
Finding Perfect Matchings in Bridgeless Cubic
Multigraphs Without Dynamic (2-)connectivity
Paweł Gawrychowski #

University of Wrocław, Poland

Mateusz Wasylkiewicz #

University of Wrocław, Poland

Abstract
Petersen’s theorem, one of the earliest results in graph theory, states that every bridgeless cubic
multigraph contains a perfect matching. While the original proof was neither constructive nor
algorithmic, Biedl, Bose, Demaine, and Lubiw [J. Algorithms 38(1)] showed how to implement a later
constructive proof by Frink in O(n log4 n) time using a fully dynamic 2-edge-connectivity structure.
Then, Diks and Stańczyk [SOFSEM 2010] described a faster approach that only needs a fully
dynamic connectivity structure and works in O(n log2 n) time. Both algorithms, while reasonable
simple, utilize non-trivial (2-edge-)connectivity structures. We show that this is not necessary, and
in fact a structure for maintaining a dynamic tree, e.g. link-cut trees, suffices to obtain a simple
O(n log n) time algorithm.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases perfect matching, cubic graphs, bridgeless graphs, link-cut tree

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.59

Related Version Previous Version: https://arxiv.org/abs/2405.03856v1

Funding Mateusz Wasylkiewicz: Partially supported by Polish National Science Center grant
2018/29/B/ST6/02633.

1 Introduction

Finding a maximum cardinality matching in a given graph is one of the fundamental
algorithmic problems in graph theory. For bipartite graphs, it can be seen as a special
case of the more general problem of finding a maximum flow, which immediately implies a
polynomial-time algorithm. Already in the early 70s, Hopcroft and Karp [17] obtained a
fast O(m

√
n) time algorithm for this problem, where m denotes the number of edges and n

the number of vertices. For general graphs, Edmonds [11] designed an algorithm working
in O(mn2) time, and in 1980 Micali and Vazirani [22] stated an O(m

√
n) time algorithm.

For dense graphs, a better complexity of O(nω), where ω is the exponent of n× n matrix
multiplication, has been achieved by Mucha and Sankowski [23]. For the case of sparse graphs,
i.e. m = O(n), a long and successful line of research based on applying continuous techniques
resulted in an m1+o(1) time algorithm by Chen et al. [7] for the bipartite case. However, there
was no further improvement for the general case, and the O(n1.5) time algorithm obtained
by applying the approach of Micali and Vazirani [22] remains unchallenged.

This naturally sparked interest in searching for natural classes of sparse graphs that admit
a faster algorithm. A natural candidate is a class of graphs that always contain a perfect
matching. One of the earliest results in graph theory attributed to Petersen [24], states that
every bridgeless cubic graph contains a perfect matching, where cubic means that the degree
of every vertex is exactly 3, while bridgeless means that it is not possible to remove a single
edge to disconnect the graph. In fact, the theorem is still true for a cubic multigraph with at
most two bridges, and from now on we will consider multigraphs, i.e. allow loops and parallel

© Paweł Gawrychowski and Mateusz Wasylkiewicz;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 59; pp. 59:1–59:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-6993-5440
mailto:mateusz.wasylkiewicz@cs.uni.wroc.pl
https://orcid.org/0000-0002-4198-5569
https://doi.org/10.4230/LIPIcs.ESA.2024.59
https://arxiv.org/abs/2405.03856v1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Finding Perfect Matchings in Bridgeless Cubic Multigraphs

edges. The original proof was very complicated and non-constructive, but Frink [12] provided
another approach that can be easily implemented to obtain a perfect matching in O(n2) time.
The high-level idea of this approach is to repeatedly apply one of the two possible reductions,
in each step choosing the one that maintains the invariant that the current multigraph is
bridgeless and cubic. Then, we revert the reductions one-by-one, which possibly requires
finding an alternating cycle to make sure that a particular edge does not belong to the
matching. Biedl, Bose, Demaine, and Lubiw [4] improved the time complexity to O(n log4 n)
thanks to two insights. First, we can employ a fully dynamic 2-edge-connectivity structure of
Holm, de Lichtenberg, and Thorup [15] to decide which reduction should be applied. Second,
finding an alternating cycle can be avoided by requiring that a chosen edge does not belong
to the matching. Diks and Stańczyk [9] further improved the complexity to O(n log2 n) time
by observing that in fact a fully dynamic connectivity structure suffices if we additionally
maintain a spanning tree of the current multigraph in a link-cut tree. By plugging in the
fully dynamic connectivity structure by Wulff-Nilsen [29], the complexity of their algorithm
can be further decreased to O(n log2 n/ log log n). Alternatively, at the expense of allowing
randomization and bit-tricks, plugging in the structure of Huang, Huang, Kopelowitz, Pettie,
and Thorup [18] results in expected O(n log n(log log n)2) running time.

Our contribution. The algorithms of Biedl, Bose, Demaine, and Lubiw [4] and Diks and
Stańczyk [9] can be seen as efficient implementations of Frink’s proof [12]. While both are
reasonably simple (see Section 4), they arguably hide some of their complexity in the fully
dynamic (2-edge-)connectivity structure. We show that in fact this can be avoided, and
present an implementation that only needs a structure for maintaining a dynamic tree, such
as a link-cut tree. Inspired by the idea of Holm, de Lichtenberg, and Thorup used in the fully
dynamic 2-edge-connectivity structure [15], we maintain a spanning tree T of the current
multigraph G. Further, for each edge e of T we maintain its detour edge, denoted cover(e),
with the property that e belongs to the unique path connecting the endpoints of cover(e)
in T . In other words, cover(e) is a witness for e not being a bridge of G. It turns out that
inspecting the detour edges for all edges removed during a reduction, and checking how their
endpoints are arranged in T , sufficies to determine which of the two possible reductions
maintains that G is bridgeless. We apply this reduction and then we update T and the detour
edges using newly added edges. This guarantees that the obtained graph is still bridgeless.
The whole reduction step can be implemented to run in O(log n) time using any structure
for maintaining a dynamic tree. This results in a simple and self-contained algorithm that
works in deterministic O(n log n) time without any bit-tricks.

Applications. Petersen’s theorem can be generalized to cubic multigraphs with at most two
bridges. Finding a perfect matching in such a multigraph can be easily reduced to finding a
perfect matching in a bridgeless cubic multigraph in linear time [4]. Hence, our algorithm
can be used for finding a perfect matching in a cubic multigraph with at most two bridges in
O(n log n) time. We note that generalizing our algorithm to arbitrary cubic graphs can be
difficult, as finding a perfect matching in a general graph can be reduced in linear time to
finding a perfect matching in a cubic graph [3].

The complement of a perfect matching of a cubic graph is a 2-factor. A 2-factor can be
used to approximate the graphic TSP problem, where we have to find a shortest tour visiting
all vertices of an undirected graph. Several approximation algorithms for the graphic TSP
problem in cubic graphs were presented [2,5,6,8,10,14,27]. Recently, Wigal, Yoo and Yu [28]
presented a 5/4-approximation algorithm for the graphic TSP problem in cubic graphs which

P. Gawrychowski and M. Wasylkiewicz 59:3

works in O(n2) time. We can obtain a faster algorithm for this problem in bridgeless cubic
graphs using the well-known technique of subtour patching [21] by merging the cycles of
a 2-factor of the input graph into a single tour. However, its approximation ratio is 5/3,
since every cycle of the computed 2-factor has length at least three. We can improve the
approximation ratio to 3/2 by computing a 2-factor with no cycles of length three. Finding
such a 2-factor can be reduced in O(n) time to finding an ordinary 2-factor in bridgeless cubic
multigraphs by first contracting the cycles of length three of the input graph as described,
for example, by Kobayashi [19, Lemma 3]. Thus, we obtain a 3/2-approximation algorithm
working in O(n log n) time.

Another application of finding a perfect matching in a bridgeless cubic graph is finding
a P4-decomposition in a bridgeless cubic graph, which consists in partitioning the set of
edges of the input graph into a collection of paths of length exactly three. Kotzig [20]
presented a simple construction that, given a perfect matching M of a cubic graph, finds its
P4-decomposition in linear time by directing every cycle of the complement of M . Therefore,
using our algorithm, such a decomposition can be found in O(n log n) time in a bridgeless
cubic graph.

2 Preliminaries

We refer to a multiset of size exactly two as a multipair. A multigraph is an ordered pair
G = (V, E) where V is any finite set and E is any multiset of multipairs of elements from
V . We refer to V as vertices of G and to E as edges of G. We refer to an edge {v, v} for
some v ∈ V as loop. If there is exactly one copy of an edge {v, w} in E, we refer to such
an edge as single. We refer to an unordered pair of two different copies of {v, w} in E as
double edge. We define the degree of a vertex v ∈ V as the total number of copies of v in all
edges of G. Note that a loop {v, v} ∈ E counts twice towards the degree of v. We assume
that all considered graphs and multigraphs are connected. We say that G is cubic if the
degree of every vertex of G is equal to three. Given an edge e of G, we denote by G \ e the
multigraph obtained from G by removing exactly one copy of e. Given a vertex v of G, we
denote by G \ v the multigraph obtained from G by removing vertex v together with all
its incident edges. Given an edge e = {v, w}, for some v, w ∈ V , we denote by G ∪ e the
multigraph obtained from G by adding one copy of e. An edge e of G is called a bridge if its
removal disconnects G. We say that G is bridgeless if no edge of G is a bridge. Notice that a
bridgeless cubic multigraph cannot contain any loops.

A multigraph H = (V ′, E′) is said to be a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A
subgraph H of G is said to be spanning if V = V ′. A spanning subgraph T of G is said to
be a spanning tree of G if T is a tree. We denote the set of all vertices of a subgraph H of G

by V (H) and the multiset of all edges of H by E(H). A path is a finite sequence of vertices
and edges P = (v0, e1, v1, e2, v2, . . . , vℓ−1, eℓ, vℓ) of G, for some nonnegative integer ℓ, where
the vertices v0, v1, . . . , vℓ ∈ V are pairwise distinct, e1, e2 . . . , eℓ ∈ E, and ei = {vi−1, vi} for
every i ∈ {1, . . . , ℓ}. We refer to ℓ as the length of P . We say that P connects vertices v0
and vℓ. A cycle is defined similarly, except that v0 and vℓ should be equal. We often identify
a path or a cycle in G with the subgraph of G consisting of all its vertices and edges. Given
a spanning tree T of G, we say that e ∈ E(G) \ E(T) covers f ∈ E(T) (in T) if f ∈ E(P),
where P is the path in T connecting the endpoints of e.

A subset M ⊆ E is said to be a matching of G if the degree of every vertex in the
subgraph of H = (V, M) is at most one. A matching M of G is said to be perfect if the
degree of every vertex in the subgraph H = (V, M) is equal to one. The perfect matching

ESA 2024

59:4 Finding Perfect Matchings in Bridgeless Cubic Multigraphs

problem consists in finding a perfect matching of a given multigraph, if it exists. Given an
edge e, we say that it is matched (with respect to M) if it belongs to M . Otherwise, we say
that it is unmatched (with respect to M). An (M -)alternating cycle is a cycle of G whose
edges alternately belong and do not belong to M . An application of an M -alternating cycle
A to M is an operation that removes all matched edges of A from M and adds all unmatched
edges of A to M .

3 Link-cut trees

We need a structure for maintaining a forest F of vertex-disjoint unrooted trees, each of
whose edges has a real-valued cost. We use link-cut trees of Sleator and Tarjan [25] which
store a forest of vertex-disjoint rooted trees. Therefore, we root every tree of F at an arbitrary
vertex. Link-cut trees support the following operations (among others) in O(log n) time each,
where n is the total number of vertices:
root(vertex v): return the root of the tree containing v.
cost(vertex v): returns the cost of the edge from v to its parent. We assume that v is not

a root.
mincost(vertex v): returns the vertex w closest to root(v) such that the edge from w to its

parent has minimum cost on the path connecting v and root(v). We assume that v is not
a root.

update(vertex v, real x): add x to the cost of every edge on the path connecting v and
root(v).

link(vertex u, v, real x): combine the trees containing u and v by adding an edge (u, v)
with cost x, making v the parent of u. We assume that u and v are in different trees,
and u is a root.

cut(vertex v): delete the edge from v to its parent. We assume that v is not a root.
evert(vertex v): modify the tree by making v the root.

As mentioned in the original paper, instead of real-valued costs we can in fact work with an
arbitrary (but fixed) semigroup. In particular, we can use the semigroup G = (E,⊕), where
x⊕ y = x for every x, y. This allows us to maintain a forest of vertex-disjoint unrooted trees,
each of whose edges e has its associated label cover(e), under the following operations:
connected(u, v): check if u and v belong to the same tree.
remove(u, v): remove an edge {u, v} from the forest. We assume that the edge belongs to

some tree.
add(u, v, x): add an edge {u, v} to the forest, and set its label to be x. We assume that u

and v are in different trees.
cover(u, v): return the label of the edge {u, v}. We assume that the edge belongs to some

tree.
update(u, v, x): set the label of every edge on the path connecting u and v to be x. We

assume that u and v belong to the same tree.
It is straightforward to implement these operations in O(log n) time each by maintaining a
link-cut tree, except that we use the semigroup G instead of real-valued costs.

connected(u, v) checks if root(u) = root(v).
remove(u, v) first calls evert(v), and then cut(u).
add(u, v, x) proceeds by calling evert(u), and then link(u, v, x).
cover(u, v) first calls evert(v), and then returns cost(u).
update(u, v, x) is implemented by calling evert(v), and then update(u, x).

P. Gawrychowski and M. Wasylkiewicz 59:5

By maintaining another link-cut tree with real-valued costs we can also support checking
if the paths connecting u with v and u′ with v′ share a common edge in O(log n) time
(assuming that u, v, u′, v′ all belong to the same tree). The cost of each edge is initially 0.
To implement a query, we first call evert(u) and update(v,−1). This has the effect of setting
the cost of every edge on the path connecting u with v to −1. Then, we call evert(u′) and
check if mincost(v′) returns −1, which happens if and only if the path connecting u′ and v′

shares a common edge with the path connecting u and v. Finally, we call evert(u) again,
and then update(v, 1) to restore the costs.

We note that any other structure for maintaining dynamic trees, e.g. top trees, could be
used here in place of link-cut trees.

4 Outline of previous algorithms

In this section we present the previous algorithms for the perfect matching problem in
bridgeless cubic multigraphs.

4.1 O(n2) time algorithm based on Frink’s proof
Frink’s proof of Petersen’s theorem can be easily turned into an algorithm. It uses the
following theorem:

▶ Theorem 1 (Frink). Let G be any bridgeless cubic multigraph and {v, w} any single edge
of G. Let {a, v} and {b, v} be other edges of G incident to v. Let {c, w} and {d, w} be
other edges of G incident to w. Define multigraphs H1 = ((G \ v) \ w) ∪ {a, c} ∪ {b, d} and
H2 = ((G \ v) \ w) ∪ {a, d} ∪ {b, c} (see Figure 1). Then both H1 and H2 are cubic and at
least one of them is bridgeless.

We call the operation of producing H1 (resp. H2) from G a straight (resp. crossing) reduction
(of type I) on {v, w}. We refer to both straight and crossing reductions as reductions (of type
I). We do not provide the proof of the above theorem, but stress that it will follow from the
analysis of our algorithm, making the result self-contained.

v

w

a b

c d

a b

c d

a b

c d

Figure 1 Straight and crossing reduction of type I on single edge {v, w}.

The idea of the algorithm based on Theorem 1 is to repeatedly perform the reduction
on any single edge of the input multigraph G0 to produce a sequence of multigraphs G0,
G1, . . . , Gk which are all cubic and bridgeless. It is easy to observe that every bridgeless
cubic multigraph with more than two vertices has a single edge. Hence, we can assume that
k = n/2− 1 and |V (Gk)| = 2. To build a perfect matching of the input multigraph G0, we
can find any perfect matching of Gk and revert the reductions in a reverse order to find
perfect matchings of Gk−1, Gk−2, . . . , G0. To this end, we need an auxiliary lemma.

ESA 2024

59:6 Finding Perfect Matchings in Bridgeless Cubic Multigraphs

▶ Lemma 2 ([4]). Let G be a bridgeless cubic multigraph, M a perfect matching of G, and e

an edge of G. Then G has an M -alternating cycle that contains e that can be found in O(n)
time.

Then, every reduction can be reverted using the following theorem.

▶ Lemma 3 ([4]). Let G be any bridgeless cubic multigraph and G′ be a multigraph obtained
by performing a reduction on a single edge of G. Given a perfect matching M ′ of G′, we can
find a perfect matching of G in O(n) time.

Proof. Without loss of generality, consider a straight reduction. We use the notation from
the statement of Theorem 1. We construct a perfect matching M of G. We start off with
the empty set. We add every edge of M ′ which belongs to G to M . Hence, it remains to add
{v, w} or some edges incident to {v, w} to M . We consider the following three cases (see
Figure 2).
a) If both {a, c} and {b, d} do not belong to M ′, we add {v, w} to M .
b) If either {a, c} or {b, d} belongs to M ′, say {a, c}, we add {a, v} and {c, w} to M .
c) If both {a, c} and {b, d} belong to M ′, we find and apply an M ′-alternating cycle of G′

which contains {b, d} to M ′ using Lemma 2. Then we get either case a) or b). ◀

a b

c d

v

w

a b

c d

a b

c d

v

w

a b

c d

Figure 2 Reverting reduction of type I. The matched edges are marked by wavy lines.

Thus, we can find a perfect matching in a bridgeless cubic multigraph in O(n2) time,
since we can check if a multigraph is bridgeless and find an alternating cycle in linear time.

4.2 O(n log4 n) time algorithm with fully dynamic 2-edge-connectivity
Notice that there are two bottlenecks in the algorithm presented in Subsection 4.1: checking
if a multigraph is bridgeless, and finding an alternating cycle. To check if a multigraph
is bridgeless, we can use a fully dynamic 2-edge-connectivity structure. Such a structure
maintains a multigraph G under the following operations:

add an edge to G,
remove an edge from G,
check if given two vertices of G are in the same 2-edge-connected component of G.

To remove the first bottleneck, Biedl, Bose, Demaine, and Lubiw [4] used the fully dynamic
2-edge-connectivity structure given by Holm, de Lichtenberg and Thorup [15] with O(log4 n)
amortized time per operation, thus obtaining an O(n log4 n) time algorithm. They checked,
after every reduction, if the vertices a, b, c and d are still in the same 2-edge-connected
component. We note that plugging in a faster (and later) structure of Holm, Rotenberg and
Thorup [16] improves the time complexity to O(n(log n)2(log log n)2).

P. Gawrychowski and M. Wasylkiewicz 59:7

In order to remove the second bottleneck, the idea of Biedl, Bose, Demaine, and Lubiw [4]
was to forbid the case where both edges of some E(Gi) \E(Gi−1) belong to the found perfect
matching. To this end, we choose any edge e0 of the input multigraph G0, and search for a
perfect matching which does not contain e0. Notice that Lemma 2 implies that such perfect
matching always exists. Then, we perform a reduction on a single edge incident to e0, and we
define e1 as an edge of E(G1) \ E(G0) such that e0 ∩ e1 ̸= ∅, that is, e0 and e1 are incident
to the same vertex. Note that we cannot perform the reduction if all edges of G0 incident
to e0 are double edges, and in such a case we use an alternative reduction defined later.
Next, we recursively find a perfect matching in G1 which does not contain e1. Again, we
perform a reduction on a single edge incident to e1, and so on. Recall that Gk consists of
exactly two vertices, so it is trivial to find a perfect matching which does not contain ek.
Again, we revert all reductions to construct a perfect matching of the input multigraph G0.
However, now we can use the assumption that the perfect matching of Gi does not contain
ei ∈ E(Gi) \ E(Gi−1). Therefore, we can construct a perfect matching of Gi−1 in constant
time since we do not have to apply an alternating cycle to get rid of the case c) from the
proof of Lemma 3. This optimization gives us the desired O(n log4 n) running time.

If all edges of Gi incident to ei are double edges, we perform a reduction of type II on
any edge incident to ei instead of reduction of type I as follows. Consider a double edge
e = {{v, w}, {v, w}} of Gi. Let {a, v} be a single edge incident to v and {b, w} a single edge
incident to w. The reduction removes both copies of {v, w} and all their incident edges, adds
an edge {a, b} to the multigraph and defines ei+1 = {a, b} (see Figure 3). When reverting
this reduction, we have a guarantee that {a, b} does not belong to a perfect matching, hence
we can add any copy of {v, w} to it.

a

v

w

b

ei

a

b

ei+1

a

v

w

b

ei

Figure 3 Reduction of type II (and its reverting). The matched edges are marked by wavy lines.

4.3 O(n log2 n) time algorithm with fully dynamic connectivity
Diks and Stańczyk presented a faster algorithm for the perfect matching problem in bridgeless
cubic multigraphs by replacing a fully dynamic 2-edge-connectivity structure by a fully
dynamic connectivity structure. Such a structure supports checking if two given vertices of
the multigraph are in the same connected component, and allows adding and removing edges.
They maintain a fully dynamic connectivity structure together with a spanning tree of the
current multigraph. When performing a reduction of type I on a single edge e, they remove
all edges incident to any endpoint of e from both the fully dynamic connectivity structure
and the spanning tree. Checking which pairs of vertices adjacent to the endpoints of e are
in the same connected component and how they are connected allows to check if we have
to perform straight or crossing reduction of type I to obtain a bridgeless cubic multigraph
as well. The spanning tree is maintained in a link-cut tree, so the total running time is
dominated by the running time of the fully dynamic connectivity structure. Originally,

ESA 2024

59:8 Finding Perfect Matchings in Bridgeless Cubic Multigraphs

the algorithm used either the structure of Holm, de Lichtenberg and Thorup [15], which
works in O(log2 n) amortized time per operation, or the randomized variant presented
by Thorup [26] which works in O(log n(log log n)3) expected amortized time per operation.
However, now the fastest known fully dynamic connectivity structures are by Wulff-Nilsen [29]
with O(log2 n/ log log n) amortized time per operation, or the structure given by Huang,
Huang, Kopelowitz, Pettie, and Thorup [18] with O(log n(log log n)2) amortized expected
time per operation. Hence, the perfect matching problem in bridgeless cubic multigraphs
can be solved in O(n log2 n/ log log n) deterministic time, or O(n log n(log log n)2) expected
time.

5 Outline of our algorithm

We give an outline of our algorithm below. It is based on the algorithm given by Biedl, Bose,
Demaine, and Lubiw [4], but it does not need a fully dynamic 2-edge-connectivity structure.
Let G0 be the input multigraph, which is bridgeless and cubic. We proceed in iterations that
construct the sequence G0, G1, . . . , Gk as follows.

Algorithm 1 Main algorithm.

e0 ← any edge of G0
T0 ← any spanning tree of G0
for e ∈ E(G0) \ E(T0) do

cover0(f)← e for every f ∈ E(T0) on the path in T0 connecting both endpoints of e

end for
for i = 0 to n/2− 2 do

if ei is incident to a single edge e of Gi then
Obtain Gi+1 by a reduction of type I on edge e of Gi

else
Obtain Gi+1 by a reduction of type II on a double edge of Gi incident to ei

end if
Obtain a spanning tree Ti+1 of Gi+1 from Ti

end for
Mk ← {e} for some e ∈ E(Gk) \ {ek}
for i = n/2− 2 downto 0 do

Obtain a perfect matching Mi of Gi from Mi+1 by reverting the corresponding reduction
end for

Similarly as in the algorithm given by Diks and Stańczyk, for every Gi, we construct
a spanning tree Ti of Gi as well. Additionally, for every e ∈ E(Ti) we maintain any edge
from E(Gi) \E(Ti) which covers e in Ti, denoted coveri(e). Notice that such an edge always
exists, since Gi is bridgeless. The spanning tree Ti and coveri(e), for every e ∈ E(Ti), are
maintained in a link-cut tree as described in Section 3. Moreover, we maintain an edge ei,
which will not belong to the found perfect matching Mi as in the algorithm presented in
Subsection 4.2. We will construct the spanning trees T0, T1, . . . , Tk during the execution of
the algorithm, making sure to maintain the following invariant.

▶ Invariant 1. For every Ti and edge e ∈ E(Ti), coveri(e) is an edge of E(Gi) \ E(Ti) that
covers e in Ti.

P. Gawrychowski and M. Wasylkiewicz 59:9

6 Details

In this section we explain how to implement the reductions and update the maintained
information during the execution of the algorithm. Moreover, we prove that Invariant 1 is
maintained. In Subsection 6.4 we present the time and space complexity analysis.

6.1 Swap
We first define our atomic operation swap on an edge e ∈ E(Ti). It consists in removing e

from Ti, adding e′ = coveri(e) to Ti, and setting coveri(f) = e for every edge f covered by e

in the new Ti. We will be using swap operation as a black box. The following lemma proves
that performing a swap does not spoil the maintained information.

▶ Lemma 4. The swap operation maintains Invariant 1 for Ti.

Proof. Assume that we perform a swap on an edge e and let e′ = coveri(e). Let T 0 be the
tree Ti before the swap and T 1 after the swap. Let P be the path in T 0 which connects both
endpoints of e′. Since e′ covers exactly the edges of P in T 0, e ∈ E(P). Notice that e covers
all edges of P ′ = (P \ e) ∪ e′ in T 1, so every coveri(f), for f ∈ E(P ′), is updated correctly.
Consider any f ∈ E(T 1) \ E(P ′). By construction, f belongs to E(T 0), so f ′ = coveri(f)
covers f in T 0. Therefore, there exists a path R in T 0 which connects both endpoints of f ′

such that f ∈ E(R). We claim that f ′ covers f in T 1 as well. If e /∈ E(R), then R is a path
in T 1 so we are done. Hence, assume that e ∈ E(R). Notice that f ′ ≠ e′ since e′ covers only
the edges of E(P) in T 0. We construct a path R′ in T 1 from R by replacing its fragment
which is contained in P by going through edge e′ instead of e (see Figure 4). Notice that
f ∈ E(R′) since f /∈ E(P ′), so we are done. ◀

e′

e

f ′

f

e′

e

f ′

f

Figure 4 Proof of Lemma 4. The edges of Ti are marked by thick lines and edges of, correspond-
ingly, R and R′ are marked by red lines.

6.2 Reductions of type I
In this subsection we present how we implement a reduction of type I on a single edge {v, w}
of Gi. We use the notation from the statement of Theorem 1. Let Ai be the set of all edges
of Gi incident to edge {v, w}. Notice that a, b, c and d are not necessarily distinct, but they
are different from v and w since {v, w} is single. Moreover, v ̸= w.

ESA 2024

59:10 Finding Perfect Matchings in Bridgeless Cubic Multigraphs

The main idea is the following. Before performing the reduction, we reduce the number
of cases to consider by performing several swaps on some edges incident to v or w. Recall
that, by Lemma 4, these swaps do not spoil the maintained information. Then, we perform
either a straight or a crossing reduction (of type I) on {v, w}, depending on how the vertices
a, b, c and d are connected in (Ti \ v) \ w. We obtain Ti+1 from Ti by deleting the removed
edges and adding some of the new edges. This implicitly sets coveri+1(e) = coveri(e) for
every edge e ∈ E(Ti) ∩E(Ti+1). Then, we update coveri+1(e) for every edge e covered with
the edges of E(Gi+1) \ E(Ti+1) in Ti+1 accordingly. Finally, we set ei+1 to be the new edge
which is incident in Gi+1 to one of the endpoints of ei in Gi.

If {v, w} ∈ E(Ti), we perform a swap on the edge {v, w}. Hence, we can assume that
{v, w} /∈ E(Ti). Moreover, if Ai ⊆ E(Ti), we can perform a swap on at least one of
the edges of Ai without adding {v, w} to Ti. Thus, we assume that either two or three
edges of Ai belong to E(Ti). Furthermore, we can assume that, for every e ∈ Ai ∩ E(Ti),
coveri(e) ∈ Ai ∪ {{v, w}}, as otherwise we can perform a swap on such edge e.

If |Ai ∩ E(Ti)| = 3, we can assume that {d, w} /∈ E(Ti). We consider two subcases
depending on how a, b, c and d are connected in (Ti \ v) \ w (see Figure 5):

both c and d are connected to a (or both to b), or
c and d are connected to different vertices a and b.

Notice that the first subcase cannot happen: if both c and d are connected to a then, since
coveri({b, v}) /∈ Ai ∪ {{v, w}}, we could have performed a swap on {b, v}. Hence, we are left
with the second subcase. Assume, without loss of generality, that c is connected to a and
d to b in (Ti \ v) \ w. Then we perform a crossing reduction on {v, w}. Moreover, we add
exactly one of the added edges to Ti+1.

v

w

a b

c d

v

w

a b

c d

a b

c d

Figure 5 The case when |Ai ∩ E(Ti)| = 3. The edges of Ti and Ti+1 are marked by thick lines.

If |Ai ∩ E(Ti)| = 2, assume that {a, v} and {c, w} belong to E(Ti). Since (Ti \ v) \ w is
still connected in that case, we have the three following subcases depending on which pairs
of the vertices a, b, c and d are connected in (Ti \ v) \ w first (see Figure 6). Formally, we
partition {a, b, c, d} into two pairs {x, y} and {x′, y′} such that the paths connecting x with
y and x′ with y′ in (Ti \ v) \ w are edge-disjoint (but not necessarily vertex-disjoint). Such
edge-disjoint paths always exist, for example it is straightforward to verify that paths with
the smallest total length are edge-disjoint. Then, we say that x is connected to y and x′ to
y′.

If a is connected to b and c to d, we perform an arbitrary reduction of type I on {v, w}.
If a is connected to c and b to d, we perform the crossing reduction on {v, w}.
If a is connected to d and b to c, we perform the straight reduction on {v, w}.

In all of these subcases we add no new edges to Ti+1. Notice that the subcases may overlap.
After performing every reduction of type I, we update the maintained information

as follows. For every edge e ∈ E(Gi+1) \ E(Gi) which does not belong to Ti+1, we set
coveri+1(f) = e for every edge f on the path in Ti+1 connecting both endpoints of e.

P. Gawrychowski and M. Wasylkiewicz 59:11

v

w

a b

c d

a b

c d

v

w

a b

c d

a b

c d

v

w

a b

c d

a b

c d

Figure 6 The case when |Ai ∩ E(Ti)| = 2. The edges of Ti and Ti+1 are marked by thick lines.

▶ Lemma 5. Performing a reduction of type I maintains Invariant 1.

Proof. Let Si and Si+1 be the subgraphs of, respectively, Ti and Ti+1 consisting of all edges
which lie on some path in, respectively, Ti and Ti+1 connecting some of the vertices v, w, a,
b, c and d. It is easy to check that every edge of E(Si+1) is covered by some edge added
to Gi+1 which does not belong to Ti+1. Hence, coveri+1(e) for every edge e ∈ E(Si+1) is
correct.

It is left to prove that coveri+1(e) is correct for every edge e ∈ E(Ti+1) \ E(Si+1).
By construction, e ∈ E(Ti) \ E(Si). Notice that coveri+1(e) = coveri(e). We claim that
f = coveri(e) covers e in Ti+1. First, we notice that f belongs to Gi+1. This follows from an
easy observation that every edge of (Ai ∪ {{v, w}}) \ E(Ti) covers only some edges of E(Si)
in Ti, so it cannot cover e in Ti. Consider a path P in Ti which connects both endpoint of f .
From definition of f , e ∈ E(P). If P does not contain any edges of E(Si), then P is a path
in Ti+1 as well, so f covers e in Ti+1. Otherwise, we construct a path P ′ from P by replacing
its fragment which is contained in Si by a corresponding path in Si+1 (see Figure 7). Since
e /∈ E(Si), e ∈ E(P ′). Hence, f covers e in Ti+1. ◀

v

w

a b

c d

f

e

a b

c d

f

e

Figure 7 The proof of Lemma 5. The edges of Ti and Ti+1 are marked by thick lines. The edges
of P and P ′ are marked by red lines.

ESA 2024

59:12 Finding Perfect Matchings in Bridgeless Cubic Multigraphs

6.3 Reductions of type II
Now we consider the reduction of type II on a double edge incident to ei of Gi. Recall that
ei is incident to two different double edges. Therefore, at least one of them, say {f1, f2},
contains some edge of E(Ti) as otherwise Ti would be disconnected. We perform the reduction
of type II on a double edge {f1, f2} where f1 = {v, w} = f2. Let a ̸= w be a neighbor of v,
so ei = {a, v}, and b ̸= v be a neighbor of w. Assume that f1 ∈ E(Ti). Of course, f2 /∈ E(Ti)
then. First, we remove from Gi edges ei, f1, f2 and {b, w}. If any of these edges is in Ti

it is not included in Ti+1. Then, we create an edge {a, b}. We consider the two following
subcases (see Figure 8).

If both {a, v} and {b, w} belong to E(Ti), we add {a, b} to Ti+1 and set coveri+1({a, b}) =
coveri({a, v}).
If only one of {a, v} or {b, w} belongs to E(Ti), say {a, v}, we identify {a, b} with {b, w}.
This guarantees that coveri+1(e) is correct for every edge e on the path in Ti+1 connecting
a and b.

It is easy to check that Invariant 1 is maintained after a reduction of type II.

a

v

w

b

ei

a

b

ei+1

a

v

w

b

ei

a

b

ei+1

Figure 8 Performing a reduction of type II. The edges of Ti and Ti+1 are marked by thick lines.

6.4 Complexity analysis
The algorithm performs less than n iterations of the for loop. Throughout the execution of
the algorithm, we maintain the spanning tree Ti in a link-cut tree. Additionally, we maintain
the edges incident to any vertex of Gi on a doubly-linked list. Each edge maintains a single
bit denoting whether it belongs to Ti. Because the degree of every vertex of Gi is constant,
this allows us to find a single edge incident to ei, or choose a double edge {f1, f2} such that
f1 ∈ E(Ti), in constant time.

It is straightforward to verify that a swap operation can be implemented with a constant
number of operations on the link-cut tree. To implement a reduction of type I, we first need a
constant number of swap operations. Then, we need to distinguish between |Ai ∩E(Ti)| = 3
and |Ai ∩ E(Ti)| = 2, which is easy by inspecting the bits maintained by the edges in Ai.
In the latter case, we need to find a partition of {a, b, c, d} into two pairs {x, y} and {x′, y′}
such that the corresponding paths in (Ti \ v) \ w are edge-disjoint. To this end, we can
check all 3 possibilities, and for each of them test if the corresponding paths in Ti are
edge-disjoint in O(log n) time. Finally, after deciding whether we should apply a crossing
or a straight reduction, we construct Gi+1 from Gi by removing vertices v and w and their
incident edges (and possibly from Ti), and adding the appropriate two edges, and (in the
case |Ai ∩ E(Ti)| = 3) add one of them to Ti+1. Then, we update the cover values. Overall,
this takes O(log n) time.

To implement a reduction of type II, we obtain Gi+1 from Gi by removing vertices v

and w and their incident edges (and possibly from Ti), and adding edge {a, b}. In the first
subcase, we update the cover value of the new edge. In the second subcase, we need to

P. Gawrychowski and M. Wasylkiewicz 59:13

implicitly update the cover value of every edge e such that coveri(e) = {b, w} to the new edge.
To this end, we think that each edge e = {u, v} is an object that stores the endpoints u and
v. Then, coveri(e) returns a pointer to the corresponding object. When creating a new edge,
we create a new object. However, in the second subcase we reuse the object corresponding to
the edge {b, w}, and modify its endpoints.

To reverse the reductions, we maintain the current matching Mi. Each edge stores a
single bit denoting whether it belongs to Mi. Then, reverting a reduction of type I takes
only constant time by inspecting one of the new edges and checking if it belongs to Mi.
Depending on the case, we appropriately update Mi. Reverting a reduction of type II is even
simpler, as we always add one copy of the double edge to Mi, and possibly need to restore
the object corresponding to the edge {b, w}. For both types, we remove the new edges and
add back the removed vertices and edges.

The overall time complexity is O(n log n), and the algorithm uses O(n) space.

7 Conclusions

We presented a simple algorithm for the perfect matching problem in bridgeless cubic
multigraphs, which works in O(n log n) deterministic time. As opposed to the previous
algorithms, it does not use any complex fully dynamic (2-edge-)connectivity structure. The
natural open question is to further improve the time complexity.

Another open problem is to apply a similar approach to the unique perfect matching
problem in sparse graphs. It consists in checking if a given graph admits exactly one perfect
matching, and finding it if so. The fastest known deterministic algorithm for this problem
was given by Gabow, Kaplan and Tarjan [13], and takes O(n(log n)2(log log n)2) time when
using the fastest fully dynamic 2-edge-connectivity structure given by Holm, Rotenberg and
Thorup [16]. Note that the unique perfect matching problem can be solved in optimal linear
time in dense graphs by using the decremental dynamic 2-edge-connectivity structure given
by Aamand et al. [1].

References
1 Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen,

and Mikkel Thorup. Optimal decremental connectivity in non-sparse graphs. In Kousha
Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Auto-
mata, Languages, and Programming (ICALP 2023), pages 6:1–6:17, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

2 Nishita Agarwal, Naveen Garg, and Swati Gupta. A 4/3-approximation for TSP on cubic
3-edge-connected graphs. Operations Research Letters, 46(4):393–396, 2018.

3 Therese Biedl. Linear reductions of maximum matching. In Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 825–826, USA, 2001. Society
for Industrial and Applied Mathematics.

4 Therese C. Biedl, Prosenjit Bose, Erik D. Demaine, and Anna Lubiw. Efficient algorithms for
Petersen’s matching theorem. Journal of Algorithms, 38(1):110–134, 2001.

5 Sylvia Boyd, René Sitters, Suzanne van der Ster, and Leen Stougie. The traveling salesman
problem on cubic and subcubic graphs. Mathematical Programming, 144, July 2011.

6 Barbora Candráková and Robert Lukot’ka. Cubic TSP - a 1.3-approximation. SIAM J.
Discret. Math., 32:2094–2114, June 2015.

7 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In FOCS,
pages 612–623. IEEE, 2022.

ESA 2024

59:14 Finding Perfect Matchings in Bridgeless Cubic Multigraphs

8 Jose Correa, Omar Larré, and José Soto. TSP tours in cubic graphs: Beyond 4/3. SIAM
Journal on Discrete Mathematics, 29:915–939, October 2015.

9 Krzysztof Diks and Piotr Stańczyk. Perfect matching for biconnected cubic graphs in O(n log2 n)
time. In Jan van Leeuwen, Anca Muscholl, David Peleg, Jaroslav Pokorný, and Bernhard
Rumpe, editors, SOFSEM 2010: Theory and Practice of Computer Science, pages 321–333,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

10 Zdenek Dvorák, Daniel Král, and Bojan Mohar. Graphic TSP in cubic graphs. In Symposium
on Theoretical Aspects of Computer Science, 2017.

11 Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17, 1965.
12 Orrin Frink. A proof of Petersen’s theorem. Annals of Mathematics, 27(4):491–493, 1926.
13 Harold N. Gabow, Haim Kaplan, and Robert E. Tarjan. Unique maximum matching algorithms.

Journal of Algorithms, 40(2):159–183, 2001.
14 David Gamarnik, Moshe Lewenstein, and Maxim Sviridenko. An improved upper bound for the

TSP in cubic 3-edge-connected graphs. Operations Research Letters, 33:467–474, September
2005.

15 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, July 2001.

16 Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log2 n)
amortized time. In Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 35–52, 2018.

17 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

18 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Fully
dynamic connectivity in O(log n(log log n)2) amortized expected time. In TheoretiCS, 2023.

19 Yusuke Kobayashi. A simple algorithm for finding a maximum triangle-free 2-matching in
subcubic graphs. Discrete Optimization, 7(4):197–202, 2010.

20 Anton Kotzig. Z teorie konečných pravidelných grafov tretieho a štvrtého stupňa. Časopis pro
pěstování matematiky, 082(1):76–92, 1957.

21 E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-Interscience, 1985.

22 S. Micali and V. Vazirani. An O(
√

|V | · |E|) algorithm for finding maximum matching in
general graphs. In 21st Annual Symposium on Foundations of Computer Science, pages 17–27,
1980.

23 Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian elimination. In
Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages
248–255, November 2004.

24 Julius Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15:193–220, 1891.
25 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of

Computer and System Sciences, 26(3):362–391, June 1983.
26 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Symposium on the Theory

of Computing, 2000.
27 Anke van Zuylen. Improved approximations for cubic bipartite and cubic TSP. Mathematical

Programming, 172:399–413, 2015.
28 Michael C. Wigal, Youngho Yoo, and Xingxing Yu. Approximating TSP walks in subcubic

graphs. J. Comb. Theory, Ser. B, 158:70–104, 2021.
29 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Encyclopedia

of Algorithms, 2012.

	1 Introduction
	2 Preliminaries
	3 Link-cut trees
	4 Outline of previous algorithms
	4.1 O(n^2) time algorithm based on Frink's proof
	4.2 O(nlog^4{n}) time algorithm with fully dynamic 2-edge-connectivity
	4.3 O(nlog^2{n}) time algorithm with fully dynamic connectivity

	5 Outline of our algorithm
	6 Details
	6.1 Swap
	6.2 Reductions of type I
	6.3 Reductions of type II
	6.4 Complexity analysis

	7 Conclusions

