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Abstract
We describe a simple deterministic near-linear time approximation scheme for uncapacitated minimum
cost flow in undirected graphs with positive real edge weights, a problem also known as transshipment.
Specifically, our algorithm takes as input a (connected) undirected graph G = (V, E), vertex demands
b ∈ RV such that

∑
v∈V

b(v) = 0, positive edge costs c ∈ RE
>0, and a parameter ε > 0. In

O(ε−2m logO(1) n) time, it returns a flow f such that the net flow out of each vertex is equal to the
vertex’s demand and the cost of the flow is within a (1 + ε) factor of optimal. Our algorithm is
combinatorial and has no running time dependency on the demands or edge costs.

With the exception of a recent result presented at STOC 2022 for polynomially bounded
edge weights, all almost- and near-linear time approximation schemes for transshipment relied on
randomization to embed the problem instance into low-dimensional space. Our algorithm instead
deterministically approximates the cost of routing decisions that would be made if the input were
subject to a random tree embedding. To avoid computing the Ω(n2) vertex-vertex distances that an
approximation of this kind suggests, we also take advantage of the clustering method used in the
well-known Thorup-Zwick distance oracle.
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1 Introduction

Let G = (V, E) be an undirected graph with positive edge costs c ∈ RE
>0, and let b ∈ RV

be a set of vertex demands (alternatively, one may prefer the term supplies). While we
formally define c and b as vectors with components indexed by E and V , respectively, we
use the familiar function application notation c(e) and b(v) for the cost of an edge e ∈ E

and demand for a vertex v ∈ V , respectively. We say b is proper if
∑

v∈V b(v) = 0.
Let E⃗ denote an arbitrary orientation of the edges E. We denote the oriented instance of

an edge e ∈ E as e⃗. Let IG ∈ RV ×E⃗ be the vertex-edge incidence matrix for G with IG(v, e⃗)
equal to 1 if v is the tail of e⃗, equal to −1 if v is the head of e⃗, and equal to 0 otherwise. We
say a flow f ∈ RE⃗ routes b if IGf = b. In the (uncapacitated) minimum cost flow problem,
one seeks a flow of minimum cost c(f) =

∑
e∈E c(e)|f(e⃗)| subject to f routing b. In other

words, we seek a minimum cost way to send units of some single commodity throughout the
edges of G such that each vertex u ∈ V with b(u) > 0 sends out b(u) units of commodity
into the graph and each vertex v ∈ V with b(v) < 0 removes −b(v) units from the graph.
This special case of minimum cost flow in an undirected graph without edge capacities is
also called transshipment.
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56:2 A Simple Near-Linear Time Approximation Scheme for Transshipment

Transshipment generalizes various problems that have been studied in their own right
such as shortest paths in undirected graphs, the discrete optimal transport problem [17],
and other assignment problems on metric spaces. In fact, several recent papers studying
these more specific problems have relied on reductions to the more general transshipment
problem [1, 2, 8–11, 14, 19]. The study of new algorithms for transshipment can provide
immediate improvements or simplifications to many of these results along with providing
new insights that may be beneficial to minimum cost and other flow problems in general.

1.1 Recent results
The study of flow problems such as transshipment has a long history going back several
decades. Here, we highlight some of the strongest or more recent closely related results to
the current work. We use n and m to denote the number of vertices and edges, respectively,
in the input graph.

As a special case of minimum cost flow, there are several polynomial time algorithms
for computing exact solutions to transshipment. Orlin [12] described a strongly polynomial
transshipment algorithm that runs in O(n log n(m+n log n)) time, and this algorithm remains
the fastest algorithm known for real edge costs and vertex demands. There has been a great
deal of recent activity in the design of minimum cost flow and transshipment algorithms
that assume integer costs and capacities or demands in some range [1, U ], starting with an
O(m3/2 logO(1)(nU)) time algorithm by Daitch and Spielman [6] and culminating in a pair
of very recent almost-linear m1+o(1) log2 U time algorithms [4, 5].

The existence of almost-linear time exact algorithms for minimum cost flow was alluded
to a few years earlier by the demonstration of various almost- and near-linear time approxi-
mation schemes for transshipment. Let ε > 0, and let OPT(b) denote the minimum cost of
any flow that routes b. Sherman [15] described an O(ε−2m1+o(1)) time algorithm that finds
a flow f routing b with total cost c(f) ≤ (1 + ε)OPT(b). Sherman’s main observation was a
novel method for finding solutions to linear systems Ax = d that approximately minimize
an arbitrary norm ||x||. His method involved composing solutions from well-known weak
approximate solvers by repeatedly applying the solver to residual vectors d−Ax. The number
of iterations needed for this method to converge is a function of the so-called generalized
condition number of A. To reduce the condition number, he proposed finding a left-
cancellable matrix P called a generalized preconditioner such that PA is well-conditioned
and then working with the system PAx = Pb. He then expressed transshipment as such a
linear system problem and described a preconditioner P that could be efficiently applied in
iterations of his composition algorithm.

Recently, the authors of [11] and [1] independently discovered near-linear
O(ε−2m logO(1)(nU)) time approximation schemes for transshipment. Here, U is best un-
derstood as the aspect ratio of the edge costs found by dividing the largest edge cost by
the smallest. Shortly after, Fox and Lu [8] proposed a near-linear O(ε−2m logO(1) n) time
approximation scheme without the dependence on the aspect ratio. While the above results
were presented here with sequential running times in mind, there have been several recent
approximation schemes proposed for various models of parallel and distributed computing,
including some appearing in a subset of the work cited above [1, 2, 11,14,19].

Perhaps unsurprisingly, the algorithms of [1] and [8] use the aforementioned framework of
Sherman [15] explicitly but with a more-efficiently evaluated choice for the preconditioner P .
However, all of the approximation schemes for transshipment mentioned above rely on
methods for refining loose approximate solutions into stronger ones. Zuzic [18] recently
provided an explanation for this commonality by uniting the approaches of these works
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under a single simple boosting framework. In short, all of these works implicitly build
approximately optimal results to the linear programming dual for transshipment and then
take advantage of the newly realized fact that any black-box dual approximation can be
boosted to a (1 + ε)-approximate solution for transshipment.

Another commonality between all of the almost- and near-linear time approximation
schemes cited above, with a single exception, is that they rely heavily on randomization.
In particular, they all compute random Bourgain [3] embeddings of the shortest path
metric into low-dimensional space and then they compute (the cost of) random oblivious
flows that are based only on the location of their sources within that space. The single
near-linear time exception to this use of randomization is a recent paper [14] describing
an O(ε−2m logO(1)(nU)) time deterministic approximation scheme. However, unlike some of
the results mentioned above [8, 15], its running time is still polylogarithmic in the aspect
ratio of the edge costs.

1.2 Our results
We present the first near-linear time approximation scheme for transshipment that is both
deterministic and with a running time independent of the aspect ratio of the edge costs.
Specifically, our algorithm computes a flow f that routes b at cost c(f) ≤ (1 + ε)OPT(b) in
O(ε−2m logO(1) n) time. It is also (in our opinion) simpler and likely easier to implement than
previous near-linear time approximation schemes for transshipment, even after excising the
extra complications needed for them to efficiently function in parallel or distributed settings.
Outside what is explicitly described in this report, it depends upon just two black box
results, the aforementioned boosting framework of Zuzic [18] implicitely used by all previous
almost- and near-linear time transshipment approximation schemes and the deterministic
construction [13] of a well-known distance oracle of Thorup and Zwick [16]. Our algorithm is
also combinatorial in that the only operations it performs with the input costs and demands
are comparisons, addition, multiplication, and division.

Linear cost approximators
Prior work

One method of instantiating the transshipment boosting framework [18] is to design an
α-approximate linear cost approximator P ∈ Rk×V based only on the input graph
G = (V, E) and edge costs c. In particular, for any set of proper demands b, we must
have OPT(b) ≤ ||Pb||1 ≤ αOPT(b). Approximator P need not be computed explicitly. If
matrix-vector multiplications with P and P T can be performed in some time M , then we
can compute a flow f ′ with c(f ′) ≤ (1 + ε/2)OPT(b) and OPT(b − IGf ′) ≤ OPT(b)/n2 in
O(ε−2α2M logO(1) n) time [18, Corollaries 12 and 16]. We can then route an n-approximate
flow for demands b−IGf ′ along a minimum spanning tree to get our desired (1+ε)-approximate
flow that routes b exactly.

Linear cost approximators are almost the same as the generalized preconditioners men-
tioned above, and we can look to prior work on how to design one. In particular, the
construction we use is partially motivated by the near-linear time approximation schemes
of [1, 8]. As in most of the previous approximation schemes for transshipment, they compute
a random Bourgain [3] embedding of the input graph’s shortest path metric, mapping vertices
to points in low dimensional space. They then construct preconditioners for estimating the
optimal solution value to the geometric transportation problem over the vertices’ points. In
this latter problem, the goal is to compute a weighted matching between several pairs of
points of minimum total distance.

ESA 2024



56:4 A Simple Near-Linear Time Approximation Scheme for Transshipment

Consider a hierarchy of subsets of the vertices’ points based on a sequence of progressively
finer randomly shifted uniform grids. By greedily matching points within lower levels of the
hierarchy before moving to the top, one obtains a weighted matching with expected cost
close to optimal. The approximation schemes of [1, 8] construct preconditioners to estimate
this expected cost by building a collection of deterministic (i.e., not randomly shifted) grids
and explicitly computing the net expected amount of demand within each grid cell, as if
they had been randomly shifted. Their preconditioners (modulo appropriate scaling) simply
output the diameter of each grid cell times the net expected demand it contains.

Novel construction inspired by tree embeddings

Instead of using a random Bourgain embedding and then building a hierachy of subsets,
our approximation scheme skips straight to considering the hierarchies formed from random
embeddings into dominating tree metrics [7] where the distance between any given pair of
vertices is stretched (distorted) by a factor of at most O(log n) in expectation. Consider the
following variation of the tree embedding of [7]. Let r be the root of our tree. We compute a
2-approximation ∆ of the diameter of G and choose a partition ⟨v1, v2, . . . , vn⟩ of the vertices
uniformly at random. We create a sequence of disjoint clusters ⟨C1, C2, . . . , Cn⟩ where Ci ⊆ V

for all i. Let ∆′ be chosen uniformly at random from [∆/2, ∆]. For each i from 1 to n, we
add to Ci all vertices within distance ∆′ that have not already been claimed for another
cluster. We create a child ci of r for each non-empty cluster Ci, connected by an edge of
weight O(∆). Finally, we recursively build a tree rooted at ci for each non-empty Ci. Despite
the low expected stretch, some distances may be distorted by a factor of Ω(n). So while for
any fixed b, the expected cost of an optimal flow routing it in the tree is O(log n) · OPT(b),
there may be some choices of b for which the cost blows up by that Ω(n) factor. Therefore,
we cannot simply create a linear cost approximator based on the cost of routing different
demands within the tree and expect it to give us good approximate costs relative to G for
the large number of b vectors used in the transshipment boosting framework.

However, the expected costs of routing demand through potential cluster centers is a fixed
value that can be computed accurately. Ignoring running time concerns, we can construct
a linear cost approximator P that accurately lists these expected costs up to constant
factors. Because the expected stretch from an actual random tree embedding using the above
algorithm is O(log n), the value ||Pb||1 ≤ O(log n) · c(b) always.

Distance oracles and graph minors
Unfortunately, we cannot afford to compute the Ω(n2) distances required to properly compute
these expected costs. Instead we take advantage of the clustering method used in the
well-known distance oracle of Thorup and Zwick [16]. Let k ≥ 1 be an integer. After
O(kmn1/k log n) time deterministic preprocessing, their O(kn1+1/k)-space oracle can compute
(2k − 1)-approximate distances between any pair of vertices in O(k) time [13, 16]. By setting
k := lg n, we get an O(log n)-approximate distance oracle with construction time O(m log2 n)
and size O(n log n). We never directly use the construction for its stated purpose as an oracle.
Instead, we use the fact that the deterministic construction stores for each v ∈ V a set of
O(log2 n) vertices w ∈ V that suffice as the possible cluster centers for our expected cost
computations. The actual algebra proving we get a good approximator using the expected
costs is, unsurprisingly, very similar to the algebra proving a random tree embedding has low
expected stretch.
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There is one thing left to consider in the design of our algorithm. Even using the distance
oracle, we would have to consider all possible distance scales to get correct expected costs
for all possible cluster centers across all possible cluster diameters. Doing so would lead
to a polylogarithmic dependence on the aspect ratio in our running time. To avoid that
dependence, we construct a sequence of O(m log n) minors of G, each maintaining a range of
possible shortest path distances up to a constant factor. Edges of higher cost than the range of
a minor are discarded, and those of significantly smaller cost are contracted, so the total size
of these minors is also O(m log n). Our construction of the linear cost approximator P simply
considers expected costs within each minor separately. When establishing the approximation
ratio of P , we charge against the cost of individual flow paths in a decomposition of an
optimal flow. Fortunately, only O(log n) minors charge meaningful costs to each flow path,
bringing the approximation ratio of P to a relatively small O(log3 n).

Oblivious routing and comparison to [14]
Along with the explanation given above, the linear cost approximator P can be interpreted
as providing constant approximations to the actual cost of a certain oblivious flow where
a unit flow from/to each vertex u to/from an arbitrary vertex s is chosen without prior
knowledge of b and then multiplied by b(u). The description of the flow is incredibly simple;
for each adjacent pair of scales for which we consider how a random tree embedding might
affect u, between each pair of potential cluster centers between those scales, the unit flow for
u sends the product of the probabilities that u would join their respective clusters. Another
way to think about the flow is that for each scale, we want the demand of u to arrive
at various nearby cluster centers, and using the product of proportions between scales to
route flow is the most natural way to do so. The actual construction of P follows this
oblivious routing/reassignment interpretation, as we believe it more easily suggests that P

is estimating the cost of an actual solution to the transshipment problem. That said, our
algorithm never actually computes an oblivous flow, because we merely need applications of
its cost approximator P to use the boosting framework. Also, the actual choice of where to
send the flow units and the analysis for P ’s approximation ratio is much better explained
using the tree embedding motivation described above.

This oblivious routing of actual flow interpretation/approach is used much more heavily
throughout the O(ε−2m logO(1)(nU)) time deterministic approximation scheme of [14], so
it provides a means by which to compare our work to theirs. Their paper contains the
many additional details necessary for working in parallel and distributed models that are
beyond the scope of the current work, so we focus just on the parts related to approximating
transshipment in any model. Similar to how our approach is inspired by random tree
embeddings, theirs is inspired by random low-diameter decompositions of the input graph at
different scales and their deterministic counterparts, the sparse neighborhood covers. They
observe that sending of a vertex u’s demand from cluster center to cluster center can lead to
an oblivious flow having high cost, so they propose sending portions of the demand to nearby
cluster centers proportionally to their distance and then routing flow between scales based
on the product of these proportions. Our expected cost/demand reassignment calculations
also bias sending demand to nearby cluster centers. However, the algorithm of [14] and its
analysis is made more complicated compared to ours by, for example, them only sending
flow between centers of nesting clusters.

Also similar to our work, they build various simplifications of the input graph designed
to efficiently consider clusters of a certain scale. They build O(log(nU)) simplifications
to handle all possible different scales they might need to consider. The analysis of their

ESA 2024



56:6 A Simple Near-Linear Time Approximation Scheme for Transshipment

oblivious routing’s cost must charge to the full cost of the optimal flow paths once per scale,
leading to their obliviously routed flow having a cost O(logO(1)(nU)) times optimal. This
approximation ratio then becomes part of their algorithm’s running time as in all boosting
based approximation schemes. In contrast, our minors have total size O(m log n) and are
designed so each path in an optimal flow will receive significant charges from only O(log n)
of them, leading to a tidy O(log3 n) approximation ratio for our linear cost approximator.

1.3 Organization
We proceed as follows. We discuss a few more needed details concerning the Thorup-
Zwick distance oracle in Section 2. We discuss the construction of the minor graphs
(thereafter referred to as layers of G) in Section 3. The construction and application of our
O(log3 n)-approximate linear cost approximator P is given in Section 4; the reader merely
interested in how our algorithm works can stop there given the description of the boosting
framework available above. In Section 5, we prove P is an O(log3 n)-approximate linear cost
approximator. We briefly wrap things up in Section 6 with the presentation of a theorem
stating our main result.

2 Thorup-Zwick distance oracle

Thorup and Zwick [16] presented a distance oracle that for any integer k ≥ 1 has size
O(kn1+1/k) and can return (2k − 1)-approximate distances between any two vertices in O(k)
time. It can be constructed deterministically in O(kmn1/k log n) time [13, 16]. We now
discuss some more details of the oracle relevant to our algorithm.

Let δ(u, v) denote the distance between vertices u to v in G = (V, E) and let δ(u, V ′) =
minv∈V ′ δ(u, v) for any subset V ′ ⊆ V . The distance oracle stores a sequence of vertex
subsets V = S0 ⊇ S1 ⊇ · · · ⊇ Sk = ∅ we refer to as samples. We have Sk−1 ̸= ∅. We assume
distances between any fixed vertex v and the other vertices of G are distinct, breaking ties as
necessary. The oracle also stores, for each vertex v, a bundle B(v) = ∪k−1

j=0 Bj(v) of vertices
and their distances from v where each bundle piece Bj(v) =

{
w ∈ Sj | δ(v, w) < δ(v, Sj+1)

}
.

In particular, Bj(v) ⊆ Sj \ Sj+1.
The total size of all bundles is O(kn1+1/k). Some bundles may have size larger than the

average size of O(kn1/k). However, a careful examination of the deterministic construction
of the oracle [13] shows |B(v)| = O(kn1/k log n) for all v ∈ V .

3 Layer graphs

Let G = (V, E) be a connected undirected graph with positive edge costs c ∈ RE
>0, and let

n := |V | and m := |E|. We assume without loss of generality that G contains no loops or
parallel edges and that n ≥ 4. Our approximation scheme begins by computing a sequence
⟨(G0, ∆0), (G1, ∆1), . . . , (GL, ∆L)⟩ of pairs, each consisting of a minor Gi of G, also referred
to as a layer of G, and a reach ∆i such that ∆i ≤ ∆i−1/2 for all i ≥ 1. Each iteration of
the approximate optimization procedure will take time near-linear in the sum of the minors’
sizes, so we must make sure that each edge of G appears in only O(log n) different minors.
Accordingly, our construction sets each Gi, including for i = 0, to be the graph G after
contracting all edges of cost at most ∆i/n, deleting all edges of cost strictly greater than
2∆i, and removing all vertices left isolated given the edge deletions and contractions. We let
Vi and Ei denote the vertices and edges, respectively, of each layer Gi, and let ni := |Vi| and
mi := |Ei| denote the cardinality of both sets. Let δi(v, w) and δi(v, W ) denote the distance
from v to another vertex or set of vertices within Gi.



E. Fox 56:7

Let s be an arbitrary vertex of G, and let x and y be the two vertices farthest from s.
We set ∆0 := δ(s, x) + δ(s, y). Reach ∆0 is at least, but no more than twice, the diameter of
G. Given ∆i−1, we set ∆i as follows: If Gi−1 is non-empty (contains at least one edge), then
∆i := ∆i−1/2. Otherwise, let e|| = arg maxe∈E|c(e)≤∆i−1/n c(e) be the costliest contracted
edge of Gi−1. If e|| is well-defined, let ∆i := c(e||) · n/2. If e|| is not well-defined, then
(Gi−1, ∆i−1) is the final pair in the sequence and L := i − 1.

For a vertex v in some layer Gi, we let V (v) denote the set of vertices from the input
graph G contracted to form v. Observe that the sets V (·) form a laminar family in that for
each pair of sets, either they are disjoint or one completely contains the other. Accordingly,
let i′ be the largest index such that i′ < i and there exists a vertex v′ ∈ Vi′ such that
V (v) ⊆ V (v′). We define the parent of v to be p(v) := v′.

The ancestors of v ∈ Vi, denoted p∞(v) are all layer graph vertices obtained by
repeatedly applying the parent operation zero or more times starting with v. In particular,
pi′(v) for some i′ ≤ i denotes the ancestor of v in Vi′ if one exists. The children of v

are p−1(v) := {v′ | p(v′) = v}. Vertex v is called a leaf if it has no children. Despite the
evocative names, we do not actually connect the layer graphs using any kind of rooted
forest data structures and instead use them mostly separately when defining our linear cost
approximator. The proofs of the following lemmas appear in the full version of this paper.

▶ Lemma 1. The graphs ⟨G0, G1, . . . , GL⟩ have at most O(m log n) edges and vertices in
total.

▶ Lemma 2. The sequence ⟨(G0, ∆0), (G1, ∆1), . . . , (GL, ∆L)⟩ along with their vertices’
parents and children can be computed in O(m log n) time.

▶ Lemma 3. Let v ∈ Vi for i > 0, and let p(v) ∈ Vi′ with ∆i′ > 2∆i. The children of p(v)
are exactly the members of the connected component of v in Gi. Further, all edges incident
to p(v) have length strictly greater than ∆i′ , and the diameter in G of V (p(v)) < 2∆i.

Along with each layer Gi, we construct a Thorup-Zwick distance oracle (Section 2) with
parameter k := lg n. Let Sj

i , Bj
i (v), and Bi(v) denote the jth sample, jth bunch piece

of v, and bunch of v, respectively, within layer Gi. By Lemma 1, the oracles have total
size O(log n · m log n · n1/ lg n) = O(m log2 n), and Bi(v) = O(log2 n) for each i, v. They can
be constructed in O(m log3 n) time total.

4 A linear cost approximator

In this section, we describe how to implicitly build and efficiently evaluate matrix-vector mul-
tiplications with an O(log3 n)-approximate linear cost approximator P ∈ R((∪iVi)×(∪iVi))×V ,
i.e., the number of rows is | ∪i Vi|2 and the number of columns is n. Most rows are empty. To
simplify the exposition, we will actually define three separate matrices A ∈ R(∪iVi)×V , R ∈
R((∪iVi)×(∪iVi))×(∪iVi), and C ∈ R((∪iVi)×(∪iVi))×((∪iVi)×(∪iVi)) that represent Aggregating
demands, Routing flow, and estimating the Cost of the flow, respectively. Approximator
P := CRA is their product. Each of these three matrices serves a limited purpose in a
three-step process of obtaining a cost approximation. Matrices R and C are sparse and can
be built and stored explicitly by our algorithm. On the other hand, matrix A may be dense,
so each multiplication with it will be done using a simple dynamic programming procedure.

ESA 2024
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4.1 A: Aggregating demands
Recall, each vertex of each layer graph is formed from the contraction of one or more edges
from G. The flow modeled by our linear cost approximator sends the net amount of demand
within each v′ ∈ Vi to other vertices of Gi. We define the aggregate demand of each vertex
v′ ∈ Vi to be b(v′) :=

∑
v∈V (v′) b(v); our linear cost approximator is based on the cost of flow

paths moving these aggregate demands between layer graph vertices. Matrix A computes
these aggregate demands so we may subsequently understand the cost of the flow. For any i,
for any v′ ∈ Vi, and for any input vertex v ∈ V ,

A(v′, v) := [v ∈ V (v′)]

where [Q] denotes the 0, 1-indicator variable for proposition Q. For any demand vector
b ∈ RV , we have (Ab)(v′) = b(v′).

▶ Lemma 4. Let b ∈ RV and b′ ∈ R∪iVi . Vectors Ab and (A)T b′ can both be computed in
O(m log n) time.

Proof. Consider any layer graph vertex v′. If V (v′) = {v} for some v ∈ V , then (Ab)(v′) =
b(v). Otherwise, we have b(v′) =

∑
w∈p−1(v′) b(w). We compute all entries Ab(v) in O(m log n)

time by iterating through vertices in decreasing order of layer graph index.
Let v ∈ V be any input graph vertex, and let v′ be the unique leaf such that V (v′) = {v}.

We have ((A)T b′)(v) =
∑

w|v∈V (w) b′(w) =
∑

w∈p∞(v′) b′(w). We compute
∑

w′∈p∞(w) b′(w′)
for all layer graph vertices w in O(m log n) time by iterating through vertices in increasing
order of layer graph index. We then look up the values for the leaves in O(n) additional
time. ◀

4.2 R: Routing flow
Matrix R is meant to model an oblivious routing of flows to satisfy the aggregate demands
within each layer graph. In Section 5.1, we show how the entries in RAb can be cleanly
turned into a flow satisfying b itself. The flows within each layer graph are determined by
considering how much demand would be distributed to each potential cluster center in a flow
based on a random tree embedding. The hope is that opposing demands of nearby vertices
see distribution to common targets, causing the demands to cancel. In turn, the flows in
subsequent layers end up routing only relatively light uncanceled portions of the original
demands, keeping costs low.

We begin by computing a matrix D ∈ R(∪iVi)×(∪iVi) that takes aggregate demands to
their targets after Distribution. Fix index i. Consider any v ∈ Vi. Imagine continuously
increasing a distance parameter λ starting from 0 and ending at ∆i. We wish to distribute
the demand b(v) of v to members of Bi(v), giving precedence to those vertices in Bi(v) that
are closer to v. The total fraction of demand distributed up to each moment λ should be
equal to λ/∆i.

Fix a moment λ. There is a maximum index j such that Bj
i (v) contains at least one

vertex of distance at most λ from v. As λ continues to increase, we will distribute the demand
equally among exactly the vertices in Bj

i (v) at distance at most λ from v. This choice of
equal distribution models each of those vertices being equally likely to be the center of the
first ball of radius λ to contain v. As λ increases, the specific vertices within distance λ will
change along with the index j.

We now describe how to compute the total proportion of demand that should be distributed
to each vertex in Bi(v). Fix any j ∈ {0, . . . k − 1 = lg n − 1}. For any λ ≥ 0, let B̄j

i (v, λ) :={
w ∈ Bj

i (v) | δi(v, w) ≤ λ
}

denote those members of Bj
i (v) that are within distance λ of v.
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Let λj+ := min
{

δ(v, Bj+1
i (v)), ∆i

}
(we define the distance to an empty set such as Bk

i (v)
to be +∞). We sort the members of B̄j

i (v, λj+) in increasing order of distance from v in Gi

in O(|Bj
i (v)| log n) time. Let ⟨w1, w2, . . . , wr⟩ be this sorted sequence of vertices. Finally, for

each q ∈ {1, . . . , r}, we set

D(wq, v) := λj+ − δi(v, wr)
r∆i

+
r−1∑
ℓ=q

δi(v, wℓ+1) − δi(v, wℓ)
ℓ∆i

.

After sorting, the values D(wq, v) for a particular i, v, and j can be computed in O(r) =
O(|Bj

i (v)|) time as a running suffix sum. All members of D not defined above are set to 0.
Observe for any vertex v ∈ (∪iVi),

∑
w∈(∪iVi) D(w, v) = 1. Each non-zero entry of

D corresponds to the member of some bundle B(v), so there are at most O(m log2 n) of
them. Accordingly, we store D explicitly. Accounting for the time needed to sort, D can be
constructed in O(m log3 n) time total.

After computing D, we are able to compute R itself. For a given vertex v ∈ Vi with parent
p(v) ∈ Vi′ and w ∈ Vi, we model routing the portion of v’s aggregate demand distributed to
w to all w′ ∈ Vi′ proportionally to how much of p(v)’s demand should be distributed to the
various w′. More concisely, we set

R((w, w′), v) := D(w′, p(v)) · D(w, v).

Finally, we need to route the aggregate demand of vertices in G0. Let s ∈ V0 be arbitrarily
chosen. For each v, w ∈ V0, we set

R((w, s), v) := D(w, v).

Recall, each bundle Bi(v) has size at most O(log2 n). Therefore, the total number of non-zero
entries in R is at most O(m log n) · O(log2 n) · O(log2 n) = O(m log5 n). Again, we store the
matrix explicitly.

4.3 C: Estimating flow costs
We now compute the matrix C whose job it is to estimate the costs of the flows described by
RAb. As we shall see in the next section, these flows can follow relatively short paths so that
the cost per unit flow sent within a layer graph Gi is O(∆i). We define C to be a diagonal
matrix. In order to keep it sparse, we only give it non-zero entries for pairs (w, w′) where
row (w, w′) of R has at least one non-zero entry. For each such w ∈ Vi and w′ ∈ Vi′ , with
∆i′ = 2∆i, we set

C((w, w′), (w, w′)) := 3∆i′ ,

and for each such w ∈ Vi and w′ ∈ Vi′ , with i′ > 2∆i, we set

C((w, w′), (w, w′)) := 2∆i.

(Note that i′ = i for the case of w′ = s as defined above.) As before, the number of non-zero
entries is O(m log5 n).

Recall, our O(log3 n)-approximate linear cost approximator P := CRA. We can perform
matrix-vector multiplications with P and its transpose by applying Lemma 4 when working
with A and the standard multiplication algorithm when working with R and C.

▶ Lemma 5. Let b ∈ RV and b′ ∈ R∪iVi . Vectors Pb and P T b′ can both be computed in
O(m log5 n) time.
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5 Cost approximation analysis

In this section, we establish the approximation ratio α = O(log3 n) of the linear cost
approximator P . Fix any proper demand vector b ∈ RV . We define a flow f ∈ RE⃗ routing b

where c(f) ≤ ||Pb||1. Then, we prove ||Pb||1 ≤ αOPT(b), giving a concrete expression for α

in the process.

5.1 A flow based on P

For each pair of vertices u, v ∈ V , let π(u, v) denote the flow sending one unit from u to v

along an arbitrary chosen canonical shortest path in G. For each layer graph vertex w,
we pick an arbitrary representative r(w) ∈ V (w).

We construct the flow f as follows. Initially, f = 0E⃗ . Then, for each non-zero R((w, w′), v),
we add R((w, w′), v) · b(v) ·π(r(w), r(w′)) to f . In words, we send an R((w, w′), v) proportion
of the b(v) units of flow demanded by v along the canonical shortest path between the
representatives for w and w′. The proofs of the following lemmas appear in the full version.

▶ Lemma 6. Flow f ∈ RE⃗ as defined above routes b.

▶ Lemma 7. Let v, w ∈ Vi and w′ ∈ Vi′ . If R((w, w′), v) ̸= 0 then c(π(r(w), r(w′))) < 3∆i′ .

▶ Lemma 8. We have c(f) ≤ ||Pb||1.

5.2 Approximation ratio
Our approximation ratio upper bound depends on the following lemma, loosely mirroring the
fact that a random tree embedding of a graph distorts distances by only a small factor in
expection. The lemma essentially states that the closer two vertices sharing a layer graph are
to one-another, the less they disagree on where their aggregate demand should be reassigned.
Let Hn = 1/1 + 1/2 + · · · + 1/n denote the nth harmonic number.

▶ Lemma 9. Let u, v ∈ Vi for some i. We have∑
w∈Vi

|D(w, u) − D(w, v)| <
8δi(u, v)Hn lg n

∆i
.

Proof sketch. Recall in the construction of D, we consider a continuously increasing λ ∈
[0, ∆i]. As λ increases at a rate of 1, we increase the value of at least one D(w, u) at a
rate of 1/(ℓ∆i) where ℓ is the number of vertices in a particular set B̄j

i (u, λ). Only vertices
w ∈ B̄j

i (u, λ) ⊆ Bj
i (u) see D(w, u) increase for this value of λ. Let N(u, λ) denote the set of

vertices for which D(w, u) is increasing for parameter λ, and define N(v, λ) similarly.
Considering all λ, we can show

∑
w∈Vi

|D(w, u) − D(w, v)| ≤ 2
∆i

∫ ∆i

0

∑
w∈Vi


[w ∈ (N(u, λ) \ N(v, λ))]

|N(u, λ)|

+ [w ∈ (N(v, λ) \ N(u, λ))]
|N(v, λ)|

 dλ.

Therefore, our goal is to, for each w ∈ Vi, bound the measure of λ that puts w in exactly
one of N(u, λ) or N(v, λ) and then divide by a number at most the size of that same set for
the length of those λ.

Fix w, and consider the set of λ such that w ∈ (N(u, λ) \ N(v, λ)). We have two (not
mutually exclusive) cases to consider.
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1. δi(u, w) ≤ λ but δi(v, w) > λ: By the triangle inequality, δi(v, w) − δi(u, w) ≤ δi(u, v).
Therefore, the range of λ for which this case can occur has measure at most δi(u, v)
as well. Recall, w ∈ N(u, λ) implies w ∈ Bj

i (u) for some j. Let ⟨w1, . . . , wr⟩ denote
the vertices of Bj

i (u) sorted by increasing distance from u, and let w = wq. We have
{w1, . . . , wq} ⊆ N(u, λ), so |N(u, λ)| ≥ q.

2. N(u, λ) ⊆ Bj
i (u) but N(v, λ) ⊆ Bj′

i (v) for some j′ ≠ j: This case occurs when (δi(u, Sj
i ) ≤

λ and δi(v, Sj
i ) > λ) or (δi(u, Sj+1

i > λ) and δi(v, Sj+1
i ) ≤ λ). As before, the triangle

inequality implies δi(v, Sj
i ) − δi(u, Sj

i ) and δi(u, Sj+1
i ) − δi(v, Sj+1

i ) are both at most
δi(u, v). Therefore, the range of relevant λ for this case has measure at most 2δi(u, v).

There are k = lg n different choices for j in either case. The total measure of λ resulting
in case 2. is at most 2δi(u, v) lg n < δi(u, v)Hn lg n. Summing across w ∈ Vi, and noting each
index q can be used at most once per choice of j, we have

∑
w∈Vi

|D(w, u) − D(w, v)| ≤ 2
∆i

∫ ∆i

0

∑
w∈Vi


[w ∈ (N(u, λ) \ N(v, λ))]

|N(u, λ)|

+ [w ∈ (N(v, λ) \ N(u, λ))]
|N(v, λ)|

 dλ

<
2

∆i

(
2δi(u, v)Hn lg n + 2 lg n

n∑
q=1

δi(u, v)
q

)

= 8δi(u, v)Hn lg n

∆i
. ◀

We set α := 180Hn lg2 n = O(log3 n).

▶ Lemma 10. We have ||Pb||1 ≤ α · OPT(b).

Proof. Let f∗ be an optimal flow with c(f∗) = OPT(b). Standard flow theory implies there
exists a decomposition of f∗ into a linear combination a1f1 + a2f2 + . . . of unit path flows
such that each aj > 0 and c(f∗) =

∑
j ajc(fj). We will charge each of the non-zero terms

in Pb to one or more of these path flows and argue that each flow fj is charged at most
αajc(fj).

Fix fj . Let u ∈ V and v ∈ V be the source and sink of fj , respectively. We have
c(fj) ≥ δ(u, v) (in fact, equal). We consider charges based on aj units in b(u) and −aj units
in b(v). These charges are handled in a few cases that are not necessarily exclusive.

Consider any (i′, u′) where p(u′) ∈ Vi′ and u ∈ V (u′), and ∆i′ ≤ δ(u, v). By construction
of R,

∑
w∈(∪i>i′ Vi)

∑
w′∈Vi′ R((w, w′), u′) = 1. Summing over all such pairs (i′, u′), we see∑

(i′,u′)|p(u′)∈Vi′ ∧u∈V (u′)∧∆i′ ≤δ(u,v)

∑
w∈(∪i>i′ Vi)

∑
w′∈Vi′

3∆i′R((w, w′), u′) =
∑

i′|∆i′ ≤δ(u,v)

3∆i′

≤ 6δ(u, v)
< 2δ(u, v)Hn lg2 n.

In words, the aj units of demand from u contribute at most 2ajδ(u, v)Hn lg2 n total among
various |(Pb)((w, w′))| where w′ ∈ Vi′ with ∆i′ ≤ δ(u, v). We charge 2ajδ(u, v)Hn lg2 n to
fj for these contributions.

Now, consider any (i′, u′) where p(u′) ∈ Vi′ , u ∈ V (u′), and ∆i′ > δ(u, v). Having
∆i′ > δ(u, v) implies either there is a path from p(u′) to a distinct contracted set of vertices
in Gi containing v or v ∈ V (p(u′)) as well. Let v′ such that p(v′) ∈ Vi′ with v ∈ V (v′).
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Suppose either u′ or v′ is in some Vi with ∆i < ∆i′/2. Lemma 3’s guarantee of long
incident edges for p(u′) and p(v′) implies p(v′) = p(u′), and no other vertex of Vi′ lies within
∆i′ of them. Therefore, D(p(v′), v) = D(p(v′), u′) = 1, and∑

w∈Vi

∑
w′∈Vi′

|R((w, w′), u′) − R((w, w′), v′)|

=
∑

w∈Vi

∑
w′∈Vi′

|D(w′, p(u′))D(w, u′) − D(w′, p(v′))D(w, v′)|

=
∑

w∈Vi

|D(w, u′) − D(w, v′)|

≤ 8δ(u, v)Hn lg n

∆i

≤ 4δ(u, v)Hn lg2 n

∆i
.

Therefore, all but 4ajδ(u, v)Hn lg2 n/∆i units of the aj demand from u contributing to
various |(Pb)(w, w′)| of this sort are canceled by opposite demand from v. Each unit is
multiplied by 2∆i, so we charge 8ajδ(u, v)Hn lg n for these contributions.

This subcase can only occur once, because for smaller choices of i′, vertices u′, v′, and
their parents have identical aggregate demand distributions, implying all aj units of demand
from u are cancelled by opposite demand from v.

If the above subcase does not occur, then both p(u′) and p(v′) belong to the specific
common Vi with ∆i = ∆i′/2. By Lemma 9 and the fact that |ab − cd| ≤ |a − c| + |b − d| for
a, b, c, d ∈ [0, 1],∑

w∈Vi

∑
w′∈Vi′

|R((w, w′), u′) − R((w, w′), v′)|

=
∑

w∈Vi

∑
w′∈Vi′

|D(w′, p(u′))D(w, u′) − D(w′, p(v′))D((w, v′)|

≤
∑

w∈Vi

∑
w′∈Vi′

(|D(w′, p(u′)) − D(w′, p(v′))| + |D(w, u′) − D(w, v′)|)

≤ 8δ(u, v)Hn lg n

∆i′
+ 8δ(u, v)Hn lg n

∆i′/2

≤ 24δ(u, v)Hn lg n

∆i′
.

Therefore, all but 24ajδ(u, v)Hn lg n/∆i′ units of the aj demand from u contributing
to various |(Pb)(w, w′)| of this sort are canceled by opposite demand from v. Each unit is
multiplied by 3∆i′ , so we charge 72ajδ(u, v)Hn lg n for these contributions.

The contractions used in building the layer graphs guarantees there is at most one choice
of i′ where ∆i′ ≥ n · δ(u, v) while u′ ̸= v′. For smaller choices of i′, vertices u′, v′, and
their parents have identical aggregate demand distributions, implying all aj units of demand
from u are cancelled by opposite demand from v. There are at most lg n different values i′

with large reach that result in any non-zero charge, bringing this set of charges to a total of
72ajδ(u, v)Hn lg2 n.

Finally, we consider u′ ∈ V0, v′ ∈ V0, u ∈ V (u′), and v ∈ V (v′). We have∑
w∈V0

|D(w, u′) − D(w, v′)| ≤ 8δ(u, v)Hn lg n

∆0
.
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Similar to before, all but 8ajδ(u, v)Hn lg n/∆0 units of the aj demand from u are can-
celed by opposite demand from v. Multiplying by 2∆0, we charge 16ajδ(u, v)Hn lg n ≤
8ajδ(u, v)Hn lg2 n.

Summing over all types of charges and then doubling the value for the contributions of v to
various |(Pb)(w, w′)|, we get a total charge of 180ajδ(u, v)Hn lg2 n ≤ α·ajc(fj) to fi. All units
of demand for all u, v ∈ V are considered throughout these charges, so we have charged at least
||Pb||1 in total. On the other hand, we charge at most

∑
j α ·ajc(fj) = α ·c(f∗) = α ·OPT(b)

in total. ◀

6 Approximation scheme

We are now ready to present our main theorem.

▶ Theorem 11. There exists a deterministic algorithm that given an undirected graph
G = (V, E) over n vertices and m edges, positive edge costs c ∈ RE

>0, a proper set of demands
b ∈ RV , and a parameter ε > 0 computes a flow f routing b with c(f) ≤ (1 + ε)OPT(d) in
O(ε−2m logO(1) n) time.

Proof. We begin by constructing the layer graphs as presented in Section 3 along with
the Thorup-Zwick distance oracles for each in O(m log3 n) time total. We construct sparse
representations of the matrices R and C in O(m log5 n) time so they can be used in matrix-
vector multiplications with the O(log3 n)-approximate linear cost approximator P and
its transpose. Each matrix-vector multiplication takes O(m log5 n) time. We perform
O(ε−2 logO(1) n) multiplications with P according to the boosting framework of Zuzic [18,
Corollaries 12 and 16] to find an infeasible flow f ′ of cost c(f ′) ≤ (1 + ε/2)OPT(b) where
OPT(b − IGf ′) ≤ OPT(b)/n2. Finally, we add in an n-approximate solution that routes
b − IGf ′ as in [15] in O(m log n) additional time. The total cost of the flow returned is
(1 + ε/2 + 1/n)OPT(b) ≤ (1 + ε)OPT(b). ◀
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