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Abstract
We revisit the problem of multiplying two square matrices over the (min, +) semi-ring, where all
entries are integers from a bounded range [−M : M] ∪ {∞}. The current state of the art for this
problem is a simple O(Mnω log M) time algorithm by Alon, Galil and Margalit [JCSS’97], where ω

is the exponent in the runtime of the fastest matrix multiplication (FMM) algorithm. We design a
new simple algorithm whose runtime is O(Mnω + Mn2 log M), thereby removing the log M factor in
the runtime if ω > 2 or if nω = Ω(n2 log n).
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1 Introduction

One of the most fundamental algorithmic tasks is to compute the product of two matrices.
In particular, the classic problem of matrix multiplication on two n by n matrices over a
ring has been researched for decades [1, 8, 10, 15, 16, 21, 27]. Let ω be the exponent of n

in the fastest matrix multiplication (FMM) algorithm (that is, the runtime is O(nω)). The
current best upper bound on ω was recently given by [27] who showed that ω < 2.37156. On
the lower bound front, it is straightforward to see that 2 ≤ ω. Raz [18] showed that any
matrix multiplication algorithm in bounded coefficient arithmetic circuits requires at least
Ω(n2 log n) time, implying that ω > 2 + o(1).

In addition to the classic matrix multiplication problem, the algorithmic community has
also focused on several other important definitions of matrix products, including (min ,+)-
product, (max, min)-Product, Dominance-Product, Witness-Product and more (see [3, 9, 17,
19, 23]). The focus of this paper is on the (min ,+)-product.

(min ,+)-product

For a matrix A, we denote by Ai,j (or sometimes by (A)i,j) the entry of A at the ith row
and jth column. In the (min ,+)-product problem, the input is two n × n matrices S and
T , and the goal is to compute an n × n matrix P where Pt,r = min1≤j≤n{St,j + Tj,r}. The
(min ,+)-product has strong connections with the all pairs shortest path (APSP) problem,
and various other algorithmic problems that have efficient dynamic programming solutions
([4, 12, 22]).
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The trivial algorithm for solving the (min ,+)-product problem runs in O(n3) time. The
current fastest algorithm by Williams [24] runs in n3

2Ω(log n)1/2 time. We remark that reducing
the 3 term in the exponent of n in the runtime would refute the APSP conjecture [25]. Thus,
several papers have focused on computing the (min ,+)-product for special families of input
matrices [2, 4, 5, 6, 13, 14, 26].

In particular, Galil and Margalit [13, 14] considered the (min ,+)-product problem over a
bounded range where each entry in the input matrices is either ∞ or an integer between −M
and M, for some integer parameter M. The current fastest algorithm for the bounded range
(min ,+)-product is given by Alon, Galil and Margalit [2] with a runtime of O(Mnω log M).
Throughout this paper, we refer to the algorithm of [2] as the AGM algorithm.

In this paper we essentially remove the log M term from the runtime of the AGM algorithm
and prove the following theorem.

▶ Theorem 1. There exists an algorithm for the bounded range (min ,+)-product problem
whose runtime is O(Mnω + Mn2 log M).

Since we may assume that M ≤ n3−ω < n (as otherwise the naïve algorithm is faster), if
ω > 2 or nω = Ω(n2 log n) (which is true for bounded coefficient arithmetic circuits [18]), we
conclude that the runtime is O(Mnω).

For some direct applications, our new algorithm improves the runtimes of the algorithms
of Shoshan and Zwick [20] (after being adjusted by [11]), Chan, Vassilevska-Williams and
Xu [8] for undirected graphs, and Zwick [28] for the APSP problem on undirected graphs,
where the edge weights are integers in the range {1, ..., M}.

2 Polynomials and FFT

The description of our algorithm relies on understanding the basic flow of the FFT based
algorithm [7] for multiplying two polynomials. Thus, we begin with an overview of the FFT
algorithm, with some notation that will assist in proving Theorem 1.

The FFT algorithm

For a polynomial A(x) =
∑k

j=0 ajxj , the degree of A(x) is the largest power of x whose
coefficient in A(x) is non-zero. For a natural ℓ, the ℓ roots of unity are the (complex) numbers
ωℓ

t for integers 0 ≤ t < ℓ, where1 ωℓ = exp
( −2πi

ℓ

)
.

The FFT algorithm receives as input a polynomial A of degree k and an integer ℓ > k

that is a power of 2, and performs a discrete Fourier transform (DFT) on the coefficients of
A, which produces the evaluation of A at the ℓ roots of unity.

Formally, let γA = (a0, . . . , ak) be the coefficient representation of A, and for ℓ > k that
is a power of 2, let ϕA,ℓ = (A(ω0

ℓ ), . . . , A(ωℓ−1
ℓ )) be the ℓ-sample representation of A, which

is the evaluation of A at the ℓ roots of unity. The DFT on γA is ϕA,ℓ.
The FFT algorithm is also used to invert the DFT2, so that given ϕA,ℓ where ℓ is a power

of 2 and the degree of A is k < ℓ, the inversion returns γA.
The cost of the FFT algorithm for both computing and inverting the DFT is O(ℓ log ℓ)

time ([7]).

1 Recall that i2 = −1.
2 Since the DFT on γA can be expressed as multiplying a Vandermonde matrix with γA, and since the

Vandermonde matrix is invertible, the DFT is also invertible.
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Operations on ℓ-sample representations

Let ℓ > 0 be a power of 2. Let A and B be two polynomials of degrees kA and kB , respectively,
such that max(kA, kB) < ℓ. Let ϕA,ℓ and ϕB,ℓ be the ℓ-sample representations of A and B,
respectively.

The pointwise addition of ϕA,ℓ and ϕB,ℓ is (A(ω0
ℓ )+B(ω0

ℓ ), . . . , A(ωℓ−1
ℓ )+B(ωℓ−1

ℓ )). Since
the degree of A(x) + B(x) is max(kA, kB) < ℓ, then the pointwise addition of ϕA,ℓ and ϕB,ℓ

is ϕA+B,ℓ. The pointwise multiplication of ϕA,ℓ and ϕB,ℓ is (A(ω0
ℓ ) · B(ω0

ℓ ), . . . , A(ωℓ−1
ℓ ) ·

B(ωℓ−1
ℓ )). Since the degree of A(x) · B(x) is kA + kB, if kA + kB < ℓ then the pointwise

multiplication of ϕA,ℓ and ϕB,ℓ is ϕA·B,ℓ

Given ϕA,ℓ and ϕB,ℓ, both pointwise addition and pointwise multiplication of ϕA,ℓ and
ϕB,ℓ can be trivially computed in O(ℓ) time.

Multiplying polynomials using the FFT algorithm

Let A(x) and B(x) be two polynomials, each with degree at most k, represented by γA and
γB , respectively. Our goal is to return γC where C(x) = A(x) · B(x). Notice that the degree
of C is at most 2k.

For ℓ > 2k that is a power of 2, the algorithm applies the FFT algorithm to compute
the DFTs on γA and γB, which produces ϕA,ℓ and ϕB,ℓ. Next, since ϕC,ℓ is the pointwise
multiplication of ϕA,ℓ and ϕB,ℓ, the algorithm computes ϕC,ℓ in O(ℓ) time. Finally, the
algorithm uses the FFT algorithm to compute the inverse DFT on ϕC,ℓ, and returns γC .
The total runtime is O(ℓ log ℓ).

3 (min ,+)-product With Bounded Range

The AGM algorithm

We describe the AGM algorithm, following along the lines of the description given in [5].
The AGM algorithm constructs two monomial matrices S(x), T (x) from S, T as follows:

For each t, j ∈ [n] × [n] and for each j, r ∈ [n] × [n],

S(x)t,j =
{

0 if St,j = ∞,

xM−St,j otherwise
T (x)j,r =

{
0 if Tj,r = ∞,

xM−Tj,r otherwise

Notice that the entries in both S(x) and T (x) are all monomials of degree at most 2M.
Let Sγ and Tγ be two n × n matrices where for each t, j ∈ [n] × [n] we have (Sγ)t,j = γS(x)t,j

,
and for each j, r ∈ [n] × [n] we have (Tγ)j,r = γT (x)j,r

. Notice that computing both Sγ and
Tγ from S and T costs O(n2M) time in a trivial manner.

The AGM algorithm computes Pγ = Sγ · Tγ using a single application of an FMM
algorithm over the matrices Sγ and Tγ , where each multiplication in the FMM algorithm
is executed by applying the FFT-based polynomial multiplication algorithm between the
coefficient representation of two polynomials. Notice that the output of each multiplication
or addition during the execution of the FMM algorithm is a coefficient representation of a
polynomial of degree at most 4M (see [2]). Moreover, if P (x) = S(x) · T (x) then for each
t, r ∈ [n] × [n] we have that (Pγ)t,r = γP (x)t,r

.
Let kt,r be the degree of P (x)t,r. The following lemma enables a method for extracting

P (x) from Pγ .

▶ Lemma 2 ([2]). If P (x)t,r = 0 then Pt,r = ∞. Otherwise, Pt,r = 2M − kt,r.
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Proof. If P (x)t,r = 0, then for each j ∈ [n] it holds that S(x)t,j = 0 ∨ T (x)j,r = 0, which
implies that St,j = ∞ ∨ Tj,r = ∞, and so Pt,r = min1≤j≤n{St,j + Tj,r} = ∞.

Otherwise, notice that for each t, r ∈ [n] × [n] we have P (x)t,r =
∑

j∈[n] x2M−(St,j+Tj,r).
Let j∗ = arg min{St,j +Tj,r} = arg max{−(St,j +Tj,r)} = arg max{2M−(St,j +Tj,r)}. Thus,
kt,r = max{2M−(St,j +Tj,r)} = 2M−(St,j∗ +Tj∗,r) = 2M−Pt,r, and so Pt,r = 2M−kt,r. ◀

Following Lemma 2, for each t, r ∈ [n]× [n], the algorithm scans (Pγ)t,r to deduce whether
P (x)t,r = 0, and, if so, set Pt,r = ∞. Otherwise, the algorithm computes kt,r and sets
Pt,r = 2M − kt,r.

The construction of Sγ and Tγ from S and T costs O(n2M) time, and the construction
of P from Pγ costs O(n2M) time. The execution of the FMM algorithm on Sγ and Tγ costs
O(nω) multiplication or addition operations on 4M-sample representations of polynomials,
and each such operation costs at most O(M log M) time, so the total cost is O(nωM log M)
time.

3.1 Proof of Theorem 1
Proof. The algorithm is obtained by replacing the computation of Pγ from Sγ and Tγ in
the AGM algorithm with a more efficient procedure. Thus, we describe how to compute Pγ

more efficiently, and the correctness follows from the correctness of the AGM algorithm.
Let M̂ = 2⌈log M⌉. Let Sϕ and Tϕ be two n × n matrices of 8M̂-sample representations of

the polynomials in S(x) and T (x), respectively. That is, for each t, j ∈ [n] × [n], (Sϕ)t,j =
ϕS(x)t,j ,8M̂, and (Tϕ)t,j = ϕT (x)t,j ,8M̂. To compute Sϕ and Tϕ, for every entry in Sγ and Tγ

the algorithm computes the DFT of the entry in total O(Mn2 log M) time.
Next, the algorithm computes Pϕ = Sϕ · Tϕ, by executing an FMM algorithm on Sϕ and

Tϕ, where each multiplication and addition operation during the execution of the FMM
algorithm is performed on the 8M̂-sample representations of two polynomials, each with
degree at most 4M. Thus, at the end of the execution of the FMM algorithm, we have that
for each t, r ∈ [n] × [n], (Pϕ)t,r = ϕP (x)t,r,8M̂. Finally, for each t, r ∈ [n] × [n], the algorithm
computes the inverse DFT of (Pϕ)t,r to obtain (Pγ)t,r.

Computing Sϕ and Tϕ costs O(Mn2 log M) time. During the execution of the FMM
algorithm, each multiplication and addition is between two 8M̂-sample representations, which
costs O(M) time, for a total of O(Mnω) time for the FMM execution. Finally, computing
Pγ from Pϕ costs O(Mn2 log M) time. Thus, the total time cost for computing Pγ from Sγ

and Tγ is O(Mnω + Mn2 log M) time. In addition, the rest of the operations of the AGM
algorithm cost O(Mn2) time, for a total of O(Mnω + Mn2 log M) time. ◀
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