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Abstract
The expander decomposition of a graph decomposes the set of vertices into clusters such that the
induced subgraph of each cluster is a subgraph with high conductance, and there is only a small
number of inter-cluster edges. Expander decompositions are at the forefront of recent theoretical
developments in the area of efficient graph algorithms and act as a central component in several state-
of-the-art graph algorithms for fundamental problems like maximum flow, min-cost flow, Gomory-Hu
trees, global min-cut, and more. Despite this crucial role and the existence of theoretically efficient
expander decomposition algorithms, little is known on their behavior in practice.

In this paper we explore the engineering design space in implementations for computing expander
decompositions. We base our implementation on the near-linear time algorithm of Saranurak and
Wang [SODA’19], and enhance it with practical optimizations that accelerate its running time in
practice and at the same time preserve the theoretical runtime and approximation guarantees.

We evaluate our algorithm on real-world graphs with up to tens of millions of edges. We
demonstrate significant speedups of up to two orders of magnitude over the only prior implementation.
To the best of our knowledge, our implementation is the first to compute expander decompositions
at this scale within reasonable time.
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1 Introduction

The problem of computing the expander decomposition of a graph G is to decompose the set of
vertices of G into clusters such that the induced subgraph of each cluster is a subgraph that is
well-connected, and there is only a small number of inter-cluster edges. Since its introduction
by Kannan, Vempala, and Vetta [18] over 20 years ago, the notion of expander decomposition
has been widely studied [34, 38, 29, 33, 11, 16, 3, 35]. Recently, Saranurak and Wang [33]
presented the first near-linear time algorithm for computing expander decompositions.

Expander decompositions find numerous applications such as graph sketching and sparsi-
fication [5, 17, 10], Laplacian solvers [34, 12, 11, 24], maximum flow algorithms [21, 11] includ-
ing the recent breakthrough almost-linear time algorithm [9, 36, 8], computing Gomory-Hu
trees [1, 28, 2], global min-cut [20, 15, 32, 26], vertex connectivity [27], dynamic connectivity
and minimum spanning forest algorithms [38, 29, 30], and many more.

© Lars Gottesbüren, Nikos Parotsidis, and Maximilian Probst Gutenberg;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 61; pp. 61:1–61:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lars.gottesbueren@kit.edu
mailto:nikosp@google.com
mailto:maximilian.probst@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.ESA.2024.61
https://github.com/larsgottesbueren/practical-expander-decomposition
https://github.com/larsgottesbueren/practical-expander-decomposition
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


61:2 Practical Expander Decomposition

The following is a quote from Saranurak and Wang [33]: ”we note that our algorithm is
developed from first principles based on relatively simple and basic techniques, thus making it
very likely to be practical”. Perhaps surprisingly, no published work has studied the practical
performance of expander decomposition algorithms. To the best of our knowledge, there is
only a Master’s thesis by Arvestad [6], who provides a faithful implementation of Saranurak
and Wang’s framework [33]. Contrary to the quote above, they note that there is substantial
room for improvement in practice, due to high constant and poly-log factors.

In this paper, we explore the algorithm engineering space for computing expander
decompositions. We base our approach on the same framework [33]. We propose five
optimizations that speed up the algorithm in practice without affecting the theoretical
running time and approximation guarantees. Our experimental findings show that our
implementation significantly outperforms the basic implementation by up to two orders of
magnitude, and allows the algorithm to scale to graphs with tens of millions of edges within
reasonable time.

We denote by G = (V,E) the input graph and let n = |V |,m = |E|. We let degG(v)
denote the degree of vertex v in G and define for any S ⊆ V , the volume of S by volG(S) =∑
s∈S degG(s). We denote by EG(A,B) for any disjoint sets A,B ⊆ V the edges in G with

exactly one endpoint in A and one endpoint in B. We denote by (S, V \ S) a cut in G, and
often denote the cut only by S.

▶ Definition 1 (Conductance and Expander). Given graph G, and a cut ∅ ⊊ S ⊊ V , we
define the conductance of S by ΦG(S) = |EG(S,V \S)|

min{volG(S),volG(V \S)} . We say S is a ϕ-sparse cut
if ΦG(S) < ϕ. We say G is a ϕ-expander if it contains no ϕ-sparse cut.

▶ Definition 2 (Expander Decomposition). A partition X1, X2, . . . , Xk of the vertex set V is
a ϕ-expander decomposition of quality q if:
1. every cluster G[Xi] is a ϕ-expander, and
2. the number of inter-cluster edges is at most q · ϕm.

Recently, the first near-linear time algorithm to compute expander decompositions was
presented by Saranurak and Wang [33]. We summarize the result in the theorem below.

▶ Theorem 3 (see [33], Theorem 1.2). For any ϕ < 1/ log2(m), there is an algorithm that
runs in time O(m log4 m/ϕ) and outputs a ϕ-expander decomposition of quality O(log3 m).

The main algorithmic ingredients in [33] are the cut-matching game [22, 31], which either
finds a low-conductance cut or certifies expansion, as well as a trimming procedure [33]
to extract an expander from a near-expander. Both trimming and cut-matching internally
use single-commodity maximum flow. One contribution of [33] is to show that a height-
constrained version of push-relabel [15] can be used to efficiently solve these flow problems
to achieve near-linear time overall. In order to present clearly our optimizations in the
context of the algorithmic framework from [33], and to keep the paper as self-contained as
possible, we give a primer on the theoretical background in Section 2, which is all prior work.
In Section 3 we then present our contributions: optimizations that make the theoretically
efficient techniques fast in practice.

2 Expander Decomposition

Our implementation is inspired by the following framework suggested in [29, 30, 38, 33] to
compute expander decompositions. The framework follows the natural idea to recursively
partition V into sets X1, X2, . . . , Xk and whenever there is a Õ(ϕ)-sparse cut S ⊆ Xi in
G[Xi], we replace the cluster Xi by S and Xi \ S.
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However, the recursion depth of this meta-algorithm might be large, e.g. Ω(n). To control
the recursion depth, it is natural to use the most balanced Õ(ϕ)-sparse cuts when decomposing.
Formally, we say that a cut S ⊆ Xi is b-balanced if 1

bvolG(Xi) ≤ volG(S) ≤ (1− 1
b )volG(Xi)

and thus again, we have that S is b-balanced if and only if Xi \ S is b-balanced. To obtain
recursion depth Õ(1), we need to only decompose along Ω̃(1)-balanced cuts.

Unfortunately, there may not always be a Ω̃(1)-balanced Õ(ϕ)-sparse cut in a graph
G[Xi] even though it might also not be a ϕ-expander. However, in this case, G[Xi] is very
close to being a ϕ-expander. We thus need to only trim a very small set S ⊆ Xi from G[Xi]
and can then conclude that G[Xi \ S] is a ϕ/6-expander. Thus, when decomposing along S,
we only need to recurse on S which is much smaller than G[Xi] and this again yields small
recursion depth. Finally, we re-parameterize ϕ and scale it by factor 6 to ensure that all
clusters G[Xi] with Xi in the final partition set of V are ϕ-expanders.

Let us now discuss the components that we need to implement this framework: we first
need an algorithm to find Ω̃(1)-balanced Õ(ϕ)-sparse cuts, or output that no such cut exists.
To this end, we turn to the cut-matching framework introduced in [22] whose guarantees are
summarized below. Here, we crucially require the generalization of conductance below.

▶ Definition 4 (Generalized Conductance and Expander). Given graph G, and set A ⊆ V and
a cut ∅ ⊊ S ⊊ A, we define the conductance of S by ΦG(S,A) = |EG(S,V \S)|

min{volG(S),volG(A\S)} . We
say A is ϕ-expander in G if it contains no cut S with ΦG(S,A) < ϕ.

▶ Theorem 5 (Cut Matching Framework, see Theorem 4.1 in [22]). Given input graph G =
(V,E), ϕ < 1/ log2(m) and a constant C > 0. The algorithm CutMatchingGame(G,ϕ,C)
takes O(m logm/ϕ) time and either reports
1. an Ω(1/ log2 m)-balanced Ω(1/ log2 m)-sparse cut S in G, or
2. that G is a ϕ-expander, or
3. a (c0/ log2 m)-sparse cut S ⊆ V with volG(S) ≤ m/(C log2 m) for some constant c0 > 0

and V \ S is a ϕ-expander in G.
In the first case, we can decompose immediately. In the second case, we do not have

to decompose the graph and thus do not need to recurse. In the third case, we invoke the
following trimming routine from [33].

▶ Theorem 6 (Trimming, see Theorem 2.1 in [33]). Given a graph G, a cut S and some ϕ
such that volG(S) ≤ m/(32c1 log2 m) and ΦG(S) ≤ c1ϕ · log2 m for any constant c1 > 0 such
that V \ S is ϕ-expander in G. Then there is an algorithm Trim(G,V \ S, ϕ) that after time
O(m logm/ϕ) returns a set S′ ⊇ S such that G[V \S′] is ϕ/6-expander, volG(S′) ≤ volG(V )/2
and |EG(S′, V \ S′)| = O(ϕ ·m log2 m).

Note that V \ S being ϕ-expander in G is not equal to G[V \ S] being ϕ-expander, since
some cut S′ ⊂ V \ S might have many edges into S but not many edges into V \ (S ∪ S′)
and thus might be sparse. The trimming procedure above recovers the desired property.

In Algorithm 1, we give the pseudocode to implement the framework above. Given the
guarantees of Theorem 5 and Theorem 6, we have that all sets added to ExpanderDecomp are
expanders and eventually, it is a full partition. Further, from these guarantees, we can bound
the recursion depth of our algorithm by O(log3 m). Since all graphs at the same recursion
level are vertex-disjoint, and the number of edges between sets in Active increases by at most
O(ϕ · volG(Xi)) whenever we decompose a graph G[Xi], the final expander decomposition
is of quality O(log3 m). And again, since every edge participates in at most O(log3 m)
invocations of CutMatchingGame(·) and Trimming(·), we have that the total runtime is
O(m log4 m/ϕ). This concludes our review and proof sketch of Theorem 3.
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Algorithm 1 ComputeExpanderDecomposition(G,ϕ).

1 Active← {V }; ExpanderDecomp← {}.
2 while Active ̸= ∅ do
3 Remove arbitrary set X from Active.
4 Run procedure CutMatchingGame(G[X], 6ϕ, 32 · c0).
5 if CutMatchingGame(G[X], 6ϕ) returned a balanced sparse cut S
6 Active← Active ∪ {S,X \ S}.
7 else if CutMatchingGame(G[X], 6ϕ) reports that G[Xi] is (6ϕ)-expander
8 Add X to ExpanderDecomp.
9 else // i.e. CutMatchingGame(G[X], 6ϕ) returns unbalanced sparse cut S

10 S′ ← Trim(G,S, 6ϕ).
11 Add ϕ-expander V \ S′ to ExpanderDecomp.
12 Add S′ to Active.

13 return ExpanderDecomp.

2.1 Cut-Matching Algorithm
Let us next describe the cut-matching algorithm which yields Theorem 5. Here, we describe
the algorithm and analysis for obtaining sparse cuts and expanders for sparsity instead of
conductance. These two measures differ in the denominator where conductance compares to
volume while sparsity compares to vertex count. The result for conductance can be obtained
from the one for sparsity by a simple graph transformation.

▶ Definition 7 (Sparsity). For G = (V,E), any A ⊆ V , any cut ∅ ⊊ S ⊊ A, we define the
sparsity by ΨG(S,A) = |EG(S,V \S)|

min{|S|,|A\S|} . We say A is a ψ-expander in G (w.r.t. sparsity) if no
∅ ⊊ S ⊊ A has ΨG(S,A) < ψ.

We focus on sparsity, since this allows us to get much cleaner algorithms and proofs. Since
we do not use conductance in the rest of this section, we often omit the explicit statement
that we work with respect to sparsity (and use ψ instead of ϕ). We walk through the proof
the following result in the remainder of the section where the last case combines scenarios 2
and 3 of Theorem 5.

▶ Theorem 8 (Cut Matching Framework, see Theorem 4.1 in [22]). Given input graph G =
(V,E), ψ < 1/ log2(m) and a constant C > 0. The algorithm CutMatchingGame(G,ψ,C)
takes O(m logm/ψ) time and either reports
1. an Ω(1/ log2 m)-balanced Ω(1/ log2 m)-sparse cut S in G, or
2. a (possibly empty) set S ⊆ V , such that V \ S is ψ-expander in G and either S is empty

or it is O(1/ log2 m)-sparse and has |S| ≤ n/(C log2 n).
To recover guarantees on the conductance instead of sparsity, it then suffices to apply the

algorithm presented in this section to the subdivision graph of G, defined below, instead of
G directly.

▶ Definition 9. Given input graph G = (V,E), we denote by GE = (VE , EE) the graph
obtained from replacing each edge e = (u, v) ∈ E with edges (u, xe), (xe, v) where xe is a
newly-added vertex.

Applying Theorem 8 to GE then yields Theorem 5 (we also need to slightly re-scale
parameters by constant factors).
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For most of the section, we describe the original algorithm in [22] that either outputs
G being a ψ-expander or a Õ(ψ)-sparse cut. In Section 2.1.5, we describe the necessary
adaptations to this algorithm to yield Theorem 8.

2.1.1 Sparsity via Graph Embeddings
The algorithm in Theorem 8 heavily exploits that a good ψ′-expander graph H can be used
to prove that G is a ψ-expander (or not) by embedding H into G. In the former case, we
also say that H is a witness graph. Let us formally establish this claim.

▶ Definition 10. Given two graphs H,G over the same vertex set, we say that function EH 7→G

is a graph embedding of H into G if for every edge e = (u, v) ∈ E(H), EH 7→G(e) is a u-to-v
path in G. We define the congestion of the embedding by cong(EH 7→G) = maxe′∈E(G) |{e ∈
E(H)|e′ ∈ EH 7→G(e)}|, i.e. the maximum number of occurrences of any edge in G on all
embedding paths.

▶ Theorem 11 (Folklore). Given a ψ′-expander A in H and graph embedding EH 7→G, then A

is a ψ-expander in G for ψ ≥ ψ′/cong(EH 7→G).

Proof. For any cut S, then for every edge e ∈ EH(S, V \ S), the path EH 7→G(e) must
contain at least one edge from EG(S, V \ S). But no edge in G occurs on more than
cong(EH 7→G) many such paths. Thus |EG(S, V \ S)| ≥ |EH(S, V \ S)|/cong(EH 7→G) ≥
ψ′ ·min{|S|, |V \ S|}/cong(EH 7→G) where we used that A is a ψ′-expander in H in the final
inequality. ◀

2.1.2 Computing a Witness Graph and Embedding
Theorem 11 inspires the algorithmic idea of taking a graph H that we know to be a good
expander, and embed it into G. While there are efficient and simple constructions of such
expanders H, embedding them into G turns out to be quite challenging.

The cut-matching framework constructs H over T = O(log2 m) iterations. In the t-th
iteration, the algorithm either returns a sparse cut, or finds a new perfect matching Mt

of the vertices V from Kn (the complete graph) along with an embedding EMt 7→G of Mt

into G of congestion O(1/ψ). Finally, it constructs the graph H = ∪tMt, i.e. as the
union of the matchings, and takes the embedding EH 7→G = ∪tEMt 7→G. The crux of the
cut-matching game is to choose the matchings M1,M2, . . . ,MT such that H is a 1

2 -expander
and cong(EH 7→G) = 1/(2ψ), and thus G is a ψ-expander by Theorem 11. Thus, in the t-th
iteration, the matching Mt has to be carefully chosen to make ∪i≤tMi much closer to being
an expander than ∪i<tMi. To achieve this, intuitively, S is chosen in every round to be an
almost sparse cut in ∪i<tMi.

We give the pseudo-code of the cut-matching algorithm in Algorithm 2. Here, we assume
that the number of vertices in G is even and implement FindBipartition(·) to always
produce a bipartition into equally sized sets.

Then in each iteration, given the bipartition (S, V \ S), the algorithm sets up a flow
problem on G[A] with demand d = −1S + 1V \S and uniform capacities c = 1

2ψT · 1. It then
runs a max-flow algorithm to obtain a flow f that routes the maximum amount of flow from
sources S to the sinks V \ S. If this flow f does not route d, the algorithm further finds a
min-cut (X,V \X) that is saturated as proof (i.e. all edges from X to V \X carry as much
flow as possible). Note that the sum of demands on X is at most |X|, and the min-cut needs
to route exactly the (positive) sum of demands over the cut, so the fact that it cannot be
routed through (X,V \X) for our choice of capacities implies that the cut is O(Tψ)-sparse.

ESA 2024
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Algorithm 2 CutMatchingGame(G,ψ).

1 for t = 1, 2, . . . , T do
2 (S, V \ S) = FindBipartition(M1,M2, . . . ,Mt−1).
3 Attempt to find a flow f that routes demand d = −1S + 1V \S on G with uniform

capacities 1
2ψT .

4 if the flow problem is infeasible return min-cut X (that certifies infeasibility).
5 else
6 Decompose flow f into flow-paths P1, P2, . . . , Pk.
7 Let Mt be the graph obtained by adding an edge e = {u, v} for every uv-path

Pi and set EMt
(e) = Pi.

8 return H = ∪tMt, EH 7→G = ∪tEMt 7→G.

Otherwise, i.e. if f routes the demand d, the algorithm decomposes f into source-sink
paths P1, P2, . . . , Pn/2 and adds for each u-to-v-path Pi an edge (u, v) to Mt. The embedding
EMt 7→G is defined naturally to consist of paths P1, P2, . . . , Pk. Note that Mt is a perfect
matching.

Saranurak and Wang [33] use a procedure called Unit-Flow [15] in place of max-flow.
Unit-Flow is essentially height-constrained push-relabel with minimum label selection rule,
i.e., vertices with label greater than height h need not be discharged, which leads to O(mh)
runtime. It can be shown that h = 1/ψ log(m) works, which leads to O(m/(logm · ψ))
runtime per cut-matching iteration.

2.1.3 Finding Bipartitions
It remains to give the implementation of procedure FindBipartition(M1,M2, . . . ,Mt−1)
in Algorithm 2. The main idea behind the cut-matching algorithm and its analysis is to
consider the lazy random walk suggested by the matchings M1,M2, . . . ,Mt where in the i-th
step of the random walk, each vertex u keeps half of its mass and sends the other half to its
matching partner v in Mi, i.e. {u, v} ∈Mi. Let I be the n×n-identity matrix and AMi be the
adjacency matrix of graph Mi. Let Pi = (I/2+AMi

/2)◦(I/2+AMi−1/2)◦· · ·◦(I/2+AM1/2)
be the i-th step lazy random walk matrix. We make the following observation.

▶ Observation 12. We say that Pt−1 is almost-mixing, if for every vertex u, v ∈ V , we have
1Tv Pt−11u ≥ 1/2n. If Pt−1 is almost-mixing, then H = M1 ∪M2 ∪ . . .∪Mt−1 is 1

2 -expander.

Proof. Consider any cut S in H where w.l.o.g. |S| ≤ |V \ S|. From almost-mixing and
linearity, we have that 1TV \SPt−11S ≥ |V \ S|/(2n) · |S| ≥ |S|/4, i.e. at least |S|/4 of the
probability mass that is initially placed on S is on V \ S after the (t− 1)-step lazy random
walk. But since each matrix (I/2 + AMi/2) simulating one step of the random walk is doubly
stochastic, we have that no vertex receives mass larger than 1. And since each edge (u, v) in
EH(S, V \ S) only occurs in one matching Mi, and is then used to route at most 1/2 of the
mass at u to v, we have that each such edge can transport at most 1/2 units of flow from S

to V \ S and thus, we can conclude that |EH(S, V \ S)| ≥ |S|/2. ◀

Finally, consider a random n-dimensional unit vector r orthogonal to 1 (i.e. r is a
demand). If the walk Pt−1 was already perfectly-mixing on V , i.e. 1Tv Pt−11u = 1/n for all
u, v ∈ V , then we have Pt−1r = 0. However, if Pt−1 is still far from perfectly-mixing, then
intuitively, a lot of positive demand and negative demand should get stuck on two sides of a
relatively balanced sparse cut in M1 ∪M2 ∪ . . .∪Mt−1. This informs the following algorithm.
Note that Pt−1r can be computed in O(tn) time.
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Algorithm 3 FindBipartition(A,M1,M2, . . . ,Mt−1).

1 Take u = Pt−1r for n-dimensional unit vector r orthogonal to 1.
2 Let S be the set of n/2 vertices that receive the smallest value in u (ties broken

arbitrarily).
3 return (S, V \ S).

2.1.4 Analyzing the Cut-Matching Algorithm
Finally, let us sketch the analysis of the above algorithm (assuming it does not terminate
with a sparse cut).

Let us start by defining the potential Pt =
∑
u∈V ∥1TuPt − 1/n∥2

2 measuring the gap
from mixing perfectly. Note that if Pt is not almost-mixing, then for some u, v ∈ V , we have
|1TuPt1v − 1/n| > 1/2n and thus Pt > 1/4n2. Crucially, [22] shows that for every t, we have
E[Pt−1 − Pt] = Ω(Pt−1/ logn) w.p. at least 1 − n−10. Thus, for some T = Θ(log2 m), we
have PT < 1/4n2 w.p. at least 1− n−5 and thus H is 1

2 -expander w.r.t. sparsity.
Let us sketch the proof that E[Pt−1 − Pt] = Ω(Pt−1/ logn). We define pOLDu = 1TuPt−1

and pNEWu = 1TuPt−1, the vectors where the v-th component gives the probability that the
t − 1-step walk/ t-step walk starting in v ends in u. Note that for (u, v) ∈ Mt, we have
pNEWu = pNEWv = 1

2 (pOLDu + pOLDv ). Thus, by rather straightforward calculations, one
obtains Pt−1 − Pt = 1

2
∑

(u,v)∈Mt
∥pOLDu − pOLDv ∥2

2. We use standard facts about random
projections to relate this potential drop to the projected random vector u.

▶ Theorem 13 (see [37]). If y is a vector of length ℓ in Rd, and r a random unit vector
in Rd, then E[(yT r)2] = ℓ2/d and for x ≤ d/16, we have P[(yT r)2 ≥ x · ℓ2/d] ≤ e−x/4 and
P[(yT r)2 ≤ 1

x · ℓ
2/d] ≤ e−x/4.

We can apply the second property of this theorem with x = 64 logm, to obtain that
for every (u, v) ∈ Mt, w.p at least 1 − m−11 we have uu − uv = (pOLDu − pOLDv )T r <

64 logm · ∥pOLDu −pOLDv ∥2
2/(n− 1) where we use that we work orthogonally to 1, i.e. both r

and (pOLDu − pOLDv ) are orthogonal to 1, and therefore in (n− 1)-dimensional space. Thus,

Pt−1 − Pt =
∑

(u,v)∈Mt

∥pOLDu − pOLDv ∥2
2 >

n− 1
64 logm ·

∑
(u,v)∈Mt

∥uu − uv∥2
2. (1)

Again, via simple algebraic manipulations, we obtain
∑

(u,v)∈Mt
∥uu − uv∥2

2 ≥
∑
u∈V u2

u for
Mt being a perfect matching. Finally, the analysis uses the insight that

E

[∑
u∈V

u2
u

]
=

∑
u∈V

E[((pOLDu )T r)2] =
∑
u∈V

E[(pOLDu − 1/n)T r)2] = Pt−1

n− 1 (2)

where we used 1T r = 0 in the second equality, and the first fact from Theorem 13 in the last
equality. Combining Equations 1 and 2 carefully, we obtain the claimed result.

2.1.5 The Cut-Matching Game with Balanced Cuts
Finally, to obtain Theorem 8, Algorithm 2 is adapted to work on a set of active vertices
A ⊆ V and with induced graph G[A]. Initially A = V . Then, whenever the flow problem
in Line 3 of Algorithm 2 is infeasible, the algorithm takes the min-cut X, and removes X
from A. If A becomes a balanced cut, we output it as a balanced sparse cut. Otherwise, the

ESA 2024
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algorithm finds a flow f that routes most of the demand in the flow problem, and this flow
is then used to build a matching Mt as described in the else-case starting in Line 5. Note
that Mt might only be a partial matching. Finally, this adaptation necessitates a slightly
more intricate implementation for the procedure FindBipartition. We refer the reader to
[31, 33] for a detailed description.

2.2 The Trimming Algorithm
Finally, we discuss the algorithm behind Theorem 6. First, consider the following insight.

▶ Lemma 14. Let A be ϕ-expander in G. Consider the flow problem on G[A] where each
vertex v ∈ A has demand dv = |EG(v, V \A)| · 2

ϕ − degG(v) and all edges have capacity 2/ϕ.
If the flow problem has a feasible solution f then G[A] is ϕ/6-expander.

Proof. If G[A] is not a ϕ/6-expander, then there is some cut ∅ ⊊ S′ ⊊ A such that
ΦG[A](S′) < ϕ/6. But since A is ϕ-expander in G, this implies that |EG(S′, S)| > 5

6 ·ϕvolG(S′).
Thus, we have that

∑
v∈S′ dv ≥ 5

6 · ϕvolG(S′) · 2
ϕ − volG(S′) > 4

6 volG(S′). But from
existence of f , d is routable and thus 4

6 volG(S′) units of flow are routed through the cut
EG[A](S′, A \ S′). But since each edge has capacity 2/ϕ, we have that this cut must contain
at least 2

6ϕ · volG(S′) edges, contradicting that S′ is ϕ/6-sparse in G[A]. ◀

While this gives a concrete way to certify that G[A] is ϕ-expander, we also need a strategy
to proceed when the flow is not routable. In this case, we find a maximum flow f and a
min-cut (X,A \X). Now Lemma 14 shows that G[A \X] is a ϕ/6-expander. That is because
the flow problem in Lemma 14 on A′ = A \X asks to route 2/ϕ units of flow into G[A′] via
every edge from outside A′. But such a flow is given by f [A′], i.e. by inducing f on A′ as
each edge in the min-cut is saturated and thus carries exactly 2/ϕ flow while each edge in
(A \X,X) carries no flow.

Let us finalize a proof sketch of Theorem 6. The case where G[A] is ϕ/6-expander is trivial.
Let us, therefore, analyze the second scenario where S′ = S ∪X. From the max-flow min-cut
theorem, we have that no vertex x ∈ X has sink capacity left, i.e. dv −

∑
(v,x)∈E f(v,x) ≥ 0

(where we define f(v,x) = −f(x,v)). But this implies that volG(X) ≤ |EG(A, V \A)| · 2
ϕ since

on any larger set the sum of demands is negative. From the guarantees in Theorem 5, it
follows that volG(S′) = volG(S) + volG(X) ≤ m. Further, we have that |EG(S′, V \ S′)| =
|EG(S, V \ S′)| + |EG(X,V \ S′)| ≤ |EG(S, V \ S)| since every edge in EG(X,V \ S′) is
saturated in the above flow problem, but there is only |EG(A, V \A)| · 2

ϕ source overall.
Finally, we note that again, [33] does not run a max-flow algorithm, but Unit-Flow with

h = 40 log(2m)ϕ−1. While this forces them to recurse multiple times and thus shrink A over
time, they recover the runtime by observing that each iteration can be warm-started with
the flow and labeling from the previous iteration which allows them to obtain total runtime
bound of O(m logm/ϕ).

2.3 Arvestad’s Implementation
The implementation of Arvestad [6] largely follows the expander decomposition procedure
outlined by Saranurak and Wang [33] directly, but makes two improvements. First, they
modified the bipartitioning procedure of [31] to achieve faster potential reduction in order to
reduce the number of cut-matching iterations and thus alleviate issues with imprecision in
the edge capacities. They report that this does not improve running times. Additionally, in
case a sparse cut is found, they keep running cut-matching to improve its balance, which
leads to better recursion depth.
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3 Practical Optimizations

In this section, we propose five optimizations that improve performance in practice, namely
sparse cut heuristics, a dynamic stopping criterion for cut-matching, fast few-hop flow routing,
partial flow routing and trimming with maximum flow instead of Unit-Flow. In particular,
the sparse cut heuristics lead to huge savings. An important design goal is to guarantee the
same theoretical time complexity and approximation as Saranurak and Wang.

3.1 Sparse Cut Heuristics
Our most simple and most effective technique is to try sparse cut heuristics that have
a much worse approximation guarantee (or none at all) but are much faster to compute
than the cut-matching game. If the cut S resulting from a heuristic happens to satisfy
the required approximation guarantee ΦG(S) ≤ log2(m) · ϕ, we simply take this cut and
circumvent the cut-matching game completely, resulting in substantial running time savings.
If the approximation guarantee is not satisfied, we proceed to run cut-matching, having
wasted some computation time on the heuristics. To minimize runtime losses in this case, we
choose three heuristics that are extremely fast in practice with near-linear time complexity:
Metis [19], a balanced graph partitioning algorithm, PageRank-Nibble [4], and a local search
for conductance that explores greedy vertex moves. In real-world graphs one has to make
several sparse cuts until arriving at a small enough component that could reasonably be an
expander. Moreover, most of the time is spent on these early sparse cuts when the graphs
are large, whereas proving expansion for small graphs should be much faster, rendering this
an effective technique.

3.2 Dynamic Stopping Criterion
In Algorithm 2, we perform up to T = O(log2 n) iterations of cut-matching. In previous
work, T was determined analytically/empirically. However, from Observation 12, we know
that Algorithm 2 can be terminated after the t-th iteration if the potential Pt dropped below
1/4n2. However, evaluating the potential Pt explicitly is costly as it requires evaluating a
matrix-vector product of a dense matrix and thus takes O(n2) time.

In our algorithm, we exploit that the random projected vector u = Pt−1r computed at
the beginning of the t-th iteration of the algorithm is an unbiased estimator of Pt−1, i.e.
E

[
∥u∥2

2
]

= Pt−1
n−1 (see Equation 2). Moreover, ∥u∥2

2 is extremely concentrated around the
mean. With probability at least 1− 2/e, we have that the length of u is within a factor 4 of
the mean (and probability 1− n−10 that is within factor O(logn)). Further, u is cheap to
compute.

Note that if ∥u∥2
2 is within a factor of 4 of its expectation, then we can terminate the cut

matching game if ∥u∥2
2 < 1/(16n3) as this ensures Pt−1 < 1/(4n2) which is our termination

criterion (see Section 2.1.4). But note that if ∥u∥2
2 is not within a factor of 4 of its mean, we

risk falsely certifying expansion. To remedy this situation, we sample ρ = 20 independent
vectors u1,u2, . . . ,uρ, and use the largest length as our estimate for Pt−1. Effectively, this
is probability boosting to increase confidence that ∥u∥2

2 is truly within a factor 4 of Pt−1
n−1

from 1 − 2/e to 1 − (2/e)ρ. Moreover, the number of iterations needed to converge to
∥u∥2

2 < 1/(16n3) is typically reduced by about half, compared to the constant T .
Further, if our algorithm determines that it has to take another cut-matching step t,

it can use as vector u the vector ui of largest lengths. This ensures that the decrease in
potential in this step is maximized as the decrease is lower bounded by ∥u∥2

2/(64 logm) (see
Equations 1 and 2).
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3.3 Fast Few-Hop Flow Routing
As we show later in Figure 1 in Section 4.2, flow computation with Unit-Flow is the main
bottleneck, constituting around 80% of the total running time. Due to the way the flow
problem is set up, with roughly half of the subdivision vertices as sources and half as sinks,
most of the flow can be routed along paths with few hops. This is particularly the case when
we are able to route all demands, i.e., the network is not heavily congested, in which case a
very large fraction of the flow can be routed in few hops. This is even exacerbated by the
use of sparse cut heuristics, where cut-matching is only run if we suspect there is no sparse
cut. We accelerate the flow computation by performing two iterations of the blocking flow
computation in Dinitz [14] algorithm, which constitutes pushing flow along paths with two
and (typically) four hops, respectively.

This optimization eliminates most of the push work from Unit-Flow push-relabel, however
Unit-Flow still has to perform its excruciatingly slow incremental relabeling. Therefore, we
complement our optimization with a run of global relabeling, before we route the small
remainder of the flow with Unit-Flow.

3.4 Partial Supply Routing
In addition to speeding up flow routing, we can also route a large subset but not all of the
demands in every iteration. This is helpful when the network is heavily congested and a lot
of flow is being pushed back and forth near the end of the computation. With our Partial
Supply Routing optimization, we only route a 1 − 1

4T ·C log2 n
fraction of the injected flow

in each such round. This means we are missing roughly a 1
4T ·C log2 n

fraction of edges in
each matching, which we fix by adding arbitrary fake matching edges between unmatched
subdivision vertices. After cut-matching has converged and no sparse cut was found, we
fix the error introduced by these fake matches by running a trimming flow problem. In our
experiments, we see that this strategy yields some improvement especially on the largest
graph instances.

We give a formal proof that our trimming procedure recovers the necessary guarantees
using a refinement of techniques presented in Section 2.2 as suggested in [16]. Here, we let H
be a 1

2 -expander w.r.t. sparsity found in a cut-matching algorithm and let F ⊆ E(H) be the
fake edges added throughout the process. Let EH\F 7→G be the embedding of the non-fake
edges of G into H. Define ψ = 1/2cong(EH\F 7→G).

▶ Lemma 15. Let H,G and EH\F 7→G be as above. Consider the flow problem on G where
each vertex v ∈ V has demand dv = 4 · degF (v)− 1 and all edges receive capacity 3/ψ. If the
flow problem has a feasible solution f then G is a ψ/6-expander.

Proof. Consider any cut S ⊆ V with |S| ≤ |V \ S| (by symmetry it suffices only to consider
such cuts). If |EF (S, V \ S)| < 5

6 |EH(S, V \ S)|, then the proof follows the line of reasoning
given in Theorem 11. Since H is 1

2 -expander, this implies
∑
v∈S dv ≥ 20

12 |S| − |S| > |S|/2.
Thus, if there is a feasible flow f , then the demand is routed through the cut (S, V \ S) and
thus we have at least ψ|S|/6 edges in EG(S, V \ S), as desired. ◀

Finally, note that if no feasible flow f can be found, then we can find a min-cut (X,V \X)
that certifies infeasibility. But note that the demand

∑
v∈X dv < 4T |X| because H has every

vertex of degree T (each perfect matching Mt increases the degree by 1). But this implies
that the number of edges in (X,V \X) is at most 12ψT |X| and thus the cut is O(Tψ)-sparse
w.r.t. sparsity (if |X| ≤ |V \X|). Since at most 1

4T ·C log2 n
-fraction of edges in H are fake
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edges and the degree of every vertex is T , we have that fake edges add at most n/(C log2 n)
units of flow in the above flow problem, and thus X is of size at most n/(C log2 n). We can
therefore output X as scenario 1 in Theorem 8.

Finally, we prove that G[V \X] is a ϕ/8-expander (we thus decrease the quality slightly).
We can construct a similar flow problem as above where demands are dv = 4 · (|EH(v,X)|+
degF (v))− 1 for v ∈ V \X with capacities 8/ψ. It is not hard to adapt Lemma 15 to this
case. However, this time, there exists a feasible flow f . To see this, observe that for every
edge in e ∈ EH(v,X), we can route the 4 units of demand caused by it along the embedding
path EH\F 7→G(e) ∩G[V \X]. This routes it to one of the edges in the cut (X,V \X), and
none of these edges gets more than 4/ψ units flow as congestion of EH\F 7→G ≤ ψ. But this
implies that the flow from the first flow problem instance (the one that produced (X,V \X))
can be used to route all of this flow to sinks with capacity 4

3 · 3/ψ = 4/ψ. All additional
demand was routed by the former flow as well. Thus, we have total congestion 8/ψ, half
from the flow along embedding paths, and half from the old flow slightly scaled up (by 4

3 ).

3.5 Trimming with Max Flow
As noted in Section 2.2, the trimming step could also be implemented with a single invocation
of maximum flow instead of repeatedly pruning with height-constrained min-label push-
relabel, to the detriment of theoretical efficiency. Using push-relabel with FIFO selection rule
and global relabeling, we observe that in practice, the opposite is the case. On our largest
benchmark instance we were able to reduce the running time for the trimming step from
26.5 hours to 0.7s.

Note that in most cases trimming is not needed, as the Ω(1/ log2 m) balance enforced
is small in practice, but on the instances where it is needed, trimming is extremely slow.
This is due to the large height value – for example h = 40ϕ−1 ln 2m = 722560 for our
largest benchmark instance. The theoretically near-linear runtime of Õ(mh) is thus highly
impractical. We configure trimming to run FIFO push-relabel until the amount of work
performed exceeds the work that Unit-Flow would need. Then we switch to Unit-Flow, thus
increasing the theoretical work by at most a factor two. If the flow is maximal before we
need to switch, we are finished with trimming. Otherwise, Unit-Flow continues with the
current flow assignment, as push-relabel can be warm-started.

4 Experiments

In this section, we present our experimental evaluation. First, we analyze the running time
of the different components of the expander decomposition algorithms. Then, we enable our
optimizations step by step to demonstrate how each of them improves the running time.

4.1 Experimental Setup
All experiments are performed on a 2x8-core Intel Xeon Gold 6144 Skylake CPU, clocked
at 3.5GHz with 24.75MB L3 cache and 192GB DDR4 RAM (2666 MHz). Each run is
single-threaded. We run different graphs and configurations simultaneously to save machine
time. The graph benchmark set is split into two parts. First, we use the same 64 graphs as
Arvestad [6] (which are small with m ≤ 105), referred to as set A. These are obtained from the
SuiteSparse Matrix Collection [23, 13]. Second, we use 10 larger graphs, but still considered
medium-size (m ≤ 3.5 ·107), which are referred to as set B. Set B is obtained from [25], except
for RMAT which is generated using the R-MAT model from [7]. Table 1 lists the graphs of
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Table 1 Benchmark set B.

Graph n m Graph n m

soc-Epinions1 75,879 405,740 loc-gowalla 196,591 950,327
soc-Slashdot0902 82,168 504,230 com-youtube 1,157,828 2,987,624
coAuthorsCiteseer 227,320 814,134 amazon-2008 735,323 3,523,472
web-NotreDame 325,729 1,090,108 as-skitter 1,696,415 11,095,298
RMAT 65,484 8,388,607 com-livejournal 4,036,538 34,681,189
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Figure 1 Relative running time of each algorithmic component on benchmark set A, where the
instances are sorted by total running time; Arv on the left, +Cut on the right.

set B. All experiments use ϕ = 0.001. Our implementation extends the C++ implementation
of Arvestad (https://github.com/isaacarvestad/edc) with the optimizations presented
in Section 3. Our implementation is available at https://github.com/larsgottesbueren/
practical-expander-decomposition. The configuration of existing parameters was left as
tuned in their work. We denote the baseline configuration by Arv, adding our sparse cut
heuristics by +Cut, the dynamic stopping criterion by +Dyn, using max-flow in trimming by
+MFT, few-hop routing by +FHR and partial supply routing by +PSR.

4.2 Breaking Down Running Times

In Figure 1 we break the running time of expander decomposition on the instances of the
benchmark set A down into its individual components: Bipartition (Algorithm 3), Trim
(Theorem 6), cut heuristics, and matching, which we separate into flow computation and flow
decomposition. The part of the total running time not accounted for by these components is
shown as “other”, which includes parts such as computing connected components to identify
recursive sub-problems, resetting data structures, reorganizing data in different formats and
logging statistics. For each instance of benchmark set A (x-axis) we show the fraction of
the total running time that each component takes in a stacked bar plot. The instances are
sorted by total running time.

The left plot shows the breakdown for the baseline configuration Arv. Flow computation
for matching constitutes around 80% of the total running time, and flow decomposition
another 10%. Notably, expander trimming is never used on the graphs in benchmark set
A (it is used on set B). These results indicate that the best avenue for optimization are to
speed up the flow computation or to bypass it when possible. Our +Cut optimization targets
the latter. Its runtime breakdown shown on the right of Figure 1 shows that the sparse cut
heuristics only make up a small fraction of the running time (10 - 20%). Thus, in the cases
where they fail to produce a sufficiently sparse cut, the penalty on the overall running time
is small.

https://github.com/isaacarvestad/edc
https://github.com/larsgottesbueren/practical-expander-decomposition
https://github.com/larsgottesbueren/practical-expander-decomposition
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Figure 2 Left: speedup of our configurations over Arv (median of 10 runs) with ρ = 20 on
benchmark set A, where the instances are sorted by speed up. Right: absolute per-instance running
times (in seconds, median of 10 runs).

4.3 Evaluating Optimizations on Small Graphs
Next, we test how our optimizations improve the running time on benchmark set A. We
perform 10 repetitions with different random seeds and pick the median running time. Recall
that we use ρ to denote the number of projected flow vectors used in cut-matching. We use
ρ = 20 for Arv and our configurations, but we note that on these instances Arv with ρ = 1
has similar running time. The scatter plot in Figure 2 (left) shows the speedup (y-axis) of
our versions over Arv, sorted by increasing speedup on the different instances (x-axis). We
observe that +Cut and +Dyn in combination offer substantial speedups of up to a factor of 12
and a median speedup of a factor of 3.81. On 59/64 instances +Cut+Dyn is faster than Arv,
with the smallest speedup being 0.75. On its own, +Cut is faster on 48/64 instances, with the
smallest speedup being 0.34. Notably, the other optimizations do not have an influence on
running time here. For +MFT this is expected since none of these instances require trimming.
Furthermore, for +PSR the number of fake matches we can allow is too small on benchmark
set A. This optimization becomes important on larger instances as we show later. To also
give an impression of the scale, Figure 2 (right) shows absolute running times, with Arv on
the x-axis and our optimizations on the y-axis.

4.4 Evaluating Optimizations on Medium-Sized Graphs

Table 2 Running times on the benchmark B with optimizations enabled one after another. The
best result in each row is marked in bold. Runs exceeding the two day time-limit are marked with ❃.

time [s]
Graph Arv ρ = 1 ρ = 20 +Cut +Dyn +MFT +FHR +PSR

soc-Epinions1 745 1180 1220 679 660 465 576
soc-Slashdot0902 760 1114 1030 544 547 330 522
coAuthorsCiteseer 2.77 · 104 1800 150 109 110 105 108
web-NotreDame 3530 2450 853 565 555 416 409
RMAT 9900 2.32 · 104 2.23 · 104 6530 6580 2240 2680
loc-gowalla 4.59 · 104 6110 3960 2430 2460 2170 2480
com-youtube ❃ 9.04 · 104 2.93 · 104 1.93 · 104 1.9 · 104 2.21 · 104 1.91 · 104

amazon-2008 ❃ 1.21 · 104 1360 943 925 851 912
as-skitter ❃ ❃ 1.24 · 105 8.14 · 104 8.19 · 104 7.44 · 104 6.62 · 104

com-livejournal ❃ ❃ ❃ ❃(2.8d) 1.5 · 105 1.22 · 105 1.02 · 105
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Table 3 Edge cut sizes on benchmark set B. Timeouts are marked with ❃. Note that the cut-sizes
for Arv with ρ = 1 are not representative, as this version falsely claims expansion too early in the
recursion. We see that the cut sizes for the other configurations are largely similar. Two exceptions
are com-youtube and amazon-2008; however running additional seeds (not reported here) reveals
that Arv with ρ = 20 sometimes also finds cuts in the order of 450000 and 600000, respectively.

edge cut
Graph Arv ρ = 1 ρ = 20 +Cut +Dyn +MFT +FHR +PSR

soc-Epinions1 181 206 216 216 216 204 220
soc-Slashdot0902 30 48 48 48 48 39 47
coAuthorsCiteseer 15855 101427 115691 115161 115161 115019 115306
web-NotreDame 14710 54768 73670 72882 72882 73614 72898
RMAT 0 0 0 0 0 0 0
loc-gowalla 1275 39362 37879 37903 37903 37867 37886
com-youtube ❃ 332638 459205 459118 459118 460491 455528
amazon-2008 ❃ 483325 639674 644054 640054 634426 636118
as-skitter ❃ ❃ 2229142 2205262 2205262 2210590 2210912
com-livejournal ❃ ❃ ❃ ❃(8593577) 8593577 8619813 8611120
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Figure 3 Relative fractional running time of algorithmic components with all optimizations on
benchmark set B.

After optimizing running time on the small graphs, we want to push the envelope and
compute expander decompositions on the million-scale graphs of benchmark set B. Due to
high running times, we run each configuration with one seed only. As opposed to the previous
section, we show results for Arv with ρ = 1 and ρ = 20, as we consider ρ = 1 the baseline.
Note that Arv with ρ = 1 tends to find too small cuts as it falsely certifies expansion due to
mixing flow vectors too quickly, see Table 3. We fix this by using ρ = 20 which acts as success
probability boosting, as discussed in Section 3.2. The results for running times are shown
in Table 2. We observe that our optimizations again consistently achieve good speedups,
with the largest speedup being 263.8 over Arv with ρ = 1 on coAuthorsCiteseer and > 203
on amazon-2008. Moreover, Arv with ρ = 1 times out on the four largest instances, and
ρ = 20 still times out on the two largest graphs as-skitter and com-livejournal, whereas
our fastest configuration takes around one day. We also ran Arv on com-livejournal for
three weeks, at which point not a single cluster was finalized.

On com-livejournal 94.3% of runtime spent in cut-matching went towards finding
sparse cuts, not expanders. On the other hand, the fraction of the total runtime attributed
to sparse cut heuristics is only around 5%. Moreover, as shown in Figure 3 cut-matching is



L. Gottesbüren, N. Parotsidis, and M. P. Gutenberg 61:15

still the biggest bottleneck, even more so on large graphs. A good next direction is thus to
expand the portfolio with more aggressive and potentially slower cut-heuristics, that will let
us bypass cut-matching more often.

5 Conclusion

In this paper we explored the algorithm engineering space of algorithms for computing the
expander decomposition of graphs. We proposed practical optimizations that speed up the
Saranurak-Wang framework by up to two orders of magnitude, and that allow processing
graphs with tens of millions of edges within reasonable time. We believe that a fast practical
expander decomposition algorithm is an important milestone in making recent algorithmic
breakthroughs for several fundamental problems efficient and scalable in practice.

Future directions in this line of work include both implementing the algorithms that
use expander decomposition as a core component (e.g., max flow, min-cost flow, global
min-cut, etc), as well as further speeding up the computation of expander decomposition.
Regarding the latter, apart from parallelization, our work indicates that exploring stronger
cut heuristics and further exploiting the flow problem structure is very promising to obtain
further significant speedups.
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