
Removing the log Factor from (min, +)-Products
on Bounded Range Integer Matrices
Dvir Fried #

Bar-Ilan University, Ramat-Gan, Israel

Tsvi Kopelowitz #

Bar-Ilan University, Ramat-Gan, Israel

Ely Porat #

Bar-Ilan University, Ramat-Gan, Israel

Abstract
We revisit the problem of multiplying two square matrices over the (min, +) semi-ring, where all
entries are integers from a bounded range [−M : M] ∪ {∞}. The current state of the art for this
problem is a simple O(Mnω log M) time algorithm by Alon, Galil and Margalit [JCSS’97], where ω

is the exponent in the runtime of the fastest matrix multiplication (FMM) algorithm. We design a
new simple algorithm whose runtime is O(Mnω + Mn2 log M), thereby removing the log M factor in
the runtime if ω > 2 or if nω = Ω(n2 log n).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases FMM, (min, +)-product, FFT

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.57

Funding Supported by ISF grant no. 1926/19, by a BSF grant 2018364, and by an ERC grant MPM
under the EU’s Horizon 2020 Research and Innovation Programme (grant no. 683064).

1 Introduction

One of the most fundamental algorithmic tasks is to compute the product of two matrices.
In particular, the classic problem of matrix multiplication on two n by n matrices over a
ring has been researched for decades [1, 8, 10, 15, 16, 21, 27]. Let ω be the exponent of n

in the fastest matrix multiplication (FMM) algorithm (that is, the runtime is O(nω)). The
current best upper bound on ω was recently given by [27] who showed that ω < 2.37156. On
the lower bound front, it is straightforward to see that 2 ≤ ω. Raz [18] showed that any
matrix multiplication algorithm in bounded coefficient arithmetic circuits requires at least
Ω(n2 log n) time, implying that ω > 2 + o(1).

In addition to the classic matrix multiplication problem, the algorithmic community has
also focused on several other important definitions of matrix products, including (min ,+)-
product, (max, min)-Product, Dominance-Product, Witness-Product and more (see [3, 9, 17,
19, 23]). The focus of this paper is on the (min ,+)-product.

(min ,+)-product

For a matrix A, we denote by Ai,j (or sometimes by (A)i,j) the entry of A at the ith row
and jth column. In the (min ,+)-product problem, the input is two n × n matrices S and
T , and the goal is to compute an n × n matrix P where Pt,r = min1≤j≤n{St,j + Tj,r}. The
(min ,+)-product has strong connections with the all pairs shortest path (APSP) problem,
and various other algorithmic problems that have efficient dynamic programming solutions
([4, 12, 22]).

© Dvir Fried, Tsvi Kopelowitz, and Ely Porat;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 57; pp. 57:1–57:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:friedvir1@gmail.com
https://orcid.org/0000-0003-1859-8082
mailto:kopelot.biu@gmail.com
https://orcid.org/0000-0002-3525-8314
mailto:porately@cs.biu.ac.il
https://orcid.org/0000-0001-6912-5766
https://doi.org/10.4230/LIPIcs.ESA.2024.57
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 An Improved (Min,+)-Products on Bounded Range Matrices

The trivial algorithm for solving the (min ,+)-product problem runs in O(n3) time. The
current fastest algorithm by Williams [24] runs in n3

2Ω(log n)1/2 time. We remark that reducing
the 3 term in the exponent of n in the runtime would refute the APSP conjecture [25]. Thus,
several papers have focused on computing the (min ,+)-product for special families of input
matrices [2, 4, 5, 6, 13, 14, 26].

In particular, Galil and Margalit [13, 14] considered the (min ,+)-product problem over a
bounded range where each entry in the input matrices is either ∞ or an integer between −M
and M, for some integer parameter M. The current fastest algorithm for the bounded range
(min ,+)-product is given by Alon, Galil and Margalit [2] with a runtime of O(Mnω log M).
Throughout this paper, we refer to the algorithm of [2] as the AGM algorithm.

In this paper we essentially remove the log M term from the runtime of the AGM algorithm
and prove the following theorem.

▶ Theorem 1. There exists an algorithm for the bounded range (min ,+)-product problem
whose runtime is O(Mnω + Mn2 log M).

Since we may assume that M ≤ n3−ω < n (as otherwise the naïve algorithm is faster), if
ω > 2 or nω = Ω(n2 log n) (which is true for bounded coefficient arithmetic circuits [18]), we
conclude that the runtime is O(Mnω).

For some direct applications, our new algorithm improves the runtimes of the algorithms
of Shoshan and Zwick [20] (after being adjusted by [11]), Chan, Vassilevska-Williams and
Xu [8] for undirected graphs, and Zwick [28] for the APSP problem on undirected graphs,
where the edge weights are integers in the range {1, ..., M}.

2 Polynomials and FFT

The description of our algorithm relies on understanding the basic flow of the FFT based
algorithm [7] for multiplying two polynomials. Thus, we begin with an overview of the FFT
algorithm, with some notation that will assist in proving Theorem 1.

The FFT algorithm

For a polynomial A(x) =
∑k

j=0 ajxj , the degree of A(x) is the largest power of x whose
coefficient in A(x) is non-zero. For a natural ℓ, the ℓ roots of unity are the (complex) numbers
ωℓ

t for integers 0 ≤ t < ℓ, where1 ωℓ = exp
(−2πi

ℓ

)
.

The FFT algorithm receives as input a polynomial A of degree k and an integer ℓ > k

that is a power of 2, and performs a discrete Fourier transform (DFT) on the coefficients of
A, which produces the evaluation of A at the ℓ roots of unity.

Formally, let γA = (a0, . . . , ak) be the coefficient representation of A, and for ℓ > k that
is a power of 2, let ϕA,ℓ = (A(ω0

ℓ), . . . , A(ωℓ−1
ℓ)) be the ℓ-sample representation of A, which

is the evaluation of A at the ℓ roots of unity. The DFT on γA is ϕA,ℓ.
The FFT algorithm is also used to invert the DFT2, so that given ϕA,ℓ where ℓ is a power

of 2 and the degree of A is k < ℓ, the inversion returns γA.
The cost of the FFT algorithm for both computing and inverting the DFT is O(ℓ log ℓ)

time ([7]).

1 Recall that i2 = −1.
2 Since the DFT on γA can be expressed as multiplying a Vandermonde matrix with γA, and since the

Vandermonde matrix is invertible, the DFT is also invertible.

D. Fried, T. Kopelowitz, and E. Porat 57:3

Operations on ℓ-sample representations

Let ℓ > 0 be a power of 2. Let A and B be two polynomials of degrees kA and kB , respectively,
such that max(kA, kB) < ℓ. Let ϕA,ℓ and ϕB,ℓ be the ℓ-sample representations of A and B,
respectively.

The pointwise addition of ϕA,ℓ and ϕB,ℓ is (A(ω0
ℓ)+B(ω0

ℓ), . . . , A(ωℓ−1
ℓ)+B(ωℓ−1

ℓ)). Since
the degree of A(x) + B(x) is max(kA, kB) < ℓ, then the pointwise addition of ϕA,ℓ and ϕB,ℓ

is ϕA+B,ℓ. The pointwise multiplication of ϕA,ℓ and ϕB,ℓ is (A(ω0
ℓ) · B(ω0

ℓ), . . . , A(ωℓ−1
ℓ) ·

B(ωℓ−1
ℓ)). Since the degree of A(x) · B(x) is kA + kB, if kA + kB < ℓ then the pointwise

multiplication of ϕA,ℓ and ϕB,ℓ is ϕA·B,ℓ

Given ϕA,ℓ and ϕB,ℓ, both pointwise addition and pointwise multiplication of ϕA,ℓ and
ϕB,ℓ can be trivially computed in O(ℓ) time.

Multiplying polynomials using the FFT algorithm

Let A(x) and B(x) be two polynomials, each with degree at most k, represented by γA and
γB , respectively. Our goal is to return γC where C(x) = A(x) · B(x). Notice that the degree
of C is at most 2k.

For ℓ > 2k that is a power of 2, the algorithm applies the FFT algorithm to compute
the DFTs on γA and γB, which produces ϕA,ℓ and ϕB,ℓ. Next, since ϕC,ℓ is the pointwise
multiplication of ϕA,ℓ and ϕB,ℓ, the algorithm computes ϕC,ℓ in O(ℓ) time. Finally, the
algorithm uses the FFT algorithm to compute the inverse DFT on ϕC,ℓ, and returns γC .
The total runtime is O(ℓ log ℓ).

3 (min ,+)-product With Bounded Range

The AGM algorithm

We describe the AGM algorithm, following along the lines of the description given in [5].
The AGM algorithm constructs two monomial matrices S(x), T (x) from S, T as follows:

For each t, j ∈ [n] × [n] and for each j, r ∈ [n] × [n],

S(x)t,j =
{

0 if St,j = ∞,

xM−St,j otherwise
T (x)j,r =

{
0 if Tj,r = ∞,

xM−Tj,r otherwise

Notice that the entries in both S(x) and T (x) are all monomials of degree at most 2M.
Let Sγ and Tγ be two n × n matrices where for each t, j ∈ [n] × [n] we have (Sγ)t,j = γS(x)t,j

,
and for each j, r ∈ [n] × [n] we have (Tγ)j,r = γT (x)j,r

. Notice that computing both Sγ and
Tγ from S and T costs O(n2M) time in a trivial manner.

The AGM algorithm computes Pγ = Sγ · Tγ using a single application of an FMM
algorithm over the matrices Sγ and Tγ , where each multiplication in the FMM algorithm
is executed by applying the FFT-based polynomial multiplication algorithm between the
coefficient representation of two polynomials. Notice that the output of each multiplication
or addition during the execution of the FMM algorithm is a coefficient representation of a
polynomial of degree at most 4M (see [2]). Moreover, if P (x) = S(x) · T (x) then for each
t, r ∈ [n] × [n] we have that (Pγ)t,r = γP (x)t,r

.
Let kt,r be the degree of P (x)t,r. The following lemma enables a method for extracting

P (x) from Pγ .

▶ Lemma 2 ([2]). If P (x)t,r = 0 then Pt,r = ∞. Otherwise, Pt,r = 2M − kt,r.

ESA 2024

57:4 An Improved (Min,+)-Products on Bounded Range Matrices

Proof. If P (x)t,r = 0, then for each j ∈ [n] it holds that S(x)t,j = 0 ∨ T (x)j,r = 0, which
implies that St,j = ∞ ∨ Tj,r = ∞, and so Pt,r = min1≤j≤n{St,j + Tj,r} = ∞.

Otherwise, notice that for each t, r ∈ [n] × [n] we have P (x)t,r =
∑

j∈[n] x2M−(St,j+Tj,r).
Let j∗ = arg min{St,j +Tj,r} = arg max{−(St,j +Tj,r)} = arg max{2M−(St,j +Tj,r)}. Thus,
kt,r = max{2M−(St,j +Tj,r)} = 2M−(St,j∗ +Tj∗,r) = 2M−Pt,r, and so Pt,r = 2M−kt,r. ◀

Following Lemma 2, for each t, r ∈ [n]× [n], the algorithm scans (Pγ)t,r to deduce whether
P (x)t,r = 0, and, if so, set Pt,r = ∞. Otherwise, the algorithm computes kt,r and sets
Pt,r = 2M − kt,r.

The construction of Sγ and Tγ from S and T costs O(n2M) time, and the construction
of P from Pγ costs O(n2M) time. The execution of the FMM algorithm on Sγ and Tγ costs
O(nω) multiplication or addition operations on 4M-sample representations of polynomials,
and each such operation costs at most O(M log M) time, so the total cost is O(nωM log M)
time.

3.1 Proof of Theorem 1
Proof. The algorithm is obtained by replacing the computation of Pγ from Sγ and Tγ in
the AGM algorithm with a more efficient procedure. Thus, we describe how to compute Pγ

more efficiently, and the correctness follows from the correctness of the AGM algorithm.
Let M̂ = 2⌈log M⌉. Let Sϕ and Tϕ be two n × n matrices of 8M̂-sample representations of

the polynomials in S(x) and T (x), respectively. That is, for each t, j ∈ [n] × [n], (Sϕ)t,j =
ϕS(x)t,j ,8M̂, and (Tϕ)t,j = ϕT (x)t,j ,8M̂. To compute Sϕ and Tϕ, for every entry in Sγ and Tγ

the algorithm computes the DFT of the entry in total O(Mn2 log M) time.
Next, the algorithm computes Pϕ = Sϕ · Tϕ, by executing an FMM algorithm on Sϕ and

Tϕ, where each multiplication and addition operation during the execution of the FMM
algorithm is performed on the 8M̂-sample representations of two polynomials, each with
degree at most 4M. Thus, at the end of the execution of the FMM algorithm, we have that
for each t, r ∈ [n] × [n], (Pϕ)t,r = ϕP (x)t,r,8M̂. Finally, for each t, r ∈ [n] × [n], the algorithm
computes the inverse DFT of (Pϕ)t,r to obtain (Pγ)t,r.

Computing Sϕ and Tϕ costs O(Mn2 log M) time. During the execution of the FMM
algorithm, each multiplication and addition is between two 8M̂-sample representations, which
costs O(M) time, for a total of O(Mnω) time for the FMM execution. Finally, computing
Pγ from Pϕ costs O(Mn2 log M) time. Thus, the total time cost for computing Pγ from Sγ

and Tγ is O(Mnω + Mn2 log M) time. In addition, the rest of the operations of the AGM
algorithm cost O(Mn2) time, for a total of O(Mnω + Mn2 log M) time. ◀

References
1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Dániel Marx, editor, SODA 2021, pages 522–539. SIAM, 2021. doi:
10.1137/1.9781611976465.32.

2 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. J. Comput. Syst. Sci., 54(2):255–262, 1997. doi:10.1006/jcss.1997.1388.

3 Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor. Witnesses for boolean matrix multi-
plication and for shortest paths. In 33rd Annual Symposium on Foundations of Computer
Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 417–426. IEEE Computer
Society, 1992. doi:10.1109/SFCS.1992.267748.

4 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. Truly
subcubic algorithms for language edit distance and RNA folding via fast bounded-difference
min-plus product. SIAM J. Comput., 48(2):481–512, 2019. doi:10.1137/17M112720X.

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1006/jcss.1997.1388
https://doi.org/10.1109/SFCS.1992.267748
https://doi.org/10.1137/17M112720X

D. Fried, T. Kopelowitz, and E. Porat 57:5

5 Shucheng Chi, Ran Duan, and Tianle Xie. Faster algorithms for bounded-difference min-plus
product. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA,
USA, January 9 - 12, 2022, pages 1435–1447. SIAM, 2022. doi:10.1137/1.9781611977073.60.

6 Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-plus product for
monotone instances. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, 2022, pages 1529–1542. ACM, 2022.
doi:10.1145/3519935.3520057.

7 James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

8 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

9 Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication and bottleneck
shortest paths. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009,
pages 384–391. SIAM, 2009. doi:10.1137/1.9781611973068.43.

10 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 2129–2138. IEEE, 2023. doi:
10.1109/FOCS57990.2023.00130.

11 Pavlos Eirinakis, Matthew D. Williamson, and K. Subramani. On the shoshan-zwick algorithm
for the all-pairs shortest path problem. J. Graph Algorithms Appl., 21(2):177–181, 2017.
doi:10.7155/JGAA.00410.

12 Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, and Tatiana
Starikovskaya. An improved algorithm for the k-dyck edit distance problem. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022,
pages 3650–3669. SIAM, 2022. doi:10.1137/1.9781611977073.144.

13 Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer length
edges. Inf. Comput., 134(2):103–139, 1997. doi:10.1006/inco.1997.2620.

14 Zvi Galil and Oded Margalit. All pairs shortest paths for graphs with small integer length
edges. J. Comput. Syst. Sci., 54(2):243–254, 1997. doi:10.1006/jcss.1997.1385.

15 François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima,
Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages
296–303. ACM, 2014. doi:10.1145/2608628.2608664.

16 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the Coppersmith-Winograd tensor. In SODA 2018, pages 1029–1046, 2018. doi:
10.1137/1.9781611975031.67.

17 Jirí Matousek. Computing dominances in eˆn. Inf. Process. Lett., 38(5):277–278, 1991.
doi:10.1016/0020-0190(91)90071-O.

18 Ran Raz. On the complexity of matrix product. SIAM J. Comput., 32(5):1356–1369, 2003.
doi:10.1137/S0097539702402147.

19 Asaf Shapira, Raphael Yuster, and Uri Zwick. All-pairs bottleneck paths in vertex weighted
graphs. Algorithmica, 59(4):621–633, 2011. doi:10.1007/s00453-009-9328-x.

20 Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer
weights. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-
18 October, 1999, New York, NY, USA, pages 605–615. IEEE Computer Society, 1999.
doi:10.1109/SFFCS.1999.814635.

21 Volker Strassen. Gaussian elimination is not optimal. Matematika, 13(5):354–356, 1969.
22 Leslie G. Valiant. General context-free recognition in less than cubic time. J. Comput. Syst.

Sci., 10(2):308–315, 1975. doi:10.1016/S0022-0000(75)80046-8.

ESA 2024

https://doi.org/10.1137/1.9781611977073.60
https://doi.org/10.1145/3519935.3520057
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1137/1.9781611973068.43
https://doi.org/10.1109/FOCS57990.2023.00130
https://doi.org/10.1109/FOCS57990.2023.00130
https://doi.org/10.7155/JGAA.00410
https://doi.org/10.1137/1.9781611977073.144
https://doi.org/10.1006/inco.1997.2620
https://doi.org/10.1006/jcss.1997.1385
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1016/0020-0190(91)90071-O
https://doi.org/10.1137/S0097539702402147
https://doi.org/10.1007/s00453-009-9328-x
https://doi.org/10.1109/SFFCS.1999.814635
https://doi.org/10.1016/S0022-0000(75)80046-8

57:6 An Improved (Min,+)-Products on Bounded Range Matrices

23 Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All pairs bottleneck paths and
max-min matrix products in truly subcubic time. Theory Comput., 5(1):173–189, 2009.
doi:10.4086/toc.2009.v005a009.

24 R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. doi:10.1137/15M1024524.

25 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018. doi:10.1145/3186893.

26 Virginia Vassilevska Williams and Yinzhan Xu. Truly subcubic min-plus product for less
structured matrices, with applications. In SODA 2020, pages 12–29. SIAM, 2020. doi:
10.1137/1.9781611975994.2.

27 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega, 2023. arXiv:2307.07970.

28 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
CoRR, cs.DS/0008011, 2000. URL: https://arxiv.org/abs/cs/0008011.

https://doi.org/10.4086/toc.2009.v005a009
https://doi.org/10.1137/15M1024524
https://doi.org/10.1145/3186893
https://doi.org/10.1137/1.9781611975994.2
https://doi.org/10.1137/1.9781611975994.2
https://arxiv.org/abs/2307.07970
https://arxiv.org/abs/cs/0008011

	1 Introduction
	2 Polynomials and FFT
	3 (min,+)-product With Bounded Range
	3.1 Proof of Theorem 1

