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Abstract
We study the optimal provision of information for two natural performance measures of queuing
systems: throughput and makespan. A set of parallel links (queues) is equipped with deterministic
capacities and stochastic offsets where the latter depend on a realized state, and the number of states
is assumed to be constant. A continuum of flow particles (agents) arrives at the system at a constant
rate. A system operator knows the realization of the state and may (partially) reveal this information
via a public signaling scheme to the flow particles. Upon arrival, the flow particles observe the signal
issued by the system operator, form an updated belief about the realized state, and decide on which
link they use. Inflow into a link exceeding the link’s capacity builds up in a queue that increases the
cost (total travel time) on the link. Dynamic inflow rates are in a Bayesian dynamic equilibrium
when the expected cost along all links with positive inflow is equal at every point in time and not
larger than the expected cost of any unused link. For a given time horizon T , the throughput induced
by a signaling scheme is the total volume of flow that leaves the links in the interval [0, T ]. The
public signaling scheme maximizing the throughput may involve irrational numbers. We provide an
additive polynomial time approximation scheme (PTAS) that approximates the optimal throughput
by an arbitrary additive constant ε > 0. The algorithm solves a Lagrangian dual of the signaling
problem with the Ellipsoid method whose separation oracle is implemented by a cell decomposition
technique. We also provide a multiplicative fully polynomial time approximation scheme (FPTAS)
that does not rely on strong duality and, thus, allows to compute the optimal signals. It uses
a different cell decomposition technique together with a piecewise convex under-estimator of the
optimal value function. Finally, we consider the makespan of a Bayesian dynamic equilibrium which
is defined as the last point in time when a total given value of flow leaves the system. Using a
variational inequality argument, we show that full information revelation is a public signaling scheme
that minimizes the makespan.
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1 Introduction

Imagine you are managing an airport with several security lanes: Should you inform the
passengers about the current state of the system in order to maximize its performance? On
the one hand, informing passengers about less congested lanes may reduce queue times, but
on the other hand it may lead to inefficiencies if lanes with delays remain underutilized.

In this paper, we study this question using the framework of Bayesian persuasion for
a dynamic queuing model first studied (in a more basic and deterministic setting) by
Vickrey [29].

Specifically, we consider a set [m] := {1, . . . , m} of parallel links. The state of each link
is stochastic and depends on a realized state θ ∈ Θ where d := |Θ| is constant. First, each
link i has a state-independent capacity νi ∈ Q>0. Second, each link i has an offset (free-flow
travel time) bi,θ ∈ R≥0 that depends on the realized state θ. Initially, the links have no
queues. A steady flow of infinitesimally small agents arrives at the links with a constant
inflow rate of u ∈ Q>0. Upon arrival, each of the flow particles chooses a link leading to an
inflow rate of fi(t) into each link i for all times t. When at some time t the inflow rate fi(t)
into a link i exceeds its capacity νi, a queue forms at link i at a rate of fi(t) − νi. When
at some time t the inflow rate into a link i is less than the capacity νi and the link has a
queue, the queue depletes at a rate of νi − fi(t). This queuing dynamics lead to uniquely
defined queue lengths zi(t). The cost of a flow particle that arrives at the system at time t

and chooses link i when the realized state is θ is given by ci,θ(t) = zi(t)
νi

+ bi,θ.
The flow particles, however, do not know the realized state θ and, instead, form stochastic

beliefs about the state of the system. A belief is a vector µ = (µ1, . . . , µd)⊤ ∈ [0, 1]d such
that

∑
θ∈Θ µθ = 1 and µθ is the (anticipated) probability that state θ is realized. In the

following, we denote by ∆ the set of all such beliefs. All flow particles have initially a true
prior belief µ∗ = (µ∗

1, . . . , µ∗
d)⊤ ∈ ∆, e.g., from previous observations of the system. If the

flow particles do not receive any further information on the state of the system, they each
choose a link that minimizes their expected delay (where the expectation is taken according
to the prior belief µ∗), i.e., when arriving at time t they choose a link i that minimizes∑

θ∈Θ µ∗
θbi,θ + zi(t)/νi. We say that a vector of inflow functions f = (fi(·))i∈[m] is a dynamic

equilibrium (with respect to the belief µ∗) if this property of the particles’ behavior is satisfied
for almost all t.

The operator of the system, however, knows the realized state and, hence, the travel times
of the links and can determine in how far this information should be shared with the flow
particles. To this end, the system operator commits to a public signaling scheme Φ. Such a
signaling scheme consists of a finite set of signals Σ, as well as probabilities (φθ,σ)θ∈Θ,σ∈Σ
where φθ,σ is the combined probability that state θ is realized and signal σ is issued. Since
the prior belief µ∗

θ represents the true probability that state θ is realized, we have the
constraint

∑
σ∈Σ φθ,σ = µ∗

θ for all θ ∈ Θ. When arriving at the system, the flow particles
observe the issued signal σ (but not the realized state θ) and perform a Bayesian update
of their belief. In particular, after having received signal σ, their posterior belief is given
by µσ = (µσ

1 , . . . , µσ
d )⊤ ∈ [0, 1]d defined as µσ

θ = φθ,σ/
∑

θ′∈Θ φθ′,σ. After this Bayesian
update, the flow particles choose a link i that minimizes the updated expected delays given
by
∑

θ∈Θ µσ
θ bi,θ + zi(t)/νi. It is a standard observation in the field of Bayesian persuasion

that there is a one-to-one correspondence between public signaling schemes and convex
decompositions of the prior µ∗ (Kamenica and Gentzkow [20]). Specifically, every public
signaling scheme yields posterior beliefs (µσ)σ∈Σ as well as corresponding probabilities
φσ :=

∑
θ∈Θ φθ,σ that signal σ is issued such that µ∗ =

∑
σ∈Σ φσµ

σ. Conversely, for every



S. M. Griesbach, M. Klimm, P. Warode, and T. Ziemke 62:3

such (finite) convex decomposition of the prior, there is a corresponding public signaling
scheme with a finite set of signals such that the updated beliefs (after receiving one of the
signals) correspond exactly to the beliefs in the convex decomposition.

Suppose, for each belief µ ∈ ∆ there is a unique way to choose a corresponding dynamic
equilibrium f(µ). Further assume, the system operator aims to maximize a certain functional
H(f) of the flow vector f . Then, a natural question is to find the public signaling scheme
that optimizes the expected value of the functional of the resulting dynamic equilibrium.
Using the one-to-one correspondence of public signaling schemes and convex decompositions
of the prior, this can be phrased as

sup
{∑

σ∈Σ
φσ H

(
f(µσ)

)
: |Σ| < ∞, φσ ∈ [0, 1],µσ ∈ ∆ for all σ ∈Σ and

∑
σ∈Σ

φσµ
σ =µ∗

}
. (1)

Our Results and Techniques. We study the generic optimization problem (1) for two natural
objectives of a system operator. First, we study the objective of maximizing the expected
throughput of a system. Informally, for a given time horizon T ∈ Q>0, the throughput is
the amount of flow that has left the links up to time T . The full version of this paper
contains an example exhibiting that the signaling scheme maximizing the throughput may
involve irrational numbers, even though all input numbers are rational. To avoid the issue
of representing irrational numbers with finite precision, we resort to approximating the
maximum achievable throughput by public signaling schemes. To this end, we first provide
an additive polynomial-time approximation scheme (PTAS), i.e., for any ε > 0, we provide
an algorithm that runs in polynomial time for constant |Θ| and computes a value p such
that p ∈ [Opt − ε, Opt], where Opt is the maximal throughput that can be achieved by
public signals (Theorem 9). We stress that, unlike other PTAS for signaling (e.g., [4, 9]), we
do not require that the functional is normalized, i.e., that ||H||∞ = 1.

To prove the result, we consider a Lagrangian dual of the primal signaling problem and
show that strong duality holds. The proof of strong duality is non-trivial since the objective
of the primal is non-convex and non-concave such that standard constraint qualifications
such as Slater’s cannot be applied. Duality has been used before in the context of signaling
by Bhaskar et al. [4], but they use standard linear programming duality for an approximate
version of the primal problem such that they can only show a (small) bound on the duality
gap. Our dual signaling problem has a finite number of variables but an uncountable number
of constraints. Yet, we are able to show that the separation problem for the dual signaling
problem is solvable in polynomial time. To this end, we show that the separation problem
for the dual can be reduced to finding the global maximum of a piecewise quadratic function
whose quadratic parts have a polytopal domain. Using a cell decomposition technique
together with the reverse search algorithm by Avis and Fukuda [2] allows to compute the
global maximum exactly, thus, solving the separation problem. Finally, we use the Ellipsoid
method and the equivalence of optimization and separation to obtain the result.

While the additive PTAS yields a compelling approximation of the optimal throughput
achievable by signaling, it does not allow to compute the corresponding signals. The
underlying reason is that the approximately optimal dual solution obtained by the Ellipsoid
method does not seem to provide any useful information on how approximately optimal primal
solutions may look like. To close this gap, we propose a fully polynomial-time approximation
scheme (FPTAS) for constant |Θ| with a multiplicative approximation guarantee that allows
to compute the corresponding signals (Theorem 16). For the multiplicative FPTAS, again a
main issue is that the objective is a non-convex and non-concave function on the space of
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beliefs ∆. We propose a non-uniform discretization of ∆ that leads to a piecewise affine under-
estimator of the objective. By controlling the approximation error of the under-estimator, we
are able to compute signals such that the expected throughput Alg achieved by the signals
satisfies Alg ≥ (1 − ε)Opt.

The second objective that we study is the expected makespan. For a given time horizon
T ∈ Q>0, the makespan is the latest point in time a flow particle that departed in the
time interval [0, T ] leaves the system. To analyze optimal signaling for the minimization of
the makespan, we show a general property for dynamic equilibria. Suppose we are given a
system with a vector of deterministic offsets b = (be)e∈E . Further, let b′ = (b′

e)e∈E be a
vector of (potentially different) deterministic offsets and let f(b′) be a dynamic equilibrium
where particles act as if the travel times were b′. Then, we show that the makespan of the
dynamic equilibrium f(b′) is minimized when b′ = b (up to constant shifts). This implies in
particular that full information revelation is always an optimal signaling scheme for makespan
minimization (Theorem 21).

Related Work. Optimal signaling for congestion-prone systems is primarily studied in
Wardrop’s static equilibrium model (e.g., [1, 13, 23, 22, 28, 30]). For the Wardrop model with
affine costs, Bhaskar et al. [4] showed that it is NP-hard to compute a public signaling scheme
that approximates the total travel time better than a factor of 4/3. Griesbach et al. [17]
proved that optimal information revelation is always optimal if and only if the underlying
network is series-parallel and provided an algorithm computing the optimal public signaling
scheme for parallel links when the number of states and commodities is constant. For atomic
congestion games, Castiglioni et al. [8] studied information design, but considered a different
model where players commit to following the signal before they receive it. Zhou et al. [32]
computed public and private signals in singleton games with a constant number of resources.

A cell decomposition related to ours has been used in the context of information design
by Xu [31]. In contrast to our work, their model features receivers with a binary choice only.
In addition, in the work of Xu it is assumed that the utility of a receiver does not depend
on the actions of other agents. Also the meaning of the cells in the decomposition is quite
different. In Xu’s work in a cell the response of the receivers is constant whereas in our cells
a certain ordering of the links with respect to the equilibrium flow is constant.

The dynamic flow model that we use here dates back to Vickrey [29]. It has been
studied in more detail, e.g., by Koch and Skutella [21] and Cominetti et al. [10]. Koch
and Skutella [21] also showed that the price of anarchy with respect to the throughput
objective, i.e., the worst-case ratio of the throughput of an arbitrary dynamic flow and that
of a dynamic equilibrium, is unbounded on general networks. For the makespan objective,
Bhaskar et al. [5] showed that the price of anarchy is e/(e − 1) when one is allowed to reduce
the capacity of the links arbitrarily (but still compares to the optimal flow for the original
capacities). Correa et al. [12] showed that this bound on the price of anarchy also holds
when the inflow rate at the source can be reduced. For parallel link networks (as considered
in this work), they showed that the price of anarchy is 4/3. For both objectives, bounds
on the price of anarchy are relevant for information design since, if they exist, they yield
an approximation guarantee for the signaling scheme of full information revelation. The
long-term behavior of dynamic equilibria in this model has been explored (see [11, 24]). Also,
further variants of the model with multiple commodities, more complicated queuing behavior,
or further side constraints have been studied (e.g., [16, 19, 26, 27]), but they do not have
any implications for mechanism or information design. Graf et al. [15] study a model where
users use machine learning to predict future traffic states, and compare different predictors
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empirically. Oosterwijk et al. [25] study a dynamic model on parallel paths where players
need to meet a certain time deadline and try to minimize the costs of the used links. They
obtain tight bounds on the price of anarchy both for the makespan and the throughput
objective.

2 Preliminaries

For an integer m ∈ N, let [m] := {1, . . . , m} and [m]0 := {0, . . . , m}. For x ∈ R, we denote
by [x]+ := max{x, 0} the positive part and by [x]− := min{x, 0} the negative part of x. We
denote vectors and matrices with bold face and assume that all vectors are column vectors.
Further, ei denotes the i-th unit vector, 1 the all-ones vector, and 0 the all-zeros vector
(of the appropriate dimension). We first introduce the dynamic equilibrium model with
deterministic travel times and then turn to the dynamic equilibrium model with stochastic
travel times.

Dynamic Equilibrium with Deterministic Travel Times. Consider a set [m] of parallel
links where each link i ∈ [m] has a capacity νi ∈ Q>0 and a constant offset (free-flow travel
time) bi ∈ Q≥0. There is a continuum of flow particles arriving at the links with a constant
rate of u ∈ Q>0. A dynamic flow is a family of measurable functions f = (fi)i∈[m] with
fi : R≥0 → R≥0 satisfying

∑
i∈[m] fi(t) = u for almost all times t ≥ 0. The value fi(t)

describes the inflow into link i at time t. Each link operates with the following queuing
dynamics: if the inflow into a link i is higher than its capacity νi, a queue builds up. Particles
in the queue are processed with rate νi. After passing the queue, it takes an additional
amount of time bi to traverse the link. We denote by zi(t) the length of the queue at any
given time t ≥ 0. The queue dynamics are described via the differential equation

z′
i(t) =

{
fi(t) − νi if zi(t) > 0,

[fi(t) − νi]+ if zi(t) = 0.
(2)

A flow particle that enters link i at time t waits for time zi(t)
νi

in the queue and then
experiences a free-flow travel time of bi. Therefore, the cost of a flow particle entering link i

at time t is ci(t) := zi(t)
νi

+ bi and thus its exit time (total cost) is Ci(t) := t + zi(t)
νi

+ bi. A
flow is a dynamic equilibrium if almost all particles have no incentive to deviate to a different
link, i.e., if ci(t) = minj∈[m] cj(t) for all i ∈ [m] with fi(t) > 0 for almost all t ≥ 0. A link
i with minimal cost ci(t) at time t is called active and we denote the set of active links at
time t by A(t) :=

{
i ∈ [m] : ci(t) = minj∈[m] cj(t)

}
. In general, the dynamic equilibrium may

not be unique, but the exit times and the set of active links are (cf. [10, 24]). Further, we
refer to the set of links with positive inflow at time t as the support of the flow and denote it
by S(t) :=

{
i ∈ [m] : fi(t) > 0

}
. For a given time horizon T > 0, the throughput of a flow f

is defined as FT (f) :=
∫ T

0
∑

i∈[m] f−
i (t) dt, where f−

i (t) is the outflow of link i at time t that
can be computed as

f−
i

(
t + bi

)
=
{

min{fi(t), νi} if zi(t) = 0, and
νi if zi(t) > 0.

For a given time horizon T > 0, the makespan of a flow f is defined as MT (f) := sup
{

Ci(t) :
t ∈ [0, T ], i ∈ S(t)

}
.
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62:6 Optimizing Queuing Systems by Information Design

Bayesian Dynamic Equilibrium with Stochastic Travel Times. Consider a set Θ of states
with d := |Θ|. We assume that the offsets bi,θ ∈ Q≥0 of each link i ∈ [m] depend on the
state θ ∈ Θ, and write bi = (bi,θ)θ∈Θ. The capacities νi ∈ Q>0 are independent of the state.
Every belief µ ∈ ∆ essentially induces a system with stochastic offsets by replacing the
deterministic offsets bi with its expectation µ⊤bi. With a slight overload of notation, we
use the same notation for deterministic and stochastic offsets. In particular, the expected
cost of a flow particle entering link i at time t is ci(t) := zi(t)

νi
+ µ⊤bi and thus its expected

exit time (expected total cost) is Ci(t) := t + zi(t)
νi

+ µ⊤bi. The exit time of a flow particle
entering link i at time t when state θ is realized is Ci,θ(t) := t + zi(t)

νi
+ bi,θ. We call a flow f

a Bayesian dynamic equilibrium if ci(t) = minj∈[m] cj(t) for all links i ∈ [m] with fi(t) > 0.
For a fixed time horizon T > 0, the throughput of a flow f in state θ ∈ Θ is defined as
FT,θ(f) :=

∫ T

0
∑

i∈[m] f−
i,θ(t) dt where the outflow of link i at time t in state θ is

f−
i,θ(t) =


min{fi(t − bi,θ), νi} if t − bi,θ ≥ 0 and zi(t − bi,θ) = 0,

νi if t − bi,θ ≥ 0 and zi(t) > 0
0 else.

The expected throughput of a flow f (according to belief µ) is then given by FT (f) :=∑
θ∈Θ µθFT,θ(f). For a time horizon T > 0 and a state θ, the makespan of a flow f in state θ

is defined as MT,θ(f) := sup
{

Ci,θ(t) : t ∈ [0, T ], i ∈ [m] with fi(t) > 0} and the expected
makespan is then MT (f) :=

∑
θ∈Θ µθMT,θ(f).

Information Design. We assume flow particles to have a prior belief µ∗. There is a one-
to-one correspondence between public signaling schemes and convex decompositions of the
prior, and – due to Caratheodory’s Theorem – the convex decomposition requires at most d

signals [14, 20]. We note that for a belief µ, the corresponding Bayesian dynamic equilibrium
may not be unique. We here assume that in case multiple equilibria exist, we choose the
one that yields in expectation the best objective for the system designer; this is a standard
assumption in the information design literature and is, e.g., justified since the information
designer may signal the best equilibrium play, see also the discussion by Bergemann and
Morris [3]. Formally, for the throughput objective, for a fixed time horizon T , let us define
F : ∆ → R≥0 be the expected throughput of a Bayesian dynamic equilibrium for belief µ
that maximizes the throughput among all such equilibria. To compute the public signaling
scheme that maximizes the expected throughput, we are interested in solving

sup
{∑

σ∈Σ
φσF (µσ) : |Σ| ≤ d, φσ ∈ [0, 1],µσ ∈ ∆ for all σ ∈ Σ such that

∑
σ∈Σ

φσµσ = µ∗

}
.

Similarly, for a fixed time horizon T , let us define M : ∆ → R≥0 as the expected makespan
of a Bayesian dynamic equilibrium for belief µ that minimizes the makespan among all such
equilibria. To compute the public signaling scheme that minimizes the expected makespan,
we are interested in solving

inf
{∑

σ∈Σ
φσM(µσ) : |Σ| ≤ d, φσ ∈ [0, 1],µσ ∈ ∆ for all σ ∈ Σ such that

∑
σ∈Σ

φσµσ = µ∗

}
.

Before we proceed with the structural results we give an example for the throughput and the
makespan objective.
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▶ Example 1 (Throughput maximization). We consider an example for the throughput
objective. The instance consists of m = 2 edges, |Θ| = 2 states, and a time horizon T = 5.
The edges have capacities ν1 = 1

3 and ν2 = 2
3 and the offsets depend on the two states θ1, θ2

with b1 = (1, 5)⊤ and b2 = (4, 3)⊤. The arrival rate is set to u = 1 and the instance is
depicted in Figure 1a.

The throughput function F is shown in Figure 1b. It is a continuous piecewise quadratic
function over the set of beliefs µ ∈ [0, 1], where µ := µθ2 indicates the probability of state θ2
being realized. The function F has two breakpoints at µ ∈

{ 1
5 , 3

5
}

. For µ ∈
[
0, 1

5
)
, the upper

edge e1 has a lower expected offset and, thus, the first flow particles only use edge e1. Since
the inflow rate u exceeds the capacity ν1, a queue starts to build up, increasing the cost
of edge e1. Thus, at some point, flow particles start deviating to the lower edge e2. With
increasing µ, flow particles start to deviate earlier in time to edge e2 as its expected offset
decreases in µ while the expected offset of edge e1 increases. For µ = 1

5 , it is guaranteed,
that the first particle, that deviates to edge e2 will leave the queuing system before time
horizon T no matter which state is realized. Hence, for µ ∈

[ 1
5 , 3

5
]
, the throughput increases

linearly in µ. For µ = 3
5 , both edges have the same expected offset and, thus, both edges

are used from the very first point in time. This results in the maximization of the total
throughput F . For µ ∈

( 3
5 , 1
]
, the first flow particles use only edge e2 until a sufficiently

large queue has built up such that the cost of edge e2 equals the offset of edge e1. Hence,
flow particles deviate to edge e1.

Additionally, Figure 1b depicts two convex decompositions of a prior µ∗ with the posterior
beliefs µ1, µ2, µ3 and µ̃1, µ̃2. The signaling scheme inducing the three posterior beliefs µi

is an optimal signaling scheme. The signaling scheme inducing the two posterior beliefs
µ̃i corresponds to full information revelation and is suboptimal. The dashed lines give the
expected throughput that can be achieved if the respective signaling scheme is used. ◀

ν1 = 1
3 b1 = (1, 5)⊤

ν2 = 2
3 b2 = (4, 3)⊤

u = 1

(a)

µ

F5(µ)

1µ∗ 3
5

0

µ̃1 µ̃2

µ1

µ2

µ3

(b)

Figure 1 The illustration of Example 1 for the throughput objective. (a) The instance with
m = 2 edges and 2 states θ1, θ2 in red and blue. (b) The throughput function F5(µ) for T = 5 of
the dynamic equilibrium as a function of the belief described by parameter µ := µθ2 ∈ [0, 1]. The
throughput in state θ1, i.e., µ = 0, is shown in red and the throughput in state θ2, i.e., µ = 1, is
shown in blue. Full information revelation with posterior beliefs µ̃1 and µ̃2 in green is not optimal;
a signaling scheme in orange incorporating the indifference point at µ2 = 3

5 is optimal.

▶ Example 2 (Makespan minimization). We consider an example for the makespan objective.
The instance consists of m = 3 edges, |Θ| = 2 states, and a time horizon T = 1

2 . The edges
have capacities ν1 = 1

2 , ν2 = 1
3 , and ν3 = 1

2 , and the offsets depend on the two states θ1, θ2
with b1 = (0, 5)⊤, b2 = (1, 1)⊤, and b3 = (4, 0)⊤. The arrival rate is set to u = 1 and the
instance is depicted in Figure 2a.
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ν1 = 1
2 b1 = (0, 5)⊤

ν2 = 1
3 b2 = (1, 1)⊤

ν3 = 1
2 b3 = (4, 0)⊤

u = 1

(a)

µ

M 1
2

(µ)

1µ∗0

µ1 µ2

µ̃1

µ̃2

(b)

Figure 2 The illustration of Example 2 for the makespan objective. (a) The instance with
m = 3 edges and 2 states θ1, θ2 in red and blue. (b) The makespan function M 1

2
(µ) for T = 1

2 of
the dynamic equilibrium as a function of the belief described by parameter µ := µθ2 ∈ [0, 1]. The
makespan in state θ1, i.e., µ = 0, is shown in red and the throughput in state θ2, i.e., µ = 1, is
shown in blue. Full information revelation with posterior beliefs µ1 and µ2 in orange is an optimal
signaling scheme; the other signaling scheme with posterior beliefs µ̃1 and µ̃2 in green is suboptimal.

The makespan function M is shown in Figure 2b. It is a piecewise quadratic function
over the set of beliefs µ ∈ [0, 1], where µ := µθ2 indicates the probability of state θ2 being
realized. The function M has six breakpoints at µ ∈

{ 1
10 , 1

5 , 2
5 , 1

2 , 3
4 , 7

8
}

. Roughly speaking,
M is continuous at a breakpoint, if the order in which edges are chosen by the flow particles
change. In contrast to this, M is not continuous at a breakpoint, if the last flow particle
entering the queuing system is indifferent between two edges and thus the makespan cannot
be uniquely defined. In fact, the makespan depends on which edge the last particle chooses.
In more detail, for µ ∈

[
0, 1

10
)
, all flow particles use the upper edge e1. Since the inflow rate

u = 1 into edge e1 exceeds its capacity, a queue builds up and, hence, M grows linearly in µ.
When µ = 1

10 , the last particle entering the queuing system is indifferent between choosing
edge e1 and the middle edge e2. However, choosing edge e2 increases the makespan MT,θ1 for
state θ1 from 1 to 3

2 , resulting in an immediate increase in the makespan MT (f) and, thus,
in a discontinuity point. With increasing µ, the flow particles start to deviate from edge e1
to edge e2 earlier in time. When µ = 1

5 , already the very first particle entering the queuing
system is indifferent between edges e1 and e2. Thus, for µ ∈

( 1
5 , 2

5
)
, the first flow particles

use edge e2 and only later in time, particles start to deviate to edge e1. For µ = 2
5 , the

expected offset of edge e1 is sufficiently large, such that the last particle entering the queuing
system is the first particle indifferent between edges e1 and e2. In contrast to the case when
µ = 1

10 , this now results in an immediate decrease of the makespan. For µ ∈
( 2

5 , 1
2
)
, all

flow particles use edge e2. Since the offset of edge e2 is deterministic, this gives a constant
makespan for µ ∈

( 2
5 , 1

2
)
. We can make similar observations for the remaining values of µ.

In short, for µ ∈
( 1

2 , 3
4
)
, flow particles start by using edge e2 and then deviate to the lower

edge e3 later in time. For µ ∈
( 3

4 , 7
8
)
, flow particles start by using edge e3 and then deviate

to edge e2 later in time. Finally, for µ ∈
( 7

8 , 1
]
, all flow particles only use edge e3.

Additionally, Figure 2b depicts two convex decompositions of a prior µ∗ with posterior
beliefs µ1, µ2 and µ̃1, µ̃2. The signaling scheme inducing the posterior beliefs µ1, µ2 cor-
responds to full information revelation and is optimal. The signaling scheme inducing the
posterior beliefs µ̃1, µ̃2 corresponds to a suboptimal signaling scheme. The dashed lines give
the expected makespan if the respective signaling scheme is used. ◀
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3 Structural Results

In this section, we develop explicit formulas for the Bayesian dynamic equilibrium flows
maximizing that maximizes the expected throughput or minimizes the expected makespan.
Before we obtain these results for stochastic travel times, we first develop explicit formulas
for the dynamic equilibria for deterministic travel times.

Deterministic Travel Times. In this section, we consider deterministic offsets and construct
a flow f that is a dynamic equilibrium. In general, the dynamic equilibrium may not be
unique. However, the exit times Ci and, thus, also the set of active links A are the same
for any dynamic equilibrium (cf. [10, 24]). We assume for now that the links are ordered
by their offsets, i.e., b1 ≤ · · · ≤ bm. We denote by ν̄(i) :=

∑
j∈[i] νj the sum of the first i

capacities, where ν̄(0) := 0. We define points in time t∗
i for i ∈ [m] recursively as t∗

1 = 0 and

t∗
i+1 =

{
t∗
i + ν̄(i)

u−ν̄(i) (bi+1 − bi) if ν̄(i) < u,

∞ if ν̄(i) ≥ u,
for i = 1, . . . , m − 1. (3)

As we will show, the time t∗
i is the point in time when link i becomes active. More precisely,

link i is in the support for all times t > t∗
i . Let

k := max
{

j ∈ [m] : ν̄(j) < u
}

(4)

be the maximum index of a link such that the total capacities up to that link are strictly
less than the inflow rate u of the instance. Hence, links 1 to k + 1 suffice to handle the total
inflow of u, and thus, we have t∗

i = ∞ for all i > k + 1. For every i ∈ [m], we define an inflow
function fi : R≥0 → R≥0 by

fi(t) :=


u

ν̄(j) · νi if i ≤ k and t ∈ (t∗
j , t∗

j+1], j = i, . . . , k

νi if i ≤ k and t > t∗
k+1,

u − ν̄k if i = k + 1 and t > t∗
k+1,

0 otherwise,

(5)

where t∗
m+1 = ∞. Note that the inflow defined in (5) depends on the values t∗

i , which, in
turn, depend on the offsets bi. We proceed by showing that this flow is indeed a dynamic
equilibrium. For the proof, we simply check the dynamic equilibrium conditions. This proof
and all other missing proofs are deferred to the full version.

▶ Lemma 3. Let f = (fi)i∈[m] be the flow defined in (5). Then,
1. the flow f is a feasible flow with queue lengths

zi(t) =


νi

(
u − ν̄(|S(t)|)

ν̄(|S(t)|)

(
t+

|S(t)|∑
j=1

u νj bj

(u−ν̄(j))(u−ν̄(j − 1))

)
−bi

)
if t∗

i < t ≤ t∗
k+1, i ≤ k,

νi

(
bk+1 − bi

)
if t∗

k+1 < t, i ≤ k,

0 otherwise;

2. the flow f is a dynamic equilibrium;
3. the queue length zi(t) on link i is continuous in b;
4. the queue lengths zi(t) are non-increasing in bi and non-decreasing in bj for j ̸= i. If

i ≤ k and t∗
i < t, then zi(t) is strictly decreasing in bi. If, additionally, j ≤ k and t∗

j < t,
then zi(t) is strictly increasing in bj.
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Stochastic Travel Times. In this subsection, we obtain structural results for the dynamic
equilibrium f as a function of the belief µ ∈ ∆. For a belief µ ∈ ∆, let τb(· ;µ) : [m] → [m]
be an arbitrary permutation of the links that orders them non-decreasingly by their expected
offsets (according to the belief µ), i.e., µ⊤bτb(1;µ) ≤ · · · ≤ µ⊤bτb(m;µ). Analogously to the
deterministic case (3), the times t∗

τb(i;µ) when the edges become active can be computed in
dependence of µ as t∗

τb(1;µ)(µ) = 0 and

t∗
τb(i+1;µ)(µ) =

t∗
τb(i;µ) + ν̄(i;µ)

u − ν̄(i;µ) µ
⊤(bτb(i+1;µ) − bτb(i;µ)

)
if ν̄(i;µ) < u,

∞ if ν̄(i;µ) ≥ u,
(6)

for all i = 1, . . . , m − 1, where ν̄b(i;µ) :=
∑

j∈[i] ντb(j;µ) is the total capacity of the i links
used first, depending on the belief µ.

We note that the ordering τb(·;µ) need not be unique since there is a degree of freedom
in how to order links that have the same expected offsets. Every ordering will result in a
corresponding Bayesian dynamic equilibrium, but the ordering may influence the expected
throughput or makespan of the system. For the throughput objective and a given belief
µ ∈ ∆, we first compute an arbitrary ordering τb(·;µ) by non-decreasing expected offsets
and obtain values t∗

τb(·;µ). Assume that two links i, i + 1 ∈ [m] have the same expected
offset, then using (6) we have t∗

τb(i;µ) = t∗
τb(i+1;µ). We reorder them non-increasingly by their

contribution to the throughput objective, i.e., we assume that

µ⊤[1(T − t∗
τb(i;µ)) − bτb(i;µ)]+ ≥ µ⊤[1(T − t∗

τb(i+1;µ)) − bτb(i+1;µ)]+

whenever µ⊤bτb(i;µ) = µ⊤bτb(i+1;µ) for all i ∈ [m − 1]. Intuitively, the contribution of
a link i in state θ is the total time span in which flow using link i exits the system in
state θ, i.e., [T − t∗

i − bi,θ]+. We then take the sum over all states of the state-dependent
timespan multiplied with the probability µθ that this state is realized. Like this, we obtain an
ordering such that the corresponding Bayesian dynamic equilibrium maximizes the expected
throughput among all such equilibria. In particular, we consider the equilibrium flow f
with respect to the given belief µ, i.e., f is the flow defined in (5) with respect to the
offsets µ⊤bi. For the capacity ν̄b(i;µ) of the first i links used by the dynamic equilibrium
flow f for a given belief µ, we simply write ν̄b(i), if µ is clear from context. Further, we set
kb := max{i ∈ [m]0 : ν̄b(i) < u}.

For the makespan objective, there does not seem to be an explicit formula for the ordering
that minimizes the expected makespan. However, all our results for the makespan objective
hold regardless of which ordering in the case of identical expected offsets is selected and,
thus, which equilibrium emerges.

We are interested in partitioning the set of beliefs ∆ into subsets such that the ordering
of the links by expected offsets is fixed within each subset. A naive bound on the number
of these sets is m!, but this bound is not sufficient for us since our algorithms will iterate
over these sets. To obtain a better bound, we will resort to the theory of hyperplane
arrangements. To this end, for every pair of links i, j ∈ [m] with i < j, we define by
Hi,j :=

{
µ ∈ Rd : µ⊤bi = µ⊤bj

}
the (possibly empty) hyperplane containing all µ such that

the expected offsets on links i and j are the same. Then, H :=
{

Hi,j : i, j ∈ [m] with i < j
}

is an arrangement of |H| = m(m−1)
2 linear hyperplanes in Rd (where we allow that one or

more of the hyperplanes are empty). The hyperplanes of the arrangement H partition ∆ into
a number of open regions whose closures are called the (d − 1)-cells of the arrangement, i.e.,
the (d − 1)-cells are the closures of the maximal connected subsets of ∆ \

⋃
i,j∈[m],i<j Hi,j .

Every (d − 1)-cell is a polyhedron in ∆. For k ∈ {0, . . . , d − 1}, a k-cell of the arrangement
is a k-dimensional face of one of its (d − 1)-cells. The following theorem of Buck [7] bounds
the number of k-cells of a hyperplane arrangement.
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▶ Theorem 4 (Buck [7]). For any hyperplane arrangement of n hyperplanes in Rd−1 and
any k ∈ {0, . . . , d − 1}, the number of k-cells is at most(

n

d − 1 − k

) k∑
i=0

(
n − (d − 1) + k

i

)
.

For a k-cell P of H with k ∈ {1, . . . , d − 1}, we denote by P ◦ its interior. We slightly
overload notation by writing P ◦ = P when P is a 0-cell, and we then also call P the interior
of the 0-cell. Like this, the set of beliefs ∆ is partitioned into interiors of k-cells with
k ∈ {0, . . . , d − 1}. In the interior P ◦ of each k-cell P of H the ordering of the links τb(·;µ)
remains the same and, therefore, every function µ 7→ t∗

i (µ) is affine within P ◦ by formula (6).
From this, we obtain the following result.

▶ Lemma 5. For every link i ∈ [m], the function t∗
i : ∆ → R≥0 is piecewise affine. In

particular, the function is affine on the interior of every k-cell of H with k ∈ {0, . . . , d − 1}.

For a link i, t∗
i (µ) is the last point in time at which no flow enters link i yet, i.e., fi(t) > 0

if and only if t∗
i < t. Given belief µ and state θ ∈ Θ, we define for every link i its first exit

time as ωi,θ(µ) := t∗
i (µ) + bi,θ. We obtain as an immediate corollary of Lemma 5 the following

result.

▶ Corollary 6. For every link i ∈ [m] and every state θ ∈ Θ, the function ωi,θ : ∆ → R≥0 is
piecewise affine. In particular, the function is affine on the interior of every k-cell of H with
k ∈ {0, . . . , d − 1}.

We proceed to introduce another permutation of the links. For a given state θ ∈ Θ,
let τθ(· ;µ) : [m] → [m] be a permutation of the links that orders them non-decreasingly
with respect to their exit times in state θ, i.e., ωτθ(1;µ),θ(µ) ≤ · · · ≤ ωτθ(m;µ),θ(µ). For ease
of notation, we write ωτθ(i;µ) := ωτθ(i;µ),θ(µ). Since the inflow functions fi of the dynamic
equilibrium f are piecewise constant (by (5)), so are the outflows f−

i,θ in state θ. We define
ν̄θ(i;µ) :=

∑
j∈[i] ντθ(j;µ) for i ∈ [m] and set ν̄θ(0;µ) := 0, τθ(0;µ) := 0, τθ(m+1;µ) := m+1,

ω0,θ(µ) := 0, and ωm+1,θ(µ) := ∞. For θ ∈ Θ and µ ∈ ∆, let

ηθ(µ) := min
{

max
{

i ∈ [m]0 : ωτθ(i;µ) < T
}

, min
{

i ∈ [m] : ν̄θ(i;µ) ≥ u
}}

be the number of links that contribute to the throughput in state θ. We proceed to compute
explicit formulas for the outflows and the throughput.

▶ Lemma 7. For a fixed state θ ∈ Θ and a given belief µ ∈ ∆, the total outflow at time t is∑
j∈[m]

f−
j,θ(t) = min

{
ν̄θ(i;µ), u

}
whenever ωτθ(i;µ) < t ≤ ωτθ(i+1;µ) for some i ∈ [m]0. The throughput for state θ ∈ Θ is given
by the equation

Fθ(µ) = uT + T
[
ν̄θ(ηθ(µ);µ) − u

]− + ωτθ(ηθ(µ);µ)
[
ν̄θ(ηθ(µ);µ) − u

]+
−

∑
i∈[ηθ(µ)]

ντθ(i;µ)ωτθ(i;µ).

We continue toward dividing ∆ into cells, such that Fθ(µ) is affine on the interior of each
cell. To this end, note that as long as the ordering τθ( · ;µ) remains unchanged, ωτθ(i;µ) is
affine in µ and the capacities ντθ(i;µ) are constant in µ. As long as the same number of links
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has an exit time smaller or equal than T , the number ηθ(µ) is constant as well. Therefore,
in this case, Fθ(µ) is affine in µ. We define new hyperplanes

Hi,j,θ :=
{
µ ∈ R|Θ| : ωi,θ(µ) = ωj,θ(µ)

}
for θ ∈ Θ and i, j ∈ [m], i < j, and

Hi,θ,T :=
{
µ ∈ R|Θ| : ωi,θ(µ) = T

}
for θ ∈ Θ and i ∈ [m].

For every interior P ◦ of a k-cell of the hyperplane arrangement H, consider the hyperplane
arrangement

H∗ :=
{

Hi,j,θ : θ ∈ Θ, i, j ∈ [m] with i < j} ∪
{

Hi,θ,T : θ ∈ Θ, i ∈ [m]
}

.

This hyperplane arrangement further subdivides every interior P ◦ of a k-cell of H. The
following lemma gives the main structural insights for the behavior of the functions Fθ on
the cells of the hyperplane arrangements H and H∗.

▶ Lemma 8. For every state θ ∈ Θ, the function Fθ : ∆ → R≥0 is piecewise affine. In
particular, let P ◦ be the interior of a k-cell of H with k ∈ {0, . . . , d − 1} and let P ∗ be a
(d − 1)-cell of H∗; then Fθ is affine on P ◦ ∩ P ∗.

4 Additive PTAS for Throughput Maximization

In this subsection, we give an additive PTAS for computing the optimal throughput achievable
by a public signaling scheme. For ease of notation, let us write M ∈ [0, 1]d×d for the matrix
that has the vectors (µσ)σ∈Σ as column vectors. Here, we assume that |Σ| = d. This is
possible, as |Σ| ≤ d follows from Caratheodory’s theorem and if |Σ| < d holds, we can add
artificial signals, that are never issued. We write M for the set of left-stochastic matrices
whose rows sum to 1. The primal signaling problem is then rephrased as

Opt := sup
{∑

σ∈Σ
φσF (µσ) : M ∈ M, φ ∈ [0, 1]d such that Mφ = µ∗

}
, (P )

where F is the expected throughput as a function of the belief µ ∈ ∆ and the supremum is
taken both over M ∈ M and φ ∈ [0, 1]d. The main result of this section is the following.

▶ Theorem 9. For every constant d and every ε∗ > 0, there is a polynomial-time algorithm
computing p ∈ [Opt − ε∗, Opt].

Instead of (approximately) solving the primal signaling problem (P ) directly, our algorithm
relies on the following Lagrangian dual.

▶ Lemma 10. The dual signaling problem is

d∗ = inf
{

w⊤µ∗ : w ∈ Rd with w⊤µ ≥ F (µ) for all µ ∈ ∆
}

. (D)

In particular, weak duality holds.

We show that no duality gap exists, i.e., the optimal values for the primal and dual
signaling problem are attained and coincide. The proof uses the definition and properties of
the concave envelope of F .

▶ Lemma 11. The optimal values of the primal signaling problem (P ) and the dual signaling
problem (D) are attained at finite values and coincide.
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The general idea for the additive PTAS is to apply the Ellipsoid method on the dual
signaling problem and to use the equivalence of optimization and separation. Note that
the feasible region of the Lagrange dual is always convex (see, e.g., [6], § 5.2). Formally,
for a set K ⊆ Rn and any ε > 0, let B(K, ε) :=

{
x ∈ Rn : ||x − y||2 ≤ ε for some y ∈ K

}
be the set of points that are within an ε-distance to a point in K. Furthermore, let
B(K, −ε) :=

{
x ∈ K : B({x}, ε) ⊆ K

}
be the set of points that are in the ε-interior of K.

The following definitions are taken from Grötschel et al. ([18], Def. 2.1.10 and 2.1.13), and
adapted to minimization instead of maximization.

▶ Definition 12 (Weak optimization problem). Given a vector c ∈ Qn and a rational number
ε > 0, the weak optimization problem is to
1. compute a vector y ∈ Qn with y ∈ B(K, ε) and c⊤y ≤ c⊤x + ε for all x ∈ B(K, −ε), or
2. assert that B(K, −ε) is empty.

▶ Definition 13 (Weak separation problem). Given a vector y ∈ Qn and a rational number
δ > 0, the weak separation problem is to either
1. assert that y ∈ B(K, δ), or
2. compute a vector c ∈ Qn with ||c||∞ = 1 such that c⊤x ≤ c⊤y + δ for all x ∈ B(K, −δ).

Roughly speaking, the equivalence of optimization and separation implies that a polyno-
mial algorithm for the weak separation problem yields a polynomial algorithm for the weak
optimization problem (see [18, Corollary 4.2.7] for a formal statement). Thus, in order to
solve the weak optimization problem, it is enough to solve the weak separation problem.

We proceed to show that for the dual signaling problem, we can even solve the exact
separation problem (a stronger version of the weak separation problem where δ = 0) which
is defined as follows. Given a vector w ∈ Rd, find µ ∈ ∆ such that w⊤µ < F (µ), or decide
that no such µ ∈ ∆ exists. For the proof, we use Buck’s formula (Theorem 4) to show that
the subdivision into sets Q ∩ Q∗ where Q is a k-cell of H and Q∗ is a k∗-cell of H∗ for some
k, k∗ ∈ {0, . . . , d − 1} produces only a polynomial number of sets. This allows us to iterate
over these sets in polynomial time while checking whether there is a candidate for an extreme
point of the function F (µ) − w⊤µ in the relative interior of Q ∩ Q∗. The function is piecewise
quadratic by Lemma 8. Thus, showing that it is differentiable in Q ∩ Q∗ allows first-order
conditions that reduce to a linear system.

▶ Lemma 14. Given w ∈ Rn, we can compute µ ∈ ∆ in polynomial time such that
w⊤µ < F (µ), or decide that no such µ ∈ ∆ exists.

Immediately following, the weak separation problem for the dual signaling problem is
also solvable in polynomial time.

▶ Corollary 15. For any δ > 0, the weak separation problem for the dual signaling problem
can be solved in polynomial time.

We are now ready to prove the main theorem of this section (Theorem 9). The general
idea for the proof is to use Corollary 15 and the Ellipsoid method. However, to do so, we
have to show that we can fit the dual feasible region into a ball with a polynomially bounded
diameter. To this end, we show an upper bound on ||w||∞ of the dual optimal vector w
based on the supergradient of F . Further calculations involving the approximation error of
solutions v ∈ B(K, −ε) then yield the result.
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5 Multiplicative FPTAS for Throughput Maximization

While the additive PTAS devised in the last subsection approximates the optimal throughput
up to an arbitrary constant, it does not yield the corresponding approximate optimal signals.
In this section, we devise a multiplicative FPTAS that also yields the corresponding signals,
i.e., we show the following theorem.

▶ Theorem 16. For every constant d and every ε∗ > 0, there exists a fully polynomial-time
algorithm for computing a signaling scheme, such that for its induced throughput Alg, it
holds that Alg ≥ (1 − ε∗)Opt.

As this result trivially holds, whenever Opt = 0, we assume for the remaining part of this
section that Opt > 0. The following lemma shows that this assumption is in fact equivalent
to the smallest offset bi,θ over all i ∈ [m] and θ ∈ Θ being strictly smaller than the time
horizon T .

▶ Lemma 17. We have Opt > 0 if and only if T − min{bi,θ : i ∈ [m], θ ∈ Θ} > 0.

The next lemma will be used to define the algorithm that achieves the approximation
guarantee of (1 − ε∗) and to bound its running time. For the proof, we bound Opt in terms
of the throughput achieved by full information revelation.

▶ Lemma 18. Let Opt > 0. For any 0 < ε < 1 and any 0 < δ ≤ d, there exists κ ∈ N>0
such that (1 − ε)κ−1|Θ|Tu ≤ δOpt and κ is polynomially bounded in the input size.

Let 0 < ε < 1 and 0 < δ ≤ d be two arbitrary but fixed values. Further, let κ be defined
as in Lemma 18. We proceed to define an algorithm towards proving Theorem 16. The
main building block of the algorithm is to find a piecewise convex underestimator function
Fε,κ : ∆) → R≥0 of the total expected throughput function F . To this end, we define the
following function hε,κ : [0, 1] → [0, 1] that rounds numbers to the next power of (1 − ε), or
to 0 if the number is too small:

hε,κ(x) :=
{

0 if x < (1 − ε)κ−1,

max{(1 − ε)k−1 : (1 − ε)k−1 ≤ x, k ∈ [κ]} else.

We define an under-estimator function Fε,κ : ∆ → R≥0 of the total expected throughput
function by

Fε,κ(µ) :=
∑
θ∈Θ

hε,κ(µθ)Fθ(µ). (7)

To define the regions where the under-estimator is convex, we proceed to discretize ∆ by
a non-uniform ε-net. For this, we define for every θ ∈ Θ and every j ∈ [κ] the hyperplanes

Lθ,j := {µ : µθ = (1 − ε)j−1} and Lθ,0 := {µ : µθ = 0}.

We denote by L the union of the arrangement of hyperplanes H, H∗, and the ε-net, i.e.,

L := H ∪ H∗ ∪
{

Lθ,j : θ ∈ Θ, j ∈ [κ]0
}

.

The set L again defines an arrangement of hyperplanes in ∆ with

|L| ≤ |H| + |H∗| +
∣∣{Lθ,j : θ ∈ Θ, j ∈ [κ]0

}∣∣
≤ m(m − 1)

2 + dm(m − 1)
2 + dm + d(κ + 1)
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many hyperplanes. We write ∆ε for the set of 0-cells that are determined by L, i.e., the
set of points in ∆ in which d − 1 many pairwise distinct hyperplanes of L intersect. More
formally,

∆ε :=
{
µ ∈ ∆(Θ) : {µ} =

⋂
i∈[|Θ|−1]

Hi with Hi ∈ L and Hi ̸= Hj for i ̸= j
}

.

Note, that the number of 0-cells ℓ := |∆ε| in L is polynomially bounded by the input size as

ℓ := |∆ε| ≤
(

|L|
d − 1

)
=
(m(m−1)

2 + |Θ|m(m−1)
2 + |Θ|m + d(κ + 1)
|Θ| − 1

)
.

Intuitively, we restrict our algorithm to induce only posterior beliefs in ∆ε(Θ) :=
{µ̃σ1 , . . . , µ̃σℓ

} by a set of signals Σε := {σ1, . . . , σℓ}. In particular, the algorithm solves the
linear program

Alg :=max
{∑

j∈[ℓ]

φσj F (µ̃σj
) : µ̃σj

∈∆ε(Θ), φσj ∈ [0, 1] for all j ∈ [ℓ],
∑
j∈[ℓ]

φσj µ̃σj
=µ∗

}
(8)

and returns a signaling scheme that induces the posterior beliefs µ̃σj
that appear with

positive probability φσj > 0 in (8) for all j ∈ [ℓ]. Note that if the posterior beliefs (µ̃σj
)j∈[ℓ]

and the appropriate coefficients (φσj
)j∈[ℓ] are given, the signaling scheme can be recovered

in polynomial time (cf. [20]).
We work towards proving that the thus defined algorithm yields the claimed approximation

guarantee of (1 − ε∗). To this end, we first show that the underestimator function Fε,κ is
convex on every k-cell of L for all k ∈ {0, 1, . . . , d − 1}. The proof uses that on the interior
of each k-cell of L, the function is a linear combination of affine functions and the values on
the border of the cell cannot be smaller than the continuous expansion of the affine function.

▶ Lemma 19. For all 0 < ε < 1 and κ ∈ N, the function Fε,κ is convex on every k-cell of L
for all k ∈ {0, 1, . . . , d − 1}. In particular, Fε,κ is affine on the interior of every k-cell of L.

Next, we bound the under-estimator function Fε,κ both from below and above.

▶ Lemma 20. For all 0 < ε < 1, κ ∈ N, and µ ∈ ∆, we have

(1 − ε)F (µ) − d(1 − ε)κFmax ≤ Fε,κ(µ) ≤ F (µ),

where Fmax := maxθ∈Θ supµ∈∆ Fθ(µ).

With these lemmas at hand, we are ready to prove the main result of this section
(Theorem 16). For the proof, we use that optimizing over the piecewise convex under-
estimator Fε,κ instead of the original function F causes only a multiplicative error of (1 − ε)
in the (1 − ε)κ−1-interior of ∆ and an additional additive error close to the boundary of ∆.
Since the under-estimator is convex on the interior of every (d − 1)-cell of L, every optimal
convex decomposition of the prior for the convex under-estimator only uses the 0-cells of L.
Bounding their number by a polynomial of the encoding length of the input, we then obtain
the result.

6 Full Information Revelation for Makespan Minimization

In this section, we consider the makespan objective. As the main result of this section, we
show that full information revelation is optimal, i.e., it is optimal to choose Σ = Θ and have
φθ,σ = µ∗

θ if θ = σ and φθ,σ = 0 otherwise.

ESA 2024
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▶ Theorem 21. For the makespan objective, full information revelation is an optimal
signaling scheme.

To prove Theorem 21, we consider dynamic equilibria with different deterministic offsets.
We first note that among all dynamic equilibria, the cost of every edge is unique (e.g., [10, 24]),
and, hence, each edge’s queue length is unique. Thus, for every dynamic equilibrium, the
queue lengths are determined by Lemma 3 and are non-decreasing in t. Therefore, a particle
entering the system at time t = T has the latest expected exit time C. This implies the
following easier formula for the makespan.

▶ Lemma 22. Let f be the dynamic equilibrium from (5). Then it holds,

MT (f) = max
{

Ci(T ) : i ∈ S(T )
}

.

Moreover, if the perceived and the true deterministic offsets b coincide, we have MT (f) =
T + bk+1. We proceed to investigate how changing the perceived offsets influences the
makespan. Formally, let b = (bi)i∈[m] be the offsets of a given instance. Then, we denote by
f(b) the dynamic equilibrium as defined by (5). For flow f we denote its support at time t

by S(t; f). Additionally, we consider another vector of (arbitrary) offsets b′ = (b′
i)i∈[m] with

b′
i ≥ 0 for all i ∈ [m]. (For example, the offsets b′ could be the offsets expected by the

particles given a certain belief µ.) Assume that particles behave according to b′ rather than
b. Then, the dynamic equilibrium and, thus, the makespan changes if b′ is changed. We
denote by

F(b′) :=
{

f : f is dynamic equilibrium with respect to the offsets b′}
all dynamic equilibria with respect to the offsets b′ and emphasize that these equilibria are
not unique. If the flow f ′ ∈ F(b′) emerges in the original instance (i.e., the instance with
offsets b) the flow particles experience the exit times

Ci(t; f ′) := t + zi(t; f ′)
νi

+ bi,

where zi(t; f ′) are the queue lengths determined by the dynamic equilibrium f ′ . Then, we
denote by

M(b′) := sup
{

MT (f ′) : f ′ ∈ F(b′)
}

= sup
f ′∈F(b′)

sup
{

Ci(t; f ′) : t ∈ [0, T ], i ∈ S(T ; f ′)
}

the (worst-case) makespan for given offsets b′. In this setting, we are interested in finding
the best possible b′ ≥ 0 that minimizes the makespan, i.e., we want to compute

inf
{

M(b′) : b′ ≥ 0
}

. (9)

The function M(b′) is in general not continuous, as illustrated in Example 2. Thus, it is not
clear if a minimum is attained.

Theorem 21 is then proven by showing that the infimum in (9) is actually attained for
the original travel times b. Due to space constraints, we defer the whole derivation of this
result to the full version.
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