℓ = 1, a natural parameter for the problem is p := k + ℓ.

We can try to use the following approach to show that Cycle-HitPack is FPT paramet-
erized by p. Suppose that the input graph G has p = k + ℓ disjoint cycles. Then for every
set S of k vertices, the graph G − S has ℓ disjoint cycles, implying that G is a no-instance of
Cycle-HitPack. Therefore, we can assume that G has at most p disjoint cycles. Then the
Erdős–Pósa Theorem implies that G has a feedback vertex set of size O(p log p), which also
implies that G has treewidth O(p log p). Now we can try to use an algorithm for Cycle-
HitPack parameterized by treewidth. However, in light of Theorem 1.3, any such algorithm
would give a running time with double-exponential dependence on p. Can we improve this
running time to 2poly(p) · nO(1), to qualitatively match the running times of the Feedback
Vertex Set and Cycle Packing algorithms? We show that this is indeed possible, and
hence we do not see such a drastic jump in complexity similar to the ΣP

2 -completeness of the
problem and the double-exponential dependence on treewidth.

▶ Theorem 1.4. Cycle-HitPack can be solved in time 2poly(p) · nO(1) (where p := k + ℓ).

The proof exploits that G has a feedback vertex set F of size O(p log p). By a simple
branching argument, we assume that the solution S is disjoint from F . Then we interpret a
packing of cycles as a collection of paths connecting some neighbors of F in the forest G − F .
Our goal is to hit every such collection of paths that would lead to a collection of ℓ cycles.
With a branching algorithm, we collect paths that have to be hit, until we can conclude that
our collection of paths cannot be hit by k vertices.

1 By Toda’s theorem [65], it is known that #P contains the entire polynomial hierarchy.

ESA 2024

55:6 Hitting Meets Packing: How Hard Can It Be?

Case Study 2: H-subgraphs

Next, let us consider the setting where the type X of objects are the (not necessarily induced)
subgraphs isomorphic to a fixed graph H. Thus, H-Hitting is the problem of removing a
set S of k vertices such that no subgraph isomorphic to H remains, H-Packing is finding ℓ

disjoint copies of H as subgraphs, and H-HitPack is the problem of removing a set S of k

vertices such that the remaining graph does not contain ℓ disjoint copies of H.
For every fixed connected graph H with at least 3 vertices, H-Hitting [37] and H-

Packing [43] are NP-complete. Similarly to the case of Cycle-HitPack, the H-HitPack
problem lies on the second level of the polynomial hierarchy.

▶ Theorem 1.5. For any fixed connected graph H with at least three vertices, H-HitPack
is ΣP

2 -complete.

Similarly to Cycle-HitPack, we again see a jump to double-exponential dependency on
treewidth and pathwidth. For the case of general graphs H, we provide an algorithm whose
running time asymptotically matches the one of the algorithm for Cycle-HitPack.

▶ Theorem 1.6. For any fixed connected graph H, H-HitPack can be solved in time
22O(tw log tw) · nO(1), where tw is the treewidth of the input graph.

In the case when H is a clique, we exploit that we are only packing complete graphs
which leads to an improvement where we remove the logarithmic factor from the exponent.

▶ Theorem 1.7. For any fixed integer q ≥ 2, q-Clique-HitPack can be solved in time
22O(tw) · nO(1), where tw is the treewidth of the input graph.

By designing the matching lower bound for Cycle-HitPack in such a way that the
construction already works for Square-HitPack, we obtain a matching lower bound for
Square-HitPack.

▶ Theorem 1.8. Assuming ETH, Square-HitPack has no 22o(pw log pw) ·nO(1)-time algorithm,
where pw is the pathwidth of the input graph.

For the case of general H we provide a separate reduction. In contrast to the matching
lower bound for the case of Square-HitPack, we present a lower bound which is only
matching for the case of cliques as for cliques we provide an improved algorithm. For the
case when H is neither a clique nor a C4, it remains open to remove the logarithmic factor
from the running time or to improve the lower bound accordingly.

▶ Theorem 1.9. Assuming ETH, for any fixed connected graph H with at least three vertices,
H-HitPack has no 22o(pw) · nO(1)-time algorithm, where pw is the pathwidth of the input
graph.

It is known that H-Hitting parameterized by k and H-Packing parameterized by
ℓ are both fixed-parameter tractable (FPT), in fact, for fixed H, they can be solved in
time 2O(k) · nO(1) and 2O(ℓ) · nO(1), respectively. For H-Hitting, this follows from a
simple bounded-depth search tree algorithm, while color coding [3] or representative set
techniques [25] can be used for H-Packing. There is an easy bounded-depth search tree
algorithm showing that H-HitPack is FPT parameterized by p := k + ℓ.

▶ Theorem 1.10. For any fixed graph H that might be unconnected, H-HitPack can be
solved in time 2O(p log p) · nO(1) (where p := k + ℓ).

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:7

Proof. First, we use the 2O(ℓ) · nO(1) H-Packing algorithm to find ℓ copies of H if they
exist [3, 25]. The solution S has to contain at least one of the |V (H)| · ℓ = O(ℓ) vertices of
this packing. Thus, we can branch on choosing one of these vertices, delete that vertex from
the graph, and decrease our quota k of deletions by one. We repeat this process until either
k = 0 or there are no ℓ disjoint copies of H in the graph. This results in a search tree of size
ℓO(k) = 2O(p log p) and thus, concludes the proof. ◀

We leave open the potentially challenging question of whether this running time of the
algorithm can be improved to 2O(p) · nO(1): none of the techniques used for H-Hitting
and H-Packing seem directly relevant for such improvement. In other words, it is easy to
show that H-HitPack is also FPT, but whether quantitatively same FPT algorithms can
be obtained for this more general problem is a far from trivial question.

The Curious Case of Edge-HitPack

Let us consider now the case of H-HitPack where H consists of only a single edge, i.e.,
H = K2. Then Edge-Hitting is the NP-complete problem Vertex Cover, while Edge-
Packing is the polynomial-time solvable Maximum Matching problem. This implies that,
unlike in the cases where H has at least 3 vertices, Edge-HitPack is in NP: given a solution
S, we can verify in polynomial time that G − S has no matching of size ℓ.

While we do not have a 2O(k+ℓ) · nO(1)-time algorithm for H-HitPack for general H, we
present a very simple algorithm solving Edge-HitPack in time 3k+ℓ · nO(1). The algorithm
essentially relies on an augmenting-path argument, hence it gives no indication on how other
H-HitPack problems could be solved with a similar running time.

▶ Theorem 1.11. Edge-HitPack can be solved in time 3k+ℓ · nO(1).

Theorem 1.9 showed that double-exponential dependence on treewidth is needed to solve
the H-HitPack problem when H is connected and has at least 3 vertices, that is, already
for the Triangle-HitPack problem. However, Edge-HitPack can be solved with only
exponential dependence on treewidth.

▶ Theorem 1.12. Edge-HitPack can be solved in time 2poly(tw) · nO(1), where tw is the
treewidth of the graph.

Let us give an intuitive explanation for this difference in running time between Edge-
HitPack and Triangle-HitPack. There is a well-understood methodology for designing
algorithms on tree decompositions: for each rooted subtree of the tree decomposition, we
define a certain number of subproblems, each asking for the existence of a certain class of
partial solutions. The running time typically depends on how many equivalence classes of
partial solutions we need to consider. For example, in the Triangle-Packing problem, the
class of partial packings is described by the subset of the bag that is covered by the packing,
so there are 2tw+1 different classes of partial solutions. For the Triangle-Hitting problem,
a partial solution is a set of vertices that destroys every triangle in a rooted subtree of the
tree decomposition, and its class is described by its intersection with the bag.

For the combination, Triangle-HitPack, a partial solution is a set of vertices that
does not necessarily destroy every triangle in the subtree of the tree decomposition, but
may still leave some triangle packings of size < ℓ in the graph. Therefore, a partial solution
S can be described by what kind of triangle packings survive after deleting S, that is, by
describing which subsets of the bag can be covered/avoided by triangle packings of a certain
size. This means that the class of a partial solution is described by a set system over a

ESA 2024

55:8 Hitting Meets Packing: How Hard Can It Be?

Table 1 An overview of the main results for X -HitPack. For ease of comparability, we omit the
common factor nO(1) from the FPT running times.

Object X UB p = k + ℓ UB Treewidth LB Treewidth Completeness

Edge 3p T. 1.11 2poly(tw) T. 1.12 no 2o(tw) [44, T. 1] NP [30, T. 3.3]

Triangle
22O(tw)

T. 1.7
q-Clique 2O(p log p) T. 1.10 no 22o(tw)

T. 1.9
ΣP

2 T. 1.5

Conn. H, 3+ vert.
22O(tw log tw)

T. 1.6
Square 2O(p log p) T. 1.4 no 22o(tw log tw)

T. 1.8

Cycles 2poly(p) T. 1.4 22O(tw log tw)
T. 1.2 no 22o(tw log tw)

T. 1.9 ΣP
2 T. 1.1

bag of the decomposition. As the set systems arising this way can be fairly arbitrary in
the Triangle-HitPack problem, there are up to 22poly(tw) such set systems and hence
up to that many different classes of partial solutions. This is the intuitive reason why a
double-exponential dependence on treewidth is needed for the problem Triangle-HitPack.

In the case of Edge-HitPack, the set systems describing a partial solution show how the
bag can be covered by matchings of a certain size. Such set systems have lots of structure and
cannot be completely arbitrary; in particular, they are related to (delta)-matroids. Inspired
by an argument of Wahlström [67], we give a combinatorial bound showing that such set
systems can be represented algebraically with O(tw3) bits, hence there are at most 2O(tw3)

different set systems that can arise. Interestingly, our proof is not algorithmic, but it is
sufficient to bound the running time of our algorithm. In fact, we have to make no adjustment
to the algorithm of Theorem 1.6 solving H-HitPack when H is a clique: the algorithm was
designed in a way that a combinatorial proof on the relevant set systems immediately bounds
the running time of the algorithm.

Discussion and Open Problems

We have initiated the study of a natural common generalization of hitting problems and
packing problems. Certain basic techniques for hitting and packing problems can be lifted
to this generalization, but we have seen that the generalization can be significantly harder
and more challenging, requiring us to revisit classic problems from a new perspective. The
familiar landscape of hitting and packing problems with their known properties and well-
established techniques is replaced by a strange world where many of the known techniques are
inapplicable, new techniques have to be brought in, and the problem has to be approached
with a completely different mindset that takes into account the more complicated quantifier
structure of the problem definition.

We have presented a selection of algorithmic results and lower bounds for X -HitPack
problems, but they probably just scratch the surface of a rich family of unexplored challenging
problems. We list a few open questions and potential research directions to stimulate further
work in this area.

Is there a 2O(k+ℓ) · nO(1)-time algorithm for H-HitPack for every fixed (connected)
graph H?
Is the X -HitPack problem FPT in k and ℓ where X are the odd cycles in the graph?
Note that the corresponding hitting problem Odd Cycle Transversal is well-known
to be FPT by different techniques [48, 60, 63], and Odd Cycle Packing is also FPT
using an extension of graph minor algorithms with parity conditions [35, 36].

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:9

Is the X -HitPack problem FPT in k and ℓ where X are the induced cycles of length at
least 4 in the graph? The hitting problem Chordal Deletion [2, 10, 32, 49] and the
packing problem Chordless Cycle Packing [50] are both FPT.
In general, one could explore if induced versions of the H-HitPack problems are differ-
ent compared to the case when we are considering not necessarily induced subgraphs
isomorphic to H.
We defined our framework in terms of removing vertices and vertex-disjoint packings,
but one could analogously study a problem defined by removing edges and edge-disjoint
packings. This setting may pose very different challenges compared to the problems
studied in this paper.2
A natural generalization of Cycle-HitPack is to consider the X -HitPack problem
where X is the set of all minor models of a fixed graph H (Cycle-HitPack is equivalent
to the case when H is K3). Observe that if we denote by ℓ · H the graph consisting of
ℓ disjoint copies of H, then the X -HitPack problem defined for minor models of H is
equivalent to removing k vertices such that the resulting graph does not contain ℓ · H as
a minor. Problems of this form where intensively studied [1, 21, 26]. Thus this gives a
way of solving the problem for fixed k, ℓ, and H, but understanding the optimal form of
the running time could be an interesting question. The same problem can be studied also
in the context of topological minors.
One could ask how the Erdős-Pósa Property relates to the complexity of the X -HitPack
problem, but it is not obvious how to formulate this question in a way that leads to
meaningful results. Note first that for problems involving copies of a fixed graph H,
the Erdős-Pósa Property trivially holds (in some sense, this was implicitly used by the
simple algorithm of Theorem 1.10). The algorithm of Theorem 1.4 explicitly used the
Erdős-Pósa Property for cycles as a starting step. This might be a useful starting step in
other cases where H-minor models satisfy this property (which is known to be the case
exactly when H is planar). However, note that the argument sketched in the previous
item works irrespective of whether H-minor models satisfy the Erdős-Pósa Property,
although it may affect the running time.
Tournaments (i.e., directed graphs with exactly one directed edge between any pair of
vertices) form a well-studied class of directed graphs where many hitting and packing
problems are more tractable compared to general directed graphs [4, 5, 6, 11, 12, 17, 27,
39, 46, 54, 59, 68]. Which of these results generalize to the combined hitting and packing
problem?
Investigating the approximability of X -HitPack problems is another area that is com-
pletely unexplored. The proper notion of approximation for these kind of problems seems
to be the following: if there is a solution S of size k such that G − S has no ℓ disjoint
objects of type X , can we find a set S′ of size at most c · k such that G − S′ has no c · ℓ

disjoint objects of type X . That is, in this approximate sense, it is ok to find a somewhat
larger set S′ that has the somewhat weaker property that it prevents only packings of
c · ℓ disjoint objects.

2 Even though the edge version of the problem is also intriguing, let us point out that for a number of
reasons the vertex version seems like the more natural starting point: 1) The base cases Vertex Cover
and Maximum Matching are more natural than the corresponding basic edge problems. 2) The known
dichotomy result for H-Packing is much simpler for the vertex version (compare [37] to [18]). 3) In a
tree decomposition, each bag can intersect only a bounded number of vertex-disjoint copies of some
object. This is no longer true for edge-disjoint packings. 4) More generally, the graph minor theory of
Robertson and Seymour is inherently about vertex-disjointness. For edge-disjointness, the much less
developed theory of immersions might become relevant.

ESA 2024

55:10 Hitting Meets Packing: How Hard Can It Be?

2 Technical Overview

In this section, we give a brief overview of our results, highlighting the main technical ideas
and putting them into context. The remaining sections of the paper prove these results in
the order presented below. Note that, besides these individual technical contributions, it can
be considered an equally important conceptual contribution that we demonstrate that the
combination of hitting and packing can lead to a wide range of interesting and challenging
problems.

2.1 Algorithmic Results
2poly(k+ℓ) · nO(1)-Time Algorithm for Cycle-HitPack. As noted earlier, we may assume
in this problem that the graph G has a feedback vertex set F of size O((k + ℓ) log(k + ℓ)),
otherwise the Erdős–Pósa Theorem implies that the answer is no. Instead of using the fact
that this gives a bound on the treewidth and trying to use a general algorithm parameterized
by treewidth, we present an algorithm with running time 2poly(k+|F |) · nO(1) where F is a
feedback vertex set.

With a standard branching step, we can guess which vertices of F are in the solution,
remove these vertices from G, adjust k appropriately, and then assume that the feedback
vertex set F is undeletable. To sketch the main ideas of the proof, let us assume that G − F

is not only a forest, but every component of G − F is a path. If C is a cycle in G, then it
contains at least one vertex of F , and C − F consists of one or more (sub-)paths in G − F .
If a graph contains a packing of ℓ cycles, then we may assume that each cycle is an induced
cycle (this can be achieved by possibly shortening some cycles). If C is an induced cycle,
then every path P of C − F is of the following form: P goes from a neighbor of some f1 ∈ F

to a neighbor of some f2 ∈ F (possibly f1 = f2) such that the internal vertices of P are
adjacent to neither f1 nor f2. Let us call this a usable path.

Suppose that we have a packing of ℓ (induced) cycles in G. The solution has to contain
a vertex of a cycle C of this packing, that is, a vertex of one of the paths C − F (as F is
undeletable). We branch on choosing a cycle C of the packing and choosing a path P of
C − F that is broken by the solution, but we do not choose a vertex of P . Instead, we put
P into a collection P of forbidden paths that need to be broken by the solution. Then we
find a packing of ℓ cycles that does not use any of the forbidden paths. Such a collection
can be found by branching on the number and type of paths in the packing and then by a
dynamic programming algorithm that scans paths in G − F in a left-to-right order and tries
to find disjoint paths of these types that are not on the forbidden list P . Once we have such
a collection, we once again branch on a path that has to be broken by the solution and put it
into the collection P . We repeat this procedure as long as we are able to find an appropriate
packing.

If the algorithm is not able to find a packing of ℓ cycles that does not use any forbidden
path, then we need to check if there is a set of k vertices that can break every forbidden path
in P. This can be done by a simple polynomial-time algorithm (find a minimum number of
points covering a set of intervals). If there is such a set S, then it forms a solution; if there is
no such set, then this is an incorrect branch of the algorithm.

To bound the running time, we need to bound the depth of the search tree, that is, the
number of paths we put into the solution. The key observation is that a vertex v can cover at
most |F |2 different usable paths. If v covers a useful path P from u1 to u2, then u1 should
be the last vertex before v that is the neighbor of some f1 ∈ F and u2 is the first vertex after
v that is the neighbor of some f2 ∈ F . Therefore, if |P| > k|F |2, then surely there is no set

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:11

S of k vertices intersecting all these paths. This observation gives a poly(k + |F |) bound on
the height of the search tree. As we branch into poly(|F |) cases in each step, the claimed
running time follows.

With additional work, this algorithmic idea can be extended to the case when G − F

is not a collection of paths, but a general forest. The situation becomes significantly more
complicated due to high degree vertices in the forest, paths with many branch nodes, and
other issues, but the difficulties can be overcome by additional layers of arguments.

3k+ℓ · nO(1)-Time Algorithm for Edge-HitPack. Let us sketch a very simple branching
algorithm. We measure our progress by k + ℓ + 1 − ν(G[U]), where ν(G[U]) is the size of
the maximum matching in the graph induced by a set U of undeletable vertices that is
maintained throughout the algorithm. Let us find a maximum matching M in G[U]. For
non-trivial instances, we have ν(G[U]) < ℓ ≤ ν(G). Hence, there is an augmenting path
increasing the size of M . Let u and v be the two endpoints of the augmenting path. We
branch into three directions:

u is in the solution: remove u, decrease k by one.
v is in the solution: remove v, decrease k by one.
neither u nor v is in the solution: put u and v into U .

As the last branch strictly increases the size of the maximum matching in U , we can conclude
that the measure k + ℓ + 1 − ν(G[U]) strictly decreases in each branch, giving a bound of
k + ℓ on the depth of the search tree.

22O(tw) · nO(1)-Time Algorithm for H-HitPack When H Is a Clique. A typical way of
designing algorithms for bounded-treewidth graphs is the following. Let us recall the definition
of tree decompositions. A tree decomposition of graph G is a rooted tree T with a collection
{Xt ⊆ V (G) | t ∈ V (T)} of sets called bags. The conditions for a tree decomposition are:

For any vertex u in G, the nodes in T with bags containing u form a connected subtree
of T .
For any edge uv in G, there exists a node in T with a bag containing both u and v.

The width of a tree decomposition (T, B) is maxt∈V (T) |Xt| − 1. The treewidth tw of G is
the minimum possible width of a tree decomposition. Pathwidth is defined similarly, with
T restricted to be a path. We denote by Vt the set of vertices appearing in the bags of the
nodes in the subtree rooted at some node t. Similarly, we define Gt as the graph induced by
the vertices or rather (in case of a tree decomposition with edge introduce nodes) given by
the edges introduced in the subtree rooted at node t.

For H-HitPack, the solution S has a part S ∩ Vt that somehow influences packings of
cliques that intersect Vt. A key observation is that a clique K is either fully contained in Vt,
or intersects only the root bag Xt, i.e., K ∩ Vt = K ∩ Xt. Based on this observation, we can
argue that the effect of S ∩ Vt can be described by the following information:

The intersection S ∩ Xt.
For every D ⊆ Xt, the maximum size of a packing in G[Vt \ S] − D.

Note that if the maximum packing size in G[Vt \ S] is m, then the maximum packing size in
G[Vt \S]−D is between m−|D| and m. Thus all the relevant information about S ∩Vt can be
described by the set S ∩ Xt (2tw+1 possibilities) and by a sequence of 2tw+1 integers between
0 and tw + 1 ((tw + 2)2tw+1 possibilities), leading to a bound of 22O(tw) · n different ways S ∩ Xt

can behave. With this bound at hand, we can follow the standard methodology of designing
algorithms on tree decompositions: we define subproblems at each node t corresponding
to the different behaviors of S and solve these subproblems in a bottom-up manner. The
dominating factor of the running time is the number of subproblems at each node of the tree
decomposition, leading to a 22O(tw) · nO(1)-time algorithm.

ESA 2024

55:12 Hitting Meets Packing: How Hard Can It Be?

2poly(tw) · nO(1)-Time Algorithm for Edge-HitPack. When H is a single edge, we can
improve the running time the following way. As noted above, the behavior of the set
S ∩ Vt can be described by the set S ∩ Xt and by a function showing how the size of the
maximum matching decreases if we remove a subset D ⊆ Xt, that is, by the function
g(D) = ν(G[Vt \ S]) − ν(G[Vt \ S] − D). Because of the highly structured nature of the
matching problem, this function cannot be arbitrary and can be compactly described, hence
the number of possibilities is much smaller than 22O(tw) . Let us first consider the related
function that depends on whether G[Vt \ S] − D has a perfect matching or not. This function
describes a so-called delta-matroid and has an algebraic representation as a skew-symmetric
matrix. Following a proof sketch3 of Wahlström [67], this matrix can be turned into a
representation with O(tw3) bits. Formally, in the full version [22] we prove the following
lemma.

▶ Lemma 2.1. Let G be an n-vertex graph over a vertex set V ⊇ [k] for some integer k. Let
fG,k : 2[k] → Z+ be the function defined by fG,k(S) = ν(G − S). For each k and n, there are
n · 2O(k3) functions fG,k that can arise this way.

Then a simple graph-theoretic construction can be used to compactly describe the function
g using the compact representation of the aforementioned function. Interestingly, our proof of
obtaining the algebraic representation is not algorithmic, but it is sufficient for our purposes:
the dynamic-programming algorithm on the tree decomposition can be designed in a way
that it needs only a combinatorial bound on the number of different subproblems that has a
solution in the current graph, but does not need to be able to compute which subproblems
have no solution in any graph. Therefore, the algorithm for H-HitPack with H being a
clique does not need any modification at all to achieve this running time.

The following statement is the crucial combinatorial insight that allows us to achieve
O(tw3)-bits and prove Lemma 2.1.

▶ Lemma 2.2. Let G be a graph over a vertex set V ⊇ [k] for some integer k. Let us define
the function hG,k : 2[k] → {0, 1} the following way:

hG,k(S) =
{

1 if G − S has a perfect matching,
0 otherwise.

For each integer k, the number of distinct functions hG,k is 2O(k3).

Note, that naively the number of such functions is double-exponential in k. Now, we
present the proof of Lemma 2.2 and use algebraic tools, in particular, representation of
linear delta-matroids and multivariate polynomials over finite fields. For a field F, we denote
by F[x1, . . . , xn] the ring of n-variable polynomials with coefficients from F. We have to
be careful to make a distinction between the zero polynomial of F[x1, . . . , xn], which is the
polynomial where every coefficient is zero, and a vanishing polynomial over F, which is a
polynomial that is 0 for every substitution of values from F to the variables. For example,
x|F| − x is a nonzero vanishing polynomial over the field F. The following observation can be
used to argue that some nonzero polynomial is not vanishing.

3 The given proof sketch does not treat the question of what field to choose and the obvious way of
handling this issue does not lead to the claimed bound (as confirmed by the author). Our proof needs
additional arguments to ensure the existence of a representation over a suitable field.

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:13

▶ Observation 2.3. If P ∈ F[x1, . . . , xn] is an n-variable polynomial over the field F and
every variable xi has degree less than |F| in P , then P is a vanishing polynomial if and only
if it is the zero polynomial.

The proof of Lemma 2.2 follows from the fact that polynomials P ∈ F[x1, . . . , xn] where
every variable has degree less than |F| are in one-to-one correspondence with functions
f : Fn → F. Indeed, both sets have size exactly |F||F|n and Lagrange interpolation shows that
for any function f : Fn → F, there is a corresponding polynomial where the degree of every
variable is less than |F|.

Proof of Lemma 2.2. For notational convenience, let us assume that V = [n]. Let F be a
field of size 2k+2. Let A be the Tutte matrix corresponding to G, that is, an element ai,j is
defined as

ai,j :=


xi,j if i and j are adjacent and i < j,
−xi,j if i and j are adjacent and i > j,
0 if i and j are not adjacent.

We consider each entry of A as an n2-variate polynomial from F[x1,1, . . . , xn,n] (note that we
use the variables xi,i for 1 ≤ i ≤ n in there just for notational convenience). For X ⊆ [n],
we denote by A[X] the principal submatrix of A corresponding to the rows and columns
described by X. It is well known that G[X] has a perfect matching if and only if det(A[X])
is a nonzero polynomial (similar to Observation 2.3). Consider S ⊆ [k] and let us denote by
Sc the complement of S, i.e., the set of rows/columns not indexed by S. Thus, for every
S ⊆ [k], we have

G − S has a perfect matching ⇔ det(A[Sc]) is nonzero. (⋆)

We would like to obtain a matrix A′ with the same property (⋆), but over F (so the
elements of A′ are not polynomials). Let S1, . . . , St be the subsets of [k] such that G − S

has a perfect matching. For ℓ ∈ [t], the polynomial Pℓ = det(A[Sc
ℓ]) is a nonzero polynomial

where every variable xi,j has degree at most 2 (as every variable appears at most twice
in the Tutte matrix). The product P =

∏t
ℓ=1 Pℓ is also a nonzero polynomial (as F is

a field, F[x1,1, . . . , xn,n] is an integral domain) where every variable has degree at most
2t ≤ 2 · 2k < |F|. Therefore, Observation 2.3 implies that P is not vanishing. This means that
we can substitute values to the variables such that P evaluates to a nonzero value, which
also means that every Pℓ is nonzero under this substitution. Let A′ be obtained from A by
this substitution. It is easy to see that this matrix A′ over F has the desired property (⋆):
if S has no perfect matchings, then det(A′[Sc]) = 0 (as this already holds for A), while if
S has a perfect matching, then the determinant is one of the polynomials Pℓ, and hence it
evaluates to a nonzero value under the substitution.

Now we argue that we can obtain a k × k matrix A′′ that also has the property (⋆).
Matrix A′ represents the set system X = {X | det(A′[X]) ̸= 0} over [n], which is known to
be a delta-matroid. The set system X ′ = {X ⊆ [k] | X ∪ ([n] \ [k]) ∈ X } is a set system
over [k], which is called the contraction of X . It is known (see, e.g., Wahlström [67, Section
5.2, Theorem 11]) that given some [n] × [n] matrix A′ over F representing X , we can use
algebraic operations to compute a k × k matrix A′′ representing X ′. Now we can verify that
this matrix A′′ indeed satisfies property (⋆).

As A′′ has property (⋆) we can deduce from A′′ the value of the function f for any S ⊆ [k].
As A′′ is an k × k matrix over a field of size 2k+2, it can be described by k2(k + 2) bits.
Therefore, O(k3) bits are sufficient to describe the function hG,k, that is, there are at most
2O(k3) such functions. ◀

ESA 2024

55:14 Hitting Meets Packing: How Hard Can It Be?

Xt

Vt

Figure 2 If H is not a clique (e.g., H is a cycle on 5 vertices), then restricting a packing to Vt

may result in partial copies of H that contain vertices from Vt \ Xt. Therefore, the description of a
partial packing needs to include how these partial copies interact with Xt.

22O(tw log tw) · nO(1)-Time Algorithm for H-HitPack for Arbitrary Connected H. The
dynamic programming approach becomes significantly more complicated if we generalize it to
H-HitPack where H is not a clique. The main issue is that now it is no longer true that in
every packing every copy of H intersecting Vt is either fully contained in Vt or intersects Vt

only in Xt. As H is not a clique, it can be the case that a copy is split by Xt (see Figure 2).
Therefore, we need to argue about partial packings in Vt that may contain some partial copies
of H split by Xt. When reasoning about such a partial packing, we need to describe not
only which vertices of Xt the partial packing covers, but also how the partial copies partition
Xt. We formalize this intuitive idea by the notion of types. The type of a (partial) packing
contains the following information:

A set of those vertices in Xt that are not covered by the packing including the vertices
which are deleted.

A partition of the vertices in Xt describing which vertices contribute to the same copy of
H.

For each part of the partition, a mapping between the vertices of Xt and the vertices of
the partial copy of H, so we can determine which vertices of H have been packed and
which vertices of H still need to be packed.

Clearly there are at most 2tw+1 choices for the set of uncovered vertices. Since we consider a
fixed graph H, the precise mapping for each of the at most tw + 1 parts can be described
by |V (H)|tw+1 possible functions although involving a significant notational overhead in the
formal description. However, the partition of the vertices into the different parts dominates
the number of possible types for which there are twO(tw) possibilities for each node. Due
to this larger number of types, the running time of the algorithm involves an additional
logarithmic factor which we avoid for the case when H is a clique.

Similar to the algorithm when packing cliques, we also have to remember the size of the
largest packing for each type. As this number could potentially range from 0 to ℓ, a naive
bound for the number of possible states is ℓtwO(tw) which does not depend on the treewidth
only. However, since each graph H has only a fixed size, the packing number for two different
types cannot differ by too much. Indeed, the size of two optimal partial packings with
different types can differ by at most O(|H| · tw) as each partial packing of H can “block”
at most |H| vertices from being packed in the other packing. This observation drastically
reduces the number of states for each node to twtwO(tw) which then determines the running
time of the algorithm.

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:15

22O(tw log tw) ·nO(1)-Time Algorithm for Cycle-HitPack. For Cycle-HitPack the situation
changes slightly. Since we are not dealing with a fixed graph H but an infinitely sized family
of graphs, we cannot decide a priori which graphs are packed where; meaning we cannot
determine the length of the cycle. Instead, we exploit that the family of graphs comprises all
cycles and therefore, it does not matter in which cycle a vertex appears. Hence, the type of
a partial cycle-packing can be described by the following four-tuple:

A set of vertices that are not covered by the packing which includes the deleted vertices.
A set of vertices that have one incident edge in the packing. These vertices are the
endpoints of a path (i.e., incomplete cycle) in the partial cycle-packing.
A set with the (remaining) vertices which have two incident edges in the packing, that is,
these vertices are already fully covered (although the corresponding cycle might not be
closed yet).
A perfect matching for the vertices with one incident edge. This perfect matching describes
which vertices form the endpoints of the same path. Phrased differently, for each path in
the partial cycle-packing (which corresponds to a cycle that is not closed yet), we just
remember the tuple consisting of the two endpoints. This information is already sufficient
to combine two paths to form a new (longer) path or to close a cycle.

When additionally also discarding those packings with too few cycles inside, the total number
of subproblems at each node can be bounded by 22O(tw log tw) · n.

2.2 Lower Bounds

ΣP
2-completeness of Triangle-HitPack. The containment in ΣP

2 for Triangle-HitPack
is clear, as we can guess the set of deleted vertices and use an NP-oracle to determine
the size of the maximum packing. To establish the ΣP

2 -hardness, we reduce from a special
ΣP

2 -complete satisfiability problem, the Smallest Unsatisfiable Subformula problem
(SUS) [64, 66]. For SUS the input is a CNF-formula φ together with a parameter k and
the task is to decide if there exists a collection of at most k clauses of φ (we refer to this
as subformula) such that, for all assignments, the subformula is not satisfied, i.e., the
subformula is unsatisfiable. This “exists, for all” formulation of SUS already gives a hint for
the reduction to Triangle-HitPack.

We construct a graph consisting of clause gadgets, variable gadgets, and literal edges.
Each of the clause gadgets consists of a single triangle with a distinguished deletable vertex.
The interpretation of this vertex is as follows: a clause is selected as part of the subformula
if the corresponding vertex is deleted, and otherwise, the clause is in the default state of not
being selected. Each variable gadget consists of a cycle of triangles that has exactly two
maximum triangle packings, which leave two disjoint sets of vertices uncovered. One option
corresponds to setting the variable to true and the other to setting the variable to false. As a
last component the graph contains literal edges. There is a literal edge between a variable
gadget and a clause gadget if a corresponding literal occurs in the corresponding clauses.
The idea is that the deletion of deletable vertices does not decrease the size of a maximum
packing of the entire graph if and only the subformula consisting of the clauses selected by
these deletions is still satisfiable.

To strengthen the result, we prove the hardness for tripartite graphs by reducing from
3CNF-SUS (the restriction of SUS to 3CNF-formulas), for which we also provide the
ΣP

2 -completeness as, to our knowledge, no proof appeared in the literature, although the
completeness was claimed.

ESA 2024

55:16 Hitting Meets Packing: How Hard Can It Be?

ΣP
2-completeness of H-HitPack. For connected graphs H other than the triangle, the

ΣP
2 -completeness result can be obtained from Triangle-HitPack by a clean reduction.

Kirkpatrick and Hell [37] showed how to reduce a triangle packing problem to arbitrary
H-packing problems for connected H with at least 3 vertices. However, they considered the
problem of finding a packing that covers every vertex of the graph and the arguments do
not readily work for problems where not every vertex needs to be covered. Nevertheless, we
show that with additional arguments and by extending their construction, a reduction can
be obtained from Triangle-HitPack to H-HitPack, showing the ΣP

2 -completeness of the
latter problem.

ΣP
2-completeness of Cycle-HitPack. This hardness proof is obtained by observing that in

the ΣP
2 -completeness proof of Triangle-HitPack, every cycle relevant for a packing is a

triangle.

Double-exponential Lower Bounds for H-HitPack Parameterized by Treewidth. We
reduce from an instance of 3-SAT with n variables and m clauses to achieve a double-
exponential lower bound by constructing a graph with pathwidth O(log m). Although the
starting point is again a 3CNF-formula as for the ΣP

2 -hardness, the interpretation and the
basic ideas differ because of the change in the quantification. For SUS the task is to check if
there exists a set of clauses such that, for all assignments to the variables, the formula is
not satisfiable. For 3-SAT the task is to check if there exists an assignment for the variables
such that for all clauses at least one literal of the clause is satisfied, i.e., for each clause not
all three literals are false. While as before, we use gadgets consisting of a long cycle with
attached triangles, the overall construction of how these gadgets interact is substantially
different. The critical difference to the ΣP

2 -hardness proof lies in the way we verify the
satisfying assignment. Here, we do not explicitly construct a different gadget for every clause
as this would result in a construction with treewidth linear in the number of clauses.

Our constructed instance comprises three parts, which we refer to as left, middle, and
right. The deleted vertices on the right correspond to a choice of the satisfying assignment.
The left part consists of the so-called selector gadgets. Each selector gadget models one bit
of the binary encoding of some clause. So, if there are m clauses, we have roughly log m

selector gadgets. For each selector gadget we introduce three pairs of vertices in the middle.
Intuitively, there are three pairs since each clause contains three literals, and there are pairs
to encode whether the bit corresponding to this selector gadget is 0 or 1. Then a packing of
the vertices on the left, i.e., a packing for the selector gadgets, can interact in m different
ways with the O(log(m)) vertices in the middle. Each of these possibilities corresponds to a
different selection of (the encoding of) a clause.

We verify the satisfying assignment by ensuring that no matter how we might choose
a maximum packing on the left (i.e., no matter which clause we look at), the maximum
packing on the right is small. This corresponds to verifying that each clause is satisfiable.
A crucial difference to the ΣP

2 -hardness proof lies in the fact that, here, the small packing
is ensured by the variable gadgets (if a solution exists) and not by the clause gadget. The
treewidth of the construction is O(log(m)) since this is the number of vertices with which
the gadgets interact (and each gadget separately has constant treewidth).

Double-exponential Lower Bound for Square-HitPack and Cycle-HitPack Parameterized
by Treewidth. We first prove the lower bound for Square-HitPack and then extend it to
Cycle-HitPack as follows. We define the reduction for Square-HitPack in a way such

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:17

that whenever a cycle packing P contains a large cycle of length at least five, then we can
repack P to obtain a packing P ′ by replacing this large cycle with a C4. This keeps the
number of cycles the same (or might actually increase it) while reducing the number of large
cycles. Hence, the maximum possible cycle packing only contains cycles of length four.

The basic high-level idea for the lower bound for Square-HitPack is similar to the
previous one for the general case. However, instead of having a middle part with O(log m)
vertices (which dominates the pathwidth), we have to find a different way of encoding the
clause numbers by only using O(log m/ log log m) vertices.

To make this possible, we have to change the way the gadgets on the left and right side
interact with the vertices in the middle. For the previous construction the gadgets only cover
a single vertex while the remaining part of the triangle is entirely contained either in the left
or the right half. When packing four-cycles we can change this and allow that those cycles
which contain vertices in the middle have exactly one vertex on the left side and exactly one
vertex on the right side. With this method, the position of the cycle can be described by a
matching for the vertices in the middle. The idea is to introduce two groups of t vertices
each where t! ≈ m. Then there are t! possible perfect matchings between the vertices from
the first group and the vertices from the second group. With this it is possible to associate
with each clause a unique perfect matching on these vertices. The gadgets on the left and
right side are then adjusted such that they connect each pair of vertices from the matching
by a path of length two.

Since choosing t ≈ log m/ log log m satisfies the above property, the number of vertices in
the middle part is bounded by O(log m/ log log m) which then determines the pathwidth of
the graph.

References
1 Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proceedings

of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pages
641–650. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347153.

2 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi.
Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion. ACM Trans. Algorithms,
15(1):11:1–11:28, 2019. doi:10.1145/3284356.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

4 Jørgen Bang-Jensen, Alessandro Maddaloni, and Saket Saurabh. Algorithms and Kernels for
Feedback Set Problems in Generalizations of Tournaments. Algorithmica, 76(2):320–343, 2016.
doi:10.1007/s00453-015-0038-2.

5 Stéphane Bessy, Marin Bougeret, R. Krithika, Abhishek Sahu, Saket Saurabh, Jocelyn
Thiebaut, and Meirav Zehavi. Packing Arc-Disjoint Cycles in Tournaments. Algorithmica,
83(5):1393–1420, 2021. doi:10.1007/s00453-020-00788-2.

6 Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket
Saurabh, and Stéphan Thomassé. Kernels for feedback arc set in tournaments. J. Comput.
Syst. Sci., 77(6):1071–1078, 2011. doi:10.1016/j.jcss.2010.10.001.

7 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

8 Glencora Borradaile and Hung Le. Optimal Dynamic Program for r-Domination Problems
over Tree Decompositions. In 11th International Symposium on Parameterized and Exact
Computation, IPEC 2016, volume 63 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.8.

ESA 2024

http://dl.acm.org/citation.cfm?id=1347082.1347153
https://doi.org/10.1145/3284356
https://doi.org/10.1145/210332.210337
https://doi.org/10.1007/s00453-015-0038-2
https://doi.org/10.1007/s00453-020-00788-2
https://doi.org/10.1016/j.jcss.2010.10.001
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.4230/LIPIcs.IPEC.2016.8

55:18 Hitting Meets Packing: How Hard Can It Be?

9 Yixin Cao. A Naive Algorithm for Feedback Vertex Set. In 1st Symposium on Simplicity in
Algorithms, SOSA 2018, January 7-10, 2018, volume 61 of OASIcs, pages 1:1–1:9. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/OASIcs.SOSA.2018.1.

10 Yixin Cao and Dániel Marx. Chordal Editing is Fixed-Parameter Tractable. Algorithmica,
75(1):118–137, 2016. doi:10.1007/s00453-015-0014-x.

11 Maria Chudnovsky, Alexandra Ovetsky Fradkin, and Paul D. Seymour. Tournament immersion
and cutwidth. J. Comb. Theory, Ser. B, 102(1):93–101, 2012. doi:10.1016/j.jctb.2011.05.
001.

12 Maria Chudnovsky, Alex Scott, and Paul D. Seymour. Disjoint paths in unions of tournaments.
J. Comb. Theory, Ser. B, 135:238–255, 2019. doi:10.1016/j.jctb.2018.08.007.

13 Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A Tight Lower Bound for Counting
Hamiltonian Cycles via Matrix Rank. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, pages 1080–1099. SIAM, 2018. doi:
10.1137/1.9781611975031.70.

14 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages
1650–1669. SIAM, 2016. doi:10.1137/1.9781611974331.ch113.

15 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by Treewidth
in Single Exponential Time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/
3506707.

16 Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and
Kim Stevens. An 2O(k)n3 FPT Algorithm for the Undirected Feedback Vertex Set Problem.
Theory Comput. Syst., 41(3):479–492, 2007. doi:10.1007/s00224-007-1345-z.

17 Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. Fixed-parameter
tractability results for feedback set problems in tournaments. J. Discrete Algorithms, 8(1):76–86,
2010. doi:10.1016/j.jda.2009.08.001.

18 Dorit Dor and Michael Tarsi. Graph decomposition is np-complete: A complete proof of holyer’s
conjecture. SIAM J. Comput., 26(4):1166–1187, 1997. doi:10.1137/S0097539792229507.

19 László Egri, Dániel Marx, and Paweł Rzążewski. Finding List Homomorphisms from Bounded-
treewidth Graphs to Reflexive Graphs: a Complete Complexity Characterization. In 35th
Symposium on Theoretical Aspects of Computer Science, STACS 2018, volume 96 of LIPIcs,
pages 27:1–27:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.STACS.2018.27.

20 P. Erdős and L. Pósa. On independent circuits contained in a graph. Canad. J. Math.,
17:347–352, 1965.

21 Michael R. Fellows and Michael A. Langston. On search, decision and the efficiency of
polynomial-time algorithms (extended abstract). In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, pages 501–512. ACM, 1989. doi:
10.1145/73007.73055.

22 Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and
Karol Węgrzycki. Hitting meets packing: How hard can it be? CoRR, abs/2402.14927, 2024.
doi:10.48550/arXiv.2402.14927.

23 Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Phil-
ipp Schepper, and Philip Wellnitz. Tight Complexity Bounds for Counting General-
ized Dominating Sets in Bounded-Treewidth Graphs. In Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, pages 3664–3683. SIAM, 2023.
doi:10.1137/1.9781611977554.ch140.

24 Jacob Focke, Dániel Marx, and Paweł Rzążewski. Counting list homomorphisms from graphs
of bounded treewidth: tight complexity bounds. In Proceedings of the 2022 ACM-SIAM

https://doi.org/10.4230/OASIcs.SOSA.2018.1
https://doi.org/10.1007/s00453-015-0014-x
https://doi.org/10.1016/j.jctb.2011.05.001
https://doi.org/10.1016/j.jctb.2011.05.001
https://doi.org/10.1016/j.jctb.2018.08.007
https://doi.org/10.1137/1.9781611975031.70
https://doi.org/10.1137/1.9781611975031.70
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1145/3506707
https://doi.org/10.1145/3506707
https://doi.org/10.1007/s00224-007-1345-z
https://doi.org/10.1016/j.jda.2009.08.001
https://doi.org/10.1137/S0097539792229507
https://doi.org/10.4230/LIPIcs.STACS.2018.27
https://doi.org/10.4230/LIPIcs.STACS.2018.27
https://doi.org/10.1145/73007.73055
https://doi.org/10.1145/73007.73055
https://doi.org/10.48550/arXiv.2402.14927
https://doi.org/10.1137/1.9781611977554.ch140

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:19

Symposium on Discrete Algorithms, SODA 2022, pages 431–458. SIAM, 2022. doi:10.1137/
1.9781611977073.22.

25 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient Computation
of Representative Families with Applications in Parameterized and Exact Algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

26 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Hitting
topological minors is FPT. In Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, pages 1317–1326. ACM, 2020. doi:10.1145/3357713.
3384318.

27 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Fast Local
Search Algorithm for Weighted Feedback Arc Set in Tournaments. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010. AAAI Press, 2010.
URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1829, doi:10.1609/
AAAI.V24I1.7557.

28 Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani
Sharma, and Prafullkumar Tale. Problems in np can admit double-exponential lower bounds
when parameterized by treewidth or vertex cover, 2024. To appear at ICALP 2024. arXiv:
2307.08149.

29 Fabian Frei, Edith Hemaspaandra, and Jörg Rothe. Complexity of stability. J. Comput. Syst.
Sci., 123:103–121, 2022. doi:10.1016/J.JCSS.2021.07.001.

30 M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

31 Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke. Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput.
Syst. Sci., 72(8):1386–1396, 2006. doi:10.1016/j.jcss.2006.02.001.

32 Bart M. P. Jansen and Marcin Pilipczuk. Approximation and Kernelization for Chordal Vertex
Deletion. SIAM J. Discret. Math., 32(3):2258–2301, 2018. doi:10.1137/17M112035X.

33 Naonori Kakimura, Ken-ichi Kawarabayashi, and Dániel Marx. Packing cycles through
prescribed vertices. J. Comb. Theory, Ser. B, 101(5):378–381, 2011. doi:10.1016/j.jctb.
2011.03.004.

34 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters,
tight bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90–117, 2019.
doi:10.1016/j.dam.2018.11.002.

35 Ken-ichi Kawarabayashi and Bruce A. Reed. Odd cycle packing. In Leonard J. Schulman,
editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 695–704. ACM, 2010. doi:10.1145/
1806689.1806785.

36 Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The Graph Minor Algorithm with
Parity Conditions. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 27–36.
IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.52.

37 David G. Kirkpatrick and Pavol Hell. On the Complexity of General Graph Factor Problems.
SIAM J. Comput., 12(3):601–609, 1983. doi:10.1137/0212040.

38 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic Feedback Vertex Set. Inf.
Process. Lett., 114(10):556–560, 2014. doi:10.1016/j.ipl.2014.05.001.

39 Mithilesh Kumar and Daniel Lokshtanov. Faster Exact and Parameterized Algorithm for
Feedback Vertex Set in Tournaments. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS 2016, volume 47 of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.49.

40 Michael Lampis. Model Checking Lower Bounds for Simple Graphs. Log. Methods Comput.
Sci., 10(1), 2014. doi:10.2168/LMCS-10(1:18)2014.

ESA 2024

https://doi.org/10.1137/1.9781611977073.22
https://doi.org/10.1137/1.9781611977073.22
https://doi.org/10.1145/2886094
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.1145/3357713.3384318
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1829
https://doi.org/10.1609/AAAI.V24I1.7557
https://doi.org/10.1609/AAAI.V24I1.7557
https://arxiv.org/abs/2307.08149
https://arxiv.org/abs/2307.08149
https://doi.org/10.1016/J.JCSS.2021.07.001
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1137/17M112035X
https://doi.org/10.1016/j.jctb.2011.03.004
https://doi.org/10.1016/j.jctb.2011.03.004
https://doi.org/10.1016/j.dam.2018.11.002
https://doi.org/10.1145/1806689.1806785
https://doi.org/10.1145/1806689.1806785
https://doi.org/10.1109/FOCS.2011.52
https://doi.org/10.1137/0212040
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.4230/LIPIcs.STACS.2016.49
https://doi.org/10.2168/LMCS-10(1:18)2014

55:20 Hitting Meets Packing: How Hard Can It Be?

41 Michael Lampis, Stefan Mengel, and Valia Mitsou. QBF as an alternative to courcelle’s
theorem. In Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, volume
10929 of Lecture Notes in Computer Science, pages 235–252. Springer, 2018. doi:10.1007/
978-3-319-94144-8_15.

42 Michael Lampis and Valia Mitsou. Treewidth with a Quantifier Alternation Revisited. In 12th
International Symposium on Parameterized and Exact Computation, IPEC 2017, volume 89
of LIPIcs, pages 26:1–26:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.IPEC.2017.26.

43 John M. Lewis and Mihalis Yannakakis. The Node-Deletion Problem for Hereditary Properties
is NP-Complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

44 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

45 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly Superexponential Parameterized
Problems. SIAM J. Comput., 47(3):675–702, 2018. doi:10.1137/16M1104834.

46 Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese
Philip, and Saket Saurabh. 2-Approximating Feedback Vertex Set in Tournaments. ACM
Trans. Algorithms, 17(2):11:1–11:14, 2021. doi:10.1145/3446969.

47 Daniel Lokshtanov, Amer E. Mouawad, Saket Saurabh, and Meirav Zehavi. Packing Cycles
Faster Than Erdős Pósa. SIAM J. Discret. Math., 33(3):1194–1215, 2019. doi:10.1137/
17M1150037.

48 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster Parameterized Algorithms Using Linear Programming. ACM Trans. Al-
gorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

49 Dániel Marx. Chordal Deletion is Fixed-Parameter Tractable. Algorithmica, 57(4):747–768,
2010. doi:10.1007/s00453-008-9233-8.

50 Dániel Marx. Chordless Cycle Packing Is Fixed-Parameter Tractable. In 28th Annual European
Symposium on Algorithms, ESA 2020, September 7-9, 2020, volume 173 of LIPIcs, pages
71:1–71:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.71.

51 Dániel Marx and Valia Mitsou. Double-Exponential and Triple-Exponential Bounds for
Choosability Problems Parameterized by Treewidth. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
volume 55 of LIPIcs, pages 28:1–28:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ICALP.2016.28.

52 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and Gaps: Tight Complexity
Results of General Factor Problems Parameterized by Treewidth and Cutwidth. In 48th
International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume
198 of LIPIcs, pages 95:1–95:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.95.

53 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-Factor Is FPT Parameterized
by Treewidth and List Size (But Counting Is Hard). In 17th International Symposium on
Parameterized and Exact Computation, IPEC 2022, volume 249 of LIPIcs, pages 22:1–22:23.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.
22.

54 Pranabendu Misra, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. A Polynomial
Kernel for Feedback Arc Set on Bipartite Tournaments. Theory Comput. Syst., 53(4):609–620,
2013. doi:10.1007/s00224-013-9453-4.

https://doi.org/10.1007/978-3-319-94144-8_15
https://doi.org/10.1007/978-3-319-94144-8_15
https://doi.org/10.4230/LIPIcs.IPEC.2017.26
https://doi.org/10.4230/LIPIcs.IPEC.2017.26
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1145/3170442
https://doi.org/10.1137/16M1104834
https://doi.org/10.1145/3446969
https://doi.org/10.1137/17M1150037
https://doi.org/10.1137/17M1150037
https://doi.org/10.1145/2566616
https://doi.org/10.1007/s00453-008-9233-8
https://doi.org/10.4230/LIPIcs.ESA.2020.71
https://doi.org/10.4230/LIPIcs.ESA.2020.71
https://doi.org/10.4230/LIPIcs.ICALP.2016.28
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://doi.org/10.4230/LIPIcs.IPEC.2022.22
https://doi.org/10.4230/LIPIcs.IPEC.2022.22
https://doi.org/10.1007/s00224-013-9453-4

J. Focke, F. Frei, S. Li, D. Marx, P. Schepper, R. Sharma, and K. Węgrzycki 55:21

55 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full Complexity Classification of
the List Homomorphism Problem for Bounded-Treewidth Graphs. In 28th Annual European
Symposium on Algorithms, ESA 2020, volume 173 of LIPIcs, pages 74:1–74:24. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.74.

56 Karolina Okrasa and Paweł Rzążewski. Fine-Grained Complexity of the Graph Homomorphism
Problem for Bounded-Treewidth Graphs. SIAM J. Comput., 50(2):487–508, 2021. doi:
10.1137/20M1320146.

57 Guoqiang Pan and Moshe Y. Vardi. Fixed-Parameter Hierarchies inside PSPACE. In 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 27–36. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.25.

58 M. Pontecorvi and Paul Wollan. Disjoint cycles intersecting a set of vertices. J. Comb. Theory,
Ser. B, 102(5):1134–1141, 2012. doi:10.1016/j.jctb.2012.05.004.

59 Venkatesh Raman and Saket Saurabh. Parameterized algorithms for feedback set problems
and their duals in tournaments. Theor. Comput. Sci., 351(3):446–458, 2006. doi:10.1016/j.
tcs.2005.10.010.

60 M. S. Ramanujan and Saket Saurabh. Linear-Time Parameterized Algorithms via Skew-
Symmetric Multicuts. ACM Trans. Algorithms, 13(4):46:1–46:25, 2017. doi:10.1145/3128600.

61 Bruce A. Reed. Mangoes and Blueberries. Combinatorica, 19(2):267–296, 1999. doi:10.1007/
s004930050056.

62 Bruce A. Reed, Neil Robertson, Paul D. Seymour, and Robin Thomas. Packing Directed
Circuits. Combinatorica, 16(4):535–554, 1996. doi:10.1007/BF01271272.

63 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

64 Marcus Schaefer and Christopher Umans. SIGACT news complexity theory column 37. Guest
column: Completeness in the polynomial-time hierarchy: Part I: A compendium. SIGACT
News, 33(3):32–49, 2002. doi:10.1145/582475.582484.

65 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991.

66 Christopher Umans. Hardness of Approximating Sigma2P Minimization Problems. In 40th
Annual Symposium on Foundations of Computer Science, FOCS 99, pages 465–474. IEEE
Computer Society, 1999. doi:10.1109/SFFCS.1999.814619.

67 Magnus Wahlström. Representative set statements for delta-matroids and the mader delta-
matroid. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 780–810. SIAM, 2024.

68 Mingyu Xiao and Jiong Guo. A Quadratic Vertex Kernel for Feedback Arc Set in Bipartite
Tournaments. Algorithmica, 71(1):87–97, 2015. doi:10.1007/s00453-013-9783-2.

ESA 2024

https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.1137/20M1320146
https://doi.org/10.1137/20M1320146
https://doi.org/10.1109/LICS.2006.25
https://doi.org/10.1016/j.jctb.2012.05.004
https://doi.org/10.1016/j.tcs.2005.10.010
https://doi.org/10.1016/j.tcs.2005.10.010
https://doi.org/10.1145/3128600
https://doi.org/10.1007/s004930050056
https://doi.org/10.1007/s004930050056
https://doi.org/10.1007/BF01271272
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1145/582475.582484
https://doi.org/10.1109/SFFCS.1999.814619
https://doi.org/10.1007/s00453-013-9783-2

	1 Introduction
	2 Technical Overview
	2.1 Algorithmic Results
	2.2 Lower Bounds

