Removing the log Factor from (min*,* **+)-Products on Bounded Range Integer Matrices**

 Divir Fried D

Bar-Ilan University, Ramat-Gan, Israel

Tsvi Kopelowitz \boxtimes Bar-Ilan University, Ramat-Gan, Israel

 E lv Porat $\mathbf{\Theta}$ Bar-Ilan University, Ramat-Gan, Israel

Abstract

We revisit the problem of multiplying two square matrices over the (min*,* +) semi-ring, where all entries are integers from a bounded range $[-M : M] \cup \{\infty\}$. The current state of the art for this problem is a simple *O*(M*n ω* log M) time algorithm by Alon, Galil and Margalit [JCSS'97], where *ω* is the exponent in the runtime of the fastest matrix multiplication (FMM) algorithm. We design a new simple algorithm whose runtime is $O(Mn^{\omega} + Mn^2 \log M)$, thereby removing the log M factor in the runtime if $\omega > 2$ or if $n^{\omega} = \Omega(n^2 \log n)$.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases FMM, (min*,* +)-product, FFT

Digital Object Identifier [10.4230/LIPIcs.ESA.2024.57](https://doi.org/10.4230/LIPIcs.ESA.2024.57)

Funding Supported by ISF grant no. 1926/19, by a BSF grant 2018364, and by an ERC grant MPM under the EU's Horizon 2020 Research and Innovation Programme (grant no. 683064).

1 Introduction

One of the most fundamental algorithmic tasks is to compute the product of two matrices. In particular, the classic problem of matrix multiplication on two *n* by *n* matrices over a ring has been researched for decades $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$ $[1, 8, 10, 15, 16, 21, 27]$. Let ω be the exponent of *n* in the fastest matrix multiplication (FMM) algorithm (that is, the runtime is $O(n^{\omega})$). The current best upper bound on ω was recently given by [\[27\]](#page-5-0) who showed that $\omega < 2.37156$. On the lower bound front, it is straightforward to see that $2 \leq \omega$. Raz [\[18\]](#page-4-5) showed that any matrix multiplication algorithm in bounded coefficient arithmetic circuits requires at least $\Omega(n^2 \log n)$ time, implying that $\omega > 2 + o(1)$.

In addition to the classic matrix multiplication problem, the algorithmic community has also focused on several other important definitions of matrix products, including (min *,*+) product, (max*,* min)-Product, Dominance-Product, Witness-Product and more (see [\[3,](#page-3-1) [9,](#page-4-6) [17,](#page-4-7) [19,](#page-4-8) [23\]](#page-5-1)). The focus of this paper is on the (min *,*+)-product.

(min *,***+)-product**

© Dvir Fried, Tsvi Kopelowitz, and Ely Porat;

licensed under Creative Commons License CC-BY 4.0

For a matrix *A*, we denote by $A_{i,j}$ (or sometimes by $(A)_{i,j}$) the entry of *A* at the *i*th row and *j*th column. In the (min, +)-product problem, the input is two $n \times n$ matrices *S* and *T*, and the goal is to compute an $n \times n$ matrix *P* where $P_{t,r} = \min_{1 \leq j \leq n} \{S_{t,j} + T_{j,r}\}.$ The (min *,*+)-product has strong connections with the all pairs shortest path (APSP) problem, and various other algorithmic problems that have efficient dynamic programming solutions $([4, 12, 22]).$ $([4, 12, 22]).$ $([4, 12, 22]).$ $([4, 12, 22]).$ $([4, 12, 22]).$

Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 57; pp. 57:1–57:6 [Leibniz International Proceedings in Informatics](https://www.dagstuhl.de/lipics/)

[Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany](https://www.dagstuhl.de)

57:2 An Improved (Min,+)-Products on Bounded Range Matrices

The trivial algorithm for solving the $(\min, +)$ -product problem runs in $O(n^3)$ time. The current fastest algorithm by Williams [\[24\]](#page-5-2) runs in $\frac{n^3}{2000}$ $\frac{n^3}{2^{\Omega(\log n)^{1/2}}}$ time. We remark that reducing the 3 term in the exponent of *n* in the runtime would refute the APSP conjecture [\[25\]](#page-5-3). Thus, several papers have focused on computing the (min *,*+)-product for special families of input matrices [\[2,](#page-3-3) [4,](#page-3-2) [5,](#page-4-11) [6,](#page-4-12) [13,](#page-4-13) [14,](#page-4-14) [26\]](#page-5-4).

In particular, Galil and Margalit [\[13,](#page-4-13) [14\]](#page-4-14) considered the (min *,*+)-product problem over a bounded range where each entry in the input matrices is either ∞ or an integer between $-M$ and M, for some integer parameter M. The current fastest algorithm for the bounded range (min, +)-product is given by Alon, Galil and Margalit [\[2\]](#page-3-3) with a runtime of $O(\mathrm{M}n^{\omega} \log M)$. Throughout this paper, we refer to the algorithm of [\[2\]](#page-3-3) as the AGM algorithm.

In this paper we essentially remove the log M term from the runtime of the AGM algorithm and prove the following theorem.

▶ **Theorem 1.** *There exists an algorithm for the bounded range* (min *,*+)*-product problem whose runtime is* $O(\text{M}n^{\omega} + \text{M}n^2 \log M)$ *.*

Since we may assume that $M \leq n^{3-\omega} < n$ (as otherwise the naïve algorithm is faster), if $\omega > 2$ or $n^{\omega} = \Omega(n^2 \log n)$ (which is true for bounded coefficient arithmetic circuits [\[18\]](#page-4-5)), we conclude that the runtime is $O(Mn^{\omega})$.

For some direct applications, our new algorithm improves the runtimes of the algorithms of Shoshan and Zwick [\[20\]](#page-4-15) (after being adjusted by [\[11\]](#page-4-16)), Chan, Vassilevska-Williams and Xu [\[8\]](#page-4-0) for undirected graphs, and Zwick [\[28\]](#page-5-5) for the APSP problem on undirected graphs, where the edge weights are integers in the range {1*, ...,* M}.

2 Polynomials and FFT

The description of our algorithm relies on understanding the basic flow of the FFT based algorithm [\[7\]](#page-4-17) for multiplying two polynomials. Thus, we begin with an overview of the FFT algorithm, with some notation that will assist in proving Theorem [1.](#page-1-0)

The FFT algorithm

For a polynomial $A(x) = \sum_{j=0}^{k} a_j x^j$, the degree of $A(x)$ is the largest power of *x* whose coefficient in $A(x)$ is non-zero. For a natural ℓ , the ℓ *roots of unity* are the (complex) numbers ω_{ℓ}^{t} for integers $0 \leq t < \ell$, where^{[1](#page-1-1)} $\omega_{\ell} = \exp\left(\frac{-2\pi i}{\ell}\right)$.

The FFT algorithm receives as input a polynomial *A* of degree *k* and an integer $\ell > k$ that is a power of 2, and performs a discrete Fourier transform (DFT) on the coefficients of A, which produces the evaluation of *A* at the *ℓ* roots of unity.

Formally, let $\gamma_A = (a_0, \ldots, a_k)$ be the *coefficient* representation of *A*, and for $\ell > k$ that is a power of 2, let $\phi_{A,\ell} = (A(\omega_{\ell}^0), \ldots, A(\omega_{\ell}^{\ell-1}))$ be the ℓ -sample representation of *A*, which is the evaluation of *A* at the ℓ roots of unity. The DFT on γ_A is $\phi_{A,\ell}$.

The FFT algorithm is also used to invert the DFT^{[2](#page-1-2)}, so that given $\phi_{A,\ell}$ where ℓ is a power of 2 and the degree of *A* is $k < \ell$, the inversion returns γ_A .

The cost of the FFT algorithm for both computing and inverting the DFT is $O(\ell \log \ell)$ time ([\[7\]](#page-4-17)).

¹ Recall that $i^2 = -1$.

Since the DFT on γ_A can be expressed as multiplying a Vandermonde matrix with γ_A , and since the Vandermonde matrix is invertible, the DFT is also invertible.

D. Fried, T. Kopelowitz, and E. Porat 57:3 57:3

Operations on *ℓ***-sample representations**

Let $\ell > 0$ be a power of 2. Let *A* and *B* be two polynomials of degrees k_A and k_B , respectively, such that $\max(k_A, k_B) < l$. Let $\phi_{A,\ell}$ and $\phi_{B,\ell}$ be the *l*-sample representations of *A* and *B*, respectively.

The pointwise addition of $\phi_{A,\ell}$ and $\phi_{B,\ell}$ is $(A(\omega_\ell^0)+B(\omega_\ell^0),\ldots,A(\omega_\ell^{\ell-1})+B(\omega_\ell^{\ell-1}))$. Since the degree of $A(x) + B(x)$ is max $(k_A, k_B) < l$, then the pointwise addition of $\phi_{A,\ell}$ and $\phi_{B,\ell}$ is $\phi_{A+B,\ell}$. The pointwise multiplication of $\phi_{A,\ell}$ and $\phi_{B,\ell}$ is $(A(\omega_{\ell}^0) \cdot B(\omega_{\ell}^0), \ldots, A(\omega_{\ell}^{\ell-1}) \cdot$ $B(\omega_{\ell}^{\ell-1})$. Since the degree of $A(x) \cdot B(x)$ is $k_A + k_B$, if $k_A + k_B < \ell$ then the pointwise multiplication of $\phi_{A,\ell}$ and $\phi_{B,\ell}$ is $\phi_{A\cdot B,\ell}$

Given $\phi_{A,\ell}$ and $\phi_{B,\ell}$, both pointwise addition and pointwise multiplication of $\phi_{A,\ell}$ and $\phi_{B,\ell}$ can be trivially computed in $O(\ell)$ time.

Multiplying polynomials using the FFT algorithm

Let $A(x)$ and $B(x)$ be two polynomials, each with degree at most *k*, represented by γ_A and *γ*_{*B*}, respectively. Our goal is to return *γC* where $C(x) = A(x) \cdot B(x)$. Notice that the degree of *C* is at most 2*k*.

For $\ell > 2k$ that is a power of 2, the algorithm applies the FFT algorithm to compute the DFTs on γ_A and γ_B , which produces $\phi_{A,\ell}$ and $\phi_{B,\ell}$. Next, since $\phi_{C,\ell}$ is the pointwise multiplication of $\phi_{A,\ell}$ and $\phi_{B,\ell}$, the algorithm computes $\phi_{C,\ell}$ in $O(\ell)$ time. Finally, the algorithm uses the FFT algorithm to compute the inverse DFT on $\phi_{C,\ell}$, and returns γ_C . The total runtime is $O(\ell \log \ell)$.

3 (min *,***+)-product With Bounded Range**

The AGM algorithm

We describe the AGM algorithm, following along the lines of the description given in [\[5\]](#page-4-11). The AGM algorithm constructs two monomial matrices $S(x)$, $T(x)$ from S , T as follows:

For each $t, j \in [n] \times [n]$ and for each $j, r \in [n] \times [n]$,

$$
S(x)_{t,j} = \begin{cases} 0 & \text{if } S_{t,j} = \infty, \\ x^{\mathbf{M} - S_{t,j}} & \text{otherwise} \end{cases} \qquad T(x)_{j,r} = \begin{cases} 0 & \text{if } T_{j,r} = \infty, \\ x^{\mathbf{M} - T_{j,r}} & \text{otherwise} \end{cases}
$$

Notice that the entries in both $S(x)$ and $T(x)$ are all monomials of degree at most 2M. Let S_γ and T_γ be two $n \times n$ matrices where for each $t, j \in [n] \times [n]$ we have $(S_\gamma)_{t,j} = \gamma_{S(x)_{t,j}}$ and for each $j, r \in [n] \times [n]$ we have $(T_\gamma)_{j,r} = \gamma_{T(x)_{j,r}}$. Notice that computing both S_γ and T_{γ} from *S* and *T* costs $O(n^2M)$ time in a trivial manner.

The AGM algorithm computes $P_{\gamma} = S_{\gamma} \cdot T_{\gamma}$ using a single application of an FMM algorithm over the matrices S_γ and T_γ , where each multiplication in the FMM algorithm is executed by applying the FFT-based polynomial multiplication algorithm between the coefficient representation of two polynomials. Notice that the output of each multiplication or addition during the execution of the FMM algorithm is a coefficient representation of a polynomial of degree at most 4M (see [\[2\]](#page-3-3)). Moreover, if $P(x) = S(x) \cdot T(x)$ then for each $t, r \in [n] \times [n]$ we have that $(P_{\gamma})_{t,r} = \gamma_{P(x)_{t,r}}$.

Let $k_{t,r}$ be the degree of $P(x)_{t,r}$. The following lemma enables a method for extracting *P*(*x*) from P_γ .

$$
\blacktriangleright \textbf{Lemma 2 ([2]).} \text{ If } P(x)_{t,r} = 0 \text{ then } P_{t,r} = \infty. \text{ Otherwise, } P_{t,r} = 2M - k_{t,r}.
$$

57:4 An Improved (Min,+)-Products on Bounded Range Matrices

Proof. If $P(x)_{t,r} = 0$, then for each $j \in [n]$ it holds that $S(x)_{t,j} = 0 \vee T(x)_{j,r} = 0$, which implies that $S_{t,j} = \infty \vee T_{j,r} = \infty$, and so $P_{t,r} = \min_{1 \leq j \leq n} \{S_{t,j} + T_{j,r}\} = \infty$.

Otherwise, notice that for each $t, r \in [n] \times [n]$ we have $P(x)_{t,r} = \sum_{j \in [n]} x^{2M-(S_{t,j}+T_{j,r})}$. $\text{Let } j^* = \arg \min \{ S_{t,j} + T_{j,r} \} = \arg \max \{ - (S_{t,j} + T_{j,r}) \} = \arg \max \{ 2M - (\dot{S}_{t,j} + T_{j,r}) \}.$ Thus, $k_{t,r} = \max\{2M - (S_{t,j} + T_{j,r})\} = 2M - (S_{t,j^*} + T_{j^*,r}) = 2M - P_{t,r}$, and so $P_{t,r} = 2M - k_{t,r}$.

Following Lemma [2,](#page-2-0) for each $t, r \in [n] \times [n]$, the algorithm scans $(P_{\gamma})_{t,r}$ to deduce whether $P(x)_{t,r} = 0$, and, if so, set $P_{t,r} = \infty$. Otherwise, the algorithm computes $k_{t,r}$ and sets $P_{t,r} = 2M - k_{t,r}.$

The construction of S_γ and T_γ from *S* and *T* costs $O(n^2M)$ time, and the construction of *P* from P_γ costs $O(n^2M)$ time. The execution of the FMM algorithm on S_γ and T_γ costs $O(n^{\omega})$ multiplication or addition operations on 4M-sample representations of polynomials, and each such operation costs at most $O(M \log M)$ time, so the total cost is $O(n^{\omega}M \log M)$ time.

3.1 Proof of Theorem [1](#page-1-0)

Proof. The algorithm is obtained by replacing the computation of P_γ from S_γ and T_γ in the AGM algorithm with a more efficient procedure. Thus, we describe how to compute *P^γ* more efficiently, and the correctness follows from the correctness of the AGM algorithm.

Let $\hat{M} = 2^{\lceil \log M \rceil}$. Let S_{ϕ} and T_{ϕ} be two $n \times n$ matrices of 8 \hat{M} -sample representations of the polynomials in *S*(*x*) and *T*(*x*), respectively. That is, for each $t, j \in [n] \times [n]$, $(S_{\phi})_{t,j} =$ $\phi_{S(x)_{t,j},8\hat{M}}$, and $(T_{\phi})_{t,j} = \phi_{T(x)_{t,j},8\hat{M}}$. To compute S_{ϕ} and T_{ϕ} , for every entry in S_{γ} and T_{γ} the algorithm computes the DFT of the entry in total $O(Mn^2 \log M)$ time.

Next, the algorithm computes $P_{\phi} = S_{\phi} \cdot T_{\phi}$, by executing an FMM algorithm on S_{ϕ} and *Tϕ*, where each multiplication and addition operation during the execution of the FMM algorithm is performed on the $8\tilde{M}$ -sample representations of two polynomials, each with degree at most 4M. Thus, at the end of the execution of the FMM algorithm, we have that for each $t, r \in [n] \times [n]$, $(P_{\phi})_{t,r} = \phi_{P(x)_{t,r}, s\hat{M}}$. Finally, for each $t, r \in [n] \times [n]$, the algorithm computes the inverse DFT of $(P_{\phi})_{t,r}$ to obtain $(P_{\gamma})_{t,r}$.

Computing S_{ϕ} and T_{ϕ} costs $O(Mn^2 \log M)$ time. During the execution of the FMM algorithm, each multiplication and addition is between two $8\hat{M}$ -sample representations, which costs $O(M)$ time, for a total of $O(Mn^{\omega})$ time for the FMM execution. Finally, computing P_γ from P_ϕ costs $O(Mn^2 \log M)$ time. Thus, the total time cost for computing P_γ from S_γ and T_{γ} is $O(Mn^{\omega} + Mn^2 \log M)$ time. In addition, the rest of the operations of the AGM algorithm cost $O(Mn^2)$ time, for a total of $O(Mn^{\omega} + Mn^2 \log M)$ time.

1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Dániel Marx, editor, *SODA 2021*, pages 522–539. SIAM, 2021. [doi:](https://doi.org/10.1137/1.9781611976465.32) [10.1137/1.9781611976465.32](https://doi.org/10.1137/1.9781611976465.32).

References

² Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path problem. *J. Comput. Syst. Sci.*, 54(2):255–262, 1997. [doi:10.1006/jcss.1997.1388](https://doi.org/10.1006/jcss.1997.1388).

³ Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor. Witnesses for boolean matrix multiplication and for shortest paths. In *33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992*, pages 417–426. IEEE Computer Society, 1992. [doi:10.1109/SFCS.1992.267748](https://doi.org/10.1109/SFCS.1992.267748).

⁴ Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. Truly subcubic algorithms for language edit distance and RNA folding via fast bounded-difference min-plus product. *SIAM J. Comput.*, 48(2):481–512, 2019. [doi:10.1137/17M112720X](https://doi.org/10.1137/17M112720X).

D. Fried, T. Kopelowitz, and E. Porat 57:5 57:5

- **5** Shucheng Chi, Ran Duan, and Tianle Xie. Faster algorithms for bounded-difference min-plus product. In Joseph (Seffi) Naor and Niv Buchbinder, editors, *Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022*, pages 1435–1447. SIAM, 2022. [doi:10.1137/1.9781611977073.60](https://doi.org/10.1137/1.9781611977073.60).
- **6** Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-plus product for monotone instances. In Stefano Leonardi and Anupam Gupta, editors, *STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, 2022*, pages 1529–1542. ACM, 2022. [doi:10.1145/3519935.3520057](https://doi.org/10.1145/3519935.3520057).
- **7** James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series. *Mathematics of computation*, 19(90):297–301, 1965.
- **8** Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. *J. Symb. Comput.*, 9(3):251–280, 1990. [doi:10.1016/S0747-7171\(08\)80013-2](https://doi.org/10.1016/S0747-7171(08)80013-2).
- **9** Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication and bottleneck shortest paths. In Claire Mathieu, editor, *Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009*, pages 384–391. SIAM, 2009. [doi:10.1137/1.9781611973068.43](https://doi.org/10.1137/1.9781611973068.43).
- **10** Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In *64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023*, pages 2129–2138. IEEE, 2023. [doi:](https://doi.org/10.1109/FOCS57990.2023.00130) [10.1109/FOCS57990.2023.00130](https://doi.org/10.1109/FOCS57990.2023.00130).
- **11** Pavlos Eirinakis, Matthew D. Williamson, and K. Subramani. On the shoshan-zwick algorithm for the all-pairs shortest path problem. *J. Graph Algorithms Appl.*, 21(2):177–181, 2017. [doi:10.7155/JGAA.00410](https://doi.org/10.7155/JGAA.00410).
- **12** Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, and Tatiana Starikovskaya. An improved algorithm for the k-dyck edit distance problem. In Joseph (Seffi) Naor and Niv Buchbinder, editors, *Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022*, pages 3650–3669. SIAM, 2022. [doi:10.1137/1.9781611977073.144](https://doi.org/10.1137/1.9781611977073.144).
- **13** Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer length edges. *Inf. Comput.*, 134(2):103–139, 1997. [doi:10.1006/inco.1997.2620](https://doi.org/10.1006/inco.1997.2620).
- **14** Zvi Galil and Oded Margalit. All pairs shortest paths for graphs with small integer length edges. *J. Comput. Syst. Sci.*, 54(2):243–254, 1997. [doi:10.1006/jcss.1997.1385](https://doi.org/10.1006/jcss.1997.1385).
- **15** François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima, Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, *International Symposium on Symbolic and Algebraic Computation, ISSAC '14, Kobe, Japan, July 23-25, 2014*, pages 296–303. ACM, 2014. [doi:10.1145/2608628.2608664](https://doi.org/10.1145/2608628.2608664).
- **16** Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers of the Coppersmith-Winograd tensor. In *SODA 2018*, pages 1029–1046, 2018. [doi:](https://doi.org/10.1137/1.9781611975031.67) [10.1137/1.9781611975031.67](https://doi.org/10.1137/1.9781611975031.67).
- **17** Jirí Matousek. Computing dominances in eˆn. *Inf. Process. Lett.*, 38(5):277–278, 1991. [doi:10.1016/0020-0190\(91\)90071-O](https://doi.org/10.1016/0020-0190(91)90071-O).
- **18** Ran Raz. On the complexity of matrix product. *SIAM J. Comput.*, 32(5):1356–1369, 2003. [doi:10.1137/S0097539702402147](https://doi.org/10.1137/S0097539702402147).
- **19** Asaf Shapira, Raphael Yuster, and Uri Zwick. All-pairs bottleneck paths in vertex weighted graphs. *Algorithmica*, 59(4):621–633, 2011. [doi:10.1007/s00453-009-9328-x](https://doi.org/10.1007/s00453-009-9328-x).
- **20** Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights. In *40th Annual Symposium on Foundations of Computer Science, FOCS '99, 17- 18 October, 1999, New York, NY, USA*, pages 605–615. IEEE Computer Society, 1999. [doi:10.1109/SFFCS.1999.814635](https://doi.org/10.1109/SFFCS.1999.814635).
- **21** Volker Strassen. Gaussian elimination is not optimal. *Matematika*, 13(5):354–356, 1969.
- **22** Leslie G. Valiant. General context-free recognition in less than cubic time. *J. Comput. Syst. Sci.*, 10(2):308–315, 1975. [doi:10.1016/S0022-0000\(75\)80046-8](https://doi.org/10.1016/S0022-0000(75)80046-8).

57:6 An Improved (Min,+)-Products on Bounded Range Matrices

- **23** Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All pairs bottleneck paths and max-min matrix products in truly subcubic time. *Theory Comput.*, 5(1):173–189, 2009. [doi:10.4086/toc.2009.v005a009](https://doi.org/10.4086/toc.2009.v005a009).
- **24** R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. *SIAM J. Comput.*, 47(5):1965–1985, 2018. [doi:10.1137/15M1024524](https://doi.org/10.1137/15M1024524).
- **25** Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path, matrix, and triangle problems. *J. ACM*, 65(5):27:1–27:38, 2018. [doi:10.1145/3186893](https://doi.org/10.1145/3186893).
- **26** Virginia Vassilevska Williams and Yinzhan Xu. Truly subcubic min-plus product for less structured matrices, with applications. In *SODA 2020*, pages 12–29. SIAM, 2020. [doi:](https://doi.org/10.1137/1.9781611975994.2) [10.1137/1.9781611975994.2](https://doi.org/10.1137/1.9781611975994.2).
- **27** Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix multiplication: from alpha to omega, 2023. [arXiv:2307.07970](https://arxiv.org/abs/2307.07970).
- **28** Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. *CoRR*, cs.DS/0008011, 2000. URL: <https://arxiv.org/abs/cs/0008011>.